Bibliography of Lewis Research Center Technical Publications Announced in 1986

May 1987
PREFACE

In 1986, Lewis Research Center's 1062 research authors published 440 technical publications that were announced to and reached the worldwide scientific community. The 440 papers included 223 symposium/seminar presentations and 82 articles sent directly to journals for publication. The number of seminar presentations was the second highest in Lewis history (226 in 1984), while the number of journal articles was the highest in Lewis history (74 in 1985). For many years, the number of articles submitted directly to journals for publication ranged between 40 and 50. In 1986, Lewis authors published approximately 69 percent of their research contributions in outside publications and the remainder as NASA research reports. Sixty-two percent of Lewis-authored society presentations and journal articles were addressed to members of the following technical societies: AIAA, 60 papers; ASME, 52 papers; SAE, 28 papers; ASM, 25 papers; IEEE, 21 papers; ASEE (American Society of Engineering Education), 17 papers; AIP (American Institute of Physics), 15 papers; ASLE, 13 papers; American Chemical Society, 12 papers; and ACS (American Ceramic Society), 12 papers.

In 1986, 293 contractor-authored research reports were produced. In addition, 11 patent applications were filed and 11 patents were issued.

Lewis hosted 12 research conferences in 1986. Seven of these resulted in NASA Conference Publications:

- NASA CP-2423, 20th Aerospace Mechanisms Symposium, May 7–9
- NASA CP-2427, Structural Ceramics, May 20–21, abstracts and figures
- NASA CP-2444, Turbine Engine Hot Section Technology 1986, October 21–22
- NASA CP-2465, Microgravity Fluid Management Symposium, September 9–10
- NASA CP-2473, Spacecraft 2000, July 29–31, figures and working group reports
- NASA CP-2475, Space Photovoltaic Research and Technology 1986, October 7–9
- NASA CP-2476, Spacecraft Fire Safety, August 20–21

In addition, three of these conference publications were published at Lewis and made available to the attendees when they registered at the conference: 20th Aerospace Mechanisms Symposium, Structural Ceramics, and Turbine Engine Hot Section Technology 1986. Other conferences hosted by Lewis in 1986 included

- First International Conference on Ion Nitriding, September 15–17
- Third Symposium on Nonlinear Constitutive Relations for High-Temperature Applications, June 11–13
- 1986 Advanced Turboprop Workshop, November 5–6
- Midwest Space Development Conference, October 17–19
- Technology Transfer Conference, September 25

Many Lewis authors have received awards for their contributions; among them are the following:

The 1986 Lewis Distinguished Paper Award was presented to Arthur N. Curren and Kenneth A. Jensen for their paper entitled "Textured Carbon on Copper: A Novel Surface With Extremely Low Secondary Electron Emission Characteristics." In addition, William F. Brown, Jr., a Distinguished Research Associate for the Aerospace Technology Directorate, received the Nadai Award from the American Society of Mechanical Engineers for outstanding contributions to the field of engineering materials.

A few Lewis-authored publications are not included in this compilation because of FEDD (For Early Dissemination and Distribution) and ITAR (International Traffic in Arms Regulations) considerations which limit their announcement and distribution.

All the publications in this collection were announced in the 1986 issues of STAR (Scientific and Technical Aerospace Reports) and IAA (International Aerospace Abstracts).

The arrangement of the material is by NASA subject category, as noted in the Contents. The various indexes will help locate specific publications by subject, author, contractor organization, contract number, and report number.

George Mandel
Chief, Technical Information Services Division
TABLE OF CONTENTS

PREFACE

AERONAUTICS
- Includes aeronautics (general); aerodynamics; air transportation and safety; aircraft communications and avigation; aircraft design, testing and performance; aircraft instrumentation; aircraft propulsion and power; aircraft stability and control; and research and support facilities (air).
 For related information see also Astronautics.

1 AERONAUTICS (GENERAL)

2 AERODYNAMICS
- Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in jets and turbomachinery.
 For related information see also 34 Fluid Mechanics and Heat Transfer.

3 AIR TRANSPORTATION AND SAFETY
- Includes passenger and cargo air transport operations; and aircraft accidents.
 For related information see also 16 Space Transportation and 85 Urban Technology and Transportation.

4 AIRCRAFT COMMUNICATIONS AND NAVIGATION
- Includes digital and voice communication with aircraft; navigation systems (satellite and ground based); and traffic control.
 For related information see also 17 Space Communications, Spacecraft Communications, Command and Tracking and 32 Communications and Radar.

5 AIRCRAFT DESIGN, TESTING AND PERFORMANCE
- Includes aircraft simulation technology.
 For related information see also 18 Spacecraft Design, sting and Performance and 39 Structural Mechanics. For land transportation vehicles see 85 Urban Technology and Transportation.

6 AIRCRAFT INSTRUMENTATION
- Includes cockpit and cabin display devices; and flight instruments.
 For related information see also 19 Spacecraft Instrumentation and 35 Instrumentation and Photography.

7 AIRCRAFT PROPULSION AND POWER
- Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and board auxiliary power plants for aircraft.
 For related information see also 20 Spacecraft Propulsion and Power, 28 Propellants and Fuels, and 44 Energy Conversion and Conversion.

8 AIRCRAFT STABILITY AND CONTROL
- Includes aircraft handling qualities; piloting; flight control; and autopilots.
 For related information see also 05 Aircraft Design, sting and Performance.

9 RESEARCH AND SUPPORT FACILITIES (AIR)
- Includes airports; hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tubes; and aircraft engine test stands.
 For related information see also 14 Ground Support Systems and Facilities (Space).

ASTRONAUTICS
- Includes astronautics (general); astrodynamics; ground support systems and facilities (space); launch vehicles and space vehicles; space communications, spacecraft communications, command and tracking; spacecraft design, testing and performance; spacecraft instrumentation; and spacecraft propulsion and power.
 For related information see also Aeronautics.

12 ASTRONAUTICS (GENERAL)
- For extraterrestrial exploration see 91 Lunar and Planetary Exploration.

13 ASTRODYNAMICS
- Includes powered and free-flight trajectories; and orbital and launching dynamics.

14 GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)
- Includes launch complexes, research and production facilities; ground support equipment, e.g., mobile transporters; and simulators.
 For related information see also 09 Research and Support Facilities (Air).

15 LAUNCH VEHICLES AND SPACE VEHICLES
- Includes boosters; operating problems of launch/space vehicle systems; and reusable vehicles.
 For related information see also 20 Spacecraft Propulsion and Power.

16 SPACE TRANSPORTATION
- Includes passenger and cargo space transportation, e.g., shuttle operations; and space rescue techniques.
 For related information see also 03 Air Transportation and Safety and 16 Spacecraft Design, Testing and Performance. For space suits see 54 Man/System Technology and Life Support.

17 SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING
- Includes telemetry; space communications networks; astronautics and guidance; and radio blackout.
 For related information see also 04 Aircraft Communications and Navigation and 32 Communications and Radar.
18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE 47
Includes satellites; space platforms; space stations; spacecraft systems and components such as thermal and environmental controls; and attitude controls.
For life support systems see 54 Man/System Technology and Life Support. For related information see also 05 Aircraft Design, Testing and Performance, 39 Structural Mechanics, and 16 Space Transportation.

19 SPACECRAFT INSTRUMENTATION 50
For related information see also 06 Aircraft Instrumentation and 35 Instrumentation and Photography.

20 SPACECRAFT PROPULSION AND POWER 50
Includes main propulsion systems and components, e.g., rocket engines; and spacecraft auxiliary power sources.
For related information see also 07 Aircraft Propulsion and Power, 28 Propellants and Fuels, 44 Energy Production and Conversion, and 15 Launch Vehicles and Space Vehicles.

CHEMISTRY AND MATERIALS
Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; propellants and fuels; and materials processing.

23 CHEMISTRY AND MATERIALS (GENERAL) 64

24 COMPOSITE MATERIALS 65
Includes physical, chemical, and mechanical properties of laminates and other composite materials.
For ceramic materials see 27 Nonmetallic Materials.

25 INORGANIC AND PHYSICAL CHEMISTRY 71
Includes chemical analysis, e.g., chromatography; combustion theory; electrochemistry; and photochemistry.
For related information see also 77 Thermodynamics and Statistical Physics.

26 METALLIC MATERIALS 79
Includes physical, chemical, and mechanical properties of metals, e.g., corrosion; and metallurgy.

27 NONMETALLIC MATERIALS 94
Includes physical, chemical, and mechanical properties of plastics, elastomers, lubricants, polymers, textiles, adhesives, and ceramic materials.
For composite materials see 24 Composite Materials.

28 PROPELLANTS AND FUELS 106
Includes rocket propellants, igniters and oxidizers; their storage and handling procedures; and aircraft fuels.
For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 44 Energy Production and Conversion.

29 MATERIALS PROCESSING N.A.
Includes space-based development of products and processes for commercial application.
For biological materials see 55 Space Biology.

ENGINEERING
Includes engineering (general); communications and radar; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.
For related information see also Physics.

31 ENGINEERING (GENERAL) 10¢
Includes vacuum technology; control engineering; display engineering; cryogenics; and fire prevention.

32 COMMUNICATIONS AND RADAR 10¢
Includes radar; land and global communications; communications theory; and optical communications.
For related information see also 04 Aircraft Communications and Navigation and 17 Space Communications Spacecraft Communications, Command and Tracking. For search and rescue see 03 Air Transportation and Safety and 16 Space Transportation.

33 ELECTRONICS AND ELECTRICAL ENGINEERING 117
Includes test equipment and maintainability; components, e.g., tunnel diodes and transistors; microminiaturization; and integrated circuitry.
For related information see also 60 Computer Operations and Hardware and 76 Solid-State Physics.

34 FLUID MECHANICS AND HEAT TRANSFER 125
Includes boundary layers; hydrodynamics; fluidics; mass transfer and ablation cooling.
For related information see also 02 Aerodynamics and 77 Thermodynamics and Statistical Physics.

35 INSTRUMENTATION AND PHOTOGRAPHY 145
Includes remote sensors; measuring instruments andgages; detectors; cameras and photographic supplies; and holography.
For aerial photography see 43 Earth Resources and Remote Sensing. For related information see also 06 Aircraft Instrumentation and 19 Spacecraft Instrumentation.

36 LASERS AND MASERS 15¢
Includes parametric amplifiers.
For related information see also 76 Solid-State Physics.

37 MECHANICAL ENGINEERING 15¢
Includes auxiliary systems (nonpower); machine elements and processes; and mechanical equipment.

38 QUALITY ASSURANCE AND RELIABILITY 16¢
Includes product sampling procedures and techniques and quality control.

39 STRUCTURAL MECHANICS 16¢
Includes structural element design and weight analysis; fatigue; and thermal stress.
GEOSCIENCES
Includes geosciences (general); earth resources and remote sensing; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.
For related information see also Space Sciences.

42 GEOSCIENCES (GENERAL) N.A.

43 EARTH RESOURCES AND REMOTE SENSING N.A.
Includes remote sensing of earth resources by aircraft and spacecraft; photogrammetry; and aerial photography.
For instrumentation see 35 Instrumentation and Photography.

44 ENERGY PRODUCTION AND CONVERSION 179
Includes specific energy conversion systems, e.g., fuel cells; global sources of energy; geophysical conversion; and windpower.
For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 28 Propellants and Fuels.

45 ENVIRONMENT POLLUTION 191
Includes atmospheric, noise, thermal, and water pollution.

46 GEOPHYSICS 191
Includes aeronomy; upper and lower atmosphere studies; ionospheric and magnetospheric physics; and geomagnetism.
For space radiation see 93 Space Radiation.

47 METEOROLOGY AND CLIMATOLOGY 191
Includes weather forecasting and modification.

48 OCEANOGRAPHY 192
Includes biological, dynamic, and physical oceanography; and marine resources.
For related information see also 43 Earth Resources and Remote Sensing.

LIFE SCIENCES
Includes life sciences (general); aerospace medicine; behavioral sciences; man/system technology and life support; and space biology.

1 LIFE SCIENCES (GENERAL) N.A.

2 AEROSPACE MEDICINE N.A.
Includes physiological factors; biological effects of radiation; and effects of weightlessness on man and animals.

3 BEHAVIORAL SCIENCES N.A.
Includes psychological factors; individual and group behavior; crew training and evaluation; and psychiatric research.

4 MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT 192
Includes human engineering; biotechnology; and space suits and protective clothing.
For related information see also 16 Space Transportation.

55 SPACE BIOLOGY N.A.
Includes exobiology; planetary biology; and extraterrestrial life.

MATHEMATICAL AND COMPUTER SCIENCES
Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

59 MATHEMATICAL AND COMPUTER SCIENCES (GENERAL) 192

60 COMPUTER OPERATIONS AND HARDWARE 192
Includes hardware for computer graphics, firmware, and data processing.
For components see 33 Electronics and Electrical Engineering.

61 COMPUTER PROGRAMMING AND SOFTWARE 193
Includes computer programs, routines, algorithms, and specific applications, e.g., CAD/CAM.

62 COMPUTER SYSTEMS 194
Includes computer networks and special application computer systems.

63 CYBERNETICS 194
Includes feedback and control theory, artificial intelligence, robotics and expert systems.
For related information see also 54 Man/System Technology and Life Support.

64 NUMERICAL ANALYSIS 194
Includes iteration, difference equations, and numerical approximation.

65 STATISTICS AND PROBABILITY N.A.
Includes data sampling and smoothing; Monte Carlo method; and stochastic processes.

66 SYSTEMS ANALYSIS 196
Includes mathematical modeling; network analysis; and operations research.

67 THEORETICAL MATHEMATICS N.A.
Includes topology and number theory.

PHYSICS
Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.
For related information see also Engineering.

70 PHYSICS (GENERAL) 196
For precision time and time interval (PTTI) see 35 Instrumentation and Photography; for geophysics, astrophysics or solar physics see 46 Geophysics, 90 Astrophysics, or 92 Solar Physics.
71 ACOUSTICS Includes sound generation, transmission, and attenuation.
For noise pollution see 45 Environment Pollution.

72 ATOMIC AND MOLECULAR PHYSICS Includes atomic structure, electron properties, and molecular spectra.

73 NUCLEAR AND HIGH-ENERGY PHYSICS Includes elementary and nuclear particles; and reactor theory.
For space radiation see 93 Space Radiation.

74 OPTICS Includes light phenomena and optical devices.
For lasers see 36 Lasers and Masers.

75 PLASMA PHYSICS Includes magnetohydrodynamics and plasma fusion.
For ionospheric plasmas see 46 Geophysics. For space plasmas see 90 Astrophysics.

76 SOLID-STATE PHYSICS Includes superconductivity.
For related information see also 33 Electronics and Electrical Engineering and 36 Lasers and Masers.

77 THERMODYNAMICS AND STATISTICAL PHYSICS Includes quantum mechanics; theoretical physics; and Bose and Fermi statistics.
For related information see also 25 Inorganic and Physical Chemistry and 34 Fluid Mechanics and Heat Transfer.

SOCIAL SCIENCES Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law, political science, and space policy; and urban technology and transportation.

80 SOCIAL SCIENCES (GENERAL) Includes educational matters.

81 ADMINISTRATION AND MANAGEMENT Includes management planning and research.

82 DOCUMENTATION AND INFORMATION SCIENCE Includes information management; information storage and retrieval technology; technical writing; graphic arts; and micrography.
For computer documentation see 61 Computer Programming and Software.

83 ECONOMICS AND COST ANALYSIS Includes cost effectiveness studies.

84 LAW, POLITICAL SCIENCE AND SPACE POLICY Includes NASA appropriation hearings; aviation law; space law and policy; international law; international cooperation; and patent policy.

85 URBAN TECHNOLOGY AND TRANSPORTATION Includes applications of space technology to urban problems; technology transfer; technology assessment and surface and mass transportation.
For related information see 03 Air Transportation and 16 Space Transportation, and 44 Energy Production and Conversion.

SPACE SCIENCES Includes space sciences (general); astronomy; astrophysics; solar physics and space radiation.
For related information see also Geosciences.

88 SPACE SCIENCES (GENERAL) N.A.

89 ASTRONOMY Includes radio, gamma-ray, and infrared astronomy and astrometry.

90 ASTROPHYSICS Includes cosmology; celestial mechanics; space plasma and interstellar and interplanetary gases and dust.
For related information see also 75 Plasma Physics.

91 LUNAR AND PLANETARY EXPLORATION Includes planetology; and manned and unmanned flights.
For spacecraft design or space stations see 18 Spacecraft Design, Testing and Performance.

92 SOLAR PHYSICS Includes solar activity, solar flares, solar radiation and sunspots.
For related information see 93 Space Radiation.

93 SPACE RADIATION Includes cosmic radiation; and inner and outer earth radiation belts.
For biological effects of radiation see 52 Aerospace Medicine. For theory see 73 Nuclear and High-Energy Physics.

GENERAL Includes aeronautical, astronomical, and space science related histories, biographies, and pertinent reports too broad for categorization; histories or broad overview of NASA programs.

99 GENERAL N.A.

Note: N.A. means that no abstracts were assigned to this category for this issue.

SUBJECT INDEX .. A-1
PERSONAL AUTHOR INDEX ... B-1
CORPORATE SOURCE INDEX .. C-1
CONTRACT NUMBER INDEX .. D-1
REPORT/ACCESSION NUMBER INDEX E-1

ORIGINAL PAGE IS OF POOR QUALITY
A rapid quasi three-dimensional analysis was developed for blade-to-blade flows in turbomachinery. The analysis solves the unsteady Euler or thin layer Navier-Stokes equations in a body-fitted coordinate system. It accounts for the effects of rotation, radius change, and stream-surface thickness. The Baldwin-Lomax eddy-viscosity model is used for turbulent flows. The equations which are solved by a two-stage Runge-Kutta scheme made efficient by use of vectorization, a variable time-step, and a flux-based multigrid scheme, are described. A stability analysis is presented for the two-stage scheme. Results for a flat-plate model problem show the applicability of the method to exfoil, radial, and rotating geometries. Results for a centrifugal impeller and a radial diffuser show that the quasi three-dimensional viscous analysis can be a practical design tool.

E.A.K.
which are solved by a two-stage Runge-Kutta scheme made efficient by use of vectorization, a variable time-step, and a flux-based multistage scheme, as described. A stability analysis is presented for the two-stage. Results for a flat-plate model problem show the applicability of the method to axial, radial, and rotating geometries. Results for a centrifugal impeller and a radial diffuser show that the quasi three-dimensional viscous analysis can be a practical design tool.

A86-20131*# Cornell Univ., Ithaca, N.Y.
AN IMPLICIT LU SCHEME FOR THE EULER EQUATIONS APPLIED TO ARBITRARY CASCADES

A85-20372*# National Aeronautics and Space Administration.
CALCULATION OF THREE-DIMENSIONAL, VISCOUS FLOW THROUGH TURBOMACHINERY BLADE PASSAGE BY PARABOLIC MARCHING

A85-20942*# National Aeronautics and Space Administration.
ACCELERATED SOLUTION OF THE STEADY EULER EQUATIONS

The present paper is concerned with two methods for the accelerated solution of the steady Euler equations. One method makes use of a second-order embedding to facilitate the derivation of the relaxation solution of the steady equations of motion, while the other method employs a multile-gridding concept to accelerate the convergence of a simple, explicit, time-marching scheme applied to the unsteady equations. It is pointed out that the surrogate equation technique provides a means for formulating problems involving the full steady Euler equations in such a way as to allow the use of relaxation solution procedures. It is, therefore, possible to solve either irrotational or rotational flow problems spanning the entire spectrum of subsonic, transonic, and supersonic conditions. The solutions can be obtained without an employment of either derived dependent variables, semidirect methods, or an unsteady formulation.

CALCULATIONS OF TWO AND THREE-DIMENSIONAL TRANSONIC CASCADE FLOW FIELDS USING THE NAVIER-STOKES EQUATIONS

The multidimensional, ensemble-averaged, compressible, time-dependent Navier-Stokes equations have been used to study the turbulent flow field in two and three-dimensional turbine cascades. The viscous regions of the flow were resolved and non-slip boundary conditions were utilized on solid surfaces. The calculations were performed in a constructive 'O'-type grid which allows representation of the blade rounded trailing edge. Converged solutions were obtained in relatively few time steps (about 80-150) and comparisons of both surface pressure and heat transfer showed good agreement with data. The three-dimensional turbine cascade calculation showed many of the expected flow-field features.

A86-22102*# Flow Application Research, Fremont, Calif.
MODELING THE 3-D FLOW EFFECTS ON DEVIATION ANGLE FOR AXIAL COMpressor MIDDLE STAGES
W. B. ROBERTS (Flow Application Research, Fremont, CA), G. K. SEROVY (Iowa State University of Science and Technology, Ames), and D. M. SANDERCOCK (NASA Lewis Research Center, Cleveland, OH) ASME, International Gas Turbine Conference and Exhibit, 30th, Houston, TX, Mar. 18-21, 1985. 7 p. refs (Contract NAG3-521) (ASME PAPER 85-GT-189)

A model of the spanwise variation of the three-dimensional flow effects on deviation is proposed for middle-stage rotors and stators. This variation is taken as the difference above or below that predicted by blade element theory at any spanwise location. It was found that the stator variation is strongly affected by the end-wall boundary-layer thickness as well as camber, solidity, and blade channel aspect ratio. Rotor variation was found to depend on the end-wall boundary-layer thickness and tip clearance normalized by blade span. If these parameters are known or can be calculated, the models provide a reasonable approximation to the spanwise variation of deviation for middle compressor stages operating at low to high subsonic inlet Mach numbers.

A86-22123*# National Aeronautics and Space Administration.
MODEL EQUATION FOR SIMULATING FLOWS IN MULTISTAGE TURBOMACHINERY
J. J. ADAMCZYK (NASA Lewis Research Center, Cleveland, OH), ASME, International Gas Turbine Conference and Exhibit, 30th, Houston, TX, Mar. 18-21, 1985. 13 p. Previously announced in STAR as N85-12036. refs (ASME PAPER 85-GT-228)

A steady, three-dimensional average-passage equation system is derived for use in simulating multistage turbomachinery flows. These equations describe a steady, viscous flow that is periodic from blade passage to blade passage. From this system of equations, various reduced forms can be derived for use in simulating the three-dimensional flow field within multistage machinery. It is suggested that a properly scaled form of the averaged-passage equation system would provide an improved mathematical model for simulating the flow in multistage machines at design and, in particular, at off-design conditions.

A86-22693*# National Aeronautics and Space Administration.
VELOcity AND TEMPERATURE DECAY CHARACTERISTICS OF INVERTED-PROFILE Jets

In order to design efficient, lightweight flaps systems for future engine under-the-wing STOL aircraft, the velocity and temperature decay rate of the jet plume must be increased relative to that for single-stream nozzles in order to provide local flap loads and structural temperatures within acceptable limits. The jet plume decay rate of dual flow engines can be increased by resorting to inverted-profile velocity and temperature nozzle concepts. The peak axial decay characteristics of model-scale, two-stream inverted-profile nozzle flows are empirically correlated. Also discussed are the radial and spreading characteristics of inverted-profile nozzle flows.
AERODYNAMIC DETUNING ANALYSIS OF AN UNSTALLED SUPERSONIC TURBOFAN CASCADE

An approach to passive flutter control is aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model is developed to demonstrate the enhanced supersonic aerelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamically detuned cascade operating in a super sonic inlet flow field with a subsonic leading edge locus analyzed with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blades are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformly spaced rotor configuration as well as the detuned nonuniform circumferentially spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aerelastic stability associated with this particular type of aerodynamic detuning.

A NOVEL CENTRIFUGAL DIFFUSER TEST DEVICE

Through-flow analysis practices are presently evaluated by comparing their results with the flow measured on a single-stage compressor rotor that had been tested at the nominal design flow coefficient of 0.85, using both thick and thin inlet endwall boundary layers. Sufficient experimental data was available for both the required aerodynamic input of the calculations and the detailed assessment of the computational results obtained. It is noted that, with this through-flow study, reasonably characterizes many aspects of the flow, the features less well predicted suggest the need for a more precise formulation of the equation, and the inclusion of such often neglected effects as the radial component of blade force and/or the fluctuation terms due to the flow's nonaxisymmetry, as found in the phenomenon of blockage. O.C.

A THREE-DIMENSIONAL AXISYMMETRIC CALCULATION PROCEDURE FOR TURBULENT FLOWS IN A RADIAL VANELESS DIFFUSER

An analytical model is proposed to calculate the three-dimensional axisymmetric turbulent flowfield in a radial vaneless diffuser. The model assumes that the radial and tangential boundary layer profiles are approximated by power law profiles. Then, using the integrated radial and tangential momentum and continuity equations for the boundary layer and corresponding inviscid equations for the core flow, there results six ordinary differential equations in six unknowns which are easily solved using a Runge-Kutta technique. A model is also proposed for fully developed flow. The results using this technique were compared with the results from a three-dimensional viscous, axisymmetric duct code and with experimental data and good quantitative agreement was obtained. O.C.

UNSTEADY PRESSURE MEASUREMENTS ON A BICONVEX AIRFOIL IN A TRANSSONIC OSCILLATING CASCADE

Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfoils were simultaneously driven to provide 1.2° of pitching motion about the midchord. Initial tests were performed at an incidence and angle of 0° and a Mach number of 0.85 in order to obtain results in a shock-free compressible flowfield. Subsequent tests were performed at an incidence angle of 7° and Mach number of 0.8 in order to observe the surface pressures with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90° and 90°-90° and at blade oscillatory frequencies of 200 and 500 Hz (semi-chord reduced frequencies up to about 0.5 at a Mach number of 0.8). Results from the zero-incidence cascade are compared with a classical unsteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airflow pressure data are tabulated.

A THREE-DIMENSIONAL AXISYMMETRIC TURBULENT FLOW FIELD IN A VANELESS DIFFUSER

A large scale (2 in.-wide test vanes at 50-in. inlet diameter), low pressure (100-200 lb/sq in.) steady flow radial cascade wind tunnel for diffuser studies was designed, built and tested. The apparatus was shown to provide flow angles (from radial) in the range of 58-72 deg with suitable spanwise profiles. The novel flow angle control mechanism was shown to work, but measured flow angles were somewhat smaller than expected. The mechanism for controlling case-wall boundary layer profile did not behave as predicted. Attempts to predict the generated flow both analytically
02 AERODYNAMICS

and with computational codes are compared with initial measurements. The low speed apparatus will be used to obtain detailed data for diffuser design and analysis code verification, and to provide experience toward the design of a high speed device.

Author

A86-24693* Cleveland State Univ., Ohio.

UNSTEADY TRANSONIC FLOW IN CASCADES

There is a need for methods to predict the unsteady air loads associated with flutter of turbomachinery blades at transonic speeds. The results of such an analysis in which the steady relative flow approaching a cascade of thin airfoils is assumed to be transonic, irrational, and isentropic is presented. The blades in the cascade are allowed to undergo a small amplitude harmonic oscillation which generates a small unsteady flow superimposed on the existing steady flow. The blades are assumed to oscillate with a prescribed motion of constant amplitude and interblade phase angle. The equations of motion are obtained by linearizing about a uniform flow the inviscid nonheat conducting continuity and momentum equations. The resulting equations are solved by employing the Weiner Hopf technique. The solution yields the unsteady aerodynamic forces acting on the cascade at Mach equal number to 1. Making use of an unsteady transonic similarity law, these results are compared with the results obtained from linear unsteady subsonic and supersonic cascade theories. A parametric study is conducted to find the effects of reduced frequency, solidity, stagger angle, and position of pitching axis on the flutter.

Author

A86-24920* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

VORTEX GENERATORS AS A MEANS FOR INCREASING ROTOR PERFORMANCE

Field tests on a horizontal axis wind turbine (HAWT) have shown that Vortex Generators (VGs) can increase the efficiency of large propeller type (horizontal axis) wind turbines. VGs are devices which have been attached to the surface of an aerodynamic body to influence the boundary layer behavior. It is pointed out that VGs were originally developed for delaying stall on aircraft wings. An investigation was conducted regarding the possibility to employ VGs also for the improvement of the performance of an intermediate size HAWT with a diameter in the range from 24 to 46 meters. This investigation included wind tunnel tests involving a rotor blade tip section, and field tests. The wind tunnel tests showed that VGs can improve the peak lift capabilities of the section while only slightly increasing the drag. The field tests showed that VGs can increase the rotor power in winds above 6 m/s.

G.R.

A86-26412* Clemson Univ., S.C.

INVERSE DESIGN OF AXISYMMETRIC FLOW PASSAGES USING COMPRESSIBLE VISCOUS FLOW THEORY

A study reported by Yang and Hudson (1971) was extended by Nelson (1971), who presented a method of inverse design for axisymmetric diffusers. The diffusers obtained with the aid of this method were found to function well under certain conditions, while, for other cases, a modification of the analytical design procedure was required. An outline is provided of the method of inverse solution in simple axisymmetric internal flow passages. Attention is given to governing equations, the method of solution, and examples which illustrate the feasibility of the design procedure. The discussed method, which is based on viscous compressible flow theory, has some limitations. However, it is expected to yield excellent results in many practical cases in which the existing design must be modified.

Author

A86-28538* California Univ., Los Angeles.

AN ANALYTICAL MODEL FOR THE VORTICITY ASSOCIATED WITH A TRANSVERSE JET

Three-dimensional flow phenomena in fluid machinery; proceedings of the Winter Annual Meeting, Miami Beach, FL, November 17-22, 1985, A. HAMED, ED. (Cincinnati, University, OH); J. HERRING, ED. (DYNalysis of Princeton, NJ); and L. POVINELLI, ED. (NASA, Lewis Research Center, Cleveland, OH) Meeting sponsored by ASME. New York, American Society of Mechanical Engineers (Fluids Engineering Symposium Series. Volume FED-32), 1986, 235 p. For individual items see A86-28683 to A86-28707.

For papers presented in this volume provide an overview of the latest developments in experimental measurements and analytical and numerical predictions of three-dimensional flows in fluid machinery. Topics discussed include three-dimensional cascade testing of turbine nozzles at high exit Mach number; the use of a secondary flow computation in the compressor design process; an experimental investigation of static propeller flow field; and calculation of three-dimensional boundary layers on rotating turbine blades. Papers are also presented on a three-dimensional solution method for turbomachinery analysis; analysis of rotational inviscid flows in curved passages; and a mathematical model for the analysis of fluid flow in a scroll.

V.L.

A86-28702* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

THREE-DIMENSIONAL INVISID ANALYSIS OF RADIAL-TURBINE FLOW AND A LIMITED COMPARISON WITH EXPERIMENTAL DATA

The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. These results are compared with the results obtained from a rotor blade tip section, and field tests. The wind tunnel tests showed that VGs can improve the peak lift capabilities of the section while only slightly increasing the drag. The field tests showed that VGs can increase the rotor power in winds above 6 m/s.

G.R.
three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

Author

A86-35855* Ohio State Univ., Columbus.
FLOW FIELD AND NEAR AND FAR SOUND FIELD OF A SUBSONIC JET
Flow and sound field data are presented for a 2.54 cm diameter jet at a Mach number of 0.50 and a Reynolds number of 300,000. Distributions of mean velocity, turbulence intensities, Reynolds stress, spectral components of turbulence as well as of the near field pressure, together with essential characteristics of the far field sound are reported. This detailed set of data for one particular flow, erstwhile unavailable in the literature, is expected to help promote and calibrate subsonic noise theories. Source locations in terms of the turbulence maxima, coupling between the entrainment dynamics and the near pressure field, the sound radiation paths, and the balance in mass, momentum and sound energy fluxes are discussed. The results suggest that the large scale coherent structures of the jet govern the 'source locations' by controlling the turbulence and also strongly influence the near-field pressure fluctuations.

Author

A86-35840* National Aeronautics and Space Administration.
ANALYSIS OF FULLY STALLED COMPRESSOR
An analysis yields a model for energy transfer in compressor stages operating in the closed-throttle condition. The derivation indicates that three geometry parameters (hub/tip ratio, aspect ratio, and rotor blade setting angle) influence the values of pressure coefficient when the compressor flow is close to zero.

Author

A86-35896* California Univ., Los Angeles.
PACKET FLUTTER AND AERODYNEMIC MODES FOR NON-HOMOGENEOUS AIRFOIL CASCADES IN HIGHLY DISTORTED, PERIODIC, STATIONARY THROUGHFLOWS
An analytical investigation of the general flutter characteristics of periodically detuned airfoil cascades kept in periodically nonuniform basic flows is conducted under the assumption of linearized aerodynamics. The existence of certain packet flutter modes is studied, as are the specific aerodynamic modes to be used in the calculation of the aerodynamic coefficients such that the number of blade passages in the computational domain is minimized. The interpretation of the critical flutter condition for nonuniform flows is examined. C.D.

Author

A86-39064* Pennsylvania State Univ., University Park.
LASER DOPPLER VELOCIMETER MEASUREMENT IN THE TIP REGION OF A COMPRESSOR ROTOR

Author

A86-39090* Pennsylvania State Univ., University Park.
COMPUTATION OF VISCOUS FLOWS IN TURBOMACHINERY CASCADES WITH A SPACE-MARCHING METHOD

Author

A86-41723* Cornell Univ., Ithaca, N.Y.
TRANSONIC POTENTIAL FLOW IN HYPERBOLIC NOZZLES
M. PARK and D. A. CAUGHEY (Cornell University, Ithaca, NY) AIAM Journal (ISSN 0001-1452), vol. 24, June 1986, p. 1037-1039. refs (Contract NAG3-39)
The full potential equation for the classical problem of transonic flow through a hyperbolic nozzle (with or without a shock wave) is solved in conservation form using the finite volume method of Jameson and Caughey (1977). Either a firstor a second-order numerical viscosity is added in the direction of the flow, explicitly, in conservation form. A multigrid alternating direction implicit method is used to solve the difference equations, and the results obtained are compared with analytical and numerical results from previous researches.

O.C.
AN LU IMPLICIT SCHEME FOR HIGH SPEED INLET ANALYSIS

A numerical method is developed to analyze the inviscid flowfield of a high speed inlet by the solution of the Euler equations. The LU implicit scheme in conjunction with adaptive dissipation proves to be an efficient and robust nonoscillatory shock capturing technique for high Mach number flows as well as for transonic flows.

Author

IMPROVED EULER ANALYSIS OF ADVANCED TURBOPROP PROPELLER FLOWS

An implicit approximate factorization scheme in conjunction with a new boundary treatment was used to compute the inviscid flowfield about an advanced high-speed propeller. The method of characteristics was used to apply impermeable boundary conditions. The convergence history of numerical calculations shows substantial decrease in the residual error decay. Euler solutions were computed for SR-3 propeller geometry and the results were compared with the experimental data and previous numerical results.

Author

EVALUATION OF PROPELLER/NACELLE INTERACTIONS IN THE PTA PROGRAM

Advanced highly-loaded propellers are proposed to power transport aircraft that cruise at high subsonic speeds giving significant fuel savings over the equivalent turbopfan engine. In order to realize these savings, the propeller must be installed so that the aerodynamics of the propeller/nacelle combination do not lead to excessive cyclic blade stresses or installation losses. The on-going, NASA sponsored, Proffan Test Assessment Program (PTA) has provided the first high-speed wind-tunnel data on an installed proffan complete with an inlet. This paper presents computational techniques that allow: (1) optimization of inlet plane location, (2) contouring of lip and cowl, and (2) estimation of propeller cyclic loads due to a nonuniform flowfield. These computational methods, in spite of the complexity of the configuration and the slipstream effects, provide predictions of aerodynamic performance which are in excellent agreement with wind-tunnel data.

Author
ratio of 8. The significance of real gas effects on the performance calculation of a hypersonic inlet is demonstrated, with small changes in the ratio of specific heats resulting in a substantial change in the calculated pitot pressure ratio. O.C.

A86-48117*# Avco Corp., Stratford, Conn.
COMPUTATION OF THREE-DIMENSIONAL, ROTATIONAL FLOW THROUGH TURBOMACHINERY BLADE ROWS FOR IMPROVED AERODYNAMIC DESIGN STUDIES
S. V. SUBRAMANIAN, R. BOZZOLA (AVCO Corp., AVCO Lycoming Textron, Stratford, CT), and L. A. POVINELLI (NASA, Lewis Research Center, Cleveland, OH) ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 7 p. refs (ASME PAPER 86-GT-26)

The performance of a three dimensional computer code developed for predicting the flowfield in stationary and rotating turbomachinery blade rows is described in this study. The four stage Runge-Kutta numerical integration scheme is used for solving the governing flow equations and yields solution to the full, three dimensional, unsteady flow. The method is fully explicit and uses the finite volume, time marching procedure. In order to demonstrate the accuracy and efficiency of the code, steady solutions were obtained for several cascade geometries under widely varying flow conditions. Calculations of flowfield designs are presented for a subsonic turbine stator and a low aspect ratio, transonic compressor rotor blade under maximum flow and peak efficiency design conditions. Comparisons with Laser Anemometer measurements and other numerical predictions are also provided to illustrate that the present method predicts important flow features with good accuracy and can be used for cost effective aerodynamic design studies. Author

A86-48126*# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
VALIDATION OF VISCOUS AND INVISCID COMPUTATIONAL METHODS FOR TURBOMACHINERY COMPONENTS

An assessment of several three-dimensional computer codes used at the NASA Lewis Research Center is presented. Four flow situations are examined, for which both experimental data and computational results are available. The four flows form a basis for the evaluation of the computational procedures. It is concluded that transonic rotor flow at peak efficiency conditions may be calculated with a reasonable degree of accuracy, whereas, off-design conditions are not accurately determined. Duct flows and turbine cascade flows may also be computed with reasonable accuracy whereas radial inflow turbine flow remains a challenging problem. Author

A86-48135*# United Technologies Research Center, East Hartford, Conn.
ON THE APPLICATION OF A LINEARIZED UNSTEADY POTENTIAL-FLOW ANALYSIS TO FAN-TIP CASCADES

A linearized potential flow analysis, which accounts for the effects of nonuniform steady flow phenomena on the unsteady response to prescribed blade motions, has been applied to five two-dimensional cascade configurations. These include a flat-plate cascade and three cascades which are representative of the tip sections of current fan designs. Here the blades are closely spaced, highly staggered, and operate at low mean incidence. The fifth configuration is a NASA Lewis cascade of symmetric biconvex airfoils for which experimental measurements are available. Numerical solutions are presented that clearly illustrate the effects and importance of blade geometry and mean blade loading on the linearized unsteady response at high subsonic inlet Mach number and high blade-vibrational frequency. In addition, a good qualitative agreement is shown between the analytical predictions and experimental measurements for the cascade of symmetric biconvex airfoils. Finally, recommendations on the research needed to extend the range of application of linearized unsteady aerodynamic analyses are provided. Author

A86-48161*# Cincinnati Univ., Ohio.
THREE-DIMENSIONAL FLOW FIELD MEASUREMENTS IN A RADIAL INFLOW TURBINE SCROLL USING LDV
M. F. MALAK, A. HAMED, and W. TABAKOFF (Cincinnati, University, OH) ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 7 p. refs (Contract NAG3-26) (ASME PAPER 86-GT-122)

The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvanned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors. Author

A86-48229*# City Coll. of the City Univ. of New York.
THREE-DIMENSIONAL FLUID FLOW PHENOMENA IN THE BLADE END WALL CORNER REGION
B. K. HAZARIKA, R. RAJ (City College, New York), and D. R. BOLDMAN (NASA, Lewis Research Center, Cleveland, OH) ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 14 p. refs (Contract NAG3-122) (ASME PAPER 86-GT-179)

Flow visualization, static and total pressure measurements, and mean velocity profile measurements with a single-sensor inclined hot wire probe, are used in a study of three-dimensional flow at a turbine blade and wall corner region for six critical axial stations along the blade chord. Three vortices are identified: (1) a horseshoe vortex near the leading edge; (2) a corner eddy between the horseshoe vortex and the corner; and (3) a vortex at the rear portion of the corner due to the corner eddy's secondary flow. Attention is given to the relative size and rate of spread of the vortices in the streamwise direction. O.C.

A86-48236*# Pennsylvania State Univ., University Park.
THREE-DIMENSIONAL BOUNDARY LAYER ON A COMPRESSOR ROTOR BLADE AT PEAK PRESSURE RISE COEFFICIENT
B. LAKSHMINARAYANA and P. POPOVSKI (Pennsylvania State University, University Park) ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 10 p. refs (Contract NSG-3212) (ASME PAPER 86-GT-186)

A comprehensive study of the three-dimensional turbulent boundary layer on a compressor rotor blade at peak pressure rise coefficient is reported in this paper. The measurements were carried out at various chordwise and radial locations on a compressor rotor blade using a rotating miniature 'V' configuration hot wire probe. The data are compared with the measurement at the design condition. Substantial changes in the blade boundary layer characteristics are observed, especially in the outer sixteen percent of the blade span. The increased chordwise pressure gradient and the leakage flow at the peak pressure coefficient have a cumulative effect in increasing the boundary layer growth on the suction surface. The leakage flow has a beneficial effect on the pressure side surface. The momentum and boundary layer thicknesses increase substantially from those at the design condition, especially near the outer radii of the suction surface. Author
A86-48261*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A MODEL FOR CLOSING THE INVISCD FORM OF THE AVERAGE-PASSAGE EQUATION SYSTEM

A mathematical model is proposed for closing or mathematically completing the system of equations which describes the time average flow field through the blade passages of multistage turbomachinery. These equations referred to as the average passage equation system govern a conceptual model which has proven useful in turbomachinery aerodynamic design and analysis. The closure model is developed so as to insure a consistency between these equations and the axisymmetric through flow equations. The closure model was incorporated into a computer code for use in simulating the flow field about a high speed counter rotating propeller and a high speed fan stage. Results from these simulations are presented.

Author

A86-48274*# United Technologies Corp., East Hartford, Conn.

HORSESHOE VORTEX FORMATION AROUND A CYLINDER

W. A. ECKERLE (United Technologies Research Center, East Hartford, CT) and L. S. LANGSTON (Connecticut, University, Storrs) ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 9 p. refs (Contract NSF-3238) (ASME PAPER 86-GT-246)

An experimental investigation was conducted to characterize a symmetrical horseshoe vortex system in front of and around a single large-diameter right cylinder centered between the sidewalls of a wind tunnel. Surface flow visualization and surface static pressure measurements as well as extensive mean velocity and pressure measurements in and around the vortex system were acquired. The results lend new insight into the formation and development of the vortex system. Contrary to what has been assumed previously, a strong vortex was not identified in the streamwise plane of symmetry, but started a significant angular distance away from it. Rather than the multiple vortex systems reported by others, only a single primary vortex and saddle point were found. The scale of the separation process at the saddle point was much smaller than the scale of the approaching boundary layer thickness. Results of the present study not only shed light on such phenomena as the nonsymmetrical endwall flow in axial turbomachinery but can also be used as a test case for three-dimensional computational fluid mechanics computer codes.

Author

A86-48315*# Army Propulsion Lab., Cleveland, Ohio.

EFFECT OF AREA RATIO ON THE PERFORMANCE OF A 5.5:1 PRESSURE RATIO CENTRIFUGAL IMPELLER

A centrifugal impeller which was initially designed for a pressure ratio of approximately 5.5 and a mass flow rate of 0.959 kg/sec was tested with a vaned diffuser for a range of design point impeller area ratios from 2.522 to 2.945. The impeller area ratio was changed by successively cutting back the impeller exit axial width from an initial value of 7.57 mm to a final value of 5.97 mm. In all, four separate area ratios were tested. For each area ratio a series of impeller exit axial clearances was also tested. Test results are based on impeller exit surveys of total pressure, total temperature, and flow angle at a radius 1.115 times the impeller exit radius. Results of the tests at design speed, peak efficiency, and an exit tip clearance of 8 percent of exit blade height show that the impeller equivalent pressure recovery coefficient peaked at a design point area ratio of approximately 2.748 while the impeller aerodynamic efficiency peaked at a lower value of area ratio of approximately 2.55. The variation of impeller efficiency with clearance showed expected trends with a loss of approximately 0.4 points in impeller efficiency for each percent increase in exit axial tip clearance for all impellers tested.

Author

A86-49585*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PLUME CHARACTERISTICS OF SINGLE-STREAM AND DUAL-FLOW CONVENTIONAL AND INVERTED-PROFILE NOZZLES AT EQUAL THRUST

The plume velocity and temperature decay rates of single-stream, conventional dual-flow and inverted-profile dual-flow nozzles are compared at equal values of ideal thrust over a wide range of flow conditions. The comparisons are made in terms of constant velocity and temperature contour maps. The results show that both dual-flow nozzle types have much greater plume velocity and temperature decay rates than those of equivalent single-stream nozzles; however, the respective secondary flows were at ambient temperature. With hot secondary flows, the inverted-profile dual-flow plumes decayed significantly faster than those of single-stream nozzles; conversely, the decay rates for the conventional dual-flow streams were about the same as those for the single-stream nozzles. Consequently, with hot secondary flows, the inverted-profile dual-flow plumes decayed much faster than the conventional dual-flow plumes at equal thrust.

Author

A86-49612*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

APPLICATION OF A COMPUTATIONAL MODEL FOR VORTEX GENERATORS IN SUBSONIC INTERNAL FLOWS

A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vorticity source term is used in a modified form of the Parabolized Navier-Stokes equations to model the shed vortex. Computed results are compared with idealized flow vortex paths, and with experimental data for vortex generators embedded in a thick turbulent boundary layer. The analysis is also compared with experimental data for a separated diffusing S-duct and for a diffusing S-duct with vortex generators. Quantitative comparisons are shown for the latter three cases. Emphasis is placed on verifying the ability of the model to predict global distortions in the flow field.

Author

A86-49625*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PRELIMINARY RESULTS OF UNSTEADY BLADE SURFACE PRESSURE MEASUREMENTS FOR THE SR-3 PROPELLER

Surface pressures were measured on an advanced, highly swept propeller known as SR-3. These measurements were obtained because the unsteady aerodynamics of these highly loaded transonic blades is important to noise generation and aeroelastic response. Specifically, the response to periodic angle-of-attack change was measured for both two- and eight-bladed configurations over a range of flight Mach numbers.
from 0.4 to 0.85. The periodic angle-of-attack change was obtained by placing the propeller axis at angles up to 4 deg to the flow. Most of the results are presented in terms of the unsteady pressure coefficient variation with Mach number. Both cascade and Mach number effects were largest on the suction surface near the leading edge. The results of a three-dimensional Euler code applied in a quasi-steady fashion were compared to measured data at the reduced frequency of 0.1 and showed relatively poor agreement. Pressure waveforms are shown that suggest shock phenomena may play an important part in the unsteady pressure response at some blade locations.

Author

N86-10017[^1] National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THREE-DIMENSIONAL INVISCID ANALYSIS OF RADIAL TURBINE FLOW AND A LIMITED COMPARISON WITH EXPERIMENTAL DATA

The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor was used to obtain the input data for the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underrun relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

Author

N86-10019[^2] National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

FORCED RESPONSE ANALYSIS OF AN AERODYNAMICALLY DETUNED SUPERSONIC TURBOMACHINE ROTOR

High performance aircraft-engine fan and compressor blades are vulnerable to aerodynamically forced vibrations generated by inlet flow distortions due to wakes from upstream blade and vane rows, atmospheric gusts, and maladjustments in inlet ducts. In this report, an analysis is developed to predict the flow-induced forced response of an aerodynamically detuned rotor operating in a supersonic flow with a subsonic axial component. The aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading acting on the blading, as a result of the convection of the transverse gust past the airfoil cascade and the resulting motion of the cascade, is developed in terms of influence coefficients. This analysis is used to investigate the effect of aerodynamic detuning on the forced response of a 12-blade rotor, with Verdon's Cascade B flow geometry as a uniformly spaced baseline configuration. The results of this study indicate that, for forward traveling, wave gust excitations, aerodynamic detuning is very beneficial, resulting in significantly decreased maximum-amplitude blade responses for many interblade phase angles.

Author

N86-13295[^3] National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A FORTRAN COMPUTER CODE FOR CALCULATING FLOWS IN MULTIPLE-BLADE-ELEMENT CASCADES

E. R. MCCLARD and N. A. WATERS 1985 29 p refs (NASA-TM-87104; E-2701; NAS 1.15:87104) Avail: NTIS HC A03/MF A01 CSCL 01A

A solution technique has been developed for solving the multiple-blade-element, surface-of-revolution, blade-to-blade flow problem in turbomachinery. The calculation solves approximate flow equations which include the effects of compressibility, radius change, blade-row rotation, and variable stream sheet thickness. An integral equation solution (i.e., panel method) is used to solve the equations. A description of the computer code and computer code input is given in this report.

Author

N86-14219[^4] National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SEMIEMPIRICAL METHOD OF DETERMINING FLOW COEFFICIENTS FOR PITOT RAKE MASS FLOW RATE MEASUREMENTS

C. J. TREFNY Nov. 1985 17 p refs (NASA-TM-87144; E-2772; NAS 1.15:87144) Avail: NTIS HC A02/MF A01 CSCL 01A

Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficients to be used with the particular rake geometry are subsequently obtained by dividing the ideal flow rate by the rake indicated flow rate. Flow coefficients ranged from 0.93 to 1.0 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

Author

N86-14223[^5] National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

VELOCITY AND TEMPERATURE DECAY CHARACTERISTICS OF INVERTED-PROFILE JETS

In order to design efficient, lightweight flap systems for future engine under-the-wing STOL aircraft, the velocity and temperature decay rate of the jet plume must be increased relative to that for single-stream nozzles in order to provide local flap loads and structural temperatures within acceptable limits. The jet plume decay rate of dual flow engines can be increased by resorting to inverted-profile nozzle flows. The peak axial decay characteristics of model-scale, two-stream inverted-profile nozzle flows are empirically correlated. Also discussed are the radial and spreading characteristics of inverted-profile nozzle flows.

Author
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions was generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

Author

A centrifugal impeller which was initially designed for a pressure ratio of approximately 5.5 and a mass flow rate of 0.959 kg/sec was tested with a vaned diffuser for a range of design point impeller area ratios from 2.32 to 2.945. The impeller area ratio was changed by successively cutting back the impeller exit axial width from an initial value of 7.57 mm to a final value of 5.87 mm. In all, four separate area ratios were tested. For each area ratio a series of impeller exit axial clearances was also tested. Test results are based on impeller exit surveys of total pressure, total temperature, and flow angle at a radius 1.115 times the impeller exit radius. Results of the tests at design speed, peak efficiency, and an exit tip clearance of 8 percent of exit blade height show that the impeller equivalent pressure recovery coefficient peaked at a design point area ratio of approximately 2.748 while the impeller aerodynamic efficiency peaked at a lower coefficient. The variation of impeller efficiency with clearance showed expected trends with a loss of approximately 0.4 points in impeller efficiency for each percent increase in exit axial tip clearance for all impellers tested.

Author
APPLICATION OF A LINEARIZED UNSTEADY AERODYNAMIC ANALYSIS TO STANDARD CASCADE CONFIGURATIONS Final Report

D. HOYNIAK and S. FLEETER 1986 30 p refs Prepared in cooperation with Purdue Univ., West Lafayette, Ind.

A linearized potential flow analysis, which accounts for the effects of nonuniform steady flow phenomena on the linearized unsteady aerodynamic response to prescribed blade motions, has been applied to five cascade configurations. These include the first, fifth, eighth and ninth standard configurations proposed as a result of the Second International Symposium on Aeroelasticity in Turbomachines and a NASA Lewis shutter cascade. Selected results from this study, including comparisons between analytical predictions and the experimental measurements submitted for three of the foregoing configurations, are described. The correlation between theory and experiment for the first standard configuration (a compressor cascade operating at low Mach number and frequency) is quite good. Moreover, the predictions and measurements for the NASA Lewis cascade of symmetric biconvex airfoils show good qualitative agreement. However, wide discrepancies exist between the theoretical predictions and the experimental measurements for the fifth standard configuration (a subsonic transonic fan tip cascade). These can be partially attributed to conditions being imposed in the experiment which differ from those commonly used in unsteady aerodynamic analyses.

AN ANALYSIS FOR THE SOUND FIELD PRODUCED BY RIGID WIDE CORD DUAL ROTATION PROPELLERS OF HIGH SOLIDARITY IN COMPRESSIBLE FLOW

An unsteady lifting service theory for the counter-rotating propeller is presented using the linearized governing equations for the acceleration potential and representing the blades by a surface distribution of pulsating acoustic dipoles distributed according to a modified Birnbaum series. The Birnbaum series coefficients are determined by satisfying the surface tangency boundary conditions on the front and rear propeller blades. Expressions for the combined acoustic resonance modes of the front prop, the rear prop and the combination are also given.
02 AERODYNAMICS

N68-24667*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
IN-FLIGHT MEASUREMENTS OF WING ICE SHAPES AND WING SECTION DRAG INCREASES CAUSED BY NATURAL ICING CONDITIONS
K. MIKKELSEN, N. JUHASZ, R. RANAUDO, R. MCKNIGHT, R. FREEDMAN, and J. GREISSING May 1986 27 p refs (NASA-TM-87301; E-3013; NAS 1.15:87301) Avail: NTIS HC A03/MF A01 CSCL 01A

Aircraft icing flight research was performed in natural icing conditions with the engine computer type STOL aircraft. In-flight measurements were made of the icing cloud environment, the shape of the ice accretion on the wing, and the corresponding increase in the wing section drag. Results are presented for three icing encounters. On one flight, the wing section drag coefficient increased 35 percent over the uniced baseline for cruise conditions while a 43 percent increase was observed at an aircraft angle of attack of 6.2 degrees.

N68-26285*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PLUME CHARACTERISTICS OF SINGLE-STREAM AND DUAL-FLOW CONVENTIONAL AND INVERTED-PROFILE NOZZLES AT EQUAL THRUST

The plume velocity and temperature decay rates of single-stream, conventional dual-flow and inverted-profile dual-flow nozzles are compared at equal values of ideal thrust over a wide range of flow conditions. The comparisons are made in terms of constant velocity and temperature contour maps. The results show that both dual-flow nozzle types have much greater plume velocity and temperature decay rates than those of equivalent thrust single-stream nozzles when the respective secondary flows were at ambient temperature. With hot secondary flows, the inverted-profile dual-flow plumes decayed significantly faster than those of single-stream nozzles; however, the decay rates for the conventional dual-flow streams were about the same as those for the single-stream nozzles. Consequently, with hot secondary flows, the inverted-profile dual-flow plumes decayed much faster than the conventional dual-flow plumes at equal thrust.

A glycol-exuding porous leading edge ice protection system was tested in the NASA Icing Research Tunnel. Stainless steel mesh, laser drilled titanium, and composite panels were tested on two general aviation wing sections. Two different glycol-water solutions were evaluated. Minimum glycol flow rates required for anti-icing were obtained as a function of angle of attack, liquid water content, volume median drop diameter, temperature, and velocity. Ice accretions formed after five minutes of icing were shed in three minutes or less using a glycol fluid flow equal to the anti-ice flow rate. Two methods of predicting anti-ice flow rates are presented and compared with a large experimental data base of anti-ice flow rates over a wide range of icing conditions. The first method presented in the ADS-4 document typically predicts flow rates lower than the experimental flow rates. The second method, originally published in 1983, typically predicts flow rates up to 25 percent higher than the experimental flow rates. This method proved to be more consistent between wing-panel configurations. Significant correlation coefficients between the predicted flow rates and the experimental flow rates ranged from .867 to .947.

N68-27213*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

Unsteady blade surface pressures were measured on an advanced, highly swept propeller known as SR-3. These measurements were obtained because the unsteady aerodynamics of these highly loaded transonic blades is important to noise generation and aerelastic response. Specifically, the response to periodic angle-of-attack change was measured for both two- and eight-bladed configurations over a range of flight Mach numbers from 0.4 to 0.85. The periodic angle-of-attack change was obtained by placing the propeller axis at angles up to 4 deg to the flow. Most of the results are presented in terms of the unsteady pressure coefficient variation with Mach number. Both cascade and Mach number effects were largest on the suction surface near the leading edge. The results of a three-dimensional Euler code applied in a quasi-steady fashion were compared to measured data at the reduced frequency of 0.1 and showed relatively poor agreement. Pressure waveforms are shown that suggest shock phenomena may play an important part in the unsteady pressure response at some blade locations.

N68-28053*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
LASER FRINGE ANEMOMETRY FOR AERO ENGINE COMPONENTS A. J. STRAIZISAR 1986 54 p Presented at the 67th Symposium of the AGARD Propulsion and Energetics Panel on Advanced Instrumentation for Aero Engine Components, Philadelphia, Pa., 19-23 May 1986 (NASA-TM-88798; E-3135; NAS 1.15:88798) Avail: NTIS HC A02/MF A01 CSCL 01A

Advances in flow measurement techniques in turbomachinery continue to be paced by the need to obtain detailed data for use in validating numerical predictions of the flow field and for use in the development of empirical models for those flow features which cannot be readily modeled numerically. The use of laser anemometry in turbomachinery research has grown over the last 14 years in response to these needs. Based on past applications and current developments, this paper reviews the key issues which are involved when considering the application of laser anemometry to the measurement of turbomachinery flowfields. Aspects of laser fringe anemometry optical design which are applicable to turbomachinery research are briefly reviewed. Application problems which are common to both laser fringe anemometry (LFA) and laser transit anemometry (LTA) such as seed particle injection, optical access to the flowfield, and measurement of rotor rotational position are covered. The efficiency of various data acquisition schemes is analyzed and issues related to data integrity and error estimation are addressed. Real-time data analysis techniques aimed at capturing flow physics in real time are discussed. Finally, data reduction and analysis techniques are discussed and illustrated using examples taken from several LFA turbomachinery applications.

Author
determination of two individual interference quantities (cascade effects and spinner/shank juncture interference). These interference effects were semi-empirically modeled using existing theories and placed into a compatible form with an existing propulsion performance scheme which provided the basis for examples of application.

Author

N86-28055*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
RECTOR WAKE CHARACTERISTICS OF A TRANSONIC AXIAL FLOW FAN
M. D. HATHAWAY (Army Aviation Research and Technology Activity, Cleveland, Ohio), J. GERTZ (Massachusetts Inst. of Tech., Cambridge), A. EPSTEIN, and A. J. STRAZISAR 1985 13 p
Presented at the 21st Joint Propulsion Conference, Monterey, Calif., 8-10 Jul. 1985; sponsored by AIAA, SAE, ASME and ASEE
Previously announced in IAA aas AS-43974
(NASA-TM-87073; E-2644; USAVSACOM-TR-85-C-8;
AIAA-85-1133; NASA 1.15:87073) Avail: NTIS HC A02/MF A01
CSCL 01A

State of the art turbomachinery flow analysis codes are not capable of predicting the viscous flow features within turbomachinery blade wakes. Until efficient 3D viscous flow analysis codes become a reality there is therefore a need for models which can describe the generation and transport of blade wakes and the mixing process within the wake. To address the need for experimental data to support the development of such models, high response pressure measurements and laser anemometer velocity measurements were obtained in the wake of a transonic axial flow fan rotor.

Author

N86-28063*# United Technologies Research Center, East Hartford, Conn.
MEASUREMENTS OF A TURBULENT HORSESHOE VORTEX FORMED AROUND A CYLINDER Final Report
(Contract NSG-3238)
CSCL 01A

An experimental investigation was conducted to characterize a symmetrical horseshoe vortex system in front of and around a single axisymmetric right cylinder centered between the sidewalls of a wind tunnel. Surface flow visualization and surface static pressure measurements as well as extensive mean velocity and pressure measurements in and around the vortex system were acquired. The results lend new insight into the formation and development of the vortex system. Contrary to what has been assumed previously, a strong vortex was not identified in the streamwise plane of symmetry, but started a significant angular distance away from it. Rather than the multiple vortex systems reported by others, only a single primary vortex and saddle point were found. The scale of the separation process at the saddle point was much smaller than the scale of the approaching boundary layer thickness. Results of the present study not only shed light on such phenomena as the nonsymmetrical endwall flow in axial turbomachinery but can also be used as a test case for three-dimensional computational fluid mechanics computer codes.

Author

N86-28773*# Texas A&M Univ., College Station. Dept. of Aerospace Engineering.
EXPERIMENTAL AND THEORETICAL STUDY OF PROPELLER SPINNER/SHANK INTERFERENCE M.S. Thesis
C. C. CORNELL May 1986 143 p
(Contract NAS3-23051)
(NASA-CR-176954; NASA 1.26:176954) Avail: NTIS HC A07/MF A01
CSCL 01A

A fundamental experimental and theoretical investigation into the aerodynamic interference associated with propeller spinner and shank regions was conducted. The research program involved a theoretical assessment of solutions previously proposed, followed by a systematic experimental study to supplement the existing data. As a result, a refined computational procedure was established for prediction of interference effects in terms of interference drag and resolved into propeller thrust and torque components. These quantities were examined with attention to engineering parameters such as two spinner finess ratios, three blade shank forms, and two/three/four/six/eight blades. Consideration of the physics of the phenomena aided in the logical deduction of two individual interference quantities (cascade effects and spinner/shank juncture interference). These interference effects were semi-empirically modeled using existing theories and placed into a compatible form with an existing propulsion performance scheme which provided the basis for examples of application.

Author

N86-30693*# Texas A&M Univ., College Station. Dept. of Aerospace Engineering.
AERODYNAMIC DATA BANKS FOR CLARK-Y, NACA 4-DIGIT AND NACA 16-SERIES AIRFOIL FAMILIES Final Report
(Contract NAS3-272)
(NASA-CR-176883; NASA 1.26:176883) Avail: NTIS HC A12/MF A01
CSCL 01A

With the renewed interest in propellers as means of obtaining thrust and fuel efficiency in addition to the increased utilization of the computer, a significant amount of progress was made in the development of theoretical models to predict the performance of propeller systems. Inherent in the majority of the theoretical performance models to date is the need for airfoil data banks which provide lift, drag, and moment coefficient values as a function of Mach number, angle-of-attack, maximum thickness to chord ratio, and Reynolds number. Realizing the need for such data, a study was initiated to provide airfoil data banks for three commonly used airfoil families in propeller design and analysis. The families chosen consisted of the Clark-Y, NACA 16 series, and NACA 4 digit series airfoils. The various component of each computer code, the source of the data used to create the airfoil data bank, the limitations of each data bank, program listing, and a sample case with its associated input-output are described. Each airfoil data bank computer code was written to be used on the Amdahl Computer system, which is IBM compatible and uses Fortran.

Author

N86-31536*# Hamilton Standard, Windsor Locks, Conn.
SYSTEM DESIGN AND INTEGRATION OF THE LARGE-SCALE ADVANCED PROP-FAN
B. P. HUTH Aug. 1987 94 p
(Contract NAS3-23051)
(NASA-CR-174789; NASA 1.26:174789; HSER-9333) Avail: NTIS HC A05/MF A01
CSCL 01A

In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that blades with thin airfoils and aerodynamic sweep extend the inherent efficiency advantage that turboprop propulsion systems have over conventional engines. Hamilton Standard has designed a 9-foot diameter single-rotation Prop-Fan. It will test the hardware on a static test stand, in low speed and high speed wind tunnels and on a research aircraft. The major objective of this testing is to establish the structural integrity of large scale Prop-Fans of advanced construction, in addition to the evaluation of aerodynamic performance and the aeroacoustic design. The coordination efforts performed to ensure smooth operation and assembly of the Prop-Fan are summarized. A summary of the loads used to size the system components, the methodology used to establish material allowances and a review of the key analytical results are given.

Author

N86-31537*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
COMPARISON OF ANALYTICAL AND EXPERIMENTAL PERFORMANCE OF A WIND-TUNNEL DIFFUSER SECTION
R. J. SHYNE, R. D. MOORE, and D. R. BOLDMAN 1986 13 p
(NASA-TM-88795; E-3130; NASA 1.15:88795) Avail: NTIS HC A02/MF A01
CSCL 01A

Wind tunnel diffuser performance is evaluated by comparing experimental data with analytical results predicted by an one-dimensional integration procedure with skin friction coefficient, a two-dimensional interactive boundary layer procedure for
analizing conical diffusers, and a two-dimensional, integral, compressible laminar and turbulent boundary layer code. Pressure, temperature, and velocity data for a 3.25 deg equivalent cone half-angle diffuser (37.3 in., 94.742 cm outlet diameter) was obtained from the one-tenth scale Altitude Wind Tunnel modeling program at the NASA Lewis Research Center. The comparison is performed at Mach numbers of 0.162 (Re = 3.097×10⁶), 0.326 (Re = 6.273×10⁶), and 0.363 (Re = 7.0129×10⁶). The Reynolds numbers are all based on an inlet diffuser diameter of 32.4 in., 82.296 cm, and reasonable quantitative agreement was obtained between the experimental data and computational codes. Author

03 AIR TRANSPORTATION AND SAFETY

Includes passenger and cargo air transport operations; and aircraft accidents.

A86-14427*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
ICE SHAPES AND THE RESULTING DRAG INCREASE FOR A NACA 0012 AIRFOIL

Experimental measurements of the ice shapes and resulting drag increases were measured in the NASA-Lewis Icing Research Tunnel. The measurements were made over a large range of conditions (e.g., airspeed and temperature, drop size and liquid water content of the cloud, and the angle of attack of the airfoil). The measured drag increase did not agree with the existing correlation. Additional results were given which are helpful in understanding the ice structure and the way it forms, and in improving the ice accretion modeling theories. There are data on the ice surface roughness, on the effect of the ice shape on the local droplet catch, and on the relative importance of various parts of the ice shape on the drag increase. Experimental repeatability is also discussed. Author

A86-35656* Sikorsky Aircraft, Stratford, Conn.
THE PERFORMANCE CHARACTERISTICS OF SIMULATED ICE ON ROTORCRAFT AIRFOILS

Attention is given to the results of NASA-sponsored rotorcraft icing research which was aimed at the formulation of a predictive method for the computation of performance penalties due to rotor and airfoil icing. Parametric simulated ice test results obtained in wind tunnels are compared with those of other investigations. These comparisons indicate that proper design of simulated ice shapes can adequately represent ice on airfoil sections, with incremental lift, drag, and pitching moments matching those generated in icing wind tunnels. O.C.

A86-49107* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
N66-20379* Wichita State Univ., Kans.
PARTICLE TRAJECTORY COMPUTATION ON A 3-DIMENSIONAL ENGINE INLET Final Report Ph.D. Thesis

A 3-dimensional particle trajectory computer code was developed to compute the distribution of water droplet impingement efficiency on a 3-dimensional engine inlet. The computed results provide the essential droplet impingement data required for the engine inlet anti-icing system design and analysis. The droplet trajectories are obtained by solving the trajectory equation using the fourth order Runge-Kutta and Adams predictor-corrector schemes. A compressible 3-D full potential flow code is employed to obtain a cylindrical grid definition of the flowfield on and about the engine inlet. The inlet surface is defined mathematically through a system of bi-cubic parametric patches in order to compute the droplet impingement points accurately. Analysis results of the 3-D trajectory code obtained for an axisymmetric droplet impingement problem are in good agreement with NACA experimental data. Experimental data are not yet available for the engine inlet impingement problem analyzed. Applicability of the method to solid particle impingement problems, such as engine sand ingestion, is also demonstrated. Author

N86-20380*# Toledo Univ., Ohio. Coll. of Engineering.
A NUMERICAL AND EXPERIMENTAL INVESTIGATION OF ELECTROCHEMICAL AIRCRAFT DEICING M.S. Thesis Final Report

This study was composed of three parts. The first part involved the extension of an existing transient two dimensional numerical code for an electrothermal deicer so that it would simulate the situation where a variable thickness ice layer existed at the outer surface. The Enthalpy Method was used to simulate the phase change, and Gauss-Seidel iteration was used to solve the resulting system of finite difference equations. A set of criteria were developed for determining when a variable thickness ice layer had an effect on deicer performance. The second part was the acquisition and analysis of experimental data. The test model was a section of a Bell UH-1H helicopter blade equipped with an electrothermal deicer. A total of fifty-two thermocouples were utilized to document the thermal response of the blade and deicer assembly. In the deicing runs, the experimental temperature response data clearly showed when melting, shedding or refreezing occurred. The tests illustrated that the criterion for shedding in the three cases where it did occur was that the abrasion shield interface temperature was 32 to 34 F. The third part concerned the validation of a one dimensional transient thermal model of an
electrothermal deicer by comparison of the predictions with the experimental data. The Enthalpy Method was found to effectively model the phase change which occurred, and the ice shedding algorithm employed in the simulation was also evaluated. Author

N86-22558# Ohio State Univ., Columbus. Aeronautical and Astronautical Research Lab.

WIND TUNNEL TESTS OF ROTOR BLADE SECTIONS WITH REPLICA TIONS OF ICE FORMATIONS ACCRETION IN HOVER Final Report

J. D. LEE, J. H. BERGER (Fluidyne Engineering Corp., Columbus, Ohio), and T. J. MCDONALD (Fluidyne Engineering Corp., Columbus, Ohio) Mar. 1986 31 p refs

(Contract NASG-374)

(NASA-CR-175088; NAS 1.26:175089) Avail: NTIS HC A03/MF A01 CSCOL01C

Full scale reproductions of ice accretions molded during the documentation of a hover test program were fabricated by means of epoxy castings and used for a wind tunnel test program. Surface static pressure distributions were recorded and used to evaluate lift and pitching moment increments while drag was determined by wake surveys. Through the range of the tests, corresponding to those conditions encountered in hover and in flat pitch, integration of the pressure distributions showed negligible changes in lift and in pitching moment, but the drag was significantly increased. Author

N86-22559# Fluidyne Engineering Corp., Columbus, Ohio.

DOCUMENTATION OF ICE SHAPES ACCRETED ON THE MAIN ROTOR OF A UH-1H HELICOPTER IN LEVEL FLIGHT Final Report

M. K. HANSON and J. D. LEE (Ohio State Univ., Columbus) Mar. 1986 14 p refs

(Contract NAG3-374)

(NASA-CR-175089; NAS 1.26:175088) Avail: NTIS HC A02/MF A01 CSCOL01C

Icing tests were conducted on a UH-1H helicopter in level flight behind a spray tanker near Duluth, Minnesota, during the winter of 1983-84 as part of the joint NASA/Army HIFT program. On landing, the ice formations on the main rotor were documented by casting a set of ten-inch molds on the blade using a Dow-Corning silicone rubber compound which was initially liquid at subfreezing temperatures. Such documentation was accomplished for eight flights in which the temperature ranged from -11 C to -22 C and the in-cloud flight times ranged from 5 to 9 minutes. Author

N86-23577# Sverdrup Technology, Inc., Cleveland, Ohio.

ANALYTICAL DETERMINATION OF PROPELLER PERFORMANCE DEGRADATION DUE TO ICE ACCRETION Final Report

T. L. MILLER Apr. 1986 138 p refs

(Contract NASG-24105)

(NASA-CR-175092; NAS 1.26:175092) Avail: NTIS HC A07/MF A01 CSCOL01C

A computer code has been developed which is capable of computing propeller performance for clean, glaze, or rimed propeller configurations, thereby providing a mechanism for determining the degree of performance degradation which results from a given icing encounter. The inviscid, incompressible flow field at each specified propeller radial location is first computed using the Theodorsen transformation method of conformal mapping. A droplet trajectory computation then calculates droplet impingement points and airfoil collection efficiency for each radial location, at which point several user-selectable empirical correlations are available for determining the aerodynamic performance which results due to the ice accretion. Propeller performance is finally computed using strip analysis for either the clean or rimed propeller. In theiced mode, the differential thrust and torque coefficient equations are modified by the drag and lift coefficient increments due to ice to obtain the appropriate iced values. Comparison with available experimental propeller icing data shows good agreement in several cases. The code's capability to properly predict iced thrust coefficient, power coefficient, and propeller efficiency is shown to be dependent on the choice of empirical correlation employed as well as proper specification of radial icing extent. Author

N86-27268# Wichita State Univ., kans. Coll. of Engineering.

ANALYSES AND TESTS FOR DESIGN OF AN ELECTRO-IMPULSE DE-ICING SYSTEM Interim Report

(Contract NASG-284)

(NASA-CR-174919; AR-85-1; NAS 1.26:174919) Avail: NTIS HC A01/MF A01 CSCOL01C

De-icing of aircraft by using the electro-magnetic impulse phenomenon was proposed and demonstrated in several European countries. However, it is not available as a developed system due to lack of research on the basic physical mechanisms and necessary design parameters. The de-icing is accomplished by rapidly discharging high voltage capacitors into a wire coil rigidly supported just inside the aircraft skin. Induced eddy currents in the skin create a repulsive force resulting in a hammer-like force which cracks, de-bonds, and expels ice on the skin surface. The promised advantages are very low energy, high reliability of de-icing, and low maintenance. Three years of Electro-impulse De-icing (EIDI) research is summarized and the analytical studies and results of testing done in the laboratory, in the NASA Icing Research Tunnel, and in flight are presented. If properly designed, EIDI was demonstrated to be an effective and practical ice protection system for small aircraft, turbine engine inlets, elements of transport aircraft, and shows promise for use on helicopter rotor blades. Included are practical techniques of fabrication of impulse coils and their mountings. The use of EIDI with nonmetallic surface materials is also described. Author

N86-30022# Akron Univ., Ohio.

JET FUEL VISCOSITY AT LOW TEMPERATURES WITH NOTES ON N-ALKALINE CRYSTALS Final Report

(Contract NAG3-488)

(NASA-CR-174911; NAS 1.26:174911) Avail: NTIS HC A17/MF A01 CSCOL21D

Apparatus and procedures were developed to collect jet fuel viscosity versus temperature data for temperatures down to about -60 deg C in a manner compatible with prior jet fuel data bases generated with the Brookfield viscometer. Viscosity data showed good reproducibility even at temperatures a few degrees into the two-phase region. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation. The breakpoint between the high and low temperature line segments is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalized correlation appears sufficiently accurate for many design or performance calculations. In the low temperature two-phase region, wax precipitation is significant. Qualitative literature was quantitatively analyzed along with data in this study to plot crystal size versus composition for the fuel model C sub 20-C sub 24 n-alkane system in solvent. This suggested that wax mixtures tend towards smaller crystal sizes than pure wax species. Complex mixtures of jet fuels lead to two-phase states, at least in some instances, that have small enough crystals to be treated as a continuum. Author

N86-31548# National Aeronautics and Space Administration.

NASA'S AIRCRAFT ICING ANALYSIS PROGRAM

Lewis Research Center, Cleveland, Ohio.

NASA'S AIRCRAFT ICING ANALYSIS PROGRAM

(NASA-TM-88791; E-3121; NAS 1.15:88791) Avail: NTIS HC A03/MF A01 CSCOL01C

An overview of the NASA ongoing efforts to develop an aircraft icing analysis capability is presented. Discussions are included of the overall and long-term objectives of the program as well as
05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE

Includes aircraft simulation technology.

A86-19404*# Wichita Univ., Kan.
DESIGNING AN ELECTRO-IMPULSE DE-ICING SYSTEM
G. W. ZUMWALT and R. A. FRIEDBERG (Wichita State University, KS) AIAA, Aerospace Sciences Meeting, 24th, Reno, NV, Jan. 6-9, 1986. 9 p. refs (Contract NAG3-284) (AIAA PAPER 86-0545)

Basic principles and parameters for a system to deice aircraft with electromagnetic impulses are described. The physical basis for deicing by such impulses is explained, and the requirements involved in the electrodynamic design, structural dynamic design, and system design are discussed. Some manufacturing and testing problems and techniques are described.

A.C.D.

A86-19404*# Wichita Univ., Kan.
A STRUCTURAL DYNAMICS INVESTIGATION RELATED TO EIDI APPLICATIONS
W. D. BERNHART (Wichita State University, KS) and P. H. GIEN AIAA, Aerospace Sciences Meeting, 24th, Reno, NV, Jan. 6-9, 1986. 9 p. refs (Contract NAG3-284) (AIAA PAPER 86-0500)

A method for modeling the structural dynamics of electro-impulse deicing is presented. A guideline for building a representative finite element model is discussed together with the experimental determination of the force pulse parameters used in the computational model. The results from the computer solution are compared with experimental results for a semi-cylindrical shell. This preliminary comparison indicated that typical structural dynamic responses may be predicted in the near coil field for the duration of the forcing pulse. The sensitivity of the response to both geometric and electrical parameters is also discussed.

Author

A86-35660*# Texas A&M Univ., College Station.
PERFORMANCE DEGRADATION OF HELICOPTERS DUE TO ICING - A REVIEW
K. D. KORKAN (Texas A M University, College Station), L. DADONE (Boeing Vertol Co., Philadelphia, PA), and R. J. SHAW (NASA, Lewis Research Center, Cleveland, OH) AHS, Annual Forum and Technology Display, 41st, Fort Worth, TX, May 15-17, 1985. Paper. 22 p. refs (Contract NAG3-242)

Methodology developed to predict the performance degradation of rotating systems in natural icing conditions is described and discussed. Theoretical studies of the increments performance degradation due to icing involving the propeller, helicopter in hover and forward flight, and XV-15 propulsion modes are summarized. Related experimental studies on the NACA 0012 airfoil and model helicopter with/without generic ice shapes are reviewed. The results of these experimental and theoretical studies are used to suggest refinements to current methodology.

C.D.
a barrier to the noise reaching the shielded area, the wing also reflects some of the noise back to the unshielded area. This can make the noise difference between the unshielded and shielded areas of the fuselage larger than would be expected by simple wind shielding.

Author

N86-26330*# Wichita State Univ., Kans. Dept. of Aeronautical Engineering.

THEORETICAL ANALYSIS OF THE ELECTRICAL ASPECTS OF THE BASIC ELECTRO-IMPULSE PROBLEM IN AIRCRAFT DE-ICING APPLICATIONS

A summary of modeling the electrical system aspects of a coil and metal target configuration resembling a practical electro-impulse deicing (EIDI) installation, and a simple circuit for providing energy to the coil, was presented. The model was developed in sufficient theoretical detail to allow the generation of computer algorithms for the current in the coil, the magnetic induction on both surfaces of the target, the force between the coil and target, and the impulse delivered to the target. These algorithms were applied to a specific prototype EIDI test system for which the current, magnetic fields near the target surfaces, and impulse were previously measured.

Author

N86-31582*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

IN-FLIGHT PHOTOGRAMMETRIC MEASUREMENT OF WING ICE ACCRETIONS

A photographic instrumentation system was developed for the Lewis icing research aircraft to measure wind ice accretions during flight. The system generates stereo photographs of the accretions which are then photogrammetrically measured by the Air Force Arnold Engineering and Development Center. The measurements yield a survey of spatial coordinates of an accretion's surface to an accuracy of at least + or - 0.08 cm. The accretions can then be matched to corresponding icing cloud and aerodynamic measurements. The system is being used to measure rime, mixed, and clear natural ice accretions.

Author

06 AIRCRAFT INSTRUMENTATION

Includes cockpit and cabin display devices; and flight instruments.

N86-24691*# John Carroll Univ., Cleveland, Ohio. Dept. of Physics.

TIME DOMAIN REFERENCING IN INTENSITY MODULATION FIBER OPTIC SENSING SYSTEMS Final Report

Intensity modulation sensors are classified depending on the way in which the reference and signal channels are separated: in space, wavelength (frequency), or time domains. To implement the time domain referencing different types of fiber optic (FO) loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.

Author

07 AIRCRAFT PROPULSION AND POWER

Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and onboard auxiliary power plants for aircraft.

A86-11609*# Army Propulsion Lab., Cleveland, Ohio.

COMBUSTION RESEARCH FOR GAS TURBINE ENGINES

Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.

Author

A86-11686*# Stevens Inst. of Tech., Hoboken, N. J.

INFLUENCE OF ROTATION AND PRETWIST ON CANTILEVER FAN BLADE FLUTTER

The fundamental and lowest frequency natural modes in a cantilever fan blade exhibit significant amounts of flexure and torsion coupled by prewist and operation in a rotational force field. Consequently the flutter estimation of such blades requires an accurate structural description that incorporates these two effects, amongst others. A beam-type finite element model is used in this study with up to six spanwise elements, each element being pretwisted. Coalescence-type flutter is found with subsonic aerodynamics. Evidence of the aerodynamic resonance phenomenon is exhibited and the importance of including radially varying aerodynamic forces is brought out.

Author

A86-13054*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

FIBER OPTICS FOR PROPULSION CONTROL SYSTEMS

In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe.
07 AIRCRAFT PROPULSION AND POWER

In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiber optic in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiber optic offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiber optics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.

B.W.

The problem of calculating the natural frequencies and mode shapes of rotating blades is solved by an improved finite difference procedure based on second-order central differences. Lead-lag, flapping and coupling bending-torsional vibration cases of untwisted blades are considered. Results obtained by using the present improved theory have been observed to be close lower bound solutions. The convergence has been found to be rapid in comparison with the classical first-order finite difference method. While the computational space and time required by the present approach is observed to be almost the same as that required by the first-order theory for a given mesh size, accuracies of practical interest can be obtained by using the improved finite difference procedure with a relatively smaller matrix size, in contrast to the classical finite difference procedure which requires either a larger matrix or an extrapolation procedure for improvement in accuracy.

Author

The Dynamic Engine Analysis Program, DEAN, is a FORTRAN code implemented on the IBM/370 mainframe at NASA Lewis Research Center for digital simulation of turbofan engine dynamics. DEAN is an interactive program which allows the user to simulate engine subsystems as well as full engine systems with relative ease. The nonlinear first order ordinary differential equations which define the engine model may be solved by one of four integration schemes, a second order Runge-Kutta, a fourth order Runge-Kutta, an Adams Predictor-Corrector, or Gear's method for stiff systems. The numerical data generated by the model equations are displayed, as well as the tip vortex streaming back from the propeller. The velocities were also processed using momentum theorem to obtain the thrust and power radial distributions as well as the integrated thrust and power coefficients. The thrust coefficient was determined well for force measurements and theoretical prediction from vortex lattice and Goldstein analysis. However, the power coefficient calculated from the momentum analysis was consistently lower than the theoretical or measured values. The measured velocities were also used to compute the vorticity and the trajectory of the tip vortex in the wake behind the propeller.

Author
07 AIRCRAFT PROPULSION AND POWER

PROPPELLER DESIGN BY OPTIMIZATION
(Contract NASG-10-25S3)

The feasibility of designing propellers by an optimization procedure is investigated. A scheme, which solves the full potential flow equation about a propeller by line relaxation, is modified so that the iterative solutions of the flow equation and the design parameters are updated simultaneously. Some technical problems in using optimization for designing propellers with maximum efficiency are identified. Approaches for overcoming these problems are presented.

Author

A86-20369# Texas A&M Univ., College Station.
A NUMERICAL METHOD FOR THE DESIGN AND ANALYSIS OF COUNTER-ROTATING PROPELLERS
S. C. PLAYLE, K. D. KORKAN, and E. VON LAVANTE (Texas A & M University, College Station) Journal of Propulsion and Power (ISSN 0748-4658), vol. 2, Jan.-Feb. 1986, p. 57-63. refs
(Contract NAG3-554)

A numerical method has been developed using the techniques of Lock and Theodorsen as described by Davidson to design and analyze counter-rotating propellers. The design method develops the optimum propeller geometry by calculating the planform and twist distribution for each propeller disk through the use of specific inputs of engine shaft horsepower, diameter, and disk spacing. The analysis method calculates the performance of a given counter-rotating propeller system at any flight condition. Using the NACA four-digit airfoil family, the performance of a counter-rotating propeller design for a given flight condition was investigated in the design and analysis mode.

Author

A86-22068# Princeton Univ., N. J.
VIBRATION CHARACTERISTICS OF MISTUNED SHROUDED BLADE ASSEMBLIES
O. O. BENDIKSEN (Princeton University, N.J.) and N. A. VALERO ASME, International Gas Turbine Conference and Exhibit, 30th, Houston, TX, Mar. 18-21, 1985. 7 p. refs
(Contract NAG3-308)

An investigation of the mode localization phenomenon associated with mistuning is presented for shrouded blade assemblies. The calculations are based on a generic finite element model, which permits modeling of arbitrary mistuning and both slipping and nonslipping shroud interfaces. The results presented indicate that interactions occur between mistuning and slip effects, with maximum mode localization occurring when the shrouds slip freely. Certain modes are found to be very sensitive to shroud slip, and in some cases completely change character when slip occurs. Mode localization is most pronounced in the predominantly bending modes, and varies considerably from mode to mode. As the ratio of interblade coupling strength to mistuning strength is increased, the effect of mistuning is observed to decrease significantly. This result has important implications for the flutter problem, since it suggests that the stabilization effect available from mistuning is significantly less for a shrouded rotor as compared to an unshrouded rotor.

Author

A86-22061# General Electric Co., Cincinnati, Ohio.
EVALUATION OF FUEL PREPARATION SYSTEMS FOR LEAN PREMIXING-PREVAPORIZING COMBUSTORS
W. J. DOODS and E. E. EKSTEDT (General Electric Co., Aircraft Engine Business Group, Cincinnati, OH) ASME, International Gas Turbine Conference and Exhibit, 30th, Houston, TX, Mar. 18-21, 1985. 5 p. refs
(Contract NASG-22006)

A series of experiments was carried out in order to produce design data for a premixing prevaporizing fuel-air mixture preparation system for aircraft gas turbine engine combustors. The fuel-air mixture uniformity of four different system design concepts was evaluated over a range of conditions representing the cruise operation of a modern commercial turbofan engine. Operating conditions including pressure, temperature, fuel-to-air ratio, and velocity, exhibited no clear effect on mixture uniformity of systems using pressure-atomizing fuel nozzles and large-scale mixing devices. However, the performance of systems using atomizing fuel nozzles and large-scale mixing devices was found to be sensitive to operating conditions. Variations in system design variables were also evaluated and correlated. Mixture uniformity was found to improve with system length, pressure drop, and the number of fuel injection points per unit area. A premixing system capable of providing mixing uniformity to within 15 percent over a typical range of cruise operating conditions is demonstrated.

Author
The FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the bladed disks in the same rotor. The FBD module also allows the analysis of two flexible adjacent rotors and at a frequency equal to the differential rotor speed. The FBD motion is considered as a one-diameter axial mode. The FBD motion is interpreted in this paper. The blade-to-blade variation of relative stagnation pressure losses in the tip region and near the hub regions are measured downstream. The losses are integrated and interpreted in this paper.

AEROSTATIC FORMULATIONS FOR TURBOMACHINES AND PROPELLERS

The task of the aeroelastic analysis is to combine the formulations of the structural dynamic and unsteady aerodynamic models in a consistent manner, to solve the resulting aeroelastic model to determine the dynamic behavior (e.g., stability, forced vibration), and to interpret those results for both qualitative and quantitative detail. A review of the various formulations of the aeroelastic problem and a comparison of their relative advantages will be the subject of this paper. Specifically, the topics to be addressed are: the formulation of the aeroelastic problem, including a summary of the relations necessary to transform various diverse structural and aerodynamic models to a consistent notation for oscillatory motion; an approximate transformation for arbitrary temporal behavior; and a brief review of the applicable solution techniques.

AERODYNAMIC TURBULENCE PROPERTIES AND INTERPHASE TRANSPORT RATES

Three representative spray models are considered: (1) a locally homogeneous flow (LHF) model, which assumes infinitely fast droplet motion and transport. Two flow conditions are studied for droplet/turbulence interaction; and (3) the stochastic separated flow (SSF) model, which considers droplet/turbulence interactions using random sampling for turbulence properties in conjunction with random-walk computations for droplet motion and transport. Two flow conditions are studied to investigate the influence of swirli in droplet life histories and the effect of droplet/turbulence interactions on flow properties. Comparison of computed results with the experimental data show that general features of the flow structure can be predicted with reasonable accuracy using the two separated flow models. In contrast, the LHF model overpredicts the rate of development of the flow. While the SSF model provides better agreement with experimental results than the DSF model, definitive evaluation of the significance of droplet/turbulence interaction is not achieved due to uncertainties in the spray initial conditions. D.O.E.

AEROELASTIC FORMULATIONS FOR TURBOMACHINES AND PROPPELLERS

The task of the aeroelastic analysis is to combine the formulations of the structural dynamic and unsteady aerodynamic models in a consistent manner, to solve the resulting aeroelastic model to determine the dynamic behavior (e.g., stability, forced vibration), and to interpret those results for both qualitative and quantitative detail. A review of the various formulations of the aeroelastic problem and a comparison of their relative advantages will be the subject of this paper. Specifically, the topics to be addressed are: the formulation of the aeroelastic problem, including a summary of the relations necessary to transform various diverse structural and aerodynamic models to a consistent notation for oscillatory motion; an approximate transformation for arbitrary temporal behavior; and a brief review of the applicable solution techniques.

THE EFFECTS OF STRONG SHOCK LOADING ON COUPLED BENDING-TORSION FLUTTER OF TUNED AND MISTUNED CASCADES

This paper presents an investigation of the effects of strong in-passage shock waves on coupled bending-torsion flutter of both tuned and mistuned cascades. The aerodynamic and inertial coupling between the bending and torsional motions of each blade are included in the analytical model. Analysis revealed (1) that the shock loading has a beneficial effect on torsional flutters of both tuned and mistuned cascades and (2) that alternating bending/torsion mistuning has a beneficial effect on shock load induced bending flutter. The latter finding becomes important when shock induced bending flutter is a problem.
A86-26902*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

FORCED RESPONSE ANALYSIS OF AN AERODYNAMICALLY DETUNED SUPERSONIC TURBOMACHINE ROTOR

The effect of aerodynamic detuning on the supersonic flow induced forced response behavior of a turbomachine blade row is analyzed using an aeroelastic model. The rotor is modeled as a flat plate airfoil cascade representing an unwrapped rotor annulus; the aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading on the blade, due to the convection of the transverse gust past the airfoil cascade as well as that resulting from the motion of the cascade, is developed in terms of influence coefficients. The model developed here is then used to analyze the effect of aerodynamic detuning on the flow induced forced response behavior of a twelve-bladed rotor with Verdon's Cascade B flow geometry. V.L.

THE EFFECT OF LIMITING AERODYNAMIC AND STRUCTURAL COUPLING IN MODELS OF MISTUNED BLADED DISK VIBRATION

A model has been developed for studying the effect of mistuning on bladed disk vibration which has the unique feature that the extent of aerodynamic and structural interaction which it simulates can be readily varied from full coupling of all blades on the disk to coupling of each blade with only its nearest neighbors. Simulations utilizing the resulting algorithm show that limited coupling models may be used to predict the statistical distribution of blade amplitudes that characterizes the mistuning effect, which in turn determines stage durability. This approach is used to study the effect of changing various system parameters on amplitude scatter. Gas density, the number of blades on the disk, disk stiffness, and the engine order of the excitation are considered. The results are used to draw some conclusions about how to improve laboratory tests and component design. Author

A86-31595**# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

AERODYNAMIC AND STRUCTURAL DETUNING OF SUPERSONIC TURBOMACHINE ROTORS

Recent advances in multivariable robust control system design are extended to sensor failure, detection, isolation, and accommodation (FDIA) and estimator design. A new concept called A86-32958*# United Technologies Research Center, East Hartford, Conn.

DYNAMIC CHARACTERISTICS OF AN ASSEMBLY OF PROP-FAN BLADES

In contrast to conventional propellers, propfan blades are thin and highly swept-back, thereby giving rise to large bending and twisting deformations and complex vibratory characteristics. Aerodynamic performance depends on the extent of steady state deformation, and the aeroelastic response depends on the vibratory frequency and mode shape. Attention is presently given to the principal results of structural analyses for a five-bladed propfan assembly; these results are compared with test data. The results encompass both steady deformations and vibratory frequencies and mode shapes in a vacuum centrifugal environment. O.C.

A86-32957*# Pennsylvania State Univ., University Park.

INFLUENCE OF FRICTION DAMPERS ON TORSIONAL BLADE FLUTTER

This paper deals with the stabilizing effects of dry friction on torsional blade flutter. A lumped parameter model with single degree of freedom per blade has been used to represent the rotor stage. The well-known cascade theories for incompressible and supersonic flows have been used to determine the allowable increase in fluid velocity relative to the blade. It has been found that the effectiveness of friction dampers in controlling flutter can be substantial. Author

APPLICATION OF FDI METRICS TO DETECTION AND ISOLATION OF SENSOR FAILURES IN TURBINE ENGINES

This paper develops a framework for the design of failure detection and isolation (FDI) algorithms. Rather than trying to apply ‘optimal’ techniques in a top-down manner, the system redundancies are evaluated with respect to their ability to provide reliable FDI information. Previous work of Pattipati et al. (1984) and Weiss et al. (1984) defined a useful context and several useful analytical results, which provide a basis for the FDI design methodology developed here. A general decision structure which can take advantage of redundancy evaluation is presented, and examples of typical design considerations are discussed. The operation of the decision structure is then demonstrated for a sensor FDI application involving the F-100 jet engine. Author

ROBUST DETECTION, ISOLATION, AND ACCOMMODATION FOR SENSOR FAILURES

Recent advances in multivariable robust control system design are extended to sensor failure, detection, isolation, and accommodation (FDIA) and estimator design. A new concept called
threshold selector is introduced. It represents a significant and innovative tool for the analysis and synthesis of FDIA algorithms. Analytical results are obtained for the SISO case to compute optimal thresholds and size of minimum detectable failures, and a computer-aided technique is developed for the multivariable case. The techniques have been applied to sensor FDIA for an aircraft turbine engine control system.

BIFURCATION TECHNIQUES FOR NONLINEAR DYNAMIC ANALYSIS OF COMPRESSOR STALL PHENOMENA
(Contract NAS3-24088; NSF CEE-81-00491)

Compressor stall phenomena is analyzed from nonlinear control theory viewpoint, based on bifurcation-catastrophe techniques. This new approach appears promising and offers insight into such well known compressor instability problems as surge and rotating stall; furthermore it suggests strategies for recovery from stall. Three interlocking dynamic nonlinear state space models are developed. It is shown that the problem of rotating stall can be viewed as an (induced) bifurcation of solution of the uninstalled model. Hysteresis effect is shown to exist in the stall/recovery process. Surge cycles are observed to develop for some critical parameter values. It is shown that the oscillatory behavior is due to development of limit cycles, generated by Hopf bifurcation of solutions. Both stable and unstable limit cycles are observed. To further illustrate the usefulness of the methodology some partial computation of domains of attraction of equilibria is carried out, and parameter sensitivity analysis is performed.

THE APPLICATION OF LQR SYNTHESIS TECHNIQUES TO THE TURBOSHAFT ENGINE CONTROL PROBLEM
(Contract NAS3-22763)

A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

A86-37827*# Nielsen Engineering and Research, Inc., Mountain View, Calif.
UNSTEADY FORCES ON COUNTER-ROTATING PROPELLER BLADES
(Contract NSG-3135)

Unsteady forces experienced by counter-rotating propeller blades are examined in this paper. A fully coupled vortex lattice model of counter-rotation is used to obtain a quasi-steady solution to the propeller loadings, and an unsteady Sears (1941) analysis provides an estimate of the unsteady loads from the quasi-steady results. The vortex lattice method predicts the overall performance of counter-rotation well, based on comparisons of measured and predicted results. The effects of propeller spacing and blade number on the unsteady loadings are investigated. The peak-to-peak variation about the mean of the unsteady loadings on the rear propeller varied from 9 percent for a 2 x 2 counter-rotation system to 2 percent for an 8 x 8 system.

A86-38892*# Purdue Univ., West Lafayette, Ind.
PASSIVE CONTROL OF AERODYNAMICALLY FORCED VIBRATIONS OF SUPERSONIC TURBOMACHINE ROTORS BY SPLITTER BLADES
(AIAA PAPER 86-0844)

An aerelastic model is developed to examine the use of splitter blades as a passive detuning mechanism for flow induced forced response of unstalled supersonic turbomachine rotors. The splitters introduce aerodynamic and structural detuning to the rotor design. The relationship between aerodynamic and structural detuning and the location and chord lengths of splitters is analyzed. The model is applied to the flow induced response of four 12-blade rotors with Verdon's (1973) Cascade B flow geometry. The data reveal that for gusts characterized by forward and backward traveling waves the splitters generally decrease the maximum amplitudes of response; however, for some gust load interblade phase angles, such as -180 deg and 120 deg the splitters did not reduce the amplitudes of response.

A86-38894*# Purdue Univ., West Lafayette, Ind.
THREE DIMENSIONAL UNSTEADY AERODYNAMICS AND AEROELASTIC RESPONSE OF ADVANCED TURBOPROPS
(Contract NAS3-499)

A method for the prediction of steady and unsteady aerodynamic loads and aerelastic response of advanced turboprops is presented. The aerodynamic analysis uses three dimensional unsteady linearized compressible flow theory to compute the blade pressure distribution. The aerelastic analysis is based on a normal mode representation of the structure. The method is applicable to both conventional and advanced turbo-prop configurations, provided that blade stall and transonic shock waves are not important factors. Aerodynamic results are presented which validate the model in various limits by comparisons to alternative theories and experimental data. Finally, results of a stability analysis of an advanced turboprop are given, with comparisons to measurements made at NASA Lewis Research Center.

Author
A86-41726* # Texas A&M Univ., College Station.
NUMERICAL EVALUATION OF PROPELLER NOISE INCLUDING NONLINEAR EFFECTS
K. D. KORKAN, E. VON LAVANTE (Texas A&M University, College Station), and L. J. BOBER (NASA, Lewis Research Center, Cleveland, OH) AIAA Journal (ISSN 0001-1452), vol. 24, June 1986, p. 1043-1044. refs (Contract NAS3-354)

Propeller noise in the acoustic near field is presently determined through the integration of the pressure-time history in the tangential direction of a numerically generated flowfield around a propfan of SR-3 type, including the shock wave system in the vicinity of the propeller tip. This acoustic analysis yields overall sound pressure levels, and the associated frequency spectra, as a function of observer location. O.C.

A86-42702* # General Motors Corp., Indianapolis, Ind.
ROTORCRAFT PROPULSION FOR YEAR 2000 PLUS

The objective of this study was to identify high-payoff technologies for year 2000 small gas turbine engines for rotorcraft application. A current state-of-the-art technology Allison gas turbine engine was used as a baseline and three advanced concepts were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle. An extensive cycle optimization procedure was performed for each configuration under study using relative direct operating cost (DOC) as the figure of merit. A high pressure ratio nonconcentric engine provided the greatest reduction in DOC with a 16.5 percent improvement.

A86-42703* # Avco Lycoming Div., Stratford, Conn.
SMALL ENGINE TECHNOLOGY PAYOFFS FOR FUTURE COMMUTER AIRCRAFT

High payoff technologies for a year 2000 regenerative cycle turboprop engine were identified for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. Four advanced technologies are recommended to achieve a potential reduction in fuel burn of 38.3 percent. At $1.00 per gallon fuel price, a potential direct operating cost (DOC) benefit of 12.5 percent is obtained. At $2.00 per gallon, the potential DOC benefit increases to 17.0 percent.

A86-42705* # Teledyne CAE, Toledo, Ohio.
YEAR 2000 SMALL ENGINE TECHNOLOGY PAYOFFS IN CRUISE MISSILES

A study has been conducted for advanced small (450-850 pounds thrust) gas turbine engines for a subsonic strategic cruise missile application, using projected year 2000 technology. Turbine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engine over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. The critical aerodynamic materials and mechanical systems necessary for turbine engine technology were identified.

A86-42755* # Purdue Univ., West Lafayette, Ind.
TRANSIENT ENGINE PERFORMANCE WITH WATER INGESTION
T. HAYKIN and S. N. B. MURTHY (Purdue University, West Lafayette, IN) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 22nd, Huntsville, AL, June 16-18, 1986. 21 p. refs (Contract NAS3-481) (AIAA PAPER 86-1621)

The immediate effects on the transient performance of a generic, high bypass ratio jet engine on account of water ingestion are discussed. The air compression subsystem has been analyzed with respect to four aerothermodynamic and mechanical processes associated with two-phase fluid flow and the engine simulation has been carried out under limited cases of interest. In practice, one pertaining to draining of water at the end of compression and the other two, to partial evacuation at two different locations in the burner. General observations are made on engine operability as a function of engine and control design under various engine and (input) sensor operating conditions, with various mass fractions of water in the air-water mixture entering the engine, during various pilot-initiated power demand changes.

A86-45504* # United Technologies Corp., Windsor Locks, Conn.
PROPELLER NOISE CAUSED BY BLADE TIP RADIAL FORCES

New experimental evidence which indicates the presence of leading edge and tip edge vortex flow on Prop-Fans is examined, and performance and noise consequences are addressed. It was shown that the tip edge vortex is a significant noise source, particularly for unswept Prop-Fan blades. Preliminary calculations revealed that the addition of the tip side edge source to single rotation Prop-Fans during take off conditions improved the agreement between experiment and theory at blade passing frequency. At high-speed conditions such as the Prop-Fan cruise point, the tip loading effect tends to cancel thickness noise. K.K.

A86-48141* # National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
COMPUTATIONAL ENGINE STRUCTURAL ANALYSIS

A significant research activity at the NASA Lewis Research Center is the computational simulation of complex multidisciplinary engine structural problems. This simulation is performed using computational engine structural analysis (CESA) which consists of integrated multidisciplinary computer codes in conjunction with computer post-processing for problem-specific application. A variety of the computational simulations of specific cases are described in some detail in this paper. These case studies include: (1) aeroelastic behavior of bladed rotors, (2) high velocity impact of fan blades, (3) blades-loss transient response, (4) rotor/stator/squeeze-film/bearing interaction, (5) blade-fragment/rotor-burst containment, and (6) structural behavior of advanced swept turbcprops. These representative case studies are selected to demonstrate the breadth of the problems analyzed and the role
of the computer including post-processing and graphical display of voluminous output data.

A86-48145

Calspan Corp., Buffalo, N. Y.

HEAT-FLUX MEASUREMENTS FOR THE ROTOR OF A FULL-STAGE TURBINE. I - TIME-AVERAGED RESULTS

M. G. Dunn (Calspan Research Center, Buffalo, NY) ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 8 p. refs

(Contract NAG3-468; NAG3-581)

(ASME Paper 86-GT-77)

Blade measurements of time-averaged flux distribution are obtained with and without gas injection for a full-stage rotating turbine. Results are presented along the blade in the flow direction at 10, 50, and 90 percent span locations for both the pressure and suction surfaces; enough measurements were obtained to present spanwise distributions as well. The results suggest that the suction surface laminar flat plate prediction is in reasonable agreement with the data from the stagnation point up to about 10 percent of the wetted distance. The influence of upstream nozzle guide vane injection is to significantly increase the local blade heat flux in the immediate vicinity of the leading edge.

O.C.

A86-48146

Calspan Corp., Buffalo, N. Y.

HEAT-FLUX MEASUREMENTS FOR THE ROTOR OF A FULL-STAGE TURBINE. II - DESCRIPTION OF ANALYSIS TECHNIQUE AND TYPICAL TIME-RESOLVED MEASUREMENTS

M. G. Dunn, W. K. George, W. J. Rae, S. H. Woodward, J. C. Moller (Calspan Research Center, Buffalo, NY) et al. ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 10 p. refs

(Contract NAG3-468; NAG3-581)

(ASME Paper 86-GT-78)

An analytical technique for obtaining the time-resolved heat flux of a turbine blade is applied to the case of a TFE 731-2 hp full-stage rotating turbine. In order to obtain the heat flux values from the thin film gage temperature histories, a finite difference procedure is used to solve the heat equations with variable thermal properties. After setting out the data acquisition and analysis procedures, their application is illustrated for three midspan locations on the blade and operation at the design flow function. Results demonstrate that the magnitude of the heat flux fluctuation due to vane-bale interaction is large by comparison to the time-averaged heat flux at all investigated locations; FFT of a portion of the heat flux record illustrates that the dominant frequencies occur at the wake-cutting frequency and its harmonics.

O.C.

A86-48163

Massachusetts Inst. of Tech., Cambridge.

ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF THE COMBINE BLADED DISK/SHAFT WHIRL OF A CANTILEVERED TURBOFAN

E. F. Crawley, E. H. Ducharme, and D. R. Mokadam (MIT, Cambridge, MA) ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 9 p. refs

(Contract NAG3-200)

(ASME Paper 86-GT-98)

A simple analytical model for the structural dynamics of a rotating blade/rigid disk/flexible cantilevered shaft system yields the equations of motion expressed in the rotating frame, showing that the blade's one-nodal diameter modes dynamically couple to the rigid body whirling motion of the shaft-disk system. This analytical model is correlated with the results of a structural dynamic experiment performed on an aeroelastic rotor fan that is similar to a high bypass ratio shroudless turbofan. The agreement between the predicted and experimental natural frequencies is good, and suggests significant interaction of the one-nodal diameter blade modes with the shaft-disk modes.

O.C.

A86-48224

National Aeronautics and Space Administration.

TOWARD IMPROVED DURABILITY IN ADVANCED COMBUSTORS AND TURBINES - PROGRESS IN PREDICTION OF THERMOMECHANICAL LOADS

(ASME Paper 86-GT-172)

NASA is sponsoring the Turbine Engine Hot Section Technology (HOST) Project to address the need for improved durability in advanced combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to such loading, and life predictions for high temperature cyclic operation have been underway for several years and are showing promising results. Progress is reported in the development of advanced instrumentation and in the improvement of combustor aerothermal and turbine heat transfer models that will lead to more accurate prediction of thermomechanical loads.

Author

A86-48231

STRATIFIED CHARGE ROTARY ENGINE FOR GENERAL AVIATION

(ASME Paper 86-GT-181)

A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

O.C.

A86-48257

United Technologies Corp., East Hartford, Conn.

ATOMIZATION AND COMBUSTION CHARACTERISTICS OF ANTIMISTING FUELS USING JT8D AND AIR-BOOST INJECTORS

J. B. Kennedy and A. J. Florentino (United Technologies Corp., East Hartford, CT) ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 9 p. refs

(Contract NAS3-22045)

(ASME Paper 86-GT-223)

The atomization levels of antimisting fuels are presently determined for a JT8D fuel injector, a low emission airblast JT8D injector, and an air-boost injector, at operating conditions simulating engine operating conditions. The effects of the use of antimisting kerosene (AMK) on component performance are also studied in the case of an in-service JT8D engine. The use of the AMK fuel causes a decline in the quality of the spray, most notably as a large increase in the Sauter mean diameter for all three injector types. In addition, the idle patternation data obtained indicate that the low emission injector fuel distribution changed from a hollow cone Jet A spray having no fuel at its center to a semihollow spray cone in the case of AMK; this change could disrupt the combustor primary zone recirculation pattern.

O.C.
SMALL GAS TURBINE COMBUSTOR EXPERIMENTAL STUDY - COMPLIANT METAL/CERAMIC LINER AND PERFORMANCE EVALUATION

Compressor research related to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combusor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Linear temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1) splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels. Author

PERSPECTIVES ON DILUTION JET MIXING

J. D. HOLDHEMAN (NASA, Lewis Research Center, Cleveland, OH) and R. SRINIVASAN (Garrett Turbine Engine Co., Phoenix, AZ) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 22nd, Huntsville, AL, June 16-18, 1986. 31 p. refs (AIAA PAPER 86-1611)

A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets. Author

SUMMARY OF RECENT NASA PROPELLER RESEARCH

Previously announced as N84-32344

Avail: NTIS HC A20/MF 01 CSCL 01A

Advanced high speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. At these speeds, studies indicate that there is a 15 to nearly 40 percent block fuel savings and associated operating cost benefits for advanced turboprops compared to equivalent technology turbopan powered aircraft. Recent wind tunnel results for five eight to ten blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing nearfield cruise noise about 6 dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some results are compared with propeller force and probe data. Also, analytical predictions are compared with some initial laser velocimeter measurements of the flow field velocities of an eight bladed 45 swept propeller. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller nearfield noise data with linear acoustic theory indicate that the theory adequately predicts nearfield noise for subsonic tip speeds, but overpredicts the noise for supersonic tip speeds. Author

EVALUATION OF SMALL GAS TURBINE COMBUSTOR EXPERIMENTAL STUDY - COMPLIANT METAL/CERAMIC LINER AND PERFORMANCE EVALUATION

The overall objective of the Turbine Engine Hot Section Technology Combustion Project is to develop and verify improved and more accurate analysis methods for increasing the ability to design with confidence the combustion system for advanced aircraft engines. The analysis methods developed will be generally applicable to combustion systems and not restricted to one specific engine or manufacturer. This project's approach was to first assess and evaluate existing combustor aerothermal analysis models by means of a contracted effort initiated during FY 1982. This evaluation effort has assessed and quantified known models' strengths and deficiencies. During FY 1984 the Aerothermal Modeling Program, Phase 2 will be initiated, which is expected to have contracted model development efforts in the areas of improved numerical methods for turbulent viscous flows, flow interactions, and fuel spray flow foiled interactions. A Phase 3 effort is planned to address remaining model deficiencies. The primary objective of this effort in this area will be the determination of high pressure flame radiation characteristics in a full annular combustor. This experiment will be conducted in the NASA LeRC High Pressure Facility with the results compiled into a comprehensive flame radiation and liner heat flux model. Author

HOST STRUCTURAL ANALYSIS PROGRAM OVERVIEW

Avail: NTIS HC A11/MF A01 CSCL 21E

Combustor section components of aircraft gas turbine engines are subjected to severe thermal structural loading conditions, especially during the start up and take off portions of the engine cycle. The most severe and damaging stresses and strains are those induced by the steep thermal gradients induced during the start up transient. These transient stresses and strains are also the most difficult to predict, in part because of the temperature gradients and distributions are not well known or readily predictable, and also because the cyclic elastic viscoplastic behavior of the materials at these extremes of temperature and strain are not well known or readily predictable. A broad spectrum of structures related technology programs is underway to address these deficiencies. One element of the structures program is developing improved time varying thermal and mechanical load models for the entire engine and components. Author

HOST STRUCTURAL ANALYSIS PROGRAM OVERVIEW

Avail: NTIS HC A11/MF A01 CSCL 21E

Compressors are the backbone of advanced military and commercial gas turbine systems. The evaluation effort has assessed and quantified known models' strengths and deficiencies. During FY 1984 the Aerothermal Modeling Program, Phase 2 will be initiated, which is expected to have contracted model development efforts in the areas of improved numerical methods for turbulent viscous flows, flow interactions, and fuel spray flow foiled interactions. A Phase 3 effort is planned to address remaining model deficiencies. The primary objective of this effort in this area will be the determination of high pressure flame radiation characteristics in a full annular combustor. This experiment will be conducted in the NASA LeRC High Pressure Facility with the results compiled into a comprehensive flame radiation and liner heat flux model. Author

AIRCRAFT PROPULSION AND POWER

Avail: NTIS HC A11/MF A01 CSCL 21E

The overall objective of the Turbine Engine Hot Section Technology Combustion Project is to develop and verify improved and more accurate analysis methods for increasing the ability to design with confidence the combustion system for advanced aircraft engines. The analysis methods developed will be generally applicable to combustion systems and not restricted to one specific engine or manufacturer. This project's approach was to first assess and evaluate existing combustor aerothermal analysis models by means of a contracted effort initiated during FY 1982. This evaluation effort has assessed and quantified known models' strengths and deficiencies. During FY 1984 the Aerothermal Modeling Program, Phase 2 will be initiated, which is expected to have contracted model development efforts in the areas of improved numerical methods for turbulent viscous flows, flow interactions, and fuel spray flow foiled interactions. A Phase 3 effort is planned to address remaining model deficiencies. The primary objective of this effort in this area will be the determination of high pressure flame radiation characteristics in a full annular combustor. This experiment will be conducted in the NASA LeRC High Pressure Facility with the results compiled into a comprehensive flame radiation and liner heat flux model. Author

General Electric Co., Cincinnati, Ohio.

COMPONENT-SPECIFIC MODELING

Avail: NTIS HC A11/MF A01 CSCL 21E

The overall objective of this program is to develop and verify a series of interdisciplinary modeling and analysis techniques which have been specialized to address three specific hot section components. These techniques will incorporate data as well as these existing methods from many diverse areas, including cycle and performance analysis, heat transfer analysis, linear and nonlinear stress analysis, and mission analysis. Building on the proven techniques already available in these fields, the new methods developed through this contract will be integrated to provide an accurate, efficient, and unified approach to analyzing combustor burner liners, hollow air cooled turbine blades, and air cooled turbine vanes. For these components, the methods developed will

25
07 AIRCRAFT PROPULSION AND POWER

predict temperature, deformation, stress, and strain histories throughout a complete flight mission. Author

(NASA-CR-174965; NAS 1.26:174965) Avail: NTIS HC A05/MF A01 CSCL 21E

The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug caloriometer and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Garden gauge, and a slug caloriometer, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical predictions. E.A.K.

N86-12227*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
FLUID MACHINES: EXPANDING THE LIMITS, PAST AND FUTURE

During the 40 yr period from 1940 to 1980, the capabilities and operating limits of fluid machines were greatly extended. This was due to a research program, carried out to meet the needs of aerospace programs. Some of the events are reviewed. Overall advancements of all machinery components are discussed followed by a detailed examination of technology advancements in axial compressors and pumps. Future technology needs are suggested. E.A.K.

N86-13328*# Teledyne Continental Motors, Muskegon, Mich.
P. D. FREEN, S. G. BERENYI, A. P. BROUWERS, and M. E. MOYNIHAN Aug. 1985 116 p (Contract NAS3-22218)
(NASA-CR-174923-VOL-1; NAS 1.26:174923-VOL-1) Avail: NTIS HC A06/MF A01 CSCL 21G

An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78KW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications. Author
Computations are made for the inviscid flow field, surface boundary

COMPRESSOR STATOR BLADING

to 690,000. Blade chord length is 12.7 cm, aspect ratio is 2.0,

8-12 Jun. 1986 sponsored by ASME

performance parameters as well as blade surface pressures.

CASCADE PERFORMANCE FOR CONTROLLED-DIFFUSION

gas turbine conference and exhibit, Dusseldorf, West Germany,

A04/MF A01 CSCL 21E

incidence angles for blade chord Reynolds numbers from 470,000

N. L. SANGER and R. P. SHREEVE (Naval Postgraduate School,

J. SHUEN Dec. 1985 17 p refs Presented at the 24th

sponsored by AIAA

(Contract NASA-24105)

(CNASA-175028; E-2897; NAS 1.26:175028; AIAA-86-0450)

Avail. NTIS HC A02/MF A01 CSCL 21E

This structure of fuel sprays in a combustion chamber is theoretically investigated using computer models of current interest. Three representative spray models are considered: (1) a locally homogeneous flow (LHF) model, which assumes infinitely fast interphase transport rates; (2) a deterministic separated flow (DSF) model, which considers finite rates of interphase transport but ignores effects of droplet/turbulence interactions; and (3) a stochastic separated flow (SSF) model, which considers droplet/turbulence interactions using random sampling for turbulence properties in conjunction with random-walk computations for droplet motion and transport. Two flow conditions are studied to investigate the influence of swirl on droplet life histories and the effects of droplet/turbulence interactions on flow properties. Comparison of computed results with the experimental data show that general features of the flow structure can be predicted with reasonable accuracy using the two separated flow models. In contrast, the LHF model overpredicts the rate of development of the flow. While the DSF model provides better agreement with measurements than the SSF model, definitive evaluation of the significance of droplet/turbulence interaction is not achieved due to uncertainties in the spray initial conditions.

DOE

N86-16219* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMPARISON OF CALCULATED AND EXPERIMENTAL CASCADE PERFORMANCE FOR CONTROLLED-DIFFUSION COMPRESSOR STATOR BLADING

N. L. SANGER and R. P. SHREEVE (Naval Postgraduate School, Monterey, Calif.) 1986 22 p refs Presented at International Gas Turbine Conference and Exhibit, Dusseldorf, West Germany, 8-12 Jun. 1986; sponsored by ASME

(NASA- TM-87167; NAS 1.15:87167) Avail. NTIS HC A04/MF A01 CSCL 21E

The mid-span section of a previously reported controlled-diffusion compressor stator blade has been experimentally evaluated in cascade. Measurements are taken over a range of incidence angles for blade chord Reynolds numbers from 470,000 to 690,000. Blade chord length is 12.7 cm, aspect ratio is 2.0, and number of stages is 1.6. Measurements included nominal cascade performance parameters as well as blade surface pressures. Computations are made for the inviscid flow field, surface boundary layers, and loss for several of the blade inlet angle conditions, are compared against corresponding data.

Author

J. MOORE, S. NICHOLSON, and J. G. MOORE Dec. 1985 118 p refs

(Contract NAG3-593)

(NASA-CR-176428; NAS 1.26:176428; JM/85-11) Avail. NTIS HC A06/MF A01 CSCL 21E

Research at NASA Lewis Research Center gave the opportunity to incorporate new control volumes in the Denton 3-D infinite-volume-time marching code. For duct flows, the new control volumes require no transverse smoothing and this allows calculations with large transverse gradients in properties without significant numerical total pressure losses. Possibilities for improving the Denton code to obtain better distributions of properties through shocks were demonstrated. Much better total pressure distributions through shocks are obtained when the interpolated effective pressure, needed to stabilize the solution procedure, is used to calculate the total pressure. This simple change largely eliminates the undershoot in total pressure down-stream of a shock. Overtakes and undershoots in total pressure can then be further reduced by a factor of 10 by adopting the effective density method, rather than the effective pressure method. Use of a Mach number dependent interolation scheme for pressure then removes the overshoot in static pressure downstream of a shock. The stability of interpolation schemes used for the calculation of effective density is analyzed and a Mach number dependent scheme is developed, combining the advantages of the correct perfect gas equation for subsonic flow with the stability of 2-point and 3-point interpolation schemes for supersonic flow.

Author

N86-16221* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SIMULATING A SMALL TURBOSHIFT ENGINE IN REAL-TIME MULTIPROCESSOR SIMULATOR (RTMPS) ENVIRONMENT

A Real-Time Multiprocessor Simulator (RTMPS) has been developed at NASA Lewis Research Center. The RTMPS uses parallel microprocessors to achieve computing speeds needed for real-time engine simulation. This report describes the use of the RTMPS system to simulate a small turboshift engine. The process of programming the engine equations and distributing them over one, two, and four processors is discussed. Steady-state and transient results from the RTMPS simulation are compared with results from a main-frame-based simulation. Processor execution times and the associated execution time savings for the two and four processor cases are presented using actual data obtained from the RTMPS system. Included is a discussion of why the minimum achievable calculation time for the turboshift engine model was attained using four processors. Finally, future enhancements to the RTMPS system are discussed including the development of a generalized partitioning algorithm to automatically distribute the system equations among the processors in optimum fashion.

Author
07 AIRCRAFT PROPULSION AND POWER

N66-20398* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

METHOD FOR IMPROVING THE FUEL EFFICIENCY OF A GAS TURBINE ENGINE

An energy recovery system is provided for an aircraft gas turbine engine of the type in which some of the pneumatic energy developed by the engine is made available to support systems such as an environmental control system. In one such energy recovery system, some of the pneumatic energy made available to but not utilized by the support system is utilized to heat the engine fuel immediately prior to the consumption of the fuel by the engine. Some of the recovered energy may also be utilized to heat the fuel in the fuel tanks. Provision is made for multigas turbine applications wherein energy recovered from one engine may be utilized by another one of the engines or systems associated therewith.

Official Gazette of the U.S. Patent and Trademark Office

INFLUENCE OF LARGE-SCALE MOTION ON TURBULENT TRANSPORT FOR CONFINED COAXIAL JETS. VOLUME 2:

NAVIER-STOKES CALCULATIONS OF SWIRLING AND NONSWIRLING CONFINED COAXIAL JETS Final Report

B. C. WEINBERG and H. MCDONALD Jan. 1986 57 p refs
(Contract NAG3-350)

The existence of large scale coherent structures in turbulent shear flows has been well documented. Discrepancies between experimental and computational data suggest a necessity to understand the roles they play in mass and momentum transport. Using conditional sampling and averaging on coincident two-component velocity and concentration velocity experimental data for swirling and nonswirling coaxial jets, triggers for identifying the structures were examined. Concentration fluctuation was found to be an adequate trigger or indicator for the concentration-velocity data, but no suitable detector was located for the two-component velocity data. The large scale structures are found in the region where the largest discrepancies exist between model and experiment. The traditional gradient transport model does not fit in this region as a result of these structures. The large scale motion was found to be responsible for a large percentage of the axial mass transport. The large scale structures were convected downstream at approximately the mean velocity of the overall flow in the axial direction. The radial mean velocity of the structures was found to be substantially greater than that of the overall flow.

Author

N66-20391*# Clemson Univ., S.C. Dept. of Mechanical Engineering.

VISCOS COMPRESSIBLE FLOW DIRECT AND INVERSE COMPUTATION AND ILLUSTRATIONS Final Report

T. T. YANG and F. NTONE Jan. 1986 102 p refs
(Contract NAG3-535)
(NASA-CR-175037; NASA 1.26:175037) Avail: NTIS HC A06/MF A01 CSCL 21E

An algorithm for laminar and turbulent viscous compressible two dimensional flows is presented. For the application of precise boundary conditions over an arbitrary body surface, a body-fitted coordinate system is used in the physical plane. A thin-layer approximation of the Navier-Stokes equations is introduced to keep the viscous terms relatively simple. The flow field computation is performed in the transformed plane. A factorized, implicit scheme is used to facilitate the computation. Sample calculations, for Couette flow, developing pipe flow, an isolated airflow, two dimensional compressor cascade flow, and segmental compressor blade design are presented. To a certain extent, the effective use of the direct solver depends on the user's skill in setting up the gridwork, and the mechanism of the artificial viscosity. The design feature of the algorithm, an iterative scheme to correct geometry for a specified surface pressure distribution, works well for subsonic flows. A more elaborate correction scheme is required in treating transonic flows where local shock waves may be involved.

Author

N66-20392# Oklahoma State Univ., Stillwater.

MEASUREMENTS OF A SINGLE LATERAL JET INJECTED INTO SWIRLING CROSSFLOW M.S. Thesis Final Report

L. H. ONG and D. G. LILLEY Jan. 1986 92 p refs
(Contract NAG3-549)
(NASA-CR-175040; NASA 1.26:175040) Avail: NTIS HC A05/MF A01 CSCL 21E

Experiments have been conducted to document the time-mean and turbulent flowfields of a deflected turbulent jet in a confined swirling crossflow. The jet-to-crossflow velocity ratio of 4 was investigated with swirler vane angles of 45 and 70 degrees. A six-orientation single hot-wire technique was used to measure the velocities and turbulence properties of the flow. In addition, a five-hole pilot probe technique was used to measure the time-mean velocities or verification purposes. The results are presented in the form of their basic aerodynamic properties and the large-scale structures. A time-mean velocity measurements using the hot-wire corresponded to pitot-probe data obtained in identical flow conditions. Turbulence stress data show the same trends as previous swirl flow data without lateral injection. The lateral jet was found to deflect the axis of the precessing vortex core.

Author

N66-20393*# California Univ., Berkeley.

AERODYNAMIC PROPERTIES OF TURBULENT COMBUSTION FIELDS Final Report

C. C. HSIAO and A. K. OPPENHEIM Nov. 1985 136 p (Contract NAG3-131)
(NASA-CR-175005; NASA 1.26:175005) Avail: NTIS HC A07/MF A01 CSCL 21E

Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on a random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length.

Author
temperatures from 670K to 1020K, pressures from atmospheric, equivalence ratios from 0.2 to 0.7, and velocities and autoignition delay times are measured for propane, ethylene, a multi-point fuel injector. Results are presented for mixture where the largest discrepancies exist between model and A01 CSCL21E HYDROCARBON FUEL-AIR MIXTURES Final Report (Contract NAG3-226)

was found to be substantially greater than that of the overall flow. Measurements of time-mean and turbulent quantities were obtained utilizing a six-orientation single hot-wire technique. For the nonswirling case, the jets were found not to penetrate past the test-section centerline, in contrast to the single lateral jet with the same jet-to-crossflow velocity ratio. In the swirling cases, the crossflow remains in a narrow region near the wall of the test section. The opposed jets are swept from their vertical courses into spiral trajectories close to the confining walls. Extensive results are presented in x-r plane plots. Author

The existence of large scale coherent structures in turbulent shear flows has been well documented. Discrepancies between experimental and computational data suggest a necessity to understand the roles they play in mass and momentum transport. Using conditional sampling and averaging on coincident two component velocity and concentration velocity experimental data for swirling and nonswirling coaxial jets, triggers for identifying the structures were examined. Concentration fluctuation was found to be an adequate trigger or indicator for the concentration-velocity data, but no suitable detector was located for the two component velocity data. The large scale structures are found in the region where the largest discrepancies exist between model and experiment. The traditional gradient transport model does not fit in this region as a result of these structures. The large scale motion was found to be responsible for forcing perturbations downstream at approximately the mean velocity of the overall flow in the axial direction. The radial mean velocity of the structures was found to be substantially greater than that of the overall flow. Author

The influence of pressure on the autoignition characteristics of homogeneous mixtures of hydrocarbon fuels in air is examined. Autoignition delay times are measured for propane, ethylene, methane, and acetylene in a continuous flow apparatus featuring a multi-point fuel injector. Results are presented for mixture temperatures from 670K to 1020K, pressures from 1 to 10 atmospheres, equivalence ratios from 0.2 to 0.7, and velocities from 5 to 30 m/s. Delay time is related to pressure, temperature, and fuel concentration by global reaction theory. The results show variations in global activation energy from 25 to 38 kcal/kg-mol, pressure exponents from 0.66 to 1.21, and fuel concentration exponents from 0.19 to 0.75 for the fuels studied. These results are generally in good agreement with previous studies carried out under similar conditions. Author

(NASA-CR-174827; NAS 1.26:174827; EDR-11984-VOL-1) Avail: NTIS HC A11/MF A01 CSCL 21E Progress in predictive design capabilities for external heat transfer to turbine vanes was summarized. A two dimensional linear cascade (previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils) was used to examine the effect of leading edge shower head film cooling on downstream heat transfer. The data were used to develop and evaluate analytical models. Modifications to the two dimensional boundary layer flow model were described. The results were used to formulate and test an effective viscosity model capable of predicting heat transfer phenomena downstream of the leading edge film cooling array on both the suction and pressure surfaces, with and without mass injection. B.G.

(NASA-CR-175063; NAS 1.26:175063) Avail: NTIS HC A10/MF A01 CSCL 21E The main objective of this investigation is to develop a two-equation turbulence model for dilute vaporizing sprays or in general for dispersed two-phase flows including the effects of phase changes. The model that accounts for the interaction between the two phases is based on rigorously derived equations for turbulence kinetic energy (K) and its dissipation rate epsilon of the carrier phase using the momentum equation of that phase. Closure is achieved by modeling the turbulent correlations, up to third order, in the equations of the mean motion, concentration of the vapor in the carrier phase, and the kinetic energy of turbulence and its dissipation rate for the carrier phase. The governing equations are presented in both the exact and the modeled forms. The governing equations are solved numerically using a finite-difference procedure to test the presented model for the flow of a turbulent axisymmetric gaseous jet laden with either evaporating liquid droplets or solid particles. The predictions include the distribution of the mean velocity, volume fractions of the different phases, concentration of the evaporated material in the carrier phase, turbulence intensity and shear stress of the carrier phase, droplet diameter distribution, and the jet spreading rate. The predictions are in good agreement with the experimental data. Author

(NASA-CR-174652; NAS 1.26:174652; G-21-4314-2) Avail: NTIS HC A03/MF A01 CSCL 21E The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components
through extensive mechanical property testing, rig testing, and engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproprietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivative alloys, NASA100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASA100 and Alloy 3, show significant tensile and fatigue improvements. Fritree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

Author

N86-24683*## United Technologies Research Center, East Hartford, Conn.

ADVANCED TURBOPROP VIBRATORY CHARACTERISTICS

Final Report

A. V. SRINIVASAN and G. B. FULTON Apr. 1984 104 p refs
(Contract NAS3-23533)
(NASA-CR-174708; NAS 1.26:174708; R84-956627-1) Avail: NTIS HC A01 CSCL 21E

The assembly of SRS advanced turboprop blades to develop a structural dynamic data base for swept props is reported. Steady state blade deformation under centrifugal loading and vibratory characteristics of the rotor assembly were measured. Vibration was induced through a system of piezoelectric crystals attached to the blades. Data reduction procedures are used to provide deformation, mode shape, and frequencies of the assembly at predetermined speeds. Author

N86-24694*## National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.

LOW-SPEED PERFORMANCE OF AN AXISYMMETRIC, MIXED-COMPRESSION, SUPERSONIC INLET WITH AUXILIARY INLETS

C. J. TREFNY and J. W. WASSERBAUER Feb. 1986 63 p refs
(NASA-TP-2557; E-2771; NAS 1.60:2557) Avail: NTIS HC A04/MF A01 CSGL 21E

A test program was conducted to determine the aerodynamic performance and acoustic characteristics associated with the low-speed operation of a supersonic, axisymmetric, mixed-compression inlet with auxiliary inlets. Blow-in-auxiliary doors were installed on the NASA Aries P inlet. One door per quadrant was located on the cowl in the subsonic diffuser selection of the inlet. Auxiliary inlets with areas of 20 and 40 percent of the inlet capture area were tested statically and at free-stream Mach numbers of 0.1 and 0.2. The effects of boundary layer bleed inflow were investigated. A JT8D fan simulator driven by compressed air was used to pump inlet flow and to provide a characteristic noise signature. Baseline data were obtained at static free-stream conditions with the sharp P-inlet cowl lip replaced by a blunt lip. Auxiliary inlets increased overall total pressure recovery of the order of 10 percent. Author

N86-24695*## Beech Aircraft Corp., Wichita, Kans.

EVALUATION OF PROPFOAN PROPULSION APPLIED TO GENERAL AVIATION

R. W. AWKER Mar. 1986 146 p refs
(Contract NAS3-24349)
(NASA-CR-175020; NAS 1.26:175020) Avail: NTIS HC A07/MF A01 CSCL 21E

Propfan propulsion on business aircraft was evaluated. Comparisons, in terms of cost and performance, were made between propfan propulsion systems and conventional turbofan propulsion systems on a typical business aircraft. In addition, configuration and cost sensitivity studies were conducted to further assess the potential of propfan propulsion.

Author

N86-24697*## National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.

A REAL-TIME SIMULATION EVALUATION OF AN ADVANCED DETECTION, ISOLATION AND ACCOMMODATION ALGORITHM FOR SENSOR FAILURES IN TURBINE ENGINES

W. C. MERRILL and J. C. DELAAT 1986 17 p refs
Presented at the American Control Conference, Seattle, Wash., 18-20 Jun. 1986; sponsored by IEEE
(NASA-TM-87298; E-2995; NAS 1.15:87298) Avail: NTIS HC A02/MF A01 CSCL 21E

An advanced sensor failure detection, isolation, and accommodation (ADIA) algorithm has been developed for use with an aircraft turbofan engine control system. In a previous paper the authors described the ADIA algorithm and its real-time implementation. Subsequent improvements made to the algorithm and implementation are discussed, and the results of an evaluation presented. The ADIA was used in a real-time, hybrid computer simulation of an F100 turbofan engine.

Author

TURBOFAN AFT DUCT SUPPRESSOR STUDY PROGRAM LISTING AND USER'S GUIDE Final Report

M. C. JOSHI and R. E. KRAFT May 1983 104 p
(Contract NAS3-23766)
(NASA-CR-175067; NAS 1.26:175067) Avail: NTIS HC A06/MF A01 CSCL 21E

A description of the structure of the Annular Flow Duct Program (AFDP) for the calculation of acoustic suppression due to treatment in a finite length annular duct carrying sheared flow is presented. Although most appropriate for engine exhaust ducts, this program can be used to study sound propagation in any duct that maintains annular geometry over a considerable length of the duct. The program is based on the modal analysis of sound propagation in ducts with axial segments of different wall impedances. For specified duct geometry, wall impedance, flow and acoustic conditions in the duct (including mode amplitude distribution of the source) and duct termination reflection characteristics, the program calculates the suppression due to the treatment in the duct. The presence of forward and backward traveling modes in the duct due to the reflection and redistribution of modes at segment interfaces and duct end terminations are taken into account in the calculations. The effects of thin wall boundary layers (with a linear or mean flow velocity profile) on the acoustic propagation are also included in the program. A functional description of the major subroutines is included and a sample run is provided with an explanation of the output.

M.G.

N86-26336*## National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.

SUMMARY OF INVESTIGATIONS OF ENGINE RESPONSE TO DISTORTED INLET CONDITIONS

T. J. BIESIADNY, W. M. BRAITHWAITE, R. H. SOEDER, and M. ABDELWAHAB 1986 34 p refs
Proposed for presentation at the 68th Meeting of the Propulsion and Energetics Panel, Munich, West Germany, 8-9 Sep. 1986; sponsored by AGARD
(NASA-TM-87317; E-3048; NAS 1.15:87317) Avail: NTIS HC A04/MF A01 CSCL 21E

A survey is presented of experimental and analytical experience of the NASA Lewis Research Center in engine response to inlet temperature and pressure distortions. This includes a description of the hardware and techniques employed, and a summary of the highlights of experimental investigations and analytical modeling. Distortion devices successfully simulated inlet distortion, and knowledge was gained about compression system response to different types of distortion. A list of NASA research references is included.

Author
LARGE-SCALE ADVANCED PROP-FAN (LAP) PITCH CHANGE ACTUATOR AND CONTROL DESIGN REPORT

In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the high inherent efficiency previously demonstrated by low speed turning propeller systems may now be extended to higher speed aircraft if advanced high-speed propeller blades having thin airfoils and aerodynamic sweep are utilized. Hamilton Standard has designed a 9-foot diameter single-rotation Large-Scale Advanced Prop-Fan (LAP) which will be tested on a static test stand, in a high speed wind tunnel and on a research aircraft. The major objective of this testing is to establish the structural integrity of large-scale Prop-Fans of advanced construction in addition to the evaluation of aerodynamic performance and aeroacoustic design. This report describes the operation, design features and actual hardware of the (LAP) Prop-Fan pitch control system. The pitch control system which consists of blade angle and propeller thrust control consists of two separate assemblies. The first is the control unit which provides the hydraulic supply, speed governing and feather function for the system. The second unit is the hydro-mechanical pitch change actuator which actuates the blade angle (pitch) as controlled by the control.

STRUCTURAL TAILORING OF ENGINE BLADES (STAEBL) THEORETICAL MANUAL

K. W. BROWN Mar. 1985 51 p (Contract NAS2-23255)

This theoretical manual includes the theories included in the Structural Tailoring of Engine Blades (STAEBL) computer program which was developed to perform engine fan and compressor blade numerical optimizations. These blade optimizations seek a minimum weight or cost design that satisfies practical blade design constraints, by controlling one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

STRUCTURAL TAILORING OF ENGINE BLADES (STAEBL) USER'S MANUAL

K. W. BROWN Mar. 1985 106 p (Contract NAS2-23255)

This User's Manual contains instructions and demonstration cases to reproduce data, run and modify the Structural Tailoring of Engine Blades (STAEBL) computer code. STAEBL was developed to perform engine fan and compressor blade numerical optimizations. This blade optimization seeks a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

STRUCTURAL TAILORING OF ENGINE BLADES (STAEBL) CHANNEL FLOW MODELING OF IMPINGEMENT COOLING OF A ROTATING TURBINE BLADE

J. J. KOO Dec. 1984 94 p (Contract NAG3-335)

Local heat transfer distributions in impingement cooling have been measured by Kreatsoulas and Priester for a range of conditions which model those in actual turbine blades, including the effects of rotation. These data were reported as local Nusselt numbers, but referred to coolant supply conditions. By means of a channel flow modeling of the flow in the supply and impingement passages, the same data are here presented in terms of local Nusselt number distributions such as are used in design. The results in this form are compared to the nonrotating impingement results of Chupp and to the rotating but nonimpingement results of Moni. Rotation reduces the mean Nusselt numbers from these found by Chupp by about 30 percent, and introduces important radial variations which are sensitive to rotation and to leading edge stagger angle.
A variable area radial turbine with a moveable nozzle sidewall was experimentally evaluated. The turbine was designed for an advanced variable capacity gas turbine rotorcraft engine. The turbine has a mass flow rate of 2.27 kg/sec (5.0 lbs/sec), and a rotor inlet temperature of 1477K (2200°F). Testing was conducted at a reduced inlet temperature, but the aerodynamic parameters and Reynolds numbers were duplicated. Overall performance was obtained for a range of nozzle areas from 50% to 100% of the maximum area. The test program determined the effect on performance of: (1) Moving the hub or shroud sidewall; (2) Sidewall-vane clearance leakage; (3) Vaneless space geometry change; and (4) Nozzle cooling flows. Data were obtained for a range of pressure ratios and speeds and are presented in a number of performance maps.

...
of the current method can be summarized as follows. Control volumes are chosen so that smoothing of flow properties, typically required for stability, is now needed. Different time steps are used in the different governing equations to improve the convergence speed of the viscous calculations. A new pressure interolation scheme is introduced which improves the shock capturing ability of the method. A multi-volume method for pressure changes in the boundary layer allows calculations which use very long and thin control volumes. A special discretization technique is also used to stabilize these calculations. A special formulation of the energy equation is used to provide improved transient behavior of solutions which use the full energy equation. The method is then compared with a variety of test cases. The freestream Mach numbers range from 0.075 to 2.8 in the calculations. Transonic viscous flow in a converging diverging nozzle is calculated with the method; the Mach number upstream of the shock is approximately 1.25. The agreement between the calculated and measured shock strength and total pressure losses is good. Essentially incompressible turbulent boundary layer flow in a adverse pressure gradient is calculated and the computed distribution of mean velocity and shear stress are in good agreement with the measurements. At the other end of the Mach number range, a flat plate turbulent boundary layer with a freestream Mach number of 2.8 is calculated using the full energy equation; the computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer. Author

N86-30732

ROBUST DETECTION, ISOLATION AND ACCOMMODATION FOR SENSOR FAILURES Final Report

A. Emami-Naeini, M. M. Akhter, and S. M. Rock

JULY 1986

164 P

(Contract NAS-2-24079)

NASA-CR-174825; NASA 1.26.174825; SCT-85-5449

Avail:

NTIS HC A04/MF A01 CSCL 21E

The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DIA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal model provides asymptotically unbiased filter estimates. The incorporation of frequency shaping of the Linear Quadratic Gaussian cost function modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selected empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques. Author

N85-31583

VISUALIZATION OF FLOWS IN A MOTORED ROTARY COMBUSTION ENGINE USING HOLOGRAPHIC INTERFEROMETRY

Y. R. Hicks, H. J. Schock, J. E. Craig (Spectron Development Labs., Inc., Costa Mesa, Calif.)

Avail: NTIS HC A02/MF A01 CSCL 21E

The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The agreement of the calculated results are shown to be excellent with the experimental observations. Author

housing within the normal flow path of a turboshaft engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turboshaft mode, the torque converter overdrive capability brings the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed is synchronized. The conversion to turboshaft mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during transient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turboshaft engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended. Author

Author

N96-31582

COMBUSTION ENGINE USING HOLOGRAPHIC VISUALIZATION

Y. R. Hicks, H. J. Schock, J. E. Craig (Spectron Development Labs., Inc., Costa Mesa, Calif.)

Avail: NTIS HC A02/MF A01 CSCL 21E

The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal

N86-31583

National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.

SMALL GAS TURBINE COMBUSTOR EXPERIMENTAL STUDY: COMPLIANT METAL/CERAMIC LINER AND PERFORMANCE EVALUATION

W. A. Acosta (Army Aviation Research and Development Command, Cleveland, Ohio) and C. T. Morgen 1986 16 p

Avail: NTIS HC A02/MF A01 CSCL 21E

Compressor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this compressor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1) splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels. Author

N85-31583

National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.

VISUALIZATION OF FLOWS IN A MOTORED ROTARY COMBUSTION ENGINE USING HOLOGRAPHIC INTERFEROMETRY

Y. R. Hicks, H. J. Schock, J. E. Craig (Spectron Development Labs., Inc., Costa Mesa, Calif.)

Avail: NTIS HC A02/MF A01 CSCL 21E

The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal
rocket propellant flow and rocket chamber pressure are also included. In general, the Mach 5 results indicate that increasing the amount of rocket gas produced increased thrust but decreased the specific impulse. The engine performance was fairly sensitive to rocket chamber pressure, especially at higher compressor pressure ratios. At higher compressor pressure ratios, the engine thrust was sensitive to turbine inlet temperature. At all compressor pressure ratios, the engine performance was not sensitive to compressor or turbine efficiency.

Author

N86-31587*# National Aeronautics and Space Administration.

A NOVEL ENGINE AND SYSTEM DESIGN APPROACH FOR THE 21ST CENTURY

A PARAMETRIC STUDY OF A GAS-GENERATOR AIRTURBOJET (ATJ)

AN OVERVIEW OF THE SMALL ENGINE COMPONENT TECHNOLOGY (SECT) STUDIES

A LARGE NUMBER OF NOVEL AEROENGINE CONCEPTS ARE BEING DEVELOPED TO MEET THE Needs FOR THE 21ST CENTURY

A PARAMETRIC ENGINE PERFORMANCE CALCULATION STUDY

A TURBULENT DISPERON OF THE ICING CLOUD FROM SPRAY NOZZLES USED IN ICING TUNNELS

were located in the constant velocity test section. Three spray bar shapes were tested: the short blunt spray bar used in the NASA Lewis Icing Research Tunnel, a thin 14.6 cm chord airfoil, and a 53 cm chord NACA 0012 airfoil. At the low airspeed (56 km/hr) the ice accretion pattern was axisymmetric and was not affected by the shape of the spray bar. At the high airspeed (169 km/hr) the spread was 30 percent smaller than at the low airspeed. For the widest cloud the spray bars should be located as far upstream in the low velocity plenum of the icing tunnel. Good comparison is obtained between the cloud spread data and predictions from a two-dimensional cloud mixing computer code using the equation turbulence (k epsilon g) model. Author

N88-32432# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. PERSPECTIVES ON DILUTION JET MIXING J. D. HOLDEMAN and R. SRINIVASAN (Garrett Turbine Engine Co., Phoenix, Ariz.) Mar. 1986 32 p Presented at the Spring Meeting of the Central States Section of the Combustion Inst., Cleveland, Ohio, 5-6 May 1986 and the 3rd Joint Propulsion Conference, Huntsville, Ala., 16-18 Jun. 1986; sponsored by AIAA, ASME, SAE, and ASEE (NASA-TM-97294; E-2975; NASA-1.15.87294; AIAA-86-1611) Avail: NTIS HC A03/MF A01 CSCF 21E A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets. Author

N88-32433# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. STRUCTURAL DYNAMIC MEASUREMENT PRACTICES FOR TURBOMACHINERY AT THE NASA LEWIS RESEARCH CENTER L. J. KIRALY 1986 30 p Presented at the Symposium on Propulsion Instrumentation, Jiangyou, China, 6-10 Oct. 1986; sponsored by NASA and Chinese Aeronautical Establishment (NASA-TM-886857; E-3245; NAS 1.15:88657) Avail: NTIS HC A03/MF A01 CSCF 5IC Methods developed for measuring blade and rotor-shaft system response include optical systems, transient instruments, and special digital data processing equipment. Optical methods offer some distinct benefits for blade vibration measurement. Transient and steady state measurements of the response of rotor-shaft systems strongly affect analytical methods development. Digital computing systems allow processing of large volumes of high speed data from rotating blade sets. Also, digital systems develop useful vibration response signatures from randomly excited systems. Research facilities include the spin rig facility and the transient rotor response lab. Author

08 AIRCRAFT STABILITY AND CONTROL

Includes aircraft handling qualities; piloting; flight controls; and autopilots.

N88-40861# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. THE MEASUREMENT OF AIRCRAFT PERFORMANCE AND STABILITY AND CONTROL AFTER FLIGHT THROUGH NATURAL ICING CONDITIONS R. J. RANAUDO, K. L. MIKKELSEN, R. C. MCKNIGHT, R. F. IDE, A. L. REECHORST (NASA, Lewis Research Center, Cleveland, OH) et al. AIAA, AHS, CASI, DGLR, IES, ISA, ITEA, SETP, and SFTE, Flight Testing Conference, 3rd, Las Vegas, NV, Apr. 2-4, 1986. 46 p. Previously announced in STAR as N88-22582. refs (AIAA PAPER 86-9758) The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degradation in lift and drag. Author

N88-22582# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. THE MEASUREMENT OF AIRCRAFT PERFORMANCE AND STABILITY AND CONTROL AFTER FLIGHT THROUGH NATURAL ICING CONDITIONS R. J. RANAUDO, K. L. MIKKELSEN, R. C. MCKNIGHT, R. F. IDE, A. L. REECHORST, J. L. JORDAN, W. C. SCHINSTOCK, and S. J. PLATZ 1986 46 p refs Presented at the 3rd Flight Testing Conference, Las Vegas, Nev., 2-4 Apr. 1986; cosponsored by AIAA, CASI, DGLR, IES, ISA, ITEA, SETP, and SFTE Prepared in cooperation with Kohlman Systems Research, Inc., Lawrence, Kansas (NASA-TM-87265; E-2962; NASA-1.15:87265; AIAA-86-9758) Avail: NTIS HC A03/MF A01 CSCF 01C The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance
analyses showed the individual contributions of major airframe components to the overall degradation in lift and drag. Author

09 RESEARCH AND SUPPORT FACILITIES (AIR)

The rehabilitation of the Altitude Wind Tunnel includes the need for new corner turning vanes to match its upgraded performance. The design and experimental performance results from a 0.1-full scale model of the highest speed corner (M = 0.35) are presented and discussed along with some two dimensional inviscid analyses of two vaned corners. With a vane designed by an inverse two dimensional technique, the overall corner loss was about 12 percent of the inlet dynamic pressure of which about 4 percent was caused by vane skin friction. Comparable values with a conventionally designed circular arc vane were about 14 percent overall with about 7 percent due to skin friction. E.A.K.

The NASA Lewis 8 x 8-ft and 10 x 10-ft supersonic wind tunnels furnish the capability for propulsion system tests in the Mach 0.4-3.5 range; the 9 x 15-ft wind tunnel at the facility addresses propulsion installation problems at the lower, takeoff and landing speeds, further providing an excellent anechoic environment in which to measure propeller and fan noise. The NASA Lewis Icing Research Tunnel is the largest of its kind in the free world. The currently mothballed Hypersonic Tunnel Facility could furnish the best available simulations of nonvitiated Mach numbers due to skin friction. Comparable values with a conventionally designed circular arc vane were about 14 percent overall with about 7 percent due to skin friction. E.A.K.

The rehabilitation of the AWT at the NASA Lewis Research Center is under study with the goal of providing a modern subsonic wind tunnel for conducting propulsion system/airframe integration, isolated propulsion system, propulsion acoustics and adverse weather tests. Because of the increased Mach number capability (from Mach 0.6 to 0.9 plus) and the incorporation of acoustic and adverse weather capabilities into an existing tunnel, the AWT rehabilitation represents a significant technical challenge. In order to reduce the risk associated with such an undertaking, an extensive AWT modeling program is being conducted to guide and verify the tunnel design. Significant findings and progress in this modeling program are the subject of this paper. Author

Efforts are currently underway at NASA Lewis to improve and expand ground test facilities and to develop supporting technologies to meet anticipated aeropropulsion research needs. Many of these efforts have been focused on a proposed rehabilitation of the Altitude Wind Tunnel (AWT). In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide input to the AWT final design process. This paper describes the approach taken to develop analytical, dynamic computer simulations of the AWT, and the use of these simulations as test-beds for (1) predicting the dynamic response characteristics of the AWT and (2) evaluating proposed AWT control concepts. Plans for developing a portable, real-time simulator for the AWT facility are also described. Author

In a closed loop icing wind tunnel the icing cloud is simulated by introducing tiny water droplets through an array of nozzles upstream of the test section. This cloud will form ice on all tunnel components (e.g., turning vanes, inlet guide vanes, fan blades, and the heat exchanger) as the cloud flows around the tunnel. These components must have the capacity to handle their icing loads without causing significant tunnel performance degradation during the course of an evening's run. To aid in the design of these components for the proposed Altitude Wind Tunnel (AWT) at the NASA Lewis Research Center (NLR) the Icing Research Tunnel (IRT) is used to measure icing characteristics of the IRT's components. The results from the IRT are scaled to the AWT to account for the AWT's larger components and higher velocities. The results show that from 90 to 45 percent of the total spray cloud froze out on the heat exchanger. Furthermore, the first set of turning vanes downstream of the test section, the FOD screen and the fan blades show significant ice formation. The scaling shows that the same results would occur in the AWT. Author

The heat transfer behavior of accreting ice surfaces in natural (flight test) and simulated (wind tunnel) cloud icing conditions have been studied. Observations of wet and dry ice growth regimes as measured by ultrasonic pulse-echo techniques were made. Observed wet and dry ice growth regimes at the stagnation point
of a cylinder were compared with those predicted using a quasi steady-state heat balance model. A series of heat transfer coefficients were employed by the model to infer the local heat transfer behavior of the actual ice surfaces. The heat transfer in the stagnation region was generally inferred to be higher in wind tunnel icing tests than in natural, flight, icing conditions. Author

Rehabilitation of the Altitude Wind Tunnel includes the need for new corner turning vanes to match its upgraded performance. The design and experimental performance results from a 0.1-full scale model of the highest speed corner (M = 0.35) are presented and discussed along with some two dimensional inviscid analyses of two vane designs. With a vane designed by an inverse two dimensional technique, the overall corner loss was about 12% of the inlet dynamic pressure of which about 4% was caused by vane skin friction. Comparable values with a conventionally designed circular arc vane were about 14% overall with about 7% due to skin friction. E.A.K.

A two axis thrust measuring system was analyzed by using a finite element computer program to determine the sensitivities of the thrust vectoring nozzle system to misalignment of the load cells and applied loads, and the stiffness of the structural members. Three models were evaluated: (1) the basic measuring element and its internal calibration load cells; (2) the basic measuring element and its external load calibration equipment; and (3) the basic measuring element, external calibration load frame and the altitude facility support structure. Alignment of calibration loads was the greatest source of error for multiaxis thrust measuring systems. Unidentified increases or decreases in stiffness of the members, which might be caused by the selection of the materials, have little effect on the accuracy of the measurements. It is found that the POLO-FINITE model is a viable tool for designing and analyzing multiaxis thrust measurement systems. The response of the test stand to step inputs that might be encountered with thrust vectoring systems because of the inherently light damping of the test stand. E.A.K.

In a closed loop icing wind tunnel the icing cloud is simulated by introducing tiny water droplets through an array of nozzles upstream of the test section. This cloud will form ice on all tunnel components (e.g., turning vanes, inlet guide vanes, fan blades, and the heat exchanger) as the cloud flows around the tunnel. These components must have the capacity to handle their icing loads without causing significant tunnel performance degradation during the course of a full day's run. To aid in the design of these components for the proposed Altitude Wind Tunnel (AWT) at NASA Lewis Research Center the existing Icing Research Tunnel (IRT) is used to measure icing characteristics of the IRT's components. The results from the IRT are scaled to the AWT to account for the AWT's larger components and higher velocities. The results show that from 80 to 45 percent of the total spray cloud froze out on the heat exchanger. Furthermore, the first set of turning vanes downstream of the test section, the FOD screen and the fan blades show significant ice formation. The scaling shows that the same results would occur in the AWT. Author

As the propulsion and power generation center of NASA, Lewis has designed its wind tunnels for propulsion research. Therefore, the 8 by 6 Foot Supersonic Wind Tunnel and the 10 by 10 Foot Supersonic Wind Tunnel provide the capability to test operating propulsion systems from Mach 0.4 to 3.5. The 9 by 15 Foot Wind Tunnel can investigate propulsion installation problems at the lower Mach number capability (from Mach 0.6 to 0.9 plus) and the incorporation of acoustic and adverse weather capabilities into an existing tunnel, the AWT rehabilitation represents a significant technical challenge. In order to reduce the risk associated with such an undertaking, and extensive AWT modeling program is being conducted to guide and verify the tunnel design. Significant findings and progress in this modeling program are the subject of this paper. Author

09 RESEARCH AND SUPPORT FACILITIES (AIR)

The rehabilitation of the Altitude Wind Tunnel (AWT) at the NASA Lewis Research Center is under study with the goal of providing a modern subsonic wind tunnel for conducting propulsion system/airframe integration, isolated propulsion system, propulsion acoustic and adverse weather tests. Because of the increased Mach number capability (from Mach 0.6 to 0.9 plus) and the incorporation of acoustic and adverse weather capabilities into an existing tunnel, the AWT rehabilitation represents a significant technical challenge. In order to reduce the risk associated with such an undertaking, and extensive AWT modeling program is being conducted to guide and verify the tunnel design. Significant findings and progress in this modeling program are the subject of this paper. Author
DE-ICING OF THE ALTITUDE WIND TUNNEL TURNING VANES BY ELECTROMAGNETIC IMPULSE Final Report
G.W. ZUMWALT and R. ROSS Mar. 1986 79 p
(Contract NAG3-607)
(NASA-CR-177260; NAS 1.26:177260) Avail: NTIS HC A05/MF A01 CSCL 14B

The Altitude Wind Tunnel at the NASA-Lewis facility is being proposed for a refurbishment and modernization. Two major changes are (1) a decrease in the test section Mach number to 0.13, and (2) the addition of spray nozzles to provide simulation of flight in icing clouds. Features to be retained are the simulation of atmospheric temperature and pressure to 50,000 foot altitude and provision for full-scale aircraft engine operation by the exhausting of the aircraft combustion gases and ingestion of air to replace that used in combustion. The first change required a re-design of the turning vanes in the two corners downstream of the test section due to the higher Mach number at the corners. The second change threatens the operation of the turning vanes by the expected ice build-up, particularly on the first-corner vanes. De-icing by heat has two drawbacks: (1) an extremely large amount of heat is required, and (2) the melted ice would tend to collect as ice on some other surfaces in the tunnel, namely, the tunnel propellers and the cooling coils. An alternate de-icing method had been under development for three years under NASA-Lewis grants to the Wichita State University. This report describes the electro-impulse de-icing (EID) method and the testing work done to assess its applicability to wind tunnel turning vane de-icing.

Tests were conducted in the structural dynamics laboratory and in the NASA Icing Research Tunnel. Good ice protection was achieved at lower power consumption and at a wide range of tunnel operations conditions. Recommendations for design and construction of the system for this application of the EID method are given.

Author
solute the convective flow is antiparallel with the flow caused by contraction on freezing. Identification of the mechanisms involved in these two problems is discussed. It is known that certain types of bulk liquid movements can inhibit channel development and the mechanism by which they do so are examined. E.A.K.

N86-10090*# Case Western Reserve Univ., Cleveland, Ohio. Dept. of Metallurgy and Materials Science.
SOLIDIFICATION FUNDAMENTALS
(Contract NAG3-417)
Avail: NTIS HC A10/MF A01 CSCL 22A

The physical mechanisms controlling liquid undercooling were studied for application to solidification processing methods. The undercooling potential of containerless processing was assessed on droplet samples of high melting temperature metals drop tube and drop tower facilities and in a laboratory-scale apparatus. New insight into nucleation and crystal growth will be obtained in undercooled liquids of high melting temperature iron and nickel-base systems. The processing parameters include melt superheat, droplet size and particle statistics and droplet surface coating. The solidification behavior is determined by thermal analysis and by structural and metallographic characterization. E.A.K.

CONTAINERLESS PROCESSING OF UNDERCOOLED MELTS
(Contract NAG3-436)
Avail: NTIS HC A10/MF A01 CSCL 22A

The long term objective of the experiment is to observe the dissolution of isolated, immobile gas bubbles of specified size and composition in a solvent liquid of known concentration in the reduced gravity environment of earth orbit. Preliminary bubble dissolution experiment conducted both in the NASA Lewis 2.2 sec drop tower and in normal gravity using SO2 - Toluene system were not completely successful in their objective. The method of gas injection and lack of bubble interface stability experienced due to the extreme solubility of SO in Toluene has the effects of changing the problem from that of bubble dissolution to one of bubble formation stability and subsequent dissolution in a liquid of unknown initial solute concentration. Current work involves further experimentation in order to refine the bubble injection system and to investigate the concept of having a bubble with a critical radius in a state of unstable equilibrium. Author

N86-10107*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
TRANSPORT PROCESSES IN SOLUTION CRYSTAL GROWTH
Avail: NTIS HC A10/MF A01 CSCL 22A

The objective of this effort is to conduct fundamental research in reduced gravity on transport processes occurring during solution crystal growth. Experimental techniques will be developed to monitor and control key parameters at the interface between a growing crystal and the solution from which it grows. Techniques developed will lead to an in-space experiment in the Shuttle. The focus will be on non-invasive ground-based laboratory measurements of model systems and the definition of requirements for space experimentation. Initially, aqueous solutions will be used for easier control and instrumentation. Model systems with imposed steady flows and simplified boundary conditions will be studied for characterization. Various noninvasive measurement techniques are being investigated for proper applications in a newly built laboratory capable of flow visualization, laser Doppler velocimetry, Schlieren photography, specklegram, holographic interferometry, and Raman spectroscopy. Author

N86-10108*# California Univ., Berkeley.
FREE SURFACE PHENOMENA UNDER LOW- AND ZERO-GRAVITY CONDITIONS
Avail: NTIS HC A10/MF A01 CSCL 22A

In a low- or zero-gravity environment the free surface of a liquid can behave in striking, unexpected ways. For example, in a partially filled container, a free surface that is well behaved under terrestrial conditions can rise to an arbitrarily large height or even fail to exist when gravity is absent. An answer is sought to the central mathematical questions: Under what conditions can free surfaces exist and what are their properties? — and experimental questions of what means can be devised to observe and to measure the surfaces quantitatively. Current activity focuses on material selection and the design of optical diagnostic methods for in-space experiments. These experiments will test mathematical predictions of discontinuous transition from existence to nonexistence of capillary free surfaces in certain geometric configurations under zero gravity conditions. Liquids and container materials suitable for achieving the required contact-angle range and optical properties are being investigated, as well as the effects of contaminants and fluid motion on contact angle. The optical diagnostic technique investigation concerns laser-induced fluorescence, including emphasis on data on acquisition, sources and detectors, reliability, data management, and computer control. Author

N86-10110*# Toledo Univ., Ohio.
MASS TRANSPORT PHENOMENA BETWEEN BUBBLES AND DISSOLVED GASES IN LIQUIDS UNDER REDUCED GRAVITY CONDITIONS
Avail: NTIS HC A10/MF A01 CSCL 22A

The objective of this program is to measure the decay rates of critical density fluctuations in a simple fluid (xenon) very near its liquid-vapor critical point using laser light scattering and photon correlation spectroscopy. Such experiments have been severely limited on Earth by the presence of gravity which causes large density gradients in the sample when the compressibility diverges approaching the critical point. The goal is to measure decay rates deep in the critical region where the scaled wavevector is of the order of 1000. This will require loading the sample to 0.01% of the critical density and taking data as close as 3 microKelvin to
the critical temperature ($T_c = 289.72$ K). Other technical problems have to be addressed such as multiple scattering and the effect of wetting layers. The ability to avoid multiple scattering by using a thin sample (100 microns) was demonstrated, as well as a temperature control which can avoid wetting layers. Satisfactory temperature control and measurement, and accurate sample loading. Thus the questions of experimental art are solved leaving the important engineering tasks of mounting the experiment to maintain alignment during flight and automating the state-of-the-art temperature bridges for microcomputer control of the experiment.

R.J.F.

Surface Tension Induced Instabilities in Reduced Gravity:

The Benard Problem

E. Kosch/Miedier (Texas Univ., Austin) and A. T. Chai

In NASA, Washington Microgravity Sci. and Appl. Program Tasks p 110 May 1985

(Contract NAG3-303)

Avail: NTIS HC A10/MF A01 CSCL 22A

A Benard convection experiment has been set up, and the onset of convection in shallow layers of silicone oil two millimeters or less deep has been studied. The onset has been observed visually or has been determined by the break in the heat transfer curve which accompanies the onset of convection. The outcome of these experiments has been very surprising, from the point of view of theoretical expectations. The onset of convection at temperature differences far below the critical value for fluid depths smaller than 2mm was observed. The discrepancy between experiments and theory increases with decreasing fluid depth. According to theoretical considerations, the effects of surface tension become more important as the fluid depth is decreased. Actually, one observes that the onset of convection takes place in two stages. There is first an apparently surface tension driven instability, occurring at subcritical temperature differences according to conventional theory. If then the temperature difference is increased, a second instability occurs which transform the first pattern into conventional strong hexagonal Benard cells. The second instability is in agreement with the critical temperature gradients predicted by Nield.

R.J.F.

Energy Stability of Thermocapillary Convection in Models of the Float-Zone Process

Abstract Only

G. P. Neitzel and D. F. Jankowski

In NASA, Washington Microgravity Sci. and Appl. Program Tasks p 118 May 1985

(Contract NAG3-589)

Avail: NTIS HC A10/MF A01 CSCL 22A

The energy-stability of thermocapillary convection in models of the float-zone, crystal-growth process was studied. Stability limits, as functions of pertinent parameters, that will identify conditions which will not allow the existence of an undesirable oscillatory flow instability were determined. Such instabilities may occur in the space processing of semiconductor materials. The determination of the stability limits will involve two sets of numerical computations: (1) solution of the nonlinear governing equations together with the appropriate boundary conditions to determine the basic state (in general, velocity, pressure and temperature fields and the displacement of free surfaces and interfaces); and (2) solution of a nonlinear Euler-Lagrange systems for the energy-stability limit. Both computations, while difficult, should be within the scope of available computer capability and available concepts in numerical analysis. Finite-element methods are attractive candidates for the numerical work.

G.L.C.

Thermocapillary and Diffusocapillary Migration of a Fluid Drop

R. L. Sani

In NASA, Washington Microgravity Sci. and Appl. Program Tasks p 126 May 1985

(Contract NAG3-493)

Avail: NTIS HC A10/MF A01 CSCL 22A

The migration of bubbles, or drops, plays an important role in many engineering science and space manufacturing problems. In material science processes as in the manufacturing of glasses, etc., gas bubbles can be formed from the by-products of chemical reactions or gas trapped in the interstices of the raw material. In the low-g environment of space, forces other than gravitational must be utilized as a bubble separation technique. It is well-known that gradients in interfacial tension on the bubbles' surface can promote droplet motion in the direction of decreasing interfacial tension and hence provide such a separation mechanism. Thus, the role of thermocapillary and diffusocapillary migration of a bubble, or drop, can be of paramount interest in materials processing in space.

G.L.C.

Transport Processes Research

D. A. Saville and W. B. Russell

In NASA, Washington Microgravity Sci. and Appl. Program Tasks p 127 May 1985

(Contract NAG3-447)

Avail: NTIS HC A10/MF A01 CSCL 22A

Fundamental research in reduced gravity on transport processes occurring during solidification and/or during solidification processes was studied. The details of the transport processes in various materials processing modes will be systematically studied. A Shuttle experiment will be planned to provide a better understanding of the role of fluid motion on the formation of...
Morphological patterns and roles of these patterns in solid composition. The approach to the research will involve theoretical laboratory measurements of model systems, and the definition of requirements for space experimentation.

Author

N86-10130*# Princeton Univ., N. J. Dept. of Chemical Engineering.

ELECTROHYDRODYNAMICS

Avail: NTIS HC A10/MF A01 CSCL 22A

Models of electrohydrodynamic processes involving liquids with poorly ionized solutes at high (applied) field strengths were developed and tested. Extant theories which account for the details of physico-chemical processes associated with charged interfaces dealt mainly with low field strengths and fully ionized solutes. The model used to describe processes at high field strengths—the leaky dielectric—omits consideration of electric double-layers, adsorption at interfaces, and chemical processes involved in the dissociation and recombination of solute species. Thus, even though the model depicts some features associated with bulk fluid motion, it fails to give a comprehensive picture. One example of the shortcomings of both the classical model of electrokineatics at low field strengths and the leaky-dielectric model for high field strengths is found in the field strength dependence of the mobility of small particles in apolar liquids. The research will provide a more general model of electrohydrodynamic phenomena capable of application in diverse circumstances.

G.L.C.

EXPERIMENTAL AND THEORETICAL ANALYSIS OF CHEMICAL VAPOR DEPOSITION WITH PREDICTION OF GRAVITY EFFECTS

Avail: NTIS HC A10/MF A01 CSCL 22A

A combined experimental and theoretical study to characterize the effects of gravitationally-induced transport on atmospheric pressure silicon epitaxy by SiH4 pyrolysis is planned. Experimentally, flow regimes in which free convective transport contributes to the Chemical Vapor Deposition (CVD) process will be identified, and, for these conditions, the flow and deposition process will be characterized. Specifically, this will include measurements of three-dimensional temperature variations using in situ Rayleigh scattering, gas phase composition profiles using laser absorption and fluorescence techniques, and deposition rates and defect densities. Subsequently, the free convective transport contribution to the CVD process will be minimized and/or altered while leaving deposition chemistry unaltered, and the characterization will be repeated. Based on these analyses, the effects of gravitationally-induced transport on atmospheric pressure CVD will be assessed.

G.L.C.

N86-10160*# California Univ., San Diego, La Jolla. Energy Center.

PARTICLE CLOUD COMBUSTION EXPERIMENT

A. L. BERLAD In NASA, Washington Microgravity Sci. and Appl. Program Tasks p 182 May 1985 refs (Contract NAG3-381)

Avail: NTIS HC A10/MF A01 CSCL 22A

Preparation of flight experiment designs is supported by experimental studies of acoustically induced mixing process, optical transmissivities of particle cloud distributions, wall saturation effects and their control through the use of electrically neutral flame tube materials and surfaces, and the pyrolysis-vaporization kinetics of selected organic particulates. Drop tower tests of stabilized particulate cloud flames have allowed valuable comparison of g = 0 and g = 1 (upwards and downwards) stabilized flame propagation. These stabilized flame data will be valuable assists in dealing with the freely propagating particle cloud flame data anticipated through Space Shuttle experimentation. Supporting theoretical studies emphasize comprehensive flame propagation and extinction relations among premixed single phase (gaseous) flames and premixed particle cloud flames, for both stabilized and freely propagating flames.

Author

Combustion Science and Advanced Technology Dept. BUOYANCY EFFECTS UPON VAPOR FLAME AND EXPLOSION PROCESSES

Avail: NTIS HC A10/MF A01 CSCL 22A

The objective of this microgravity project is to develop an experimental and theoretical analyses critical to the understanding of the coupling of buoyancy and turbulence generation and its effect on fuel-air mixing, flame intensity and flame propagation in jet diffusion flames. The experiment is designed to examine certain effects of buoyancy acting on a diffusion flame in which the flame is directed either upward or downward. This change from negative to positive g is observed to significantly alter the flame shape although all other operating conditions are the same for both configurations. However, to perform this experiment a significant coaxial secondary air flow is needed in order to prevent flow reversal when the flame is inverted. The theoretical analysis that has been developed handles the secondary air flow and the extreme change in gravity vector direction. Thus the data will provide a measure of credibility of the analysis which will then be used to assist in the design of the actual zero-g experiment.

F.M.R.

N86-10162*# California Univ., Berkeley.

A FUNDAMENTAL STUDY OF SMOLENDING WITH EMPHASIS ON EXPERIMENTAL DESIGN FOR ZERO-G

Avail: NTIS HC A10/MF A01 CSCL 22A

The objective of this section of the microgravity project is to identify key sets of low-gravity experiments which would critically compliment a larger set of more easily performed normal-gravity experiments to explain the phenomena found in smoldering combustion. It is planned to follow through on the conceptual design of these experiments by participating in the future in the fabrication of the refined apparatus and in the data collection and interpretation. Low-gravity experiments are appropriate for smoldering combustion because of the complexity of smoldering which requires every means possible to discriminate among the many chemical and physical mechanisms active in most smoldering combustion scenarios. Efforts will be primarily analytical, attempting to identify appropriate approximations and dominant dimensionless groups based on existing data and state-of-the-art combustion modelling. Transient stability questions such as ignition, extinction and the choices among charring, tarring, or flaming modes will be included.

F.M.R.

IGNITION AND FLAME SPREAD ABOVE LIQUID FUEL POOLS

W. A. SIRIGNANO In NASA, Washington Microgravity Sci. and Appl. Program Tasks p 185 May 1985 (Contract NAG3-404)

Avail: NTIS HC A10/MF A01 CSCL 22A

Phenomena of ignition and flame spread above liquid fuel pools are studied and factors that can improve fire safety are determined. Dominant mechanisms for convective heat transfer and impact on ignition and flame spread above liquid fuel pools will be determined from these efforts. The approach is: (1) analytical and computational studies to evaluate scaling factors; (2) experimental design, development, and operation in laboratory at Earth's gravity; (3) experimental design for drop towers at NASA Lewis Research
Center; (4) development and operation of drop tower experiments together with NASA Lewis Research personnel and; (5) develop recommendations for Lear Jet and/or Space Shuttle experiments. Through this research, a mathematical model of two-phase systems is formulated and is being coded for the computer. F.M.R.

FLAMMABILITY LIMITS OF GASES UNDER LOW GRAVITY CONDITIONS

The purpose of this combustion science investigation is to determine the effect of zero, fractional, and super gravity on the flammability limits of a premixed methane air flame in a standard 51 mm diameter flammability tube and to determine, if possible, the fluid flow associated with flame passage under zero-g conditions and the density (and hence, temperature) profiles associated with the flame under conditions of incipient extinction. This is accomplished by constructing an appropriate apparatus for placement in NASA's Lewis Research Center Lear Jet facility and flying the prescribed g-trajectories while the experiment is being performed. Data is recorded photographically using the visible light of the flame. The data acquired is: (1) the shape and propagation velocity of the flame under various g-conditions for methane compositions that are inside the flammable limits, and (2) the effect of gravity on the limits. Real time accelerometer readings for the three orthogonal directions are displayed in full view of the cameras and the framing rate of the cameras is used to measure velocities. F.M.R.

N86-10165* Princeton Univ., N. J.

FUNDAMENTAL STUDIES OF DROPLET COMBUSTION AT REDUCED GRAVITY

Reduced gravity is used to carry out scientific investigations of droplet combustion. In earlier work a preliminary conceptual design had been developed for droplet burning experiments for Spacelab. Refinements of the earlier work with special consideration given to possible experiments for Mid-Deck Modules of the Space Shuttle is discussed. A re-evaluation of suitable experiments on droplet combustion is done to ascertain whether influences of reduced buoyancy on time-dependent processes of heat and mass transfer in the gas or in the liquid on extinction processes or on disruptive burning phenomena are best suited for further investigation. Components of the experimental apparatus, which include a droplet dispensing system, a droplet positioning system, a droplet ignition system and provision for recording, primarily photographically, the combustion of the individual droplet in a chamber having a controlled gas atmosphere, are studied to determine optimal approaches to the experimental design. Methods for data reduction and interpretation are being made more specific, particularly in the context of an objective to calculate overall gas-phase chemical-kinetic parameters for the combustion from observations of extinction conditions in different atmospheres. F.M.R.

N86-10173* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A Microgravity Materials Science Laboratory (MMML) has been planned, designed, and is being developed. This laboratory will support related efforts to define the requirements for the Microgravity and Materials Processing Laboratory (MMPF) and the MMFF Test Bed for the Space Station. The MMML will serve as a check out and training facility for science mission specialists for STS, Spacelab and Space Station prior to the full operation of the MMFF Test Bed. The focus of the MMML will be on experiments related to the understanding of metal/ceramic/glass solidification, high perfection crystal growth and fluid physics. This ground-based laboratory will be used by university/industry/government researchers to examine and become familiar with the potential of new microgravity materials science concepts and to conduct longer term studies aimed at fully developing a l-g understanding of materials and processing phenomena. Such research will help create new high quality concepts for space experiments and will provide the basis for modeling, theories, and hypotheses upon which key space experiments can be defined and developed.

Author

N86-10261* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DENDRITIC SOLIDIFICATION IN A BINARY ALLOY MELT: STEADY-STATE VERSUS MORPHOLOGICAL STABILITY THEORIES
V. LAYMANAN in ESA Fifth European Symp. on Mater. Sci. under Microgravity. Results of Spacelab 1 p 403-407 Dec. 1984 refs Sponsored in part by NASA

A model for dendritic growth in a binary alloy melt, in the presence of a positive temperature gradient in the liquid, is presented. The model describes satisfactorily the transition from a dendritic interface to a planar interface at very low and very large growth rates. A dendrite tip stability parameter is derived, strictly from steady state considerations, without resorting to a perturbation analysis. The estimates of the parameter agree with those obtained by models based on perturbation analysis. F.M.R.

Author (ESA)

N86-18334* Wyle Labs., Inc., Huntsville, Ala.

Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual absence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station.

Author
13

ASTRODYNAMICS

Includes powered and free-flight trajectories; and orbital and launching dynamics.

Minimum satellite separations are calculated which satisfy a given carrier-to-interference protection ratio for the Fixed-Satellite Service (FSS) on a single-entry basis, assuming circular antenna beams. The results are presented in the form of universal contour curves, in which antenna-centered angles are the coordinates, and also in terms of the more conventional longitude and latitude separations. It is shown that orbit capacity increases with decreasing service-area size and that, for practical service areas, capacity is increased if the longitude of a satellite does not differ too greatly from that of the service area it serves.

Author

Many potential strategies exist for the transfer of spacecraft from low Earth orbit (LEO) to geosynchronous (GEO) orbit. One strategy has generally been utilized, that being a single impulsive burn at perigee and a GEO insertion burn at apogee. Multiple burn strategies were discussed for orbit transfer vehicles (OTVs) but the transfer times and radiation exposure, particularly for potentially manned missions, were used as arguments against those options. Quantitative results concerning the trip time and radiation encountered by multiple orbit transfer missions in order to establish the feasibility of manned missions, the vulnerability of electronics, and the shielding requirements are presented. The performance of these multiple burn missions is quantified in terms of the payload and propellant variances from the minimum energy mission transfer. The missions analyzed varied from one to eight perigee burns and ranged from a high thrust, 1 g, acceleration, cryogenic hydrogen-oxygen chemical propulsion system for a continuous burn, 0.001 g acceleration, hydrogen, fueled resistojet propulsion system with a trip time of 60 days.

Author

15

LAUNCH VEHICLES AND SPACE VEHICLES

Efforts are currently underway at NASA Lewis to improve and expand ground test facilities and to develop supporting technologies to meet anticipated aeropropulsion research needs. Many of these efforts have been focused on a proposed rehabilitation of the Altitude Wind Tunnel (AWT). In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide input to the AWT final design process. This paper describes the approach taken to develop analytical, dynamic computer simulations of the AWT, and the use of these simulations as test-beds for: (1) predicting the dynamic response characteristics of the AWT, and (2) evaluating proposed AWT control concepts. Plans for developing a portable, real-time simulator for the AWT facility are also described.

Author

15

LAUNCH VEHICLES AND SPACE VEHICLES

Includes boosters; operating problems of launch/space vehicle systems; and reusable vehicles.

A modal test was performed on the Centaur G Prime launch vehicle for the purpose of verifying the loads analysis model. This paper describes the procedure by which modal parameters obtained in this test were correlated with the corresponding analytical predictions. Based on this correlation the stiffness model of the shuttle trunnion system has been modified. The evolution of the model updating and the final results are described.

Author

N86-23616# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. SSME FUELSIDE PREBURNER TWO-DIMENSIONAL ANALYSIS T. J. VANOVERBEKE and R. W. CLAUS 1986 19 p refs Prepared for presentation at the Central States Meeting of the Combustion Inst., Cleveland, Ohio, 5-6 May 1986 (NASA-TM-87299; E-3010; NAS 1.15:87299) Avail: NTIS HC A02/MF A01 CSCL 20H

The flow field within the fuelside preburner of the Space Shuttle

43
15 LAUNCH VEHICLES AND SPACE VEHICLES

Main Engine is calculated using a reacting flow code (REACT2D). Inlet and modeling parameters involved in the numerical calculation are systematically varied to establish the sensitivity of the calculated exit temperature profile. It is found that differences in the inlet equivalence ratio have a large effect on the turbine inlet temperature profile. A variety of preburner inlet modeling changes such as inlet turbulence level, modeling the gases as burned, unburned, premixed, or unmixed, are shown to have a smaller effect on the calculated turbine inlet temperature profile. Also, the form of finite differencing used is shown to have an effect on the temperature profile.

N86-24722* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. PASSIVE EDDY-CURRENT DAMPING AS A MEANS OF VIBRATION CONTROL IN CRYOGENIC TURBOMACHINERY R. E. CUNNINGHAM Feb. 1986 14 p refs (NASA-TP-2562; E-2762; NAS 1.60.2562) Avail: NTIS HC A02/MF A01 CSCL 13!

Lateral shaft vibrations produced by a rotating unbalance weight were damped by means of eddy currents generated in copper conductors that were precessing cyclicly in the gap formed by the pole faces of C-shaped, permanent magnets. The damper assembly, which was located at the lower bearing support of a vertically oriented rotor was completely immersed in liquid nitrogen during the test run. The test rotor was operated over a speed range from 800 to 10,000 rpm. Three magnet/conductor designs were evaluated. Experimental damping coefficients varied from 180 to 530 N sec/m. Reasonable agreement was noted for theoretical values of damping for these same assemblies. Values of damping coefficients varied from 150 to 780 N sec/m. The results demonstrate that passive eddy-current damping is a viable candidate for vibration control in cryogenic turbomachinery.

Author

N86-31621* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. CENTAUR ENGINE GIMBAL FRICTION CHARACTERISTICS UNDER SIMULATED THRUST LOAD J. W. ASKEW Sep. 1986 21 p (NASA-TM-87335; E-3060; NAS 1.15.87335) Avail: NTIS HC A02/MF A01 CSCL 20H

An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) in an altitude/thermal environment. A series of tests was performed at three test conditions: ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

M.G.

16 SPACE TRANSPORTATION

Includes passenger and cargo space transportation, e.g., shuttle operations; and space rescue techniques.

A86-32906* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. NASA LEWIS RESEARCH CENTER LOW-GRAVITY FLUID MANAGEMENT TECHNOLOGY PROGRAM J. C. AYDELOTT, M. J. CARNEY (NASA, Lewis Research Center, Cleveland, OH), and J. I. HOCHESTEIN (Washington, University, St. Louis, MO) IN: Man's permanent presence in space; Proceedings of the Third Annual Aerospace Technology Symposium, New Orleans, LA, November 7, 8, 1985. New Orleans, LA, American Institute of Aeronautics and Astronautics, 1985, 56 p. Previously announced in STAR as N86-11216. refs

A history of the Lewis Research Center in space fluid management technology program is presented. Current programs which include numerical modeling of fluid systems, heat exchanger/radiator concept studies, and the design of the Cryogenic Fluid Management Facility are discussed. Recent analytical and experimental activities performed to support the Shuttle/Centaur development activity are highlighted.

Author

A history of the Lewis Research Center in space fluid management technology program is presented. Current programs which include numerical modeling of fluid systems, heat exchanger/radiator concept studies, and the design of the Cryogenic Fluid Management Facility are discussed. Recent analytical and experimental activities performed to support the Shuttle/Centaur development activity are highlighted.

Author

17 SPACE COMM., SPACECRAFT COMM., COMMAND & TRACKING

Includes telemetry; space communications networks; astronautics and guidance; and radio blackout.

The results of a study on intersatellite link (ISL) applications for domestic satellite communications are presented. It was determined if any technical, economic, or performance benefits could be gained by introducing intersatellite links into a domestic
satellite communication network. Several key systems issues of domestic ISL's are addressed. These include the effect of a skewed traffic distribution on the selection of ISL satellite orbit locations, tolerable satellite spacing, and crosslink traffic-handling requirements. An ISL technology assessment is made by performing a parametric link analysis for several microwave and optical implementations. The impact of the crosslink on the end-to-end link performance is investigated for both regenerative and nonregenerative ISL architectures. A comparison is made between single satellite systems operating at C-, Ku-bands and the corresponding ISL systems in terms of ground segment cost, space segment cost, and net link performance. Results indicate that ISL's can effectively expand the CONUS orbital arc, with a 60 GHz ISL implementation being the most attractive.

An implicit relationship is derived which relates the topocentric separation of two satellites required for a given level of single-entry protection to the separation and orientation of their service areas. The results are presented explicitly for circular beams and topocentric angles. A computational approach is given for elliptical beams and for use with longitude and latitude variables. It is found that the geocentric separation depends primarily on the service area separation, secondarily on a parameter which characterizes the electrical design, and only slightly on the mean orbital position of the satellites. Both linear programming and mixed integer programming algorithms are implemented. Possible objective function choices are discussed, and explicit formulations are presented for the choice of the sum of the absolute deviations of the orbital locations from some prescribed 'ideal' location set. A test problem involving six service areas is examined with results that are encouraging with respect to applying the linear programming procedure to larger scenarios.

NASA-sponsored studies of the growth in communications traffic have indicated that the frequency spectrum allocated to fix-service satellites at the C and Ku bands will reach saturation by the early 1990's. The next higher frequency bands allocated for Communications and Astronautics are 17.7 to 20.2 GHz for the uplink and 20.2 GHz for the downlink. Current plans for developing satellite systems that use these bands include a NASA demonstration satellite (ACTS). One of the components identified as critical to the success of that mission is a 27.5 to 30 GHz satellite receiver. In response to that identification, NASA has indicated that the frequency spectrum allocated to fixed-service satellite systems that use these bands include a NASA sponsored the development of such a receiver to the proof-of-concept (POC) level. Design and fabrication of such POC model receivers was carried out under parallel contracts awarded to LNR Communications, Inc. of Hauppauge, New York and to MIT Defense Communications Division of Nutley, New Jersey. The most significant of the performance goals were a 5 dB maximum noise figure, a 2.5 GHz passband, and 20 dB RF to IF gain. Following delivery of hardware from each of the contractors, an in-house test program was undertaken at NASA's Lewis Research Center in order to verify the contractor-reported performance and to provide a comparison of the two receivers under identical test conditions. The present paper reports the results of those tests.

This paper presents a progress summary of NASA's efforts in developing 20 and 30 GHz GaAs MMIC devices and an advanced satellite communications antenna system using these devices. In the interest of preserving resources such as frequency spectrum and orbital space the antenna system is being developed with multiple fixed spot beams and multiple scanning spot beams. NASA set high goals for the MMIC development to push GaAs technology. These goals and the main features of the MMIC devices are discussed. Some packaging and characterization considerations are also discussed. The 20 GHz transmit antenna and 30 GHz receive antenna are being developed separately. The approach selected is to perform contractual configuration studies, purchase a 20-GHz experimental antenna system (EAS) and perform in-house evaluation. The features and key specifications of the EAS are discussed. Additional supporting technologies such as effects of coupling on modest sized arrays, MMIC matching techniques, in-house analytical capability, wideband and dual frequency microstrip patch array development, and MMIC packaging techniques are described. Some plans for future work are also discussed.

The effectiveness of onboard processing in communications satellites is discussed, and the interrelationships between the various elements of onboard processing are described. An overview is given of NASA's Advanced Communications Technology Satellite (ACTS), emphasizing its baseboard processor. The onboard processing features of ACTS are described, including frequency reuse, signal regeneration, TDMA/FDMA demand assigned multiple access, forward error correction, routing, and dynamic reconfiguration. The terminals of the ACTS ground segment are described, and comparisons are made between satellite onboard processing and other technologies.

C.D. A86-34591*# Ohio State Univ., Columbus. ADAPTIVE ANTENNA ARRAYS FOR WEAK INTERFERING SIGNALS I. J. GUPTA and A. A. KSIENSKI (Ohio State University, Columbus) IEEE Transactions on Antennas and Propagation (ISSN 0018-926X), vol. AP-34, March 1986, p. 420-426. refs (Contract NAG3-399)

It is shown that conventional adaptive arrays are unable to suppress weak interfering signals. To overcome this problem, the feedback loops controlling the array weights were modified, reducing the noise level by reducing the correlation between the noise components of the two inputs to the loop correlator. Various techniques to decorrelate these noise components are discussed. An expression is derived for the amount of noise decorrelation required to achieve a specified interference suppression. The
results are of interest in connection with satellite communications.

Author

A86-35318*
Motorola, Inc., Scottsdale, Ariz.

HARD ACTS TO FOLLOW

L. MOY (Motorola, Inc., Government Electronics Group, Scottsdale, AZ)
Space (ISSN 0267-954X), vol. 2, Mar.-May 1986, p. 4-6, 8, 10, 12.
(Contract NAS3-23790)

The Advanced Communications Technology Satellite (ACTS), the third phase of NASA's 30/20 GHz satellite communications program, is praised for its frugal usage of both the geosynchronous orbital arch and the frequency spectrum resources necessary for communications satellites. Its objective is to verify Ka-band satellite communications concepts and to develop a flight and ground system for validation of the multibeam communications proof-of-concept technologies. The ACTS ground segment (comprised of four types of terminals) is designed to compliment the spacecraft for the SS launch in 1989. Precise coordination between the ground and spacecraft segments is performed by the baseband processor (BBP), which is an in-orbit switchboard, and the tracking error word, which enables the ground terminals to remain synchronized on onboard timing. Fixed spot beams and scan beams, comprising the two types of spot beams used, both operate at the same frequency and hence, conserve frequency resources. In addition, the time division multiple access serves to enhance system efficiency. It is concluded that Ka-band satellites are the practical approach to the better usage of those resources potentially threatened by communications satellites. Comprehensive graphs and block diagrams of the system are included.

K.K.

N86-16249*

National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

APPLICATION OF INTERSATELLITE LINKS TO DOMESTIC SATELLITE SYSTEMS

(NASA-TM-87215; E-2829; NAS 1.15:87215) Avail: NTIS HC A02/MF A01 CSCL 09F

The results of a study on intersatellite link (ISL) applications for domestic satellite communications are presented. It was determined if any technical, economic, or performance benefits could be gained by introducing intersatellite links into a domestic satellite communication network. Several key systems issues of domestic ISL’s are addressed. These include the effect of a skewed traffic distribution on the selection of ISL satellite orbit locations, tolerable satellite spacing, and crosstalk traffic-handling requirements. An ISL technology assessment is made by performing a parametric link analysis for several microwave and optical implementations. The impact of the crosstalk on the end-to-end link performance is investigated for both regenerative and nonregenerative ISL architectures. A comparison is made between single satellite systems operating at C- and Ku-bands and the corresponding ISL systems in terms of ground segment cost, space segment cost, and net link performance. Results indicate that ISL’s can effectively expand the CONUS orbital arc, with a 60 GHz ISL implementation being the most attractive.

Author

N86-17368*

National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

MMIC ANTENNA TECHNOLOGY DEVELOPMENT IN THE 30/20 GIGAHertz BAND

(NASA-TM-87192; E-2848; NAS 1.15:87192) Avail: NTIS HC A02/MF A01 CSCL 09F

This paper presents a progress summary of NASA’s efforts in developing 20 and 30 GHz GaAs MMIC devices and an advanced satellite communications antenna system using these devices. In the interest of preserving resources such as frequency spectrum and orbital space the antenna system is being developed with multiple fixed spot beams and multiple scanning spot beams. NASA set high goals for the MMIC development to push GaAs technology. These goals and the main features of the MMIC devices are discussed. Some packaging and characterization considerations are also discussed. The 20 GHz transmit antenna and 30 GHz receive antenna are being developed separately. The approach selected is to perform contractual configuration studies, purchase a 20-GHz experimental antenna system (EAS) and perform in-house evaluation. The features and key specifications of the EAS are discussed. Additional supporting technologies such as effects of coupling on modest sized arrays, MMIC matching techniques, in-house analytical capability, wideband and dual frequency microstrip patch array development, and MMIC packaging techniques are described. Some plans for future are also discussed.

Author

N86-18341*
Ohio State Univ., Columbus.
ElectroScience Lab.
THE ROLE OF SERVICE AREAS IN THE OPTIMIZATION OF FSS ORBITAL AND FREQUENCY ASSIGNMENTS

(NASA-CR-176486; NAS 1.26:176486; TR-716548-3) Avail: NTIS HC A03/MF A01 CSCL 17B

A relationship is derived, on a single-entry interference basis, for the minimum allowable spacing between two satellites as a function of electrical parameters and service-area geometries. For circular beams, universal curves relate the topocentric satellite spacing angle to the service-area separation angle measured at the satellite. The corresponding geocentric spacing depends only weakly on the mean longitude of the two satellites, and this is true also for alliptical antenna beams. As a consequence, if frequency channels are preassigned, the orbital assignment synthesis of a satellite system can be formulated as a mixed-integer programming (MIP) problem or approximated by a linear programming (LP) problem, with the interference protection requirements enforced by constraints while some linear function is optimized. Possible objective-function choices are discussed and explicit formulations are presented for the choice of the sum of the absolute deviations of the orbital locations from some prescribed ideal location set. A test problem is posed consisting of six service areas, each served by one satellite, all using elliptical antenna beams and the same frequency channels. Numerical results are given for the three ideal location prescriptions for both the MIP and LP formulations. The resulting scenarios also satisfy reasonable aggregate interference protection requirements.

Author

N86-19343*

National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

BIT ERROR RATE TESTING OF A PROOF-OF-CONCEPT MODEL BASEBAND PROCESSOR

Bit-error-rate tests were performed on a proof-of-concept baseband processor, EAS-BBP, which operates at an intermediate frequency in the C-Band, demodulates, demultiplexes, routes, remultiplexes, and remodulates digital message segments received from one ground station for retransmission to another. Test methods are discussed and test results are compared with the Contractor's test results.

Author
SPACECRAFT DESIGN, TESTING AND PERFORMANCE

Includes satellites, space platforms, space stations, spacecraft systems and components such as thermal and environmental controls; and attitude controls.

The digital derived rate (DDR) algorithm is used to calculate the rate of rotation of the Centaur upper-stage rocket. The DDR is highly nonlinear algorithm, and classical linear stability analysis of the spacecraft cannot be performed without linearization. The performance of this rate algorithm is characterized by a gain and phase curve that drop off at the same frequency. This characteristic is desirable for many applications. A linearization technique for the DDR algorithm is investigated. The linearization method is described. Examples of the results of the linearization technique are illustrated, and the effects of linearization are described. A linear digital filter may be used as a substitute for performing classical linear stability analyses, while the DDR itself may be used in time response analysis. Author

The design of a hybrid deployable/erectable solar dynamic box truss power generation system for the initial operation capability (IOC) of the Space Shuttle is examined. An organic Rankine cycle heat engine for IOC solar power generation is studied. The design configuration is a simple parabolic concentration where the receiver is located in the focal plane with its aperture at the focal point. The relationship between concentrator size and collection efficiency is analyzed. The geometry of the deployable graphite/epoxy box truss ring and the reflective panels of the system are described. Mass properties and dynamic analyses are performed to evaluate the center of gravity location and moments of inertia characteristics of the energy conversion subsystem (ECS). The deployable/erectable truss is applicable for large IR space telescopes and center and offset fed ECSs. I.F.

High-reliability high-performance deployable monogroove and dual-slot heat pipe radiator systems to meet the requirements for electric power in future space missions, such as the 300-kW(e) electric power demand projected for NASA's Space Station, are discussed. Analytical model study of various configurations show the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight reduction potential over the 50-350 F temperature range. The ammonia-aluminum monogroove heat pipe, limited to below-180 F operating temperatures, is under development, and can employ methanol-stainless steel heat pipes to achieve operating temperatures in excess of 300 F. Dual-slot heat pipe configuration proof-of-concept testing was begun in 1985. R.R.

Benefits of integrating the Space Station Environmental Control and Life Support (ECLS) system with the propulsion system are addressed in this paper for various levels of ECLS closure. Effluents generated by the ECLS system are used to augment or even supplement the propulsion system. Potential benefits include reductions in logistic weights and volumes, fixed weights and volumes, power requirements, and in total station systems cost. Author

Technological challenges and suggested plans for meeting them pertaining to fluid management in the Space Station are discussed. A short overview is given of the major Space Station systems and operations which employ or rely on fluid management, followed by a description of the general system issues and challenges encountered in managing fluids in space. Examples of some current and near term activities directed toward providing the understanding and technologies necessary to overcome relevant problems are presented. Finally, suggested plans for similar but longer range

18
research and development activities are offered. These plans emphasize the requirements and benefits of expanded in-space experiments, with the ultimate aim of using the Space Station as a facility for fluid management research and technology development efforts.

C.D.

A86-49621*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

LIQUID DROPLET RADIATOR PROGRAM AT THE NASA LEWIS RESEARCH CENTER

The NASA Lewis Research Center and the Air Force Rocket Propulsion Laboratory (AFRPL) are jointly engaged in a program for technical assessment of the Liquid Droplet Radiator (LDR) concept as an advanced high performance heat ejection component for future space missions. NASA Lewis has responsibility for the technology needed for the droplet generator, for working fluid qualification, and for investigating the physics of droplets in space; NASA Lewis is also conducting systems/mission analyses for potential LDR applications with candidate space power systems. For the droplet generator technology task, both micro-orifice fabrication techniques and droplet stream formation processes have been experimentally investigated. High quality micro-orifices (to 50 micron diameter) are routinely fabricated with automated equipment. Droplet formation studies have established operating boundaries for the generation of controlled and uniform droplet streams. A test rig is currently being installed for the experimental verification, under simulated space conditions, of droplet radiation heat transfer performance analyses and the determination of the effect radiative emissivity of multiple droplet streams. Initial testing has begun in the NASA Lewis Zero-Gravity Facility for investigating droplet stream behavior in microgravity conditions. This includes the effect of orifice wetting on jet dynamics and droplet formation. Results for both Brayton and Stirling power cycles have identified favorable mass and size comparisons of the LDR with conventional radiator concepts.

B.W.

N86-17418*# Martin Marietta Aerospace, Denver, Colo. DESIGN OPTIMIZATION FOR A SPACE BASED, REUSABLE ORBIT TRANSFER VEHICLE

Future NASA and DOD missions will benefit from high performance, reusable orbit transfer vehicles. With the advent of a space station, advanced engine technology, and various new vehicle concepts, reusable orbit transfer vehicles that provide significant economic benefits and mission capability improvements will be realized. Engine and vehicle design criteria previously have lacked definition with regard to issues such as space basing and servicing, man-rating and reliability, performance, mission flexibility, and life cycle cost for a reusable vehicle. The design study described here has resulted in the definition of a reusable orbit transfer vehicle concept and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine. These design criteria include number of engines per vehicle, nozzle design, etc. The major characteristics of the vehicle preliminary design include low lift to drag aerocapture capability, a main propulsion system failure criteria of fail operational/fail safe, and either two main engines with a high performance attitude control system for back-up or three main engines with which to meet this failure criteria. In addition, a maintenance approach has been established for the advanced vehicle concept. Author

The self-induced molecular contamination around the space station could have adverse effects on space station components (for example solar panels) as well as scientific experiments that might be done on or near the space station. Aerospace engineers need to design a space station (SS) propulsion system that keeps the SS in a stable orbit and at the same time does not allow the propellant gases to interfere with the experiments of the user. One scenario that might accomplish the above requirements is to use an electrothermal propulsion system, resistojet, that will thrust continuously in the hundreds of milli-Newton range which will provide a constant altitude for the SS with a low g environment. As a first attempt to understand the contamination from such a propulsion system, a point source model was developed. The design results of the point source model are given. Number column densities for CO2 are presented as a function of direction of observation (line of sight), temperature of the exit gas, and mean exit velocity. All the results are for a constant exhaust rate of 5,000 kg/year. In addition, a mathematical model to study the effect of nozzle design on the induced molecular environment around the space station produced by simple gas propellants is designed. The high performance monopropellant option was selected as the test case for this study. The high performance monopropellant option would allow the nozzle to operate under conditions that are realistic for the actual system.
This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services.

Author
radiator working fluid. To address this issue, seven candidate fluids were exposed to an oxygen plasma environment in a laboratory plasma asher. The fluids studied included Dow Corning 705 Diffusion Pump Fluid, fluid-methylphenylsiloxane, and polydimethylsiloxane, both of which are experimental fluids made by Dow Corning, Fomblin Z25, made by Montedison, and three fluids from the Krytox family of fluids, Krytox 143AB, 1502, and 16256, which are made by DuPont. The fluids were characterized by noting changes in visual appearance, physical state, mass, and spread for a period of the fluid tested, the Fomblin and the three Krytoxes were the least affected by the oxygen plasma. The only effect noted was a change in mass, which was most likely due to an oxygen-catalyzed depolymerization of the fluid molecule.

Author

19 SPACECRAFT INSTRUMENTATION

Author

20 SPACECRAFT PROPULSION AND POWER

Includes main propulsion systems and components, e.g., rocket engines; and spacecraft auxiliary power sources.

It is pointed out that space station planning at NASA began when NASA was created in 1958. However, the initiation of the program for a large and long delayed the implementation of plans for a space station. The utility of a space station was finally demonstrated with Skylab, which was launched in 1972. In May 1982, the Space Station Task Force was established to provide focus and direction for space station planning activities. The present paper provides a description of the planning activities, giving particular attention to the power system. The initial space station will be required to launching 75 kW continuous electrical power, 60 kW for the customer and 15 kW for space station needs. Possible alternative energy sources for the space station include solar planar or concentrator arrays of either silicon or gallium arsenide.

G.R.

An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using electrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexaboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, and external magnetic fields were all found to reduce electrode mass loss.

An orificed hollow cathode was tested at high pressure to improve lifetime and efficiency in arcjet thrusters. It is indicated that the arc would not operate with emission from the insert above 200...
tor in nitrogen regardless of insert material, orifice diameter, or gas flow direction. Emission occurred from the insert in argon and xenon although it could not be ascertained whether diffuse or spot emission existed within the cathode. Over the extended range of configurations and operating parameters explored the desired diffuse emission profile could not be obtained at high enough pressures for orified hollow cathodes to operate in the range which is considered for arcjet applications.

ANALYSIS OF LOW-THRUST, RESISTOJET REBOOST FOR THE SPACE STATION

This paper presents results of an analysis of low-thrust orbit maintenance of the Space Station. Propellant requirements and transfer times are given for reboost of the station through various altitude increments. The reboost can readily be accomplished with thrust levels that subject the station to an acceleration of less than the desired upper limit of 10 to the -5th g's. The variation in time and the probabilistic aspect of the predicted upper-atmospheric density as well as the variation in time of sun-pointing drag areas were taken into account. Estimates of the propellant requirements at different time points during an 11-year solar cycle are given. It is shown that the amount of CO2 available from the station life-support system is sufficient, over most of the solar cycle, to provide the propellant for a resistojet orbit-maintenance system. Author

20 SPACECRAFT PROPULSION AND POWER

National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.

ANALYSIS OF LOW-THRUST, RESISTOJET REBOOST FOR THE SPACE STATION

This paper presents results of an analysis of low-thrust orbit maintenance of the Space Station. Propellant requirements and transfer times are given for reboost of the station through various altitude increments. The reboost can readily be accomplished with thrust levels that subject the station to an acceleration of less than the desired upper limit of 10 to the -5th g's. The variation in time and the probabilistic aspect of the predicted upper-atmospheric density as well as the variation in time of sun-pointing drag areas were taken into account. Estimates of the propellant requirements at different time points during an 11-year solar cycle are given. It is shown that the amount of CO2 available from the station life-support system is sufficient, over most of the solar cycle, to provide the propellant for a resistojet orbit-maintenance system. Author

CANDIDATE PROPELLANTS FOR RESISTOJETS

Candidate propellants is conducted into the suitability of grain-stabilized Pt as a resistojet thruster material for Space Station auxiliary propulsion. A series of 1000-hour tests was conducted in CO2, H2, and NH3 at 1400 C; another series was conducted at 500 C in CH4 for the same duration. SEM, Auger electron microscopy, and depth profiling analysis were used to determine the effects of propellants on the material surface as well as to evaluate possible material contamination and possible grain growth. Carbon deposition is noted on the surface of Pt/\(\gamma\)2O3 and Pt/\(\gamma\)2C2 in both the CO2 and CH4 environments.

STATUS OF ADVANCED ORBITAL TRANSFER PROPULSION

A new Orbital Transfer Vehicle (OTV) propulsion system that will be used in conjunction with the Space Shuttle, Space Station and Orbit Maneuvering Vehicle is discussed. The OTV will transfer men, large space structures and conventional payloads between low earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to earth. Critical engine design considerations based upon the need for low cost payload delivery, space basing, reusability, aeroassist maneuvering, low g transfers of large space structures and man rating are described. The importance of each of these to propulsion design is addressed. Specific propulsion requirements discussed are: (1) high performance H2/O2 engine; (2) multiple engine configurations totalling no more than 15,000 lbf thrust 15 to 20 hr life; (3) space maintainable modular design; (4) health monitoring capability; and (5) safety and mission success with backup auxiliary propulsion. E.A.K.

Arizona State Univ., Tempe.

RAPID EVALUATION OF ION THRUSTER LIFETIME USING OPTICAL EMISSION SPECTROSCOPY

A major life-limiting phenomenon of electric thrusters is the sputtering erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that ion bombarded surface (screen grid) to the sputtering rate of that ion bombarded surface (screen grid).

National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.

COMPATIBILITY OF GRAIN-STABILIZED PLATINUM WITH CANDIDATE PROPELLANTS FOR RESISTOJETS

Candidate propellants is conducted into the suitability of grain-stabilized Pt as a resistojet thruster material for Space Station auxiliary propulsion. A series of 1000-hour tests was conducted in CO2, H2, and NH3 at 1400 C; another series was conducted at 500 C in CH4 for the same duration. SEM, Auger electron microscopy, and depth profiling analysis were used to determine the effects of propellants on the material surface as well as to evaluate possible material contamination and possible grain growth. Carbon deposition is noted on the surface of Pt/\(\gamma\)2O3 and Pt/\(\gamma\)2C2 in both the CO2 and CH4 environments.

LOW-THRUST, RESISTOJET REBOOST FOR THE SPACE STATION

20 SPACECRAFT PROPULSION AND POWER
20 SPACECRAFT PROPULSION AND POWER

Once this is accomplished, the population density can be related to the spurring rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MIP excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

A86-18041* # Michigan State Univ., East Lansing.
MEASUREMENT OF ENERGY DISTRIBUTION IN FLOWING HYDROGEN MICROWAVE PLASMAS
R. CHAPMAN, T. MORIN, M. FINZEL, and M. C. HAWLEY
(Michigan State University, East Lansing) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 22, Nov.-Dec. 1985, p. 626-630. refs
(Contract NSG-3299)

An electrothermal propulsion concept utilizing a microwave plasma system as the mechanism to convert electromagnetic energy into kinetic energy of a flowing gas is investigated. A calculus-type microwave plasma system was developed to accurately measure the energy inputs and outputs of the microwave plasma system. The rate of energy transferred to the gas can be determined to within + or - 1.8 W from an energy balance around the microwave plasma system. The percentage of the power absorbed by the microwave plasma system transferred to the hydrogen gas as it flows through the system is found to increase with the increasing flow rate, to decrease with the increasing pressure, and to be independent of the absorbed power. An upper bound for the hydrogen gas temperature is estimated from the energy content, heat capacity, and flow rate of the gas stream. A lower bound for an overall heat-transfer coefficient is then calculated, characterizing the energy loss from the hydrogen gas stream to the air cooling of the plasma discharge tube wall. The heat-transfer coefficient is found to increase with the increasing flow rate and pressure and to be independent of the absorbed power. This result indicates that a convective-type mechanism is responsible for the energy transfer.

A86-18042* # Colorado State Univ., Fort Collins.
CURRENT COLLECTION FROM THE SPACE PLASMA THROUGH DEFECTS IN SOLAR ARRAY INSULATION
R. S. ROBINSON (Colorado State University, Fort Collins), R. P. STILLWELL, and H. R. KAUFMAN
(Contract NSG-3196)

Operating high-voltage solar arrays in the space environment can generate anomalously large currents being collected through small insulation defects. Tests simulating the electron collection have shown that there are two major collection modes. The first involves current enhancement by means of a surface phenomenon involving secondary electron emission from the surrounding insulator. In the second mode, the current collection is enhanced by vaporization and ionization of the insulator material, in addition to the surface enhancement of the first mode. The electron collection due to surface enhancement (first mode) has been modeled. Using this model, simple calculations yield realistic predictions.

A86-18043* # McGill Univ., Montreal (Quebec).
RADIATION ENERGY RECEIVER FOR SOLAR PROPULSION SYSTEMS
(Contract NAG3-16)

A86-19934* # Systems Science and Software, La Jolla, Calif.
THRESHOLD DETERMINING MECHANISMS FOR DISCHARGES IN HIGH VOLTAGE SOLAR ARRAYS
D. E. PARKS, G. A. JONGEWARD, I. KATZ, and V. A. DAVIS
(Systems Science and Software, La Jolla, CA) AIAA, Aerospace Sciences Meeting, 24th, Reno, NV, Jan. 6-9, 1986. 7 p. refs
(Contract NASA-23861)

A theory is developed to account for the observed properties of discharges of solar arrays immersed in plasma. The theory is based on the assumption that a thin layer of insulating contaminant covers any metallic surface exposed to the plasma. Quantities derivable from the theory include a voltage threshold for arcing. The existence of the threshold and its predicted weak dependence on plasma density appear consistent with experimental results.

A86-19935* # Colby Coll., Waterville, Maine.
CIRCUIT TRANSIENTS DUE TO NEGATIVE BIAS ARCS-II
R. N. METZ (Colby College, Waterville, ME) AIAA, Aerospace Sciences Meeting, 24th, Reno, NV, Jan. 6-9, 1986. 6 p. refs
(Contract NAG3-576)

AIAA PAPER 86-0366

Two new models of negative-bias arcing on a solar cell power system in Low Earth Orbit are presented. One is an extended, analytical model and the other is a non-linear, numerical model. The models are based on an earlier analytical model in which the interactions between solar cell interconnects and the space plasma as well as the parameters of the power circuit are approximated linearly. Transient voltages due to arcs struck at the negative thermal of the solar panel are calculated in the time domain. The new models treat, respectively, further linear effects within the solar panel load circuit and non-linear effects associated with the plasma interactions. Results of computer calculations with the models show common-mode voltage transients of the electrically floating solar panel struck by an arc comparable to the early model but load transients that differ substantially from the early model. In particular, load transients of the non-linear model can be more than twice as great as those of the early model and more than twenty times as great as the extended, linear model.

A86-24778* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
SPACE STATION POWER SYSTEM ADVANCED DEVELOPMENT

The objectives of the Space Station Advanced Development Program are related to the development of a set of design options and/or new capabilities to support Space Station development and operation, taking into account also a quantification of the performance and risk of key state-of-the-art technologies, and a reduction of the cost and schedule risk in Space Station development. Attention is given to the photovoltaic power system, a solar dynamic system, and aspects of power management and distribution. A major effort will be the selection of the power generation system. In view of the advantages of the solar dynamic system, it is attempted to resolve issues associated with this system.

G.R.
The expected benefits of a development of advanced technologies include decreased spacecraft bus system weights, decreased mission costs, increased reliability/lifetimes, and increased operational flexibility. G.R.

A86-24857* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DESIGN OF A REGENERATIVE FUEL CELL SYSTEM FOR SPACE STATION

The NASA Space Station will employ alkaline regenerative fuel cells (RFCs) as its sole electrochemical energy storage system, in virtue of demonstrated technology readiness and a high degree of system-level design flexibility. NASA Johnson and NASA Lewis are currently engaged in the development of a 10-kW alkaline engineering model system, for 1987 delivery, which will encompass a fully autonomous 120-V system with 55 percent overall electrical efficiency and a 20,000-hr service life. O.C.

A86-26482* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

HEAT TRANSFER IN SPACE POWER AND PROPULSION SYSTEMS

NASA’s planned Space Station has projected power requirements in the 75-300 kW range; attention is presently given to the range of power system configurations thus far proposed. These are a solar silicon cell system incorporating regenerative fuel cell or battery storage, with a 10-year lifetime, a solar-dynamic power system with phase-change or regenerative fuel cell energy storage, and a combination of these two alternatives. A development status evaluation is also given for the propulsion systems that may be used by next-generation boosters. These include such novel airbreathing systems as turboramjets, air liquefaction cycle rockets, airturboramjet/rockets, and supersonic combustion ramjets. O.C.

A86-37054* # Martin Marietta Corp., Denver, Colo.

LH2 ON-ORBIT STORAGE TANK SUPPORT TRUNNION DESIGN AND VERIFICATION

A detailed fatigue analysis was conducted to provide verification of the trunnion design in the reusable Cryogenic Fluid Management Facility for Shuttle flights and to assess the performance capability of the trunnion E-glass/S-glass epoxy composite material. Basic material property data at ambient and liquid hydrogen temperatures support the adequacy of the epoxy composite for seven-mission requirement. Testing of trunnions fabricated to the flight design has verified adequate strength and fatigue properties of the design to meet the requirements of seven Shuttle flights. I.S.
spacecraft propulsion and power

arjet simulator was tested to investigate both the energy loss mechanisms at the electrodes and the stability of different conventional arjet configurations in the presence of a vortex flow field. It is shown that in certain configurations only 25 to 30 percent of the input energy is lost to the electrodes. It is also shown that vortex stabilization is not difficult to obtain in many cases at the flow rates used and that a careful starting procedure is effective in minimizing electrode damage. E.A.K.

A86-37063*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EXPERIMENTAL PERFORMANCE OF A 1-KILOWATT ARCJET THRUSTER

A formerly unused cathode and anode/nozzle assembly from a flight model arjet was tested with nitrogen, hydrogen, and nitrogen-hydrogen mixture simulating ammonia decomposition products at arc power levels from about 300 to 950 W. Two different power sources and two nozzle configurations were tested at low background pressures to exclude facility effects. Increased nozzle expansion ratio improved cold flow nozzle efficiency from 0.8 to 0.9. Hydrogen thrust efficiency of 0.26 at 872 sec specific impulse matched some 1964 performance on a similar device. Simulated ammonia thrust efficiency was 0.31 at 422 sec. Unexpectedly occurring voltage mode changes at constant arc current could be partially stabilized with appropriate power source characteristics. In the higher voltage mode specific impulse was higher, but thrust efficiency changed only slightly from that of the lower voltage mode. Sustained tests of up to 2 hr duration exhibited no apparent performance degradation with time. Author

A86-38995*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

STRUCTURAL TAILORING OF SSME TURBOPUMP BLADES (SSME/STAEBL)

Computer structural optimization is applied to the design of Space Shuttle main engine turbopump blades. The optimization is implemented by the program SSME/STAEBL. A general description of this program is given. Design optimization studies for typical blade designs are presented.

A86-39877*# Washington Univ., St. Louis, Mo.

EFFECT OF SUBCOOLING ON THE ON-ORBIT PRESSURIZATION RATE OF CYPROGENIC PROPULSANT TANKAGE
J. I. HOCHSTEIN, H.-C. JI (Washington University, St. Louis, MO), and J. C. AYDELOTT (NASA, Lewis Research Center, Cleveland, OH) AIAA and ASME, Joint Thermophysics and Heat Transfer Conference, 4th, Boston, MA, June 2-4, 1986. 10 p. refs (Contract NAG3-578) (AIAA PAPER 86-1253)

The SOLA-ECLIPSE code is being developed to enable prediction of the behavior of cryogenic propellants in spacecraft tankage. A brief description of the formulations used for modeling heat transfer and for determining thermodynamic state is presented. Code performance is verified through comparison to experimental data for the self-pressurization of scale model liquid hydrogen tankage. SOLA-ECLIPSE is used to examine the effect of initial subcooling of the liquid phase on the self-pressurization rate of an on-orbit full scale liquid hydrogen tank typical for a chemical propulsion Orbital Transfer Vehicle. The computational predictions show that even small amounts of subcooling will significantly decrease the self-pressurization rate. Further, if the cooling is provided by a Thermodynamic Vent System, it is concluded that small levels of subcooling will maximize propellant conservation. Author

A86-39906*# TRW, Inc., Redondo Beach, Calif.

SOLAR DYNAMIC POWER FOR THE SPACE STATION
J. S. ARCHER and E. S. DIAMANT (TRW, Inc., Redondo Beach, CA) AIAA and ASME, Joint Thermophysics and Heat Transfer Conference, 4th, Boston, MA, June 2-4, 1986. 8 p. (Contract NAG3-24655) (AIAA PAPER 86-1299)

This paper describes a computer code which provides a significant advance in the systems analysis capabilities of solar dynamic power modules. While the code can be used to advantage in the preliminary analysis of terrestrial solar dynamic modules it real value lies in the adaptions which make it particularly useful for the conceptualization of optimized power modules for space applications. In particular, as illustrated in the paper, the code can be used to establish optimum values of concentrator diameter, concentrator surface roughness, concentrator rim angle and receiver aperture ratio to the main heat cycle options - Organic Rankine and Brayton - and for certain receiver design options. The code can also be used to establish system sizing margins to account for the loss of reflectivity in orbit or the seasonal variation of insolation. By the simulation of the interactions among the major components of a solar dynamic module and through simplified formulations of the major thermal-optic-thermodynamic interactions the code is a powerful, efficient and economic analytical tool to the repertory of techniques available for the design of advanced space power systems. Author

A86-40595*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PROBABILISTIC STRUCTURAL ANALYSIS METHODS FOR CRITICAL SSME PROPULSION COMPONENTS

The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The progress in the development of generic probabilistic models for various individual loads which consist of a steady state load, a periodic load and a spike, is discussed. The capabilities of the Numerical Evaluation of Stochastic Structures Under Stress finite element code designed for probabilistic structural analysis of the SSME are examined. Variation principles for formulation probabilistic finite elements and a structural analysis for evaluating the geometric and material properties tolerances on the structural response of turbopump blades are being designed.

A86-42616*# Technion, Inc., Irvine, Calif.

A 10,000 HOUR LIFE MULTIPROPELLANT ENGINE FOR SPACE STATION APPLICATIONS

A review of the design background and operating objectives of a multipropellant resistojet is presented. An engine has been designed and is being operated with carbon dioxide, methane, water, hydrazine decomposition products and hydrogen. Design performance has been constrained to ensure a 10,000-hour life. The engine, constructed primarily of grain stabilized platinum, is to operate at
temperatures up to 1400 C. General performance guidelines, design and fabrication methods are reported. Author

A86-4262*# Textron Bell Aerospace Co., Buffalo, N. Y.

A LONG-LIFE 50 LBF H2/O2 THRUSTER FOR SPACE STATION AUXILIARY PROPULSION

J. M. SENNEFF (Bell Aerospace Textron, Buffalo, NY) and G. P. RICHTER (NASA, Lewis Research Center, Cleveland, OH) AIAA, ASME, SAE, and ASEE. Joint Propulsion Conference, 22nd, Huntsville, AL, June 16-18, 1986. 9 p. refs

(AIAA PAPER 86-1404)

In preparation for the development of a manned Space Station, the National Aeronautics and Space Administration (NASA) is conducting a program to develop technology related to on-board Auxiliary Propulsion Systems. To develop the required thruster technology to support the Space Station project, the NASA Lewis Research Center has sponsored a development program based on a unique 'reverse flow' concept where the fuel is injected 'backwards' in the chamber to cool the spherical combustor wall. This combustor was based on previous developments at the 50-lbf, 1000-lbf, and 1500-lbf thrust levels. This paper describes the design and test program carried out to demonstrate a new 50-lbf thruster, the design which was based on this previous technology. Included are the test results for the initial mixture ratio 4 thruster which can operate with uncooled Cres (stainless steel) combustor walls. In addition, the effort to operate a thruster redesigned for operation at a mixture ratio of eight for potential integration with the life support system is described. Author

A86-42623*# CHAM of North America, Inc., Huntsville, Ala.

COMPUTATIONAL SIMULATION OF LIQUID ROCKET INJECTOR ANOMALIES

(AIAA PAPER 86-1424)

A computer model has been developed to analyze the three-dimensional two-phase reactive flows in liquid fueled rocket combustors. The model is designed to study the influence of liquid propellant injection nonuniformities on the flow pattern, combustion and heat transfer within the combustor. The Eulerian-Lagrangian approach for simulating polydisperse spray flow, evaporation and combustion has been used. Full coupling between the phases is accounted for. A nonorthogonal, body fitted coordinate system along with a conservative control volume formulation is employed. The physical models built into the model include a kappa-epsilon turbulence model, a two-step chemical reaction, and the six-flux radiation model. Semiempirical models are used to describe all interphase coupling terms as well as chemical reaction rates. The purpose of this study was to demonstrate an analytical capability to predict the effects of reactant injection nonuniformities (injection anomalies) on combustion and heat transfer within the rocket combustion chamber. The results show promising application of the model to comprehensive modeling of liquid propellant rocket engines. Author

A86-42640*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PERFORMANCE AND ENDURANCE TESTS OF A MULTIPROPELLANT RESISTOJET FOR SPACE STATION AUXILIARY PROPULSION

W. E. Morren, M. V. Whalen (NASA, Lewis Research Center, Cleveland, OH), and J. S. Sovey AIAA, ASME, SAE, and ASEE. Joint Propulsion Conference, 22nd, Huntsville, AL, June 16-18, 1986. 12 p. Previously announced in STAR as N86-24748. refs

(AIAA PAPER 86-1435)

This paper presents the results of an effort to demonstrate the technology readiness of a long-life multipropellant resistojet for space station auxiliary propulsion. Experiments were performed to evaluate the compatibility of grain-stabilized platinum tubes at temperatures up to 1400 deg C in environments of CO2, CH4, NH3, H2O, and H2. All samples tested showed extrapolated lifetimes in excess of 10,000 hr based on 10 percent mass loss base for the life. However, samples tested in an ammonia atmosphere at 1400 deg C showed severe pitting, which raised concern about the compatibility of grain-stabilized platinum with ammonia-containing atmospheres. Additional tests showed that reducing the metal temperature to about 900 deg C (+ or - 100 deg C) significantly reduced this adverse effect. Author

A86-42676*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

LOW POWER DC ARCJET OPERATION WITH HYDROGEN/NITROGEN PROPPELLANT MIXTURES

F. M. Curran (NASA, Lewis Research Center, Cleveland, OH) and S. Nakaniishi (NASA, Lewis Research Center; Analex Corp., Cleveland, OH) AIAA, ASME, SAE, and ASEE. Joint Propulsion Conference, 22nd, Huntsville, AL, June 16-18, 1986. 15 p. Previously announced in STAR as N86-25407. refs

(AIAA PAPER 86-1505)

The arcjet assembly from a flight model system was modified with a new thoriated tungsten nozzle insert and has been tested with hydrogen-nitrogen mixtures simulating the decomposition products of ammonia and hygrazine. Arcjet power consumption ranged from 0.7 to 1.15 kW depending on low rate, input current, and mixture composition. At a nominal 1 kW power level the ammonia mixtures thrust efficiency was about 0.31 at specific impulse values ranging between 460 and 500 sec. Hydrazine mixtures gave similar thrust efficiencies at the same power level with specific impulse values between 395 and 430 sec. Large, spontaneous voltage mode changes were not observed once the thruster had passed a period of instability immediately following start up. This period of instability, and the startup at low pressure, were seen as major causes of constrictor damage during the tests. Author

A86-42682*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

STRUCTURAL INTEGRITY AND DURABILITY FOR SPACE SHUTTLE MAIN ENGINE AND FUTURE REUSABLE SPACE PROPULSION SYSTEMS

(AIAA PAPER 86-1513)

NASA is conducting a program which will establish a technology basis for the orderly evolution of reusable space propulsion systems. As part of that program, NASA initiated a Structural Integrity and Durability effort for advanced high-pressure oxygen-hydrogen rocket engine technology. That effort focuses on the development of: (1) accurate analytical models to describe flow fields; aerothermodynamic loads; structural responses; and fatigue/fracture, from which life prediction codes can be evolved; and (2) advanced instrumentation with capabilities to verify the codes in an SSME-like environment as well as the potential for future use as diagnostic sensors for real-time condition monitoring of critical engine components. Author

A86-42790*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NASA ELECTROTHERMAL AUXILIARY PROPULSION TECHNOLOGY

(AIAA PAPER 86-1703)

Electrothermal auxiliary propulsion systems provide high performance options which can have major mission benefits. There are several electrothermal concepts which offer a range of characteristics and benefits. Resistojets are the highest thrust to power option and are currently operational at mission average

55
values of specific impulse, \(I_s \), subsp approximately 295 sec. Long life, multipropellant resistojets are being developed for the Space Station, and resistojet technology advancements are being pursued to improve the subsp by more than 20 percent for resistojets used in satellite applications. Direct current arcjets have the potential of subsp over 400 sec with storable propellants and should provide over 1000 sec with hydrogen. Advanced concepts are being investigated to provide high power density options and possible growth to primary propulsion applications. Broad based experimental and analytical research and technology programs of NASA are summarized and recent significant advances are reviewed.

Author

A86-49613*# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

POWER ELECTRONICS FOR A 1-KILOWATT ARCJET THRUSTER

After more than two decades, new space mission requirements have revived interest in arcjet systems. The preliminary development of new, high efficiency, power electronics for start up and steady state control of dc arcjets is reported. The design comprises a pulse width modulated power converter which is closed loop configured to give fast current control. An inductor, in series with the arcjet, serves the dual role of providing instantaneous current control, as well as a high voltage arc ignition pulse. Benchmark efficiency, transient response, regulation, and ripple data are presented. Tests with arcjets demonstrate that the power electronics breadboard can start thrusters consistently with no apparent damage and transfer reliably to the nondestructive high voltage arc mode in less than a second.

Author

A86-49615*# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

CURRENT EVALUATION OF THE TRIPROPELLANT CONCEPT

An analytical study was conducted to determine the specific-impulse advantages of adding metals to conventional liquid-bipropellant systems. These tripropellant systems theoretically offer higher specific impulse and increased propellant chamber length and turbulence ring. Technical rationales are given for the test-to-test hardware configuration changes that eventually led to the stable result.

Author

N86-10279*# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

COMPATIBILITY OF GRAIN-STABILIZED PLATINUM WITH CANDIDATE PROPELLANTS FOR RESISTOJETS

Resistojets are candidates for space station auxiliary propulsion, and should be characterized by both long life and multipropellant operations, requirements limited by available materials. Grain stabilized platinum is examined for use as a resistojet thruster material. Use of platinum in other applications indicates it can be used at moderately high temperatures for extended periods of time. Past results indicate that grain-stabilized platinum should be sufficiently inert in candidate propellant environments. Therefore, compatibility of platinum-yttria (PT/Y2O3) and platinum-zirconia (PT/ZrO2) with carbon dioxide, methane, hydrogen and ammonia is examined. A series of 1000 hr tests in CO2 Hz is conducted at 1400 C and a series of 1000 hr tests in CH4 is conducted at about 500 C. Scanning electron microscopy, Auger electron spectroscopy and depth profiling analysis are then used to determine the effects of propellants on the material surface, to evaluate possible material contamination and to evaluate grain growth. The results indicate that there is carbon deposition on the surface of the PT/Y2O3 and PT/ZrO2 in both the CO2 and CH4 environments. In the H2 environment, the PT/Y2O3 and PT/ZrO2 specimen surfaces are roughened. After exposure to the NH3 environment, the PT/Y2O3 and PT/ZrO2 are roughened and pitted over the entire heated area with some pitted areas along the grain boundaries. SEM photos show grain growth in cross-sectional views of all the PT/Y2O3 samples and the Pt/ZrO2 samples, except that tested in methane. Mass loss measurements indicate that PT/Y2O3 and PT/ZrO2 would last in excess of 200,000 hr in each propellant environment. However, in NH3 both PT/Y2O3 and PT/ZrO2 are severely pitted, with voids up to 50 percent into the material. PT/Y2O3 and PT/ZrO2 are not recommended for high temperature service in NH3.

Author

N86-10280*# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

RAPID EVALUATION OF ION THRUSTER LIFETIME USING OPTICAL EMISSION SPECTROSCOPY

A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (Mo) with those of the ground state to relate the spectral intensities of the various transitions of the Mo to the population densities. Calculation is accurate to the proton density in density can be related to the sputtering rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for Mo excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate
and intensity is compared to the measured intensity and spurring rates of the 8 and 30 cm ion thrusters. Author

N86-10281*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
EXPERIMENTAL PERFORMANCE OF A 1-KILOWATT ARCJET THRUSTER
S. NAKANISHI 1985 30 p refs (NASA-TM-87131; E-2744; NAS 1.15:87131) Avail: NTIS HC A03/MF A01 CSCL 21C
A former unused cathode and anode/nozzle assembly from a flight model arcjet was tested with nitrogen, hydrogen, and nitrogen-hydrogen mixture simulating ammonia decomposition products at arc power levels from about 300 to 950 W. Two different power sources and two nozzle configurations were tested at low background pressures to exclude facility effects. Increased nozzle expansion ratio improved cold flow nozzle efficiency from 0.8 to 0.9. Hydrogen thrust efficiency of 0.26 at 872 sec specific impulse matched some 1964 performance on a similar device. Simulated ammonia thrust efficiency was 0.31 at 422 sec. Spontaneously occurring voltage mode changes at constant arc current could be partially stabilized with appropriate power source characteristics. In the higher voltage mode specific impulse was higher, but thrust efficiency changed only slightly from that of the lower voltage mode. Sustained tests of up to 2 hr duration exhibited no apparent performance degradation with time. Author

N86-11224*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
AN EXPERIMENTAL STUDY OF ENERGY LOSS MECHANISMS AND EFFICIENCY CONSIDERATION IN THE LOW POWER DC ARCJET
The potential utility of the low power dc arcjet in auxiliary propulsion was investigated. It was indicated that improvements in the areas of stability, energy efficiency, reliability, and electrode erosion are necessary to obtain a useful device. A water-cooled arcjet simulator was tested to investigate both the energy loss mechanisms at the electrodes and the stability of different conventional arcjet configurations in the presence of a vortex flow field. It is shown that in certain configurations only 25 to 30% of the input energy is lost to the electrodes. It is also shown that vortex stabilization is not difficult to obtain in many cases at the flow rates used and that a careful starting procedure is effective in minimizing electrode damage.

E.A.K.

SPACE STATION PROPULSION REQUIREMENTS STUDY Final Report
Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000. Author

N86-16258*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
RELIABILITY AND MASS ANALYSIS OF DYNAMIC POWER CONVERSION SYSTEMS WITH PARALLEL OF STANDBY REDUNDANCY
A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kW nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K. Author

LIQUID BELT RADIATOR DESIGN STUDY Final Report
The Liquid Belt Radiator (LBR) is an advanced concept developed to meet the needs of anticipated future space missions. A previous study documented the advantages of this concept as a lightweight, easily deployable alternative to present day space heat rejection systems. The technical efforts associated with this study concentrate on refining the concept of the LBR as well as examining the issues of belt dynamics and potential application of the LBR to intermediate and high temperature heat rejection applications. A low temperature point design developed in previous work is updated assuming the use of diffusion pump oil, Santovac-8, as the heat transfer media. Additional analytical and design effort is directed toward determining the impact of interface heat exchanger, fluid bath sealing, and belt drive mechanism designs on system performance and mass. The updated design supports the earlier result by indicating a significant reduction in system specific mass as compared to heat pipe or pumped fluid radiator concepts currently under consideration (1.3 kg/sq m versus 5 kg/sq m). Author

N86-17386*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
SMALL, TWO-STAGE, PARTIAL-ADMISSION TURBINE
The Rocketdyne Orbital Transfer Vehicle (OTV) cryogenic, rocket engine system, high pressure, liquid hydrogen turbopump was designed with a two-stage, partial-admission axial turbine. The turbine is basically two single-stage, partial-admission, subsonic impulse stages designed so the kinetic energy leaving the first-stage rotor is discharged directly into the second-stage nozzle at nominal operation to minimize staging losses. Very little data were available in the literature for this type of turbine design. Therefore, it was decided to test a full-size model of the turbine design using ambient-temperature gaseous nitrogen as the working fluid. The test design features a variable orientation second-stage nozzle using a laser.
velocimeter. The test operations will probe the efficiency and flow characteristics for three arcs of admission and the effects of second-stage nozzle circumferential orientations over wide ranges of off-speed and pressure ratios as well as the interstage pressure distributions.

Author

N86-17387** National Aeronautics and Space Administration. White Sands Test Facility, N. Mex.
A FEASIBILITY STUDY FOR MATERIAL SELECTION AND DESIGN OF HIGH-SPEED, HIGH-PRESSURE, OXYGEN TURBOMACHINERY
(Contract NAS5-23772)
Aval: Chemical Propulsion Information Agency, Johns Hopkins Rd., Laurel, Md. 20707 HC $78.98 CSCL 21H
New technologies for space-based, reusable, throttleable, cryogenic, orbit transfer propulsion are being evaluated. A variable-thrust (200 to 3000 lbF), 2000 psi chamber pressure, LOX/LH2 engine has been selected to demonstrate the 20-hour, 500-restart life goal, and a specific impulse of 480 lbF-sec/lbm. The advanced design uses warm oxygen to power a fully integrated turbopump that delivers 4500 psi LO2. The selected engine cycle provides the following advantages over conventional expander cycle designs which use H2 to drive the LH2 and LO2 pumps; higher engine operating pressures and performance in a smaller envelope, lower turbine operating temperatures, elimination of interpropellant seals and purges, and an extended throttling range. The design approach and results of testing to characterize materials for use in high-pressure gaseous oxygen are discussed. Test methods include particle impact testing in a sonic-flow, hot GO2 streams and forced, high-speed friction rubbing testing. Materials are exposed to oxygen and nitrogen atmospheres at pressures of 100, 1000, and 3000 psi to identify separately the gas cooling effects from the metal oxidation effects at the rubbing surface. The selection of candidate design materials is based on an analytical parameter defined as the burn factor. Typical materials tested include carbon steel, stainless steel, nickel, copper, and monei alloys.

Author

N86-17397** National Aeronautics and Space Administration. Lewis Research Center, Ohio.
LOX/LH2 VANE PUMP FOR AUXILIARY PROPULSION SYSTEMS
(Contract NAS5-23772)
Aval: Chemical Propulsion Information Agency, Johns Hopkins Rd., Laurel, Md. 20707 HC $78.98 CSCL 21H
Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbital transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

Author

N86-17404** National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
CYCLIC STRUCTURAL ANALYSES OF ANISOTROPIC TURBINE BLADES FOR REUSABLE SPACE PROPULSION SYSTEMS
Aval: Chemical Propulsion Information Agency, Johns Hopkins Rd., Laurel, Md. 20707 HC $78.98 CSCL 21H
Turbine blades for reusable space propulsion systems are subjects to severe thermomechanical loading cycles that result in large inelastic strains and very short lives. These components require the use of anisotropic high temperature alloys to meet the safety and durability requirements of such systems. To assess the effects on blade life of material anisotropy, cyclic structural analyses are being performed for the first stage high pressure fuel turbopump blade (HPFTB) of the space shuttle main engine (SSME). The blade alloy is directionally solidified MAR-M 246 alloy. The analyses are based on a typical test stand engine cycle. Stress-strain histories at the airfoil critical location are computed using the MARC nonlinear finite element computer code.

Author

N86-17405** National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
ADVANCED RESEARCH AND TECHNOLOGY PROGRAM FOR ADVANCED HIGH PRESSURE OXYGEN-HYDROGEN ROCKET PROPULSION
Previously announced as N85-21231 Sponsored in part by NASA
Aval: Chemical Propulsion Information Agency, Johns Hopkins Rd., Laurel, Md. 20707 HC $78.98 CSCL 21H
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/productibility/maintenance, experimental methods and non-destructive evaluation methods and materials testing. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

Author

N86-17416** General Dynamics/Convair, San Diego, Calif.
ORBITAL TRANSFER VEHICLE ENGINE INTEGRATION STUDY
Aval: Chemical Propulsion Information Agency, Johns Hopkins Rd., Laurel, Md. 20707 HC $78.98 CSCL 21H
Industry studies were undertaken to establish the technology base for an advanced engine for Orbital Transfer Vehicles for mid-1990s IOC. This paper presents the results of a study conducted by General Dynamics Convair Division, under contract to Aerojet TechSystems Company for NASA-LaRC, to define required engines, space conditions, and operational design criteria for new LO2/LH2 propulsion systems applicable to future Orbit Transfer Vehicles, and to assess the impacts of space basing, man rating, and low-g transfer on propulsion system design...
requirements. The primary study emphasis was to determine what the OTV engine thrust level should be, how many engines are required on the OTV, and how the OTV engine should be designed. This was accomplished by evaluating planned OTV missions and concepts to determine the requirements for the OTV propulsion system. Conducting tradeoffs and comparisons to optimize OTV capability, and evaluating reliability and maintenance to determine the recommended OTV engine design for future development.

Author

Tests were conducted to investigate the effect of vacuum facility pressure on the performance of small thruster nozzles. Thrust measurements of two converging-diverging nozzles with an area ratio of 140 and an orifice plate flowing unheated nitrogen and hydrogen were taken over a wide range of vacuum facility pressures and nozzle throat Reynolds numbers. In the Reynolds number range of 2200 to 12,000 there was no discernable viscous effect on thrust below an ambient to total pressure ratio of 1000. In nearly all cases, flow separation occurred at a pressure ratio of about 1000. This was the upper limit for obtaining an accurate thrust measurement for a conical nozzle with an area ratio of 140.

Author

Experiments were performed to determine the compatibility of materials and propellants for electro-thermal thrusters. Candidate propellants for resistojet propulsion include carbon dioxide, methane, hydrogen, ammonia, and hydrazine. The materials being examined are grain stabilized platinum for resistojet for space station and rheum for high performance resistojet for satellites. Heater mass loss and deterioration of materials were evaluated. A coiled tube of platinum, with yttria dispersed throughout the base material to inhibit grain growth, was tested in carbon dioxide at 1300 C for 2000 hr. Post-test examination indicated the platinum- yttria heater would last over 100,000 hr with less than 10 percent mass loss. Short-term compatibility tests were conducted to test the integrity of the platinum- yttria in hydrogen, methane, carbon dioxide/methane mixes and ammonia environments. In each of these 100 hr tests, the platinum- yttria mass change indicated a minimum coil life of 100,000 hr. Facility related effects were investigated in materials tests using rheum heated to high temperatures. Vacuum facility water reduction was monitored using a mass spectrometer. In vacuum environments obtained using only diffusion pumping and those obtained with the assistance of cryogenic equipment there were mass gains in the rheum heaters. These mass gains were the result of the high amount of oxygen and water contained in the gas. Propellant purity and preferred test facility environments are discussed.

G.L.C.
SPACECRAFT PROPULSION AND POWER

N86-21577*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
TECHNOLOGY FOR BAYTON-CYCLE POWERPLANTS USING SOLAR AND NUCLEAR ENERGY
R. E. ENGLISH Feb. 1986 15 p refs (NASA-TP-2558; E-2761; NAS 1.02:2558) Avail: NTIS HC A02/MF A01 CSCL 10B
Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation. Author

N86-21578*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
A BIBLIOGRAPHY OF ELECTROTHERMAL THRUSTER TECHNOLOGY, 1984
Electrothermal propulsion concepts are briefly discussed as an introduction to a bibliography and author index. Nearly 700 citations are given for resistojets, thermal arcjets, pulsed electrothermal thrusters, microwave heated devices, solar thermal thrusters, and laser thermal thrusters. Author

N86-24745*# Martin Marietta Aerospace, Denver, Colo.
ADVANCED ORBIT TRANSFER VEHICLE PROPULSION SYSTEM STUDY Final Report
A reusable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift-to-drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility. B.G.

N86-24747*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
SPACE STATION 20-KHZ POWER MANAGEMENT AND DISTRIBUTION SYSTEM
During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the space station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed. Author

N86-24748*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PERFORMANCE AND ENDURANCE TESTS OF A MULTIPROPELLANT RESISTOJET FOR SPACE STATION AUXILIARY PROPULSION
This paper presents the results of an effort to demonstrate the technology readiness of a long-life multipropellant resistojet for space station auxiliary propulsion. Experiments were performed to evaluate the compatibility of grain-stabilized platinum tubes at temperatures up to 1400 deg C in environments of CO2, CH4, NH3, H2O, and H2. All samples tested showed extrapolated lifetimes in excess of 10,000 hr based on 10 percent mass loss as end-of-life. However, samples tested in an ammonia atmosphere at 1400 deg C showed severe pitting, which raised concerns about the compatibility of grain-stabilized platinum with ammonia-containing atmospheres. Additional tests showed that reducing the metal temperature to about 900 deg C (+ or - 100 deg C) significantly reduced this adverse effect. Author

N86-24749*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
NASA ELECTROTHERMAL AUXILIARY PROPULSION TECHNOLOGY
Electrothermal auxiliary propulsion systems provide high performance options which can have major mission benefits. There are several electrothermal concepts which offer a range of performance options which can have major mission benefits. There are several electrothermal concepts which offer a range of performance options which can have major mission benefits. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed. Author
NASA are summarized and recent significant advances are reviewed.

20 SPACECRAFT PROPULSION AND POWER

thusters consistently with no apparent damage and transfer reliably to the nondestructive high voltage arc mode in less than a second.

The arcjet assembly from a flight model system was modified with a new thoriated tungsten nozzle insert and has been tested with hydrogen-nitrogen mixtures simulating the decomposition products of ammonia and hydrazine. Arcjet power consumption ranged from 0.7 to 1.15 kW depending on low rate, input current, and mixture composition. At a nominal 1 kW power level the ammonia mixtures thrust efficiency was about 0.31 at specific impulse values ranging between 450 and 500 sec. Hydrazine mixtures gave similar thrust efficiencies at the same power level with specific impulse values between 395 and 430 sec. Large, spontaneous voltage mode changes were not observed once the thruster had passed a period of instability immediately following start up. This period of instability, and the startup at low pressure, were seen as major causes of constrictor damage during the tests.

NASA is conducting a program which will establish a technology base for the orderly evolution of reusable space propulsion systems. As part of that program, NASA initiated a Structural Integrity and Durability effort for advanced high-pressure hydrogen/steam rocket engine technology. That effort focuses on the development of: (1) accurate analytical models to describe flow fields; aerothermodynamic loads; structural responses; and fatigue/fracture, from which life prediction codes can be evolved; and (2) advanced instrumentation with capabilities to verify the codes in an SSME-like environment as well as the potential for future use as diagnostic sensors for real-time condition monitoring of critical engine components.

20 SPACECRAFT PROPULSION AND POWER

After more than two decades, new space mission requirements have revived interest in arcjet systems. The preliminary development and demonstration of new, high efficiency, power electronic concepts for start up and steady state control of dc arcjets is reported. The design comprises a pulse width modulated power converter which is closed loop configured to give fast current control. An inductor, in series with the arcjet, serves the dual role of providing instantaneous current control, as well as a high voltage arc ignition pulse. Benchmark efficiency, transient response, regulation, and ripple data are presented. Tests with arcjets demonstrate that the power electronics breadboard can start

Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbines. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity, are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.

Two types of measurements were performed on ion thrusters equipped with SmCo magnets in either ring cusp or line cusp arrangements. Langmuir probes were used to measure plasma potential, electron density, and electron temperature in all regions inside the thruster. Loss fluxes to various surfaces were determined by measuring the currents to foils attached to or imbedded in the surface. Data were obtained for several sets of discharge voltages and currents. The loss currents were determined from current vs

61
voltage characteristics observed on a transistor curve tracer oscilloscope. Both ion and electron currents were measured to all parts of the walls and to all parts of the cathode assembly using collector with plates. These measurement were also made for various parameter sets. In line cusp configuration the plasma density is essentially as predicted by existing calculations. In the ring cusp arrangement the interior of the plasma contains an inhomogeneous and relatively large magnetic field so the geometry is decidedly two-dimensional and the models of Self (1967) and of Kino and Shamp (1966) do not agree.

N86-28122*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A 20 KILOHERTZ SPACE STATION POWER SYSTEM

The space station represents the next major U.S. commitment in space. The efficient delivery of power to multiple user loads is key to that success. In 1989, NASA Lewis Research Center began a series of studies to develop component and circuit developments that led to the high frequency, bi-directional, four quadrant resonant driven converter. Additional studies and subsequent developments into the early 1980's have shown how the high frequency ac power system could provide overall advantages to many aerospace power systems. Because of its wide versatility, it also has outstanding advantages for the Space Station Program and its wide range of users. High frequency ac power provides higher efficiency, lower cost, and improved safety. The 20 kHz power system has exceptional flexibility, is inherently user friendly, and is compatible with all types of energy sources - photovoltaic, solar dynamic, rotating machines or nuclear. Lewis has recently completed development under contract a 25 kW, 20 kHz ac power distribution system testbed. The testbed demonstrates flexibility, versatility, and transparency to user technology as well as high efficiency, low mass, and reduced volume.

N86-28123*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

RAIL ACCELERATORS FOR SPACE TRANSPORTATION: AN EXPERIMENTAL INVESTIGATION

L. M. ZANA, W. R. KERSLAKE, and J. L. STURMAN May 1986 37 p (NASA-TP-2571; E-2754; NAS 1.60:2571) Avail: NTIS HC A03/MF A01 CSCL 09C

An experimental program was conducted at the Lewis Research Center with the object of investigating the technical feasibility of rail accelerators for propulsion applications. Single-stage, plasma driven rail accelerators of small (4 by 6 mm) and medium (12.5 by 12.5 mm) bores were tested at peak accelerating currents of 50 to 450 kA. Streak-camera photography was used to provide a qualitative description of plasma armature acceleration. The effects of plasma blowby and varying bore pressure on the behavior of plasma armatures were studied.

N86-28124*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CURRENT EVALUATION OF THE TRIPROPELLANT CONCEPT

An analytical study was conducted to determine the specific-impulse advantages of adding metals to conventional liquid-bipropellant systems. These tripropellant systems theoretically offer high specific impulse and increased propellant density compared with bipropellant systems. Metals considered were Be, Li, and Al. Bipropellant systems were H2/O2, N2H4/N2O4, RP-1/O2, and H2/F2. Thermocchemical calculations were performed for sea-level expansion from 6.895-MN/sq. m. (1000-psi) chamber pressure over a wide range of mixture ratios and propellant compositions. Three-dimensional plots characterize the specific impulse of each tripropellant system. Technology issues pertinent to metallized propellant systems are discussed.

N86-28125*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THE VOLTAGE THRESHOLD FOR ARCING FOR SOLAR CELLS IN LEO: FLIGHT AND GROUND TEST RESULTS

Ground and flight results of solar cell arcing in low Earth orbit (LEO) conditions are compared and interpreted. It is shown that an apparent voltage threshold for arcing may be produced by a strong power law dependence of arc rate on voltage, combined with a limited observation time. The change in this apparent threshold with plasma density is a reflection of the density dependence of the arc rate. A nearly linear dependence of arc rate on density is inferred from the data. A real voltage threshold for arcing for 2 by 2 cm solar cells may exist however, independent of plasma density, near -230 V relative to the plasma. Here, arc rates may change by more than an order of magnitude for a change of only 30 V in array potential. For 5.9 by 5.9 solar cells, the voltage dependence of the arc rate is steeper, and the data are insufficient to indicate the existence of an arc increasing by an atomic oxygen plasma, as is found in LEO, and by arcing from the backs of welded-through substrates.

OXIDIZER HEAT EXCHANGER COMPONENT TESTING Final Report

As part of the RL10 Rocket Engine Product Improvement Program, Oxidizer Heat Exchanger (OHE) stages 1, 2, and 3 were designed and fabricated during late 1983 and early 1984. The purpose of the OHE is to provide gaseous oxygen to the propellant injector for stable engine operation at tank head idle and pumped idle operating modes. This report summarizes the OHE stages 1 and 3 NG testing, and includes the separation of the stage 1-and-2 and the remaining stage of stage 1. The OHE performance analysis and analytical model modifications for both stages are also presented. The flow tests were accomplished during the time period from 9 October 1984 to 12 November 1984.

N86-31646*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TEST PROGRAM TO PROVIDE CONFIDENCE IN LIQUID OXYGEN COOLING OF HYDROCARBON FUELED ROCKET THRUST CHAMBERS

An experimental program has been planned at the NASA Lewis Research Center to build confidence in the feasibility of liquid oxygen cooling for hydrocarbon fueled rocket engines. Although liquid oxygen cooling has previously been incorporated in test hardware, more runtime is necessary to gain confidence in this concept. In the previous tests, small oxygen leaks developed at the throat of the thrust chamber and film cooled the hot-gas sides of the chamber wall without resulting in catastrophic failure. However, more runtime is necessary to demonstrate that a catastrophic failure would not occur if cracks developed further upstream between the injector and the throat, where the boundary layer has not been established. Since under normal conditions cracks are expected to form in the throat region of the thrust...
chamber, cracks must be initiated artificially in order to control their location. Several methods of crack initiation are discussed in this report. Four thrust chambers, three with cracks and one without, should be tested. The axial location of the cracks should be varied parametrically. Each chamber should be instrumented to determine the effects of the cracks, as well as the overall performance and durability of the chambers. Author

The feasibility of fabricating small rhenium parts with metal oxide additives by means of slip casting and extrusion techniques is described. The metal oxides, ZrO2 and HfO2 were stabilized into the cubic phase with Y2O3. Additions of metal oxide to the rhenium of up to 15 weight percent were used. Tubes of 17 mm diameter with 0.5 mm walls were slip cast by adapting current ceramic oxide techniques. A complete cast double conical nozzle demonstrated the ability to meet shapes and tolerances. Extrusion of metal long tubing lengths of 3.9 mm o.d. x 2.3 mm i.d. final dimension is demonstrated. Sintering schedules are presented to produce better than 95% of theoretical density parts. Finished machining was found possible to be performed by electric discharge machining and diamond grinding. Author

A hybrid hydrostatic bearing was designed to operate in liquid hydrogen at speeds to 80,000 rpm and radial loads to 440 N (100 lbf). The bearing assembly consisted of a pair of 20-mm angular-contact ball bearings encased in a journal, which was in turn supported by a fluid film of liquid hydrogen. The size and operating conditions of the bearing were selected to be compatible with the operating requirements of an advanced technology turbosump. Several test parameters were varied to characterize the bearing's steady-state operation. The rotation of the tester shaft was varied between 0 and 80,000 rpm. Bearing inlet fluid pressure was varied between 2.07 and 4.48 MPa (300 and 650 psia), while the fluid sump pressure was independently varied between 0.34 and 2.07 MPa (50 and 300 psia). The maximum radial load applied to the bearing was 440 N (110 lbf). Measured hybrid-hydrostatic-bearing stiffness was 1.5 times greater than predicted, while the fluid flow rate through the bearing was 35 to 65 percent less than predicted. Under two-phase fluid conditions, the stiffness was even greater and the flow rate was less. The optimal pressure ratio for the bearing should be between 0.2 and 0.55 depending on the balance desired between bearing efficiency and stiffness. Startup and shutdown cyclic tests were conducted to demonstrate the ability of the hybrid-hydrostatic-bearing assembly to survive at least a 300-firing-duty cycle. For a typical cycle, the shaft was accelerated to 50,000 rpm in 1.8 sec. The bearing operated for 33 start-stop cycles without failure. Author

The performance characteristics and operating envelope of several 30-cm ring-cusp ion thrusters with xenon propellant were investigated. Results indicate a strong performance dependence on the discharge chamber boundary magnetic fields and resultant distribution of electron currents. Significant improvements in discharge performance over J-series divergent-field thrusters were achieved for large throttling ranges, which translate into reduced cathode emission currents and reduced power dissipation which should be of significant benefit for operation at thruster power levels in excess of 10 kW. Mass spectrometry of the ion beam was documented for both the ring-cusp and J-series thrusters with xenon propellant for determination of overall thruster efficiency, and lifetime. Backside ion current values were measured and charged ions in the ion beam and the lower operating discharge voltage, the screen grid erosion rate of the ring-cusp thruster is expected to be lower than the divergent-field J-series thruster by a factor of 2. Author

The low flow rate and high head rise requirements of hydrogen/oxygen auxiliary propulsion systems make the application of centrifugal pumps difficult. Positive displacement pumps are well-suited for these flow conditions, but little is known about their performance and life characteristics in liquid hydrogen. An experimental and analytical investigation was conducted to determine the performance and life characteristics of a vane-type, positive displacement pump. In the experimental part of the effort, mass flow rate and shaft torque were determined as functions of shaft speed and pump pressure rise. Since liquid hydrogen offers little lubrication in a rubbing situation, pump life is an issue. During the life test, the pump was operated intermittently for 10 hr at the steady-state point of 0.074 lbm/sec (0.03 kg/sec) flow rate, 3000 psid (2.07 MPa) pressure rise, and 8000 rpm (838 rad/sec) shaft speed. Pump performance was monitored during the life test series and the results indicated no loss in performance. Material loss from the vanes was recorded and wear of the other components was documented. In the analytical part of this effort, a comprehensive pump performance analysis computer code, developed in-house, was used to predict pump performance. The results of the experimental and analytical investigations were presented and compared with the results of the analysis. Results of the life test are also presented. M.G.
was calculated that the GPR mass was 31 percent lower than the heat pipe radiator.

20 SPACECRAFT PROPULSION AND POWER

Aerojet TechSystems, a 25 lb sub f hydrogen/oxygen thruster has been developed and proven as a viable candidate to meet the needs of the Space Station Program. Likewise, during the development program with Bell Aerospace, a 50 lb sub f hydrogen/oxygen Thrust Chamber has been developed and has demonstrated reliable, long-life expectancy at anticipated space station operating conditions. Both these thrust chambers were based on design criteria developed in previous thruster programs and successfully verified in experimental test programs. Extensive thermal analyses and models were used to design the thrusters to achieve total impulse goals of 2 x 10 to the 6th power lb sub f-sec. Test data for each thruster will be compared to the analytical predictions for the performance and heat transfer characteristics. Also, the results of thrust chamber life verification tests will be presented.

N86-32520# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ELECTRICAL POWER SYSTEM FOR THE U.S. SPACE STATION

The Space Station Electrical Power System presents many interesting challenges. It will be much larger than previous space power systems, and it must be designed for on-orbit maintenance and replacement, along with having a growth capability. The power generation, energy storage, and power management and distribution (PMAD) subsystems comprise the primary elements of the overall system. Each was analyzed by NASA Lewis Research Center and its two contractors -- Rocketdyne and TRW -- in the definition studies of the program to determine the optimum approach to minimize initial costs and life cycle costs. For the PMAD subsystem, a ring bus architecture operating at 440 V, 20 kHz, single phase, was selected. Photovoltaic and solar dynamic power generation subsystems were both studied. Major tradeoffs were made for each subsystem and for the overall system, and a hybrid system (both photovoltaic and solar dynamic) was selected.

N86-32521# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THE SPACE STATION POWER SYSTEM

The manned space station is the next major NASA program. It presents many challenges to the power system designers. The power system in turn is a major driver on the overall configuration. In this paper, the major requirements and guidelines that affect the station configuration and the power system are explained. The evolution of the space station power system from the NASA program, development-feasibility phase through the current preliminary design phase is described. Several early station concepts, both fanciful and feasible, are described and linked to the present concept. The recently completed Phase B trade study selections of photovoltaic system technologies are described in detail. A summary of the present solar dynamic and power management and distribution systems is also given for completeness.

N86-32522# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PROVEN, LONG-LIFE HYDROGEN/OXYGEN THRUST CHAMBERS FOR SPACE STATION PROPULSION

The development of the manned space station has necessitated the development of technology related to an onboard auxiliary propulsion system (APS) required to provide for various space station attitude control, orbit positioning, and docking maneuvers. A key component of this onboard APS is the thrust chamber design. To develop the required thrust chamber technology to support the Space Station Program, the NASA Lewis Research Center has sponsored development programs under contracts with Aerojet TechSystems Company and with Bell Aerospace Textron Division of Textron, Inc. During the NASA Lewis sponsored program

CHEMISTRY AND MATERIALS (GENERAL)

A86-17483* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

FABRICATION OF CERAMIC SUBSTRATE-REINFORCED AND FREE FORMS BY MANDREL PLASMA SPRAYING METAL-CERAMIC COMPOSITES

Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.

B.G.

A86-30051* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

FRACATURE TOUGHNESS TESTS ON PLASMA-SPRAYED COATINGS

Fracture toughness measurements have been performed on plasma-sprayed coatings. The intrinsic fracture toughness of plasma-sprayed coatings may be ascertained by means of a double cantilever beam (DCB) test. Emphasis is placed on calibration of the specimen geometry. Representative values for alumina coatings are presented.
A88-49855* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DUAL-ION-BEAM DEPOSITION OF CARBON FILMS WITH DIAMOND-LIKE PROPERTIES

A single and dual ion beam system was used to generate amorphous carbon films with diamond-like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter, was used to direct a beam of 600 eV Ar ions onto the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cm³, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond-like films generated by sputtering a graphite target.

N88-11272*# Boeing Aerospace Co., Seattle, Wash.

CHARACTERIZATION METHODOLOGY FOR PMR-15

Analysis: NTIS HC A18/MF A01 CSCL 07A

Characterization of model compounds, monomers, resin solutions and cure cycles of PMR-15 polyimide are performed. Successful separation of various reaction products is also accomplished by liquid chromatography. The PMR-15 cure analysis is performed by Fourier transform spectroscopy and gas chromatography-mass spectrometry. Characterization and quality control tests for Quality Control are recommended.

N88-13370*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

MODIFICATIONS OF SYSTEM FOR ELEVATED TEMPERATURE TENSIILE TESTING AND STRESS-STRAIN MEASUREMENT OF METAL MATRIX COMPOSITES

Composites consisting of tungsten alloy wires in superalloy matrices are being studied because they offer the potential for increased strength compared to current materials used at temperatures up to at least 1093 C (2000°F). Previous research at the NASA Lewis Research Center and at other laboratories in the U.S., Europe, and Japan has demonstrated laboratory feasibility for fiber reinforced superalloys (FRS). The data for the mechanical and physical properties of these metal matrix composites is limited and a need exists for more detailed and complete database. The focus of this work is to develop a test procedure to provide a more complete FRS data base to quantitatively evaluate the composite's potential for component applications. This paper will describe and discuss the equipment and procedures under development to obtain elevated temperature tensile stress-strain, strength and modulus data. The first generation of tungsten fiber reinforced superalloy composite (TFRS) materials. Tensile stress-strain tests are conducted using a constant crosshead speed tensile testing machine and a modified load-strain measuring apparatus. Elevated temperature tensile tests are performed using a resistance wound commercial furnace capable of heating test specimens up to 1093 C (2000°F). Tensile stress-strain data are obtained for hollow tubular stainless steel specimens serving as a prototype for future composite specimens.

N86-17472 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EFFECT OF ARGON AND HYDROGEN ON DEPOSITION OF SILICON FROM TETRACHLOROSILANE IN COLD PLASMAS

R. R. MANORY, R. AVNl (Ben Gurion Univ. of the Negev, Beer Sheva, Israel), and A. GRILL (Ben Gurion Univ. of the Negev, Beer Sheva, Israel). 1985 16 p refs Presented at Fall Meeting of the Materials Research Society, Boston, Mass., 2-7 Dec. 1985 (NASA-TM-87219; E-28720; NAS 1.15:87219) Avail: NTIS HC A02/MF A01 CSCL 07D

The roles of Ar and H2 on the decomposition of SiC4 in cold plasmas are investigated by Langmuir probes and mass spectrometry. Decomposition of the reactant by Ar only has been found to be very slow. In presence of H2 in the plasma SiC4 is decomposed by fast radical-molecule reactions which are further enhanced by Ar due to additional ion-molecule reactions in which more H radicals are produced. A model for the plasma-surface interactions during deposition of mu-Si in the Ar + H2 + SiC4 system is presented.

N86-18442 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

GRAPHITE FIBER INTERCALATION. BASIC PROPERTIES OF COPPER CHLORIDE INTERCALATED FIBERS

In situ resistance measurements were used to follow the intercalation of copper chloride in pitch-based fibers. Subsequent single fiber resistivity measurements reveal a large range of resistivities, from 13 to 160 micro-ohms cm. Additional density measurements reveal a bimodal distribution of mass densities. The dense fibers have lower resistivities and correspond to the stage III compound identified by X-ray diffraction. Neither resistivity nor density correlate with diameter. Both energy dispersive spectroscopy and mass density data suggest that excess chlorine resides in the intercalated fiber, resulting in a stoichiometry of C4.9n CuCl2.5 (where n is the stage number) for the denser fibers. Finally, thermogravimetric analysis shows a 33 percent loss in mass upon heating to 700°C. This loss in mass is attributed to loss of both chlorine and carbon.

24 COMPOSITE MATERIALS

Includes physical, chemical, and mechanical properties of laminates and other composite materials.

A88-13189 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A CERAMIC MATRIX COMPOSITE BASED ON POLYMERIZATION AND PYROLYSIS OF ETHYNYLATED AROMATICS

A number of ethynylated aromatic monomers recently have been synthesized which thermally homopolymerize and copolymerize to produce rigid, highly cross-linked polymers with high thermal stability (Tg of about 450°C). On pyrolysis, these...
polymers lose few volatiles (more than 85 percent char yield) to yield carbon bodies of relatively low porosity. These properties render the ethynylated aromatics of significant interest as matrices for high temperature composites. Incorporation of a SiC particle filler in the matrix improves the rheology of the system, and minimizes shrinkage during pyrolysis. Several unidirectional composites have been fabricated combining a graphite or boron-alumina-silica continuous reinforcement with an ethynylated aromatic polymer matrix and SiC filler. Theromgrammetric analysis of composite pyrolysis behavior was used to determine reaction kinetics and to establish the composite total reaction rate as well as the composition of the reaction products. The results obtained were used to predict the ethynylated aromatic polymer reaction zone growth kinetics and to establish a composite fabrication cycle. The independent variables are included for placing back-to-back strain gages to measure the effects. Author presence/absence of possible end-attachment and eccentricity are included for placing back-to-back strain gages to measure the obtained from the FEA and comparisons with fractured specimens show that eccentricities induce bending-type stresses which peak near the end-tabs and cause flexural type fracture. Also, guidelines are included for placing back-to-back strain gages to measure the presence/absence of possible end-attachment and eccentricity effects.

A86-14718
INTERDIFFUSIONAL EFFECTS BETWEEN TUNGSTEN FIBERS AND AN IRON-NICKEL-BASE ALLOY
Tungsten fibers in the INCOLOY 903 alloy were annealed for over 100 hours at 1038 C and 1200 C. It was found that interdiffusion results in the formation of a reaction zone. SEM-EDSprobe analysis showed that the chemistries across this zone were constant, suggesting the zone was a compound phase. The composition of the compound was estimated to be that of a mu-type phase. The local chemistry (in atomic percent) at the reaction zone/alloy matrix interface was found to be approximately 8 pct W, 1.2 pct Nb, 40 pct Fe, 14 pct Co, and 36 pct Ni. In addition, recrystallization was observed in both the remaining tungsten fiber and the nearby INCOLOY 903 matrix after annealing at 1200 C, but not at 1038 C. The results of this study suggest that reaction zone growth kinetics can be minimized by the reduction of Co and Fe and the increase of W in the matrix alloy.

A86-19999
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
LONGITUDINAL COMPRESSION FAILURE MODES IN FIBER COMPOSITES END ATTACHMENT EFFECTS ON ITRI TYPE TEST SPECIMENS
The end-attachment effects on longitudinal compressive strength of ITRI type specimen unidirectional fiber composites are formally assessed using finite-element analysis (FEA) in conjunction with composite mechanics. Sixteen different cases were analyzed to evaluate end-attachment effects (such as degree of misalignment, type of misalignment, progressive end-tab debonding, and specimen thickness) on stress distribution, peak stresses, buckling loads, and buckling mode shapes. The results obtained from the FEA and comparisons with fractured specimens show that eccentricities induce bending-type stresses which peak near the end-tabs and cause flexural type fracture. Also, guidelines are included for placing back-to-back strain gages to measure the presence/absence of possible end-attachment and eccentricity effects.

A86-20629
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
A NEW PLY MODEL FOR INTERLAMINAR STRESS ANALYSIS R. RAO VALISSETTY (NASA, Lewis Research Center, Cleveland, OH) and L. W. REHFIELD (Georgia Institute of Technology, Atlanta) IN: Delamination and debonding of materials . Philadelphia, PA, American Society for Testing and Materials, 1985, p. 52-68. refs (Contract AF-AFOSR-82-0080: AF-AFOSR-83-0056)
An accurate estimate of interlaminar stresses is crucial to understanding, as well as predicting many delamination-related failures in composite materials. A new model for ply-level sublaminate analysis is presented and applied. The homogeneous plate theory developed earlier by the authors (Valisetty and Rehfield, 1983) is further refined, and the equations are reduced appropriately for the classical finite-width free-edge laminate elasticity problem and a related delamination crack growth problem.

It is applied to the laminate on a ply-by-ply basis. This theory incorporates all the essential physical effects and appears to be an adequate model for predicting the behavior of individual layers in equilibrium. On the basis of the number of equations and boundary conditions required for the implementation of layer equilibrium, this theory also appears to be the simplest of its kind presented so far. The stress rise in the free-edge region of a (0,90,90,) laminate in uniform extension and the energy release rates for the delamination between the -30 deg and 90 deg plies of a (+, -30,+, -30, 90,90,) laminate are computed using the new analysis. The results are in excellent agreement with the existing numerical solutions. The new ply behavioral model appears to be very promising; it yields stresses and displacements that are statically and kinematically compatible at interlaminar surfaces.

A86-21486
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep.
These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with negligible plastic component. This allowed a simple predictive model to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

A86-21731
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
The toughness of composites made with modified PMR (Polymerization of monomer reactants) polyimides and Celion 6000 graphite fibers was studied. Various types/levels of monomer reactants containing flexible links were incorporated into PMR resin compositions used as matrix sections. The modified polyimides were evaluated for toughness using instrumented drop weight and 10 deg off axis tensile tests at room temperature, and for strength using flexure and short beam shear tests at room temperature.
and at elevated temperature. The effect of resin composition on composite processability, thermo-oxidative stability, toughness and mechanical properties are discussed. Author

The current status of the novel class of processable, addition-type polyimides known as PMR (for in situ polymerization of monomer reactants) polyimides, developed by NASA at the Lewis Research Center, is reviewed. Highlights of PMR technology studies conducted at NASA Lewis are presented. Several examples of industrial applications of PMR-15 polyimide composites to aerospace structural components are examined. C.D.

A methodology is described which can be used to design/analyze fiber composite structures subjected to complex hygrothermoelectrical environments. This methodology includes composite mechanics and advanced structural analysis methods (finite element). Select examples are described to illustrate the application of the available methodology. The examples include: (1) composite progressive fracture; (2) composite design for high cycle fatigue combined with hot-wet conditions; and (3) general laminate design. Author

Refined models and procedures are described for determining progressive fracture composite in graphite/epoxy angleplied laminates. Unique Lewis Research Center capabilities are utilized, including the Real-Time Ultrasonic C-San (RUSCAN) experimental facility and the Composite Durability Structural Analysis (CODSTRAN) computer code. CODSTRAN is used to predict the fracture progression based on composite mechanics, finite element stress analysis, and fracture criteria modules. The RUSCAN facility, CODSTRAN computer code, and scanning electron microscope are used to determine durability and identify failure mechanisms in graphite/epoxy composites. Results indicate that RUSCAN/CODSTRAN is an effective method of studying progressive fracture of composites. Author

A86-38999* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. TETRAGLYCIDYL EPOXY RESINS AND GRAPHITE FIBER COMPOSITES CURED WITH FLEXIBILIZED AROMATIC DIAMINES P. DELVIGS (NASA, Lewis Research Center, Cleveland, OH) Polymer Composites (ISSN 0272-8597), vol. 7, April 1986, p. 101-105. refs
Studies were performed to synthesize new ether modified, flexibilized aromatic diamine hardeners for curing epoxy resins. The effect of moisture absorption on the glass transition temperatures of a tetraglycidyl epoxy, MY 720, cured with flexibilized hardeners and a conventional aromatic diamine was studied. Unidirectional composites, using epoxy-sized Celion 6000 graphite fiber as the reinforcement, were fabricated. The room temperature and 300 F mechanical properties of the composites, before and after moisture exposure, were determined. The Mode I interlaminar fracture toughness of the composites was characterized using a double cantilever beam technique to calculate the critical strain energy release rate. Author

Specially methods are presented for the computational simulation of specific composite behavior. These methods encompass all aspects of composite mechanics, impact, progressive fracture and component specific simulation. Some of these methods are structured to computationally simulate, in part, the composite behavior and history from the initial fabrication through several missions and even to fracture. Select methods and typical results obtained from such simulations are described in detail in order to demonstrate the effectiveness of computationally simulating (1) complex composite structural behavior in general and (2) specific aerospace propulsion structural components in particular. Author

A detailed analysis of the dynamic stress field in smooth and notched fiber composite (Charpy-type) specimens is reported in this paper. The analysis is performed with the aid of the direct transient response analysis solution sequence of MSC/NASTRAN. Three unidirectional composites were chosen for the study. They are S-Glass/Epoxy, Kevlar/Epoxy and T-300/Epoxy composite systems. The specimens are subjected to an impact load which is modeled as a triangular impulse with a maximum of 2000 lb and a duration of 1 ms. The results are compared with those of static analysis of the specimens subjected to a peak load of 2000 lb. For the geometry and type of materials studied, the static analysis results gave close conservative estimates for the dynamic stresses. Another interesting inference from the study is that the impact induced effect is not built by S-Glass/Epoxy specimens sooner than Kevlar/Epoxy or T-300/Epoxy specimens. Author

Under a two-phase program sponsored by NASA, the technology for producing advanced rotary engine components utilizing graphite fiber-reinforced magnesium alloy casting is being developed. In Phase I, the successful casting of a simulated intermediate housing was demonstrated. In Phase II, the goal is to produce an operating rotor housing. The effort involves generation of a material property data base, optimization of parameters, and development of wear- and corrosion-resistant cast
COMPOSITE MATERIALS

surfaces and surface coatings. Results to date are described. Author

A88-43010* Purdue Univ., West Lafayette, Ind.
DYNAMIC DELAMINATION CRACK PROPAGATION IN A GRAPHITE/EPoxy LAMINATE
C. T. SUN (Purdue University, West Lafayette, IN) and J. E. GRADY
The dynamic delamination crack propagation behavior during ballistic tests of (90/0)5S T-300/934 graphite/epoxy laminates with embedded interfacial cracks was investigated using high speed photography. The impact on the beam-like specimen was produced with a silicon rubber ball, and the crack propagation speeds and the threshold impact velocities required to initiate dynamic crack propagation were determined for several crack positions. The results suggest that the mode of crack propagation depends on the specimen geometry as well as the loading condition. A simplified finite element analysis of the experimental data obtained from one of the midplane-cracked specimens was used to estimate the critical strain energy release rates, which may determine the onset of unstable crack propagation.

N86-10290* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PROGRESSIVE DAMAGE, FRACTURE PREDICTIONS AND POST MORTEM CORRELATIONS FOR FIBER COMPOSITES
Lewis Research Center is involved in the development of computational mechanics methods for predicting the structural behavior and response of composite structures. In conjunction with the analytical methods development, experimental programs including post failure examination are conducted to study various factors affecting composite fracture such as laminate thickness effects, ply configuration, and notch sensitivity. Results indicate that the analytical capabilities incorporated in the CODSTRAN computer code are effective in predicting the progressive damage and failure of composite structures. In addition, the results being generated are establishing a data base which will aid in the characterization of composite fracture.

N86-11276* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PROPERTIES OF AUTOCLAVED GR/PI COMPOSITES MADE FROM IMPROVED TACK PMR-15 PREPREG
Autoclave processing studies were conducted, using improved tack PMR-15 prepreg, to determine the effect of tack enhancing PMR resin modifications on composite processability and mechanical properties. Improved tack graphite fiber reinforced PMR-15 prepregs were prepared and exposed to ambient conditions for various times and then autoclave molded into composites. Composite specimens were prepared and tested for flexural, interlaminar shear, and flexural properties at room temperature and 316 C. The retention of flexural and interlaminar shear strength as a function of exposure in air at 316 C was also determined. The results show that the modified PMR resin solutions provide prepreg with improved tack and drape retention characteristics without adversely affecting processability or mechanical properties of autoclave molded graphite fiber reinforced PMR-15 composites.

N86-11278* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
RHEOLOGICAL, PROCESSING, AND 371 DEG C MECHANICAL PROPERTIES OF CELION 5000/N-PHENYLNADIMIDE MODIFIED PMR COMPOSITES
The rheology, processing, and chemistry of newly developed N-phenyl nadimide modified PMR (PMR-PN) polyimide resins are reviewed. The 371 C performance of the resins reinforced with Celion 6000 graphite fibers is also reviewed, along with the state of the art Celion 6000/PMR-15 composite. The effects of the 371 C exposure in air for up to 300 hr on the composite glass transition temperature, weight loss characteristics, and dimensional stability are presented. The changes in the composite 371 C interlaminar shear and flexural properties are also presented. In addition, composite interfacial degradation at a function of exposure time at 371 C was followed by scanning electron microscopy. The results suggest that the composite materials can be used at 371 C for at least 100 hr.

N86-11281* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
SURFACE PROTECTION OF GRAPHITE FABRIC/PMR-15 COMPOSITES SUBJECT TO THERMAL OXIDATION
Graphite fabric/PMR-15 laminates develop matrix cracks during long-term exposure in air at temperatures in the range of 500 to 600 F. This study was performed to demonstrate the effectiveness of incorporating graphite mat surface plies as a means of reducing the developing of matrix cracks. Celion 3000 graphite fabric/PMR-15 laminates were fabricated with graphite or graphite mat/325-mesh boron powder surface plies. Laminates without mat surface plies were also fabricated for control purposes. Composite flexural strength, flexural modulus, and interlaminar shear strength were determined at 288 C before and after long-term exposure (up to 1500 hr) in air at 316 C. The results of this study showed that the incorporation of graphite mat surface plies reduces matrix cracking and improves the elevated temperature mechanical property retention characteristics of the composites.

Author
A series of condensation polymides based on pyromellitic dianhydride is synthesized and evaluated for potential application at 371 C. Several three-and four-ring benzamide diazines containing oxygen bridging groups, are investigated. Thermomechanical analysis of neat resin specimens indicate that the pyromide prepared from the dimethyl ester of pyromellitic acid (PMDE) and 2,2-bis(4'-aminophenoxy) phenyl-1,1,1,3,3,3-hexafluoropropane (BDAF) is the only resin system which has a glass transition temperature (Tg) above 371 C. The Tg of the PMDE/BDAF pyromide is found to be 390 C after a postcure at 371 C for 24 hr. Unidirectional composites are fabricated from the PMDE/BDAF system and unalloyed Celion 6000 graphite fibers. Final cure temperatures in the range of 371 to 427 C with an applied pressure of 10.34 to 13.78 MPa are investigated. The void content of the composites ranges from 4.6 to 8.8 percent. Composites cured at 390 C under a pressure of 10.34 MPa and postcured in air at 371 C for 24 hr exhibit the highest 371 C interlaminar shear strength (ILSS, 40.7 MPa) and flexural strength (758 MPa). The thermo-oxidative stability of the composites is determined by subjecting specimens to isothermal exposure at 371 C in air at atmospheric pressure, as well as a pressure of 0.52 MPa. Specimens exposed at atmospheric pressure exhibit a weight loss of 12 percent after 200 hr of exposure and 56 percent retentive of its original 371 C ILSS. In contrast, the specimens exposed at 0.52 MPa pressure exhibit a comparable weight loss after only 72 hr, and a 71 percent retention of its original 371 C ILSS.

Author

COMPOSITES DURING THERMO-OXIDATIVE AGING

Studies were conducted to establish the effects of specimen geometry on the thermo-oxidative stability and the mechanical properties retention of unidirectional Celion 12000 graphite fiber reinforced PMR-15 pyromide composites. Weight loss, flexural strength and interlaminar shear strength are measured at isothermal aging times as long as 1639 hr at a temperature of 316 C for three different specimen geometries. It is found that the three different types of specimen surfaces exhibit different values of weight loss/unit area. The mechanical properties retention is also found to be dependent on geometry for these composites. The interlaminar shear strength decreases significantly over the complete range of aging times. The flexural strength retention starts showing geometric dependence, far after about 10 day of aging at 316C. Weight loss fluxes, associated with the three different types of exposed surfaces, are calculated and used to develop an empirical mathematical model for predicting the weight loss behavior of unidirectional composites of arbitrary geometries. Data are presented comparing experimentally determined weight loss with weight loss values predicted using the empirical model.

Author
properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was also found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties. Dissert. Abstr.

N86-24756
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
THERMOVISCOPLASTIC NONLINEAR CONSTITUTIVE RELATIONSHIPS FOR STRUCTURAL ANALYSIS OF HIGH TEMPERATURE METAL MATRIX COMPOSITES
A set of thermoviscoplastic nonlinear constitutive relationships (1VP-NCR) is presented. The set was developed for application to high temperature metal matrix composites (HT-MMC) and is applicable to thermal and mechanical properties. Formulation of the TVP-NCR is based at the micromechanics level. The TVP-NCR are of simple form and readily integrated into nonlinear composite structural analysis. It is shown that the set of TVP-NCR is computationally effective. The set directly predicts complex materials behavior at all levels of the composite simulation, from the constituent materials, through the several levels of composite mechanics, and up to the global response of complex HT-MMC structural components. E.A.K.

N86-24757
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
A UNIQUE SET OF MICROMECHANICS EQUATIONS FOR HIGH TEMPERATURE METAL MATRIX COMPOSITES
A unique set of micromechanics equations is presented for high temperature metal matrix composites. The set includes expressions to predict the mechanical properties, thermal properties and constituent microstresses for the undirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated. E.A.K.

N86-24759
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
SIMPLIFIED COMPOSITE MICROMECHANICS FOR PREDICTING MICROSTRESSES
A unified set of composite micromechanics equations is summarized and described. This unified set is for predicting the ply microstresses when the ply stresses are known. The set consists of expressions of simple form for predicting three-dimensional stresses (six each) in the matrix, fiber, and interface. Several numerical examples are included to illustrate use and computational effectiveness of the equations in this unified set. Numerical results from these examples are discussed with respect to their significance on microcrack formation and, therefore, damage initiation in fiber composites. Author

N86-24760
EVALUATION OF CAPILLARY REINFORCED COMPOSITES
Contractor Report, Sep. 1984 - Sep. 1985
J. E. CAHILL, J. F. HALASE, W. K. SOUTH, and L. J. STOFFER
Prepared for National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
A unique set of micromechanics for composite engine structures to combat ice accumulation. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation. Author
CARBON-RICH CERAMIC COMPOSITES FROM ETHYNYL AROMATIC PRECURSORS
A number of polyfunctional aromatic acetylenes thermally polymerize at low temperatures (160° C) and pyrolyze with greater than 90% char yield. In nonoxidizing environments, they are thermally stable to 1450° C. These monomers were chosen as the basis of a model system to study the fabrication and mechanical properties of continuous filament ceramic matrix composites. Composites were fabricated from aryl poly(acetylenes), Sic particulate filler and graphite, Avco Sic, Nicalon and Nextel fibers. Microstructure, physical and mechanical properties are reported.

INORGANIC AND PHYSICAL CHEMISTRY
Includes chemical analysis, e.g., chromatography; combustion theory; electrochemistry; and photochemistry.

N86-28376* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. COMPUTATIONAL SIMULATION OF PROGRESSIVE FRACTURE IN FIBER COMPOSITES C. C. CHAMIS 1986 12 p refs Presented at the International Conference on Computational Mechanics, Tokyo, Japan, 25-28 May 1986 (NASA-TM-87341); E-3090; NAS 1.15:87341) Avail: NTIS HC A02/MF A01 CSCL 11D
Computational methods for simulating and predicting progressive fracture in fiber composite structures are presented. These methods are integrated into a computer code of modular form. The modules include composite mechanics, finite element analysis, and fracture criteria. The code is used to computationally simulate progressive fracture in composite laminates with and without defects. The simulation tracks the fracture progression in terms of modes initiating fracture, damage growth, and imminent global (catastrophic) laminate fracture.

A number of polyfunctional aromatic acetylenes thermally polymerize at low temperatures (160° C) and pyrolyze with greater than 90% char yield. In nonoxidizing environments, they are thermally stable to 1450° C. These monomers were chosen as the basis of a model system to study the fabrication and mechanical properties of continuous filament ceramic matrix composites. Composites were fabricated from aryl poly(acetylenes), Sic particulate filler and graphite, Avco Sic, Nicalon and Nextel fibers. Microstructure, physical and mechanical properties are reported.

The Integrated Composites Analyzer (ICAN), a stand-alone computer code, incorporates micromechanics equations and laminate theory to analyze/design multilayer fiber composite structures. Procedures for both the implementation of new data in ICAN and the selection of appropriate measured data are summarized for: (1) composite systems subject to severe thermal environments; (2) woven fabric/cloth composites; and (3) the selection of new composite systems including those made from high strain-to-fracture fibers. The comparisons demonstrate the versatility of ICAN as a reliable method for determining composite properties suitable for preliminary design. M.G.
gradients in both the gas and the solid. For the conditions studied it is concluded that: the initial heat release occurs near the entrance of the gas-solid interface and is controlled by heterogeneous reactions; large spatial and temporal temperature gradients occur in the solid near the entrance controlled mostly by the availability of fuel; the temperature of the solid near the entrance achieves almost its steady state value before significant heating of the back; heterogeneous reactions and the gas heated up front and flowing downstream from heat the solid; the overall transient time is controlled by the thermal inertia of the solid and by forced convection; radiation significantly influences both transient and steady state particularly near the entrance; the oxidation of CO occurs mostly on the catalyst and becomes diffusion controlled soon into the transient.

Author

A86-12413* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

EFFECT OF GRAVITY ON LAMINAR PREMIXED GAS COMBUSTION. I - FLAMMABILITY LIMITS AND BURNING VELOCITIES

A comparison of fuel-lean flammability limits and burning velocities in closed vessels for methane-air mixtures between zero-g and one-g at a pressure of 50-1500 torr, made possible by the elimination of natural convection, is presented. Some of the findings are: the one-g upward flammability limit occurs at a mixture which has a burning velocity which is so low that flame propagation is impractical; that the one-g downward flammability limit is related to the inability of the flame front to propagate downward against buoyant forces, and that near-limit flame propagation at zero-g is mostly independent of the experimental apparatus.

F.J.

A86-12414* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

EFFECT OF GRAVITY ON LAMINAR PREMIXED GAS COMBUSTION. II - IGNITION AND EXTINCTION PHENOMENA

P. D. RONNEY (NASA, Lewis Research Center, Cleveland, OH; MIT, Cambridge, MA) Combustion and Flame (ISSN 0010-2180), vol. 62, Nov. 1985, p. 121-133. refs

(Contract NAG3-173)

At the initial pressure of 50-1500 torr, the minimum ignition energies and flame radii for near-limit, limit, and sublimit fuel-lean methane-air mixtures burning at one-g and zero-g measured as a function of time, are examined. Some of the findings are: the one-g upward flammability limit occurs at a mixture which has a burning velocity which is so low that flame propagation is impractical; that the one-g downward flammability limit is related to the inability of the flame front to propagate downward against buoyant forces, and that near-limit flame propagation at zero-g is mostly independent of the experimental apparatus.

J.C.

A86-12253* California Univ., Berkeley.

DYNAMIC FEATURES OF COMBUSTION

A. K. OPPENHEIM (California, University; California, University, Lawrence Berkeley Laboratory, Berkeley) Royal Society (London) Philosophical Transactions, Series A (ISSN 0080-4614), vol. 315, no. 1534, Sept. 26, 1985, p. 471-508. refs

(Contract DE-AC03-76SF00008; NSF CPE-83-02232; NAG3-131; NAG3-137)

The dynamic features of combustion are discussed for four important cases: ignition, inflammation, explosion, and detonation. Ignition, the initiation of a self-sustained exothermic process, is considered in the simplest case of a closed thermodynamic system and the stochastic distribution. Inflammation, the initiation and propagation of self-sustained flames, is presented for turbulent flow. Explosion, the dynamic effects caused by the deposition of exothermic energy in a compressible medium, is illustrated by self-similar blast waves with energy deposition at the front and the adiabatic non-self-similar wave. Detonation, the most comprehensive illustration of all the dynamic effects of combustion, is discussed with a phenomenological account of the development and structure of the wave.

C.D.

EFFECTS OF BUOYANCY ON GAS JET DIFFUSION FLAMES - EXPERIMENT AND THEORY

(Contract NAS3-22822) (IAF PAPER 85-266)

Theoretical and experimental research on the effects of buoyancy on gas-jet diffusion flames is described. Part of this research involves an assessment of existing data obtained under reduced-gravity conditions. The results show that uncertainties in the present understanding of flame structure exist and further research is required before reliable predictions of ignition, stabilization, and propagation of flames under microgravity conditions can be made. Steady-state and transient theories have been developed and used in the analysis of existing drop-tower data and new data obtained from a stationary experiment involving inverted flames. The result of this research has led to the design of a microgravity experiment to be performed in space.

Author

A86-15805* California Univ., Berkeley.

BUOYANCY EFFECTS ON SMOLDERING COMBUSTION

S. DOSANJH, J. PETERSON, A. C. FERNANDEZ-PELLO, and P. J. PAGNI (California, University, Berkeley) IAF, International Astronautical Congress, 36th, Stockholm, Sweden, Oct. 7-12, 1985, p. 31. refs

(Contract NAG3-443) (IAF PAPER 85-289)

The effect of buoyancy on the rate of spread of a concurrent smolder reaction through a porous combustible material is investigated theoretically and experimentally. In the experiments, buoyant forces are controlled by varying the density difference, and the smolder rate spread through porous alpha cellulose (0.83 void fraction) is measured as a function of the ambient air pressure. The smolder velocity is found to increase with the ambient pressure; extinction occurs when the buoyancy forces cannot overcome the drag forces, indicating that diffusion by itself cannot support the spread of a smolder reaction. Theoretical predictions are found to be in good qualitative agreement with the experimental results.

V.L.

A86-19389* State Univ. of New York, Stony Brook.

THEORY OF HOMOGENEOUS NUCLEATION - A CHEMICAL KINETIC VIEW

C. H. VAN&, and H. QIU (New York, State University, Stony Brook) Journal of Chemical Physics (ISSN 0021-9606), vol. 84, Jan. 1, 1986, p. 416-423. refs

(Contract NCC3-2)

A simple function with two undetermined parameters has been used in place of the Thomson-Gibbs relation to relate the activation energy of the vaporization reaction to cluster size. The parameters are ill-defined to assume one value in numerical computation so experimental data may be correlated. Calculations show this approach closely predicts and correlates available data for water, benzene, and ethanol. The nucleation formalism is redeveloped with an emphasis on the chemical kinetic view. Surface tension of the liquid and free energy of droplet formation are not used in its derivation.

Author
TEMPERATURE AND VELOCITY PROFILES IN SOOTING FREE BOUNDARY LAYER FLAMES
J. A. ANG, P. J. PAGNI, T. G. MATAGA (California, University, Berkeley), J. M. MARGER, and V. J. LYONS (NASA, Lewis Research Center, Cleveland, OH). AIAA, Aerospace Sciences Meeting, 24th, Reno, NV, Jan. 6-9, 1986. 10 p. NBS-supported research.
(AIAA PAPER 86-0575)

Temperature and velocity profiles are presented for cyclohexane, n-heptane, and iso-octane free, laminar, boundary layer, sooting, diffusion flames. Temperatures are measured with 3 mil Pt/Pt-13 percent Rh thermocouples. Corrected gas temperatures are derived by performing an energy balance of convection to and radiation from the thermocouple bead incorporating the variation of air conductivity and platinum emissivity with temperature. Velocities are measured using laser doppler velocimetry techniques. Profiles are compared with previously reported analytic temperature and velocity fields. Comparison of theoretical and experimental temperature profiles suggests improvement in the analytical treatment is needed, which accounts more accurately for the local soot radiation. The velocity profiles are in good agreement, with the departure of the theory from observation partially due to the small fluctuations inherent in these free flows.

NUMERICAL SIMULATION OF A TURBULENT FLAME STABILIZED BEHIND A REARWARD-FACING STEP

Flow of combustible mixtures in a plane channel past a smooth corner is followed by an abrupt expansion, in a typical dump combustor configuration, is modeled by a two-dimensional numerical technique based on the random vortex method. Both the inert and the reacting case are considered. In the latter, the flame is treated as an interface, self-advancing at a prescribed normal burning speed, while the dynamic effects of expansion due to the exothermicity of combustion are expressed by volumetric source lines delineated by its front. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and the reattachment length. The stochastic turbulent velocity components manifest interesting differences, especially near the walls where three-dimensional effects of turbulence are expected to be of importance.

PERIODIC OSCILLATIONS OBSERVED IN SWIRLING FLOWS

Data obtained by laser induced Rayleigh scattering and hot-wire anemometry are used to study periodic oscillations in swirling flows with and without combustion present. Power spectral density functions reveal the presence of energetic, periodic oscillations in the flow. A band of low frequency oscillations (25-100 Hz) is observed on and near the centerline in the presence of a recirculation zone and is attributed to axial oscillations of the recirculation zone which are amplified by combustion in an interaction between the mechanism for flow recirculation and flow changes induced by combustion. High frequency oscillations between 300-500 Hz are observed in an annular region located in the vortex core. A stability analysis is performed, and it is concluded that these oscillations are most likely helical waves resulting from hydrodynamic instability in the vortex core upstream of the test section.
intensity of lean and rich mixtures of methane, propane, butane, ethylene, and hydrogen with air has been experimentally studied. The results substantiate theoretical predictions and quantify previous experimental observations that, for mixtures whose effective Lewis numbers (Le) are less than unity, the flame temperature is less than the adiabatic flame temperature. This temperature also decreases towards the flame tip, which has the largest curvature and therefore the lowest local extinction. The presence of the highly diffusive hydrogen-air flame occurs at constant hydrogen equivalence ratios of about 1.15 to 1.20, being almost independent of the flow intensity and uniformity.

A86-22814 Chinese Academy of Sciences, Peking.

ON THE DETERMINATION OF LAMINAR FLAME SPEEDS FROM STRETCHED FLAMES

The effects of stretch on the determination of the laminar flame speed are experimentally studied by using the positively-stretched stagnation flame and negatively-stretched bunsen flame, and by using lean and rich mixtures of methane, propane, butane, and hydrogen with air whose effective Lewis numbers are either greater or less than unity. Results demonstrate that flame speed determination can be influenced by stretch through two factors: (1) Preferential diffusion which tends to increase or decrease the flame temperature and burning rate depending on the effective Lewis number, and (2) Flow divergence which causes the flame speed to assume higher values when evaluated at the upstream boundary of the preheat zone instead of the reaction zone. Recent data on flame speed including the present ones are then examined from the unified viewpoint of flame stretch, leading to satisfactory resolution of the discrepancies between them. The present study also proposes a methodology of determining the laminar flame speeds by using the stagnation flame and linearly extrapolating the data to zero stretch rate.

A86-22816 Northwestern Univ., Evanston, Ill.

AN EXPERIMENTAL INVESTIGATION ON FLAME INTERACTION AND THE EXISTENCE OF NEGATIVE FLAME SPEEDS

Downstream interaction between two counterflow premixed flames of different stoichiometries are investigated. Various flame configurations are observed and quantified; these include the binary system of two lean or rich flames, the triplet system of a lean and a rich flame separated by a diffusion flame, and single diffusion flames with some degree of premixedness. Extinction limits are determined for methane/air and butane/air mixtures over the entire range of mixture concentrations. Results show that these extinction limits can be significantly modified in the presence of interaction such that a mixture may be extinguishable in counterflow but be able to burn if it is supported by a stronger flame. The experiment also demonstrates the existence of negative flames whose propagation velocity is in the same general direction as that of the bulk convective flow. Implications of the present results on the flammability of stratified mixtures and on the modeling of turbulent flames are discussed.

A86-23352 Westinghouse Research and Development Center, Pittsburgh, Pa.

TRANSMISSION ELECTRON MICROSCOPIC EXAMINATION OF PHOSPHORIC ACID FUEL CELL COMPONENTS

Transmission electron microscopy (TEM) was used to physically characterize tested and untested phosphoric acid fuel cell (PAFC) components. Those examined included carbon-supported platinum catalysts, carbon backing paper, and Teflon-bonded catalyst layers at various stages of fabrication and after testing in pressurized PAFC's. Applicability of electron diffraction and electron energy loss spectroscopy for identifying the various phases was explored. The discussion focuses on the morphology and size distribution of platinum, the morphology and structural aspects of Teflon in catalyst layers, and the structural evidence of carbon corrosion. Reference is made to other physical characterization techniques where appropriate. A qualitative model of the catalyst layer that emerged from the TEM studies is presented.

A86-29070 Purdue Univ., West Lafayette, Ind.

INFLUENCE OF TEMPERATURE AND HYDROXYL CONCENTRATION ON INCIPIENT SOOT FORMATION IN PREMIXED FLAMES

M. M. HARRIS, G. B. KING, and N. M. LAURENDEAU (Purdue University, West Lafayette, IN) Combustion and Flame (ISSN 0010-2180), vol. 64, April 1986, p. 99-112. refs (Contract NAG3-360)

The equivalence ratios phi(c) have been measured as a function of temperature (1600-1880 K) for premixed flames at atmospheric pressure. The five fuels studied were methane, ethane, propane, ethylene, and acetylene. The flames were stabilized on a flat flame burner and the temperatures were measured using sodium D-line reversal. A linear relationship is found between phi(c) and 1/T for each fuel. Based on a global kinetic model in which hot precursors are formed by fuel pyrolysis and oxidized by OH, a predictive correlation has been developed which shows the influence of temperature, OH concentration, and C/H ratio on sooting tendency. This correlation describes all of the measured phi(c) versus temperature data, suggesting that the overall mechanism of soot formation is similar among aliphatic fuels.

A86-32752 Northwestern Univ., Evanston, Ill.

THEORY OF INTERACTIVE COMBUSTION OF COUNTERFLOW PREMIXED FLAMES

S. H. SOHRAB, Z. Y. YE, and C. K. LAW (Northwestern University, Evanston, IL) Combustion Science and Technology (ISSN 0010-2202), vol. 45, no. 1-2, 1986, p. 27-45. refs (Contract NAG3-361; DE-FG03-84ER-13274)

The framework of large activation energy asymptotics is used in an investigation of the extinction characteristics of two interacting premixed flames in counterflow configuration, analyzing the interactive combustion modes of two lean premixed flames, two rich premixed flames, and one of each type of flame separated by a diffusion flame. Results corresponding to symbiotic combustion of two lean or two rich premixed flames exist in which either flame will be extinguished in the absence of the other. Conditions for the existence of superadiabatic flames within mixtures outside of the conventional flammability limit compositions are established, and practical implications of flame interaction for combustion in inhomogeneous mixtures are discussed.
NEW INTEGRATION TECHNIQUES FOR CHEMICAL KINETIC RATE EQUATIONS. II - ACCURACY COMPARISON

Previously announced in STAR as N85-13798. refs (ASME PAPER 85-GT-30)

A comparison of the accuracy of several techniques recently developed for solving stiff differential equations is presented. The techniques examined include two general purpose codes EEPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREEKID, and GCKP84 developed specifically to solve chemical kinetic rate equations. The accuracy comparisons are made by applying these solution procedures to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas phase chemical reactions at constant pressure, and include all three combustion regimes: induction heat release, and equilibrium. The comparisons show that LSODE is the most efficient code - in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that an iterative solution of the algebraic enthalpy conservation equation for the temperature can be more accurate and efficient than computing the temperature by integrating its time derivative.

M.G.

A86-39958* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NEW INTEGRATION TECHNIQUES FOR CHEMICAL KINETIC RATE EQUATIONS. I - EFFICIENCY COMPARISON

A comparison of the efficiency of several recently developed numerical techniques for solving chemical kinetic rate equations is presented. The solution procedures examined include two general-purpose codes, EEPISODE and LSODE, developed as multipurpose differential equation solvers, and three specialized codes, CHEMEQ, CREEKID, and GCKP84, developed specifically for chemical kinetics. The efficiency comparison is made by applying these codes to two practical combustion kinetics problems. Both problems describe adiabatic, constant-pressure, gas-phase chemical reactions and include all three combustion regimes: induction heat release, and equilibrium. The comparison shows that LSODE is the fastest routine currently available for solving chemical kinetic rate equations. An important finding is that an iterative solution of the algebraic enthalpy conservation equation for temperature can be significantly faster than evaluation of the temperature by integration of its time derivative. Significant increases in computational speed are realized by updating the reaction rate constants only when the temperature change exceeds an amount Delta-T that is problem dependent. An approximate expression for the automatic evaluation of Delta-T is presented and is shown to result in increased computational speed.

Author

25 INORGANIC AND PHYSICAL CHEMISTRY

A86-38090* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

HYDROCARBONS

Soot formation in pyrolysis of chlorinated methanes, their mixtures with methane, and chlorinated ethenyes were studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. An additional single-pulse shock-tube study was conducted for pyrolysis of methane, methyl chloride, and dichloromethane. The experiments were performed at temperatures 1300-3000 K, pressures of 0.4-3.6 bar, and total carbon atom concentrations of 1-5 x 10 to the 17th atoms cu cm. The amounts of soot produced in the pyrolysis of chlorinated hydrocarbons are larger than that of their nonchlorinated counterparts. The sooting behavior and product distribution can be generally explained in terms of chlorine-catalyzed chemical reaction mechanisms.

Author

A86-35125* Louisiana State Univ., Baton Rouge.

SHOCK-TUBE PYROLYSIS OF CHLORINATED HYDROCARBONS - FORMATION OF SOOT

Soot formation in pyrolysis of chlorinated methanes, their mixtures with methane, and chlorinated ethenyes were studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. An additional single-pulse shock-tube study was conducted for pyrolysis of methane, methyl chloride, and dichloromethane. The experiments were performed at temperatures 1300-3000 K, pressures of 0.4-3.6 bar, and total carbon atom concentrations of 1-5 x 10 to the 17th atoms cu cm. The amounts of soot produced in the pyrolysis of chlorinated hydrocarbons are larger than that of their nonchlorinated counterparts. The sooting behavior and product distribution can be generally explained in terms of chlorine-catalyzed chemical reaction mechanisms.

Author

A86-40677* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THE REACTIONS OF COBALT, IRON AND NICKEL IN SO2 ATMOSPHERES SIMILARITIES AND DIFFERENCES

The reactions of cobalt, iron and nickel in SO2 atmospheres are reviewed and compared. A mixed oxide-sulfide product layer is observed in all cases. Cobalt and nickel exhibit similar behavior. The observed rates are near the sulfidation rates, and the reaction rate is strongly influenced by the outward diffusion of metal through an interconnected sulfide network. A continuous interconnected sulfide is not observed in the oxide-sulfide scales formed on iron, and the reaction rates are more difficult to summarize. The differences and similarities among the three metals are explained in terms of the absence of scale-gas equilibrium and the ratio of the metal diffusivity in the corresponding oxide and sulfide.

Author

A86-40834* Princeton Univ., N. J.

THE HIGH-TEMPERATURE OXIDATION OF AROMATIC HYDROCARBONS

Chemical mechanisms of the atmospheric pressure, high-temperature (875-1500 K) gas-phase oxidation of benzene, toluene, ethybenzene, and propylenebenzene are described and discussed. Oxidation trends evident from turbulent flow reactor experiments serve as the basis for the mechanisms of the oxidation
of benzene and alkylated aromatics. The potential effects of very high temperatures and pressures on the chemistry of oxidation of aromatics are described. The oxidation of benzene and phenyl radical has been found to proceed in a stepwise C6-C5-C4 sequence. Species profiles obtained from flow-reactor experiments suggest that the oxidation of benzene and phenyl radical follows the generalized route via phenoxy, cyclopentadienyl and butadienyl radical. The oxidation of the C4 species branches into multiple pathways that yield catalytic amounts of ethylene and acetylene. Certain major trends are evident: the alkylated aromatics on initial attack either form styrene, benzyl radical or benzene. The styrene reacts further to produce a benzyl radical or benzene. The oxidation of an alkylated aromatic hydrocarbon appears eventually to reduce to the oxidation of either phenyl radical or benzene. Author

A86-47083* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. SURFACE MODIFICATION STRATEGIES FOR (100)SiC-SiC J. J. BELLINA, JR. (Saint Mary's College, Indiana, IN), J. FERRANTE (NASA, Lewis Research Center, Cleveland, OH), and M. V. ZELLER (Notre Dame, University, IN) Journal of Vacuum Science and Technology A (ISSN 0734-2101), vol. 4, May-June 1986, pt. II, p. 1692-1695. refs (Contract NAG3-426)

Several surface modification techniques were performed in situ in an ultrahigh vacuum as part of a program to develop electrical contacts on the (100) face of cubic SiC. The Auger electron spectroscopy line shapes and peak-to-peak heights of the Si LVV and CKLL transitions indicated changes in surface stoichiometry, bonding, and short range order. Changes in the low-energy electron diffraction pattern identified changes in the symmetry of long range order. Deposition of carbon on the surface at 1050 C deposited the surface of Si with an activation energy of 120 kcal/mol, resulting eventually to a disordered graphitic layer which was several atomic layers thick. Bombardment by Ar ions of energies greater than 1000 eV enhanced the Si to C ratio on the surface and destroyed the LEED pattern. Long range order was recovered by simultaneous heating and ion bombardment. Finally, adsorption of Cr on the Ar ion damaged surface and subsequent desorption left a...
for several spark energies was determined for equivalence ratios to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency of 30, 40, 50, 60 and 70 microns by varying the electrode spacing was observed. The effect of spark duration on ignition frequency of 0.5 and 1.0 and initial droplet diameters of 28 and 68 microns.

EVALUATION PARAMETERS FOR THE ALKALINE FUEL CELL OXYGEN ELECTRODE

J. SINGER and V. SRINIVASAN (Bowling Green State Univ., Ohio) Nov. 1985 13 p refs (NASA-TM-87155; E-2669; NAS 1.15:87155) Avail: NTIS HC A02/MF A01 CSCL 07D

Studies were made of Pt- and Au-catalyzed porous electrodes, designed for the cathode of the alkaline H2/O2 fuel cell, employing cyclic voltammetry and the floating half-cell method. The purpose was to obtain parameters from the cyclic voltammograms which could predict performance in the fuel cell. It was found that a satisfactory relationship between these two types of measurement could not be established; however, useful observations were made of relative performance of several types of carbon used as supports for noble metal catalysts and of some Au catalysts. The best half-cell performance with H2/O2 in a 35 percent KOH electrolyte at 50 C was given by unsupported fine particle Au on Teflon; this electrode is used in the Orbiter fuel cell.

TRANSITION REGION IxGNITION CHARACTERISTICS OF N-HEPTANE FUEL SPRAYS

N86-19417*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A THICK DEGRADATION STUDY OF A FLUORINATED POLYETHER LIQUID LUBRICANT USING AN HPLC METHOD

A High Pressure Liquid Chromatography (HPLC) separation method was developed to study and analyze a fluorinated polyether liquid which is promising liquid lubricant for future applications. This HPLC separation method was used in a preliminary study investigating the catalytic effect of various metal, metal alloy, and ceramic engineering materials on the degradation of this fluid in a dry air atmosphere at 345 C. Using a 440 C stainless steel as a reference catalytic material it was found that a titanium alloy and a chromium plated material degraded the fluorinated polyether fluid substantially more than the reference material.

N86-21635*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

METHANE OXIDATION BEHIND REFLECTED SHOCK WAVES: IGNITION DELAY TIMES MEASURED BY PRESSURE AND FLAME BAND EMISSIONS

T. A. BRABBS and T. F. ROBERTSON (Case Western Reserve Univ., Cleveland, Ohio) 1986 23 p refs Presented at the Central States Meeting of the Combustion Inst., Cleveland, Ohio, 5-6 May 1986 (NASA-TM-87268; E-2856; NAS 1.15:87268) Avail: NTIS HC A02/MF A01 CSCL 21B

Ignition delay data were recorded for three methane-oxygen-argon mixtures (phi = 0.5, 1.0, 2.0) for the temperature range 1500 to 1920 K. Quiet pressure transces enabled us to obtain delay times for the start of the experimental pressure rise. These times were in good agreement with those obtained from the flame band emission at 3700 A. The data correlated well with the oxygen and methane dependence of Lifshitz, but showed a much stronger temperature dependence (phi = 0.5 delta E = 51.9, phi = 1.0 delta = 56.8, phi = 2.0 delta E = 58.7 Kcal). The effect of probe location on the delay time...
25 INORGANIC AND PHYSICAL CHEMISTRY

measurement was studied. It appears that the probe located 83 mm from the reflecting surface measured delay times which may not be related to the initial temperature and pressure. It was estimated that for a probe located 7 mm from the reflecting surface, the measured delay time would be about 10 microseconds too short, and it was suggested that delay times less than 100 microseconds should not be used. The ignition period was defined as the time interval between start of the experimental pressure rise and 50 percent of the ignition pressure. This time interval was measured for three gas mixtures and found to be similar (40 to 60 microsec for phi = 1.0 and 0.5 but much longer (100 to 120) microsecond for phi = 2.0. It was suggested that the ignition period would be very useful to the kinetic modeler in judging the agreement between experimental and calculated delay times.

Author

N86-25431*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

IGNITION DELAY TIMES OF BENZENE AND TOLUENE WITH OXYGEN IN ARGON MIXTURES

The ignition delay times of benzene and toluene with oxygen diluted in argon were investigated over a wide range of conditions. For benzene the concentration ranges were 0.4 to 1.69 percent fuel and 3.78 to 20.3 percent oxygen. The temperature range was 1212 to 1748 K and the reflected shock pressures were 1.7 to 7.89 atm. Statistical evaluation of the benzene experiments provided an overall equation which is given. For toluene the concentration ranges were 0.5 to 1.5 percent fuel and 4.48 to 13.45 percent oxygen. The temperature range was 1339 to 1797 K and the reflected shock pressures were 1.95 to 8.85 atm. The overall ignition delay equation for toluene after a statistical evaluation is also given. Detailed experimental information is provided.

Author

N86-27434*# California Univ., San Diego.

Two phase flame propagation and extinction theory required to support the corresponding experiments planned for the space shuttle is being developed. Also being planned are specialized hardware, experimental procedures, data acquisition philosophy, and other ground based support activities required to assure the success of space shuttle based experiments concerned with combustion of clouds of particulates at reduced gravitational conditions. The further development of relations delineating combustion of clouds of particulates at reduced gravitational conditions. The development of relations delineating combustion of clouds of particulates at reduced gravitational conditions. The development of relations delineating combustion of clouds of particulates at reduced gravitational conditions. The development of relations delineating combustion of clouds of particulates at reduced gravitational conditions.
METALLIC MATERIALS

Includes physical, chemical, and mechanical properties of metals, e.g., corrosion; and metallurgy.

A86-11478* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SLOW PLASTIC STRAIN RATE COMpressive FLOW IN BINARY COAl INTERMETALLICS
J. D. WHITTENBERGER (NASA, Lewis Research Center, Cleveland, OH) Materials Science and Engineering (ISSN 0025-5416), vol. 73, Aug. 1985, p. 87-96.

Constant-velocity elevated temperature compression tests have been conducted on a series of binary CoAl intermetallics produced by hot extrusion of blended prealloyed powders. The as-extruded materials were polycrystalline, and they retained their nominal 10-micron grain size after being tested between 1100 and 1400 K at strain rates ranging from 2 x 10 to the -4th to 2 x 10 to the -7th per sec. Significant plastic flow was obtained in all cases; while cracking was observed, much of this could be due to failure at matrix-oxide interfaces along extrusion stringers rather than to solely intergranular fracture. A maximum in flow strength occurs at an aluminum-to-cobalt ratio of 0.975, and the stress exponent appears to be constant for aluminum-to-cobalt ratios of 0.85 or more. It is likely that very aluminum-deficient materials deform by a different mechanism than do other compositions.

A86-12996# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THE INFLUENCE OF COBALT, TANTALUM, AND TUNGSTEN ON THE ELEVATED TEMPERATURE MECHANICAL PROPERTIES OF SINGLE CRYSTAL NICKEL-BASE SUPERALLOYS

The influence of composition on the tensile and creep strength of 001-line oriented nickel-base superalloy single crystals at temperatures near 1000 C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247. For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta-plus-W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels of gamma-prime volume fraction, gamma-gamma-prime lattice mismatch, and solid solution hardening.

A86-13801* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EROSION OF ALUMINUM 6061-T6 UNDER CAVITATION ATTACK IN MINERAL OIL AND WATER

Studies of the erosion of aluminum 6061-T6 under cavitation attack in distilled water, ordinary tap water and a viscous mineral oil are presented. The mean depth of penetration for the mineral oil was about 40 percent of that for water at the end of a 40 min test. The mean depth of penetration and its rate did not differ significantly for distilled and tap water. The mean depth of penetration rate for both distilled and tap water increased to a maximum and then decreased with test duration, while that for mineral oil had a maximum during the initial period. The ratio h/2a of the pit depth h to the pit diameter 2a varied from 0.04 to 0.13 in water and from 0.06 to 0.20 in mineral oil. Scanning electron microscopy indicates that the pits are initially formed over the grain boundaries and precipitates while the surface grains are deformed under cavitation attack.

A86-14719* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THE DEVELOPMENT OF GAMMA-GAMMA-PRIME LAMELLAR STRUCTURES IN A NICKEL-BASE SUPERALLOY DURING ELEVATED TEMPERATURE MECHANICAL TESTING

The kinetics of the formation and subsequent development of the directional coarsening of the gamma-prime precipitate in model Ni-Al-Mo-Ta superalloy single crystals are examined during tensile creep under various stress levels at 982 and 1038 C. Special attention is given to the gamma and gamma-prime relation to creep time and strain in order to trace the changing gamma-gamma-prime morphology. Directional coarsening of gamma-prime is found to begin during the primary creep and its rate is shown to increase with an increase in temperature or stress level. The length of gamma-prime thickness increased linearly with
time up to a plateau reached after the onset of steady state creep. The raft thickness, equal to the gamma-prime size, remained constant at this initial value up through the onset of the tertiary creep. The interlaminar spacing indicates the stability of directionally coarsened structure.

F.J.

A86-16257* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. MECHANICAL-CONTACT-INDUCED TRANSFORMATION FROM THE AMORPHOUS TO THE PARTIALLY CRYSTALLINE STATE IN METALLIC GLASS

Friction and wear tests were conducted with 3.2- and 6.4-millimeter-diameter aluminum oxide spheres sliding, in reciprocating motion, on a Fe67Co18B14Si as metallographic foil. Crystals with a size range of 10 to 150 nanometers were produced on the wear surface of the amorphous alloy. A strong interaction between transition metals and metalloids such as silicon and boron results in strong segregation during repeated sliding, provides preferential transition metal-metalloid clustering in the amorphous alloy, and subsequently produces the diffused honeycomb structure formed by dark grey bands and primary crystals, that is, alpha-Fe in the matrix. Large plastic flow occurs on an amorphous alloy surface with sliding and the flow film of the alloy transfers to the aluminum oxide pin surface. Multiple slip bands due to shear deformation are observed on the side of the wear track. Two distinct types of wear debris were observed as a result of sliding: an alloy wear debris, and/or powder-whiskery oxide debris. A.R.H.

A86-16270* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. FAILURE ANALYSIS OF PLASMA-SPRAYED THERMAL BARRIER COATINGS: OVERLAY COATINGS

Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 °C after 0.5 sec in the flame. An as-sprayed ZrO2-8 percent Y2O3 specimens survived 3000 of the 0.5 sec cycles with failure. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 2 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12 percent Y2O3 or ZrO2-20 percent Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study. Author

A86-16276* Michigan Technological Univ., Houghton. MODELING DEGRADATION AND FAILURE OF NI-CR-AL OVERLAY COATINGS

Degradation of a Ni-16Cr-25Al-0.062r overlay coating on a Ni-22Cr substrate was examined after oxidation accompanied by thermal cycling. Concentration/distance profiles were measured in the coating and substrate after various one-hour cycles at 1150 °C. A numerical model was developed to simulate coating degradation by simultaneous oxidation and coating/substrate interdiffusion. The validity of the model was confirmed by comparison of predicted and measured concentration/distance profiles. The ability of the model to identify critical system parameters was demonstrated for the case of initial Al and Cr content of the coating and substrate. M.G.

A86-16906* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. METALLIC GLASS AS A TEMPERATURE SENSOR DURING ION PLATING

The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 30 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic
glasses extremely useful materials for temperature sensor applications in coating processes.

A.R.H.

Low Cr steels AISI 41410, AISI 4340, and high Cr austenitic stainless steels AISI 304, AISI 316 were ion nitrided in a dc glow discharge plasma consisting of a 75 percent H2 - 25 percent N2 mixture. Surface compound layer phases were identified, and compound layer microhardness and diffusion zone microhardness profiles were established. Distinct differences in surface compound layer hardness and diffusion zone profiles were determined between the low and high Cr alloy steels. The high Cr stainless steels after ion nitriding displayed a hard compound layer and an abrupt diffusion zone. The compound layers of the high Cr stainless steels had a columnar structure which accounts for brittleness when layers are exposed to contact stresses. The ion nitrided surfaces of high and low Cr steels displayed a low coefficient of friction with respect to the untreated surfaces when examined in a pin and disk tribotester.

A86-20436* Toledo Univ., Ohio. INTERACTION OF Sulfuric ACID CORROSION AND MECHANICAL WEAR OF IRON G. W. P. RENSTORFF (Toledo, University, OH), K. MIYOSHI, and D. H. BUCKLEY (NASA, Lewis Research Center, Cleveland, OH) ASLE Transactions, vol. 29, Jan. 1986, p. 43-49; Discussion, p. 49, 50; Author's Reply, p. 50, 51. Previously announced in STAR as N84-27857. refs

Friction and wear experiment were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 N, a corrosion process occurred that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dictated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent corrosion with increasing acid concentrations. However, the low corrosion of iron at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

(Contract NAG3-280)

Thermal-mechanical fatigue crack growth (TMFCG) was studied in a 'gamma-gamma' nickel base superalloy INCONEL X-750 under controlled load amplitude in the temperature range from 300 to 650 °C. An 'at rest' crack closure test was used to determine the minimum crack opening load. The crack closure test was performed on single-edge notch bars under fully reversed cyclic conditions. A dc electrical potential method was used to measure crack length. The electrical potential response obtained for each cycle of a given wave form and R value yields information on crack closure and crack extension per cycle. The macroscopic crack growth rates are reported as a function of delta k and the relative magnitude of the TMFCG are discussed in the light of the potential drop information and of the fractographic observations.

R.S.F.

High temperature X-ray diffraction techniques were used to determine the gamma-gamma prime lattice mismatch of three different nickel-base superalloys at temperatures between 18 and 1000 °C. The measurements were performed on oriented single-crystal disks which had been aged to produce a semi-coherent gamma-gamma prime structure. The thermal expansion of the lattice parameters of the gamma and gamma-prime phases was described by a second-order polynomial expression. The expansion of the gamma-prime phase was consistently smaller than that of the gamma phase, which caused the lattice mismatch to become more negative at higher temperatures. It was also shown that high values of lattice mismatch resulted in increased rates of directional gamma-prime coarsening during elevated temperature creep exposure.

Experimental investigations on erosion of a copper alloy, phosphor bronze, under cavitation attack in a viscous mineral oil are presented. The details of pit formation and erosion were studied using scanning electron microscopy. The mean depth of penetration, the variations in surface roughness, and the changes in erosion pit size were studied. Cavitation pits formed initially over a grain boundary while the surface grains were plastically deformed. Erosion of surface grains occurred largely by ductile fracture involving micromachining and removal in layers. The ratio h/a of the depth h to half width a of cavitation pits increased with test duration from 0.047 to 0.55.

(Contract NAS3-22550)

Twelve nonisothermal fatigue crack growth tests were performed on Hastelloy-X tubular specimens in which strain and temperature varied simultaneously. Conditions were selected to include nominally elastic and nominally plastic conditions and temperatures up to 982 °C. A number of parameters, including the stress intensity factor, strain intensity factor, and J-integral, were examined for their ability to correlate the data. There was no decisive difference between the success of the three parameters. Each parameter correlated data from different strain ranges to within no worse than a factor of 2.1 on da/dn. The effect of strain temperature cycle shape was investigated and found to be more pronounced than a strain hold of 1 min had very little effect. An attempt was made to predict nonisothermal test results from isothermal data. These predictions were better than those made
by using peak test temperature isothermal data but still not within scatter. Author

A86-29722* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. STUDIES ON THE HOT CORROSION OF A NICKEL-BASE SUPERALLOY, UDIMET 700 A. K. MISRA (NASA, Lewis Research Center, Cleveland, OH) Oxidation of Metals (ISSN 0030-770X), vol. 25, April 1986, p. 129-161. Previously announced in STAR as N85-11224. refs (Contract NCC3-43)

The hot corrosion of a nickel-base superalloy, Udimet 700, was studied in the temperature range of 884 to 985 C and with different amounts of Na2SO4. Two different modes of degradation were identified: (1) formation of Na2MoO4-MoO3 melt and fluxing by this melt, and (2) formation of large interconnected sulfides. The dissolution of Cr2O3, TiO2 in the Na2SO4 melt does not play a significant role in the overall corrosion process. The conditions for the formation of massive interconnected sulfides were identified and a mechanism of degradation due to sulfide formation is described. The formation of Na2MoO4-MoO3 melt requires an induction period and various physicochemical processes during the induction period were identified. The factors affecting the length of the induction period were also examined. The melt penetration through the oxide appears to be the prime mode of degradation whether the degradation is due to the formation of sulfides or the formation of the Na2MoO4-MoO3 melt. Author

A86-30010* Case Western Reserve Univ., Cleveland, Ohio. THE CRACK LAYER APPROACH TO TOUGHNESS CHARACTERIZATION IN STEEL M. BESENENDORFF and A. CHUDNOVSKY (Case Western Reserve University, Cleveland, OH) IN: Advances in fracture research (Fracture 84). Volume 3. Oxford and New York, Pergamon Press, 1986, p. 1663-1670. refs (Contract NAG3-223)

In a study of the laws of crack propagation and toughness characterization, it is feasible to employ two alternative approaches, including the fracture mechanics approach and the material science approach. The crack layer (CL) theory discussed by Khandogin and Chudnovsky (1978) and Chudnovsky (1980) considers the crack together with the surrounding defects as one system which has several degrees of freedom. It is pointed out that the CL theory defines the relationship between the parameters of fracture mechanics and the characteristics of microstructural changes which are affected by subject of material science. Experiments are described, taking into account a toughness characterization test and microscopic studies. Attention is given to a phenomenological study of toughness characterization, the morphology of crack layer, and the evaluation of energy stored in the dislocation network. G.R.

A brief comparative analytical and microstructural evaluation of creep-rupture performance of two iron-base superalloys in air and 15 MPa of hydrogen, is presented. Creep rupture data are presented for the sheet alloy 19-9DL and the cast alloy XF-818, including temperature, strain rate, load, time to reach one percent creep strain, and total elongation. In 19-9DL, both rupture life and minimum creep rate are more sharply dependent on small stress changes than in XF-818 in the given environment, and 19-9DL appears to become a more creep-resistant material with increasing Q (apparent activation energy) while the opposite is noted for XF-818. There appears to be no environmental effect on minimum creep rate for 19-9DL, whereas Q becomes less negative for XF-818 for 15 MPa of H2. Multiple cracks leading to rupture are observed on the fracture surfaces, with sheet specimens showing many more cracks close to the fracture surface than cast specimens. C.D.

A86-30610* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. EFFECT OF MULTIPLE STRAIN-ANNEAL CYCLES ON THE 1000 C CREEP BEHAVIOUR OF GAMMA/GAMMA PRIME-ALPHA J. D. WHITTEMBERGER, B. C. BUZEK (NASA, Lewis Research Center, Cleveland, OH), and G. WIRTH (DFVLR, Cologne, West Germany) Journal of Materials Science (ISSN 0022-2461), vol. 21, March 1986, p. 925-930. refs

Metal fatigue strain-rupture cycles (1000 C) were imposed on specimens of the directionally solidified eutectic (DSE) alloy gamma/gamma prime-alpha to identify thermomechanical processing methods (TMP) which would improve the creep behavior. Specimens of the Ni-32.3Mo-6.3Al wt pct alloy were grown with a modified Bridgeman technique. Some of the cylindrical specimens were alternately heat-treated at 900 C, then strained, or heat-treated only, while other specimens were annealed at 900 C after swelling and then worked at ambient temperature. The specimens were all examined microstructurally using transmission electron microscopy, some before and after being exposed to constant-load compression tests at 1000 C. The creep strain increased for all TMP specimens for strain rates of at least 2 millions per sec. Strain rates of about 2 ten millions per sec were only improved with strain annealing with 13 percent work at ambient temperature. A slight improvement, compared to as-grown materials, was observed in the 1000 C creep behavior of materials annealed at 900 C. Strain-annealing was found to introduce three-dimensional dislocation networks into the gamma-prime matrix. M.S.K.

The effects of bond and thermal barrier coating compositions, thicknesses, and densities on air plasma spray deposited Ni-Cr-Al-Y/ZrO2-Y2O3 life were evaluated in cyclic furnace oxidation tests at temperatures from 1110 to 1220 C. An empirical relationship was developed to give life as a function of the above parameters. The thermal barrier system tested which had the longest life consisted of Ni-35.0 wt pct Cr-5.9 wt pct Al-0.95 wt pct Y bond coating and ZrO2-6.1 wt pct Y2O3 thermal barrier coating.

The impact-sliding wear resistance of chill cast and aligned eutectic Fe-base superalloys against M42 and 17-4 PH steel surface materials is examined. The aligned material tests were run with carbide fibers perpendicular to the counterface contact surface and the characterization focused on fracture processes as observed in the subsurface microstructure of the worn materials. Metallographic analyses were performed on specimen exposed to various numbers of repetitive impact load cycles, and for comparison, two other aligned composites were tested with the same fiber orientation under identical test conditions against hardened M42 tool steel. A strong improvement was found in wear resistance of an aligned eutectic structure as compared to the corresponding randomized chill cast structure. Experiments with the softer 17-4 counterface were characterized by transfer
onto the Fe-base superalloy, and the cracks formed were oriented transverse to the relative sliding direction and occurred in a periodic fashion. Observations in subsurface regions of the worn materials indicated crack intergranularity with an occasional transgranular fracture of the M73C carbide phase.

K.K.

A86-35697* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. THE TENSILE AND FATIGUE DEFORMATION STRUCTURES IN A SINGLE CRYSTAL Ni-BASE SUPERALLOY T. P. GABB, R. V. MINER, and J. GAYDA (NASA, Lewis Research Center, Cleveland, OH) Scripta Metallurgica (ISSN 0036-9748), vol. 20, April 1986, p. 513-518. refs Dislocation structures produced in Rene N4 crystals of various orientations deformed in tension and low cycle fatigue (LCF) at 760 and 980 degrees C were examined in order to elucidate the observed differences in stress-strain behavior. Specimens tensile tested at 760 degrees C displayed significant crystallographic orientation dependences in mechanical response but comparable inhomogeneous dislocation structures. LCF specimens of various orientations had comparable cyclic stress-strain curves and generally similar somewhat more homogeneous dislocation structures. Tensile specimens at the higher temperature had comparable mechanical response and corresponding similar quite homogeneous dislocation structures with gamma' faulting; and LCF specimens had orientation-dependent mechanical response but comparable homogeneous low dislocation networks. D.H.

A86-37073* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. NA2SO4 INDUCED CORROSION OF NICKEL AT HIGH TEMPERATURE A. K. MISRA (NASA, Lewis Research Center, Cleveland, OH) ASM, International Conference on Surface Modifications and Coatings, Toronto, Canada, Oct. 14-16, 1985, Paper. 18 p. refs Sodium sulfate-induced corrosion of nickel was studied at 900 C as a function of oxygen partial pressure. For high O2 partial pressures, accelerated corrosion during the first few minutes occurred by rapid penetration of the melt along the metal grain boundaries. A mechanism is proposed to explain this phenomenon. Repetitive scale metal detachment was observed for corrosion in lower O2 partial pressures and during the later period of corrosion in higher O2 partial pressures. The effect of preoxidation on the hot corrosion has also been studied. An induction period is observed before the onset of rapid corrosion for the preoxidized samples; the onset of rapid corrosion is associated with sudden changes in the oxide scale. The length of the induction period for the preoxidized samples is a function of the length of preoxidation, and appears to be related to the structure of the oxide scale after the preoxidation treatment. Author

A86-37238* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. MECHANISM OF NA2SO4-INDUCED CORROSION OF MOLYBDENUM CONTAINING NICKEL-BASE SUPERALLOYS AT HIGH TEMPERATURES. I - CORROSION IN ATMOSPHERES CONTAINING O2 ONLY. II - CORROSION IN O2 + SO2 ATMOSPHERES A. K. MISRA (NASA, Lewis Research Center, Cleveland, OH) Electrochemical Society, Journal (ISSN 0013-4651), vol. 133, May 1986, p. 1029-1042. refs Kinetics of the Na2SO4-induced corrosion of the molybdenum-containing nickel-base superalloys, B-1900 and Udiment 700, coated with Na2MoO4, has been studied in oxygen atmosphere at temperatures ranging from 750 to 950 C. Because the gas turbine atmosphere always contains some SO2 and SO3, the effect of atmospheric SO2 content on corrosion of Udiment-700 has also been studied. It was found that in the O2 atmosphere the melt in the catastrophic corrosion phase consists of Na2MoO4 plus MoO3, with the onset of the catastrophic corrosion coinciding with the appearance of MoO3. In the presence of low levels of atmospheric SO2 (below 0.24 percent), the melt during catastrophic corrosion contains, in addition to Na2MoO4 and MoO3, some quantities of Na2SO4. At the levels of SO2 above 1 percent, no catastrophic corrosion was observed. At these SO2 levels, internal sulfidation appears to be the primary mode of degradation. I.S.

A86-44038* Connectcut Univ., Storrs. CONSTRUCTING MULTICOMPONENT PHASE DIAGRAMS BY OVERLAPPING ZPF LINES H. GUPTA, J. E. MORRAL, and H. NOWOTNY (Connecticut, University, Storrs) Scripta Metallurgica (ISSN 0036-9748), vol. 20, June 1986, p. 889-894. refs (Contract NAG3-271) A procedure is introduced which can be used to draw isothermal sections from a multicomponent phase diagram in a matter of minutes, regardless of the diagram complexity. In the proposed method, the zero phase fraction (ZPF) lines are drawn separately for all phases existing in the system; by overlapping these ZPF lines, the desired section is obtained. Two examples - with five components and eight components - are given to illustrate the method. Regarding the second example, it is noted that although the ZPF diagram may be altered to create discontinuities in slope at intersection points, the diagram remains unchanged from a topological standpoint. Thus, the overlapping ZPF lines supply all the information needed to construct complex diagrams. Even if many more phases and components are involved, the final diagram can be drawn with equal facility. D.H.

A86-45091* Stanford Univ., Calif. DISLOCATIONS IN EXTRUDED CO-49.3 AT. PCT AL D. L. YANEY, W. D. NIX (Stanford University, CA), and A. R. PELTON (USDA, Ames Laboratory, IA) Journal of Materials Science (ISSN 0022-2461), vol. 21, June 1986, p. 2083-2087. refs (Contract NAG3-248) Polycrystalline Co-49.3 at. pct Al, which had been extruded at 1505 K, was examined using transmission electron microscopy. Diffraction contrast analysis showed that b = 100 as well as b = 111 line dislocations contribute to elevated temperature deformation in CoAl. Therefore, it was concluded that sufficient slip systems exist in CoAl to allow for general plasticity in the absence of diffusion mechanisms. Line dislocations of the type b = 001 were observed on both 110 and 110 planes while b = 111 line dislocations were observed on 1 -1 0 planes. Author

A86-45715* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. THE CYCLIC STRESS-STRAIN BEHAVIOR OF A NICKEL-BASE SUPERALLOY AT 850 C T. P. GABB (NASA, Lewis Research Center, Cleveland, OH) and G. E. WELLSCH (Case Western Reserve University, Cleveland, OH) Scripta Metallurgica (ISSN 0036-9748), vol. 20, July 1986, p. 1049-1054. refs It is pointed out that examinations of the monotonic tensile and fatigue behaviors of single crystal nickel-base superalloys have disclosed orientation-dependent tension-compression anisotropies and significant differences in the mechanical response of octahedral and cube slip at intermediate temperatures. An examination is conducted of the cyclic hardening response of the single crystal superalloy PWA 1480 at 850 C in the considered case, tension-compression anisotropy is present, taking into account primarily conditions under which a single slip system is operative. Aspects of a deformation by single slip are considered along with cyclic hardening anisotropy in tension and compression. It is found that specimens deforming by octahedral slip on a single slip system have similar hardening responses in tensile and low cycle fatigue loading. Cyclic strain hardening is very low for specimens displaying single slip. G.R.
THE B2 ALUMINIDES AS ALTERNATIVE MATERIALS

The potential of the B2 aluminides as structural material alternatives for the strategic element containing superalloys currently used in gas turbine engines is being explored with emphasis on the equiatomic Fe and Ni aluminides. Although Co is a strategic material, the equiatomic Co aluminide is also being studied to gain a more complete understanding of these fourth period intermetallics. Research focuses on initial processing techniques such as ingot melting, power metallurgy, and rapid solidification with and without additional thermomechanical processing; high temperature deformation primarily compressive creep; compositional effects within the binary B2 aluminides; third-element alloying addition effects on high temperature strength and oxidation resistance, and near room temperature ductility as influenced by processing, alloying, and grain size. Various programs now underway are reviewed and some highlights of research results are presented.

A.R.H.

ALLOYS BASED ON NIAl FOR HIGH TEMPERATURE APPLICATIONS

The NiAl alloys for potential high temperature applications were studied. Alloys were prepared by powder metallurgy techniques. Flow stress values at slow strain rates and high temperatures were measured. Some ternary alloying additions (Hf, Ta and Nb) were identified. The mechanism of strengthening in alloys containing these additions appears to be a form of particle dislocation interaction. The effects of grain size and stoichiometry in binary alloys are also presented.

A.R.H.
A86-47266* Case Western Reserve Univ., Cleveland, Ohio. HIGH TEMPERATURE OXIDATION OF BETA-NiAl J. K. KOYCHAK, T. E. MITCHELL (Case Western Reserve University, Cleveland, OH), and J. L. SMIALEK (NASA, Lewis Research Center, Cleveland, OH) IN: High-temperature ordered intermetallic alloys; Proceedings of the Symposium, Boston, MA, November 26-28, 1984. Pittsburgh, PA, Materials Research Society, 1985, p. 475-484. refs (Contract NAG3-498)

The oxidation of single crystal beta-NiAl has been studied primarily using electron microscopy. Oriented metastable Al2O3 phases form during transient oxidation at 800 C. Specific orientation relationships exist on all metal orientations studied and are a result of the small mismatch along aligned close-packed directions in the cation sublattices of the metal and oxide. Transformation of the metastable Al2O3 phases at 1100 C results in an oxide morphology described as the 'lacey' structure of alpha-Al2O3 scales. This structure results from impingement of oriented patches of alpha-Al2O3 as the transformation initiates and moves radially parallel to the surface. Scale growth occurs by diffusion along high angle grain boundaries. A drastic reduction in oxidation rate accompanies the change in oxide morphology. Author

A86-48037* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. THE RESPONSE OF COBALT-FREE UDIMET 700 TYPE ALLOY TO MODIFIED HEAT TREATMENTS F. H. HARF (NASA, Lewis Research Center, Cleveland, OH) Journal of Materials Science (ISSN 0022-2461), vol. 21, July 1986, p. 2497-2506. Previously announced in STAR as N85-20043. refs

A superalloy based on Udimet 700, in which all of the cobalt was replaced by nickel, was prepared from hot isostatically pressed prealloyed powders. This material was given various heat treatments consisting of partial solutioning and aging in a sequence of four different temperatures. Comparisons were made of microstructures and mechanical properties. Best results were obtained by partially solutioning at 1145 deg C and aging through a sequence of 870, 1030, 650 and 760 deg C. This heat treatment also provided significantly improved properties for wrought material of the same composition. The results suggest that cobalt-free Udimet 700 should be considered as a substitute for Udimet 700 with the standard 17 percent cobalt content. R.J.F.

A86-48973* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. A STUDY OF SPECTRUM FATIGUE CRACK PROPAGATION IN TWO ALUMINUM ALLOYS. I - SPECTRUM SIMPLIFICATION. II - INFLUENCE OF MICROSTRUCTURES J. TELESMAN (NASA, Lewis Research Center, Cleveland, OH) and S. D. ANTOLOVICH (Georgia Institute of Technology, Atlanta) Engineering Fracture Mechanics (ISSN 0013-7944), vol. 24, no. 3, 1986, p. 453-459, 461-473, 475-477. Research supported by Northrop Corp. refs

An investigation of the fatigue crack propagation FCP behavior of two aluminum alloys is performed to simulate spectrum loading conditions found at critical locations in high performance fighter aircraft. Negative loads are shown to be eliminated for the tension-compression spectrum to low intermediate maximum stress intensities, and load interactions are found to be more significant at higher stress intensities and with more plasticity at the crack tip. In the second part, the influence of microstructural features including grain size, Inclusions, and dispersoids on constant amplitude and spectrum crack growth behavior in aluminum alloys is studied. At low stress intensities the I/M alloy demonstrated better FCP resistance than the P/M 7091 alloy for both constant amplitude and spectrum testing, and the inhomogeneous planar slip and large grain size of 7050 limit dislocation interactions, thereby improving FCP performance. R.R.

The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established. S.L.

A86-49690* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. THE PLASTIC COMpressIBILITY OF 7075-T651 ALUMINUM-ALLOY PLATE A. D. FREED (NASA, Lewis Research Center, Cleveland, OH) and B. I. SANDOR (Wisconsin, University, Madison) Experimental Mechanics (ISSN 0014-4851), vol. 26, June 1986, p. 119-121. Research supported by the Lockheed-Georgia Co. refs

The change in volume, and therefore the change in mass density, of an aluminum alloy was measured in uniaxial tension using clip-on extensometers. The experimental data do not agree with the assumption of plastic incompressibility found in the classical theories of plasticity. In fact, the elastic and plastic volume changes are of the same order of magnitude. Plastic anisotropy is thought to be the prime cause of this plastic compressibility. Author

New and improved Ni-, Co-, and Fe-base bond coatings have been identified for the TiO2-Y2O3 thermal barrier coatings to be used on Ni-, Co-, and Fe-base alloy substrates. These bond coatings were evaluated in a cyclic furnace between 1120 and 1175 C. It was found that MCrAlY (where M = Ni, Co, or Fe) bond coating thermal barrier systems have significantly longer lives than MCrAlY bond coating thermal barrier systems. The longest life was obtained with the FeCrAlY thermal barrier system followed by NiCrAlY and CoCrAlY thermal barrier systems in that order. Author
The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4 were investigated using constant-velocity compression tests at strain rates from 2 x 10^{-7} to 2 x 10^{-3} s^{-1}. The critical resolved shear stresses increased with decreasing grain size, probably due to the Hall-Petch behavior. Creep in the high stress exponent mode can be described in terms of the initial grain size because the large-angle grain structure is replaced by a small-angle grain microstructure of similar grain diameter during deformation.

R.R.

Single crystal specimens of a nickel-base superalloy with axes near 001, 011, and -112 were tested in tension at room temperature, 760, and 980 °C. The alloy Rene N-4 was developed for gas turbine engine blades and has the nominal composition 3.7 Al, 14.5 Cr, 16.1 Mo, 9.5 Co, balance Ni, (all in weight percent). Analysis of slip band traces, specimen axis rotation, and dislocation Burgers vectors showed that at 760 and 980 °C primary cube slip supplanted normal octahedral slip for the -112 line-oriented specimens. The other two orientations, which have lower resolved shear stresses on the cube system, exhibited octahedral slip at all three temperatures. The critical resolved shear stress is considerably greater on the cube system than on the octahedral system at room temperature. However, at 760 and 980 °C the critical resolved shear stresses on the two systems are about the same. The same activation energy and the same stress exponents were found for all three temperatures. Creep strengths for both orientations exhibited octahedral slip could be rationalized on the basis of resolved shear stress, those at 760 °C could not. Such violations of Schmid's law have previously been observed in other superalloys and single phase gamma-prime.

Author

The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4, have been examined at 760 and 980 °C in air. Specimens having crystallographic orientations near the 001, 011, -112, 110, -225, and -145 lines were tested in the reversed, total-strain-controlled LCF tests at a frequency of 0.1 Hz. At 760 °C, this alloy exhibited orientation dependent tension-compression anisotropies of yielding which continued to failure. Also at 760 °C, orientations exhibiting predominately single slip exhibited serrated yielding for many cycles. At 980 °C, orientation dependencies of yielding behavior were smaller. In spite of the tension-compression anisotropies, cyclic stress range-strain range behavior was not strongly orientation dependent for either test temperature. Fatigue life on a total strain range basis was highly orientation dependent at 760 and 980 °C and was related chiefly to elastic modulus, low modulus orientations having longer lives. Stage I crack growth on 111 planes was dominant at 760 °C, while Stage II crack growth occurred at 980 °C. Crack initiation generally occurred near surface micropores, but occasionally at oxidation spikes in the 980 °C tests.

Author
were detected for specimens in a predominant plane strain state. However, for the plane stress specimens, initially high FCP rates after transition to a higher stress intensity range were observed. The difference in observed behavior was explained by examining the effect of the resulting closure stress intensity values on the effective stress intensity range.

N86-12293*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. ELLIPSOOMETRIC SURFACE ANALYSIS OF WEAR TRACKS PRODUCED BY DIFFERENT LUBRICANTS J. L. LAUER, N. MARXER, and W. R. JONES, JR. Oct. 1985 20 p refs Presented at the Tribology Conf., Atlanta, 8-10 Oct. 1985; sponsored by ASLE and ASME (Contract NAG3-22; DAA24-83-K-0058) (NASA-TM-87142; E-2769; NAS 1.15:87142) Avail: NTIS HC A02/MF A01 CSCL 11F A scanning ellipsometer with high spatial resolution was used to analyze wear tracks generated on M-50 surfaces operated in several lubricant formulations. These formulations included a pure ester base stock of trimethyl propane trihydroxanate with additives of either benzotriazole (STZ), diclootylenamine (DOPDA), or tricresylphosphate (TCP). Results indicated that STZ and TCP produced patchy oxide films consisting mainly of Fe3O4. DOPDA produced a much more uniform oxide film. These findings may explain the tendency of lubricant formulations containing TCP to scuff more readily than those containing only antioxidants.

N86-12294*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. FATIGUE CRACK PROPAGATION OF NICKEL-BASE SUPERALLOYS AT 650 DEG C J. GAYDA, T. P. GABB, and R. V. MINER Oct. 1985 22 p refs Presented at the Symp. on Low-Cycle Fatigue Directions for the Future, Bolton Landing, N.Y., 30 Sep. - 4 Oct. 1985; sponsored by American Society for Testing and Materials (NASA-TM-87150; E-2778; NAS 1.15:87150) Avail: NTIS HC A02/MF A01 CSCL 11F The 650 C fatigue crack propagation behavior of two nickel-base superalloys, Rene 95 and Waspaloy, is studied with particular emphasis placed on understanding the role of creep, environment, and two key grain boundary alloying additions, boron and zirconium. Comparison of air and vacuum data shows the air environment to be detrimental over a wide range of frequencies for both alloys. More in-depth analysis on Rene 95 shows at lower frequencies, such as 0.02 Hz, failure in air occurs by intergranular, environmentally-assisted creep crack growth, while at higher frequencies, up to 5.0 Hz, environmental interactions are still evident but creep effects are minimized. The effect of B and Zr in Waspaloy is found to be important where environmental and/or creep interactions are presented. In those instances, removal of B and Zr dramatically increases crack growth and it is therefore plausible that effective dilution of these elements may explain a previously observed trend in which crack growth rates increase with decreasing grain size.

N86-12295*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. AN UPDATE OF THE TOTAL-STRAIN VERSION OF SRP J. F. SALTSMAN and G. R. HALFCORD Oct. 1985 27 p refs Presented at the Symp. on Low-Cycle Fatigue: Direct for the Future, Lake George, N.Y., 30 Sep. - 4 Oct. 1985; sponsored by American Society for Testing and Materials, American Inst. of Mining, Metallurgical and Petroleum Engineers, and American Society for Metals (NASA-TP-2499; E-2575; NAS 1.60:2499) Avail: NTIS HC A03/MF A01 CSCL 11F An updated procedure for characterizing an alloy and predicting cyclic life by using the total strain range version of strain range partitioning (TS-SRP) has been developed. The principal feature of this update is a new procedure for determining the intercept of time dependent elastic strain range versus cyclic life lines. The procedure is based on an established relation between failure and the cyclic stress-strain response of an alloy. The stress-strain response is characterized by empirical equations presented in this report. These equations were determined with the aid of a cyclic constitutive model. The procedures presented herein reduce the testing required to characterize an alloy. Failure testing is done only in the high strain, low life regime; cyclic stress-strain response is determined from tests conducted in both the high and low strain regimes. These tests are carried out to stability of the stress-strain data by testing to lower stress levels. Thus both the time and costs required to characterize an alloy are greatly reduced. This approach was evaluated and verified for two nickel base superalloys, AF2-1DA and Inconel 718.

N86-13407*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. POLYMER, METAL AND CERAMIC MATRIX COMPOSITES FOR ADVANCED AIRCRAFT ENGINE APPLICATIONS D. L. MCDANELS, T. T. SERAFINI, and J. A. DICARLO 1985 26 p refs Presented at the Advanced Composites Conference, Detroit, 3-4 Dec. 1985; sponsored by ASME (NASA-TM-87132; E-2748; NAS 1.15:87132) Avail: NTIS HC A03/MF A01 CSCL 11F Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrixes, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

N86-13408*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. THE EFFECT OF COBALT CONTENT IN U-700 TYPE ALLOYS ON DEGRADATION OF ALUMINIDE COATINGS J. M. MCKNISH and A. P. JETT 1985 15 p refs Presented at the 9th Meeting of the Electrochemical Society, Las Vegas, Nev., 15-18 Oct. 1985; sponsored by National Aeronautics and Space Administration (NASA-TM-87173; E-2798; NAS 1.15:87173) Avail: NTIS HC A02/MF A01 CSCL 11F The influence of cobalt content in U-700 type alloys on the behavior of aluminate coatings is studied in burner rig cyclic oxidation tests at 1100C. It is determined that aluminate coatings on alloys with higher cobalt offer better oxidation protection than the same coatings on alloys containing less cobalt.

N86-13409*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. CURRENT VIEWPOINTS ON OXIDE ADHERENCE MECHANISMS J. L. SMIALEK and R. BROWNING 1985 17 p refs Presented at the 9th Meeting of the Electrochemical Society, Las Vegas, Nev., 15-18 Oct. 1985; sponsored by National Aeronautics and Space Administration (NASA-TM-87168; E-2806; NAS 1.15:87168) Avail: NTIS HC A02/MF A01 CSCL 11F Additional hot stage Auger experiments have provided surface segregation data for NiCrAl + or - Y or Zr alloys in agreement with other investigations. This data, combined with experimental and theoretical evidence of the Al2O3-metal bond strength, is presented in support of a chemical mechanism of Al2O3 scale adhesion. Both the detrimental effects of sulfur segregation and the beneficial effects of dopant segregation may be important. Chemical features of the dopants are compared in light of these proposed mechanisms, namely delta H sub f (sulfide), delta H

26 METALLIC MATERIALS
Two recent solidification processes have been applied in the production of IN-100 nickel-base superalloy: rheocasting and vacuum arc double electrode remelting (VADER). A detailed microstructural examination has been made of the products of these two processes; associated tensile strength and fatigue crack propagation (FCP) rate at an elevated temperature were evaluated. In rheocasting, processing variables that have been evaluated include stirring speed, isothermal stirring time and volume fraction solid during isothermal stirring. VADER processed IN-100 was purchased from Special Metals Corp., New Hartford, NY. As-cast ingots were subjected to hot isostatic pressing (HIP) and heat treatment. Both rheocasting and VADER processed materials yield fine and equiaxed spherical structures, with reduced macrosegregation in comparison to ingot material. The rheocast structures are discussed on the basis of the Vogel-Doherty-Cantor model of dendrite arm fragmentation. The rheocast ingots evaluated were superior in yield strength to both VADER and commercially cast IN-100 alloy. Rheocast and VADER ingots may have higher crack propagation resistance than P/M processed material.

STRUCTURE-PROPERTY CHARACTERIZATION OF RHEOCAST AND VADER PROCESSED IN-100 SUPERALLOY Ph.D. Thesis. Final Report
J. A. CHENG and D. APELIAN Jun. 1985 234 p refs
(Contract NAG3-14)

Two recent solidification processes have been applied in the production of IN-100 nickel-base superalloy: rheocasting and vacuum arc double electrode remelting (VADER). A detailed microstructural examination has been made of the products of these two processes; associated tensile strength and fatigue crack propagation (FCP) rate at an elevated temperature were evaluated. In rheocasting, processing variables that have been evaluated include stirring speed, isothermal stirring time and volume fraction solid during isothermal stirring. VADER processed IN-100 was purchased from Special Metals Corp., New Hartford, NY. As-cast ingots were subjected to hot isostatic pressing (HIP) and heat treatment. Both rheocasting and VADER processed materials yield fine and equiaxed spherical structures, with reduced macrosegregation in comparison to ingot material. The rheocast structures are discussed on the basis of the Vogel-Doherty-Cantor model of dendrite arm fragmentation. The rheocast ingots evaluated were superior in yield strength to both VADER and commercially cast IN-100 alloy. Rheocast and VADER ingots may have higher crack propagation resistance than P/M processed material.

N96-14355*# Wisconsin Univ., Madison.
UNDERCOOLING AND SOLIDIFICATION BEHAVIOR IN THE INSB-SB SYSTEM M.S. Thesis. Final Report
J. A. GRAVES Sep. 1985 217 p refs
(Contract NASA3-14)
(NASA-CR-175013; NAS 1.26:175013) Avail: NTIS HC A10/MF A01 CSCL 11F

Use of the droplet emulsion technique has been successful in studying the undercooling and crystallization behavior of Sb, InSb, and an InSb-Sb eutectic alloy. Both droplet size and imposed cooling rate were influential in controlling the extent of liquid undercooling. The droplet surface cooling was of significant importance in determining the resultant solidification product structure through its effect on nucleation kinetics. The maximum undercooling for pure Sb was extended from 0.06 to 0.23 °C sub m. While simple crushing techniques provided a dramatic increase in droplet undercooling over the bulk material, emulsification treatments both enhanced this undercooling and allowed successful formation of a metastable simple cubic Sb phase. This phase was stable to temperatures approaching the melting point. The simple cubic phase was detected in droplet samples processed using DTA, air and water quenching, and drop tube processing.

N96-15378*# National Aeronautics and Space Administration.
THERMAL-MECHANICAL FATIGUE TEST APPARATUS FOR METAL MATRIX COMPOSITES AND JOINT ATTACHMENTS
L. J. WESTFALL and D. W. PETRASEK 1985 21 p refs

Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430°C (2600°F) and another to test composite/metal attachment bond joints at temperatures up to 760°C (1400°F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430°C (2600°F) at controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760°C (1400°F) within 10 min and cooling to 150°C (300°F) within 3 min. A computer controls specimen temperature and load cycling.

N86-15380*# National Aeronautics and Space Administration.
CREEP RUPTURE BEHAVIOR OF STIRLING ENGINE MATERIALS
Presented at the Advanced Technology Development Contractors Coordination Meeting, Dearborn, Mich., 21-24 Oct. 1985; sponsored by DOE
(Contract DE-A10-77CS-51044)
(NASA-TM-87209; E-2846; DOE/ NASA/51044-37; NAS 1.15:87209) Avail: NTIS HC A02/MF A01 CSCL 11F

The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown.
This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kW to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

Author

The creep-rupture behavior of a newly developed cast alloy NASAUT 4G-AI with 15% Cr, 15% Mn, and 1.5% C was evaluated in 15 MPa H2 at 775 C and 825 C. The alloy is intended for use in automotive stirling heater application. Rupture life, minimum creep rate, and time to 1% strain data were analyzed using the Crowan-Shereby-Dorn temperature compensated technique, and the 3500-h rupture life stress and stress to obtain 1% strain in 3500 h were estimated. The analyses indicated that 3500-h mean rupture stress at 775 C is 140 MPa, exceeding the design stress of 119 MPa. The predicted mean stress to 1% creep in 3500 h was 57.8 MPa and had a very wide scatter indicating a lack of reproducibility in the alloy structure. For a case alloy, NASAUT 4G-AI indicated significant ductility with maximum elongation in the range of 8.0 to 13.6% at 775 C. Hydrogen did not seem to affect the stable carbides though some methane was noted in the chamber gas, presumably arising from chamber structural members of lesser stability. The microstructure contained some voids, pores, inclusions, and interendritic separations, which caused the observed scatter in data.

Author

The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high, strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

Author

Fatigue life at elevated temperatures is often shortened by oxidation. Grain boundary oxidation penetrates deeper than the surface oxidation. Therefore, grain boundary oxide penetration could be the prime cause of accelerated fatigue crack nucleation and propagation, and the shortened fatigue life at elevated temperatures. Grain boundary oxidation kinetics was studied and its statistical scatter was analyzed by the Weibull's distribution function. The effects of grain boundary oxidation on shortened fatigue life was analyzed and discussed. A model of intermittent microruptures of the grain boundary oxide was proposed for the fatigue crack growth in the low frequency region. The proposed model is consistent with the observations that fatigue crack growth rate in the low frequency region with hold time at K sub max is inversely proportional to cyclic frequency and that crack growth rate is intergranular.

Author

Small additions of boron were shown to improve the room temperature ductility of the intermetallic compound Ni3Al. Boron is believed to segregate to the grain boundaries and strengthen them, allowing the inherent ductility of the grains to be achieved. The present study was undertaken to see if boron has a similar effect on the low temperature tensile properties of the equiaxial intermetallic compound FeAl. A binary alloy without boron is compared with an alloy containing 0.78 at % B (0.2 wt %) B, by tensile testing over the temperature range of 390 K to 640 K.

Author
Both alloys were processed by powder metallurgy. Results showed that 0.78 at % B addition to FeAl does indeed change the room temperature fracture mode from intergranular to transgranular, suggesting a strengthening of grain boundaries. The alloy containing boron is, however, still brittle at room temperature. A slight decrease in the ductile to brittle transition temperature is, nevertheless, observed. In addition a significant increase in strength of the alloy is observed with boron addition.

N86-21565
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

VARIABLES CONTROLLING FATIGUE CRACK GROWTH OF SHORT CRACKS

A study was conducted to evaluate the roles of crack closure and microstructure in the fatigue growth of short cracks. Testing was performed at R ratios of 0.1, 0.5, and 0.7. At all R ratios, short cracks exhibited accelerated growth rates in comparison to long cracks. It was concluded that crack closure could not entirely account for the accelerated growth rates of short cracks. The accelerated growth rates occurred over crack lengths on the order of grain size, suggesting a strong influence of microstructure. A significant effect of grain boundaries and inclusions on short crack FCG behavior was observed. For very short crack lengths, fatigue growth rates do not appear to be a function of either delta K or R ratio.

N86-22685
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ROLE OF MOLYBDENUM IN THE SUB 2SO SUB 4 INDUCED CORROSION OF SUPERALLOYS AT HIGH TEMPERATURES

Sodium sulfate induced corrosion of a molybdenum containing nickel-base superalloy, Udiment 700, was studied in laboratory furnace tests and in a high velocity (Mach 0.3) burner rig. The effect of SO2 content in the atmosphere on the corrosion behavior in the laboratory furnace tests was determined. Catastrophic corrosion occurs only when the melt contains MoO3 in addition to Na2SO4 and Na2MoO4. The conditions under which catastrophic corrosion occurs are identified and a mechanism is described to explain the catastrophic corrosion.

N86-21559
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

UNDERCOOLED AND RAPIDLY QUENCHED NI-MO ALLOYS

Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalcitrance depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at % Mo. Although the microstructures observed by undercooling and melt spinning were similar the microsegregation pattern across the gamma dendrites was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interdendritic liquid.
K) deformation at slow strain rates and this may impose some limitations on the use of this strengthening mechanism. Author

N98-24813 # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

APPLICATION OF AN ATMOSPHERIC PRESSURE SAMPLING MASS SPECTROMETER TO CHLORINATION REACTIONS N. S. JACOBSON 1986 20 p refs Presented at the 115th TMS-AIME Annual Meeting, New Orleans, La., 2-6 Mar. 1986; sponsored by Metallurgical Society (NASA-TM-87270; E-2886; NAS 1.15:87270) Avail: NTIS HC A02/MF A01 CSCL 11F

An atmospheric pressure mass spectrometric sampling system, based on a free jet expansion was used to study certain M-Cl-O reactions at high temperatures. The apparatus enables the volatile species from a 1-atm chemical process to be directly identified with a mass spectrometer which operates at approx. 10 to the minus 8th power torr. Studies for both pure metals and alloys are discussed. It is shown that this mass spectrometer system aids in identifying the volatile species, and provides fundamental information on the reaction mechanism. E.A.K.

N98-24817 # Case Western Reserve Univ., Cleveland, Ohio. Dept. of Metallurgy and Materials Science

The corrosion of Ni, Co, plus several nickel and cobalt-base alloys was studied at 750 C in the presence of molten sulfate mixtures and in an atmosphere consisting of O2 + 0.12% SF6. The melt system selected were Na2SO4-Li2SO4 and Na2SO4-CoSO4. The corrosion of pure metals took place by the formation of a mixed oxide plus sulfide scale. A mixed oxide plus sulfide of the base metal is also formed during the initial stage of corrosion of the alloys; however, subsequently a Cr rich sulfide is formed underneath the outer base metal rich scale. With time, the outer part of the inner scale oxidizes to an oxide and more sulfides are formed beneath the oxide. The inner scale is formed as a continuous layer for the low Cr containing alloys and the inner scale is formed in localized sites in the form of pits for the higher Cr containing alloys.

N98-24818 # Massachusetts Inst. of Tech., Cambridge. Dept. of Materials Science and Engineering.

The main achievements of a 36-month research program are presented. The main objective was to gain more insight into the problem of crack growth under thermal mechanical fatigue (TMF) conditions. This program was conducted at MIT for the period of September 1982 to September 1985. The program was arranged into five technical tasks. Under Task I, the literature of TMF data was reviewed. The goal was to identify the crack propagation conditions in aircraft engines (hot section) and to assess the validity of conventional fracture mechanics parameters to address TMF crack growth. The second task defined the test facilities, test specimen and the testing conditions needed to establish the effectiveness of data correlation parameters determined in Task I. Three materials (Inconel X-750, Hastelloy-X, and B-1900) were chosen for the program. Task II was accomplished in collaboration with Pratt & Whitney Aircraft engineers. Under Task III, a computerized testing system to measure the TMF behavior (LCF and CG behaviors) of various alloys systems was built. The software used to run isothermal and TMF tests was also developed. Built around a conventional servohydraulic machine, the system is capable of push-pull tests under stress or strain and temperature controlled conditions in the temperature range of 25C to 1050C. A crack propagation test program was defined and conducted under Task IV. The test variables included strain range, strain rate (frequency) and temperature. Task V correlated and generalized the Task IV data for isothermal and variable temperature conditions so that several crack propagation parameters could be compared and evaluated. The structural damage due to cyclic loading and dislocation substructure under TMF cycling was identified and contrasted with the isothermal damage to achieve a sound fundamental mechanistic understanding of TMF. Author

N98-25453 # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

Both Fe-40AI and Fe-40AlO-0.12r with and without B were produced by the hot extrusion of powder metal. Tensile properties were determined from room temperature to 1100 K in air. All of the materials possessed some ductility at room temperature, and addition of B caused an increase in ductility and a change in fracture mode from intergranular to transgranular cleavage. At high temperatures, failure was caused primarily by the formation of grain boundary cavities in all of the alloys. The effect of Zr addition was unclear because of the complexity of the various microstructures. Comparison of air and vacuum testing at high temperatures revealed that an apparent oxidation assisted mechanism reduced high temperature ductility in these alloys, especially at 900 K. Author

The cyclic flow response and crack growth behavior of Waspaloy at room temperature and 650 C under tensile loading and torsional loading was studied, for two conditions of Waspaloy: fine grain, large gamma prime size; coarse grain, small gamma prime size. The fine grain material showed 5 to 10 percent hardening after about 10 percent of life, with subsequent softening to failure at both temperature levels. The coarse grain material showed either stable response or monotonic softening to failure. Early crack initiation was observed on planes of maximum shear, with eventual branching to principle planes under torsional loading; cracks were always normal to load axis under tensile loading. Also, crack paths were intergranular at 650 C, mostly transgranular at room temperature. Author

N98-25455 # Georgia Inst. of Tech., Atlanta. School of Materials Engineering.

Interrupted tensile tests were conducted to fixed plastic strain levels in 100 ordered single crystals of the nickel based superalloy PWA 1480. Testing was done in the range of 20 to 1093 C, at strain rate of 0.5 and 50%/min. The yield strength was constant from 20 to 760 C, above which the strength dropped rapidly and became a strong function of strain rate. The high temperature
data were represented very well by an Arrhenius type equation, which resulted in three distinct temperature regimes. The deformation substructures were grouped in the same three regimes, indicating that there was a fundamental relationship between the deformation mechanisms and activation energies. Models of the yielding process were considered, and it was found that no currently available model was fully applicable to this alloy. It was also demonstrated that the initial deformation mechanism (during yielding) was frequently different from that which would be inferred by examining specimens which were tested to failure. Author

THE EVOLUTION AND GROWTH OF Al_2O_3 SCALES ON BETA-NiAl

J. K. DOYCHAK

May 1986 242 p

(Contract NAG-3-498)

(Abstr. CR-175097; NAS 1.26:175097) Avail: NTIS HC A02/MF A01 CSCL 11F

The formation and growth of Al_2O_3 scales on (beta)-NiAl were studied using electron microscopy and other analytical techniques to gain an understanding of the oxidation properties of (beta)-NiAl and of aluminizing-forming alloys, in general. The transient and mature stages of oxidation were studied as well as the transformation stage during which the oxide scale transforms from metastable Al_2O_3 phases to the thermodynamically stable alpha-Al_2O_3 phase. The transient oxidation stages were studied at short times at 1100°C. At 800°C, the scales consist predominantly of delta-Al_2O_3 which forms by cation vacancy ordering in the corresponding cobalt-containing nickel-base superalloy at 1220 F (650°C). Thus, the transient scale aout of the superalloy. NASA

THE TOW CYCLE FATIGUE BEHAVIOR OF A PLASMA-SPRAYED COATING MATERIAL

J. GAYDA, T. P. GABB, and R. V. MINER, JR. 1986 17 p

Presented at the 1986 TMS-AIME Annual Meeting, New Orleans, La., 2-6 Mar. 1986

(Contract NAG-3-387)

(Abstr. TM-87299; E-9000; NAS 1.15:87299) Avail: NTIS HC A02/MF A01 CSCL 11F

Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and high corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY (NicoCrAIY) alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650°C, where the NiCoCrAlY alloy has modest ductility, and at 1050°C, where it is extremely

MICROMECHANISMS OF THERMOMECHANICAL FATIGUE: A COMPARISON WITH ISOTHERMAL FATIGUE

R. C. BILL 1986 21 p

Presented at the International Spring Conference Fatigue at High Temperatures, Paris, France, 9-11 Jun. 1986; sponsored by the Societe Francaise de Metallurgie Prepared in cooperation with Army Aviation Research and Technology Activity, Cleveland, Ohio (NASA-TM-87331; E-3075; NAS 1.15:87331; USAAVSCOM-TR-86-C-77) Avail: NTIS HC A02/MF A01 CSCL 11F

Thermomechanical Fatigue (TMF) experiments were conducted on Mar-M 200, B-1900, and PWA-1480 (single crystals) over temperature ranges representative of gas turbine airfoil environments. The results were examined from both a phenomenological basis and a micromechanical basis. Depending on constituents present in the superalloy system, certain micromechanisms dominated the fatigue process and significantly influenced the TMF lives as well as sensitivity of the material to the type TMF cycle imposed. Micromechanisms of deformation were observed over the temperature range of interest to the TMF cycles, and provided some insight as to the differences between TMF damage mechanisms and isothermal damage mechanisms. Finally, the applicability of various life prediction models to TMF results was reviewed. Current life prediction models based on isothermal data must be modified before being generally applied to TMF.
ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering of the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1450 single crystals at 1050 C, but at 850 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

N86-31700
National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

MICROSTRUCTURE-PROPERTY RELATIONSHIPS IN DIRECTIONALLY SOLIDIFIED SINGLE CRYSTAL NICKEL-BASE SUPERALLOYS

Some of the microstructural features which influence the creep properties of directionally solidified and single crystal nickel-base superalloys are discussed. Gamma precipitate size and morphology, gamma-gamma lattice mismatch, phase instability, alloy composition, and processing variations are among the factors considered. Recent experimental results are reviewed and related to the operative deformation mechanisms and to the corresponding mechanical properties. Special emphasis is placed on the creep behavior of single crystal superalloys at high temperatures, where directional gamma coarsening is prominent, and at lower temperatures, where gamma coarsening rates are significantly reduced. It can be seen that very subtle changes in microstructural features can have profound effects on the subsequent properties of these materials.

N86-31701
National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

THE CONTINUING BATTLE AGAINST DEFECTS IN NICKEL-BASE SUPERALLOYS

In the six decades since the identification of age hardenable nickel-base superalloys their compositions and microstructures have changed markedly. Current alloys are tailored for specific applications. Thus their microstructures are defined for that purpose. This paper briefly reviews the evolution of superalloy microstructures and comments on the appearance and implications of microstructural defects in high performance superalloys. It is seen that new alloys and processes have generated new types of defects. Thus as the industry continues to develop new alloys and processes it must remain vigilant toward the identification and control of new types of defects.

N86-31702
National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

THE EFFECT OF VARIATIONS OF COBALT CONTENT ON THE CYCLIC OXIDATION RESISTANCE OF SELECTED Ni-BASE SUPERALLOYS

Cobalt levels were systematically varied in the Ni-base turbine alloys U-700 (cast), U-700(M/PM/HIP), Waspaloy, Mar-M-247, In-738, Nimonic-115, U-720, and SX-R-150. The cobalt levels ranged from 0 wt % to the nominal commercial content in each alloy. The alloys were tested in cyclic oxidation in static air at 1000, 1100 and 1150 C for 500, 500 and 100 hr respectively. An oxidation attack parameter, Ka derived from the specific weight change versus time data was used to evaluate the oxidation behavior of the alloys along with X-ray diffraction analysis of the surface oxides. The alloys tend to form either Cr2O3/chromite spinel or Al2O3/ aluminate spinel depending on the Cr/Al ratio in the alloys. Alloys with a ratio of 3.5 or higher tend to favor the Cr oxides while those under 3.0 form mostly Al oxides. In general the Al2O3/aluminate spinel forming alloys have the better oxidation resistance. Increased cobalt content lowers the scaling resistance of the higher Cr alloys while a 5.0 wt % Co content is optimum for the Al controlling alloys. The refractory metals, particularly Ta, appear beneficial to both types of oxides perhaps due to the formation of the omni-present trirutile Ni(Ta,Cb,Mo,W)2O6. Both scales break down as increasing amounts of NiO is formed.

N86-32555
National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

ION-BEAM NITRIDING OF STEELS Patent Application

A surface of a steel substrate is nitrided without external heating by exposing it to a beam of nitrogen ions under a low pressure. The pressure is much lower than that employed for ion-nitriding, and an ion source is used instead of a glow discharge. Both of these features reduce the introduction of impurities into the substrate surface.

N86-32557
National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

CREEP PROPERTIES OF PWC-11 BASE METAL AND WELDMENTS AS AFFECTED BY HEAT TREATMENT

In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electron beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the nonaged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as soft as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 2.7 MPa for annealed Nb-1%Zr and 12 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.
27 NONMETALLIC MATERIALS

A86-10825* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SURFACE EFFECTS OF CORROSIVE MEDIA ON HARDNESS, FRICTION, AND WEAR OF MATERIALS

Hardness, friction, and wear experiments were conducted with magnesium oxide exposed to various corrosive media and also with elemental iron and nickel exposed to water and NaOH. Chlorides such as MgCl2 and sodium containing films were formed on cleaved magnesium oxide surfaces. The MgCl2 films softened the magnesium oxide surfaces and caused higher friction and great deformation. Hardness was strongly influenced by the pH value of the HCl-containing solution. The lower the pH, the lower the microhardness. Neither the pH value of nor the immersion time in NaOH containing NaCl containing, and HNO3 containing solutions influenced the microhardness of magnesium oxide. NaOH formed a protective and low friction film on iron surfaces. The coefficient of friction and the wear for iron were low at concentrations of NaOH higher than 0.01 N. An increase in NaOH concentration resulted in a decrease in the concentration of ferric oxide on the iron surface. It took less NaOH to form a protective, low friction film on nickel than on iron.

A86-11076* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ANGULAR PARTICLE IMPINGEMENT STUDIES OF THERMOPLASTIC MATERIALS AT NORMAL INCIDENCE

Scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluorethylene (PTFE), and ultra-high-molecular-weight polyethylene (UHMWPE). Erosion was caused by a jet of angular microparticles of crushed glass at normal incidence. Material built up above the original surface on all of the materials. As erosion progressed, this buildup disappeared. UHMWPE was the most resistant material and PMMA the least. The most favorable properties for high erosion resistance were high values of ultimate elongation, maximum service temperature, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibited incubation, acceleration, and steady-state periods. PMMA also exhibited a deceleration period, and an incubation period with deposition was observed for UHMWPE.

A86-11175* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

LOW-WEAR PARTIALLY FLUORINATED POLYIMIDES
R. L. FUSARO and W. F. HADY (NASA, Lewis Research Center, Cleveland, OH) ASLE Transactions (ISSN 0002-7820), vol. 68, Oct. 1985, p. C-269, C-270. refs

Four polyimides were evaluated: 4-BDAF/PMDA, 4-BDAF/BTDA, 4-BDAF/80 mole percent PMDA, 4-BDAF/BTDA, 4-BDAF/80 mole percent PMDA, 4-BDAF/BTDA, 4-BDAF/80 mole percent PMDA, 4-BDAF/80 mole percent BTDA, 4-BDAF/60 mole percent BTDA. Friction coefficients, polyimide wear rates, polyimide surface morphology and transfer films were evaluated at sliding speeds of 0.31 to 11.8 m/s and at temperatures of 25 C to 300 C. The results indicate that the tribological properties are highly dependent on the composition of the polyimide and on the experimental conditions. Two polyimides were found which produced very low wear rates but very high friction coefficients (greater than 0.85) under ambient conditions. They offer considerable potential for high traction types of application such as brakes.

A86-12416* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DENSI FICATION AND PROPERTIES OF ALPHA-SILICON CARBIDE
S. DUTTA (NASA, Lewis Research Center, Cleveland, OH) American Ceramic Society, Communications (ISSN 0002-7820), vol. 68, Oct. 1985, p. C-269, C-270. refs

The sintering behavior of alpha-SiC with B and C sintering aids and without sintering aids was investigated experimentally. The sintering was performed for 30-80 min in argon flow at 2150 and 2200 C. The density of the sintered bars was determined by weighing and measuring the bars, four-point flexure tests were conducted on machined bars, and the Weibull modulus was determined by regression analysis. It is found that type 1 alpha-SiC powder, which does not density, can be sintered to a high final density (in excess of 98 percent of the theoretical value) using B and C sintering aids. Flexure test results and Weibull modulus data suggest that the strength of the alpha-SiC ceramic is greatly affected by processing flaws and also by inclusions and machining flaws.

V.L.

A86-13179* Army Research and Technology Labs., Cleveland, Ohio.

EFFECT OF SUBSTITUTED PHENYLNADIMIDES ON PROCESSING AND PROPERTIES OF PMR POLYIMIDE COMPOSITES

Three nitrophenylnadimide cure initiators and two phenylnadimides (without nitros) were evaluated as additives to PMR-15 resins and Celion 6000 graphite fiber composites. The results of a resin screening study eliminated all of the additives except 3-nitrophenylnadimide (NO2PN) for use as a low temperature curing additive for PMR-15. Thus, NO2PN and the two control additives were investigated in PMR-15 formulations from which Celion 6000 graphite fiber/PMR-15 composites were processed both with low temperature (274 C) and normal (316 C) cure cycles. Comparisons of the two processing cycles, the resultant glass transition temperatures (Tg), the ambient, 274 and 316 C composite mechanical properties determined before and after 316 C post cure, the 316 C thermo-oxidative weight losses and the retention of 316 C composite mechanical properties are presented. Empirical correlations of the type and amount of nadimide additives with processing parameters, Tg, composite mechanical properties, composite thermo-oxidative stability and long term retention of 316 C composite mechanical properties are also presented.
I characterize the microstructures of the coatings and interface resulting from solid state contact. Elastic, plastic, and fracture behavior of ceramics in solid-state contact are discussed. Results are reported and discussed.

I. S. A. 186-15226* Case Western Reserve Univ., Cleveland, Ohio. FINITE ELEMENT ANALYSIS OF RESIDUAL STRESS IN PLASMA-SPRAYED CERAMIC R. L. MULLEN (Case Western Reserve University, Cleveland, OH), R. C. HENDRICKS, and G. MCDONALD (NASA, Lewis Research Center, Cleveland, OH) Ceramic Engineering and Science Proceedings (ISSN 0196-6219), vol. 6, July-Aug. 1985, p. 871-879. Refs
Residual stress in a ZrO2-Y2O3 ceramic coating resulting from the plasma spraying operation is calculated. The calculations were done using the finite element method. Both thermal and mechanical analysis were performed. The resulting residual stress field was compared to the measurements obtained by Hendricks and McDonald. Reasonable agreement between the predicted and measured moment occurred. However, the resulting stress field is not in pure bending.

Partially stabilized zirconia was applied as coatings to 316L stainless steel substrata using an 80-kw arc-plasma unit. Some of these coating-substrate systems were subsequently glazed using a 10 kw CO2 continuous-wavelength laser. SEM was used to characterize the microstructures of the coatings and coating-substrate interfaces. Results are reported and discussed.

When a ceramic is brought into contact with itself, another ceramic, or a metal, strong bond forces can develop between the materials. Adhesion between a ceramic and itself or another solid are discussed from a theoretical consideration of the nature of the adhesion forces and experimentally by relating bond forces to the interface resulting from solid state contact. Elastic, plastic, and fracture behavior of ceramics in solid-state contact are discussed as they relate to friction and wear. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Lubrication is found to increase the critical load necessary to initiate fracture of ceramics with sliding or rubbing contact.

Studies were performed to further elucidate the friction and contact-stress characteristics of structural ceramic materials. New data for fully stabilized and partially stabilized zirconia ceramics are compared with prior test results for sintered SiC. The comparison provides further evidence that the high temperature friction characteristics of sintered SiC are strongly influenced by the presence of a viscous surface layer. The results also show that a ceramic material with lower coefficient of friction and higher fracture toughness has increased resistance to strength-reducing surface damage due to contact stress.

Author

The effect of varying pH, sonication times, and solid loading of silicon powder suspensions on the properties of powder/water suspensions and on the resulting pore characteristics of slip-cast bodies was studied. Aqueous suspensions of ground an aged silicon powder (0.3 micron median Stokes diameter and containing 1.3 vol pct Fe2O3 powder) were prepared, with solids loading in the range of 30-56 vol pct, and were adjusted to varying pH values by addition of either HCl or NH4OH or NaOH. Suspension aliquots were sonicated for 0, 15, 30, or 60 min. Suspensions were characterized by zeta potentials, ionic strength, and viscosity. Pore characteristics of cast bodies were determined by mercury porosimetry. It was found that intermediate pH values (pH 7-9), long sonication (60 min), and high solid loadings (56 vol pct) produced samples with highest green densities and smallest median pore radius.

A statistical study of the ball milling of Si3N4 powder in Si3N4 hardware was undertaken to understand how the resulting increase in specific surface area is related to solids loading and mill speed. An attempt was made to optimize milling conditions. The degree of communication was more dependent upon solids loading than mill speed. A practical grinding limit between 0.5 and 0.75 microns was achieved in 144 hr independent of solids loading. Ball mill wear and media wear were independent of both solids loading and mill speed.

E. A. K.
PARAMETRIC EVALUATION OF BALL MILLING OF SiC IN WATER
J. D. KISER, T. P. HERBELL, and M. R. FREEDMAN (NASA, Lewis Research Center, Cleveland, OH) Ceramic Engineering and Science Proceedings (ISSN 0196-6219), vol. 6, July-Aug., 1985, p. 135-145. Previously announced in STAR as N85-21556. A statistically designed experiment was conducted to determine optimum conditions for ball milling alpha-SiC in water. The influence of pH adjustment, volume percent solids loading, and mill rotational speed on grinding effectiveness was examined. An equation defining the effect of those milling variables on specific surface area was obtained. The volume percent solids loading of the slurry had the greatest influence on the grinding effectiveness in terms of increase in specific surface area. As grinding effectiveness improved, mill and media wear also increased. Contamination was minimized by use of sintered alpha-SiC milling hardware.

COMPOSITION AND PROPERTIES OF THE SO-CALLED 'DIAMOND-LIKE' AMORPHOUS CARBON FILMS
J. C. ANGUS, J. E. STULTZ, P. J. SHILLER (Case Western Reserve University, Cleveland, OH), J. R. MACDONALD (Guelph, University, Canada), M. J. MIRTICH (NASA, Lewis Research Center, Cleveland, OH) et al. IN: Metallurgical coatings 1984; Proceedings of the Eleventh International Conference, San Diego, CA, April 9-13, 1984. Volume 1. Lausanne, Switzerland, Elsevier Sequoia, S.A., 1984, p. 311-320. NASA-supported research. The composition of amorphous 'diamond-like' films made by direct low energy ion beam deposition, R.F. discharge and sputtering was determined by nuclear reaction analysis, IR spectroscopy and microcombustion chemical analysis. The nuclear reaction analysis showed very similar hydrogen depth profiles for all three types of samples. The atomic ratio of hydrogen to carbon was approximately 0.2 at the film surface and rose to approximately 1.0 at a depth of 500 Å. The integrated intensity of the C-H stretching band at about 2900 cm^-1 per cm indicates that the amount of chemically bonded hydrogen is less than the total hydrogen content. Combustion analysis confirmed the overall atomic ratio of hydrogen to carbon determined by nuclear reaction analysis. The chemical state of the non-bonded hydrogen was not determined; however, the effective diffusion coefficient computed from the hydrogen depth profile was extremely low. This indicates either that the films are exceedingly impermeable or that the non-bonded hydrogen requires an additional activated step to leave the films, e.g., desorption or chemical reaction.

NEUTRON AND X-RAY DIFFRACTION OF PLASMA-SPRAYED ZIRCONIA-YTTRIA THERMAL BARRIER COATINGS

DEPOSITION STRESS EFFECTS ON THE LIFE OF THERMAL BARRIER COATINGS ON BURNER RIGS
J. W. WATSON and S. R. LEVINE (NASA, Lewis Research Center, Cleveland, OH) IN: Metallurgical coatings 1984; Proceedings of the Eleventh International Conference, San Diego, CA, April 9-13, 1984. Volume 2. Lausanne, Switzerland, Elsevier Sequoia, S.A., 1984, p. 185-193. Previously announced in STAR as N84-25830. A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

TRIBOLOGICAL PROPERTIES OF BORON NITRITE SYNTHESIZED BY ION BEAM DEPOSITION
K. MIYOSHI, D. H. BUCKLEY, and T. SPALVINS (NASA, Lewis Research Center, Cleveland, OH) Ceramic Engineering and Technology A (ISSN 0734-2101), vol. 3, Nov.-Dec. 1985, p. 2340-2344. Previously announced in STAR as N85-21355. refs The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. The friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically clean BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adhesion of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbrates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

FILM AND INTERSTITIAL FORMATION OF METALS IN PLASMA-SPRAYED CERAMICS
R. C. HENDRICKS, G. MACDONALD (NASA, Lewis Research Center, Cleveland, OH), and L. J. MULLEN (Case Western Reserve University, Cleveland, OH) Journal of Vacuum Science and Technology A (ISSN 0734-2101), vol. 3, Nov.-Dec. 1985, p. 2456-2458. Previously announced in STAR as N85-22756. A method is described to electrodeposit noble metals such as platinum and ordinary metals such as copper onto and within plasma-sprayed ceramic materials and ceramic fiber materials. Low-velocity water-cooled plasma spraying of stainless steel, and water-plating solution and attached to an electrode. Light micrographs illustrating the density and location of deposited materials are presented and discussed. Voids in the plasma-sprayed ceramic were filled with deposits that vary from spherical to lens-shaped circular and have particle size corresponding to the full range of features and compositions.
void size. Multiple coatings of ceramic and metal can be sequenced. Author

A86-17495 California Univ., Los Angeles.

PRETREATMENT EFFECTS ON THE MORPHOLOGY AND PROPERTIES OF ALUMINUM OXIDE THERMALLY GROWN ON NiCoCrAlY

(Contract NAG3-749)

The effect of pretreatments on the morphology and properties of aluminum oxide thermally grown from NiCoCrAlY was investigated. The goal was to optimize process steps to produce a highly adherent, continuous, and insulating aluminum oxide. Two pretreatments were carried out, one in vacuum (about 0.0001 Torr) at 1350 K for 5 h, and the other consisting of deposition of a 1-micron thick AI2O3 film by activated reactive vaporization. Samples were subsequently oxidized thermally at 1000 C for 50 h at 0.5 Torr oxygen pressure. The two pretreatments were carried out on electron-beam evaporation NiCoCrAlY, about 120 microns thick, deposited on a superalloy turbine blade substrate. The results showed that the thermally grown oxide was significantly different in microstructure, surface topography and in its adherence to the NiCoCrAlY for the two pretreatments. Optimum results were obtained by combining the two pretreatments to produce an adherent, continuous, and insulating oxide film on the NiCoCrAlY-coated superalloy substrate. Author

A86-20435 Rensselaer Polytechnic Inst., Troy, N.Y.

OPTICAL AND OTHER PROPERTIES CHANGES OF M-50 BEARING STEEL SURFACES FOR DIFFERENT LUBRICANTS AND ADDITIVES PRIOR TO SCUFFING

(Contract NAG3-222; AF-AFOSR-81-0005; DAAG24-83-K-0058)

An ester lubricant base oil containing one or more standard additives to protect against wear, corrosion, and oxidation was used in an experimental ball/plate elastohydrodynamic contact under load and speed conditions such as to induce scuffing failure in short times. Both the ball and the plate were of identically treated M-50 steel. After various periods of operating time, the wear track on the plate was examined with an interference microscope of plus or minus 30 A depth resolution and sometimes also with a scanning ellipsometer and an Auger spectrometer. The optically deduced surface profiles varied with wavelength, indicating the presence of surface coatings, which were confirmed by the other instruments. As scuffing was approached, a thin (approximately A) oxide layer and a carbide layer formed in the wear track in particular when tricresylphosphate antiwear additive was present in the lubricant. The rates of formation of these layers and their reactivity toward dilute alcoholic HCI depended strongly on the lubricant and additives. Based on these results suggestions for improved formulations and a test method for bearing reliability could be proposed. R.J.F.

A86-20437 National Aeronautics and Space Administration.

SIMULATION OF LUBRICATING BEHAVIOR OF A THIOETHER LIQUID LUBRICANT BY AN ELECTROCHEMICAL METHOD

W. MORALES (NASA, Lewis Research Center, Cleveland, OH). ASLE Transactions, vol. 29, Jan. 1986, p. 67-73; Discussion, p. 73, 74; Author's Reply, p. 74. Previously announced in STAR as N84-23764. refs

An electrochemical cell was constructed to explore the possible radical anion forming behavior of a thioether liquid lubricant. The electrochemical behavior of the thioether was compared with the electrochemical behavior of biphenyl, which is known to form radical anions. Under controlled conditions biphenyl undergoes a reversible reaction to a radical anion, whereas the thioether undergoes an irreversible reduction yielding several products. These results are discussed in relation to boundary lubrication. Author

A86-20992 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

KINETICS AND MECHANISM OF CORROSION OF SIC BY MOLTEN SALTS

Corrosion of sintered alpha-SiC under thin films of Na2CO3/CO2, Na2SO4/O2, and Na2SO4/SO3 was investigated at 1000 C. Chemical analysis was used to follow silicate and silico evolution as a function of time. This information coupled with morphology observations leads to a detailed corrosion mechanism. In all cases the corrosion reactions occur primarily in the first few hours. In the Na2SO4/CO2 case, rapid oxidation and dissolution lead to a thick layer of silicate melt in about 0.25 h. After this, silica forms a protective layer on the carbide. In the Na2SO4/O2 case, a similar mechanism occurs. In the Na2SO4/SO3 case, a porous nonprotective layer of SiO2 grows directly on the carbide, and a silicate melt forms above this. In addition, SiO2 and regenerated Na2SO4 form at the melt/gas interface due to reaction of silicate with SO3 and SO2 + O2. The reaction slows when the lower silica layer becomes nonporous. Author

A86-23921 SOHIO Engineered Materials Co., Niagara Falls, N.Y.

SINTERED ALPHA SILICON CARBIDE CERAMICS FOR HIGH TEMPERATURE STRUCTURAL APPLICATION - STATUS REVIEW AND RECENT DEVELOPMENTS

(Contract DEN3-17; DEN3-168; DEN3-167)

(ASME PAPER 85-IGT-127)

The physical properties of sintered alpha silicon carbide are reviewed, including the effect of oxidation at high temperatures. Net shape fabricated components are described which have undergone extensive testing in heat engine applications. Properties of an SiC/TiB2 composite material, which has significantly improved fracture toughness, are presented. Author

A86-24956 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SELECTED FRETTING-FRATNT-RESISTANT COATINGS FOR TI-6 AL-4 PCT V ALLOY

The ability of several wear-resistant coatings to reduce fretting in the Ti-6AI-4V alloy is investigated. The experimental apparatus and procedures for evaluating fretting in uncoated Ti-6AI-4V alloy and in the alloy with plasma-sprayed coatings, polymer-bonded coating, and surface treatments are described. The wear volume and wear rate for the alloys are measured and compared. It is concluded that Al2O3 with 13 percent TiC2, preoxidation and nitride surface treatments, and EB sputtering result in wear-resistant surfaces; however, the polyimide coating is the most wear resistant coating in both dry and moist air, and it causes the least wear to the uncoated alloy surface. I.F.
EFFECT OF TEMPERATURE, SOLUTION CONCENTRATION, AND AGING TIME ON PMR-15 RESIN SOLUTIONS

High performance liquid chromatography is utilized to evaluate the effect of temperature, solution concentration, and aging time on PMR-15 resin solutions. Fifty- and 70-wt percent PMR-15 resin solutions were prepared from the mixture of 5-norbornene-2,3-dicarboxylic ester (NE) acid, 4,4'-methyleneedianiline (MDA), methanol, and 3,3',4,4'-benzophenonetetracarboxylic dimethyl ester (BTDE) acid solution. It is observed that in PMR-15 resin solution aged for 35 days at room temperature NE and MDA react to form amide and imide intermediates. The precipitation data reveal that in the 70-wt percent solution precipitation occurs after 12 days and in the 50-wt percent solution after 20 days; however, at lower temperatures (-11 °C, and 2 °C) no precipitation is detected. It is concluded that storage of resin solutions and powders at reduced temperatures extends shelf life by reducing the rate of imide formation.

EFFECT OF GRAIN-BOUNDARY CRYSTALLIZATION ON THE HIGH-TEMPERATURE STRENGTH OF SILICON NITRIDE

Silicon nitride specimens having the composition 88.7 wt pct Si3N4-4.9 wt pct SiO2-6.4 wt pct Y2O3 were sintered at 2140 °C under 25 atm N2 for 1 h and then subjected to a 5 h anneal at 1500 °C. Crystallization of an amorphous grain-boundary phase resulted in the formation of Y2Si2O7. The short-time 1370 °C strength of this material was compared with that of material of the same composition having no annealing treatment. No change in strength was noted. This is attributed to the refractory nature of the yttrium-rich grain-boundary phase (apparently identical in both glassy and crystalline phases) and the subsequent domination of the failure process by common processing flaws.

Author
The negative transverse magnetoresistance of high-modulus pitchbased carbon fibers has been measured over the temperature range 1.3-4.2 K at ambient pressure and at 4.2 K under hydrostatic pressure up to 16 kbar. At low fields (less than 0.5 T) the magnitude of the magnetoresistance increases markedly as the temperature is lowered from 4.2 K to 1.3 K, in disagreement with Bight's theoretical model, and decreases with pressure at the rate -0.6 percent/kbar.

A86-35702 Cleveland State Univ., Ohio.

NEGATIVE MAGNETORESISTANCE OF PITCH-BASED CARBON FIBERS TEMPERATURE AND PRESSURE DEPENDENCE P. D. HAMBURGER (Cleveland State University, OH) Applied Physics Communications (ISSN 0277-9374), vol. 5, no. 4, 1985-86, p. 223-230. refs (Contract NCC3-19)

A86-36328 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

BURNER RIG CORROSION OF SIC AT 1000 C N. S. JACOBSON, C. A. STEARNS, and J. L. SMIALEK (NASA, Lewis Research Center, Cleveland, OH) Advanced Ceramic Materials (ISSN 0883-5551), vol. 1, April 1986, p. 154-161. refs

Sintered alpha-SIC was examined in both oxidation and hot corrosion with a burner rig at 400 KPa (4 atm) and 1000 C with a flow velocity of 94 m/s. Oxidation tests for times to 46 h produced virtually no attack, whereas tests with 4 ppm Na produced extensive corrosion in 13.5 h. Thick glassy layers composed primarily of sodium silicate formed in the salt corrosion tests. This corrosion attack caused severe pitting on the silicon carbide substrate and led to a 32 percent decrease in strength, compared to the as-received material. Parallel furnace tests of Na2SO4/air-induced attack yielded basically similar results, with slight product composition differences. The differences are explained in terms of the continuous sulfate deposition which occurs in a burner rig.

A86-36330 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

STRENGTH AND MICROSTRUCTURE OF Si3N4 SINTERED WITH ZrO2 ADDITIONS W. A. SANDERS and D. M. MIESKOWSKI (NASA, Lewis Research Center, Cleveland, OH) Advanced Ceramic Materials (ISSN 0883-5551), vol. 1, April 1986, p. 166-173. refs

Densities greater than 99 percent of theoretical were obtained with stabilized ZrO2 additions to Si3N4. Material sintered at 2140 C under 2.5 MPa nitrogen overpressure with 3.8, 9.9, and 13.4 wt pct ZrO2 had a predominantly equiaxed grain size ranging from 0.2 to 7.0 microns. At 1370 C, the latter composition exhibited a flexural strength of about 487 MPa, equal to that of a finer-grain-size, hot-pressed Si3N4 + ZrO2 material having excellent high-temperature static fatigue properties. Transmission electron microscopy of the sintered Si3N4 revealed a glassy grain-boundary phase at all three ZrO2 levels and partially crystalline triple points for the 9.9 and 13.4 wt pct ZrO2-containing materials. Slow crack growth was observed for 1370 C flexure tests and correlated with nonlinear load deflection traces for stresses greater than 503 MPa. The crystallization of the grain-boundary glass is interpreted as beneficial to the attainment of high (1370 C) flexural strength.

A86-37141 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

Ultrasound velocity and attenuation measurements were used to characterize density and microstructure in monolithic silicon nitride and silicon carbide. Research samples of these structural ceramics exhibited a wide range of density and microstructural variations. It was shown that bulk density variations correlate with and can be estimated by velocity measurements. Variations in microstructural features such as grain size or shape and porosity morphology had a minor effect on velocity. However, these features had a pronounced effect on ultrasonic attenuation. The ultrasonic results are supplemented by low-energy radiography and scanning laser acoustic microscopy.

A86-40682 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

Thermal oxidative degradation studies were performed on unbranched perfluoralkylethers at 288 C in oxygen. Metals and alloys studied included Ti, Al, and Ti (4 Al, 4 Mn). The mechanism of degradation was by chain scission. Ti and Al promoted less degradation than Ti (4 Al, 4 Mn). The two inhibitors investigated (a perfluorophenyl phosphine and a phosphazinane) reduced degradation rates by several orders of magnitude. Both inhibitors were effective for the same duration (75 to 100 hours). The phosphazinane appeared to provide more surface protection.

A86-44425 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THE USE OF SILVER IN SELF-LUBRICATING COATINGS FOR EXTREME TEMPERATURES H. E. SLINHEY (NASA, Lewis Research Center, Cleveland, OH) ASLE Transactions (ISSN 0569-8197), vol. 29, July 1986, p. 370-376. Previously announced in STAR as N85-20192. refs

The advantages and disadvantages of elemental silver as a tribological material are discussed. It is demonstrated that the relatively high melting point of 961 deg C, softness, marked plasticity, and thermochemical stability of silver combine to make this metal useful in thin film solid lubricant coatings over a wide temperature range. Disadvantages of silver during sliding, except when used as a thin film, are shown to be gross ploughing due to plastic deformation under load with associated high friction and excessive transfer to counterface surfaces. This transfer generates an irregular surface topography with consequent undesirable changes in bearing clearance distribution. Research to overcome these disadvantages of element silver is described. A comparison is made of the tribological behavior of pure silver with that of silver formulated with other metals and high-temperature solid lubricants. The composite materials are prepared by co-depositing the powdered components with an airbrush followed by furnace heat treatment or by plasma-spraying. Composite coatings were formulated which are shown to be self-lubricating over repeated, temperature cycles from low temperature to about 900 deg C.
I of polymer wear with SEM, the quantification with surface bond character of metals are related to the friction and wear for ceramics. Both free energy of oxide formation and the d valence annouced in STAR as N84-21739. refs

fracture in ceramics is shown to be appreciably reduced with Cleveland, OH) IN: Polymer wear and its control . Washington, tangential motion. Both friction and wear of ceramics are anisotropic state contact is discussed. The contact load necessary to initiate contact is with ceramics both as coatings and in composites are described for the high temperature lubrication of both alloys and ceramics.

A86-47068* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. THIn film growth rate effects for primary ion beam deposited diamondlike carbon films D. NIR and M. MIRTICH (NASA, Lewis Research Center, Cleveland, OH) Journal of Vacuum Science and Technology A (ISSN 0734-2101), vol. 4, May-June 1986, pt.I, p. 560-569. refs

Diamondlike carbon (DLC) films were grown by primary ion beam deposition and the growth rates were measured for various beam energies, types of hydrocarbon gases and their ratio to Ar, and substrate materials. The growth rate had a linear dependence upon hydrocarbon content in the discharge chamber, and only small dependence on other parameters. For given deposition conditions a threshold in the atomic ratio of carbon to argon gas was identified below which films did not grow on fused silica substrate, but grew on Si substrate and on existing DLC films. Ion source deposition parameters and substrate material were found to affect the deposition threshold and film growth rates.

Author

(Contract NGS-3901)

The composition of the neutral particles released during the electrical breakdown of 50-micron and 75-micron insulating films of the type used on spacecraft exteriors investigated experimentally using a time-of-flight mass spectrometer triggered by the breakdown event. The experimental apparatus is described in detail, and the results are presented in photographs. It is found that the particle flux from Teflon FEP and PFA films comprise mainly fluorocarbon fragments, some with mass 350 amu or greater, but the flux from Kapton oxygen-ion-beam treated Kapton, Tefzel, and Mylar comprises mainly molecules of mass 44 amu or less. T.K.

Analytical tools which characterize the polymer wear process are discussed. The devices discussed include: visual observation of polymer wear with SEM, the quantification with surface profilometry and ellipsometry, to study the chemistry with AES, XPS and SIMS, to establish interfacial polymer orientation and accordingly bonding with QUARTIR, polymer state with Raman spectroscopy and stresses that develop in polymer films using a X-ray double crystal camera technique.

Author

N86-10341* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. TRIBOLOGICAL PROPERTIES OF STRUCTURAL CERAMICS D. H. BUCKLEY and K. MIYOSHI Sep. 1985 103 p refs Submitted for publication in STAR as N84-21739. refs (NASA-TM-87105; E-2649; NAS 1.15:87105) Avail: NTIS HC A06/MF A01 CSCL 11B

The tribological and lubricated behavior of both oxide and nonoxide ceramics are reviewed in this chapter. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as has been observed with metals. Grit size effects in two and three body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases increase friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing. Ceramics compositions both as coatings and in composites are described for the high temperature lubrication of both alloys and ceramics.

Author

N86-11263* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. POLYIMIDES FROM SOLUTIONS CONTAINING MIXED ENDCAPS P. DELVIGS In its High Temp. Polymer Matrix Composites p 23-34 Sep. 1985 refs

Previously studies have shown that partial substitution of p-aminostyrene (PAS) for the monomethylester of endo-5-norbornene-2, 3-dicarboxylic acid (NE) lowered the cure temperature of PMR polyimides from 316 to 260 C, but the modified PMR polyimides required higher compression-molding pressures than state-of-the-art PMR-15. In this study PMR polyimides are prepared employing three encaps: NE, PAS, and endo-N-phenyl-5-norbornene-2,3-dicarboximide (PN). The effect of PN addition on the processing characteristics and glass transition temperatures of graphite fiber-reinforced PMR composites is studied. The room temperature and short-time 316 C mechanical properties of the composites are determined. The weight loss and mechanical property reten- tion characteristics of the composites after exposure in air at 316 C are also determined. Author

(Contract NAG3-163) Avail: NTIS HC A18/MF A01 CSCL 11B

As part of a program to further the understanding of the polymerization of Nadic-Encapped PMR systems, a series of model Norbornenyl-imides has been synthesized and their thermal behavior explored. Their syntheses and characterizations as well as their rearrangement and polymerization chemistry are described. Monomer isomerization at temperatures as low as 125 C and oligomer formation at somewhat higher temperatures are observed. Approximate relative rates for competing isomerization pathways are established and some information is obtained about the details of oligomer formation. The relationship of this data to current PMR systems is briefly discussed.

Author

(Contract NAG3-163) Avail: NTIS HC A18/MF A01 CSCL 11B

Biphynlend capped polynylpolyimide resins afford void-free coatings for graphite-reinforced ceramic composite initial properties. However, with both resins, rapid degradation occurs during oxidative isothermal aging at elevated temperatures. The degradation is not observed during isothermal aging under a nitrogen atmosphere which suggests that the biphynlene end-cap (or the resulting crosslink/chain extension structures) is not particularly thermooxidatively stable. The nature of the thermooxidative instability is currently under investigation.

Author
N86-11271*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CHEMICAL CONTROL OF RATE AND ONSET TEMPERATURE OF NADIMIDE POLYMERIZATION

Avail: NTIS HC A18/MF A01 CSCL 11B

The chemistry of norbornenyl capped imide compounds (nadimides) is briefly reviewed with emphasis on the contribution of Diels-Alder reversion in controlling the rate and onset of the thermal polymerization reaction. Control of onset temperature of the cure exotherm by adjusting the concentration of maleimide is demonstrated using selected model compounds. The effects of nitrophenyl compounds as free radical retarders on nadimide reactivity are discussed. A simple copolymerization model is proposed for the overall nadimide cure reaction. An approximate numerical analysis is carried out to demonstrate the ability of the model to simulate the trends observed for both maleimide and nitrophenyl additions. Author

N86-11275*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

REPLACEMENT OF MDA WITH MORE OXIDATIVELY STABLE DIAMINES IN PMR POLYIMIDES

Avail: NTIS HC A18/MF A01 CSCL 11B

Studies are performed to investigate the effect of substituting 4,4'-oxydianiline and 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane for the 4,4'-methylenedianiline in PMR polyimide matrix resin. Graphite fiber reinforced composites are fabricated from unsized Celion 6000 and PMR-polyimide matrix resins having formulated molecular weights in the range of 1500 to 2400. The composite processing weights in the range of 1500 to 2400. The composite processing characteristics are investigated and the initial room temperature and 316 C (600 F) composite mechanical properties are determined. Comparative 316 C composite weight losses and 316 C mechanical properties retention after prolonged 316 C air exposure are also determined. Author

N86-12310*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

MOLten SALT CORROsION OF SiC: PITTINg MECHANISm

(NASA-TP-87143; E-2770; NAS 1.15:87143). Avail: NTIS HC A02/MF A01 CSCL 11G

Thin films of Na2SO4 and Na2CO3 at 1000 C lead to severe pitting (to 12,500 Mm) in SiC. These pits are important as they cause a strength reduction in this material. The growth of product layers is related to pit formation for the Na2CO3 case. The early reaction stages involve repeated oxidation and dissolution to form sodium silicate. This results in severe grain boundary attack. After this a porous silica layer forms between the sodium silicate melt and the SiC. The pores in this layer appear to act as paths for the melt to reach the SiC and create larger pits. Author

N86-12311*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

STrUCTURE-TO-Glass TRANSITION TEMPERATURE RELATIONSHIPS IN HIGH TEMPERATURE STABLE CONDENSATION POLYMIDES

W. B. ALSTON and R. F. GRATZ. (Mary Washington Coll., Fredericksburg, Va.) 1985 19 p. refs

(Contract DA PROJ. 1T1-61101-AH-45)

(NASA-TP-87143; E-2714; NAS 1.15:87113; USAAVSCOM-TR-85-C-18). Avail: NTIS HC A02/MF A01 CSCL 11B

The presence of a hexafluoroisopropylidene (6F) connecting group in aryl dihydrides used to prepare aromatic condensation polyimides provides high glass transition temperature (T sub g) polyimides with excellent thermo-oxidative stability. The purpose of this study was to determine if a trifluorophenyl-ethylenide (3F) connecting group would have a similar effect on the T sub g of aromatic condensation polyimides. A new dihydride containing the 3F connecting group was synthesized. This dihydride and an aromatic diamine also containing the 3F connecting group were used together and in various combinations with known diamines or known dihydrides, respectively, to prepare new 3F containing condensation polyimides. Known polyimides, including some with the 6F connecting link, were also prepared for comparison purposes. The new 3F containing polyimides and the comparison polymers were prepared by condensation polymerization via the traditional amic-acid polymerization method in N,N-dimethylacetamide solvent. The solutions were characterized by determining their inherent viscosities and then were thermally converted into polyimide films under nitrogen atmosphere at 300 to 500 C. The T sub g's of the films and resin discs were then determined by thermomechanical analysis and were correlated as a function of the final processing temperatures of the films and resin discs. The results showed that similarities existed in the T sub g's depending on the nature of the connecting linkage in the monomers used to prepare the condensation polyimides.

B.W.

N86-13495*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

FRACTURE TOUGHNESS OF S3NI4 MEASURED WITH SHORT BAR CHEVRON-NOTCHED SPECIMENS

J. A. SALEM and J. L. SHANNON, JR. 1985 19 p. refs

(NASA-TM-87153; E-2740; NAS 1.15:87153). Avail: NTIS HC A02/MF A01 CSCL 11G

The short bar chevron-notched specimen is used to measure the plane strain fracture toughness of hot pressed S3NI4. Specimen proportions and chevron-notch angle are varied, thereby varying the amount of crack extension to maximum load (upon which K sub IC is based). The measured toughness (4.68 + 0.19 MNm to the 3/2 power) is independent of these variations, inferring that the material has a flat crack growth resistance curve. Author

N86-15394*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TEXTUREd CARBON ON COPPER: A NOVEL SURFACE WITH EXTREMELY LOW SECONDARY ELECTRON EMISSION CHARACTERISTICS

A. N. CURREN and K. A. JENSEN. Dec. 1985 16 p. refs

(NASA-TP-2543; E-2674; NAS 1.60:2543). Avail: NTIS HC A02/MF A01 CSCL 11G

Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for a range of primary electron beam energies and beam impingement angles are presented for a series of novel textured carbon surfaces on copper substrates. (All copper surfaces used in this study were oxygen-free, high-conductivity grade). The purpose of this investigation is to provide information necessary to develop high-efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes (TWT's) for communications and aircraft applications. To attain the highest TWT signal quality and overall efficiency, the MDC electrode surface must have low secondary electron emission characteristics. While copper is the material most commonly used for MDC electrodes, it exhibits relatively high levels of secondary electron emission unless its surface is treated for emission control. The textured carbon surface on copper substrate described in this report is a particularly promising candidate for the MDC electrode application. Samples of textured carbon surface on copper substrates typical of three different levels of treatment are prepared and tested for this study. The materials are tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near-grazing (85 deg) beam impingement angles. True secondary
27 NONMETALLIC MATERIALS

electron emission and relative reflected primary electron yield characteristics of the textured surfaces are compared with each other and with those of untreated copper. All the textured carbon surfaces on copper substrate tested exhibited sharply lower secondary electron emission characteristics than those of an untreated copper surface.

Author

An infrared Fourier microemission spectrophotometer is used to obtain spectra (wavenumber range, 650 to 1230 0.1 cm) from microgram quantities of thioether lubricant samples deposited on aluminum foil. Infrared bands in the spectra are reproducible and could be identified as originating from aromatic species (1,3-disubstituted benzenes). Spectra from all samples (neat and formulated, used and unused) are very similar. Additives (an acid and a phosphinate) present in low concentration (0.10 percent) in the formulated fluid are not detected. This instrument appears to be a viable tool in helping to identify lubricant components separated by liquid chromatography.

Author

Silicone-based working fluids for advanced space radiators requiring direct fluid exposure to the space environment are evaluated. Isolation of five candidate fluids by vacuum distillation from existing silicone polymers is discussed. The five fluids recovered include a polydimethylsiloxane, three phenyl-containing siloxanes, and a methylhexylsiloxane. Vapor pressures and viscosities for the five fluids are reported over the temperature range of 250 to 400 K. Use of thermal-gravimetric analysis to reliably estimate vapor pressures of 10 to the -8 power Pascals is reviewed. Isolation of five candidate fluids from the five candidate fluids based on favorable vapor pressure and viscosity, as well as perceived stability in low-Earth orbit environments. Characterization of these fluids by infrared spectroscopy, Si-29 NMR, gel-permeation chromatography, and liquid chromatography is presented. Both fluids consist of narrow molecular weight distributions, with average molecular weights of about 2500 for PDMS and 1300 for PMPS. Author

The invention described relates to improved polyimide resins which are noted for their high thermal and oxidative stability, high strength at elevated temperatures and which exhibit many other outstanding physical and chemical properties, especially useful in high temperature applications. The polyimides are prepared by the reaction, with application of heat of a mixture of monomers comprising: (1) a dialkyl or tetraalkyl ester of an aromatic tetracarboxylic acid, (2) aromatic diamine, (3) a monoalkyl or dialky ester of a dicarboxylic acid, and (4) a N-arylidimide such as N-phenylimidamide. Polyimides of monomers (1), (2) and (3) are known. Official Gazette of the U.S. Patent and Trademark Office

Author

A polymeric substrate is coated with a metal oxide film to provide oxidation protection in low Earth orbital environments. The film contains about 4 volume percent polymer to provide flexibility. A coil of polymer material moves through an ion beam as it is fed between reels. The ion beam first cleans the polymer material surface and then sputters the film material from a target onto this surface.

Official Gazette of the U.S. Patent and Trademark Office

Author

Finite element equations are developed for studying deformations and temperatures resulting from frictional heating in sliding system. The formulation is done for linear steady state motion in two dimensions. The equations include the effect of the velocity on the moving components. This gives spurious oscillations in their solutions by Galerkin finite element methods. A method called streamline upwind scheme is used to try to deal with this deficiency. The finite element program is then used to investigate the friction of heating in gas path seal.

Author

Over the years, the author has evaluated and compared hundreds of solid lubricant films using a pin-on-disk tribometer. The intent of this paper is to describe to the reader experimental techniques and some of parameters that have been observed to be important for the evaluation and development of new solid lubricant films. Pin-on-disk tribometers will be described and discussed as will experimental methods for evaluating solid lubricant materials. Methods of preparing surfaces for the coating of the thin films and different methods for applying the films will be reviewed. Factors that affect solid lubricant performance will also be discussed. Two different macroscopic mechanisms of solid lubricant film wear exist. These will be characterized schematically, and methods of measuring wear will be examined.

Author
The results indicate that the bromination and debromination coating composition to consider for high temperature aerospace and advanced heat engine applications. The excellent results in preserving, and in some cases, even enhancing wear resistance. Additives were silver and barium fluoride/calcium fluoride eutectic. The coating constituents were treated as a ternary system consisting of: (1) the bonded carbide base material, (2) silver, and (3) the eutectic. A study to determine the optimum amounts of each constituent was performed. The various compositions were prepared by powder blending. The blended powders were then plasma sprayed onto superalloy substrates and diamond ground to the desired coating thickness. Friction and wear studies were performed at temperatures from 25 to 760 °C in helium and hydrogen. A variety of counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications such as piston ring/cylinder liner couples for Stirling engines.

A new chromium carbide-based coating (PS 200) is described. This coating is shown to have good friction and wear properties over a wide temperature range. A nickel alloy-bonded chromium carbide coating was used as a baseline material for comparison with experimental formulated coatings. Coatings were plasma sprayed onto metal disks, then diamond ground to a thickness of 0.025 cm. Friction and wear were determined using a pin on disk tribometer at constant temperatures from 25 to 900 °C in hydrogen, helium, air, and air. Pin materials included several metallic alloys and silicon carbide. It was found that appropriate additions of metallic silver and of barium fluoride/calcium fluoride eutectic to the baseline carbide composition significantly reduced friction coefficients while preserving, and in some cases, even enhancing wear resistance. The results of this study demonstrate that PS 200 is a promising coating composition to consider for high temperature aerospace and advanced heat engine applications. The excellent results in hydrogen make this coating of particular interest for use in the Stirling engine.

The oxidation characteristics of a pure ester (trimethylolpropane triethanoate) were studied by using a chemiluminescence technique. Tests were run in a thin-film micro-oxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 °C. Results indicated that oxidation of the ester (containing 10 to the minus 3 power M diphenylthiocarbene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission (I sub max) was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period or the time to reach one-half of maximum intensity (t sub 1/2) was an inverse function of test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.
ABRASION AND DEFORMED LAYER FORMATION OF MANGANESE-ZINC FERRITE IN SLIDING CONTACT WITH LAPPING TAPES

Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystalline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order of the grit size. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size. Author

Alpha silicon carbide powder was consolidated by both dry and wet methods. Dry pressing in a double acting steel die yielded sintered test bar with an average flexural strength of 235.6 MPa with a critical flaw size of approximately 100 micro m. An aqueous slurry pressing technique produced sintered test bars with an average flexural strength of 440.8 MPa with a critical flaw size of approximately 25 micro m. Image analysis revealed a reduction in both pore area and pore size distribution in the slurry pressed sintered test bars. The improvements in the slurry pressed material properties are discussed in terms of reduced agglomeration and improved particle packing during consolidation. Author
THE PREPARATION OF NEW PERFLUOROETHER FLUIDS EXHIBITING EXCELLENT THERMAL-OXIDATIVE STABILITIES

(NASA-TM-87284; E-2919; NAS 1.15:87284) Avail: NTIS HC A02/MF A01 CSCL 11C

A series of low molecular weight perfluoroalkylethers (PFAE) were synthesized by direct fluorination. Viscosity-temperature properties and oxidation stabilities were determined. Viscosity-temperature correlations indicated that increases in branching and increases in the size of the branching substituent caused a deterioration in viscometric properties (i.e., an increase in ASTM slope). In addition, increasing the ratio of carbon to oxygen in these compounds also increased the ASTM slope. Preliminary oxidation stability tests indicated that highly branched PFAE fluids, (i.e., those containing quaternary carbons) may be less stable than those containing a single trifluoromethyl pendant group or those containing no branching at all.

Author

TRIBOLOGY OF SELECTED CERAMICS AT TEMPERATURES TO 900 DEG C

(NASA-TM-87267; E-2969; NAS 1.15:87267) Avail: NTIS HC A02/MF A01 CSCL 11B

Results of fundamental and focused research on the tribological properties of ceramics are discussed. The basic friction and wear characteristics are given for ceramics of interest for use in gas turbine, adiabatic diesel, and Stirling engine applications. The importance of metal oxides in ceramic/metal sliding combinations is illustrated. The formulation and tribological additives are described. Friction and wear data are given for carbide and oxide-based composite coatings for temperatures to at least 900 C. Author

REFERENCES

THE TRIBOLOGICAL COATING

J. S. SOVEY, inventor (to NASA), B. A. BANKS, inventor (to NASA), and M. J. MIRTHICH, inventor (to NASA) 27 Feb. 1986 12 p Sponsored by NASA

A polymeric substrate is coated with a metal oxide film to provide oxidation protection in low Earth orbital environments. The film contains about four volume percent polymer to provide flexibility. NASA

CHARACTERIZATION OF THE TRIBOLOGICAL COATING COMPOSITION 77 WT % CAF2 - 23 WT % Li F FUSED TO IN-750 ALLOY

A coating composed of 77 wt % CaF2 - 23 wt % LiF fused on IN-750 nickel-based alloy was studied using SEM, XRD, EDX, and optical microscopic methods. The surfaces examined were the as-fired coating with no subsequent treatment, the coating after ultrasonic cleaning in water, and the uncoated polished and etched metal. It was found that the coating reacts during fusion with Ti and Nb rich inclusions in the alloy. Numerous small rectangular crystallites of CaTi(Nb) oxide are formed beneath an overlay of fused fluoride composition. These crystallites are stubby and appear to be embedded in the metal substrate surface. It is known from previous studies that this coating-alloy system has good tribological properties in extreme conditions, such as liquid fluorine. It has been concluded from the present study that the short firmly embedded crystalline protruberances contribute to the coating adherence and thereby to enhanced coating wear life.

Author

SLIDING SEAL MATERIALS FOR ADIABATIC ENGINES, PHASE 2 Interim Report, Feb. 1985 - Feb. 1986

J. LANKFORD and W. WEI Apr. 1986 54 p (Contract DENG-592; DE-AM-06-86G3-50162)
(NASA-CR-179475; DOE/NASA/10522; NAS 1.26:179475; REPT-06-7963) Avail: NTIS HC A04/MF A01 CSCL 11B

An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding
friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

Author

N86-31728*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EFFECTS OF CRYSTALLOGRAPHICAL AND GEOMETRICAL CHANGES OF A FERRITE HEAD ON MAGNETIC SIGNALS DURING THE SLIDING PROCESS WITH MAGNETIC TAPE

This paper reviews changes in the crystalline structure and geometry of lapped Mn-Zn ferrite heads in sliding contact with magnetic tape and the effects of these changes on magnetic signals. A highly textured, polycrystalline structure was produced on the surface of a single-crystal Mn-Zn ferrite head when it was finished with an aluminum oxide lapping tape. Sliding this lapped surface against a magnetic tape produced a nearly amorphous structure. The sliding process led to a degradation in readback signal of 1 to 2 dB (short-wavelength recording). Furthermore, wear of the magnetic head caused geometrical changes in the head surface. The signal read back with the worn magnetic head was sensitive to operating parameters such as head displacement and tape tension. A change in operating parameters created head-to-tape spacings and, consequently, excessive gains or losses in the readback signal.

Author

N86-31729*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CORRELATION OF PROCESSING AND SINTERING VARIABLES WITH THE STRENGTH AND RADIOGRAPHY OF SILICON NITRIDE
W. A. SANDERS and G. Y. BAALKLINI (Cleveland State Univ., Ohio) 1986 37 p Presented at the Tenth Annual Conference on Ceramics and Advanced Ceramic Materials, Cocoa Beach, Fla., 19-24 Jan. 1986; sponsored by the American Ceramic Society (NASA-TM-87251; E-2934; NAS 1.1 587251) Avail: NTIS HC A03/MF A01 CSCL 11G

A sintered Si3N4-Si02-Y203 composition, NASA 6Y, was developed that reached four-point flexural average strength/standard deviation values of 857/36, 544/33, and 482/59 MPa at room temperature, 1200 and 1370 C respectively. These strengths represented improvements of 56, 38, and 21 percent over baseline properties at the three test temperatures. At room temperature the standard deviation was reduced by over a factor of three. These accomplishments were realized by the iterative utilization of complementary conventional x-ray radiography to characterize structural (density) uniformity as affected by systematic changes in processing and sintering parameters. Accompanying the improvement in mechanical properties was a change in the type of flaw causing failure from a pore to a large columnar beta-Si3N4 grain typically 40 to 80 microns long, 10 to 30 microns wide, and with an aspect ratio of 5:1.

Author

N86-32569* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

APPRARATUS FOR PRODUCING OXIDATION PROTECTION COATINGS FOR POLYMERS Patent

Avail: US Patent and Trademark Office CSCL 11B

A polymeric substrate is coated with a metal oxide film to provide oxidation protection in low Earth orbital environments. The film contains about 4 volume percent polymer to provide flexibility. A coil of polymer materials moves through an ion beam as it is fed between reels. The ion beam first cleans the polymer material surface and then sputters the film material from a target onto this surface.

Official Gazette of the U.S. Patent and Trademark Office

N86-32573*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THE MILLING OF PRISTINE AND BROMINATED P-100 GRAPHITE FIBERS
M. E. DILLEHAY (Cleveland State Univ., Ohio) and J. R. GAIER Sep. 1986 12 p (NASA-TM-88828; E-3203; NAS 1.1 588828) Avail: NTIS HC A02/MF A01 CSCL 11G

Techniques were developed for the ball milling of pristine and brominated P-100 graphite fibers. Because of the lubrication properties of graphite, large ball loads (50 percent by volume) were required. Use of 2-propanol as a milling medium enhanced the efficiency of the process. Milled brominated P-100 fibers had resistivities which were indistinguishable from milled pristine P-100 fibers. Apparent loss of bromine from the brominated fibers suggests that bromine would not be the intercalate of choice in applications where milled fibers of this type are required. Other intercalates which do not degas may be more appropriate for a milled fiber application. These same results, however, do provide evidence that bromine molecules leave the fiber surface when removed from overpressure of bromine. While exploring possible solvent media for milling purposes, it was found that brominated fibers are stable in a wide variety of organic solvents.

Author

PROPELLANTS AND FUELS

Includes rocket propellants, igniters, and oxidizers; their storage and handling procedures; and aircraft fuels.

A86-10028*# United Technologies Research Center, East Hartford, Conn.

DEPOSITION FORMATION AND HEAT-TRANSFER CHARACTERISTICS OF HYDROCARBON ROCKET FUELS

(Contract NAS3-23344)
86-19929*# United Technologies Research Center, East Hartford, Conn.

LONG TERM DEPOSIT FORMATION IN AVIATION TURBINE FUEL AT ELEVATED TEMPERATURE

An experimental characterization is conducted for the relationships between deposit mass, operating time, and temperature, in coking associated with aviation fuels under conditions simulating those typical of turbine engine fuel systems. Jet A and Suntech A fuels were tested in stainless steel tubing heated to 420-750 K, over test durations of between 3 and 730 hr and at fuel velocities of 0.07-1.3 m/sec. Deposit rates are noted to be a strong function of tube temperature; for a given set of test conditions, deposition rates for Suntech A exceed those of Jet A by a factor of 10. Deposition rates increased markedly with test duration for both fuels. The heated tube data obtained are used to develop a global chemical kinetic model for fuel oxidation and carbon deposition.

O.C.

86-23922*# United Technologies Research Center, East Hartford, Conn.

FUEL DEPOSIT CHARACTERISTICS AT LOW VELOCITY

An experimental characterization has been made of the relationship between deposit mass, operating time, and temperature in studies of aviation gas turbine fuel thermal stability, in order to support fuel system designs that are more efficient through deposit buildup prevention. A novel thermal stability test apparatus has been developed for the determination of deposition rates over a range of temperatures, in tests of up to several hundred hours duration. In the case of heated stainless steel tubes at low velocity with Jet A fuel, the deposits obtained were thick, porous, and nonuniform.

O.C.

86-37074*# TRW, Inc., Redondo Beach, Calif.

RESISTOJET OPERATION WITH VARIOUS PROPELLANTS

A flight-qualified electrothermal thruster demonstrated its adaptability to a variety of propellants. Originally qualified for operation with hydrazine propellant, it was operated with nitrogen, hydrogen, and ammonia propellants, demonstrating 73, 61, and 52 percent overall efficiency with these propellants, respectively, when tested over a wide range of operating conditions. By introducing a preheater to admit hot, rather than cold, propellant inlet gases to the thruster's augmentation heat exchanger, delivered specific impulse close to theoretical performance limits should be achieved.

Author

IGNITION CHARACTERISTICS OF RICH N-HEPTANE FUEL SPRAYS IN THE TRANSITION REGION

Ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.8, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 microns. An LDA system was used to determine the actual equivalence ratio at the spark gap, which varied from 1.5 to 4.7. The spark energy at which the frequency of ignition was 90 percent was defined as the minimum ignition energy. These data indicated that the ignitability of the sprays was enhanced as the equivalence ratio was increased, but was diminished as the droplet size was increased. The increase in minimum ignition energy with increasing droplet size and fixed equivalence ratio was nearly linear over the range of parameters studied. However, the effect became smaller with increasing equivalence ratio.

Author

ANALYSIS OF THE EFFECTS OF FUEL SPRAY CHARACTERISTICS ON NO(X) FORMATION

Results from experimental and analytical studies on NO(x) formation in a one-dimensional monodisperse spray combustion system are reported. In a previous investigation, an optimum droplet diameter was reported for minimizing NO(x) emissions. In this paper, the effects of enhanced prevaporization and droplet interactions in addition to droplet size effects on NO(x) formation are investigated by air preheating experiments. These phenomena have been incorporated into an analytical model which predicts NO(x) formed from the combustion of monodisperse fuel sprays. Both experimental and computed results indicate the importance of the extent of prevaporization and droplet interactions on NO(x) production. Preflame vaporization controls the gas phase stoichiometry which has a significant effect on the volume of the hot gases surrounding a fuel droplet where NO(x) is formed. On the other hand, the release of fuel vapor from the droplet to the reaction zone is influenced by droplet interactions which reduce the volume of the hot gases and NO(x) production by bringing the flame closer to the droplet surface.

Author

86-21704*# Virginia Polytechnic Inst. and State Univ., Blacksburg, Dep't of Chemistry.

DEVELOPMENT OF LC-13C NMR Final Annual Report, 10 Jan. 1984 - 9 Jan. 1985

This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were...
excluded. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

EMISSION FTIR ANALYSES OF THIN MICROSCOPIC PATCHES OF JET FUEL RESIDUES DEPOSITED ON HEATED METAL SURFACES Final Report
J. L. LAUER and P. VOGLER 30 May 1986 95 p refs
(Contract NAG3-205)
(NASA-CR-175786; NAS 1.26:175786) Avail: NTIS HC A05/MF A01 CSCL 21D

The relationship of fuel stability to fuel composition and the development of mechanisms for deposit formation were investigated. Fuel deposits reduce heat transfer efficiency and increase resistance to fuel flow and are highly detrimental to aircraft performance. Infrared emission Fourier transform spectroscopy was chosen as the primary method of analysis because it was sensitive enough to be used in situ on tiny patches of monolayers or of only a few molecular layers of deposits which generally proved completely insoluble in any nondestructive solvents. Deposits of four base fuels were compared; dodecane, a dodecane/tetralin blend, commercial Jet A fuel, and a broadened-properties jet fuel particularly rich in polynuclear aromatics. Every fuel in turn was provided with and without small additions of such additives as thiophene, furan, pyrrole, and copper and iron naphthenates.

B.G.

N88-27480*# Santa Clara Univ., Calif. Dept. of Mechanical Engineering Research.

RESEARCH AND DEVELOPMENT OF NEAT ALCOHOL FUEL USAGE IN AUTOMOBILES
(Contract NAG3-143)
(NASA-CR-174613; DOE/NASA/0143-1; NAS 1.26:174613; DOE/NBS-0067; ME84-1) Avail: NTIS HC A07/MF A01 CSCL 21D

The study is an extension of previous work. Its topical coverage ranges from research in the forms of experimental operation of engines in cold chambers and a photochemical smog chamber with allied computer modeling of the thermofluid mechanics of cold engine starting and photochemical smog through engine corrosion and wear studies, to vehicle operation, which includes a description of the engineering development of after-market conversion kits to change Ford Pinto vehicles from gasoline to alcohol. Although further research is recommended, evidence presented contributes considerably to the view that it is feasible to operate neat alcohol fuels in the range of 1000-10,000 vehicles, without major operational difficulties and without exacerbating the environmental, health and safety risks associated with petroleum fuels.

Author

DETERMINATION OF SOLID MASS FRACTION IN PARTIALLY FROZEN HYDROCARBON FUELS Final Report
(Contract NAG3-213)
(NASA-CR-179472; NAS 1.26:179472) Avail: NTIS HC A05/MF A01 CSCL 07D

Filtration procedures alone are insufficient to determine the amounts of crystalline solid in a partially frozen hydrocarbon distillate fraction. This is due to the nature of the solidification process by which a large amount of liquid becomes entrapped within an interconnected crystalline structure. A technique has been developed to supplement filtration methods with an independent determination of the amount of liquid in the precipitate thereby revealing the actual value of mass percent crystalline solid, %G.

A non-crystallizing dye is injected into the fuel and used as a tracer during the filtration. The relative concentrations of the dye in the filtrate and precipitate fractions is subsequently detected by a spectrophotometric comparison. The filtration apparatus was assembled so that the temperature of the sample is recorded immediately above the filter. Also, a second method of calculation has been established which allows significant reduction in test time while retaining acceptable accuracy of results. Data have been obtained for eight different kerosene range hydrocarbon fuels.

Author

N88-30023*# United Technologies Research Center, East Hartford, Conn.

ROLE OF FUEL CHEMICAL PROPERTIES ON COMBUSTOR RADIATIVE HEAT LOAD
T. J. ROSFJORD 19 Apr. 1984 36 p
(Contract NAS3-23167)
(NASA-CR-177096; NAS 1.26:177096) Avail: NTIS HC A03/MF A01 CSCL 21D

In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol);; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

Author

31

ENGINEERING (GENERAL)

includes vacuum technology; control engineering; display engineering; cryogenics; and fire prevention.

A86-37053*# Martin Marietta Corp., Denver, Colo.

CRYOGENIC FLUID MANAGEMENT FACILITY
(Contract NAS3-23355)

The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).
ION BEAM SPUTTER ETCHING Patent Application
CSC1 13H

An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of a new carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

CRITERIA FOR SIGNIFICANCE OF SIMULTANEOUS PRESENCE OF BOTH CONDENSIBLE VAPORS AND AEROSOL PARTICLES ON MASS TRANSFER (DEPOSITION) RATES

The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) squared. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

THE BASEBAND PROCESSOR IN FUTURE SATELLITE COMMUNICATION SYSTEMS

This paper provides a description of a baseband processor planned for satellite communication systems operating in Ka band. The satellite based interconnection of individual earth terminals is described in terms of uplink and downlink message formats, and the on-board processing signal flow. Advanced technology requirements and developments are reviewed including current activity in custom large scale integrated circuit development.

TECHNOLOGY ACHIEVEMENTS AND PROJECTIONS FOR COMMUNICATION SATELLITES OF THE FUTURE

Multibeam systems of the future using monolithic microwave integrated circuits to provide phase control and power gain are contrasted with discrete microwave power amplifiers from 10 to 75 W and their associated waveguide feeds, phase shifters and power splitters. Challenging new enabling technology areas include advanced electrooptical control and signal feeds. Large scale MMC's will be used incorporating on chip control interfaces, latching, and phase and amplitude control with power levels of a few watts each. Beam forming algorithms for 8 to 90 deg wide angle scanning and precise beam forming under wide ranging environments will be required. Satellite systems using these
dynamically reconfigured multibeam antenna systems will demand greater degrees of beam interconnectivity. Multiband and multiservice users will be interconnected through the same space platform. Monolithic switching arrays operating over a wide range of RF and IF frequencies are contrasted with current IF switch technology implemented discretely. Size, weight, and performance improvements by an order of magnitude are projected.

A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple line presents difficult topology problems as phase and gain errors must be maintained. Simulations show a high probability of signal interference. To overcome the phase and gain distribution problems optical fiber interconnects for interconnection to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

The performance of a proposed NASA 30/20 GHz satellite communications system is studied for multi-h phase coded modulation (MHPM) schemes. The techniques used to model and simulate a satellite communications channel including transmitter, receiver, filters, nonlinearities, and interferers are presented. The performance of various MHPM schemes is compared for several different channel configurations. As a measure of performance, the probability of bit error vs Eb/NO is computed using a Monte Carlo simulation technique. It is found that, regardless of the channel configuration, MHPM schemes can provide power efficiency over serial minimum shift keying modulation.

The bi-directional use of frequencies allocated for space communications has the potential to double the orbit/spectrum capacity available. The technical feasibility of reverse band use (RBU) at C-band (4 GHz uplinks and 6 GHz downlinks) is studied. The analysis identifies the constraints under which both forward and reverse band use satellite systems can share the same frequencies with terrestrial, line of sight transmission systems. The results of the analysis show that RBU satellite systems can be similarly sized to forward band use (FBU) satellite systems. In addition, the orbit segment requirements between RBU and FBU satellite systems are examined. The analysis shows that a carrier to interference ratio of 45 dB can be maintained between RBU and FBU satellites separated by less than 0.5 deg, and that a carrier to interference ratio of 42 dB can be maintained in the antipodal case. Rain scatter propagation analysis shows that RBU and FBU earth stations require separation distances of less than 10 km at a rain rate of 13.5 mm/hr escalating to less than 100 km at a rain rate of 178 mm/hr for earth station antennas in the 3 to 10 m range.

Using high frequency approximations, the secondary pattern of a reflector antenna can be calculated by numerically evaluating a radiation integral (I(u,v)). In recent years, tremendous effort has been expended to reducing (I(u,v)) to Fourier integrals. These reduction schemes are invariably reflector geometry dependent. Hence, different analyses/computer software development must be carried out for different reflector geometries. It is pointed out, that, as the computer power improves, these reduction schemes are no longer necessary. Comparable accuracy and computation time can be achieved by evaluating (I(u,v)) by a brute force FFT described in this note. Furthermore, there is virtually no restriction on the reflector geometry by using the brute force FFT.

The 1985 World Administrative Radio Conference (WARC-ORB-85) was held to determine which space radio services should be planned and how the planning methods should be used. The second session of this Conference (WARC-ORB-86) will meet to develop the required plans. This paper presents the results of WARC-ORB-85, assesses the impact of those decisions, and identifies the intersessional work to be conducted by administrations and the CCIR (Consultative Committee on International Radio). The major decisions of WARC-ORB-85 were: (1) the restriction of additional planning to the identified frequencies; and (2) the selection of a planning method consisting of two parts: (a) an allotment plan, and (b) improved procedures. The paper also discusses WARC-ORB-85 decisions relative to the Region 2 broadcast satellite service plans at 12 GHz, feederlink planning for Regions 1 and 3; broadcast satellites at 12 GHz, and sound broadcast satellite service.
N86-10379*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TEST RESULTS FOR 20-GHZ GAAS FET SPACECRAFT POWER AMPLIFIER

Test were conducted to measure the performance of the 20-GHz solid state, proof-of-concept amplifier. The amplifier operates over the 17.7 to 20.2-GHz frequency range and uses high power gallium arsenide field effect transistors. The amplifier design and test methods are briefly described. NASA and contractor performance data are compared. Author

N86-10380*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A DUAL FREQUENCY MICROSTRIP ANTENNA FOR KA BAND
(NASA-TM-87124; E-2737; NAS 1.15:87124) Avail: NTIS HC A02/MF A01 CSCL 20N

For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented. Author

N86-11401*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CHARACTERIZATION OF MMIC DEVICES FOR ACTIVE ARRAY ANTENNAS
Avail: NTIS HC A13/MF A01 CSCL 09C

Certain aspects of monolithic microwave integrated circuit (MMIC) interconnectivity were investigated. Considerations that lead to preserving the inherently reproducible characteristics of the MMIC are proposed. It is shown that at radio frequencies (RF) greater than 20 GHz, the transition from the MMIC device to other transmission media must be an accurate RF match. It is proposed that the RF match is critically significant to include the transition as part of the delivered MMIC package. The model to analyze several transitions is presented. This model consists of a succession of abrupt discontinuities in printed circuit transmission lines. The analysis of these discontinuities is achieved by the Spectral Galerkin technique, to establish the modes and mode special effects would be coordinated by the active array.
antenna industry toward standardization of MMIC packaging and characterization.

N68-11407

National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

CIRCULARLY POLARIZED MICROSTRIP ANTENNAS

Avail: NTIS HC A15/MF A01 CSCL 20N

A simple microstrip antenna can be made to radiate EM waves of any polarization, in particular, the circular polarization (CP) without any phasing network and power divider. A simple and accurate theory for this family of antennas was developed. However, the CP bandwidth, (CPBW) the bandwidth in which the axial ratio (AR) is less than a certain specified value, is very small. Most of the experimental designs were made for a feed placed along the diagonal of the patch. It is shown that there are practically infinitely many possible designs with different feed location. The speculation that other designs might give a wider bandwidth is clarified and an effective method for broadening the bandwidth is shown.

N68-12485

National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

STRATEGY FOR REFLECTOR PATTERN CALCULATION: LET THE COMPUTER DO THE WORK

Using high frequency approximations, the secondary pattern of a reflector antenna can be calculated by numerically evaluating a radiation integral I(u,v). In recent years, tremendous effort has been expended to reducing I(u,v) to Fourier integrals. These reduction schemes are invariably reflector geometry dependent. Hence, different analyses/computer software development must be carried out for different reflector shapes/boundaries. It is pointed out, that, as the computer power improves, these reduction schemes are no longer necessary. Comparable accuracy and computation time can be achieved by evaluating I(u,v) by a brute force FFT described in this note. Furthermore, there is virtually no restriction on the reflector geometry by using the brute force FFT.

Author

N68-13627

National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

TESTING OF 30-GHZ LOW NOISE RECEIVERS

NASA-sponsored studies of the growth in communications traffic have indicated that the frequency spectrum allocated to fixed-service satellites at the C and Ku-bands will reach saturation by the early 1990's. The next higher frequency bands allocated for communications satellites are 27.5 to 30 GHz for the uplink and 17.7 to 20.2 GHz for the downlink. Current plans for developing satellite systems that use these bands include a NASA demonstration satellite (ACTS). One of the components identified as critical to the success of that mission is a 27.5 to 30 GHz satellite receiver. In response to that identification, NASA has sponsored the development of such a receiver to the proof-of-concept (POC) level. Design and fabrication of such POC model receivers was carried out under parallel contracts awarded to LNR Communications, Inc. of Hauppauge, New York and to ITT Defense Communications Division of Nutley, New Jersey. The most significant of the performance goals were a 5 db maximum noise figure, a 2.5 GHz passband, and e0 dB RF to IF gain. Following delivery of hardware from each of the contractors, an in-house test program was undertaken at NASA's Lewis Research Center in order to verify the contractor-reported performance and to provide a comparison of the two receivers under identical test conditions. The present paper reports the results of those tests.

Author

N68-14477

National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

SECONDARY PATTERN COMPUTATION OF AN ARBITRARILY SHAPED MAIN REFLECTOR

Final Report

P. T. C. LAM (Illinois Univ., Urbana), S. W. LEE (Illinois Univ., Urbana), and R. J. ACOSTA Nov. 1985 120 p refs Previously announced as N84-25909 (NASA-TM-87162; E-2796; NAS 1.15:87162) Avail: NTIS HC A06/MF A01 CSCL 20N

The secondary pattern of a perfectly conducting offset main reflector being illuminated by a point feed at an arbitrary location is studied. The method of analysis is based upon the application of the Fast Fourier Transform (FFT) to the aperture fields obtained using geometrical optics (GO) and geometrical theory of diffraction (GTD). Key features of the present work are (1) the reflector surface is completely arbitrary, (2) the incident field from the feed is most general with arbitrary polarization and location, and (3) the edge diffraction is calculated by either UAT or by UTD. Comparison of this technique for an offset parabolic reflector with the (Jacobi-Bessel and Fourier-Bessel techniques show good agreement. Near field, far field, and scan data of a large reflector are presented.

Author

N68-14479

National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

SECONDARY PATTERN COMPUTATION OF AN OFFSET REFLECTOR ANTENNA

R. J. ACOSTA Nov. 1985 20 p refs (NASA-TM-87160; E-2791; NAS 1.15:87160) Avail: NTIS HC A02/MF A01 CSCL 20N

The secondary pattern of an offset reflector has been developed and implemented at the NASA Lewis Research Center. The theoretical foundation for this program is based on the use of geometrical optics to describe the fields from the feed to the reflector surface and to the aperture plane. The resulting aperture field distribution is then transformed to the far-field zone by the fast Fourier transform algorithm. Comparing this technique with other well-known techniques (the geometrical theory of diffraction, physical optics (Jacobi-Bessel, etc.) shows good agreement for large (diameter of 100 lambda or greater) reflector antennas.

Author

N68-16451

Princeton Synergetics, Inc., N.J.

EVALUATION OF SPACECRAFT TECHNOLOGY PROGRAMS (EFFECTS ON COMMUNICATIONS SATELLITE BUSINESS VENTURES), VOLUME 1 Final Report

Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performance of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business
ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

R.J.F.

GaAs MMIC phased array signal distribution problems optical fibers

routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome interconnected to monolithically integrated optical components with

GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

Author

N86-16461*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMPENSATION OF REFLECTOR SURFACE DISTORTIONS USING CONJUGATE FIELD MATCHING

The feasibility of compensating for reflector surface distortions has been investigated. The performance characteristics (gain, sidelobe level, null location, beamwidth, etc.) of space communication reflector antenna systems degrade as the reflector surface distorts due to thermal effects from a varying solar flux. The technique reported here will maintain the design radiation performance independently of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array-fed reflector system design can be achieved. MMIC arrays provide independent control of amplitude and phase for each of many radiating elements of the feed array. The conjugate field matching technique provide a basis for obtaining the required element excitations under surface distortion for maintaining the design radiation performance. It is assumed that the surface characteristics (x, y, z, first derivatives, and second derivatives) under distortion are known. Author

N86-17595*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TECHNOLOGY ACHIEVEMENTS AND PROJECTIONS FOR COMMUNICATION SATELLITES OF THE FUTURE

Multibeam systems of the future using monolithic microwave integrated circuits to provide phase control and power gain are contrasted with discrete microwave power amplifiers from 10 to 75 W and their associated waveguide feeds, phase shifters and power splitters. Challenging new enabling technology areas include advanced electrooptical control and signal feeds. Large scale MMIC's will be used incorporating on chip control interfaces, latching, and phase and amplitude control with power levels of a few watts each. Beam forming algorithms for 80 to 90 deg. wide angle scanning and precise beam forming under wide ranging environments will be required. Satellite systems using these dynamically reconfigured multibeam antenna systems will demand greater degrees of beam interconnectivity. Multiband and multiservice users will be interconnected through the same space platform. Monolithic switching arrays operating over a wide range of RF and IF frequencies are contrasted with current IF switch technology implemented discretely. Size, weight, and performance improvements by an order of magnitude are projected. Author
AN ANALYSIS OF BI-DIRECTIONAL USE OF FREQUENCIES FOR SATELLITE COMMUNICATIONS

The bi-directional use of frequencies allocated for space communications has the potential to double the orbit/spectrum capacity available. The technical feasibility of reverse band use (RBU) at C-band (4 GHz uplinks and 6 GHz downlinks) is studied. The analysis identifies the constraints under which both forward and reverse band use satellite systems can share the same frequencies with terrestrial, line of sight transmission systems. The results of the analysis show that RBU satellite systems can be similarly sized to forward band use (FBU) satellite systems. In addition, the orbital separation requirements between RBU and FBU satellites are examined. The analysis shows that a carrier to interference ratio of 45 dB can be maintained between RBU and FBU satellites separated by less than 0.5 deg., and that a carrier to interference ratio of 42 dB can be maintained in the antipodal case. Rain scatter propagation analysis shows that RBU and FBU Earth stations require separation distances to less than 10 km at a rain rate of 13.5 mm/hr, escalating to less than 100 km at a rain rate of 178 mm/hr for Earth station antennas in the 3 to 10 m range.

A laboratory communications system has been developed that can serve as a test bed for the evaluation of advanced microwave (30/20 GHz) components produced under NASA technology programs. The system will ultimately permit the transmission of a stream of high-rate (220 Mbps) digital data from the originating user, through a ground terminal, through a hardware-simulated satellite, to a receiving ground station, to the receiving user. This report contains the results of radiofrequency testing of the satellite portion of that system. Data presented include output spurious responses, attainable signal-to-noise ratios, a baseline power budget, usable frequency bands, phase and amplitude response data for each of the frequency bands, and the effects of power level variation.

The analysis identifies the constraints under which both forward and reverse band use satellite systems can share the same frequencies with terrestrial, line of sight transmission systems. The results of the analysis show that RBU satellite systems can be similarly sized to forward band use (FBU) satellite systems. In addition, the orbital separation requirements between RBU and FBU satellites are examined. The analysis shows that a carrier to interference ratio of 45 dB can be maintained between RBU and FBU satellites separated by less than 0.5 deg., and that a carrier to interference ratio of 42 dB can be maintained in the antipodal case. Rain scatter propagation analysis shows that RBU and FBU Earth stations require separation distances to less than 10 km at a rain rate of 13.5 mm/hr, escalating to less than 100 km at a rain rate of 178 mm/hr for Earth station antennas in the 3 to 10 m range.

A laboratory communications system has been developed that can serve as a test bed for the evaluation of advanced microwave (30/20 GHz) components produced under NASA technology programs. The system will ultimately permit the transmission of a stream of high-rate (220 Mbps) digital data from the originating user, through a ground terminal, through a hardware-simulated satellite, to a receiving ground station, to the receiving user. This report contains the results of radiofrequency testing of the satellite portion of that system. Data presented include output spurious responses, attainable signal-to-noise ratios, a baseline power budget, usable frequency bands, phase and amplitude response data for each of the frequency bands, and the effects of power level variation.
what factors affect their performance, we design an experiment and solve the same problem under a variety of starting solution configuration-algorithm combinations. Since there is no randomization in the experiment, we present results of practical, rather than statistical, significance. Our implementation of a cyclic coordinate search procedure clearly finds better synthesis solutions than our implementation of a gradient search procedure does with our objective of maximizing the minimum C/I ratio computed at test points on the perimeters of the intended service areas. The length of the available orbital arc and the configuration of the starting solution are shown to affect the quality of the solutions found.

Author

N86-24875*# Martin Marietta Aerospace, Denver, Colo.
(Contract NAS3-24233)
(NASA-CR-175016; NAS 1.26:175016) Avail: NTIS HC A02/MF A01 CSCL 17B

An Executive Summary of the Satellite Voice Broadcast System Study Design studies are synthesized for direct sound broadcast satellite systems for HF-, VHF-, and Ku-bands. Methods are developed and used to predict satellite weight, volume, and RF performance for a variety of concepts considered. Cost and schedule risk assessments are performed to predict time and cost required to implement selected concepts. Technology assessments and tradeoffs are made to identify critical enabling technologies that require development to bring technical risk to acceptable levels for full scale development.

Author

N86-24876*# Martin Marietta Aerospace, Denver, Colo.
(Contract NAS3-24233)

The Technical Volume of the Satellite Broadcast System Study is presented. Designs are synthesized for direct sound broadcast satellite systems for HF-, VHF-, and Ku-bands. Methods are developed and used to predict satellite weight, volume, and RF performance for a variety of concepts considered. Cost and schedule risk assessments are performed to predict time and cost required to implement selected concepts. Technology assessments and tradeoffs are made to identify critical enabling technologies that require development to bring technical risk to acceptable levels for full scale development.

Author

(Contract NAS3-24232)
(NASA-CR-174905; NAS 1.26:174905) Avail: NTIS HC A15/MF A01 CSCL 17B

This study investigates the feasibility of providing Voice of America (VOA) broadcasts by satellite relay, rather than via terrestrial relay stations. Satellite voice broadcast systems are described for three different frequency bands: HF (26 MHz), VHF (68 MHz), and L-band (1.5 GHz). The geographical areas of interest at HF and L-band include all major land masses worldwide with the exception of the U.S., Canada, and Australia. Geostationary satellite configurations are considered for both frequency bands. In addition, a system of subsynchronous, circular satellites with an orbit period of 8 hours is developed for the HF band. VHF broadcasts, which are confined to the Soviet Union, are provided by a system of Molniya satellites. Satellites intended for HF or VHF broadcasting are extremely large and heavy. Satellite designs presented here are limited in size and weight to the capability of the STS/Centaur launch vehicle combination. Even so, at HF it would take 47 geostationary satellites or 20 satellites in 8-hour orbits to fully satisfy the voice-channel requirements of the broadcast schedule provided by VOA. On the other hand, three Molniya satellites suffice for the geographically restricted schedule at VHF. At L-band, only four geostationary satellites are needed to provide the required schedule for the complete broadcast schedule. Moreover, these satellites are comparable in size and weight to current satellites designed for direct broadcast of video program material.

Author

N86-24878*# TRW, Inc., Redondo Beach, Calif.
M. HORSTEIN Jul. 1985, 46 p, 1-45 NOV.
(Contract NAS3-24232)
(NASA-CR-174904; NAS 1.26:174904) Avail: NTIS HC A03/MF A01 CSCL 17B

The feasibility of providing Voice of America (VOA) broadcasts by satellite relay was investigated. Satellite voice broadcast systems are described for three different frequency bands: HF, VHF, and L-band. Geostationary satellite configurations are considered for both frequency bands. A system of subsynchronous, circular satellites with an orbit period of 8 hours was developed for the HF band. The VHF broadcasts are provided by a system of Molniya satellites. The satellite designs are limited in size and weight to the capability of the STS/Centaur launch vehicle combination. At L-band, only four geostationary satellites are needed to meet the requirements of the complete broadcast schedule. These satellites are comparable in size and weight to current satellites designed for the direct broadcast of video program material.

Author

N86-24881*# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
IMPACT OF THE 1985 SPACE WORLD ADMINISTRATIVE RADIO CONFERENCE ON FREQUENCY/ORBIT PLANNING AND USE

The 1985 World Administrative Radio Conference (WARC-ORB-85) was held to determine which space radio services should be planned and which planning methods should be used. The second session of this Conference (WARC-ORB-88) will meet to develop the required plans. This paper presents the results of WARC-ORB-85, assesses the impact of those decisions, and identifies the intersessional work to be conducted by administrations and the CCIR (Consultative Committee on International Radio). The major decisions of WARC-ORB-85 were: (1) the restriction of additional planning to the fixed satellite service at identified frequencies; and (2) the selection of a planning method consisting of two parts (a) an allotment plan, and (b) improved procedures. The paper also discusses WARC-ORB-85 decisions relative to the Region 2 broadcast satellite service plans at 12 GHz, feederlink planning for Regions 1 and 3 broadcast satellites at 12 GHz, and sound broadcast satellite service.

Author

N86-25650*# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
NEAR-FIELD SPILLOVER FROM A SUBREFLECTOR: THEORY AND EXPERIMENT
(Contract NAS3-4419)
(NASA-TM-88763; NAS 1.15:88763; ELR-86-5; ILU-ENG-86-2547) Avail: NTIS HC A03/MF A01 CSCL 20N

In a dual reflector antenna, the spillover from the subreflector is important in determining the accuracy of near-field
measurements. This is especially so when some of the feed elements are placed far away from the focus. A high-frequency GTD analysis of the spillover field over a plane just behind the subreflector is presented. Special attention is given to the field near the incident shadow boundary and the role played by the slope diffraction term. Computations are in excellent agreement with experimental results.

Author

The underlying engineering and mathematical models as well as the computational methods used by the SOUPS analysis programs, which are part of the R2CSAT-83 Broadcast Satellite Computational System, are described. Included are the algorithms used to calculate the technical parameters and references to the relevant technical literature. The system provides the following capabilities: requirements file maintenance, data base maintenance, elliptical satellite beam fitting to service areas, plan synthesis from specified requirements, plan analysis, and report generation/query. Each of these functions are briefly described.

B.G.

The use of finlines for microwave monolithic integrated circuit application in the 20 to 40 GHz frequency range. Other wave guiding structures, are also examined from a comparative point of view and some conclusions are drawn on the basis of the results.

Author

A circular waveguide horn coated with a lossy material in its interior wall can be used as an alternative to a corrugated waveguide for radiating a circularly polarized (CP) field. To achieve good CP radiation, the diameter of the structure must be larger than the free-space wavelength, and the coating material must be sufficiently lossy and magnetic. This device is cheaper and lighter in weight than the corrugated one. Author

The major technical tasks that led to the definitions of operational and demonstration multiple beam antenna (MBA) flight systems and a proof of concept model (POC) are described. Features of the POC Model and its measured performance are presented in detail. Similar MBA's are proposed for transmitting and receiving with the POC Model representing the 20 GHz transmitting antenna. This POC MBA is a dual shaped-surface reflector system utilizing a movable free array to simulate complete CONUS coverage. The beam forming network utilizes ferrite components for switching from one beam to another. Measured results for components, subsystems and the complete MBA confirm the feasibility of the approach and also show excellent correlation with calculated values.

Author

In a dual reflector antenna, the spillover from the subreflector is important in determining the accuracy of near-field measurements. This is especially so when some of the feed elements are placed far away from the focus. In this paper, we present a high-frequency GTD analysis of the spillover field over a plane just behind the subreflector. Special attention is given to the field near the incident shadow boundary and the role played by the slope diffraction term. Our computations are in excellent agreement with experimental results.

Author

An approximate but sufficiently accurate high frequency solution which combines the uniform geometrical theory of diffraction (UTD) and the aperture integration (AI) method is developed for analyzing the problem of electromagnetic (EM) plane wave scattering by an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a planar termination inside. In addition, a high frequency solution for the EM scattering by a two dimensional (2-D), semi-infinite parallel plate waveguide with an absorber coating on the inner walls is also developed as a first step before analyzing the open-ended semi-infinite three dimensional (3-D) rectangular waveguide geometry. The total field scattered by the semi-infinite waveguide consists firstly of the fields scattered from the edges of the aperture at the open-end, and secondly of the fields which are coupled into the waveguide from the open-end and then reflected back from the interior termination to radiate out of the open-end. The first contribution to the scattered field can be found directly via the UTD ray method. The second contribution is found via the AI method which employs rays to describe the fields in the aperture that arrive there after reflecting from the interior termination. It is assumed that the direction of the incident plane wave and the direction of observation lie well inside the forward half space that exists outside the half space containing the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide is assumed to be free space.
33 ELECTRONICS AND ELECTRICAL ENGINEERING

Includes test equipment and maintainability; components, e.g., tunnel diodes and transistors; microminiaturization; and integrated circuitry.

The 77 K operation of AlGaAs/InGaAs MODFETs has been investigated. The structures, grown by MBE, make use of a 200 A undoped In(0.15)Ga(0.85)As quantum well for electron confinement and an Si-doped Al(0.15)Ga(0.85)As top barrier. The MODFETs with 1 micron gate lengths exhibit extrinsic transconductances of 360 mS/mm and maximum currents of 310 mA/mm at 77 K. The use of a low Al mole fraction AlGaAs/InGaAs heterojunction makes it possible to avoid the persistent trapping effects encountered in AlGaAs/GaAs MODFETs without sacrificing device performance. Author

A86-14481*# Virginia Polytechnic Inst. and State Univ., Blacksburg
RESONANT POWER PROCESSORS. I - STATE PLANE ANALYSIS R. ORUGANTI and F. C. LEE (Virginia Polytechnic Institute and State University, Blacksburg) IEEE and Industrial Applications Society, Meeting, 19th, Chicago, IL, Sept. 30-Oct. 4, 1984, Paper. 8 p. refs (Contract NAG3-405)

State-plane techniques in conjunction with piecewise-linear analysis is employed to study the steady-state and transient characteristics of a series resonant converter. With the direct viewing of the resonant tank energy and the device switching instants, the state portrayal provides unique insights into the control behavior of the converter. Operation of the converter under both continuous and discontinuous current modes and at frequencies both below and above resonant frequency are discussed. Author

A86-14482*# Virginia Polytechnic Inst. and State Univ., Blacksburg
RESONANT POWER PROCESSORS. II - METHODS OF CONTROL R. ORUGANTI and F. C. LEE (Virginia Polytechnic Institute and State University, Blacksburg) IEEE and Industrial Applications Society, Meeting, 19th, Chicago, IL, Sept. 30-Oct. 4, 1984, Paper. 11 p. refs (Contract NAG3-405)

The nature of resonant converter control is discussed. Employing the state-portrait, different control methods for series resonant converter are identified and their performance evaluated based on their stability, response to control and load changes and range of operation. A new control method, optimal-trajectory control, is proposed which, by utilizing the state trajectories as control laws, continuously monitors the energy level of the resonant tank. The method is shown to have superior control properties especially under transient operation. Author

33 ELECTRONICS AND ELECTRICAL ENGINEERING

Pseudomorphic Ino.15Ga0.85As/A10.15Ga0.85As modulation-doped field effect transistors (MODFETs) exhibiting extremely good dc characteristics have been successfully fabricated. The dc transconductance in these strained-layer structures of 270 mS/mm was measured for 1-micron gate, normally-on devices at 300 K. Maximum drain current levels are 290 mA/mm, with excellent pinch-off and saturation characteristics. The transconductance increased to 360 mS/mm at 77 K while no persistent photoconductivity or drain collapse was observed. Preliminary microwave results indicate a 300-K current gain cutoff frequency of about 20 GHz. These results are equivalent to the best GaAs/AlGaAs MODFET results and are due in part to the improved transport properties and carrier confinement in the InGaAs quantum well. Author

A86-24811 National Aeronautics and Space Administration.
LEWIS RESEARCH CENTER, CLEVELAND, OHIO

As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on the power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and voltage for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems. Author

A86-24831* Toledo Univ., Ohio.

A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapharn inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapharn inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading. Author
With a design center frequency of 20 GHz, a bandwidth of from dividing or combining action is less than 0.5 dB, with isolation of 20 dB between ports no worse than 20 dB. The input/output VSWRs are better than 2:1 across the same band. This divider/combiner can readily be used with monolithic GaAs power FET amplifiers to produce a several-fold increase in output powers over the 10 to 30 GHz frequency range.

A86-35718 Virginia Polytechnic Inst and State Univ., Blacksburg

NONDESTRUCTIVE CHARACTERIZATION OF RBSOA OF HIGH-POWER BIPOLAR TRANSISTORS

Reverse-bias safe operating area (RBSOA) of high-power Darlington transistors is characterized using a 120 A/1000 V nondestructive reverse-bias second breakdown tester designed and fabricated at Virginia Polytechnic Institute and State University. Elaborate RBSOA characteristics are generated with different forward/reverse base drive and collector current levels. The effects of elevated case temperature and second-base drive on RBSOA of four-terminal Darlington devices are also discussed.

A86-36009 Illinois Univ., Urbana-Champaign

DC AND MICROWAVE CHARACTERISTICS OF A HIGH CURRENT DOUBLE INTERFACE GAAS/INGAAS/ALGaaS PSEUDOMORPHIC MODULATION-DOPED FIELD-EFFECT TRANSISTOR

Extremely large current double interface GaAs/In(0.15):Ga(0.05)/Al(0.15)Ga(0.05)As pseudomorphic modulation-doped field-effect transistors (MODFET's) grown by molecular beam epitaxy were achieved. The 1-micron gate devices studied have peak current levels (430 mA/mm at 300 K and 483 mA/mm at 77 K) roughly one and a half to two times that found in single interface pseudomorphic MODFET's. These devices also retain high conductances over a broad range of gate voltages exceeding at 312 mS/mm at 300 K and 362 mS/mm at 77 K. Excellent microwave performance is also obtained with a maximum frequency of oscillation (f(max)) of 37 GHz and a current gain cut-off frequency of as high as 23 GHz at 300 K. An output power level of 14 dBm (1 dB gain compression) was obtained at 6 GHz for a 290-micron gate width. This double interface single quantum well MODFET may be of great importance in millimeter wave power amplifiers.

A86-37295 Illinois Univ., Urbana

DETERMINATION OF CARRIER SATURATION VELOCITY IN HIGH-PERFORMANCE IN(Y)Ga(1-Y)As/ALX(Ga1-X)As MODULATION-DOPED FIELD-EFFECT TRANSISTORS (WITH Y BETWEEN 0 AND 0.2)

The relation between the intrinsic transconductance per unit gate width and the carrier saturation velocity, v(sat), is used to determine v(sat) for several high-performance pseudomorphic MODFET's with different InAs mole fractions (y). Measurements of ln[1/(y)Ga(1-y)As/AlGaAs] MODFET's grown by MBE were found to give accurate v(sat) values at 77 K. Devices with y between 0 and 0.20 were shown to have higher v(sat) than conventional GaAs/AlGaAs MODFET's. An optimum y value for peak v(sat),
which may optimize overall device performance, is expected.

R.R.

A68-39472* National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
A MATHEMATICAL MODEL FOR THE DOUBLY-FED WOUND
ROTOR GENERATOR II
A mathematical analysis of a doubly-fed wound rotor generator is presented. The constraints of constant stator voltage and frequency to the circuit equations were applied and expression for the currents and voltages in the machine obtained. The derived variables are redefined as direct and quadrature components. In addition, the apparent (complex) power for both the rotor and the stator are derived in terms of these redefined components.
Author

A68-40431* Virginia Polytechnic Inst. and State Univ., Blacksburg
STATE-PLANE ANALYSIS OF PARALLEL RESONANT
CONVERTER
R. ORUGANTI and F. C. LEE (Virginia Polytechnic Institute and State University, Blacksburg) IN: PESC '85; Annual Power Electronics Specialists Conference, 16th, Toulouse, France, June 24-28, 1985, Record . New York, Institute of Electrical and Electronics Engineers, Inc., 1985, p. 56-73. refs
(Contract NAG3-551)
A method for analyzing the complex operation of a parallel resonant converter is developed, utilizing graphical state-plane techniques. The comprehensive mode analysis uncovers, for the first time, the presence of other complex modes besides the continuous conduction mode and the discontinuous conduction mode and determines their theoretical boundaries. Based on the insight gained from the analysis, a novel, high-frequency resonant buck converter is proposed. The voltage conversion ratio of the new converter is almost independent of load.
Author

A68-40449* National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
A NEW VERY HIGH VOLTAGE SEMICONDUCTOR SWITCH
A new family of semiconductor switches using double injection techniques and compensated deep impurities is described. They have the potential to raise switching voltages a factor of 10 higher (up to 100 kV) than p-n junction devices while exhibiting extremely low (or zero) forward voltage. Several potential power switching applications are indicated.
E.A.K.

A68-40462* Toledo Univ., Ohio.
ROTARY TRANSFORMER DESIGN WITH FIXED MAGNETIZING
AND/OR LEAKAGE INDUCTANCES
T. A. STUART, R. J. KING, and H. SHAMSeddin (Toledo University, OH) IN: PESC '85; Annual Power Electronics Specialists Conference, 16th, Toulouse, France, June 24-28, 1985, Record . New York, Institute of Electrical and Electronics Engineers, Inc., 1985, p. 480-487. refs
(Contract NAG3-478)
A design algorithm is considered for transformers that must transfer electric power across a rotating interface. Among other features, this procedure allows the designer to minimize either weight or losses by using either a fixed magnetizing inductance or a fixed leakage inductance. Numerical results are included to indicate the design trade-offs between various parameters.
Author

A68-41343* Honeywell, Inc., Bloomington, Minn.
KA-BAND MONOLITHIC GAIN CONTROL AMPLIFIER
(Contract NAS3-23356)
A monolithic gain control amplifier for Ka-band has been developed based on 0.25 micron-gate-length dual-gate FETs fabricated on ion-implanted material. A single-stage monolithic amplifier, excite, June 24-28, 31 GHz including frequency control, with a gain control range of over 20 dB. The device and IC design and fabrication are described.
Author

HIGH-FREQUENCY NOISE OF IN(Y)GA(1-Y)AS/AL(X)GA(1-X)AS
MODFETS AND COMPARISON TO GAAS/AL(X)Ga(1-X)AS
MODFETS
(Contract NAG3-813)
Noise parameter measurements for recently developed 1 micron gate-length GaAs/AlGaAs MODFETs have been performed at 8 GHz art room and cryogenic temperatures. Owing to the relatively small C(gs/sq rt) g(m) ratio in these devices compared to identical conventional GaAs/AlGaAs MODFETs, both room- and cryogenic temperature noise figures have been reduced. In addition, the light sensitivity and drift in noise figure at cryogenic temperatures observed in conventional GaAs/AlGaAs MODFETs have been substantially reduced.
Author

NORMAL MODES IN AN OVERMODED CIRCULAR WAVEGUIDE
COATED WITH LOSSY MATERIAL
(Contract NAG3-475)
The normal modes in an overmoded waveguide coated with a lossy material are analyzed, particularly for their attenuation properties as a function of coating material, layer thickness, and frequency. When the coating material is not too lossy, the low-order modes are highly attenuated even with a thin layer of coating. This coated guide serves as a mode suppressor of the low-order modes, which can be particularly useful for reducing the radar cross section of a cavity structure such as a jet engine inlet. When the coating material is very lossy, low-order modes fall into two distinct groups: highly and lowly attenuated modes. However, as lambda (a = radius of the cylinder; lambda = the free-space wavelength) increases, the separation between these two groups becomes less distinctive. The attenuation constants of most of the low-order modes become small and decrease as a function of lambda-squared/a-cubed.
Author

A68-45194* # National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
VERIFICATION OF AN IMPROVED COMPUTATIONAL DESIGN
PROCEDURE FOR TWT-DYNAMIC REFOCUSER-MDC SYSTEMS
WITH SECONDARY ELECTRON EMISSION LOSSES
A computational design procedure for the design of TWT-refocuser-MDC systems was used to design a short 'dynamic' refocusing system and highly efficient four-stage depressed collector for a 200-W 8-18-GHz TWT. The computations were carried out with advanced multidimensional computer programs which model the electron beam as a series of disks of charge and follow their trajectories from the RF input of the TWT, through the slow-wave structure and refocusing section, to their points of impact in the depressed collector. Secondary emission losses in

119
the MDC were treated semi-quantitatively by injecting a representative beam of secondary electrons into the MDC analysis at the point of impact of each primary beam. A comparison of computed and measured TWT and MDC performance showed very good agreement. The electrodes of the MDC were fabricated from a particular form of isotropic graphite that was selected for its low secondary electron yield, thermal expansion characteristics, ease of machinability and vacuum properties. This MDC was tested at CW for more than 1000 h with negligible degradation in TWT and MDC performances.

CONVENIENT MOUNTING METHOD

A method for mounting thin samples for electrical measurements is described. The technique is based on a vacuum chuck concept under the microstrip patch are expanded in a set of modes satisfying the boundary conditions on the eccentrically located substrate thickness are also included. Author

DIAMONDLIKE CARBON FILMS ON SEMICONDUCTORS FOR INSULATED-GATE TECHNOLOGY

MIS structures are fabricated on p-type InP, GaAs, and Si substrated by direct ionization of 25-percent CH4 in Ar and ion-beam deposition of 70-nm-thick diamondlike films, followed by application of Al gate electrodes and ohmic contacts. The films are found to have bandgap 0.9-1.1 eV, resistivity 8.1 Mohm cm, breakdown field strength 1 MV/cm, and density 1.8 g/cm^3, to be them (MDC's) for traveling-wave tubes (TWT's) has been demonstrated at the NASA Lewis Research Center. A significant increase in MDC efficiency was brought about by the application of a thin layer of highly-textured carbon to the surfaces of oxygen-free, high-conductivity (OFHC) copper collector electrodes in an experimental TWT. The textured carbon layer was applied by means of a NASA developed sputtering procedure. In an experimental investigation recently completed, this electrode surface modification resulted in an increase in MDC efficiency by as much as 8.6 percentage points relative to that of the same MDC with untreated copper electrode surfaces. This increase in MDC efficiency was reflected by an increase in overall TWT efficiency by as much as 5.4 percentage points. Author

EFICIENCY ENHANCEMENT WITH TEXTURED CARBON SURFACES ON COPPER MDC ELECTRODES

A method of improving the efficiency of multistage depressed collector (MDC's) for traveling-wave tubes (TWT's) has been demonstrated at the NASA Lewis Research Center. A significant increase in MDC efficiency was brought about by the application of a thin layer of highly-textured carbon to the surfaces of oxygen-free, high-conductivity (OFHC) copper collector electrodes in an experimental TWT. The textured carbon layer was applied by means of a NASA developed sputtering procedure. In an experimental investigation recently completed, this electrode surface modification resulted in an increase in MDC efficiency by as much as 8.6 percentage points relative to that of the same MDC with untreated copper electrode surfaces. This increase in MDC efficiency was reflected by an increase in overall TWT efficiency by as much as 5.4 percentage points. Author

PERFORMANCE AND TEMPERATURE DEPENDENCIES OF PROTON IRRADIATED N/P GAAS AND N/P SILICON CELLS

I. WEINBERG, C. K. SWARTZ, and R. E. HART, Jr. (NASA Lewis Research Center, Cleveland, OH) Review of Scientific Instruments (ISSN 0031-8942), vol. 57, July 1986, p. 1437, 1438. The n/p homojunction GaAs cell is found to be more radiation resistant than p/n heteroface GaAs under 10 MeV proton irradiation. Both GaAs cell types outperform conventional silicon n/p cells under the same conditions. An increase temperature dependency of maximum power for the GaAs n/p cells is attributed largely to differences in Voc between the two GaAs cell types. These results and diffusion length considerations are consistent with the conclusion that p-type GaAs is more radiation resistant than n-type and therefore that the n/p configuration is possibly favored for use in the space radiation environment. However, it is concluded that additional work is required in order to choose between the two GaAs cell configurations. Author
power operation experiments, and demonstrated high-current-density processes, microscopy, reviewed possible alternate materials for cathode print C. would AO1 CSCLWA compared to (NASACR-174792; space dominated AO2/MF A01 CSCL electrons. Estimates of expected performance in a proton data refs higher representative beam from a particular form of isotropic graphite that at impact in the modelled the electron beam as a series of disks of charge and follow their trajectories from the RF input of the TW, through the slow-wave structure and refocusing section, to their points of impact in the depressed collector. Secondary emission losses in the MDC were treated semi-quantitatively by injecting a representative beam of secondary electrons into the MDC analysis at the point of impact of each primary beam. A comparison of computed and measured TW and MDC performance showed very good agreement. The electrodes of the MDC were fabricated from a particular form of isotropic graphite that was selected for its low secondary electron yield, ease of machinability, and vacuum properties. This MDC was tested (at CW) for more than 1000 hr with negligible degradation in TW and MDC performances. Author

A computational procedure for the design of TW-refocuser-MDC systems was used to design a short dynamic refocussing system and highly efficient four-stage depressed collector for a 200-W, 8- to 18-GHz, TW. The computations were carried out with advanced, multidimensional computer programs which model the electron beam as a series of disks of charge and follow their trajectories from the RF input of the TW, through the slow-wave structure and refocusing section, to their points of impact in the depressed collector. Secondary emission losses in the MDC were treated semi-quantitatively by injecting a representative beam of secondary electrons into the MDC analysis at the point of impact of each primary beam. A comparison of computed and measured TW and MDC performance showed very good agreement. The electrodes of the MDC were fabricated from a particular form of isotropic graphite that was selected for its low secondary electron yield, ease of machinability, and vacuum properties. This MDC was tested (at CW) for more than 1000 hr with negligible degradation in TW and MDC performances. Author

The results of a one year study to: (1) develop a theory for robust failure detection and identification (FDI) in the presence of model uncertainty, (2) develop a design methodology which utilizes the robust FDI theory, (3) apply the methodology to a sensor FDI problem for the F-100 jet engine, and (4) demonstrate the application of the theory to the evaluation of alternative FDI schemes are presented. Theoretical results in statistical discrimination and parity relations are derived through the optimization of robustness metrics. The result is viewed as a general structure for decentralized FDI is proposed and robustness metrics are used for determining various parameters of the algorithm. Author

During this phase of the cathode development program, SRI improved the multi-electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips. Author

Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emitter approach in which the inductor size is determined by the converter switching frequency and by the load current frequency. Other methods require complicated switch drive algorithms to construct the input current waveform. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator. E.A.K. Author
33 ELECTRONICS AND ELECTRICAL ENGINEERING

Two general types of remote power controllers (RPC's), which combine the functions of a circuit breaker and a switch, were developed for use in dc aerospace systems. Power-switching devices used in the designs are the gate-turnoff thyristor (GTO) and MOSFET. The RPC's can switch dc voltages to 1200 V and currents to 1000 A. Seven different units were constructed and subjected to laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times which limit surge currents and voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout proportional to I sq T and microsecond tripout for large loads. Author (ESA)

A fast voltage pulse is applied to a transducer which comprises a composite of multiple layers of alternately polarized piezoelectric material. These layers are bonded together and positioned over the curved leading edge of an aircraft wing structure. Each layer is relatively thin and metalized on both sides. The strain produced in the transducer causes the composite to push forward resulting in detachment and breakup of ice on the leading edge of the aircraft wing. Official Gazette of the U.S. Patent and Trademark Official Gazette of the U.S. Patent and Trademark Office

The voltage rating of a bipolar transistor may be greatly extended while at the same time reducing its switching time by operating it in conjunction with FET's in a hybrid circuit. One FET is used to drive the bipolar transistor while the other FET is connected in series with the transistor and an inductive load. Both FET's are turned on or off by a single drive signal of load power, the second FET upon ceasing conductions, rendering one power electrode of the bipolar transistor open. Means are provided to dissipate currents which flow after the bipolar transistor is rendered nonconducting. Official Gazette of the U.S. Patent and Trademark Office

A rebalance cell is provided for a REDOX electrochemical system of the type with anode and cathode fluids which are aqueous HC1 solutions with two metal species in each. The rebalance cell has a cathode compartment and a chlorine compartment separated by an ion permeable membrane. By applying an electrical potential to the rebalance cell while circulating cathode fluid through the cathode compartment and while circulating an identical fluid through the chlorine compartment, any significant imbalance of the REDOX system is prevented. NASA

A methodology is presented for the design of a variable reluctance motor drive having high specific torque, power output and efficiency. Models are developed that describe the magnetic terminal relations of the VRM. These models are based on a flux-tube analysis that is motivated by numerically obtained finite-difference magnetic simulations. The result is a model for the flux-linkage/phase-current characteristic of the VRM. Intrinsic to this model is the estimation of maximum and minimum inductance as well the incremental inductance during bulk saturation. Also fundamental is the behavior of the flux linkage during local pole-tip saturation and due to bulk core saturation. The drive-oriented treatment of modelling and design uncovered important design interactions between the VRM, its inverter, and its excitation. The experimental 3.8-kW drive operated as expected, verifying the models and the design optimizations developed for VRM drives. These experimental results were projected to the 60-kW level, indicating that a 60-kW drive could be constructed with a VRM having a mass of approximately 85 kg, and an efficiency in excess of 95% at and below peak power output. DOE

A dynamic velocity taper is provided for a traveling wave tube with increased linearity to avoid intermodulation of signals being amplified. In a traveling wave tube, the slow wave structure is a helix including a sever. A dynamic velocity taper is provided by gradually reducing the spacing between the repeating elements of the slow wave structure which are the windings of the helix. The spacing between the repeating elements of the slow wave structure is ideally at an exponential rate because the curves increase at the point of maximum efficiency and power, at an exponential rate. A coupled cavity traveling wave tube having cavities is shown. The space between apertured discs is gradually reducing the point of maximum efficiency and power, at an exponential rate. Output power

DOE
(or efficiency) versus input power for a commercial tube is shown.

Official Gazette of the U.S. Patent and Trademark Office

N86-21755*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PROGRAMMABLE, AUTOMATED TRANSISTOR TEST SYSTEM
A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristics of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.

Author

N86-21767*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
OPTICALLY CONTROLLED PHASED ARRAY ANTENNA CONCEPTS USING GaAs MONOLITHIC MICROWAVE INTEGRATED CIRCUITS
The desire for rapid beam reconfigurability and steering has lead to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFns. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

Author

N86-24006*# Hughes Research Labs., Torrance, Calif.
DESIGNING A 25-KILOWATT HIGH FREQUENCY RESONANT
(NASA-CR-176774; NAS 1.26:176774) Avail: NTIS HC A02/ MF A01 CSLC 09C
The feasibility of processing 25 kW of power with a single, transistorized, 20 kHz, series resonant converter stage has been demonstrated by the successful design, development, fabrication, and testing of such a device. It employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350-Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Circuit details of the converter are presented along with test data.

Author

N86-24097*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
ANALYSIS OF OPTICALLY CONTROLLED MICROWAVE/MILLI-METER WAVE DEVICE STRUCTURES
The light-induced voltage and the change in the source-to-drain channel current under optical illumination higher than the semiconductor bandgap for GaAs MESFET, InP MESFET, Al0.3Ga0.7As/GaAs high electron mobility transistor (HEMT) and GaAs permeable base transistor (PBT) were analytically obtained. The GaAs PBT and GaAs MESFET have much higher sensitivity than InP MESFET. The Al0.3Ga0.7As/GaAs HEMT is observed to have the highest sensitivity, Variation in device parasitics due to optical illumination and its effect on the cutoff frequencies fT and fmax are also investigated.

Author

INPUT-CURRENT SHAPED AC TO DC CONVERTERS Final Report
May 1986 49 p refs (Contract NAG3-615)
(NASA-CR-176877; NAS 1.26:176877; EE116-81) Avail: NTIS HC A03/ MF A01 CSLC 09A
The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactivities, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.

Author

PSTRUCTION DISTRIBUTION SYSTEM USING A RESONANT HIGH-FREQUENCY AC LINK
P. K. SOOD and T. A. LIPO 1986 6 p refs (Contract NAG3-492)
(NASA-CR-176804; NAS 1.26:176804) Avail: NTIS HC A02/ MF A01 CSLC 10B
Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.

Author

N86-26520*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
INDIUM PHOSPHIDE SOLAR CELLS: STATUS AND PROSPECTS FOR USE IN SPACE
I. WEINBERG and D. J. BRINKER 1986 11 p Present at 21st Intersociety Energy Conversion Engineering Conference (IECEC), San Diego, Calif. 25-29 Aug. 1986; sponsored by American Ceramic Society, SAE, American Nuclear Society, IEEE, AIAA and American Institute of Chemical Engineers (NASA-TM-87315; E-3046; NAS 1.15:87315) Avail: NTIS HC A02/ MF A01 CSLC 09A
The current status of indium phosphide cell research is reviewed and state of the art efficiencies compared to those of GaAs and

123
Si. It is shown that the radiation resistance of InP cells is superior to that of either GaAs or Si under 1 MeV electron and 10 MeV proton irradiation. Using lightweight blanket technology, a SEP array structure and projected cell efficiencies, array specific powers are obtained for all three cell types. Array performance is calculated as a function of time in orbit. The results indicated that arrays using InP cells can outperform those using GaAs or Si in orbits where radiation is a significant cell degradation factor. It is concluded that InP solar cells are excellent prospects for future use in the space radiation environment.

Author

N86-207579# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NEAR-FIELD TESTING OF THE 30 GHZ TRW PROOF-OF-CONCEPT MULTIBEAM ANTENNA

Near-field testing was conducted on the 30 GHz TRW proof-of-concept (POC) Multibeam Antenna (MBA). The TRW POC MBA is a dual offset Cassegrain reflector system using a 2.7 m main reflector. This configuration was selected to assess the ability to create both multiple fixed and scanned spot beams. The POC configuration investigated frequency reuse via spatial separation of beams, polarization selectivity and time division multiple access scanning at 30 GHz. Measurements of directivity, sidelobe level, and pattern were made at NASA Lewis Research Center's Near-Field Antenna Test Facility. Presented in this paper are complete results of these measurements. Included is a detailed discussion of all testing procedures and parameters. Results of additional testing used to evaluate diffraction effects of the subreflector and distortions of the main reflector are also presented. Author

THERMONIC NOISE MEASUREMENTS FOR ON-LINE DISPENSER CATHODE DIAGNOSTICS FOR LINEAR BEAM MICROWAVE TUBES Final Report, Feb. 1984 - Aug. 1985
C. HOLLAND and L. BRODIE Aug. 1985 48 p (Contract NAS3-23777; SRI PROJ-6922)
(NASA-CR-175105; NAS 1.26:175105) Avail: NTIS HC A03/MF A01 CSCL 09C

A test stand has been set up to measure the current fluctuation noise properties of B- and M-type dispenser cathodes in a typical TWT gun structure. Noise techniques were used to determine the work function distribution on the cathode surfaces. Significant differences between the B and M types and significant changes in the work function distribution during activation and life are found. In turn, knowledge of the expected work function can be used to accurately determine the cathode-operating temperatures in a TWT structure. Noise measurements also demonstrate more sensitivity to space charge effects than the Miram method. Full automation of the measurements and computations is now required to speed up data acquisition and reduction. The complete set of equations for the space charge limited diode were programmed so that given four of the five measurable variables (J, J sub 0, T, D, and V) the fifth could be computed. Using this program, we estimated that an rms fluctuation in the diode spacing d in the frequency range of 145 Hz about 20 kHz of only about 10 to the -5 power the fifth could be computed. Using this program, we estimated that an rms fluctuation in the diode spacing d in the frequency range of 145 Hz about 20 kHz of only about 10 to the -5 power. Author

N86-30068# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

HYTRESS 2: A HYPOTHETICAL TURBOFAN ENGINE SIMPLIFIED SIMULATION WITH MULTIVARIABLE CONTROL AND SENSOR ANALYTICAL REDUNDANCY
(NASA-CR-174936; NAS 1.26:174936; WRDC-85-9F4-DIDIS-R1) Avail: NTIS HC A03/MF A01 CSCL 21E

A hypothetical turbofan engine simplified simulation with a multivariable control and sensor failure detection, isolation, and accommodation logic (HYTRESS II) is presented. The digital program, written in FORTRAN, is self-contained, efficient, realistic and easily used. Simulated engine dynamics were developed from linearized operating point models. However, essential nonlinear effects are retained. The simulation is representative of the hypothetical, low bypass ratio turbofan engine with an advanced control and failure detection logic. Included is a description of the engine dynamics, the control algorithm, and the sensor failure detection logic. Details of the simulation including block diagrams, variable descriptions, common block definitions, subroutine descriptions, and input requirements are given. Example simulation results are also presented. Author
the collector efficiencies. The techniques provide the measurement of both the TWT overall and collectors several computer-modeled

EFFICIENCY IMPROVEMENTS WITH CARBON COLLECTOR DEPRESSED COLLECTORS AND TRAVELING-WAVE-TUBE SECONDARY-ELECTRON-EMISSION LOSSES IN MULTISTAGE (NASA-TP-2622; E-3062; NAS 1.60:2622) Avail: NTIS HC A02/MF A01 CSCL 10A

to the value of a passive, maintenance-free, renewable energy source was apparent in the early days of the space program, and the silicon solar cell was pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved through improvements in silicon single crystal material, better device designs, and a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. A brief overview of some of the opportunities and challenges for space photovoltaic applications is given, and some of the current research directed at achieving high efficiency and controlling radiation damage in space solar cells is discussed.

NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

SECONDARY-ELECTRON-EMISSION LOSSES IN MULTISTAGE DEPRESSED COLLECTORS AND TRAVELING-WAVE-TUBE EFFICIENCY IMPROVEMENTS WITH CARBON COLLECTOR ELECTRODE SURFACES P. RAMINS and B. T. EBITHARA Sep. 1986 23 p (NASA-TP-2622; E-3062; NAS 1.60:2622) Avail: NTIS HC A02/MF A01 CSCL 09C

Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and isotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent. Author

34 FLUID MECHANICS AND HEAT TRANSFER

Includes boundary layers; hydrodynamics; fluids; mass transfer; and ablative cooling.

SECONDARY-ELECTRON-EMISSION LOSSES IN MULTISTAGE DEPRESSED COLLECTORS AND TRAVELING-WAVE-TUBE EFFICIENCY IMPROVEMENTS WITH CARBON COLLECTOR ELECTRODE SURFACES

This is the second part of a study reporting structure measurements in the dilute portion of axisymmetric nonevaporating sprays. Measurements are compared with predictions of three typical methods for analyzing sprays: (1) locally homogeneous flow (LHF) analysis, where slip between the phases is neglected; (2) deterministic separated flow (DSF) analysis, where slip is considered but effects of drop interactions with turbulence are ignored; and (3) stochastic separated flow (SSF) analysis, where both slip and effects of drop interactions with turbulence are considered. This part of the study reports measurements of mean and fluctuating drop velocities, the variation of Sauter mean diameter, and gas-phase turbulence properties in the dilute portion of the sprays. Best agreement between predictions and measurements was obtained with the SSF analysis. For present measurements in the dilute region (void fraction greater than 99.1 percent), effects of drops on gas-phase turbulence properties (turbulence modulation) were small. However, as the dense spray regions near the injector were approached, the measurements indicated modification of turbulence properties by drop motion. Author

An analysis is presented to study the influence of free stream turbulence on separation in the case of crossflow over a circular cylinder. An eddy diffusivity model has been formulated and the governing momentum equation has been solved numerically. A correlation parameter has been suggested to correlate the angle

34 FLUID MECHANICS AND HEAT TRANSFER

Includes boundary layers; hydrodynamics; fluids; mass transfer; and ablative cooling.
of separation. It has been found that the angle of separation increases with increasing free stream turbulence intensity. Author

A86-11937*# Arizona State Univ., Tempe.
CONCENTRATION DISTRIBUTIONS IN CYLINDRICAL COMBUSTORS

Experimental studies have been conducted with the aim to obtain a better understanding of the fluid dynamics of mixing in gas turbine combustors, and solid fuel ramjet combustors subject to spin. The present investigation represents a continuation of studies conducted by So et al. (1984). It is also concerned with the verification of some conclusions reported by Ahmed et al. (1984). Attention is given to the experimental facility and instrumentation, centerline concentration measurements, mean concentration profiles, and a comparison of concentration and axial velocity results in the case of swirling flow. G.R.

A86-11938*# United Technologies Research Center, East Hartford, Conn.

Combustor models for the aircraft gas turbine industry have been obtained because of the need to reduce the costs of developing improved performance and more durable engines. A few years ago, it became apparent that the mass concentration and velocity predictions provided by the computer codes were not representing the data measured in some confined recirculating flows. It is pointed out that errors in the mass concentration distribution are an especially serious problem because of their influence on the heat release, temperature, and reactant distributions. Combined mass and momentum turbulent transport experiments with swirling and nonswirling flows have been conducted with the objective to obtain an experimental data base which can be used to evaluate and improve the turbulent transport submodes employed in the aerothermal models. The present paper is mainly concerned with the overall characteristics of the mass turbulent transport processes in complex flows with recirculation and the deficiencies of the conventional models. G.R.

A86-13061*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

The surface temperature distributions due to thermocapillary convections in a thin liquid layer with heat fluxes imposed on the free surface were investigated. The nondimensional analysis predicts that, when convection is important, the characteristics length scale in the flow direction L, and the characteristic temperature difference delta T sub s can be represented by L and delta T sub s approx. (A2Ma)/1/4 delta T sub R, respectively, where L sub s and delta T sub s are the reference scales used in the conduction dominant situations with A denoting the aspect ratio and Ma the Marangoni number. Having L and delta T sub s defined, the global surface temperature gradient delta T sub s approx. to, the global thermocapillary driving force, and other interesting features can be determined. Numerical calculations involving a Gaussian heat flux distribution are presented to justify these two relations. E.A.K.

A86-13061*# United Technologies Research Center, East Hartford, Conn.

The facilities and techniques being applied in investigations of laminar separation bubbles on low Re airfoils at the United Technologies Research Center are described. The research is focused on developing a database and predictive models for use in designing compressor, fan and turbine blades. Flow data are...
gathered primarily by laser Doppler velocimetry. Experimental procedures are being devised which will permit formation of a short bubble for characterizations of the velocity profiles in and around the bubble and boundary layer. Further tests are directed at defining the size and location of the bubble and the transition in the separated shear layer. The sensitivity of the bubble to alterations in the Re, pressure gradient, turbulence intensity and the turbulence scales will be examined. The effects of surface curvature and roughness on the bubble will also be studied. Details of the wind tunnel facility and the steps being taken to define conditions for reliably producing the short bubble are outlined.

M.S.K.

A86-16468* Lockheed-Georgia Co., Marietta.
TONE EXCITED JETS. III - FLOW MEASUREMENTS
J. LEPICOVSKY, K. K. AHUJA, and R. H. BURRIN
Research supported by Lockheed-Georgia Co. refs (Contract NAS3-21987)

This paper describes the effects of upstream excitation on the flow characteristics of tone-excited jet under static as well as simulated forward velocity conditions. The data presented include axial and radial distributions of mean velocities and turbulence intensities as functions of excitation conditions. Results for both unheated and heated jets are presented. The measured distributions of pressures associated with the large-scale turbulence are also presented for some test conditions.

A86-17041* National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
SCATTERING OF ACOUSTIC WAVES INTO TOLLMIEN-SCHILCHTING WAVES BY SMALL STREAMWISE VARIATIONS IN SURFACE GEOMETRY
refs (Contract NAS5-21987)

By using the triple-deck scaling of Stewartson (1969) and Messiter (1970) it is shown that small but relatively sudden surface geometry variations that produce only very weak static pressure variations can nevertheless produce strong, i.e. O(1), coupling between an externally imposed acoustic disturbance and a spatially growing Tollien-Schlichting wave. The analysis provides a qualitative explanation of the Leehey and Shapiro (1979) boundary-layer receptivity measurements and is in good quantitative agreement with the Aziz and Poliakov (1979) experiment. It may also explain why small "trip wires" can promote early transition.

A86-19419* California Inst. of Tech., Pasadena.
FINITE-AMPLITUDE STEADY WAVES IN PLANE VISCOUS SHEAR FLOWS
refs (Contract NAG3-178; DE-AT03-76ER-72012; N00014-85-K-0205) (AD-A165461)

Computations of two-dimensional solutions of the Navier-Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on several parameters, e.g., the constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artificial of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.

A86-19661*# Connecticut Univ., Storrs.
NUMERICAL AND EXPERIMENTAL INVESTIGATION OF NONSLOWRING AND SWIRLING CONFINED JETS
(AIAA PAPER 86-0040)

An investigation of the influence of large scale structures on the flow development for coaxial jets with sudden expansion (with and without swirl) is presented. Both an experimental study and numerical predictions were performed for a configuration corresponding to that considered by Johnson and Bennett and Roback and Johnson. The effects of large scale structures on the starting and nonswirling flow are documented, in particular their influence on turbulence modeling and the numerical simulation. The ensemble-averaged, time-dependent Navier-Stokes equations are solved by an LBI procedure to predict the turbulent flow field. Effects of artificial dissipation and placement of the upstream boundary in the numerical computation are also discussed.

A86-19746*# Dayton Univ., Ohio.
NUMERICAL SIMULATION OF UNSTEADY FLOW IN AN AXISYMMETRIC SHEAR LAYER
J. N. SCOTT (Dayton University, OH) and W. L. HANKEY (Wright State University, Dayton, OH) AIAA, Aerospace Sciences Meeting, 24th, Reno, NV, Jan. 6-9, 1986. 12 p. refs (Contract NAG3-526)
(AIAA PAPER 86-0055)

In the present experiments documenting the time-mean and turbulent flowfield of a deflected turbulent jet in a combined, swirling crossflow, attention is given to a jet-to-crossflow velocity ratio of 4 at swirler vane angles of 45 and 70 deg. The results obtained are presented in the form of r-x plots in order to aid in three-dimensional flowfield visualization. The time-mean velocity measurements were found to closely correspond to pitot-probe data obtained in identical flow conditions. The lateral jet was found to deflect the axis of the processing vortex core.

O.C.
THERMOPHORETICALLY AUGMENTED MASS TRANSFER RATES TO SOLID WALLS ACROSS LAMINAR BOUNDARY LAYERS

S. A. GOKOGLU (NASA, Lewis Research Center, Cleveland, OH; Yale University, New Haven, CT) and D. E. ROSNER (Yale University, New Haven, CT) - AIAA Journal (ISSN 0001-1452), vol. 24, Jan. 1986, p. 172-179. refs

Contract F49620-82-K-0020; NAG3-201

Predictions of mass transfer (heavy vapor and small particle deposition) rates to solid walls, including the effects of thermal (Soret) diffusion ('thermophoresis' for small particles), are made by numerically solving the two-dimensional self-similar forced convection laminar boundary-layer equations with variable properties, covering the particle size range from vapor molecules up to the size threshold for inertial (dynamical nonequilibrium) effects. The effect of thermophoresis is predicted to be particularly important for submicron particle deposition on highly cooled solid surfaces, with corresponding enhancement factors at atmospheric conditions being over a thousand-fold at T(w)/T(e) equal to about 0.6. As a consequence of this mass transfer mechanism, the particle size dependence of the mass transfer coefficient to a cooled wall will be much weaker than for the corresponding case of isothermal capture by Brownian-convective diffusion. Author suggested by Hawthorne (1955) with a numerical integration and a study of inviscid, separated flows is conducted. G.R.

STEADY INVISID THREE-DIMENSIONAL FLOWS

A86-20150# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

Contract NAS3-23167

The present analysis combines some of the theoretical concepts considered by Clebsch (1859). In this transformation, a new set of variables formulation provides a transformation of a type suggested by Martin (1978). In this transformation, a new set of variables formulation provides a transformation of a type suggested by Martin (1978). The resulting overall solution technique is efficient as well as robust. The robustness and efficiency of the solution technique are demonstrated by applying it to three model problems, including a driven cavity, downstream asymptotic flow in curved ducts of square and polar sections, and Newmann boundary-value problem in clustered curvilinear orthogonal coordinates. V.L.

SWIRLING FLOWS IN TYPICAL COMBUSTOR GEOMETRIES

A86-20362# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

Contract NAG3-74

G. R. Clebsch (1859). In this transformation, a new set of variables formulation provides a transformation of a type suggested by Martin (1978). In this transformation, a new set of variables formulation provides a transformation of a type suggested by Martin (1978). The resulting algorithm represents a new procedure for solving inviscid subsonic three-dimensional rotational flows. G.R.

APPLICATIONS OF VARIATIONAL PRINCIPLES IN COMPUTING ROTATIONAL FLOWS

A86-2051* Purdue Univ., Indianapolis, Ind.

IN: Advances in computational transonics. Swansea, Wales, Pineridge Press, 1985, p. 777-810. refs

Contract NAG3-3294

Ecer and Akay (1983) have developed a variational formulation of rotational flow for Euler equations. The present paper provides an analysis of some of these developments. The considered variational formulation provides a transformation of a type considered by Clebsch (1859). In this transformation, a new set of variables replaces the more commonly used primitivevariables u(i), rho and p. Here, u(i) denotes the velocity components, while rho is the density, and p the pressure. The employed transformation produces a natural uncoupling of the equations when written in a quasi-linear form. After obtaining the governing equations in terms of the "Clebsch variables", a solution scheme developed for calculating steady flows is discussed. Attention is given to numerical solutions of Euler equations based on the derived variational principles, and a study of incompressible subsonic transient flows is conducted. G.R.

STEADY INVISID THREE-DIMENSIONAL FLOWS

A86-20952# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

IN: Advances in computational transonics. Swansea, Wales, Pineridge Press, 1985, p. 813-834. refs

The present analysis combines some of the theoretical concepts suggested by Hawthorne (1955) with a numerical integration procedure suggested by Martin (1978). The resulting algorithm is for inviscid subsonic flows. Thus, it is restricted to high Reynolds number flows. Chang and Adamczyk (1983) have provided a detailed derivation of the present algorithm along with a discussion of its stability bounds. The present paper represents a summary of this work. The integration of the continuity equation is considered separately along with an evaluation of the entropy, total temperature, and vorticity field. Attention is given to the shear-flow algorithm construction, and an application to a shear flow in a turning channel. A description of numerical results is also provided. The discussed algorithm represents a new procedure for solving inviscid subsonic three-dimensional rotational flows. G.R.

HIGH WEBER NUMBER SMD CORRELATIONS FOR PRESSURE ATOMIZERS

A86-22020* United Technologies Research Center, East Hartford, Conn.

Contract NAS3-23167

Recently acquired experimental data are presented which reveal that, for Weber number (We) greater than 10.0, the atomization from simplex pressure atomizers is significantly greater than would be predicted from previously derived Sauter mean diameter (SMD) correlations. A different SMD correlation is required to accurately predict the experimental data. Below We of about 10.0, the atomization is dominated by inertial forces and bag-type breakup results. Above We of about 10.0, shear-type breakup occurs and results in a very fine spray which can accurately be predicted using a quadratic expression in Delta P. The correlation is extended to include fuel property effects, and SMD is found to vary linearly with fuel surface tension, while the influence of the fuel viscosity is not apparent. C.D.

HEAT TRANSFER RESULTS AND OPERATIONAL CHARACTERISTICS OF THE NASA LEWIS RESEARCH CENTER HOT SECTION CASCADE TEST FACILITY

A86-22053# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

Contract NAS3-23167

The NASA Lewis Research Center gas turbine hot section test facility has been developed to provide a real-engine environment with well known boundary conditions for the aerothermal performance evaluation/verification of computer design codes. The initial aerothermal research data obtained are presented and the operational characteristics of the facility are discussed. This facility is capable of testing at temperatures and pressures up to 1800 K and 18 atm which corresponds to a vane
exit Reynolds number range of 0.5 x 1 million to 2.5 x 1 million based on vane chord. The component cooling air temperature can be independently modulated between 330 and 700 K providing gas-to-coolant temperature ratios similar to current engine application. Research instrumentation of the test components provide conventional pressure and temperature measurements as well as metal temperatures measured by IR-photography. The primary data acquisition mode is steady state through a 704 channel multimeter/digitizer. The test facility was configured as an annular cascade of full coverage film cooled vanes for the initial series of research tests.

Author

A86-22054*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A REVIEW AND ANALYSIS OF BOUNDARY LAYER TRANSITION DATA FOR TURBINE APPLICATION

R. E. GAUGLER (NASA, Lewis Research Center, Cleveland, OH) ASME, International Gas Turbine Conference and Exhibit, 30th, Houston, TX, Mar. 18-21, 1985. 8 p. Previously announced in STAR as N85-10306. refs (ASME PAPER 85-GT-83)

A symposium on transition in turbines was held at the NASA Lewis Research Center. One recommendation of the working groups was the collection of existing transition data to provide standard cases against which models could be tested. A number of data sets from the open literature that include heat transfer data in apparently transient boundary layers, with particular application to the turbine environment, were reviewed and analyzed to extract transition information from the heat transfer data. The data sets reviewed cover a wide range of flow conditions, from low speed, flat plate tests to full scale turbine airfoils operating at simulated turbine engine conditions. The results indicate that free stream turbulence and pressure gradient have strong, and opposite, effects on the location of the start of transition and on the length of the transition zone.

R.S.F.

A86-22056* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PRELIMINARY RESULTS OF A STUDY OF THE RELATIONSHIP BETWEEN FREE STREAM TURBULENCE AND STAGNATION REGION HEAT TRANSFER

The mechanism that causes free stream turbulence to increase heat transfer in the stagnation region of turbine vanes and blades was studied. The work is being conducted in a wind tunnel at atmospheric conditions to facilitate measurements of turbulence and heat transfer. The model size is scaled up to simulate Reynolds numbers (based on leading edge diameter) that are to be expected on a turbine blade leading edge. Reynolds numbers from 13,000 to 177,000 were run in the present tests. Spanwise averaged heat transfer measurement with high and low turbulence were made with rough and smooth surface stagnation regions. Results of these measurements show that the boundary layer remains laminar in character even in the presence of free stream turbulence at the Reynolds number tested. If roughness is added the boundary layer becomes transitional as evidenced by an increase in the mean heat transfer increase with increasing distance from the stagnation line. Hot wire measurements near the stagnation region downstream of an array of parallel wires have shown that vorticity in the form of mean velocity gradients is amplified as flow approaches the stagnation region.

Author

A86-22125* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EXPERIMENTAL STUDY OF THE SPRAY CHARACTERISTICS OF A RESEARCH AIRBLAST ATOMIZER

W. A. ACOSTA (NASA, Lewis Research Center; U.S. Army, Propulsion Laboratory, Cleveland, OH) ASME, International Gas Turbine Conference and Exhibit, 30th, Houston, TX, Mar. 18-21, 1985. 8 p. Previously announced in STAR as N85-15727. refs (ASME PAPER 85-GT-229)

Airblast atomization was studied using a specially designed atomizer in which the liquid first impinges on a splash plate, then is directed radially outward and is atomized by the air passing through two concentric, vaned swirlers that swirl the air in opposite directions. The effect of flow conditions, air mass velocity (mass flow rate per unit area) and liquid to air ratio on the mean drop size was studied. Seven different ethanol solutions were used to simulate changes in fuel physical properties. The range of atomizing air velocities was from 30 to 80 m/s. The mean drop diameter was measured at ambient temperature (295 K) and atmospheric pressure.

Author
local thermodynamic state is related to a single conserved scalar. The properties of pressure fluctuations are analyzed for turbulent flows with fluctuating density. Closure models for pressure correlations are discussed and modeled transport equations for Reynolds stresses, turbulent kinetic energy dissipation, density-velocity correlations, scalar moments and dissipation are presented and solved, together with the mean equations for momentum and mixture fraction. Solutions of these equations are compared with the experimental data for high heat release free mixing layers of fluorine and hydrogen in a nitrogen diluent.

A86-22862* # Pennsylvania State Univ., University Park.
COMPUTATION OF TURBULENT ROTATING CHANNEL FLOW WITH AN ALGEBRAIC REYNOLDS STRESS MODEL

An Algebraic Reynolds Stress Model has been implemented to modify the Kolmogorov-Prandtl eddy viscosity relation to produce an anisotropic turbulence model. The eddy viscosity relation becomes a function of the local turbulent production to dissipation ratio and local turbulence/rotation parameters. The model is used to predict fully-developed rotating channel flow over a diverse range of rotation numbers. In addition, predictions are obtained for a developing channel flow with high rotation. The predictions are compared with the experimental data available. Good predictions are achieved for mean velocity and wall shear stress over most of the rotation speeds tested. There is some prediction breakdown at high rotation (rotation number greater than .10) where the effects of the rotation on turbulence become quite complex. At high rotation and low Reynolds number, the laminarization on the trailing side represents a complex effect of rotation which is difficult to predict with the described models.

A88-22735* # Southwest Research Inst., Houston, Tex.
EFFECT OF ELEVATED TEMPERATURE AND PRESSURE ON SPRAYS FROM SIMPLEX SWIRL ATOMIZERS

An examination is made of the effects of air temperature and pressure on the spray quality of a moderately high capacity pressure swirl atomizer spraying jet-A and No. 2 diesel fuel. Drop size distributions, in terms of both Sauter mean diameter (SMD) and d50 are shown as a function of distance from the nozzle at all conditions, indicating some of the evaporation characteristics of fuel sprays.

A88-23131* # Massachusetts Inst. of Tech., Cambridge.
FORMATION AND INFLATION OF A TURBULENT JET

A88-24463* Akron Univ., Ohio.
AN EXPERIMENTAL INVESTIGATION AND SOME ANALYTICAL CONSIDERATIONS CONCERNING THE VAPOROUS/GASEOUS CAVITY CHARACTERISTICS OF AN ECCENTRIC SHAFT SEAL OR BEARING
M. J. BRAUN (Akron, University, OH) and R. C. HENDRICKS (NASA, Lewis Research Center, Cleveland, OH) IN: Heat and mass transfer in rotating machinery , Washington, DC, Hemisphere Publishing Corp., 1984, p. 201-213. refs

A88-24468* Stanford Univ., Calif.
ANALYSIS OF THE UNCERTAINTIES IN VELOCITY MEASUREMENTS WITH TRIPLE HOT-WIRE PROBES
M. N. FROTA and R. J. MOFFAT (Stanford University, CA) ASME and ASLE, Joint Lubrication Conference, Atlanta, GA, Oct. 8-10, 1985. 10 p. Previously announced in STAR as N86-10463. refs (ASME PAPER 85-TRIB-51)

A detailed computerized sensitivity analysis of the triple hot-wire equations has been performed in order to delineate the uncertainties associated with measurements of the velocity components. Absolute and relative uncertainties for the instantaneous hot-wire outputs are calculated as functions of roll and pitch angles, based on a constant probability combination of the uncertainties in the inputs. From the results, it is concluded that the small inherent difficulties associated with the triple hot-wire data do not reflect artifacts introduced by the data processing. Fixed errors present in the V and W channels of the output are due to the nonzero measuring volume of the triple wire probe, and are entirely predictable.

A88-24469* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
THEORETICAL MODELING OF THE VAPOR CAVITATION IN DYNAMICALLY LOADED JOURNAL BEARINGS

A theoretical investigation is made of the evolution of a vapor-bubble for a submerged journal bearing under dynamically loaded conditions using the Eirod algorithm. This method conserves mass throughout the computational domain. A comparison study is performed to determine some of the consequences of applying a nonconservative theory (pseudo-Gumbel BC) to a dynamic problem. A complete dynamic cycle of a journal whirling in a circular path is chosen for the basis of comparison. Significant differences are observed in the load components near the end of the cycle. Further, good agreement with experiment is found for stationary and nonstationary cavitation.

DIRECT NUMERICAL SIMULATIONS OF CHEMICALLY REACTING TURBULENT MIXING LAYERS

The results of direct numerical simulations of chemically reacting, turbulent mixing layers are presented. The reaction considered is a binary, irreversible reaction with no heat release, so that only the effect of the turbulence on the chemical reaction is investigated. The simulation results are shown to be consistent with similarity theory, and are found to be in approximate agreement with laboratory data, even though there are no adjustable parameters in the method.
34 FLUID MECHANICS AND HEAT TRANSFER

A86-28606*# Michigan Univ., Ann Arbor.
SPRAY ATOMIZATION AND COMBUSTION
G. M. FAETH (Michigan, University, Ann Arbor) AIAA, Aerospace Sciences Meeting, 24th, Reno, NV, Jan. 6-9, 1986. 17 p. refs
(Contract NAG3-190; AF-AFOSR-85-0244; N00014-80-C-0517; N00014-85-C-0148)
(AIAA PAPER 86-0138)

New theoretical and experimental methods for studying sprays are reviewed. Common methods to analyze dilute sprays are described and used to interpret recent measurements of the structure of dilute sprays and related dispersed turbulent jets. Particle-laden jets, nonevaporating, evaporating, and combusting sprays, and noncondensing and condensing bubbly jets are examined and used to initially evaluate current analytical methods for a wide range of conditions. Dense sprays are briefly discussed.

C.D.

A86-28614*# Houston Univ., Tex.
FREE SHEAR FLOWS - ORGANIZED STRUCTURES AND EFFECTS OF EXCITATION
A. K. F. HUSSAIN, H. S. HUSAIN, J. TSO, M. HAYAKAWA (Houston, University, TX), K. B. M. Q. ZAMAN (NASA, Lewis Research Center, Cleveland, OH; Houston, University, TX) et al. AIAA, Aerospace Sciences Meeting, 24th, Reno, NV, Jan. 6-9, 1986. 13 p. NSF-supported research. refs
(Contract N00014-85-K-0126; NAG3-408)
(AIAA PAPER 86-0235)

Recent studies of free shear flows are reviewed. Included are experimental studies of: excited and unexcited circular and elliptic jets, plane wake and mixing layers, and effects of excitation on augmentation and reduction of jet turbulence and jet noise. It is shown that proper excitation can produce both large increases and large decreases in turbulence and Reynolds stress level, mixing and noise generation, suggesting promising technological applications of self-excited jets such as whistler jets. It is also argued that 'ribs' or longitudinal vortices play an important role in production and mixing in free, and perhaps all, turbulent shear flows. The 'cut-and-connect' interaction of vortical structures is proposed as a key mechanism for coherent structure breakdown, mixing, turbulence production, and aerodynamic noise generation. A simple analysis of the viscous vorticity equation using symmetry of configurations of vortical structures before and after the interaction gives realistic predictions.

Author

A86-28630*# Wichita State Univ., Kans.
AN EXPERIMENTAL METHOD FOR MEASURING DROPLET IMPINGEMENT EFFICIENCY ON TWO- AND THREE-DIMENSIONAL BODIES
M. PAPADAKIS, G. W. ZUMWALT (Wichita State University, KS), J. J. KIM, R. ELANGOVAN, G. A. FREUND, JR. (Boeing Military Airplane Co., Wichita, KS) et al. AIAA, Aerospace Sciences Meeting, 24th, Reno, NV, Jan. 6-9, 1986. 9 p. FAA-supported research. refs
(Contract NAG3-566)
(AIAA PAPER 86-0406)

An efficient and accurate method is described for extracting water droplet impingement efficiency data from dye impregnated blotter paper samples obtained by employing a dye-tracer technique in wind tunnel spray tests. The method is based on laser reflectance spectroscopy. A brief description of the test method, instrumentation, and data reduction system is also presented. Preliminary test results and analyses are included for a cylinder and a 65(2)(0)15 airfoil.

Author

A86-28649*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
BOUNDARY PERTURBATION METHOD FOR FREE BOUNDARY PROBLEM IN CONVECTIVELY COOLED CONTINUOUS CASTING
Novel mathematical techniques are here used to treat general boundary conditions in convectively cooled continuous ingot casting problems, applying a constant convective heat transfer coefficient at the ingot sides (so that the temperature distribution along the sides is unknown). The problem is first inverted to treat the physical coordinates as dependent variables of temperature and heat flow, mapping the ingot into a region that is nearly rectangular. A boundary perturbation method is then used to obtain an analytical solution in this near-rectangular region. Solidification interface shapes depend on two dimensionless parameters: one is a function of the casting velocity, while the other is dependent on the convective heat transfer coefficient at the cooled wall.

O.C.

A86-28696*# United Technologies Research Center, East Hartford, Conn.
CALCULATION OF THREE-DIMENSIONAL BOUNDARY LAYERS ON ROTATING TURBINE BLADES
(Contract NAS3-23716)

An assessment has been made of the applicability of a three dimensional boundary layer analysis to the calculation of heat transfer and streamline flow patterns on the surfaces of both stationary and rotating turbine passages. In support of this effort, an analysis has been developed to calculate a general nonorthogonal surface coordinate system for arbitrary three dimensional surfaces and also to calculate the boundary layer edge conditions for compressible flow using the surface Euler equations and experimental pressure distributions. Using available experimental data to calibrate the method, calculations are presented for the endwall, and suction surfaces of a stationary cascade and for the pressure surface of a rotating turbine blade. The results strongly indicate that the three dimensional boundary layer analysis can give good predictions of the flow field and heat transfer on the pressure, suction, and endwall surfaces in a gas turbine passage.

Author

A86-29029*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
FREE BOUNDARY SHAPE OF A CONVECTIVELY COOLED SOLIDIFIED REGION
The two-dimensional steady-state shape of a solidified region, such as a frost layer, was determined analytically for formation on a plate that is convectively cooled. The nonuniform shape of the layer is produced by exposure to a spatially nonuniform distribution of radiant energy. For high convective cooling the cooled wall approaches a uniform temperature, and an exact solution is obtained for the free boundary shape. For a lesser amount of convective cooling, the variation in temperature along the cooled boundary is treated by a boundary perturbation method. Some illustrative examples are given that show the effects of nonuniform heating and the magnitude of convective heat transfer at the cooled wall. Only one boundary condition is approximated by the perturbation solution; all of the other boundary conditions are satisfied exactly. The calculated results given here were found to satisfy the approximate boundary condition within a very small error.

Author
INTERACTION OF FLOWS WITH THE CRYSTAL-MELT INTERFACE

The coupling between a crystal-melt interface and fluid flow is investigated. The solidification boundary conditions at the crystal-melt interface are described. The influences of morphological and double-diffusive instabilities during directional solidification on the interface are studied. The experiments by Glicksmann and Mickalonis (1982) and Fang et al. (1985) which examine the relationship between the thermodynamic state of the phase melt and phase-change interface are analyzed. The Rayleigh-Benard problem, and the effect of crystal-melt interaction on the Rayleigh number are examined. Various applications of melt-flow interactions with solid-liquid interface to engineering and welding are discussed.

ENTRAINMENT REGION PHENOMENA FOR A LARGE PLANE SHEAR LAYER

S. K. ALI, C. L. KLEWICKI, P. J. DISIMILE, I. LAWSON, and J. F. FOSS (Michigan State University, East Lansing) IN: Symposium on Turbulent Shear Flows, 5th, Ithaca, NY, August 7-9, 1985, Proceedings, University Park, PA, Pennsylvania State University, 1985, p. 3.7-3.12. refs (Contract NAG2-86; NAG1-287; NAG3-574)

The subatmospheric test section of the present free shear layer facility allows the entrainment air to be introduced with a negligible disturbance level. The very low frequency oscillations, which are prominently observed in the entrainment stream and which are present throughout the shear layer, are attributed to an inherent instability in the transition from a boundary layer to a free shear layer state. The basic features of the disturbance field are documented herein.

COHERENT STRUCTURES IN A TURBULENT MIXING LAYER - A COMPARISON BETWEEN DIRECT NUMERICAL SIMULATIONS AND EXPERIMENTS

R. W. METCALFE, S. MENON (Flow Research Co., Kent, WA), and A. K. M. F. HUSSAIN (Houston University, TX) IN: Symposium on Turbulent Shear Flows, 5th, Ithaca, NY, August 7-9, 1985, Proceedings, University Park, PA, Pennsylvania State University, 1985, p. 4.13-4.19. refs (Contract N00014-82-C-0600; N00014-85-K-0126; NAS3-20531)

An eduction scheme has been developed in an attempt to characterize the instabilities of large-scale vortical structures in a turbulent mixing layer. This analysis scheme has been applied to a set of experimental data taken in a new, larger mixing layer facility designed to minimize boundary and resonance effects. A similar scheme has been developed to apply to the results of a direct numerical simulation of a temporally growing mixing layer. A comparison of the two approaches shows important similarities in the coherent structures. The numerical simulations indicate that low levels of coherent forcing can dramatically change the evolution of the mixing layer. In the absence of such forcing, the numerical simulations and experiments show a lack of regularity in the transverse position, spacing, amplitude, shape and spanwise coherence of the large-scale vortical structures.

AIAA-34377* National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.

CONVECTIVE AND ABSOLUTE INSTABILITY OF A VISCOUS LIQUID JET

J. S. LEIB and M. E. GOLDSMITH (NASA, Lewis Research Center, Cleveland, OH) Physics of Fluids (ISSN 0031-9171), vol. 29, April 1986, p. 952-954. refs

The effect of viscosity on the capillary instability of a liquid jet is examined. The critical Weber number for convective instability is determined as a function of Reynolds number and comparison is made with the inviscid limit. It is shown that certain waves that are neutral in the inviscid case exhibit growth for finite Reynolds numbers.

AIAA-38388* Arizona State Univ., Tempe.

A COMPARISON OF THREE ALGEBRAIC STRESS CLOSURES FOR COMBUSTOR FLOW CALCULATIONS

M. NIKIOJOY, R. M. C. SO (Arizona State University, Tempe), and B. C. HWANG (David W. Taylor Naval Ship Research and Development Center, Annapolis, MD) ASME, Winter Annual Meeting, Miami Beach, FL, Nov. 17-21, 1985. 10 p. refs (Contract NAG3-260) (ASME PAPER 85-WA/FE-3)

A comparison is made of the performance of two locally nonequilibrium and one equilibrium algebraic stress closures in calculating combustor flows. Effects of four different pressure-strain models on these closure models are also analyzed. The results show that the pressure-strain models have a much greater influence on the calculated mean velocity and turbulence field than the algebraic stress closures, and that the best mean strain model for the pressure-strain terms is that proposed by Launder, Reece and Rodi (1975). However, the equilibrium algebraic stress closure with the Rotta return-to-isotropy model (1951) for the pressure-strain terms gives as good a correlation with measurements as when the Launder et al. mean strain model is included in the pressure-strain model. Finally, comparison of the calculations with the standard k-epsilon model results show that the algebraic stress closures are better suited for simple turbulent flow calculations.

AIAA-38427* Sverdrup Technology, Inc., Cleveland, Ohio.

PARAMETRIC EFFECTS OF CFL NUMBER AND ARTIFICIAL SMOOTHING ON NUMERICAL SOLUTIONS USING IMPLICIT APPROXIMATE FACTORIZATION ALGORITHM

An implicit approximate factorization algorithm is employed to quantify the parametric effects of Courant number and artificial smoothing on numerical solutions of the unsteady 3-D Euler equations for a windmilling propeller (low speed) flow field. The results show that propeller global or performance characteristics vary strongly with Courant number and artificial dissipation parameters, though their variation is much less severe at high Courant numbers. Candidate sets of Courant number and dissipation parameters could result in parameter-dependent solutions. Parameter-independent numerical solutions can be obtained if low values of the dissipation parameter-time step ratio are used in the computations. Furthermore, it is realized that too much artificial damping can degrade numerical stability. Finally, it is demonstrated that highly resolved meshes may, in some cases, delay convergence, thereby suggesting some optimum cell size for a given flow solution. It is suspected that improper boundary treatment may account for the cell size constraint.

AIAA-38442* National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.

AN EFFICIENT METHOD FOR SOLVING THE STEady EULER EQUATIONS

An efficient numerical procedure for solving a set of nonlinear partial differential equations, the steady Euler equations, using Newton's linearization procedure is presented. A theorem indicating quadratic convergence for the case of differential equations is demonstrated. A condition for the domain of quadratic convergence Omega(2) is obtained which indicates that whether an
approximation lies in Omega(2) depends on the rate of change and the smoothness of the flow vectors, and hence is problem-dependent. The choice of spatial differencing, of particular importance for the present method, is discussed. The treatment of boundary conditions is addressed, and the system of equations resulting from the foregoing analysis is summarized and solution strategies are discussed. The convergence of calculated solutions is demonstrated by comparing them with exact solutions to one- and two-dimensional problems.

A86-38575* Arizona State Univ., Tempe.

CONCENTRATION DISTRIBUTIONS IN A MODEL COMBUSTOR
(Contract NAG3-260)

A hot-wire concentration probe with a spatial resolution of 0.13 mm is used to measure concentration in a model cylindrical combustor. The flow inside the combustor is simulated by injecting a helium jet into a cylindrical confinement with or without swirling air flow present. Mean concentrations are essentially zero outside of the jet region, indicating complete confinement of the scalar field by the swirling flow. Consequently, concentration fluctuations are found to be relatively weak compared to velocity fluctuations, and are maximum off-axis at a point which corresponds to the interface between helium and air flows. However, in the absence of a swirling air flow, the helium diffuses quickly to fill the combustor. The resulting helium concentrations are constant and do not resemble the jet-like behavior of the velocity field.

A86-39077* Purdue Univ., West Lafayette, Ind.

A STAGNATION PRESSURE PROBE FOR DROPLET-LADEN AIR FLOW
S. N. B. MURTHY, C. M. EHRESMAN (Purdue University, West Lafayette, IN), and M. LEONARDO Journal of Propulsion and Power (ISSN 0748-4658), vol. 2, May-June 1986, p. 195, 196. Previously cited in issue 07, p. 898, Accession no. A85-19672. refs
(Contract F33615-78-C-2401; NAG3-82)

A86-39865* Centro Tecnico Aerospacial, San Jose dos Campos (Brazil).

RELAMINARIZATION OF THE BOUNDARY LAYER OVER A FLAT PLATE IN SHOCK TUBE EXPERIMENTS
J. N. HINCKEL (Centro Tecnico Aerospacial, Sao Jose dos Campos, Brazil) and H. T. NAGAMATSU (Rensselaer Polytechnic Institute, Troy, NY) AIAA and ASME, Joint Thermophysics and Heat Transfer Conference, 4th, Boston, MA, June 2-4, 1986. 7 p. refs
(Contract NAG3-292; NSF MED-80-06806)
(AIAA PAPER 86-1238)

The relaminarization of the boundary layer over a flat plate in the shock tube was investigated by using the partially reflected shock wave technique. The flow Mach number was approximately 0.14, which corresponds to the in-flow Mach number for the first row of vanes in a gas turbine. The thin film platinum heat gauges were used to measure the heat transfer rate and the Stanton number was calculated from the oscilloscope voltage traces. The Reynolds number was varied by changing the operation pressure of the shock tube and the values varied from 2.3 x 10 to the 4th to 5.3 x 10 to the 5th. For a Reynolds number range of 7 x 10 to the 4th to 3.5 x 10 to the 5th, the relaminarization of the boundary layer was observed. This phenomenon is due to the decay of the turbulence level in the flow as the reflected shock wave moves upstream from the flat plate. As the Reynolds number increased, the relaminarization was delayed and the delay was related to the turbulence generated by the reflected shock wave.

LIQUID DROPLET RADIATOR THERMAL CHARACTERISTICS
(AIAA PAPER 86-1162)

The effects of droplet size, emmissivity, and spacing on the liquid droplet radiator (LDR) performance space heat rejection system are investigated. The procedures for predicting surface emissivity of semitransparent droplets as a function of absorptivity and radius are examined. The relation between absorptivity, reflectivity, transmissivity, and emissivity is studied. It is observed that for droplets in the 25-200 micron range the radius affects emissivity. The thermal performance of an array of droplet streams is described using a thermal radiation model. Droplet temperatures are calculated; it is shown that outside droplet streams are more effective than interior droplets for arrays in the range of radius to spacing ratio from 0.05-0.2. Temperature distributions as a function of droplet size, emmissivity, and velocity are presented. The heat transfer performance of a LDR is evaluated in terms of Pin effectiveness. The equivalent sheet emissivies of droplet streams are examined.

A86-41242* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A NEW APPROACH FOR SOLVING THE THREE-DIMENSIONAL STEADY EULER EQUATIONS. I - GENERAL THEORY

The present iterative procedure combines the Ciesob potentials and the Munk-Prim (1947) substitution principle with an extension of a semidirect Cauchy-Riemann solver to three dimensions, in order to solve steady, inviscid three-dimensional rotational flow problems in either subsonic or incompressible flow regimes. This solution procedure can be used, upon discretization, to obtain inviscid subsonic flow solutions in a 180-deg turning channel. In addition to accurately predicting the behavior of weak secondary flows, the algorithm can generate solutions for strong secondary flows and will yield acceptable flow solutions after only 10-20 outer loop iterations.

A86-41721* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COUPLING CONDITIONS FOR INTEGRATING BOUNDARY LAYER AND ROTATIONAL INVISCID FLOW

The matching of a boundary layer and a rotational inviscid flow is reexamined by extending the Johnson and Sockol (1979) coupling conditions to include the case where the boundary layer solution includes the second-order effects of the freestream vorticity and the total temperature gradient. It is pointed out that two of the three conditions are not independent. If the boundary layer solution satisfies the appropriate momentum and energy integral equations, it follows that the imposition of the normal mass flux condition insures that the conditions on a normal flux of streamwise momentum and total enthalpy will also be satisfied.

A86-41725* Wisconsin Univ., Milwaukee.

TRIPLE-VELOCITY PRODUCTS IN A CHANNEL WITH A BACKWARD-FACING STEP
R. S. AMANO and P. GOEL (Wisconsin, University, Milwaukee) AIAA Journal (ISSN 0001-1452), vol. 24, June 1986, p. 1040-1043. refs
(Contract NAG3-546)

Attention is given to the evaluation of triple velocity products in the reattaching and developing region behind a backward facing step. The change in triple velocity product is significant in the wake region, yielding substantial variation in the diffusion rate of
the Reynolds stresses. Four models of the third-order closure are examined, and the results are compared with the experimental data for Chandrasek and Bradshaw (1980). O.C.

A86-42656*# Calspan Corp., Buffalo, N. Y.
TURBINE-STAGE HEAT TRANSFER - COMPARISON OF SHORT-DURATION MEASUREMENTS WITH STATE-OF-THE-ART PREDICTIONS
W. J. PACE, D. B. TAULBEE, K. C. CIVINKAS (Calspan-UB Research Center, Buffalo, NY), and M. G. DUNN (NASA, Lewis Research Center, Cleveland, OH; Calspan-UB Research Center, Buffalo, NY) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 22nd, Huntsville, AL, June 16-18, 1986. 24 p. refs (Contract NAG3-469; NAG3-581)
(AIAA PAPER 86-1458)

Comparisons are made between calculated and measured heat-transfer distributions on the midspan locations of the stators and rotors of two turbine stages. The agreement is generally good, except in regions near the leading edge, and is better for blading of higher aspect ratio. It is suggested that the discrepancies near the leading edge are caused by free-stream turbulence, and attempts to improve the modeling of this factor show improved agreement.

Author

A86-42711*# Florida Univ., Gainesville.
FLUID FLOW AND FUEL-AIR MIXING IN A MOTORED TWO-DIMENSIONAL WANKEL ROTARY ENGINE
T. I.-P. SHIH (Florida University, Gainesville), H. L. NGUYEN (NASA, Lewis Research Center, Cleveland, OH), and J. STEGEMAN (NASA, Lewis Research Center, Cleveland; Toledo, University, OH) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 22nd, Huntsville, AL, June 16-18, 1986. 11 p. refs (Contract NAG3-363)
(AIAA PAPER 86-1558)

The implicit-factor method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

Author

NUMERICAL ANALYSIS OF SOME SUPERSONIC VISCOUS FLOWS RELATED TO INLET AND NOZZLE SYSTEMS
(AIAA PAPER 86-1597)

A numerical method originally developed for three-dimensional supersonic inlet flow calculations is extended and applied to the study of two-dimensional and three-dimensional flows associated with arbitrary propulsion systems. The method is based on the forward spatial marching solution of a reduced form of the three-dimensional steady Navier-Stokes equations in which streamwise pressure gradients are retained in both the subsonic and supersonic regions. The present paper briefly describes the analysis and then shows three applications. In the first application, a wall transpiration study has been performed for the two-dimensional shock wave/turbulent boundary layer interaction flow field with application to an inlet configuration. The second application treats a rectangular high speed inlet with a swept sideplate including the effects of sideplate spillage. Finally, the method is utilized to analyze the interaction of an under-expanded supersonic jet with an ambient flow. Computed results are examined and compared with available experimental measurements. It is demonstrated that the present numerical method is capable of numerically simulating complex two- and three-dimensional flows relevant to hypersonic propulsion systems in a manner which both shows good agreement with data when such data is available, and which shows the complex flow features in the absence of data.

Author

A86-42739*# United Technologies Research Center, East Hartford, Conn.
ASSESSMENT OF A PARABOLIC ANALYSIS FOR AXISYMMETRIC INTERNAL FLOWS IN ROCKET AND TURBOMACHINERY DUCTS
(AIAA PAPER 86-1598)

The flow paths in gas turbine passages encompass a wide range of flow properties such as Reynolds number and Mach number as well as many other variable flow conditions such as swirl, free-stream turbulence, and laminar/turbulent transition. An existing computer program, the Axisymmetric Diffuser Duct (ADD) code, which calculates compressible, turbulent, swirling flow through axisymmetric ducts has been modified to include the effects of free-stream turbulence and laminar/turbulent transition. The program has been evaluated on a matrix of test cases to determine its accuracy, robustness, and limits of applicability. This improved version of the ADD code calculates solutions which compare well with available data and can now be applied to a wider range of problems than previously possible. In addition a concept called local enhancement was developed and tested on a simple two-dimensional geometry in order to demonstrate a method to reduce computer time. In this concept the pressure distribution is calculated on a coarse grid using the ADD code and the viscous layer is locally enhanced using a boundary layer analysis. By applying this concept, an order of magnitude reduction in computer time was possible without any loss in accuracy.

Author

A86-42752*# United Technologies Research Center, East Hartford, Conn.
FORCED MIXER LOBES IN EJECTOR DESIGNS
W. M. PREZSZ, JR. (Western New England College, Springfield, MA), B. L. MORIN (United Technologies Research Center, East Hartford, CT), and R. G. GOUSY AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 22nd, Huntsville, AL, June 16-18, 1986. 11 p. refs (Contract NAS3-810)
(AIAA PAPER 86-1614)

Forced mixer lobes in augmentor primary ejectors obtain a 100-percent increase in pumping over conventional design, together with nearly complete mixing in very short mixing ducts, through the generation of large scale axial vorticity in the mixing duct. The vorticity causes rapid mixing of the primary and secondary flows with low losses; since mixing length is minimized, wall friction losses are reduced, allowing more secondary flow to be pumped for a given total pressure in the primary flow. Analytical results are presented that are judged to have significant implications for future ejector test work.

Author

A86-42780*# United Technologies Research Center, East Hartford, Conn.
MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS WITH SWIRLING CONFINED COAXIAL JETS II
(AIAA PAPER 86-1665)

An experimental study of mixing downstream of swirling coaxial jets discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport
models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter and laser induced fluorescence techniques was employed to obtain mean and fluctuating velocity and concentration distributions at selected axial and radial locations throughout the flow field. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. Simultaneous two component velocity and concentration/velocity measurements provided data which were used to determine the average momentum and mass transport rates for each of three measurement planes. Mixing for swirling and nonswirling flows occurred in several steps of axial and radial mean convective flow and was completed in one-third the length required for nonswirling flow. Comparison of the mass and momentum transport processes for swirling and nonswirling flows indicated that large differences existed in these processes between the two flows.

A86-42812*# Wisconsin Univ., Milwaukee. TURBULENCE ENERGY AND DIFFUSION TRANSFER IN A SEPARATING AND REATTACHING FLOW R. S. AMANO (Wisconsin, University, Milwaukee) and P. GOEL AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 22nd, Huntsville, AL, June 16-18, 1986. 10 p. refs (Contract NAG3-546) (AIAA PAPER 86-1724). For accurate prediction of the turbulent flow in separated and reattaching regions, it is necessary to incorporate the second- and third-moments of turbulent fluctuations. The turbulence energy and the energy dissipation rate equations are modified by incorporating the second-order closure. Moreover, the third-order closure with near-wall correction is developed for the evaluation of the diffusive action of the second-moments. After comparison of the results with experimental data, it is shown that the models developed here improve the prediction of triple-velocity correlations in both recirculating and developing flow regions. Author

A86-42813*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. CHARACTERIZATION OF SIMULATED SMALL-DROPLET FUEL SPRAYS R. S. AMANO and R. A. ONGBO (NASA, Lewis Research Center, Cleveland, OH) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 22nd, Huntsville, AL, June 16-18, 1986. 7 p. Previously announced in STAR as N86-24961. refs (AIAA PAPER 86-1725). A two-fluid pneumatic atomizer operating at relatively high liquid and gas pressures produced water sprays that simulated small-droplet clouds of liquid fuel for use in studying vaporization and fuel-air mixing effects on combustor performance and emissions. To characterize the sprays, a scattered-light scanning instrument was developed and measurements of volume median or volume mean diameter, D sub v., were correlated with D sub s, W sub s w, and W sub n, i.e., orifice diameter, water, and nitrogen gas flow rates, respectively, to give the general expression: D sub v.5 approx. = (D sub o sup.0.2) / (W sub w sup.0.2) / (W sub s w sup.0.2) / (W sub n sup.0.2) / (W sub o sup.0.2). Values of D sub o, W sub s w, and W sub n are in centimeters and grams/second, respectively. Farther downstream at an axial distance of 6.7 cm, exponent m increased from 0.2 to 0.4 and exponent n decreased from -1.2 to -1.0 and at a distance of 25 cm downstream of the atomizer, n decreased to -0.8. The increase in exponent m and decrease in exponent n was attributed to a loss of very small droplets from the spray due primarily to vaporization and diffusion effects on clouds of small droplets traveling a distance of 25 cm. Author

A86-43037* Pennsylvania State Univ., University Park. A SPACE-MARCHING METHOD FOR VISCOS INCOMPRESSIBLE INTERNAL FLOWS M. POUAGARE and B. LAKSHMINARAYANA (Pennsylvania State University, University Park) Journal of Computational Physics (ISSN 0021-9991), vol. 64, June 1986, p. 389-415. refs (Contract NGS-3266). A numerical algorithm for calculating steady subsonic two-dimensional incompressible channel flows in ducts is developed and extended to three-dimensional flows. A space-marching method similar to that developed by Schiff and Steger (1980) for supersonic flows is applied, and numerical results for developing laminar flows in a two-dimensional channel, in a straight square duct, and in a mildly curved square duct are presented graphically. Good agreement with experimental data and analytical results is found. T.K.

References

A86-45441*# Lockheed-Georgia Co., Marietta. SOME UNRESOLVED QUESTIONS ON HOT-JET MIXING CONTROL THROUGH ARTIFICIAL EXCITATION K. K. AHUJA, J. LEPICOVSKY, and W. H. BROWN (Lockheed-Georgia Co., Marietta) AIAA, Aeroacoustics Conference, 10th, Seattle, WA, July 9-11, 1986. 10 p. refs (Contract NAS3-23708) (AIAA PAPER 86-1956). The problem of the mixing enhancement of heated jets through acoustic excitation is addressed using a 5.08 cm diameter jet operating at Mach numbers as high as 1.12 and at temperatures reaching 670 K. An experimental investigation is carried out to determine why high-speed heated jets are not as responsive to internal excitation as low-speed heated jets. Results are also presented which are related to the flow structure in the presence of screech and under the influence of external excitation. It is shown that, if sufficiently high excitation levels are used, the heated jets, even at high levels, can be modified by artificial excitation. Nonetheless, it is concluded that, for the test facility and test conditions used in the present study, the high-Mach-number heated jets are considerably less excitable than the similarly heated low-Mach-number jets. K.K.
A86-47012* Illinois Inst. of Tech., Chicago.
FINITE ELEMENT SIMULATION OF TEMPERATURE DEPENDENT FREE SURFACE FLOWS

*The method of Engelman and Sani (1984) for a finite-element simulation of incompressible surface flows with a free and/or moving fluid interface such as encountered in crystal growth and coating and polymer technology, is extended to temperature-dependent flows, including the effect of temperature-dependent surface tension. The basic algorithm of Saito and Scriven (1981) and Ruschak (1980) has been generalized and implemented in a robust and versatile finite-element code that can be employed with relative ease for the simulation of free-surface problems in complex geometries. As a result, the costly dependence on the Newton-Raphson algorithm has been eliminated by replacing it with a quasi-Newton iterative method, which nearly retains the superior convergence properties of the Newton-Raphson method.

A86-48140* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
DETERMINATION OF CONVECTIVE DIFFUSION HEAT/MASS TRANSFER RATES TO BURNER RIG TEST TARGETS COMPARABLE IN SIZE TO CROSS-STREAM JET DIAMETER

Two sets of experiments have been performed to be able to predict the convective diffusion heat/mass transfer rates to a cylindrical target whose height and diameter are comparable to, but less than, the diameter of the circular cross-stream jet, thereby simulating the same geometric configuration as a typical burner rig test specimen located in the cross-stream of the combustor exit nozzle. The first set exploits the naphthalene sublimation technique to determine the heat/mass transfer coefficient under isothermal conditions for various flow rates (Reynolds numbers). The second set, conducted at various combustion temperatures and Reynolds numbers, utilized the temperature variation along the surface of the above-mentioned target under steady-state conditions to estimate the effect of cooling (dilution) due to the entrainment of stagnant room temperature air. The experimental information obtained is used to predict high temperature, high velocity corrosive salt vapor deposition rates in burner rigs on collectors that are geometrically the same. The agreement with preliminary data obtained from Na2S04 vapor deposition experiments is found to be excellent.

A86-48187* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
LASER VELOCIMETER MEASUREMENTS IN SHROUDED AND UNSHROUDED RADIAL FLOW PUMP IMPELLERS
C. P. HAMKINS (Klein, Schanzin and Becker AG, Frankenthal, West Germany) and R. D. FLACK (Virginia, University, Charlottesville) ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 7 p. Research supported by the ROMAC Industrial Research Program and the Klein, Schanzin und Becker A.G., Frankenthal. refs (Contract NAG3-180)

(ASME PAPER 86-GT-129)

Shrouded and unshrouded versions of a four-vaned radial flow impeller with a design flow coefficient of 0.063 were tested in a volute pump using a two-component frequency-shifted laser velocimeter. Velocity profiles were measured at six flow rates and at four radial and six circumferential locations in the volute. The variations of the velocity from blade to blade and in the axial direction were measured and are presented. A passage vortex caused by tip leakage and relative casing wall velocity was found in the unshrouded impeller. The tip leakage did not accumulate in the suction wake region; the suction wake region was only 30 to 50 percent as large in the unshrouded impeller as compared to the shrouded impeller. The slip was 20 percent higher in the unshrouded impeller and the variation of slip with flow rate is presented. At no measured position in the impellers did the slip factor reach unity; the closest approach was 0.90. Reverse loadings of the vanes at outer radii were found for flow rates below the impeller/volute matching point for both impellers.

A86-48218* Virginia Univ., Charlottesville.
FLOW VISUALIZATION OF SECONDARY FLOWS IN THREE CURVE DUCTS
G. M. SANZ and R. D. FLACK (Virginia, University, Charlottesville) ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 8 p. Research supported by the University of Virginia. refs (Contract NAG3-180)

(ASME PAPER 86-GT-166)

Streak photography flow measurements are made for secondary flows in three 90-deg curved ducts of square cross section and different radii of curvature, at Dean numbers of 15,000-36,000 and radius ratios of 0.5, 2.3, and 3.0. Attention is given to secondary flow patterns for three cross sections in each bend: the inlet zero-deg plane, the midpoint 45-deg plane, and the outlet 90-deg plane. After a rapid transition region, the pressure-driven secondary flow patterns were characterized by flow moving toward the outer curved wall at the axial midplane and returning to the inner wall along the duct walls. The 0.5-radius elbow ratio was found to have the greatest influence on upstream inlet conditions.

A86-49442* Pennsylvania State Univ., University Park.
FLOW AND ATOMIZATION IN FLASHING INJECTORS
A. S. P. SOLOMON, S. D. RUPPRECHT, L.-D. CHEN, and G. M. FAETH (Pennsylvania State University, University Park) Atomisation and Spray Technology (ISSN 0266-3481), vol. 1, 1985, p. 53-76. refs (Contract NSG-3306)

Flashing injection involves expanding a fluid through an injector until a supersaturated state is reached, causing a portion of the fluid to flash to a vapor. This investigation considered the flow, atomization and spreading properties of flashing injectors with fluid/liquids containing dissolved gases (Jet A/air) as well as superheated liquids (Freon-11). The use of a two-stage expansion process, separated by an expansion chamber, was found to be beneficial for good atomization properties of flashing injection - particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure and airlift injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, and to correlate drop size measurements. Additional experimental results are provided for spray angles of sprays from flashing injectors.

A86-49829* Arizona State Univ., Tempe.
LOCAL EQUILIBRIUM ASSUMPTION FOR ROUND JET CALCULATIONS
R. M. C. SO (Arizona State University, Tempe) and B. C. HWANG (David W. Taylor Naval Ship Research and Development Center, Annapolis, MD) AIAA Journal (ISSN 0001-1452), vol. 24, Aug. 1986, p. 1388-1390. refs (Contract NAG3-260)

The similarity solutions of So and Hwang (1986) for self-preserving incompressible turbulent round jets are used to derive closed-form similarity solutions to the k and epsilon equations, and the effect of the local-equilibrium assumption (LEA) on round-jet computations is evaluated. Numerical results are presented graphically and compared with the experimental data of Wygnanski and Fiedler (1969) and the computational results of Saito and Scriven (1981) and Ruschak (1980) has been generalized in laminar and turbulent flow; Proceedings of the Fourth International Conference, Swansea, Wales, July 9-12, 1985. Part 2. Swansea, Wales, Pineridge Press, 1985, p. 1325-1335.

136
Lauder et al. (1972) and Vollmers and Rotta (1977). It is found that when the LEA is accounted for, the jet-centerline turbulent kinetic energy k0 decays as 1/x (where x is the axial coordinate), whereas without accounting for LEA it decays as 1/(x squared); 1/x decay is shown to be in better agreement with observations.

T.K.

A86-50275* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

IS NAVIER-STOKES TURBULENCE CHOTIC?

Whether turbulent solutions of the Navier-Stokes equations are chaotic is considered. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. These solutions separate exponentially with time, having a positive Liapunov characteristic exponent. Thus the turbulence is characterized as chaotic.

Author

FILM COOLING ON A CONVEX WALL: HEAT TRANSFER AND HYDRODYNAMIC MEASUREMENTS FOR FULL AND PARTIAL COVERAGE Final Report
K. FURUHAMA, R. J. MOFFAT, J. P. JOHNSTON, and W. M. KAYS Aug. 1985 170 p refs
(Contract NAGS-3) (NASA-CR-174964; NAS 1.26:174964) Avail: NTIS HC A08/MF A01 CSCL 20D

Turbine-blade cooling is an important issue for high-efficiency turbine engines, and discrete-hole injection is widely used as a cooling method. In the present study, detailed measurements were made of the heat transfer and hydrodynamics of a film-cooled flow on a convex wall, both for full and partial coverage. Two important parameters were altered: the blowing ratio, m, and the number of rows of injection holes. Three values of m were tested: m = 0.2, 0.4, and 0.6. In the blown region, m = 0.4 results in the lowest Stanton numbers of the three blowing ratios tested. This indicates that the value of m = 0.4 is nearly optimum on the convex wall from the point of view of cooling effect by injection. In the recovery region, Stanton numbers gradually approach the no injection values. Although the heat-transfer behavior during recovery from injection looks relatively complicated, the behavior of Stanton number can be explained in terms of two mechanisms: recovery from the thermal effect of injection and recovery from the turbulence augmentation. This interpretation of the data is supported by the hydrodynamic and temperature-profile measurements. For partial blowing cases, the data follow the full-coverage values inside the blown region. In the unblown region, both in the curved and in the flat plate, the effect of the number of blown rows is clearly seen. Hydrodynamic boundary-layer profiles were measured with the aid of a triple hot-water probe. Three mean-velocity components and six turbulence quantities were simultaneously measured, and inside the blown region strong three-dimensionality was observed.

Author

N86-10463* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THEORETICAL MODELING OF THE VAPOR CAVITATION IN DYNAMICALLY LOADED JOURNAL BEARINGS

A theoretical investigation is made of the evolution of a vapor-bubble for a submerged journal bearing under dynamically loaded conditions using the Elrod algorithm. This method conserves mass throughout the computational domain. A comparison study is performed to determine some of the consequences of applying a nonconservative theory (pseudo-Gumbel BC) to a dynamic problem. A complete dynamic cycle of a journal whirling in a circular path is chosen for the basis of comparison. Significant differences are observed in the load components near the end of the cycle. Further, good agreement with experiment is found for stationary and nonstationary cavitation.

Author

N86-11425* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THEORETICAL AND EXPERIMENTAL COMPARISON OF VAPOR CAVITATION IN DYNAMICALLY LOADED JOURNAL BEARINGS
D. E. BREWE, B. J. HAMROCK (Ohio State Univ., Columbus), and B. A. JACOBSON (Lulea Univ.) 1985 16 p refs Proposed for presentation at the Intern. Symp. on Cavitation, Sendai, Japan, 16-19 Apr. 1986 Prepared in cooperation with Army Aviation Research and Development Command, Cleveland, Ohio (NASA-TM-87121; E-2729; NAS 1.15:87121; USAVSCOM-TR-85-C-19) Avail: NTIS HC A02/MF A01 CSCL 20D

Vapor cavitation for a submerged journal bearing under dynamically loaded conditions was investigated. The observation of vapor cavitation in the laboratory was done by high-speed photography. It was found that vapor cavitation occurs when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The theoretical solution to the Reynolds equation is determined numerically using a moving boundary algorithm. This algorithm conserves mass throughout the computational domain including the region of cavitation and its boundaries. An alternating direction implicit (MDI) method is used to effect the time march. A rotor undergoing circular whirl was studied. Predicted cavitation behavior was analyzed by three-dimensional computer graphic movies. The formation, growth, and collapse of the bubble in response to the dynamic conditions is shown. For the same conditions of dynamic loading, the cavitation bubble was studied in the laboratory using high-speed photography.

E.A.K.

N86-11505* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TURBINE HEAT TRANSFER
Avail: NTIS HC A11/MF A01 CSCL 20D

Improved turbine durability and performance and reduced development cost will all result from improved methods of predicting turbine metal temperatures. Better metal temperature prediction methods require improvements in the methods of predicting the hot gas flow over the turbine airfoils and the cooling air flow inside the airfoil and in the methods of predicting the heat transfer rates on both the hot gas side and coolant side of the airfoil. The overall HOST Turbine Heat Transfer effort is directed at improving all four of these areas of concern.

G.L.C.

N86-11506* Tennessee Univ. Space Inst., Tullahoma.

GAS FLOW ENVIRONMENTAL AND HEAT TRANSFER NONROTATING 3D PROGRAM
Avail: NTIS HC A11/MF A01 CSCL 20D

A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.

G.L.C.
FLUID MECHANICS AND HEAT TRANSFER

34

I

I

I

I

I

I

I

Improvements in methods for predicting heat transfer rates on the hot gas side of turbine airfoils are necessary for improved turbine durability and performance. The development and verification of improved analytical models requires a systematic, closely coupled experimental and analytical program. G.L.C.

N86-11507* # Detroit Diesel Allison, Mich. GAS SIDE HEAT TRANSFER

The prediction of the complete flow field in a turbine passage is an extremely difficult task due to the complex three dimensional pattern which contains separation and attachment lines, a saddle point and horseshoe vortex. Whereas, in principle such a problem can be solved using full Navier-Stokes equations, in reality methods based on a Navier-Stokes solution procedure encounter difficulty in accurately predicting surface quantities (e.g., heat transfer) due to grid limitations imposed by the speed and size of the existing computers. On the other hand the overall problem is strongly three dimensional and too complex to be analyzed by the current design methods based on inviscid and/or viscous strip theories. Thus there is a strong need for enhancing the current prediction techniques through inclusion of 3-D viscous effects. A potentially simple and cost effective way to achieve this is to use a prediction method based on three dimensional boundary layer (3-DBL) theory. The major objective of this program is to assess the applicability of such a 3-DBL approach for the prediction of heat loads, boundary layer growth, pressure losses and streamline skewing in critical areas of a turbine passage. A brief discussion of the physical problem addressed here along with the overall approach is presented. Author

N86-11508* # United Technologies Research Center, East Hartford, Conn. ASSESSMENT OF A 3-D BOUNDARY LAYER CODE TO PREDICT HEAT TRANSFER AND FLOW LOSSES IN A TURBINE

Minimum film thickness results for piezoviscous-rigid regime of lubrication are developed for a compressible Newtonian fluid with Roelands viscosity. The results provide a basis for the analysis and design of a wide range of machine elements operating in the piezoviscous-rigid regime of lubrication. A new numerical method of calculating elastic deformation in contact stresses is developed using a biquadratic polynomial to approximate the pressure distribution on the whole domain analyzed. The deformation of every node is expressed as a linear combination of the nodal pressures whose coefficients can be combined into an influence coefficient matrix. This approach has the advantages of improved numerical accuracy, less computing time and smaller storage size required for influence, Cleirix. The ideal elastohydrodynamic lubrication is extended to real bearing systems in order to gain an understanding of failure mechanisms in machine elements. The improved elastic deformation calculation is successfully incorporated into the EHL numerical scheme. Using this revised numerical technique and the flow factor model developed by Patir and Cheng (1976) the surface roughness effects on the elastohydrodynamic lubrication of point contact is considered. Conditions typical of an EHL contact in the piezoviscous-elastic regime entrained in pure rolling are investigated. Results are compared with the smooth surface solutions. Experiments are conducted to study the transient EHL effects in instrument ball bearings. Author

N86-13672* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. DETERMINATION OF CONVECTIVE DIFFUSION HEAT/MASS TRANSFER RATES TO BURNER RIG TEST TARGETS COMPAREABLE IN SIZE TO CROSS-STREAM JET DIAMETER

PREDICTING HEAT TRANSFER AND FLOW LOSSES IN A TURBINE
NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the overall problem is addressed here along with the overall approach is presented.

HEAT TRANSFER AND PRESSURE DROP PERFORMANCE OF A FINNED-TUBE HEAT EXCHANGER PROPOSED FOR USE IN THE NASA LEWIS ALTITUDE WIND TUNNEL
G. J. VANFOSSEN Nov. 1985 27 p refs (NASA-TM-87151; E-2653; NAS 1.15:87151) Avail: NTIS HC A02/MF A01 CSCL 20D

A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the overall problem is addressed here along with the overall approach is presented. Author

HEAT TRANSFER AND PRESSURE DROP PERFORMANCE OF A FINNED-TUBE HEAT EXCHANGER PROPOSED FOR USE IN THE NASA LEWIS ALTITUDE WIND TUNNEL
G. J. VANFOSSEN Nov. 1985 27 p refs (NASA-TM-87151; E-2653; NAS 1.15:87151) Avail: NTIS HC A02/MF A01 CSCL 20D

A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the overall problem is addressed here along with the overall approach is presented. Author

Minimum film thickness results for piezoviscous-rigid regime of lubrication are developed for a compressible Newtonian fluid with Roelands viscosity. The results provide a basis for the analysis and design of a wide range of machine elements operating in the piezoviscous-rigid regime of lubrication. A new numerical method of calculating elastic deformation in contact stresses is developed using a biquadratic polynomial to approximate the pressure distribution on the whole domain analyzed. The deformation of every node is expressed as a linear combination of the nodal pressures whose coefficients can be combined into an influence coefficient matrix. This approach has the advantages of improved numerical accuracy, less computing time and smaller storage size compared with the smooth surface solutions. Experiments are conducted to study the transient EHL effects in instrument ball bearings. Author

138
N85-15625*# Arizona State Univ., Tempe.
HEAT TRANSFER CHARACTERISTICS WITHIN AN ARRAY OF IMPINGING JETS: THE EFFECTS OF CROSSFLOW TEMPERATURE RELATIVE TO JET TEMPERATURE Final Report

Spanwise average heat fluxes, resolved in the streamwise direction to one stream-wise hole spacing were measured for two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate. The jet flow, after impingement, was constrained to exit in a single direction along the channel formed by the jet orifice plate and heat transfer surface. The crossflow originated from the jets following impingement and an initial crossflow was present that approached the array through an upstream extension of the channel. The regional average heat fluxes are considered as a function of parameters associated with corresponding individual spanwise rows within the array. A linear superposition model was employed to formulate appropriate governing parameters for the individual row domain. The effects of flow history upstream of an individual row domain are also considered. The results are formulated in terms of individual spanwise row parameters. A corresponding set of streamwise resolved heat transfer characteristics formulated in terms of flow and geometric parameters characterizing the overall arrays is described. E.A.K.

N86-18518*# Tennessee Univ. Space Inst., Tullahoma.

The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Dean numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at Re sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development. Author

Four parts of the Reynolds-stress closure modeling are reported: (1) improvement of the k and epsilon equations; (2) development of a third-moment transport equation; (3) formulation of the diffusion coefficient of the momentum equation by using the algebraic-stress model of turbulence; and (4) the application of the Reynolds-stress model to a heat exchanger problem. It was demonstrated that the third-moment transport model improved the prediction of the triple-velocity products in the recirculating and reattaching flow regions in comparison with the existing algebraic models for the triple-velocity products. Optimum values for empirical coefficients are obtained for the prediction of the backward-facing step flows. A functional expression is derived for the coefficient of the momentum diffusion by employing the algebraic-stress model. The second-moment closure is applied to a heat transfer problem. The computations for the flow in a corrugated-wall channel show that the second-moment closure improves the prediction of the heat transfer rates by 30% over the k - epsilon model. E.A.K.

N86-17665*# Case Western Reserve Univ., Cleveland, Ohio. Dept. of Mechanical and Aerospace Engineering.

Studies of flat plate boundary layer development were made in a low speed wind tunnel at turbulence levels from 2% to 7%. Only transitional and turbulent flows were observed in the range 260 Re sub theta 700. The mean turbulent velocity profiles display law-of-the-wall behavior but have negligible wake component. The u' disturbance profiles compare well with those of other investigations on a plot of u sub e/u sub tau versus Re sub theta. A discussion on the u' spectra for the transitional boundary-layers is presented. Author

N86-18646*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

The application of a recently formulated vapor transport theory to predict deposition rates of corrosive salts from alkali-seeded combustion gases of a small-capacity, high-velocity, atmospheric-pressure burner rig was hampered by the relatively large dimensions of the cylindrical deposit collector compared to the diameter of the combustion gas stream. The relative dimensions lead to a highly nonadiabatic combustion gas flow around the collector and necessitate two series of experiments. In the first series, mass transfer coefficients are determined by utilizing the naphthalene sublimation technique. The second series of experiments determines the dilution effect on the sodium species concentrations due to the entrainment of ambient air. This second series involves the measurement of the temperature variation along the surface of the collector under steady state conditions. Vapor deposition rates are determined exploiting this information and the results are found to compare favorably with experimentally obtained rates. Author

139
study of journal bearing dynamics using three-dimensional motion picture graphics

Computer generated motion pictures of three dimensional graphics are being used to analyze journal bearings under dynamically loaded conditions. The motion pictures simultaneously present the motion of the journal and the pressures predicted within the fluid film of the bearing as they evolve in time. The correct prediction of these fluid film pressures can be complicated by the development of cavitation within the fluid. The numerical model that is used predicts the formation of the cavitation bubble and its growth, downstream movement, and subsequent collapse. A complete physical picture is created in the motion picture as the journal traverses through the entire dynamic cycle. Author

starvation effects on the hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion
M. K. GHOSH, B. J. KNOX (Ohio State Univ., Columbus), and D. E. BREWE (Army Aviation Research and Technology Activity, Cleveland, Ohio) 1986 28 p refs (NASA-TM-87174; E-2817; NAS 1.15:87174; USAAVSCOM-TR-86-5-C-20) Avail: NTIS HC A03/ MF A01 CSCL 20D

The effect of inlet starvation on the hydrodynamic lubrication of lightly loaded rigid nonconformal contacts in combined rolling and normal motion is determined through a numerical solution of the Reynolds’ equation for an isoviscous, incompressible lubricant. Starvation is effected by systematically reducing the fluid inlet level. The pressures are taken to be ambient at the inlet meniscus boundary and Reynolds’ boundary condition is applied for film rupture in the exit region. Results are presented for the dynamic performance of the starved contacts in combined rolling and normal motion for both normal approach and separation. During normal approach the dynamic load ratio (i.e., ratio of dynamic to steady state load capacity) increases considerably with increase in the inlet starvation. The effect of starvation on the dynamic peak pressure ratio is quite small. Further, it has been observed that with increasing starvation, film thickness effects become significant in the dynamic behavior of the nonconformal contacts. For significantly starved contacts the dynamic load ratio increases with increase in film thickness during normal approach and a similar reduction is observed during separation. A similar effect is noted for the dynamic peak pressure ratio. Author

two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb is less than P sub c. Heat and mass transfer and rotodynamic-fluid-mechanical restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable accuracy. Author

the acoustical excitation of shear layers is investigated. Acoustical excitation causes the so-called orderly structures in shear layers and jets. Also, the deviations in the spreading rate between different shear layer experiments due to the same excitation mechanism. Measurements in the linear interaction region close to the edge from which the shear layer is shed are examined. Two sets of experiments (Houston 1981 and Berlin 1983/84) are discussed. The measurements were carried out with shear layers in air using hot wire anemometers and microphones. The agreement between these measurements and the theory is good. Even details of the fluctuating flow field correspond to theoretical predictions, such as the local occurrence of negative phase speeds. Author

effect of a rotor wake on the local heat transfer on the forward half of a circular cylinder

Turbine rotor-stator wake dynamics was simulated by a spoked wheel rotating in a viscous shear layer flow generated in a two-phase, spanwise averaged circumferentially local heat transfer in the circular cylindrical leading edge region of a turbine airfoil was obtained. Reynolds numbers ranged from 35,000 to 175,000. Strouhal numbers ranged from 0.63 to 2.50. Waves were generated by 2 sets of circular cylindrical bars, 1.59 and 3.18 mm in diameter. The rotor could be rotated either clockwise or counterclockwise. Grid turbulence and other turbulence contributing to the generation of the turbulent flow were generated by a flat plate turbulence generator with turbulence of 1.0 to 2.5% at the stator. Data represented an extensive body of local heat transfer coefficients, which can be used to model the leading edge region of a turbine airfoil. In the
presence of rotor wakes, an asymmetry from the leeward to windward side was noted. Windward side levels were 30 to 40% higher than the corresponding leeward side. Author

The analysis is concerned with the piezoviscous-rigid regime of lubrication for the general case of elliptical contacts. In this regime several formulas of the lubricant film thickness have been proposed by Hamrock and Dowson, by Dowson et al., and more recently by Houpert. However, either they do not include the load parameter W, which has a strong effect on film thickness, or they overestimate the film thickness by using the Barus formula for pressure-viscosity characteristics. The Roelands formula was used for the pressure-viscosity relationship. The effects of the dimensionless load, speed, and materials parameters, the radius ratio, and the lubricant entrainment direction were investigated. The dimensionless load parameter was varied over a range of one order of magnitude. The dimensionless speed parameter was varied by 5.6 times the lowest value. Conditions corresponding to the use of solid materials of steel, bronze, and silicon nitride and lubricants of paraffinic and naphthenic mineral oil were considered in obtaining the exponent in the dimensionless materials parameter. The radius ratio was varied from 0.2 to 64 (a configuration approaching a line contact). Forty-one cases were used in obtaining a minimum film thickness formula. Contour plots indicate in detail the pressure developed between the contacting solids. Author

N86-22890* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. EXPERIMENTAL VERIFICATION OF CORROSIVE VAPOR DEPOSITION RATE THEORY IN HIGH VELOCITY BURNER RINT S. A. GOKOGLU (Case Western Reserve Univ., Cleveland, Ohio) and G. J. SANTORO 1986 12 p refs Presented at 3rd Conference on High Temperature Alloys for Gas Turbines and Other Applications, Liege, Belgium, 6-9 October 1986; sponsored by Commission of the European Communities (NASA-TM-87287; E-2935; NAS 1.15.87287) Avail: NTIS HC A02/MF A01 CSCL 20D

The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory and the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na2SO4 concentration. Author

The cooling of gas turbine components was the subject of considerable research. The problem is difficult because the available coolant, compressed air, is itself quite hot and has relatively poor thermophysical properties for a coolant. Injecting liquid water to evaporatively cool the air prior to its contact with the hot components was proposed and studied, particularly as a method of cooling for contingency power applications. Injection of a small quantity of cold liquid water into a relatively hot coolant air stream such that evaporation of the liquid is still in process when the coolant contacts the hot component was studied. No approach was found whereby heat transfer characteristics could be confidently predicted for such a case based solely on prior studies. It was not clear whether disequilibrium between phases at the inlet to the hot component section would improve cooling relative to that obtained where equilibrium was established prior to contact with the hot surface. Author

N86-23854* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. LIQUID-VAPOR INTERFACE LOCATIONS IN A SPHEROIDAL CONTAINER UNDER LOW GRAVITY M. J. CARNEY Apr. 1986 27 p refs (NASA-TM-87147; E-2936; NAS 1.15:87147) Avail: NTIS HC A03/MF A01 CSCL 20D

As a part of the general study of liquid behavior in low gravity environments, an experimental investigation was conducted to determine if there are equilibrium liquid-vapor interface configurations that can exist at more than one location in oblate spheroidal containers under reduced gravity conditions. Static contact angles of the test liquids on the spheroid surface were restricted to near 0 deg. The experiments were conducted in a low gravity environment. An oblate spheroidal tank was tested with an eccentricity of 0.68 and a semimajor axis of 2.0 cm. Both quantitative and qualitative data were obtained on the liquid-vapor interface configuration and position inside the container. The results of these data, and their impact on previous work in this area, are discussed. Of particular interest are those equilibrium interface configurations that can exist at multiple locations in the container. Author

The dilution jet mixing characteristics were studied and numerical model and experimental measurements are compared. Empirical correlations for the jet trajectory developed are presented. The measured velocity distributions for all test cases of phase through phase 3 are presented in the form of contour and oblique plots. Quantification of the effects of the following on the jet mixing characteristics with a confined crossflow are: (1) overall jet momentum flux ratio and density ratio; (2) nonuniform mainstream temperature and velocity profiles upstream of dilution orifices; (3) cold versus hot jet injection; (4) cross-stream flow are a convergence as encountered in practical dilution zone geometries; (5) 2-D slot versus circular orifices; (6) discrete noncircular orifices; (7) single-sided versus opposed jets; (8) single row of jets. E.A.K.
that it must also involve approximations. E.A.K.

The physical problems of large scale coherent structures in real, mixing layers of fluorine and hydrogen in a nitrogen diluent.

E.A.K.

A01 CSCL 20D

The Melick method of inlet flow dynamic distortion prediction by statistical means is outlined. A hypothetic vortex model is used as the basis for the mathematical formulations. The main objectives are identified with the theoretical total pressure r.m.s. ratio with the measured total pressure r.m.s. ratio. Data comparisons, using the HIMAT inlet test data set, indicate satisfactory prediction of the dynamic peak distortion for cases with boundary layer control device vortex generators. A method for the dynamic probe selection was developed. Validity of the probe selection criteria is demonstrated by comparing the reduced-probe predictions with the 40-probe predictions. It is indicated that the number of dynamic probes can be reduced to as few as two and still retain good accuracy.

E.A.K.

The problem is presented on the basis of conservation of hydrodynamic stability are addressed. The presence of fine grained turbulence in the problem, and its absence, lacks a small parameter. The problem is presented on the basis of conservation principles, which are the dynamics of the problem directed towards extracting the most physical information, however, it is emphasized that it must also involve approximations.

E.A.K.
 REVIEW AND EVALUATION OF RECENT DEVELOPMENTS IN MELIC INLET DYNAMIC FLOW DISTORTION PREDICTION AND COMPUTER PROGRAM DOCUMENTATION AND USER'S MANUAL Estimating Maximum Instantaneous Inlet Flow Distortion from Steady-State Total Pressure Measurements with Full, Limited, or No Dynamic Data Final Report

A review of the Melik method of inlet flow dynamic distortion prediction by statistical means is provided. These developments include the general Melik approach with full dynamic measurements, a limited dynamic measurement approach, and a turbulence modeling approach which requires no dynamic rms pressure fluctuation measurements. These modifications are evaluated by comparing predicted and measured peak instantaneous distortion levels from provisional inlet data sets. A nonlinear mean-line following vortex model is proposed and evaluated as a potential criterion for improving the peak instantaneous distortion map generated from the conventional mean line of the Melik method. The model is simplified to a series of linear vortex segments which lay along the mean line. Maps generated with this new approach are compared with conventionally generated maps, as well as measured peak instantaneous maps. Inlet data sets include subsonic, transonic, and supersonic inlets under various flight conditions. Author

N86-25726*# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

THERMOMECHANICAL DESIGN CRITERIA FOR CERAMIC-COATED SURFACES

Some early history of ceramic applications is presented. Finite element modeling of components to determine service and fabrication loads finds inelastic behavior and residual stresses to be significant to component life. Inelastic behavior mitigates peak strains but enhances residual strains. Results of furnace, Mach 0.3 burner, and engine tests are discussed and categorized into design criteria (loading, geometry, fabrication, materials, analysis, and testing). These design rules and finite element analyses are brought to bear on two test cases: turbofan engine seals, and rocket thrust chambers. Author

N86-25084*# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

APPLICATION OF A COMPUTATIONAL MODEL FOR VORTEX GENERATORS IN SUBSONIC INTERNAL FLOWS

A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vorticity source term is used in a modified form of the Parabolized Navier-Stokes equations to model the shed vortex. Computed results are compared with idealized flow vortex paths, and with experimental data for vortex generators embedded in a thick turbulent boundary layer. The analysis is also compared with experimental data for a separated diffusing S-duct and for a diffusing S-duct with vortex generators. Quantitative comparisons are shown for the latter three cases. Emphasis is placed on verifying the ability of the model to predict global distortions in the flow field. Author

THERMODYNAMIC EVALUATION OF TRANSONIC COMPRESSOR ROTORS USING THE FINITE VOLUME APPROACH

S. NICHOLSON and J. MOORE 1986 81 p (Contract NAG3-593) (NASA-CR-176840; NAS 1.26:176840; JM/86-2) Avail: NTIS HC A05/MF A01 CSCL 20D

The finite volume explicit time marching method was refined and improved. Previously, extension had been made to the finite volume method to improve the accuracy of the calculation of total pressure in inviscid flow, extend the method to allow the calculation of laminar and turbulent boundary layers in internal flows, and improve the shock capturing properties of the method by introducing a Mach number dependent interpolation scheme for the pressure used in the calculating the density. The current work extends these developments by using the new pressure interpolation scheme in two dimensional viscous calculations, including a more complete description of the viscous stresses, introducing a criteria for the transverse upward diferença which is a function of the ratio of transverse and streamwise mass fluxes, and allowing the calculation of internal flow where boundary layers are present on both walls of the duct. The manner in which the viscous stresses are evaluated in the nonorthogonal, nonuniform grid is detailed. The convergence is investigated and results for calculations of laminar flow in a converging duct are presented. Results for calculations of transonic flow in a converging-diverging nozzle are presented and the results are compared with Sabben's measurements and calculations by others. Author

THE BOUNDARY LAYER ON COMPRESSOR CASCADE BLADES

The purpose of NASA Research Grant NSG-3264 is to characterize the flowfield around an airfoil in a cascade at chord Reynolds number(R sub C) near 5 x 10 to the 5th power. The program is experimental and covers laser Doppler velocimeter (LDV) measurements with flow visualization techniques in order to obtain detailed flow data, e.g., boundary layer profiles, points of separation and the transition zone, on a cascade of highly-loaded compressor blades. The information provided by this study is to serve as benchmark data for the evaluation of current and future compressor cascade predictive models, in this way aiding in the compressor design process. Summarized is the research activity for the period 1 December 1985 through 1 June 1986. Progress made from 1 June 1979 through 1 December 1985 is presented. Detailed measurements have been completed at the initial cascade angle of 53 deg. (incidence angle 5 degrees). A three part study, based on that data, has been accepted as part of the 1986 Gas Turbine Conference and will be submitted for subsequent journal publication. Also presented are data for a second cascade angle of 45 deg (an incidence angle of 3 degrees). Author
Tunnel. An existing Navier-Stokes program was modified to
injection parameters are being determined to assist in the design
configurations computed were models of ice accretion shapes
and modification of the Altitude Wind Tunnel. Special emphasis is
formed on a circular cylinder in the NASA Lewis Icing Research
data on drop size distribution over a wide range of operating
and heat transfer distribution, and surface roughness effects. The
icing in clouds. The primary objective is to provide experimental
in order to assess their contribution to the overall icing phenomena.

A theoretical analysis is presented to study the extinction
characteristics of a diffusion flame near the leading edge of a
thin fuel plate in slow, forced convective flows in a microgravity
environment. The mathematical model includes two-dimensional
Navier-Stokes momentum, energy and species equations with
one-step overall chemical reaction using second-order finite rate
Arrhenius kinetics. Radiant heat loss on the fuel plate is applied
in the model as it is the dominant mechanism for flame
extinguishment in the small convective flow regime. A parametric
study based on the variation of convective flow velocity, which
varies the Damkohler number (Da), and the surface radiant heat
loss parameter (S) simultaneously, is given. An extinction limit is
found in the regime of slow convective flow when the rate of
radiant heat loss from fuel surface outweighs the rate of heat
generation due to combustion. The transition from existing
envelope flame to extinguishment consists of gradual flame
contraction in the opposed flow direction together with flame
temperature reduction as the convective flow velocity decreases
continuously until the extinction limit is reached. A case of flame
structure subjected to surface radiant heat loss is also presented
and discussed. Author

Numerical Simulation of the Flowfield Over Ice
Accretion Shapes Semiannual Progress Report, 30 Apr.
1985 - 30 Apr. 1986
J. N. Scott
19 p Submitted for publication
NASA-CR-176960; NAS 1.26:176960
Avail: NTIS HC A02/MF A01 CSCL 20D

The primary goals are directed toward the development of a
numerical method for computing flow about ice accretion shapes
and determining the influence of these shapes on flow degradation.
It is expedient to investigate various aspects of icing independently
in order to assess their contribution to the overall icing phenomena.
The specific aspects to be examined include the water droplet
trajectories with collection efficiencies and phase change on the
surface, the flowfield about specified shapes including lift, drag,
and heat transfer distribution, and surface roughness effects. The
configurations computed were models of ice accretion shapes
formed on a circular cylinder in the NASA Lewis Icing Research
Tunnel. An existing Navier-Stokes program was modified to
calculate the flowfield over four shapes (2, 5, and 15 minute models
of glaze ice, and a 15 minute accumulation of rime ice). B.G.

Measurements of Liquid Fuel Sprays Final Report, 15
N. Chigier and C. P. Mao
1985 51 p
Avail: NTIS HC A04/MF A01 CSCL 20D

A ground test facility is being established at NASA Lewis
Research Center to simulate the environmental and flight conditions
needed to study adverse weather effects. One of the most
important components is the water spray system which consists
of many nozzles fitted on spray bars. Water is injected through
air-assisted atomizers to generate uniform size drops to simulate
icing in clouds. The primary objective is to provide experimental
data on drop size distribution over a wide range of operating
conditions. Correlation equations for mean drop size and initial
injection parameters are being determined to assist in the design
and modification of the Altitude Wind Tunnel. Special emphasis is
being placed on the study of the aerodynamic structure of the
air-assisted atomizer sprays. Detailed measurements of the
variation of drop size distribution and velocity as a function of
time and space are being made. Accurate initial and boundary
conditions are being provided for computer model evaluation.

Mechanical Technology, Inc., Latham, N. Y.
Performance of Oil Pumping Rings: An Analytical
and Experimental Study Final Report
M. W. Eusepi, J. A. Walowitz, O. Pinkus, and P. Holmes
Jan. 1986 233 p
Avail: NTIS HC A11/MF A01 CSCL 20D

A steady-state design computer program was developed to
predict the performance of pumping rings as functions of geometry,
applied loading, speed, ring modulus, and fluid viscosity. Additional
analyses were developed to predict transient behavior of the ring
and the effects of temperature rises occurring in the hydrodynamic
film between the ring and shaft. The analysis was initially compared
with previous experimental data and then used to design additional
rings for further testing. Tests were performed with Rulon,
carbon-graphite, and babbit rings. The design analysis was used
to size all of the rings and to select the ranges of clearances,
thickness, and loading. Although full quantitative agreement was
lacking, relative agreement existed in that the trends that were predicted
to perform well theoretically, generally performed well experimentally.
Some causes for discrepancies between theory and experiment are believed to be due to starvation, leakage past
the secondary seal at high pressures, and uncertainties in the
small clearances and local inlet temperatures to the pumping ring.
A separate preliminary analysis was performed for a pumping
Leningrad seal. This analysis can be used to predict the film
thickness and flow rate through the seal as a function of pressure,
speed, loading, and geometry. M.G.
BOUNDARY LAYER MEASUREMENTS ON AN AIRFOIL IN BOUNDARY LAYER MEASUREMENTS ON AN AIRFOIL IN (Contract NSG-3265) NV, Jan. 6-9, 1986. 14 p. refs

Tecnico, 1985, p. 8.6 (6 p.). Previously announced in STAR as N85-16096. refs

An optical technique is presented for combined, spatially resolved measurements of two-dimensional velocity and pressure fields in compressible flows. The single-mode frequency of an argon laser is fixed in the wing of an absorption line of iodine molecules, seeded in an underexpanded round jet of nitrogen gas. The emitted fluorescence, being proportional to the amount of absorbed radiation and hence the absorption line-shape function, is detected with an intensified 100 x 100 photodiode array camera. A single-microchannel-plate image intensifier is fiber-optically coupled to the array in order to improve time resolution and SNR. Three components of the velocity vector in a cross-sectional plane are sequentially probed with four laser sheetsc from three different directions. By shifting the laser frequency in one of the sheets with a piezo-tuned intra-cavity etalon, the slope of the absorption line can be measured in situ in order to provide the required scaling factor for the velocity measurement. With its short measurement times of less than 250 ms, this method is well suited for blow-down wind tunnel experiments. Author

BOUNDARY LAYER MEASUREMENTS ON AN AIRFOIL IN BOUNDARY LAYER MEASUREMENTS ON AN AIRFOIL IN (Contract NSG-3265) NV, Jan. 6-9, 1986. 14 p. refs

Tecnico, 1985, p. 8.6 (6 p.). Previously announced in STAR as N85-16096. refs

An optical technique is presented for combined, spatially resolved measurements of two-dimensional velocity and pressure fields in compressible flows. The single-mode frequency of an argon laser is fixed in the wing of an absorption line of iodine molecules, seeded in an underexpanded round jet of nitrogen gas. The emitted fluorescence, being proportional to the amount of absorbed radiation and hence the absorption line-shape function, is detected with an intensified 100 x 100 photodiode array camera. A single-microchannel-plate image intensifier is fiber-optically coupled to the array in order to improve time resolution and SNR. Three components of the velocity vector in a cross-sectional plane are sequentially probed with four laser sheetsc from three different directions. By shifting the laser frequency in one of the sheets with a piezo-tuned intra-cavity etalon, the slope of the absorption line can be measured in situ in order to provide the required scaling factor for the velocity measurement. With its short measurement times of less than 250 ms, this method is well suited for blow-down wind tunnel experiments. Author

BOUNDARY LAYER MEASUREMENTS ON AN AIRFOIL IN BOUNDARY LAYER MEASUREMENTS ON AN AIRFOIL IN (Contract NSG-3265) NV, Jan. 6-9, 1986. 14 p. refs

Tecnico, 1985, p. 8.6 (6 p.). Previously announced in STAR as N85-16096. refs

An optical technique is presented for combined, spatially resolved measurements of two-dimensional velocity and pressure fields in compressible flows. The single-mode frequency of an argon laser is fixed in the wing of an absorption line of iodine molecules, seeded in an underexpanded round jet of nitrogen gas. The emitted fluorescence, being proportional to the amount of absorbed radiation and hence the absorption line-shape function, is detected with an intensified 100 x 100 photodiode array camera. A single-microchannel-plate image intensifier is fiber-optically coupled to the array in order to improve time resolution and SNR. Three components of the velocity vector in a cross-sectional plane are sequentially probed with four laser sheetsc from three different directions. By shifting the laser frequency in one of the sheets with a piezo-tuned intra-cavity etalon, the slope of the absorption line can be measured in situ in order to provide the required scaling factor for the velocity measurement. With its short measurement times of less than 250 ms, this method is well suited for blow-down wind tunnel experiments. Author
A86-26909* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
THE USE OF AN OPTICAL DATA ACQUISITION SYSTEM FOR BLADED DISK VIBRATION ANALYSIS
A new concept of optical instrumentation was developed by engineers at NASA Lewis Research Center to collect vibration data from multi-bladed rotors. This new concept, known as the optical data acquisition system, uses optical transducers to measure bladed tip deflections by reflection of light beams off the tips of the blades as they pass in front of the optical transducer. By using an array of transducers around the perimeter of the rotor, detailed vibration signals can be obtained. In this study, resonant frequencies and mode shapes were determined for a 56 bladed rotor using the optical system. Frequency data from the optical system was also compared to data obtained from strain gauge measurements and finite element analysis and was found to be in good agreement.

A86-29541* # Maryland Univ., College Park.
ACCURACY AND DIRECTIONAL SENSITIVITY OF THE SINGLE-WIRE TECHNIQUE
T. W. JACKSON (Maryland, University, College Park) and D. G. LILLEY (Oklahoma State University, Stillwater) AIAA Journal (ISSN 0001-1452), vol. 24, March 1986, p. 451-458. USAF-supported research. Previously cited in issue 06, p. 774, Accession no. A84-18047. refs (Contract NAG3-74)

A86-29280* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
LENS COLLIMATION AND TESTING USING A TWYMAN-GREEN INTERFEROMETER WITH A SELF-PUMPED PHASE-CONJUGATING MIRROR
Ordinarily Twyman-Green interferometers are employed testing optical elements. In a modification of the basic configuration, the ordinary mirror in the test arm is replaced with a self-pumped phase-conjugating mirror using a barium titanate crystal. It is shown that, with a redefinition of components, the new configuration permits retention and improvement of the optical element testing function while simultaneously serving as a sensitive test for collimation. The optical path difference resulting from the double pass in the original Twyman-Green interferometer approximately equals that of the single pass and phase conjugation in the modification.

G.R.

A86-29755* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
IMPLEMENTATION OF A NEW TYPE OF TIME-OF-FLIGHT LASER ANEMOMETER
M. P. WERNET (NASA, Lewis Research Center, Cleveland, OH) and R. V. EDWARDS (Case Western Reserve University, Cleveland, OH) Applied Optics (ISSN 0003-6935), vol. 25, March 1, 1986, p. 644-646. refs (Contract NAG3-2)
A new time-of-flight (TOF) laser anemometer system utilizing a spatial lead-lag filter for bipolar pulse generation has been constructed and tested. This new TOF has been modified to enable measurements in turbulent flows near walls. Good results have been obtained as close as 100 microns from a surface, with a 140-mm focal length final lens. Lading’s theory for the behavior of the measurement variance has been confirmed for this configuration.

A86-32046* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
FIBRE-OPTIC THERMOMETER USING SEMICONDUCTOR-ETALON SENSOR
G. SELIM (NASA, Lewis Research Center, Cleveland, OH) Electronics Letters (ISSN 0013-5194), vol. 22, Feb. 27, 1986, p. 238, 239. refs
A fiber-optic thermometer is described which uses a thick-film SC sensing etalon. The etalon’s temperature-dependent phase shift is determined by analyzing its spectral reflectance, using an LED and a tunable Michelson interferometer. Temperatures from 20 to 1000 C are measured with better than 0.5 deg C resolution.

Author

A86-34431* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
FILTER INDUCED ERRORS IN LASER ANEMOMETRY USING COUNTER-PROCESSOR
Simulations of laser Doppler anemometer (LDA) systems have focused primarily on noise studies or biasing errors. Another possible source of error is the choice of filter types and filter cutoff frequencies. Before it is applied to the counter portion of the signal processor, a Doppler burst is filtered to remove the pedestal and to reduce noise in the frequency bands outside the region in which the signal occurs. Filtering, however, introduces errors into the measurement of the frequency of the input signal which leads to inaccurate results. Errors caused by signal filtering in an LDA counter-processor data acquisition system are evaluated and filters for a specific application will reduce these errors are chosen.

E.A.K.

A86-38359* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
A COMPARISON OF ELECTRONIC HETERODYNE MORE DEFLECTOMETRY AND ELECTRONIC HETEROODYNE HOLOGRAPHIC INTERFEROMETRY FOR FLOW MEASUREMENTS
(SAE PAPER 851896)
Electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry are compared as methods for measuring accurate measurement of refractive index and density change distributions of phase objects. Experimental results are presented to show that the two methods have comparable accuracy for measuring the first derivative of the interferometric fringe shift. The phase object for the measurements is a large crystal of KD P whose refractive index distribution can be changed accurately and repeatably for the comparison. Although the refractive index change causes only about one interferometric fringe shift over the entire crystal, the derivative shows considerable detail for the comparison. As electronic phase measurement methods, both methods are very accurate and are intrinsically compatible with computer controlled readout and data processing. Heterodyne moire is relatively inexpensive and has high variable sensitivity. Heterodyne holographic interferometry is better developed, and can be used with poor quality optical access to the experiment.

Author
RECENT SKIN FRICTION TECHNIQUES FOR COMPRESSIBLE FLOWS
G. S. SETTLES (Pennsylvania State University, University Park) AIAA and ASME, Fluid Mechanics, Plasma Dynamics and Lasers Conference, 4th, Atlanta, GA, May 12-14, 1986. 11 p. refs
(Contract NAG3-627)
(AIAA PAPER 86-1099)

A brief review is given of developments over the last decade in techniques for the measurement of skin friction in compressible airflows. Emphasis is placed on mean measurements beneath turbulent boundary layers in the supersonic and hypersonic flow regimes. Recent improvements in existing techniques such as the skin friction balance, Preston tube, sublayer fence, and heat transfer analogy are discussed. New or potential techniques including optical and acoustic measurements are also treated. Finally, new results are presented on the adaptation of the recently-developed laser interferometer skin friction meter for use in high-speed wind tunnels.

A88-39521*# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
RANGE FINDING USING FREQUENCY-MODULATED LASER DIODE
G. BEHEIM (NASA, Lewis Research Center, Cleveland, OH) and K. FRITSCHE (John Carroll University, Cleveland, OH) Applied Optics (ISSN 0003-6935), vol. 25, May 1, 1986, p. 1439-1442. refs
(Contract NAG3-571)

A coherent-optical time-of-flight range-finding technique is proposed which uses a simple inexpensive device. Target range is determined by modulating a laser diode's optical frequency and measuring the change in the phase of the light reflected back into the laser. Target velocity as well as range can be measured using this approach. The device is described, and experimental evidence is presented to show the feasibility of measuring distance with subcentimeter resolution over a 1.5-m range.

A88-42770*# Pratt and Whitney Aircraft, West Palm Beach, Fla.
FURTHER DEVELOPMENT OF THE DYNAMIC GAS TEMPERATURE MEASUREMENT SYSTEM
(Contract NAS3-24228)
(AIAA PAPER 86-1648)

A compensated thermocouple measurement method was experimentally verified. Dynamic signal content from an atmospheric pressure laboratory burner was measured by the dynamic temperature sensor and a relatively delicate fine-wire resistance thermometer. Compensated data from the two dynamic temperature sensor thermocouples were compared with the compensated fine-wire data in the frequency domain. Absolute differences between spectral line amplitudes measured with different sensors are small relative to the mean temperature and verify the compensation method. Increases in precision of the measurement method require optimization of several factors, and directions for further work are identified.

A88-48355*# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
RELIABILITY OF SCANNING LASER ACOUSTIC MICROSCOPY FOR DETECTING INTERNAL VOIDS IN STRUCTURAL CERAMICS

The reliability of 100 MHz scanning laser acoustic microscopy (SLAM) for detecting internal voids in sintered specimens of silicon nitride and silicon carbide was evaluated. The specimens contained artificially implanted voids and were positioned at depths ranging up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics.

35 INSTRUMENTATION AND PHOTOGRAPHY

A88-11452*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
DEVELOPMENT OF SEEDING TECHNIQUES FOR SMALL SUPERSONIC WIND TUNNEL
Avail: NTIS HC A12/MF A01 CSCL 14B

The NASA Lewis 1x1 foot supersonic wind tunnel is used to experimentally verify computational methods. This tunnel, which is continuous running, operates from laboratory-wide high pressure air and vacuum systems. As such, the air does not recirculate but makes a single pass through the tunnel. The Mach number is varied with interchangeable nozzle blocks and has a range from Mach 1.6 to 4.0. Dry and filtered air is available up to pressures of 3 atmospheres. The air enters the tunnel system through a plenum having flow straighteners and 6 fine mesh screens. The exit of the plenum provides smooth contraction with an area ratio of approximately 20 that, along with the screens, provides a uniform flow for the nozzle.

N86-11497*# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
HOST INSTRUMENTATION R AND D PROGRAM OVERVIEW
Avail: NTIS HC A11/MF A01 CSCL 14B

The HOST Instrumentation R&D program is focused on two categories of instrumentation. One category is that required to characterize the environment imposed on the hot section components of turbine engines. This category includes instruments for measuring gas flow, gas temperature, and heat flux. The second category is that for measuring the effect of the environment on the hot section components. This category includes strain measuring instruments and an optical system for viewing the interior of an operating combustor to detect cracks, buckling, carbon buildup, etc.

DYNAMIC GAS TEMPERATURE MEASUREMENT SYSTEM
(Contract NAS3-23154)
Avail: NTIS HC A11/MF A01 CSCL 14B

A gas temperature measurement system with compensated frequency response of 1 kHz and capability to operate in the exhaust of a gas turbine combustor was developed. Environmental guidelines for this measurement setup were presented, followed by a preliminary design of the selected measurement method. Transient thermal conduction effects were identified as important; a preliminary finite-element conduction model quantified the errors expected by neglecting conduction. A compensation method was developed to account for effects of conduction and convection. This method was verified in analog electrical simulations, and used to compensate dynamic temperature data from a laboratory combustor and a gas turbine engine. Detailed data compensations are presented. Analysis of error sources in the method were done to derive confidence levels for the compensated data.

G.L.C.
I generate large and random apparent strain distributions. Author flowrate, respectively, to give the expression for MVD in microns.

The burner was operated in a jet burner test stand while subjected of the burner was removed for installation and calibration of the nitrogen pressure. MVD data were correlated with D sub 0, W sub w, and W sub n, respectively, but not very well at intermediate values of water and nitrogen pressure. Six out of ten wire gages survived testing and photography such that the instrumented section could be observed large apparent strains associated with these gages. Although all

electrical resistance strain gages useful for static strain measurements on nickel or cobalt superalloy parts inside a gas turbine engine on a test stand are being developed. Measurements of this type are of great importance in meeting the goals of the HST program because, without reliable knowledge of the stresses and strains which exist in specific components, it will be difficult to fully appreciate where improvements in design and materials can be implemented. The first part of the effort consisted of a strain gage alloy development program which will be followed by an investigation of complete strain gage systems which will use the best of the alloys developed together with other system improvements.

G.L.C.

NAS8-14554*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

FORMATION AND CHARACTERIZATION OF SIMULATED SMALL DROPLET ICING CLOUDS

Two pneumatic two-fluid atomizers operating at high liquid and gas pressures produced water sprays that simulated small droplet clouds for use in studying icing effects on aircraft performance. To measure median volume diameter, MVD or D sub v, of small droplet water sprays, a scattered-light scanning instrument was developed. Drop size data agreed fairly well with calculated values at water and nitrogen pressures of 60 and 20 psig, respectively, and at water and nitrogen pressures of 250 and 100 psig, respectively, but not very well at intermediate values of water and nitrogen pressure. MVD data were correlated with D sub 0, W sub n, and W sub w, i.e., orifice diameter, nitrogen, and water flow rate, respectively, to give the expression for MVD in microns.

Author

NAS8-21817*# United Technologies Research Center, East Hartford, Conn.

DEMONSTRATION TEST OF BURNER LINER STRAIN MEASURING SYSTEM Final Report

A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.

Author

NAS8-22915*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THE DETERMINATION OF THE DIRECTION OF THE OPTIC AXIS OF UNIAXIAL CRYSTALLINE MATERIALS

The birefringence of crystalline substances in general, and of sapphire in particular, is described. A test is described whose purpose is to determine the direction of the optic axis of a cylindrically machined single crystal of sapphire. This test was performed on the NASA Lewis sapphire cylinder and it was found that the optic axis made an angle of 18 deg with the axis of symmetry of the cylinder.

Author

NAS8-24958*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

BEAM-MODULATION METHODS IN QUANTITATIVE AND FLOW VISUALIZATION HOLOGRAPHIC INTERFEROMETRY

A novel method of mounting thin samples for electrical measurements is described. A vacuum chuck holds a mounting plate, which, in turn, holds the sample. Contacts on the mounting plate establish electrical connection to the sample. The attachment of wires directly to the sample is unnecessary. Measurements can be made at temperatures from 77 to 1000 K. As an application of the apparatus, resistivity and Hall measurements of a thin silicon carbide sample are presented.

Author

NAS8-24961*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CHARACTERIZATION OF SIMULATED SMALL-DROPLET FUEL SPRAYS

A two-fluid pneumatic atomizer operating at relatively high liquid and gas pressures produced water sprays that simulated small-droplet clouds of liquid fuel for use in studying vaporization and fuel-air mixing effects on combustor performance and emissions. To characterize the sprays, a scattered-light scanning instrument was developed and measurements of volume median orifice diameter and spray momentum were made. D sub v, 5, were correlated with D sub o, W sub w, and W sub n, i.e., orifice diameter, nitrogen, and water flow rate, respectively, to give the general expression: D sub v, 5 approx. (D sub o sup s 0.2) (W sub w sup s 0.2) (W sub n sup s 0.2) (W sub w sup s 0.2) (W sub n sup s 0.2) (W sub n sup s 0.2). Values of D sub o, W sub w, and W sub n are in centimeters and grams/second, respectively. Farther
downstream at an axial distance of 6.7 cm, exponent m increased from 0.2 to 0.4 and exponent n decreased from -1.2 to -1.0 and at a distance of 25 cm downstream of the atomizer, n decreased to -0.6. The increase in exponent m and decrease in exponent n was attributed to a loss of very small droplets from the spray due primarily to vaporization and diffusion effects on clouds of small droplets traveling a distance of 25 cm. Author

N86-24964*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

RAMP-INTEGRATION TECHNIQUE FOR CAPACITANCE-TYPE BLADE-TIP CLEARANCE MEASUREMENT

G. G. SEARS and R. M. BARRANGER 1986 13 p refs

Presented at the Aerospace Industries/Test Measurement Symposium, Seattle, Wash., 5-8 May 1986; sponsored by Instrument Society of America

(NASA-TM-87241; E-2916; NAS 1.15:87241) Avail: NTIS HC A02/MF A01 CSCL 14B

The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The results show an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects the environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and typical application are included. Author

N86-24967*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMBINED FRINGE AND FABRY-PEROT LASER ANEMOMETER FOR THREE COMPONENT VELOCITY MEASUREMENTS IN TURBINE STATOR CASCADE FACILITY

R. G. SEASHOLTZ and L. J. GOLMAN 1986 23 p refs

(NASA-TM-87322; E-3058; NAS 1.15:87322) Avail: NTIS HC A02/MF A01 CSCL 14B

A laser anemometer is described that was developed for use in a 508 mm diameter annular turbine stator cascade facility. All three velocity components are measured through a single restricted optical port, both within the stator vane and downstream of the vanes. The measurements are made through a cylindrical window in the casing that matches the tip radius of the cascade. The stator tested has a contoured hub endwall that results in a large radial flow near the hub. The anemometer uses a standard fringe configuration (LFA) with a fluorescent aerosol seed to measure the axial and circumferential velocity components. The radial component is measured with a confocal Fabry-Perot interferometer. The two configurations are combined in a single optical system and can operate simultaneously. Data are presented to illustrate the capabilities of the system. Author

N86-26596*# Sverdrup Technology, Inc., Cleveland, Ohio.

CALIBRATION OF DROPLET SIZING AND LIQUID WATER CONTENT INSTRUMENTS: SURVEY AND ANALYSIS Interim Report

E. C. HOVENAC May 1986 30 p refs Sponsored in part by FAA, Atlantic City, N.J.

(Contract NAS3-24105)

(NASA-CR-175099; E-3025; NAS 1.15:175099; FAA-CT-86-19) Avail: NTIS HC A03/MF A01 CSCL 14B

Results are presented for phase 1 of an effort to establish a unified calibration capability for instruments used for aircraft icing certification and aircraft icing research. Various calibration, data correction, and verification procedures are reviewed and some new techniques are developed for droplet sizing instruments and liquid water content meters. These instruments include a forward scattering spectrometer probe, an optical array probe, and hot-wire type liquid water content meters. Work planned for phase 2 of the effort is described. Author

POLARIZATION CALIBRATED ELIPSOMETRY Final Report

J. L. LAUER and N. MARXER 10 Jul. 1986 114 p

(Contract NAG3-222)

(NASA-CR-177254; NAS 1.26:177254) Avail: NTIS HC A06/MF A01 CSCL 14B

For the investigation of the composition and thickness of thin nonuniform films on bearing and other tribological surfaces an automated ellipsometer was built, which is extremely sensitive to relative changes in thickness and composition of surface films. These changes can be seen by scanning across the surface with 20 micrometer lateral resolution. By measuring at different angles of incidence one can determine the film thickness and identify the material of the film by its complex index of refraction. For the analysis of organic layers on top of several metallic layers it was necessary to develop mathematical procedures to increase the absolute precision of the instrument. The ellipsometer is described in detail, and the precision is discussed. The actual performance of the ellipsometer was tested on three experiments. In the first one the composition and thickness of patches of an oxide film inside a wear track were determined. In the second the thickness of a carbon overcoat sputtered on a computer disk was measured: the carbon was identified as graphitic and of random orientation. In the third thickness of silicon oxide on top of a silicon substrate was found. Important features of this apparatus are: (1) accurate settings of the polarization stages and the angle of incidence (both automated); (2) high precision in the determination of the ellipsometric parameters without calibration prior to an experiment; and (3) very accurate scanning modes with high spatial resolution. Author

N86-27617*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

IDENTIFICATION OF DIFFERENCES BETWEEN FINITE ELEMENT ANALYSIS AND EXPERIMENTAL VIBRATION DATA

C. LAWRENCE Jun. 1986 33 p

(NASA-TM-87338; E-3062; NAS 1.15:87338) Avail: NTIS HC A03/MF A01 CSCL 14B

An important problem that has emerged from combined analytical/experimental investigations is the task of identifying and quantifying the differences between results predicted by F.E. analysis and results obtained from experiment. The objective of this study is to extend and evaluate the procedure developed by Siddhu for correlation of linear F.E. and model test data to include structures with viscous damping. The desirability of developing this procedure is that the differences are identified in terms of physical mass, damping, and stiffness parameters instead of in terms of frequencies and modes shapes. Since the differences are computed in terms of physical parameters, locations of modeling problems can be directly identified in the F.E. model. From simulated data it was determined that the accuracy of the computed differences increases as the number of experimentally measured modes included in the calculations is increased. When the number of experimental modes is at least equal to the number of translational degrees of freedom in the F.E. model both the location and magnitude of the differences can be computed very accurately. When the number of modes is less than this amount the location of the differences may be determined even though their magnitudes will be under estimated. Author

149
schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.

Author

A88-40662* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. REASSESSMENT OF THE THEORY OF STIMULATED RAMAN SCATTERING

A modification of the standard theory of stimulated Raman scattering (SRS) first proposed by Sparks (1974, 1975) is analyzed and shown to incorporate a possibly important physical effect; however, its original formulation is incorrect. The analysis is based on an exact numerical integration of the coupled equations of the modified theory, the results of which are compared with both the

LASERS AND MASERS

Includes parametric amplifiers.

A88-31857* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. ADVANCED STUDY OF BEAM REFRACTION PROBLEMS AROUND LASER ANEMOMETER WINDOWS

The experimenter is often required to view flows through a window with a different index of refraction than either the medium being observed or the medium that the laser anemometer is immersed in. The refraction that occurs at the window surfaces may lead to undesirable changes in probe volume position or beam crossing angle and can lead to partial or complete beam uncrossing. This report describes the results of a parametric study of this problem using a ray tracing technique to predict these changes. The windows studied were a flat plate and a simple cylinder. For the flat-plate study: (1) surface thickness, (2) beam crossing angle, (3) bisecting line - surface normal angle, and (4) incoming beam plane surface orientation were varied. For the cylindrical window additional parameters were also varied: (1) probe volume immersion, (2) probe volume off-radial position, and (3) probe volume position out of the R-theta plane of the lens. A number of empirical corrections were deduced to aid the interested reader in determining the movement, uncrossing, and change in crossing angle for a particular situation.

Author
conventional theory of SRS and with one set of experimental data. A reformulation of the modified theory is suggested that leads to a gain which is in somewhat better agreement with the data than is the conventional theory.

Author

N86-11455*# Purdue Univ., West Lafayette, Ind. School of Mechanical Engineering.

(Contract NAG3-502)

(AEAE-CR-176278; NAS 1.26:176278) Avail. NTIS HC A02/MF A01 CSCL 20E

A two-color, two component Laser Doppler Velocimeter (LDV) system operating in forward scatter has been developed in order to make simultaneous measurements of the axial and radial velocity components in an axisymmetric sudden expansion flow with and without combustion. The LDV system includes Bragg cell modulators in the four beam paths to allow a net frequency shift of 5MHz in both the green and blue beams. This permits an unambiguous measurement of negative velocities and also eliminates incomplete signal bias. The green beam probe volume has a waist diameter of 0.200 mm and is approximately 2mm long. The blue beam has a probe volume waist of 0.250 mm and is approximately 1 mm long. The scattered light from the probe volume is separated so that approximately 80% of each color passes to its respective photomultiplier tube by using a dichroic filter. Narrow bandpass filters are used to further filter unwanted signals before they are detected. A schematic diagram of the LDV system is shown.

Author

N86-11503*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

Avail. NTIS HC A11/MF A01 CSCL 20E

Laser anemometers (LA's) for use in the study of the hot section components of turbomachinery are being developed. Specifically, laser anemometers are being developed for use in the 50.8-cm (20-in.) diameter warm turbine and high-pressure turbine (HPT) facilities at Lewis. A brief review of the status of the program along with some preliminary data taken in an open-jet burner are presented. G.L.C.

37 MECHANICAL ENGINEERING

Includes auxiliary systems (nonpower); machine elements and processes; and mechanical equipment.

A86-11016* Rensselaer Polytechnic Inst., Troy, N.Y.

ELLIPSOMETRIC SURFACE ANALYSIS OF WEAR TRACKS PRODUCED BY DIFFERENT LUBRICANTS J. L. LAUER, N. MARXER (Rensselaer Polytechnic Institute, Troy, NY), and W. R. JONES, JR. (NASA, Lewis Research Center, Cleveland, OH) ASLE and ASME, Tribology Conference, Atlanta, GA, Oct. 8-10, 1985. 8 p. refs

(Contract NAG3-22; DAAG24-83-K-0058) (ASLE PREPRINT 85-TC-5A-2)

Ellipsometric analyses of wear tracks in bearings of M-50 steel were carried out after operation under severe conditions with different lubricant additives. The base lubricant was a synthetic ester. It was found that the surface and wear additives benzyoloxazole and tricresyliophosphate produced very patchy oxide layers. Diobutylphenyamine, a common antioxidant, on the other hand produced smoother films. The analyses were performed with a specially designed and constructed ellipsometer of very high (20 micron) spatial resolution. The results are consistent with data obtained by Auger electron spectroscopy.

Author

(Contract DEN3-323) (ASLE PREPRINT 85-AM-4E-2)

A single-element traction rig was used to measure the traction forces at a solid-lubricated contact of a ball against a flat disk at room temperature under combine rolling and sliding. The load and speed conditions were selected to match those anticipated for bearing applications in adiabatic diesel engines. Traction vs slide/roll ratio curves were similar to those for liquid lubricants but the traction forces were an order of magnitude higher. The test data were used to derive equations to predict traction force as a function of contact stress and rolling speed. The data showed that the magnitude of traction forces were almost the same for all the lubricants tested. The lubricants, should, therefore, be selected on the basis of their ability to limit the wear of contact surfaces.

Author

A86-14466*# Akron Univ., Ohio.

LIFE AND RELIABILITY MODELING OF BEVEL GEAR REDUCTIONS M. SAVAGE, C. K. BRIKMANIS (Akron, University, OH), D. G. LEWICKI, and J. J. COY (NASA, Lewis Research Center, U.S. Army, Propulsion Laboratory, Cleveland, OH) ASME, National Design Engineering Conference, Chicago, IL, Mar. 11-13, 1985. 9 p. Previously announced in STAR as N85-27227. refs

(ASME PAPER 85-DE-7)

A reliability model is presented for bevel gear reductions with either a single input pinion or dual input pinions of equal size. The dual pinions may or may not have the same power applied for the analysis. The gears may be straddle mounted or supported in a bearing quill. The reliability model is based on the Weibull distribution. The reduction’s basic dynamic capacity is defined as the output torque which may be applied for one million output rotations of the bevel gear with a 90 percent probability of reduction survival.

Author

A86-14467*# Mechanical Technology, Inc., Latham, N.Y.

OPERATIONAL MAINTENANCE DATA BASE DEVELOPMENT FOR KINEMATIC STIRLING ENGINES A. RICHEY and G. SMITH (Mechanical Technology, Inc., Latham, NY) ASME, Energy-Sources and Technology Conference and Exhibition, Dallas, TX, Feb. 17-21, 1985. 6 p. DOE-supported research.

(Contract DEN3-32) (ASME PAPER 85-DGP-20)

In the initial stages of developing the automotive Stirling engine (ASE), data has been accumulated under the program’s Quality Assurance Report (QAR) program to identify problem areas encountered during engine operation. This data has been used as the basis for developing design modifications to existing hardware, identifying diagnostic techniques and instrumentation, and providing guidance towards component and system development requirements for future engine designs, such as the Mod II engine currently in the initial design stage. The QAR has proven itself to be an essential part of the ASE Program, and has successfully guided the development of the automotive application of this emerging engine technology.

Author
MECHANICAL ENGINEERING

A86-15227* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. EXPERIMENTAL STUDY OF CERAMIC-FOATED TIP SEALS FOR TURBINE ENGINES T. J. BIESIADNY, G. MCDONALD, R. C. HENDRICKS (NASA, Lewis Research Center, Cleveland, OH); G. A. KLANN (U.S. Army, Propulsion Laboratory, Cleveland, OH), E. S. LASSOW (Howmet Turbine Components Corp., Whitehall, MI) et al. Ceramic Engineering and Science Proceedings (ISSN 0196-6219), vol. 6, July-Aug. 1985, p. 880-895. Previously announced in STAR as N85-19363. refs

Ceramic gap path seals were fabricated and successfully operated over 1000 cycles from flight idle to maximum power in a small turboshaft engine. The seals were fabricated by plasma spraying zirconia over a NiCoCrAlX bond coat on the Haynes 25 substrate. Coolant-side substrate temperatures and related engine parameters were recorded. Post-test inspection revealed mudflat surface cracking with penetration to the ceramic bond-coat interface.

Au-MoS2 films 0.02 to 1.2 microns thick were sputtered from target compacted from 5 wt pct. Au + 95 wt pct. MoS2, to investigate the frictional and morphological film growth characteristics. The gold dispersion effects in MoS2 films are of interest to increase the densitification and strengthening of the film structure. Three microstructural growth stages were identified on the nano-micro-macrostructural level. During sliding both sputtered Au-MoS2 and MoS2 films have a tendency to break within the columner region. The remaining or effective film, about 0.2 microns thick, performs the lubrication. The Au-MoS2 films displayed a lower friction coefficient with a high degree of frictional stability and less wear debris generation as compared to pure MoS2 films. The more favorable frictional characteristics of the Au-MoS2 films are attributed to the effective film thickness and the high density packed columner zone which has a reduced effect on the fragmentation of the tapered crystallites during fracture.

Discussion is given of the design and loss characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cm (6 in.). The air supply system yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency is discussed.

A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cm (6 in.). The air supply system yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency is discussed.

A86-18700* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. NEW DIRECTIONS IN LUBRICATION, MATERIALS, WEAR, AND SURFACE INTERACTIONS - TRIBOLOGY IN THE 80'S W. R. Loomis, Ed. (NASA, Lewis Research Center, Cleveland, OH) Park Ridge, NJ, Noyes Publications, 1985, 867 p. No individual items are abstracted in this volume; Previously announced in STAR as N84-23891, N84-25047.

New directions in tribology are described. A range of topics is addressed, extending from fundamental research on tribological materials of all kinds and their surface effects, to final technological applications in mechanical components such as bearings, gears, and seals. The general topics addressed include: importance and definition of materials in tribology; future directions of research in adhesion and friction, wear and wear-resistant materials, and liquid lubricants and additives; status and new directions in elastohydrodynamic lubrication and solid lubricants; and tribological materials for mechanical components of the future.

Trends in aircraft engine operating speeds have dictated the need for rolling-element bearings capable of speeds to 3 million DN. A review of high-speed rolling-element bearing state-of-the-art performance and lubrication is presented. Through the use of under-race lubrication and bearing thermal management bearing operation can be obtained to speeds of 3 million DN. Jet lubricated ball bearings are limited to 2.5 million DN for large bore sizes and to 3 million DN for small bore sizes. Current computer programs are able to predict bearing thermal performance.

The stiffness of tapered-bore ring seals was measured with air as the sealed fluid. Static stiffness agreed fairly well with results of a previous analysis. Cross-coupled stiffness due to shaft rotation was much less than predicted. It is suggested that part of the disparity may be due to simplifying assumptions in the analysis; however, these do not appear to account for the entire difference observed.

E.A.K.

Discussion is given of the design and loss characteristics of 0.87 kw-hr (peak) flywheel energy storage module suitable for aerospace and automotive applications. The maraging steel flywheel rotor, a 46-cm (18-in) diameter, 56-kg (128-lb) tapered disk, delivers 0.65 kw-hr of usable energy between operating speeds of 10,000 and 20,000 rpm. The rotor is supported by 20- and 25-mm bore diameter, deep-groove ball bearings, lubricated
by a self-replenishing wick type lubrication system. To reduce aerodynamic losses, the rotor housing was evacuated to vacuum levels from 40 to 200 millitorr. Dynamic rotor instabilities uncovered during testing necessitated the use of an elastometric-bearing damper to limit shaft excursions. Spindown losses from bearing, seal, and aerodynamic drag at 50 millitorr typically ranged from 64 to 193 W at 10,000 and 20,000 rpm, respectively. Discharge efficiency of the flywheel system exceeded 96 percent at torque levels greater than 21 percent of rated torque. Author

This effort is keyed on the design, fabrication, assembly, and testing of a 25 kWe Stirling space-power technology-feasibility demonstrator engine. Another facet of the SP-100 project covers the status of a 9000-hr endurance test conducted on a 2 kWe free-piston Stirling/linear alternator system employing hydrostatic gas bearings. Dynamic balancing of the RE-1000 engine (a 1 kWe free-piston Stirling engine) using a passive dynamic absorber will be discussed along with the results of a parametric study showing the relationships of Stirling power converter specific weight and efficiency as functions of Stirling engine heater to cooler temperature ratio. Planned tests will be described covering a hydrodynamic gas bearing concept for potential SP-100 application. Author

A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperature, regenerator porosity, free piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given. Author

A88-30589* Akron Univ., Ohio. ANALYSIS OF A TWO ROW HYDROSTATIC JOURNAL BEARING WITH VARIABLE PROPERTIES, INERTIA EFFECTS AND SURFACE ROUGHNESS M. J. BRAUN (Akron, University, OH), M. L. ADAMS, and R. L. MULLEN (Case Western Reserve University, Cleveland, OH) (Tel Avv University, Technion - Israel Institute of Technology, University of the Negev, et al., Israel Conference on Mechanical Engineering, 18th, Technion - Israel Institute of Technology, Haifa, Israel, June 27, 28, 1984) Israel Journal of Technology (ISSN 0021-2202), vol. 22, No. 1-2, 1984-1985, p. 155-164. refs (Contract NAG3-304)

A computer algorithm for simulation of hydrostatic journal bearing pressure-flow behavior has been generated. The effects taken into account are inertia, cavitation, variable properties (isothermal bearing) and roughness. The program has been specifically tailored for simulation of the hybrid bearing of the cryogenic turbopumps of the main shuttle engine. Due to the high pressure (515 psia) of the supply line no cavitation has been found. The influence of the roughness effects have been found to become important only when the surface-roughness order of magnitude is comparable with that of the bearing clearance itself. Pocket edge inertia and variable properties have been found to have quite an important influence upon the pocket pressure, field pressure distribution and lubricant mass flow. Author

A88-34010/# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. OPERATING ASPECTS OF AN OIL PUMPING RING SEAL P. J. SMITH (NASA, Lewis Research Center, Cleveland, OH) and T. G. KEITH, JR. (Toledo, University, OH) ASME, Transactions, Journal of Tribology (ISSN 0742-4787), vol. 108, April 1986, p. 275-281. refs (Contract NSG-3156)

(ASM E PAPER 85-TRIB-29)

Past analyses have left several unanswered questions regarding the operation of a pumping ring seal. This paper addresses some of these unresolved problems. In particular, treatment of the film-ring interfacial boundary condition and the return portion of the pumping cycle are numerically investigated. Further a simple model is proposed to determine whether or not the seal operates fully flooded. Author

Based on some fundamental properties of finite element approximations, a mesh re-zoning scheme is proposed for finite element simulations of metal forming problems. It is demonstrated that this technique is indispensable in analyzing many difficult forming processes, especially when there exist corners or very irregular shapes on the boundaries. The algorithm is tested by a backward extrusion process and direct extrusion through a square die.

A88-37048* Detroit Diesel Allison, Indianapolis, Ind. LIFE CYCLE COST ASSESSMENT OF FUTURE LOW HEAT REJECTION ENGINES D. R. PETERSEN (General Motors Corp., Detroit Diesel Allison Div., Indianapolis, IN) SAE, International Congress and Exposition, Detroit, MI, Feb. 24-28, 1986. 14 p. (Contract DEN3-329)

(SAE PAPER 860444)

The Adiabatic Diesel Engine Component Development (ADECD) represents a project which has the objective to accelerate the development of highway truck engines with advanced technology aimed at reduced fuel consumption. The project comprises three steps, including the synthesis of a number of engine candidate designs, the coupling of each with a number of systems for utilizing exhaust gas energy, and the evaluation of each combination in terms of desirability. Particular attention is given to the employed evaluation method and the development of this method. The objective of Life Cycle Cost (LCC) evaluation in the ADECD program was to select the best from among 42 different low heat rejection engine (LHRE)/exhaust energy recovery system configurations. The LCC model is discussed along with a maintenance cost model, the evaluation strategy, the selection of parameter ranges, and a full factorial analysis.

G.R.

The AGT101 ceramic gas turbine engine feasibility study has made use of the slip casting of silicon or silicon nitride powders to produce either reaction-bonded or sintered components such as turbine rotors, turbine shrouds, and inner and outer diffusers. Attention is given to the effects of processing parameters on the microstructure and properties of the finished components; the parameters encompass powder particle size distribution, casting slip viscosity, pH, and solid content fraction. The green slip cast components were consolidated by nitriding, sintering, or sinter/HIPping. O.C.

The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing. O.C.

A86-38312* General Motors Corp., Indianapolis, Ind. METHODS FOR IMPROVING RELIABILITY IN CERAMIC TURBINE ROTORS D. A. TURNER and L. E. GROSECLOSE (General Motors Corp., Allison Gas Turbine Div., Indianapolis, IN) SAE, Aerospace Technology Conference and Exposition, Long Beach, CA, Oct. 14-17, 1985. 6 p. DOE-sponsored research. (Contract DEN3-168) (SAE PAPER 851788)

Evaluation of Carbonubum (CBO) injection-molded sintered alpha silicon carbide (SiC) AGT 100 gasifier turbine rotors by spin testing established a baseline for material strength characteristics. Spin test results of a subsequent group of rotors demonstrated a reduction in average failure speed. Post-test fracture analysis identified surface and near-surface flaws in the back face region to be the typical failure origins. Corrective actions were initiated to address the elimination of the strength controlling flaws. Initial evaluation of rotors fabricated to these process modifications indicates improvements in overall surface quality and average burst speed. Author

The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment. I.S.

When designing a rotor system it is frequently desirable to have at hand a set of design sensitivity coefficients which quantitatively predict a change in specific system characteristics to changes in design parameters. This paper presents eigenvalue sensitivity coefficients for the damped natural frequencies of whirl of general linear rotor system modelled by finite element discretization. In addition, a simple and direct method for calculation of the damped critical speeds is presented, which utilizes the eigenvalue sensitivity with respect to the spin speed. It is shown that the combination of design parameter and spin speed whirl frequency sensitivity coefficients may be used to also evaluate the damped critical speed sensitivity coefficients. Author

There is proposed a method for generation of Gleason's spiral bevel gears which provides the following properties of meshing and contact: (1) the contact normal keeps its original direction within the neighborhood of the main contact point; (2) the contact ellipse moves along the gear tooth surface; and (3) the kinematical errors caused by Gleason's method of cutting are almost zero. Computer programs for the simulation of meshing and bearing contact are developed. Author

Geometry and kinematic errors were studied for Gleason generated spiral bevel gears. A new method was devised for choosing optimal machine settings. These settings provide zero kinematic errors and an improved bearing contact. The kinematic errors are a major source of noise and vibration in spiral bevel gears. The improved bearing contact gives improved conditions for lubrication. A computer program for tooth contact analysis was developed, and thereby the new generation process was confirmed. The new process is governed by the requirement that during the generation process there is directional constancy of the common normal of the contacting surfaces for generator and generated surfaces of pinion and gear. E.A.K.
A86-40683# California State Univ., Long Beach.
AN INVESTIGATION OF THE TRANSIENT THERMAL ANALYSIS OF SPUR GEARS
A finite element program is developed for evaluating the transient behavior of surface temperature in high performance spur gears. The time dimension is implemented using two and three point finite difference schemes. The different schemes are provided for the purpose of numerical stability and convergence studies. A detailed explanation of the gear cooling process leading to the establishment of a modified Blok model is also included. Other conventional models for approximating the heat transfer coefficients are available for comparison. Preliminary results are given showing snap shots of gear temperature contours at the initial stages of tooth engagement. M.A.C.

A86-43541# National Aeronautics and Space Administration.
FAST APPROACH FOR CALCULATING FILM THICKNESSES AND PRESSURES IN ELASTOHYDRODINAMICALLY LUBRICATED CONTACTS AT HIGH LOADS
The film thicknesses and pressures in elastohydrodynamically lubricated contacts have been calculated for a line contact by using an improved version of Okamura's approach. The new approach allows for lubricant compressibility, the use of Roeiland's viscosity, a general mesh (nonconstant step), and accurate calculations of the elastic deformation. The new approach is described, and the effects on film thickness, pressure, and pressure spike of each of the improvements are discussed. Successful runs have been obtained at high pressure (to 4.8 GPa) with low CPU times.

A86-43542# National Aeronautics and Space Administration.
LUBRICANT AND ADDITIVE EFFECTS ON SPUR GEAR FATIGUE LIFE
Spur gear endurance tests were conducted with six lubricants using a single lot of consumable-electrode vacuum melted (CVM) AISI 9310 spur gears. The sixth lubricant was divided into four batches each of which had a different additive content. Lubricant tested with a phosphorus-type load carrying additive showed a statistically significant improvement in life over lubricants without this type of additive. The presence of sulfur type antiwear additives in the lubricant did not appear to affect the surface fatigue life of the gears. No statistical difference in life was produced with those lubricants of different base stocks but with similar viscosity, pressure-viscosity coefficients and antiwear additives. Gears tested with a 0.1 wt pct sulfur and 0.1 wt pct phosphorus EP additives in the lubricant had reactive films in wear to 200 to 400 (0.8 to 1.6 microns) thick.

A86-45255# National Aeronautics and Space Administration.
EFFICIENCY OF NONSTANDARD AND HIGH CONTACT RATIO INVOLUTE SPUR GEARS
The tooth loss investigation was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry.

A86-45256# National Aeronautics and Space Administration.
FATIGUE LIFE ANALYSIS OF A TURBOPROP REDUCTION GEARBOX
A fatigue life analysis of the Allison T56/501 turboprop reduction gearbox was developed. The life and reliability of the gearbox was based on the lives and reliabilities of the main power train bearings and gears. The bearing and gear lives were determined using the Lundberg-Palmgren theory and a mission profile. The five planet bearing set had the shortest calculated life among the various gearbox components, which agreed with field experience where the planet bearing had the greatest incidences of failure. The analytical predictions of relative lives among the various bearings were in reasonable agreement with field experience. The predicted gearbox life was in excellent agreement with field data when the material life adjustment factors alone were used. The gearbox had a lower predicted life in comparison with field data when no life adjustment factors were used or when lubrication life adjustment factors were used either alone or in combination with the material factors.

A86-45257# National Aeronautics and Space Administration.
SPIN ANALYSIS OF CONCENTRATED TRACTION CONTACTS
Spin, the resultant mismatch in contact radii on either side of the point of rolling, has a detrimental effect on traction contact performance. It occurs in concentrated contacts having conical or contoured rolling elements, such as those in traction drives or angular contact bearings, and is responsible for an increase in contact heating and power loss. The kinematics of spin producing contact geometries and the subsequent effect on traction and power losses are investigated. The influence of lubricant traction characteristics and contact geometries that minimize spin are also addressed.
TURBULENT TWO-PHASE FLOW IN ANNULAR SEALS
(Contract NAS3-186)
(A8SE PREPRINT 86-AM-4G-3)
Steady, turbulent two-phase fluid flow in a rotating annular seal with no eccentricity is analyzed. The fluid is assumed to be a homogeneous mixture of liquid and vapor in thermodynamic equilibrium. Further, the flow is assumed to be adiabatic, but the effects due to heat generation by viscous dissipation are accounted for fully. Solution of the model governing differential equations is accomplished by use of a fourth-order Runge-Kutta numerical integration scheme. The calculation of mass leakage rates under choked and unchoked conditions are discussed and the phenomenon of all-liquid choked flow is explained. Several numerical examples are presented supposing syroxygen as the sealed fluid. Author

A86-46924* Michigan Technological Univ., Houghton.
STRESS AND DEFORMATION MODELING OF MULTIPLE ROTARY COMBUSTION ENGINE TROCHOID HOUSINGS
(SAE PAPER 860614)
This paper documents the development of the capability to produce finite element models of alternate trochoid housing configurations. The effort needed to produce these models is greatly reduced by the use of a newly developed specialized finite element preprocessior which is described. The results of static stress comparisons conducted on a Mazda trochoid housing are presented. Planned future development of this modeling capability to operational situations is also presented. Author

A86-47354# Sverdrup Technology, Inc., Cleveland, Ohio.
TORSIONAL VIBRATIONS AND DYNAMIC LOADS IN A BASIC PLANETARY GEAR SYSTEM
R. AUGUST (Sverdrup Technology, Inc., Cleveland, OH) and R. KASUBA (Cleveland State University, OH) ASME, Transactions, Journal of Vibration, Acoustics, Stress, and Reliability in Design (ISSN 0739-3717), vol. 108, July 1986, p. 348-353. Research supported by Cleveland State University. refs
(Contract NAS3-186)
An iterative method has been developed for analyzing dynamic loads in a light weight basic planetary gear system. The effects of fixed, semi-floating, and fully-floating sun gear conditions have been emphasized. The load dependent variable gear mesh stiffness were incorporated into a practical torsional dynamic model of a planetary gear system. The dynamic model consists of input and output units, shafts, and a planetary train. In this model, the sun gear has three degrees of freedom; two transverse and one rotational. The planets, ring gear, and the input and output units have one degree of freedom, (rotation) thus giving a total of nine degrees of freedoms for the basic system. The ring gear has a continuous radial support. The results indicate that the fixed sun gear arrangement with accurate or errorless gearing offers in general better performance than the floating sun gear system. Author

A86-48109# Texas A&M Univ., College Station.
EXPERIMENTAL ROTORDYNAMIC COEFFICIENT RESULTS FOR TEETH-ON-ROTOR AND TEETH-ON-STATOR Labyrinth GAS SEALS
D. W. CHILDS and J. K. SCHRARR (Texas A & M University, College Station) ASME, International Gas Turbine Conference and Exhibit, 31st, Duesseldorf, West Germany, June 8-12, 1986. 6 p. refs
(Contract NAS3-181; F49620-82-K-0033)
(A8SME PAPER 86-GT-12)
An experimental test facility is used to measure the rotordynamic coefficients of teeth-on-rotor and teeth-on-stator labyrinth gas seals. Direct damping coefficients are presented for these seals for the first time. The results are presented for the two seal configurations at identical operating conditions, and show that, in a rotordynamic sense, the teeth-on-stator seal is more stable than the teeth-on-rotor seal, for inlet tangential velocity in the direction of rotation. Author

N86-10551# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
MEASUREMENT OF THE DENSITY OF BASE FLUIDS AT PRESSURES 0.422 TO 2.20 GPA
(NASA-TM-87114; E-2650; NAS 1.15:87114) Avail: NTIS HC A02/MF A01 CSCL 20D
The influence of pressure on the density of six base fluids is experimentally studied for a range of pressures from 0.422 to 2.20 GPa. An important parameter used to describe the results is the change in relative volume with change in pressure dV/dp. For pressures less than the solidification pressure (p ps) a small change in pressure results in a large change in dV/dp. For pressures greater than the solidification pressure (p ps) there is no change in dV/dp with changing pressure. The solidification pressures of the base fluids varies considerably, as do the slopes that the experimental data assumes for p ps. A new formula is developed that describes the effect of pressure on density in terms of four constants. These constants vary for the different base fluids tested. Author

N86-10552# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
THE MECHANISM OF EROSION OF METALLIC MATERIALS UNDER CAVITATION ATTACK
B. C. S. RAO (Case Western Reserve Univ.) and D. H. BUCKLEY 1985 16 p. refs Proposed for presentation at the Intern. Symp. on Cavitation, Sendai, 18-19 Apr. 1986; sponsored by Japan Society of Mechanical Engineers, ASME, Institution of Mechanical Engineers (British), JSCE and International Association for Hydraulic Research
(NASA-TM-87133; E-2685; NAS 1.15:87133) Avail: NTIS HC A02/MF A01 CSCL 11F
The mean depth of penetration rates (MDPRs) of eight polycrystalline metallic materials, Al 6061-T6, Cu, brass, phosphor bronze, Ni, Fe, Mo, and Ti-5AI-2.5Sn exposed to cavitation attack in a viscous mineral oil with a 20 kHz ultrasonic oscillator vibrating at 50 micron amplitude are reported. The titanium alloy followed by molybdenum have large incubation periods and small MDPRs. The incubation periods correlate linearly with the inverse of hardness and the average MDPRs correlate linearly with the inverse of tensile strength of materials. The linear relationships yield better statistical parameters than geometric and exponential relationships. The surface roughness and the ratio of pit depth to pit width (h/a) increase with the duration of cavitation attack. The ratio h/a varies from 0.1 to 0.8 for different materials. Recent investigations (20) using scanning electron microscopy to study deformation and pit formation features are briefly reviewed. Investigations with single crystals indicate that the geometry of pits and erosion are dependent on their orientation. Author

156

LATERAL DAMPERS FOR THRUST BEARINGS Final Report
D. H. HIBNER and D. R. SZAFIR Aug. 1985 79 p refs
(Contract NASA-53929)
(NASA-CR-174924; NAS 1.26:174924; PWA-5866-17) Avail: NTIS HC A05/MF A01 CSCL 131

The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshift, and nonlubricated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face. Author

N86-11475*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PROTECTIVE COATINGS OF METAL SURFACES BY COLD PLASMA TREATMENT
R. MANORY and A. GRILL (Ben Gurion Univ. of the Negev, Beer Sheva) Oct. 1985 15 p refs
(NASA-TM-87152; E-2747-1; NAS 1.15:87152) Avail: NTIS HC A02/MF A01 CSCL 131

The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition technique are discussed in view of this model. Author

N86-1209*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SURFACE FATIGUE LIFE AND FAILURE CHARACTERISTICS OF EX-53, CBS 1000M, AND AISI 9310 GEAR MATERIALS
D. P. TOWNSEND Oct. 1985 14 p refs
(NASA-TP-2513; E-2576; NAS 1.60:2513) Avail: NTIS HC A02/MF A01 CSCL 131

Spur gear endurance tests and rolling-element surface fatigue tests are conducted to investigate EX-53 and CBS 1000M steels for use as advanced application gear materials, to determine their endurance characteristics, and to compare the results with the standard AISI 9310 gear material. The gear pitch diameter is 8.89 cm (3.50 in). Gear test conditions are an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench-type rolling-element fatigue tests are conducted at ambient temperature with a bar specimen speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa (700 ksi). The EX-53 test gears have a surface fatigue life of twice that of the AISI 9310 spur gears. The CBS 1000M test gears have a surface fatigue life of more than twice that of the AISI 9310 spur gears. However, the CBS 1000M gears experience a 30-percent tooth fracture failure which limits its use as a gear material. The rolling-contact fatigue lines of RC bar specimens of EX-53 and AISI 9310 are approximately equal. However, the CBS 1000M RC specimens have a surface fatigue life of about 50 percent that of the AISI 9310. Author

N86-1734*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DESIGN OF TRACTION DRIVES
S. H. LOEWENTHAL and E. V. ZARETSKY Oct. 1985 49 p refs Submitted for publication
(NASA-ARP-1154; E-2143; NAS 1.61:1154) Avail: NTIS HC A03/MF A01 CSCL 131

Traction drives are among the simplest of all speed-changing mechanisms. Because of their simplicity and their ability to smoothly and continuously adjust speed, they are excellent choices for many drive system applications. They have been used in industrial service for more than 100 years. Today's traction drives have power capacities which rival the best gear and belt drives due to modern traction fluids and highly fatigue-resistant bearing steels. This report summarizes methods to analyze and size traction drives. Lubrication principles, contact kinematics, stress, fatigue life, and performance prediction methods are presented. The effects of the lubricant's traction characteristics on life and power loss are discussed. An example problem is given which illustrates the effects of spin on power loss. Loading mechanism design and the design of nonlubricated friction wheels and rings are also treated. Author

N86-1481*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

GEARING
J. J. COY (Army Aviation Research and Technology Activity, Cleveland, Ohio), D. P. TOWNSEND, and E. V. ZARETSKY Dec. 1985 70 p refs
(NASA-AR-1152; E-2003; NAS 1.61:1152; AVSCOM-TR-84-C-15) Avail: NTIS HC A04/MF A01 CSCL 131

Gearing technology in its modern form has a history of only 100 years. However, the earliest form of gearing can probably be traced back to fourth century B.C. Greece. Current gear practice and recent advances in the technology are drawn together. The history of gearing is reviewed briefly in the introduction. Subsequent sections describe types of gearing and their geometry, processing, and manufacture. Both conventional and more recent methods of determining gear stress and deflections are considered. The subjects of life prediction and lubrication are additions to the literature. New and more complete methods of power loss predictions as well as an optimum design of spur gear meshes are described. Conventional and new types of power transmission systems are presented. Author

N86-1481*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PHENOMENOLOGICAL STUDY OF THE BEHAVIOR OF SOME SILICA FORMERS IN A HIGH VELOCITY JET FUEL BURNER
(NASA-TM-87172; E-2711; NAS 1.15:87172; USAAVS-COM-TR-85-C-17) Avail: NTIS HC A03/MF A01 CSCL 131

Samples of four silica formers: single crystal SiC, sintered alpha-SiC, reaction sintered SiN4 and polycrystalline MoSi2 were subjected to a Mach 1 jet fuel burner for 1 hr, at a sample temperature of 1375 deg C (2500 deg F). Two phenomena were identified which may be deleterious to a gas turbine application of these materials. The glass layer formed on the MoSi2 deformed appreciably under the aerodynamic load. A scale developed on the samples of the other materials which consisted of particular matter from the gas stream entrapped in a SiO2 matrix. Author

N86-1740*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ADVANCED SEALS FOR LIQUID OXYGEN (LOX) TURBOPUMPS
W. SHAPIRO, R. HAMM, and J. A. HEMMINGER (NASA. Lewis Research Center, Cleveland, Ohio) In Johns Hopkins Univ. The 1985 JANNAF Propulsion Meeting, Volume 1 p 281-290 Apr. 1985 refs
(Contract NASA-23260)
Avail: Chemical Propulsion Information Agency, Johns Hopkins Rd., Laurel, Md. 20707 HC $78.98 CSCL 11A

Reliability, life and vehicle payload can be enhanced by improved seals on space vehicle propulsion systems. Development of two types of fluid-film seals for application to advanced LOX turbomachines are summarized. The first is a floating ring, helium buffered seal whose function is to exclude intrusion of liquid oxygen (LOX) into the turbine drive. The other is a spiral groove, LOX, face-type configuration designed to break down pressure and minimize leakage of LOX. The Rayleigh-step, floating ring gas face-type configuration designed to break down pressure and assure tracking excursions of the rotor and to overcome Coulomb...
friction between the rings and housings. The design and test results of these buffer seals are described. Results indicate significant performance improvement over seals used on contemporary engines. The possibilities of reducing helium storage requirements and the increasing payload appear promising. A unique configuration of spiral groove LOX seal was required to avoid detrimental vaporization in the flow path. It was found that fluid turbulence and inertia influence groove geometry and in particular groove depth must be much greater than spiral groove seals using conventional fluids.

AUTHOR

N86-19006* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMPLIANT HYDRODYNAMIC FLUID JOURNAL BEARING Patent

E. L. WARREN, inventor (to NASA) 12 Nov. 1985 6 p Filed 24 Apr. 1984

A constitutive lubricant friction model for rolling/sliding concentrated contacts such as gears and cams was developed, based upon the Johnson and Tevaarwerk fluid rheology model developed earlier. The friction model reported herein differs from the earlier rheological models in that very large slip to roll ratios can now be accommodated by modifying the thermal response of the model. Also the elastic response of the fluid has been omitted from the model, thereby making it much simpler for use in the high slip to roll contacts. The effects of this simplification are very minimal on the outcome of the predicted friction losses (less than 1%). In essence then the lubricant friction model developed for the high slip to roll ratios treats the fluid in the concentrated contact as consisting of a nonlinear viscous element that is pressure, temperature, and strain rate dependent in its shear response. The fluid rheological constants required for the prediction of the friction losses at different contact conditions are obtained by traction measurements on several of the currently used gear lubricants. An example calculation, using this model and the fluid parameters obtained from the experiments, shows that it correctly predicts trends and magnitude of gear mesh losses measured elsewhere for the same fluids tested here.

AUTHOR

N86-19616* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EFFECT ON INTERFERENCE FITS ON ROLLER BEARING FATIGUE LIFE

An analysis was performed to determine the effects of inner-ring speed and press fits on roller bearing fatigue life. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner-ring speed and load, and were applied to a conventional roller bearing life analysis. The effect of mean stress was determined using Goodman diagram approach. Hoop stresses caused by press fits and centrifugal force can reduce bearing life by as much as 90 percent. Use of a Goodman diagram predicts life reductions of 20 to 30 percent. The depth of the maximum shear stress remains virtually unchanged.

AUTHOR

N86-20808* General Motors Corp., Indianapolis, Ind. Allison Gas Turbine Div.

ADVANCED GAS TURBINE (AGT) TECHNOLOGY REPORT Annual Report, Jan. - Dec. 1984

Jun. 1985 139 p (Contract DEN3-168; DE-A01-77CS-51040) Avail: NTIS HC A07/MF A01 CSCL 21A

Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and producibility experiments at Pontiac comprised AGT 100 activities of this period, January to December 1984. Two experimental engines were available and allowed the evaluation of eight experimental assemblies. Operating time accumulated was 115 hr of burning and 156 hr total. Total cumulative engine operating time is now 225 hr. Build number 11 and 12 of engine S/N 1 totaled 28 burning hours and constituted a single assembly of the engine core--the combustor, both turbines, and the gearbox. Build number 11 of engine S/N 1 included a 1:07 hr continuous test at 100% gasifier speed (86,000 rpm). Build number 8 of engine S/N 2 was the first engine test with a ceramic turbine rotor. A mechanical loss test of an engine assembly revealed the actual losses to be near the original design allowances. Component development activity included rig testing of the compressor, combustor, and regenerator. Compressor testing was initiated on a rig modified to control the transfer of heat between flow path, lubricating oil, and structure. Results show successful thermal decoupling of the rig and lubricating/cooling oil. Rig evaluation of a reduced-friction compressor was initiated. Combustor testing covered qualification of ceramic parts for engine use, mapping of operating range limits, and evaluation of a relocated igniter plug. Several seal refinements were tested on the hot regenerator rig. An alternate regenerator disk, extruded MAS, was examined and found to be currently inadequate for the AGT 100 application. Also, a new technique for measuring leakage was explored on the regenerator rig. Ceramic component activity has focused on the development of state-of-the-art material strength characteristics in full-scale hardware. Injection-molded sintered alpha-SIC rotors were produced at Carbournum in an extensive process and tool optimization study.

AUTHOR

N86-20809* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ADHESION AND WEAR RESISTANCE OF MATERIALS

D. H. BUCKLEY 1986 30 p refs Proposed for presentation at the Hartstoffschiiren zur Verschleissminderung, Bad Honnef, West Germany, 5-7 May 1986; sponsored by Max-Planck-lnst. fuer Metallforschung (NASA-TM-87239; E-2914; NAS 1.15:87239) Avail: NTIS HC A03/MF A01 CSCL 11H

Recent studies into the nature of bonding at the interface between two solids in contact or a solid and deposited film have provided a better understanding of those properties important to the adhesive wear resistance of materials. Analytical and experimental progress are reviewed. For simple metal systems the adhesive bond forces are related to electronic wave function overlap. With metals in contact with nonmetals, molecular-orbital energy, and density of states, respectively can provide insight into adhesion and wear. Experimental results are presented which correlate adhesive forces measured between solids and the electronic surface structures. Orientation, surface reconstruction, surface segregation, adsorption are all shown to influence adhesive interfacial strength. The interrelationship between adhesion and the degree of perfection of the treated surfaces as well as the life of coatings applied to substrates are discussed. Metallic systems addressed include simple metals and alloys and these materials in contact
with themselves, both oxide and nonoxide ceramics, diamond,
polymers, and inorganic coating compounds, h as diamondlike
carbon.

Author

N86-21856**# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
QUASI-MODAL VIBRATION CONTROL BY MEANS OF ACTIVE
CONTROL BEARING.
K. NONAMI and D. P. FLEMING 1986 12 p refs To be
presented at the International Conference on Rotordynamics,
Tokyo, Japan, 14-17 Sep. 1986; sponsored in part by IFTOMM,
and the Japan Society of Mechanical Engineers
(NASA-TM-87232; E-2889; NAS 1.15:87232) Avail: NTIS HC
A02/MF A01 CSCL 131
This paper investigates a design method of an active control
bearing system with only velocity feedback. The study provides a
new quasi-modal control method for a control system design of
an active control bearing system in which feedback coefficients
are determined on the basis of a modal analysis. Although the
number of sensors and actuators is small, this quasi-modal control
method produces a control effect close to an ideal modal control.

Author

N86-23936**# General Electric Co., Cincinnati, Ohio.
Aircraft
Engine Business Group.
EXTENDED PARAMETRIC REPRESENTATION OF
COMPRESSOR FANS AND TURBINES. VOLUME 1: CMGEN
G. L. CONVERSE and R. G. GIFFIN Mar. 1984 60 p refs 3
Vol. (Contract NAS3-23055)
(NASA-CR-174545; NAS 1.26:174845; R84AE8378-VOL-1)
Avail: NTIS HC A04/MF A01 CSCL 131
A modeling technique for fans, boosters, and compressors has been
developed which will enable the user to obtain consistent and
rapid off-design performance from design point input. The fans and
compressors are assumed to be multi-stage machines incorporating
front variable stators. The boosters are assumed to be fixed geometry
machines. The modeling technique has been incorporated into time-sharing program to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user’s manual. This report is the last of a three volume set describing the parametric representation of compressors, fans, and turbines. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER’s Manual (Parametric Compressor Generator); (2) Volume 2 PART USER’s Manual (parametric Turbine); (3) Volume 3 MODFAN USER’s Manual (Parametric Modulating Flow Fan).

Author

N86-24990**# Akron Univ., Ohio. Dept. of Mechanical Engineering.
SYSTEM LIFE AND RELIABILITY MODELING FOR HELICOPTER
TRANSMISSIONS Final Report
M. SAVAGE and C. K. BRIKMANIS Washington Apr. 1986 202 p refs
(NASA-CR-3967; E-2889; NAS 1.26:3967) Avail: NTIS HC
A10/MF A01 CSCL 05C
A computer program which simulates life and reliability of helicopter transmissions is presented. The helicopter transmissions may be composed of spiral bevel gear units and planetary gear units - alone, in series or in parallel. The spiral bevel gear units may have either single or dual input pinions, which are identical. The planetary gear units may be stepped or unstepped and the number of planet gears carried by the planet arm may be varied. The reliability analysis used in the program is based on the Weibull distribution lives of the transmission components. The computer calculates the system lives and dynamic capacities of the transmission components and the transmission. The system life is defined as the life of the component or transmission at an output torque at which the probability of survival is 90 percent. The dynamic capacity of a component or transmission is defined as the output torque which can be applied for one million output shaft cycles for a probability of survival of 90 percent. A complete summary of the life and dynamic capacity results is produced by the program.

Author

N88-24991**# Irwin (Arthur S.) Co., Inc., Bemus Point, N.Y.
REVIEW AND CRITICAL ANALYSIS: ROLLING-ELEMENT
BEARINGS FOR SYSTEM LIFE AND RELIABILITY Final
Report
A. S. IRWIN, W. J. ANDERSON, and W. J. DERNER Mar. 1985
234 p
(Contract NAS3-23520)
(NASA-CR-174710; NAS 1.26:174710; USAASVCOM-TR-85-F-1)
Avail: NTIS HC A11/MF A01 CSCL 131
A ball and cylindrical roller bearing technical specification which incorporates the latest state-of-the-art advancements was prepared

is the second of a three volume set. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER’s Manual (Parametric Compressor Generator); (2) Volume 2 PART USER’s Manual (Parametric Turbine); (3) Volume 3 MODFAN USER’s Manual (Parametric Modulation Flow Fan).

Author
for the purpose of improving bearing reliability in U.S. Army aircraft. The current U.S. Army aviation bearing designs and applications, including life analyses, were analyzed. A bearing restoration and refurbishment specification was prepared to improve bearing availability.

Author

N86-24992
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TESTING OF YUH-61A HELICOPTER TRANSMISSION IN NASA LEWIS 2240-KW (3000-HP FACILITY
A. M. MITCHELL, F. B. OSWALD, and F. T. SCHULLER. Mar. 1988 28 p refs (NASA-TP-2536; E-2801; NASA 1.60:2538) Avail: NTIS HC A03/MF A01 CSCL 01C

A helicopter transmission that was being considered for the Army's Utility Tactical Transport Aircraft System (UTTAS) was tested in the NASA Lewis 2240-kW (3000-hp) test facility to obtain the transmission's operational data. The results will form a vibration and efficiency data base for evaluation similar-class helicopter transmissions. The transmission's mechanical efficiency was determined to be 98.7 percent at its rated power level of 2080 kW (2792 hp). At power levels up to 113 percent of rated the transmission displayed 56 percent higher vibration acceleration levels on the right input than on the left input. Both vibration signature analysis and visual inspection indicated that the right input spiral-bevel gear had poor contact patterns. The highest vibration meter level was 52 g's rms at the accessory gear, which had free-wheeling gears. At 113 percent power and 100 percent speed, the vibration meter levels generally ranged from 3 to 25 g's rms.

Author

N86-25790
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

VARIABLE FRICTION SECONDARY SEAL FOR FACE SEALS

Vibration and stability of a primary seal ring is controlled by a secondary seal system. An inflatable bladder which forms a portion of the secondary seal varies the damping applied to the seal ring. The amplitude of vibration of the primary seal ring is sensed with a proximity probe that is connected to a microprocessor in a control system. The bladder pressure is changed by the control system to mitigate any sensed instability or vibration.

Official Gazette of the U.S. Patent and Trademark Office

N86-25793
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

GENERATION OF SPIRAL BEVEL GEARS WITH ZERO KINEMATICAL ERRORS AND COMPUTER AIDED TOOTH CONTACT ANALYSIS

Kinematic errors in spiral bevel gears are a major source of noise and vibrations in transmissions. A method for the generation of Gleason's spiral bevel gears which provides conjugated gear teeth surfaces and an improved bearing contact was developed. A computer program for the simulation of meshing, misalignment, and bearing contact was written.

Author

N86-26289

PRELIMINARY EVALUATION OF A COMPOUND CYCLE ENGINE FOR SHIPBOARD GENERSETS
J. G. CASTOR and W. T. WINTUCKY (National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.) June 1986 20 p Supported by NASA. Prepared in cooperation with Naval Ship Research and Development Center, Annapolis, Md. Development Center, Annapolis, Md.

(Contract NAS3-24346)

The results of a thermodynamic cycle (SFC) and weight analysis performed to establish engine configuration, size, weight and performance are reported. Baseline design configuration was a 2000-hp MTBO Compound Cycle Engine (CCE) for a helicopter application. The CCE configuration was extrapolated out to a 10,000 MTBO for a shipboard genset application. The study showed that an advanced diesel engine design (CCE) could be substantially lighter and smaller (79% and 82% respectively) than today's contemporary genset diesel engine. Although the CCE was not optimized, it had about a 7% reduction in mission fuel consumption over today's gensets diesels. The CCE is a turbocharged, power-compounded, high power density, low-compression ratio diesel engine. Major technology development areas are presented.

Author

N86-27840
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

APPLICATION OF LASER ANEMOMETRY TO TURBOMACHINERY FLOW FIELD MEASUREMENTS
J. STRAIZAR, Jr Von Karman Inst. for Fluid Dynamics Measurement Techniques In Turbomachines, Volume 1 122 p 1985
Avail: NTIS HC A18/MF A01

The application of laser anemometry to the measurement of turbomachinery flow fields is reviewed. Choices of optical configuration, seed particle generation, and seed injection techniques are discussed. The modification of experimental facilities to gain optical access is considered. The efficiency of data acquisition schemes is analyzed and issues related to data integrity and error estimation are addressed. Data reduction and analysis techniques for extracting and understanding the flow physics from laser anemometer measurements are presented. (Author ESA)

N86-27843
Rockwell International Corp., Canoga Park, Calif.

SSME LONG-LIFE BEARINGS
M. F. BUTNER and B. T. MURPHY Jul. 1986 183 p (Contract NAS5-23623)

(NASA-CR-179455; NASA 1.26:179455; RI/RD86-188) Avail: NTIS HC A08/MF A01 CSCL 13I

Hybrid hydrostatic/ball bearings for LH2 and LO2 service in turbopumps were studied as a means of improving speed and life capabilities. Four hybrid bearing configurations were designed with emphasis on achieving maximum stiffness and damping. Parallel load bearings were tested at steady-state and transient conditions with LH2 (externally fed) and LN2 (internally fed). The hydrostatic element was tested with Freon 113 for empirical determination of dynamic characteristics. Tests using an eccentric journal for loading showed the externally and internally fed hydrostatic bearings to have significant separated coefficients of direct stiffness and damping. For the internally fed bearing, the strongly speed-dependent cross-coupling stiffness arising from fluid swirl, along with sign damping resulted in poor effective stiffness and damping. The test method used can produce separated coefficients with a sufficiently elliptic journal orbit; otherwise, only net effective coefficients combining direct and cross-coupling terms can be determined. Testing with nonsynchronous excitation is recommended to avoid this restriction. Investigation of hard materials, including ceramics, is recommended as a means of eliminating the need for the rolling bearing for
37 MECHANICAL ENGINEERING

start-up and shutdown support. The testing was performed in 1984 (LH2), 1985 (LH2) and 1985-86 (Freon). Author

N06-27657*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
ELECTRODYNAMIC TETHER TECHNOLOGY CONSIDERATIONS
Avail: NTIS HC A23/MF A01 CSCL 13I

The electrodynamic tether operation was studied. Plasma contactors, power management, and conditioning, and exposure of materials were considered. Multikilowatt electrodynamic tether systems need a variety of supporting technologies in order to be viable. The area of interface between the high voltage end of the electrodynamic tether and the user was not addressed, however, it must be in order for the successful and safe operation of the system.

E.R.

N06-27661*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
NEW METHODOLOGY FOR SHAFT DESIGN BASED ON LIFE EXPECTANCY

The design of gear transmission reliability for shaft has not historically received a great deal of attention. However, weight sensitive aerospace and vehicle applications and those where the penalties of shaft failure are great, require greater confidence in shaft design than earlier methods provided. This report summarizes a fatigue strength-based, design method for designing shafts under variable amplitude loading histories for limited or nonlimited service life. Moreover, applications factors such as press-fitted collars, shaft size, residual stresses from shot peening or plating, corrosive environments can be readily accommodated into the framework of the analysis. Examples are given which illustrate the use of the method, pointing out the large life penalties due to occasional cyclic overloads.

Author

N06-28433*# Cincinnati Univ., Ohio. Dept. of Mechanical and Industrial Engineering.
DYNAMIC LOADING ON PARALLEL SHAFT GEARS Final Report
H. H. (EDWARD) LIN (Memphis State Univ., Tenn.) and R. L. HUSTON Jul. 1986 80 p (Contract NSG-3188)

A computer-based analysis of the dynamic effects of spur gear systems is presented. The method of analysis with its associated computer code is capable of determining the dynamic response of spur gear systems having involute tooth profiles and standard contact ratios. Various parameters affecting the system dynamic behavior are examined. Numerical results of the analysis are compared with semi-empirical formulas, AGMA (American Gear Manufacturers Association) formulas, and experimental data. A close correlation with the experimental data is obtained.

Author

N06-30160*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
INSTABILITY IN ROTATING MACHINERY

The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.

N06-30167*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
TWO-PHASE FLOWS WITHIN SYSTEMS WITH AMBIENT PRESSURE
R. C. HENDRICKS, M. J. BRAIN (Akron Univ., Ohio.), R. L. WHEELER, Ill, and R. L. MULLEN (Case Western Reserve Univ., Cleveland, Ohio.) In its Instability in Rotating Machinery (date) p 83-96 Dec. 1985
Avail: NTIS HC A21/MF A01 CSCL 13I

In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotodynamic-fluid-mechanical restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation for the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

Author

N06-30206*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
FEASIBILITY STUDY OF A DISCRETE BEARING/ROLLER DRIVE ROTARY JOINT FOR THE SPACE STATION

The most critical mechanism on board the proposed space station is the continuously rotating joint which must accurately align the solar power units with the sun during earth orbit. The feasibility of a multiple, discrete bearing supported joint driven by a self-loading, pinch drive actuator was investigated for this application. This concept appears to offer greater protection against catastrophic jamming, less sensitivity to adverse thermal gradients, greater accessibility to inorbit servicing or replacement and greater adaptability to very large (5 m) truss members than to more conventional continuous support bearing/gear reducer joints. Analytical trade studies performed herein establish that a discrete cam roller bearing support system having eight hangers around a continuous ring would provide sufficient radial and bending stiffness to prevent any degradation in the fundamental frequencies of the solar wing structure. Furthermore, it appears that the pinch roller drive mechanism can be readily sized to meet or exceed system performance and service life requirements. Wear life estimates based on experimental data for a steel roller coated with an advanced polyimide film show a continuous service life more than two orders of magnitude greater than required for this application.

Author

N06-31889*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
SURFACE FATIGUE AND FAILURE CHARACTERISTICS OF HOT FORGED POWDER METAL AISI 4620, AISI 4640, AND MACHINED AISI 4340 STEEL SPUR GEARS

Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics
and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground SISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

Author

In a turbine machine, a two component shroud seal which maximizes insulation and sealing around the rotating turbine blades and made by independently fabricating each of the two components then joining them together is disclosed. The two components may be joined together at room temperature. The resulting shroud seal provides greater engine efficiency and thrust. NASA

(NASA-CR-174913; NAS 1.26:174913; RI/RD85-183) Avail: NTIS HC A06/MF A01 CSCL 13K

Six small, low specific speed centrifugal pump configurations were designed, fabricated, and tested. The configurations included shrouded, and 25 and 100% admission open face impellers with 2 inch tip diameters; 25, 50, and 100% emission vaned diffusers; and volutes with conical exits. Impeller tip widths varied from 0.030 inch to 0.052 inch. Design specific speeds (N sub s = RPM/GPM*0.5)/FT*0.75) were 430 (four configurations) and 215 (two configurations). The six configurations were tested with water as the pumped fluid. Noncavitating performance results are presented for the design speed of 24,500 rpm over a flowrate range from 1 to 6 gpm for the N sub s = 430 configurations and test speeds up to 29,000 rpm over a flowrate range from 0.3 to 1.2 gpm for the N sub s = 215 configurations. Cavitation performance results are presented over a flowrate range from 60 to 120% of design flow. Fabrication of the small pump components is also discussed.

Author

(NASA-CR-175709; NAS 1.26:175709; TRC-SEAL-4-86) Avail: NTIS HC A07/MF A01 CSCL 11A

A brief review of current annular seal theory and a discussion of the predicted effect on stiffness of tapering the seal stator are presented. An outline of Nelson's analytical-computational method for determining rotordynamic coefficients for annular compressible-flow seals is included. Modifications to increase the maximum rotor speed of an existing air-seal test apparatus at Texas A&M University are described. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and normalized rotordynamic coefficients, are presented for four convergent-tapered, smooth-rotor, smooth-stator seals. A comparison of the test results shows that an inlet-to-exit clearance ratio of 1.5 to 2.0 provides the maximum direct stiffness, a clearance ratio of 2.5 provides the greatest stability, and a clearance ratio of 1.0 provides the least stability. The experimental results are compared to theoretical results from Nelson's analysis with good agreement. Test results for cross-coupled stiffness show less sensitivity of fluid proration than predicted.

Author

A development program was performed to establish whether a corrosion-resistant bearing material, such as a 14Cr steel, could be modified to allow carburization, thereby providing the excellent fracture toughness characteristics feasible with this process. The alloy selected for investigation was AMS 5749. Several modifications were made including the addition of a small amount of nickel for austenite stabilization. While some promising results were achieved, the primary objective of an acceptable combination of case hardness and microstructure was not attained. Because the high chromium content presents a serious problem in achieving a viable carburizing cycle, a number of experimental steels having lower chromium contents (8 to 12%) were produced in laboratory quantities and evaluated. The results were basically the same as those initially obtained with the modified AMS 5749. Corrosion tests were performed on AMS 5749, AISI M50, and 52100 bearing steels as well as some of the lower chromium steels. These tests showed a reduced chromium level (10 to 12%) provided essentially the same corrosion protection as the 14Cr steels.

Author

38

QUALITY ASSURANCE AND RELIABILITY

Includes product sampling procedures and techniques; and quality control.

Computer implemented phase-slope and cross-correlation methods are introduced for measuring time delays between pairs of broadband ultrasonic pulse-echo signals for determining velocity in engineering materials. The phase-slope and cross-correlation methods are compared with the overlap method which is currently in wide use. Comparison of digital versions of the three methods shows similar results for most materials having low ultrasonic attenuation. However, the cross-correlation method is preferred for highly attenuating materials. An analytical basis for the cross-correlation method is presented. Examples are given for the three methods investigated to measure velocity in representative materials in the megahertz range.

A86-31745# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. RADIOGRAPHIC DETECTABILITY LIMITS FOR SEDDED VOIDS IN SINTERED SILICON CARBIDE AND SILICON NITRIDE G. Y. BAAKLINI, J. R. KISER, and D. J. ROTH (NASA, Lewis Research Center, Cleveland, OH) Advanced Ceramic Materials (ISSN 0883-5551), vol. 1, Jan. 1986, p. 43-49. Previously announced in STAR as A85-21674. refs

Conventional and microfocus X-radiographic techniques were compared to determine relative detectability limits for voids in green and sintered SiC and Si3N4. The relative sensitivity of the
techniques was evaluated by comparing their ability to detect voids that were artificially introduced by a seeding process. For projection microfocus radiography the sensitivity of void detection at a 90% probability of detection/confidence level is 1.3% percent of specimen thickness in sintered SiC and Si3N4. For conventional contact radiography the sensitivity is 2.5 percent of specimen thickness. It appears that microfocus projection radiography is preferable to conventional contact radiography in cases where increased sensitivity is required and where the additional complexity of the technique can be tolerated.

E.A.K.

A86-35575* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

RELIABILITY OF VOID DETECTION IN STRUCTURAL CERAMICS BY USE OF SCANNING LASER ACOUSTIC MICROSCOPY

D. J. ROTH, S. J. KLIMA, J. D. KISER (NASA, Lewis Research Center, Cleveland, OH) and G. Y. BAAKLINI (Cleveland State University, OH) Materials Evaluation (ISSN 0025-5327), vol. 44, April 1986, p. 571-576. ref.

Radiographic, ultrasonic, and scanning laser acoustic microscopy (SLAM) techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high-density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was capable also of detecting voids, inclusions, and cracks in finished test bars. Consideration is given to the potential for applying thermoacoustic microscopy techniques to green and densified ceramics. Some limitations and the detection probability statistics of the aforementioned nondestructive evaluation (NDE) processes are also discussed.

A86-39027* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

QUALITATIVE FLAW CHARACTERIZATION WITH SCANNING LASER ACOUSTIC MICROSCOPY

Surface roughness and diffraction are two factors that have been pointed out to affect the accuracy of flaw characterization using scanning laser acoustic microscopy. Inaccuracies can arise when the surface of the test sample is acoustically rough. It is shown, in this case, Snell's law is no longer valid for determining the direction of sound propagation within the sample. The relationship between the direction of sound propagation within the sample, the apparent flaw depth, and the sample's surface roughness is investigated. Diffraction effects can mask the acoustic images of minute flaws and make it difficult to establish their size, depth, and other characteristics. It is shown that for Fraunhofer diffraction conditions the acoustic image of a subsurface defect corresponds to a two-dimensional Fourier transform. Transforms based on simulated flaws are used to infer the size and shape of the actual flaw.

A86-48143* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NONDESTRUCTIVE TECHNIQUES FOR CHARACTERIZING MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS - AN OVERVIEW

An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural ceramics. The purpose is to review NDE techniques that go beyond the usual emphasis on flow detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor intrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

A86-48298* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ULTRASONIC EVALUATION OF MECHANICAL PROPERTIES OF THICK, MULTILAYERED, FILAMENT WOUND COMPOSITES

H. E. KAUTZ Sep. 1985 36 p refs (NASA-TM-87068; E-2678; NASl 1.5:87086) Avail: NTIS HC A03F 1101 CSCL 1AD

A preliminary investigation is conducted to define capabilities and limitations of ultrasonic and acousto-ultrasonic measurements related to mechanical properties of filament wound graphite/epoxy composite structures. The structures studied are segments of
filament wound cylinders formed of multiple layers of hoop and helical windings. The segments consist of 24 to 35 layers and range from 3.02 to 3.34 cm in wall thickness. The resultant structures are anisotropic, heterogeneous, porous, and highly attenuating to ultrasonic frequencies greater than 1 MHz. The segments represent structures to be used for space shuttle booster casings. Ultrasonic velocity and acousto-ultrasonic stress wave factor measurement approaches are discussed. Correlations among velocity, density, and porosity, and between the acousto-ultrasonic stress wave factor and interlamellar shear strength are presented.

An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor intrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

N86-22962# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. ANALYTICAL ULTRASONIC IN MATERIALS RESEARCH AND TESTING A. VARY Jan. 1986 357 p refs Conference held in Cleveland, Ohio, 13-14 Nov. 1984 (NASA-CP-2383; E-2486; NAS 1.55:2383) Avail: NTIS HC A16/MF A01 CSCL 20A

Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properties, and dynamic response.

The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics.
The acousto-ultrasonic method of nondestructive evaluation is a particularly sensitive means of assessing material response. The far-field displacements in an infinite transversely isotropic elastic medium subjected to an oscillatory concentrated force are derived. The concepts of velocity surface, slowness surface and fracture toughness of polycrystalline solids. The models lead to insights concerning microstructural factors governing fracture processes and associated stress wave interactions. Analysis of the experimental correlations suggested by the models indicate that, in addition to grain size and shape, grain boundary reflections, elastic anisotropy, and dislocation damping are factors that underly both fracture toughness and ultrasonic attenuation. One outcome is that ultrasonic attenuation can predict the size of crack blunting or process zones that develop in the vicinity active cracks in both fracture toughness and ultrasonic attenuation. One outcome is that ultrasonic attenuation can predict the size of crack blunting or process zones that develop in the vicinity active cracks in both fracture toughness and ultrasonic attenuation.

The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acousto-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.
order to achieve the full sensitivity of the technique, extreme care must be taken in its performance. This report provides an update of the efforts to advance the understanding of this method and to increase its application to the nondestructive evaluation of composite materials. Included are descriptions of a novel optical system that is capable of measuring in-plane and out-of-plane displacements, an IBM PC-based data acquisition system, an extensive data analysis software package, the azimuthal variation of acousto-ultrasonic behavior in graphite/epoxy laminates, and preliminary examination of processing variation in graphite-aluminum tubes.

Author

Determination of Grain Size Distribution Function Using Two-Dimensional Fourier Transforms of Tone Pulse Encoded Images

Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain size distribution function from which the mean grain shape, size, and orientation can be obtained.

Author

Factors That Affect Reliability of Nondestructive Detection of Flaws in Structural Ceramics

S. J. Klima, G. Y. BaaKlini (Cleveland State Univ., Ohio), and D. J. Roth 1986 11 p Presented at the 2nd International Symposium on Ceramic Materials and Components for Engines, Luebeck-Travemunde, West Germany, 14-17 Apr. 1986; sponsored by the German Ceramic Society and the American Ceramic Society (NASA-TM-87348; E-3096; NAS 1.15:87348) Avail: NTIS HC A02/MF A01 CSCL 14D

The factors that affect reliability of nondestructive detection of flaws in structural ceramics by microfocus radiography and scanning laser acoustic microscopy (SLAM) were investigated. Reliability of void detection in silicon nitride and silicon carbide by microfocus X-rays was affected by photon energy level, material chemistry in the immediate vicinity of the void, and the presence of loose powder aggregates inside the void cavity. The sensitivity of SLAM to voids was affected by material microstructure, the level of porosity, and the condition of the specimen surfaces. Statistical results are presented in the form of probability of detection as a function of void diameter for green compacts and sintered materials.

Author

Quantitative Void Characterization in Structural Ceramics Using Scanning Laser Acoustic Microscopy

The ability of scanning laser acoustic microscopy (SLAM) to characterize artificially seeded voids in sintered silicon nitride structural ceramic specimens was investigated. Using trigonometric relationships and Airy's diffraction theory, predictions of internal void depth and size were obtained from acoustic diffraction patterns produced by the voids. Agreement was observed between actual and predicted void depths. However, predicted void diameters were generally much greater than actual diameters. Precise diameter predictions are difficult to obtain due to measurement uncertainty and the limitations of 100 MHz SLAM applied to typical ceramic specimens.

Author

39 STRUCTURAL MECHANICS

Includes structural element design and weight analysis; fatigue; and thermal stress.

Finite Elements Based on Consistently Assumed Stresses and Displacements

T. H. H. Pian (MIT, Cambridge, MA) Finite Elements in Analysis and Design (ISSN 0168-874X), vol. 1, Aug. 1985, p. 131-140. (Contract NAG3-33; F33615-83-K-5016)

Finite element stiffness matrices are derived using an extended Hellinger-Reissner principle in which internal displacements are added to serve as Lagrange multipliers to introduce the equilibrium constraint in each element. In a consistent formulation the assumed stresses are initially unconstrained and complete polynomials and the total displacements are also complete such that the corresponding strains are complete in the same order as the stresses. Several examples indicate that resulting properties for elements constructed by this consistent formulation are ideal and are less sensitive to distortions of element geometries. The method has been used to find the optimal stress terms for plane elements, 3-D solids, axisymmetric solids, and plate bending elements.

Author

Wide-Range Displacement Expressions for Standard Fracture Mechanics Specimens

J. A. Kapp (U.S. Army, Benet Weapons Laboratory, Watervliet, NY), B. Gross (NASA, Lewis Research Center, Cleveland, OH), and G. S. Legier (U.S. Army Armament Research and Development Command, Watervliet, NY) Wide-range algebraic expressions for the displacement of cracked fracture mechanics specimens are developed. For each specimen two equations are given: one for the displacement as a function of crack length, the other for crack length as a function of displacement. All the specimens that appear in ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399) are represented in addition to the crack mouth displacement for a
pure bending specimen. For the compact tension sample and the disk-shaped compact tension sample, the displacement at the crack mouth and at the load line are both considered. Only the crack mouth displacements for the arc-shaped tension samples are presented. The agreement between the displacements or crack lengths predicted by the various equations and the corresponding numerical data from which they were developed are nominally about 3 percent or better. These expressions should be useful in all types of fracture testing including fracture toughness, K-resistance, and fatigue crack growth. Author

A86-20709* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

WIDE-RANGE WEIGHT FUNCTIONS FOR THE STRIP WITH A SINGLE EDGE CRACK

A closed form expression for the weight function for a strip with a single edge crack is presented. The expression is valid for relative crack lengths from zero to unity. It is based on the assumption that the shape of an opened edge crack can be approximated by a conic section. The results agree well with published values for weight functions, stress intensity factors, and crack mouth opening displacements. S.L.

A86-20710* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ANALYSIS OF AN EXTERNALLY RADially CRACK RING SEGMENT SUBJECT TO THREE-POINT RADIAL LOADING

The boundary collocation method was used to generate Mode I stress intensity and crack mouth opening displacement coefficients for externally radially (through-the-thickness) cracked ring segments subjected to three-point radial loading. Numerical results were obtained for ring segment outer-to-inner radius ratios (Ro/Ri) ranging from 1.10 to 2.50 and crack length to segment width ratios (a/W) ranging from 0.1 to 0.8. Stress intensity and crack mouth displacement coefficients were found to depend on the ratios Ro/Ri and a/W as well as the included angle between the directions of the reaction forces. S.L.

A86-22084* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NASA LEWIS RESEARCH CENTER/UNIVERSITY GRADUATE RESEARCH PROGRAM ON ENGINE STRUCTURES

A three-dimensional, hexahedral isoparametric element of the hybrid-stress model is formulated on the basis of the Hellinger-Reissner variational principle. Traction-free edges, cutouts, and crack surfaces are modeled by imposition of exact traction boundary conditions along element surfaces. Special boundary and surface elements are constructed by introducing proper constraints on assumed stress functions. The Lagrangian multiplier technique is used to enforce p.y.-interface continuity conditions in hybrid bimaterial composite elements for modeling the interface region in a composite laminate. Two examples are given to illustrate the capability of the present method of approach: (1) the well-known delamination problem in an angle-ply laminate, and (2) the important problem of a composite laminate containing a circular hole. Results are presented in detail for each case. Implications of interlaminar and intralaminar crack initiation, growth and fracture in composites containing cracks and cutouts are discussed. Author

A86-22086* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THREE-DIMENSIONAL HYBRID-STRESS FINITE ELEMENT ANALYSIS OF COMPOSITE LAMINATES WITH CRACKS AND CUTOUTS

NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described. S.L.

A86-24219* Syracuse Univ., N. Y.

SHEAR FATIGUE CRACK GROWTH - A LITERATURE SURVEY

H. W. LIU (Syracuse University, NY) Fatigue and Fracture of Engineering Materials and Structures (ISSN 0750-799X), vol. 8, no. 4, 1985, p. 295-313. refs

Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail. C.D.

A86-26589* Akron Univ., Ohio.

REFERNCES AND HIERARCHICAL IMPLICIT DYNAMIC LEAST-SQUARE SOLUTION

J. PADOVAN and J. LACKNEY (Akron, University, OH) Computers and Structures (ISSN 0045-7949), vol. 22, no. 3, 1986, p. 479-489. refs

This paper develops an implicit type transient solution strategy which possesses hierarchical levels of application. In particular, due to the manner of formulation, stiffness updating, assembly inversion, solution constraint, as well as iteration are all performed at a localized level. The level of iterative calculations depends on the type of hierarchical partitioning employed, namely degree of freedom, nodal, elemental, material/nonlinear group, substructural, and so on. Since the iterative solution process and application of constraints are applied at a local level, the resulting so-called hierarchical implicit solution algorithm possesses very stable and efficient numerical properties and is highly storage efficient. To demonstrate the scheme, the results of several benchmark examples are presented. These enable comparisons with the Newton-Raphson solved implicit transient solution method. Overall the comparisons illustrate the superior stability and efficiency of the hierarchical scheme. Author

THREE-DIMENSIONAL HYBRID-STRESS FINITE ELEMENT ANALYSIS OF COMPOSITE LAMINATES WITH CRACKS AND CUTOUTS

A three-dimensional hybrid-stress finite element analysis of composite laminates containing cutouts and cracks is presented. Fully three-dimensional, hexahedral isoparametric elements of the hybrid-stress model are formulated on the basis of the Hellinger-Reissner variational principle. Traction-free edges, cutouts, and crack surfaces are modeled by imposition of exact traction boundary conditions along element surfaces. Special boundary and surface elements are constructed by introducing proper constraints on assumed stress functions. The Lagrangian multiplier technique is used to enforce p.y.-interface continuity conditions in hybrid bimaterial composite elements for modeling the interface region in a composite laminate. Two examples are given to illustrate the capability of the present method of approach: (1) the well-known delamination problem in an angle-ply laminate, and (2) the important problem of a composite laminate containing a circular hole. Results are presented in detail for each case. Implications of interlaminar and intralaminar crack initiation, growth and fracture in composites containing cracks and cutouts are discussed. Author

167
The efficient low order ARMA algorithm is preceded by the determination of a suitable high order autoregressive (AR) simulation algorithm. The numerical results are presented in a dimensionless form. Thus, they are applicable for any scale of turbulence.

A86-28655	MARC Analysis Research Corp., Palo Alto, Calif.
EFFICIENT ALGORITHMS FOR USE IN PROBABILISTIC FINITE ELEMENT ANALYSIS
---|---
---|---
(Contract NAS3-24389)
---|---
This paper investigates the use of Fast Probability Integration (FPI) algorithms in a Finite Element environment. A method allowing the representation of correlated fields in terms of a vector of uncorrelated transformed variables, based on the spectral decomposition of the variance-covariance matrix is developed. The response of the deterministic model corresponding to selected perturbations of these uncorrelated variables is then obtained via a Newton-type iterative scheme. The results of the perturbed problems are used to construct a local representation of the model's behavior in a neighborhood of the deterministic state, which the FPI algorithm will use to estimate the reliability of the system. Although the proposed strategy has thus far only been applied to linear elastostatics, the extension of the method to a broader class of problems appears to be possible.

---|---
A86-28653	Northwestern Univ., Evanston, Ill.
PROBABILISTIC FINITE ELEMENTS FOR TRANSIENT ANALYSIS IN NONLINEAR CONTINUUM
---|---
---|---
(Contract NAG3-536)
---|---
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by a computer application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

---|---
A86-28654	Rice Univ., Houston, Tex.
NUMERICAL SYNTHESIS OF TRI-VARIATE VELOCITY REALIZATIONS OF TURBULENCE
---|---
P.-T. D. SPANOS (Rice University, Houston, TX) and K. P. SCHULTZ (Lockheed Engineering and Management Services Co., Houston, TX) IN: Advances in aerospace structural analysis; Proceedings of the Winter Annual Meeting, Miami Beach, FL, November 17-22, 1985. New York, American Society of Mechanical Engineers, 1985, p. 35-55. refs
---|---
(Contract NAG3-210)
---|---
An approach for synthesizing trivariate velocity field space realizations is presented. Some of the spatial frequency characteristics of the random velocity field are described by the von Karman spectrum. The simulation algorithm is based on an efficient autoregressive-moving average (ARMA) scheme involving coefficient square matrices of order three. The determination of the spatially correlated random velocities is illustrated for a hypothetical case.

---|---
A86-34257	Virginia Polytechnic Inst. and State Univ., Blacksburg.
FACTORS INFLUENCING THE ULTRASONIC STRESS WAVE FACTOR EVALUATION OF COMPOSITE MATERIAL STRUCTURES
---|---
C. J. REBELLO (National Technical Systems, Hartwood, VA) and J. C. DUKE, JR. (Virginia Polytechnic Institute and State University, Blacksburg) Journal of Composites Technology and Research (ISSN 0885-6804), vol. 8, Spring 1986, p. 18-23. refs
---|---
(Contract NAG3-323)
---|---
To demonstrate that the finite-element model can be used to investigate some of the factors influencing the ultrasonic stress wave evaluation of materials, a hypothetical case was studied in which classical vibration theory was used. Vibration analysis and experiments for the undamaged case were conducted on an isotropic aluminum plate and a unidirectional graphite-epoxy plate, using a point source to excite the plates. The finite-element solution correlated within eight percent with the exact method. The frequencies predicted by the finite-element model were observed in the experiments in both plates, although in the composite plate, additional frequencies were observed which could not be accounted for. Damaged isotropic plates were also considered. The effects of increasing damage severity with constant damage area, and
increasing damage area with constant severity on the resonant frequencies were analyzed.

A86-34444*# United Technologies Corp., East Hartford, Conn.
STRESS ANALYSIS OF GAS TURBINE ENGINE STRUCTURES USING THE BOUNDARY ELEMENT METHOD

The theory of the boundary element method is briefly reviewed with particular reference to the feasibility of elastic and inelastic three-dimensional stress analysis of complex structures characteristic of gas turbine engine components. Particular requirements of gas turbine analysis are defined, and examples of the use of a boundary element code designed for the three-dimensional stress analysis of turbine components are presented. It is shown that the general-purpose boundary element code can accurately and efficiently analyze many of the gas turbine engine structures.

A86-34445*# State Univ. of New York, Buffalo. ADVANCED THREE-DIMENSIONAL DYNAMIC ANALYSIS BY BOUNDARY ELEMENT METHODS

Advanced formulations of boundary element method for periodic, transient transform domain and transient time domain solution of three-dimensional solids have been implemented using a family of isoparametric boundary elements. The necessary numerical integration techniques as well as the various solution algorithms are described. The developed analysis has been incorporated in a fully general purpose computer program BEST3D which can handle up to 10 subregions. A number of numerical examples are presented to demonstrate the accuracy of the dynamic analyses.

A86-34461*# MARC Analysis Research Corp., Palo Alto, Calif. ITERATIVE METHODS FOR MIXED FINITE ELEMENT EQUATIONS

Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

A86-34462*# Massachusetts Inst. of Tech., Cambridge. HYBRID SOLID ELEMENT WITH A TRACTION-FREE CYLINDRICAL SURFACE

An eight node solid element with two parallel faces and one traction-free cylindrical surface is derived using the assumed stress hybrid method. Cylindrical coordinates are used so that the assumed stresses satisfy the equilibrium equations as well as the traction-free condition over the cylindrical boundary. In the limiting case of plane stress conditions the assumed stresses also satisfy compatibility conditions. Example solutions have demonstrated the advantage of using this special element for analyzing solids with circular holes.

A86-34464*# Georgia Inst. of Tech., Atlanta. EXISTENCE AND STABILITY, AND DISCRETE BB AND RANK CONDITIONS, FOR GENERAL MIXED-HYBRID FINITE ELEMENTS IN ELASTICITY

In this paper, all possible forms of mixed-hybrid finite element methods that are based on multi-field variational principles are examined as to the conditions for existence, stability, and uniqueness of their solutions. The reasons as to why certain 'simplified hybrid-mixed methods' in general, and the so-called 'simplified hybrid-displacement method' in particular (based on the so-called simplified variational principles), become unstable, are discussed. A comprehensive discussion of the 'discrete' BB-conditions, and the rank conditions, of the matrices arising in mixed-hybrid methods, is given. Some recent studies aimed at the assurance of such rank conditions, and the related problem of the avoidance of spurious kinematic modes, are presented.

A86-37799* Akron Univ., Ohio. INELASTIC HIGH-TEMPERATURE THERMOMECHANICAL RESPONSE OF CERAMIC COATED GAS TURBINE SEALS
J. PADDOYAN (Akron, University, OH), D. DOUGHERTY (General Tire and Rubber Co., Akron, OH), and B. HENDRICKS (NASA, Lewis Research Center, Cleveland, OH) IN: Journal of Thermal Stresses (ISSN 0149-5739), vol. 9, no. 1, 1986, p. 31-43. refs (Contract NAG3-265)

Through the use of a constrained Newton-Raphson time stepping finite element scheme, the inelastic thermomechanical response of ceramic coated gas turbine parts is considered. Due to the generality of the solution procedure developed, the combined thermoelastic-plastic-creep properties associated with ceramics is treated. This includes the handling of temperature-dependent elastic-plastic creep and thermal material properties. To illustrate the procedure, the thermomechanical response of ceramic coated outer gas path seals is considered. This includes the evaluation of time-dependent thermal ratcheting and its concomitant residual stress and strain fields.
39 STRUCTURAL MECHANICS

A86-38838*# Georgia Inst. of Tech., Atlanta.
BOUNDING SOLUTIONS OF GEOMETRICALLY NONLINEAR VISCOELASTIC PROBLEMS
(AIAA PAPER 86-0943)

Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible. Author

A86-38842*# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
COMPOSITE SANDWICH THERMOSTRUCTURAL BEHAVIOR - COMPUTATIONAL SIMULATION

Computational methods have been developed for simulating the thermomechanical behavior of composite sandwiches, in which the analyses with several levels of progressive sophistication were used in conjunction with composite hydrothermomechanical theory. The sophistication levels include: (1) three-dimensional detailed finite element modeling of the honeycomb, the adhesive, and the composite faces; (2) three-dimensional finite element modeling assuming a homogeneous core; (3) laminate theory simulation; and (4) simple equations for predicting the equivalent properties of the honeycomb core. These levels have been packaged into a procedure embedded in a computer code streamlined for the simulation of the composite sandwich hygrothermal and structural behavior. It is shown that in order to properly simulate the thermomechanical response of the composite sandwich, all the honeycomb thermal and mechanical properties must be used. I.S.

A86-38873*# Ohio State Univ., Columbus.
COMPUTER AIDED DERIVATION OF EQUATIONS FOR COMPOSITE MECHANICS PROBLEMS AND FINITE ELEMENT ANALYSES

Explicit equations are derived for analysis of multilayered fiber composites and for finite element analyses. The equations are obtained using a symbolic program and tested for various composite properties as well as for different fiber orientations. In order to analyze multilayered fiber composite structures, a variable thickness finite element is formulated. Examples of an airfoil geometry, simulated in a form of a cantilevered beam with various fiber orientations are studied. Author

A86-39485*# Duke Univ., Durham, N. C.
FREQUENCY DOMAIN SOLUTIONS TO MULTI-DEGREE-OF-FREEDOM, DRY FRICITION DAMPED SYSTEMS UNDER PERIODIC EXCITATION
A. A. FERRI (Georgia Institute of Technology, Atlanta) ASME. Transactions, Journal of Applied Mechanics (ISSN 0021-8936), vol. 53, June 1986, p. 455-457. refs (Contract AF-AFOSR-83-0348; NAG3-516)

The anticipated low damping level in large space structures (LSS) has been a major concern for the designers of these structures. Low damping degrades the free response and complicates the design of shape and attitude controllers for flexible spacecraft. Dry friction damping has been considered as a means of increasing the passive damping of LSS, by placing it in the joints and connecting junctures of structures. However, dry friction is highly nonlinear and, hence, analytical investigations are difficult to perform. Here, a multi-harmonic, frequency domain solution technique is developed and applied to a multi-DOF, dry friction damped system. It is seen that the multi-harmonic method is much more accurate than traditional, one harmonic solution methods. The method also compares well with time integration. Finally, comparisons are made with experimental results. Author

A86-40605*# Georgia Inst. of Tech., Atlanta.
ON THE EQUIVALENCE OF THE INCREMENTAL HARMONIC BALANCE METHOD AND THE HARMONIC BALANCE-NEWTON RAPHSON METHOD
A. A. FERRI (Georgia Institute of Technology, Atlanta) ASME. Transactions, Journal of Applied Mechanics (ISSN 0021-8936), vol. 53, June 1986, p. 545-547. refs (Contract NAG3-516)

Using the concept of an internal time as related to plastic strains, a differential stress-strain relation for elastoplasticity is rederived, such that (1) the concept of a yield-surface is retained; (2) the definitions of elastic and plastic processes are analogous to those in classical plasticity theory; and (3) its computational implementation, via a "tangent-stiffness" finite element method and a "generalized-midpoint-radial-return" stress-integration algorithm, is simple and efficient. Also, using the concept of an internal time, as related to both the inelastic strains as well as the Newtonian time, a constitutive model for creep-plasticity interaction, is discussed. The problem of modeling experimental data for plasticity and creep, by the present analytical relations, as accurately as
A86-43566* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

MODE II FATIGUE CRACK GROWTH SPECIMEN DEVELOPMENT

A Mode II test specimen was developed which has potential application in understanding phenomena associated with mixed mode fatigue failures in high performance aircraft engine bearing races. The attributes of the specimen are: it contains one single ended notch, which simplifies data gathering and reduction; the fatigue crack grows in-line with the direction of load application; a single axis test machine is sufficient to perform testing; and the Mode I component is vanishingly small. Author

A86-43771* Akron Univ., Ohio.

LOCALLY BOUND CONSTRAINED NEWTON-RAPHSON SOLUTION ALGORITHMS
J. PADOVAN and R. MOSCARELLO (Akron, University, OH) Computers and Structures (ISSN 0045-7949), vol. 23, no. 2, 1986, p. 181-197. refs (Contract NAG3-54)

This paper develops strategies which enable the automatic adjustment of the constraint surfaces recently used to extend the range and numerical stability/efficiency of nonlinear finite-element equation solvers. In addition to handling kinematic and material induced nonlinearity, both pre- and postbuckling behavior can be treated. The scheme developed employs localized bounds on various hierarchical partitions of the field variables. These are used to resize, shape, and orient the global constraint surface, thereby enabling essentially automatic load/deflection incrementation. Due to the generality of the approach taken, it can be implemented in conjunction with constraints of arbitrary functional type. To benchmark the method, several numerical experiments are presented. These include problems involving kinematic and material nonlinearity, as well as pre- and postbuckling characteristics. Author

A86-43774* Akron Univ., Ohio.

CONSTRAINED HIERARCHICAL LEAST SQUARE NONLINEAR EQUATION SOLVERS
J. PADOVAN and J. LACKNEY (Akron, University, OH) Computers and Structures (ISSN 0045-7949), vol. 23, no. 2, 1986, p. 251-263. refs (Contract NSG-3283)

The current paper develops a constrained hierarchical least square nonlinear equation solver. The procedure can handle the response behavior of systems which possess indefinite tangent stiffness characteristics. Due to the generality of the scheme, this can be achieved at various hierarchical application levels. For instance, in the case of finite element simulations, various combinations of either degree of freedom, nodal, elemental, substructural, and global level iterations are possible. Overall, this enables a solution methodology which is highly stable and storage efficient. To demonstrate the capability of the constrained hierarchical least square methodology, benchmarking examples are presented which treat structure exhibiting highly nonlinear pre- and postbuckling behavior wherein several indefinite stiffness transitions occur. Author

A86-44339* Syracuse Univ., N. Y.

FATIGUE CRACK GROWTH UNDER GENERAL-YIELDING CYCLIC-LOADING

In low cycle fatigue, cracks are initiated, and propagated under general-yielding cyclic loading. For general-yielding cyclic loading, Dowling and Begley (1976) have shown that fatigue crack growth rate correlates well with the measured Delta J. The correlation of da/dN with Delta J has also been studied by a number of other investigators. However, none of these studies has correlated da/dN with Delta J calculated specifically for the test specimens. Solomon measured fatigue crack growth in specimens in general-yielding cyclic loading. The crack tip fields for Solomon's specimens are calculated, using the finite element method, and the J-values of Solomon's tests are evaluated. The measured crack growth rate in Solomon's specimens correlates very well with the calculated Delta J. Author

A86-48245* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

MASS BALANCING OF HOLLOW FAN BLADES

A typical section model is used to analytically investigate the effect of mass balancing as applied to hollow, supersonic fan blades. A procedure to determine the best configuration of an internal balancing mass to provide flutter alleviation is developed. This procedure is applied to a typical supersonic shroudless fan blade which is unstable in both the solid configuration and when it is hollow with no balancing mass. The addition of an optimized balancing mass is shown to stabilize the blade at the design condition. Author

A86-48271* Princeton Univ., N. J.

AEROELASTIC BEHAVIOR OF LOW ASPECT RATIO METAL AND COMPOSITE BLADES

The aeroelastic stability of titanium and composite blades of low aspect ratio is examined over a range of design parameters, using a Rayleigh-Ritz formulation. The blade modes include a plate-type mode to account for chordwise bending. Chordwise flexibility is found to have a significant effect on the uninstalled supersonic flutter of low aspect ratio blades, and also on the stability of tip sections of shrouded fan blades. For blades with a thickness of less than approximately four percent of chord, the chordwise, second bending, and first torsion branches are all unstable at moderately high supersonic Mach numbers. For composite blades, the important structural coupling between bending and torsion cannot be modeled properly unless chordwise bending is accounted for. Typically, aft fiber sweep produces beneficial bending/torsion coupling that is stabilizing, whereas forward fiber sweep has the opposite effect. By using crossed-ply laminate configurations, critical aeroelastic modes can be stabilized. Author
STRUCTURAL MECHANICS

A86-49133# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

UNIFIED CONSTITUTIVE MATERIALS MODEL DEVELOPMENT AND EVALUATION FOR HIGH-TEMPERATURE STRUCTURAL ANAYLSIS APPLICATIONS

Unified constitutive material models were developed for structural analyses of aircraft gas turbine engine hot section components with particular application to an isotropic material used for combustor liners. Differential forms of models independently developed were considered in this study. These models combine the interactions of time-dependent (creep) and time-independent (plasticity) inelastic behavior of a material. Predicted stress-strain responses from these models were evaluated against cyclic isothermal and nonisothermal test results for uniaxial specimens of a nickel-base superalloy. The unified models were implemented in a nonlinear structural analysis code. Two unique NASA Lewis test facilities were used in the evaluation of the models for complex geometry specimens and evaluation of advanced temperature and high-temperature strain measurement instrumentation. Predicted nonlinear structural responses from one of the models for a flat plate and a segment of a conventional combustor liner are presented. Author

N86-10579# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

JOINT RESEARCH EFFORT ON VIBRATIONS OF TWISTED PLATES, PHASE 1: FINAL RESULTS

(NASA-RP-1150; E-2576; NAS 1.61:1150) Avail: NTIS HC

05/MF A01 CSCL 20K

The complete theoretical and experimental results of the first phase of a joint government/industry/university research study on the vibration characteristics of twisted cantilever plates are given. The study is conducted to generate an experimental data base and to compare many different theoretical methods with each other and with the experimental results. Plates with aspect ratios, thickness ratios, and twist angles representative of current gas turbine engine blading are investigated. The theoretical results are generated by numerous finite element, shell, and beam analysis methods. The experimental results are obtained by precision matching a set of twisted plates and testing them at two laboratories. The second and final phase of the study will concern the effects of rotation. Author

N86-10582# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

IMPROVED STUD CONFIGURATIONS FOR ATTACHING LAMINATED WOOD WIND TURBINE BLADES Final Report

J. R. FADOU1 Sep. 1985 29 p refs (Contract DE-AI01-75ET-20320)

(NASA-TM-87109; DOE/NASA/20320-66; E-2709; NAS 1.5:87109) Avail: NTIS HC

A03/MF A01 CSCL 21E

A series of bonded stud design configurations was screened on the basis of tension-tension cyclic tests to determine the structural capability of each configuration for joining a laminated wood structure (wind turbine blade) to a steel flange (wind turbine hub). Design parameters which affected the joint strength (ultimate and fatigue) were systematically varied and evaluated through appropriate testing. Two designs showing the most promise were used to fabricate additional test specimens to determine ultimate strength and fatigue curves. Test results for the bonded stud designs demonstrated that joint strengths approaching the 10,000 to 12,000 psi ultimate strength and 5000 psi high cycle fatigue strength of the wood epoxy composite could be achieved. Author

N86-10588# Georgia Inst. of Tech., Atlanta. ANALYSIS OF LARGE, NON-ISOTHERMAL ELASTO-VISCO-PLASTIC DEFORMATIONS

R. RIFF, R. L. CARLSON, and G. J. SIMITSES 1984 4 p refs

Contract NAG3-534

(NASA-CR-176220; NAS 1.26:176220) Avail: NTIS HC

A02/MF A01 CSCL 20K

The development of a general mathematical model and solutions of test problems to analyze large nonisothermal elastovo-visorplastic deformations of structures is discussed. Geometric and material type nonlinearities of higher order are present in the development of the mathematical model and in the developed solution methodology. DOE

N86-10589# Southwest Research Inst., San Antonio, Tex. CONSTITUTIVE MODELING FOR ISOTROPIC MATERIALS (HOST) Annual Status Report

(Contract NAS-23925)

(NASA-CR-174980; NAS 1.26:174980; SWRI-7576/30; ASR-2)

Avail: NTIS HC

A09/MF A01 CSCL 20K

This report presents the results of the second year of work on a problem which is part of the NASA HOST Program. Its goal is: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and Walker. For model evaluation purposes, a large constitutive data base is generated for a B1900 + Hf alloy by performing uniaxial tensile, creep, cyclic, stress relation, and thermomechanical fatigue (TMF) tests as well as biaxial (tension/torsion) tests under proportional and nonproportional loading over a wide range of strain rates and temperatures. Systematic approaches for evaluating material constants from a small subset of the data base are developed. Correlations of the uniaxial and biaxial tests data with the theories of Bodner-Partom and Walker are performed to establish the accuracy, range of applicability, and integrity of the models. Both models are implemented in the MARC finite element computer code and used for TMF analyses. Benchmark notch round experiments are conducted and the results compared with finite-element analyses using the MARC code and the Walker model. Author

N86-11495# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TURBINE ENGINE HOT SECTION TECHNOLOGY (HOST) Work Report

(NASA-CP-2289; E-1816; NAS 1.5:2289) Avail: NTIS HC

A11/MF A01 CSCL 21E

A two-day workshop to update the research and plans for turbine engine hot section durability problems was held on October 25 and 26, 1983, at the NASA Lewis Research Center. Presentations were made during six sessions, including structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation, that dealt with the thermal and fluid environment around liners, blades, and vanes, and with material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components. The principal objective of each session was to disseminate the research results to date, along with future plans, in each of the six areas. Contract and government researchers presented results of their work.
N88-11496*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TURBINE ENGINE HOT SECTION TECHNOLOGY (HOST) PROJECT
Avail: NTIS HC A11/MF A01 CSCL 21E

The Hot Section Technology (HOST) Project is a NASA-sponsored endeavor to improve the durability of advanced gas turbine engines for commercial and military aircraft. Through improvements in the analytical models and life prediction systems, designs for future hot section components, the combustor and turbine, will be more accurately analyzed and will incorporate features required for longer life in the more hostile operating environment of high performance engines.

G.L.C.

N88-11501*# United Technologies Research Center, East Hartford, Conn.

DEMONSTRATION TEST OF BURNER LINER STRAIN MEASUREMENT SYSTEMS: INTERIM RESULTS
(Contract NAS3-23690)
Avail: NTIS HC A11/MF A01 CSCL 20K

Work is in progress to demonstrate two techniques for static strain measurements on a jet engine burner liner. Measurements are being made with a set of resistance strain gages made from Kanthal A-1 wire and via heterodyne speckle photogrammetry. The background of the program is presented along with current results.

Author

BURNER LINER THERMAL/STRUCTURAL LOAD MODELLING
(Contract NAS3-23272)
Avail: NTIS HC A11/MF A01 CSCL 20K

The objective of this program is to develop a thermal data transfer computer program module for the burner liner thermal structural load modeling program. This will be accomplished by (1) reviewing existing methodologies for thermal data transfer and selecting three heat transfer codes for application in this program; (2) evaluating the selected codes to establish criteria for developing a computer program module to transfer thermal data from the heat transfer codes to selected stress analysis codes; (3) developing the automated thermal load transfer module; and (4) verification and documentation in a report. In this effort, hot section components, cyclic thermal stresses are the most important damage mechanism. Consequently, accurate and reliable prediction of thermal loads is essential to improving durability. To achieve this goal, a considerable effort over the past 20 years has been devoted to the acquisition of engine temperature test data, as well as the development of accurate, reliable, and efficient computer codes for the prediction of steady state and transient temperatures and for the calculation of elastic and inelastic cyclic stresses and strains in hot section components. There is a need for continued development of these codes, because the availability of more accurate analysis techniques for complex configurations has enabled engine designers to use more sophisticated designs to achieve higher cycle efficiency and reduce weight. Author

N88-11518*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

VALIDATION OF STRUCTURAL ANALYSIS METHODS USING BURNER LINER CYCLIC RIG TEST DATA
Avail: NTIS HC A11/MF A01 CSCL 20K

The objectives of the hot section technology (HOST) burner liner cyclic rig test program are basically threefold: (1) to assist in developing predictive tools needed to improve design analyses and procedures for the efficient and accurate prediction of burner liner structural response; (2) to calibrate, evaluate, and validate the predictive tools by comparing the predicted results with the experimental data generated in the tests; and (3) to evaluate existing as well as advanced temperature and strain measurement instrumentation, both contact and noncontact, in a simulated engine cycle environment. The data generated will include measurements of the thermal environment (metal surface temperatures) as well as structural (strain) and life (fatigue) responses of simulated burner liners and specimens under controlled boundary and operating conditions. These data will be used to calibrate, compare, and validate analytical theories, methodologies and design procedures, as well as improvements in them, for predicting liner temperatures, stress-strain responses and cycles to failure. Comparison of predicted results with experimental data will be used to show where the predictive theories, etc. need improvements. In addition, as the predictive tools, as well as the tests, test methods, and data acquisition and reduction techniques, are developed and validated, a proven, integrated analysis/experiment method will be developed to determine the cyclic life of a simulated burner liner. Author

N88-11519*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

HOST LINER CYCLIC FACILITIES
Avail: NTIS HC A11/MF A01 CSCL 20K

The HOST Liner Cyclic Program is utilizing two types of test apparatus, rectangular box rigs and a full annular rig. To date two quartz lamp cyclic box rigs have been tested and a third is to begin testing in late October 1983. The box rigs are used to evaluate 5x8 inch rectangular linear samples. A 21 inch diameter outer liner simulator is also being built up for testing beginning in April 1984. All rigs are atmospheric rigs. The first box rig, a three 6-kVA lamp installation, was operated under adverse conditions to determine feasibility of using quartz lamps for cyclic testing. This work was done in December 1981 and looked promising. The second box rig, again using three 6-kVA lamps, was operated to obtain instrumentation durability information and initial data input to a Finite Element Model. This limited test program was conducted in August 1983. Five test plates were run. Instrumentation consisted of strain gages, thermocouples and thermal paint. The strain gages were found to fail at 1200 F as expected though plates were heated to 1700 F. The third box rig, containing four 6-kVA lamps, is in build up for testing to begin in late October 1983. In addition to 33 percent greater power input, this rig has provision for 400 F backside line cooling air and a viewing port suitable for IR camera viewing. The casing is also water cooled for extended durability. Author

N88-11520*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

LIFE PREDICTION AND CONSTITUTIVE BEHAVIOR
Avail: NTIS HC A11/MF A01 CSCL 20K

One of the primary drivers that prompted the initiation of the hot section technology (HOST) program was the recognized need for improved cyclic durability of costly hot section components. All too frequently, fatigue in one form or another was directly responsible for the less than desired durability, and prospects for the future weren't going to improve unless a significant effort was mounted to increase our knowledge and understanding of the elements governing cyclic crack initiation and propagation lifetime. Certainly one of the important factors is the ability to perform accurate structural stress-strain analyses on a routine basis to determine the magnitudes of the localized stresses and strains since these localized conditions that govern the initiation and crack growth processes. Developing the ability to more accurately predict crack initiation lifetimes and cyclic crack growth rates for the complex loading conditions found in turbine engine hot sections is of course the ultimate goal of the life prediction research efforts.
It has been found convenient to divide the research efforts into those dealing with nominally isotropic and anisotropic alloys; the latter for application to directionally solidified and single crystal turbine blades. Author

The activities performed during the first year of the NASA HOST Program, Creep Fatigue Life Prediction for Engine Hot Section Materials (Isotropic), being conducted by Pratt & Whitney Aircraft are summarized. The program is a 5 year, part two effort aimed at improving the high temperature crack initiation prediction technology for gas turbine hot section components. Significant results of the program produced thus far are discussed. Cast B1900 + Hf and wrought IN 718 were selected as the base and alternate materials, respectively. A single heat of B1900 + Hf was obtained and tested specimens fabricated. The material was characterized with respect to grain size, gamma prime size, carbide distribution, and dislocation density. Monotonic tensile and creep testing has shown engineering properties within anticipated scatter for this material. Examination of the tensile tests has shown a transition from inhomogeneous planar slip within the grains at lower temperatures to more homogeneous matrix deformation. Examination of the creep tests has shown a transgranular failure mode at 1400 F and an intergranular failure mode at 1800 F. Author

N85-11526# Connecticut Univ., Storrs. School of Engineering. ELEVATED TEMPERATURE BIAXIAL FATIGUE Final Report E. H. JORDAN Oct. 1985 162 p refs (Contract NAS3-160) (NASA-CR-175009; NAS 1.26:175009) Avail: NTIS HC A08/MF A01 CSCL 20K A 3 year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for nonproportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved understanding were through several critical nonproportional loading experimental programs. The technique of cracking observed on failed specimens was also recorded and used to guide the development of the theory. Cyclic deformation responses were permanently recorded digitally during each test. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C. In contrast to some other metals, loading path in nonproportional loading had little effect on fatigue lives. Strain rate had a small effect on fatigue lives at 649 C. Of the various correlating parameters the modified plastic work and octahedral shear stress were the most successful. Author

N86-13755# Case Western Reserve Univ., Cleveland, Ohio. TIME DEPENDENCY OF STRAINRANGE PARTITIONING LIFE RELATIONSHIPS Final Report S. KALLURI and S. S. MANSON Aug. 1984 64 p refs (Contract NAG3-337) (NASA-CR-174946; NAS 1.26:174946) Avail: NTIS HC A04/MF A01 CSCL 20K The effect of exposure time (or creep rate) on the CP life relationship is established by conducting isothermal CP tests at various exposure times on 316 Ss at 1300 and 1500 F. A reduction in the CP cycle life is observed with an increase in the exposure time of the CP test at a given inelastic strain-range. This phenomenon is characterized by modifying the Manson-Coffin type of CP relationship. Two new life relationships: (1) the Steady State Creep Rate (SSRC) Modified CP life relationship, and (2) the Failure Time (FT) Modified CP life relationship, are developed in this report. They account for the effect of creep rate and exposure time within the CP type of waveform. The reduction in CP cyclic life in the long exposure time tests is attributed to oxidation and the precipitation of carbides along the grain boundaries. Author

N86-14688# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. SCARE: A POST-PROCESSOR PROGRAM TO MSC/NASTRAN FOR THE RELIABILITY ANALYSIS OF STRUCTURAL CERAMIC COMPONENTS J. P. GYEKENYESI 1985 24 p refs To be presented at the 31st International Gas Turbine Conference and Exhibit, Dusseldorf, West Germany, 8-12 June 1986; sponsored by the American Society of Mechanical Engineers (NASA-TM-87188; E-2654; NAS 1.15:87188) Avail: NTIS HC A02/MF A01 CSCL 20K A computer program was developed for calculating the statistical fast fracture reliability and failure probability of ceramic components. The program includes the two-parameter Weibull material fracture strength distribution, a critical coplanar flaw model, the principle of virtual crack extension for polyaxial stress state, and Batdorf's shear-sensitive crack theory. The failure time and volume output, obtained from the use of three-dimensional, quadratic, isoparametric, or axisymmetric finite elements. The statistical fast fracture theories employed, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included. Author

N86-16610# Akron Univ., Ohio. Dept. of Civil Engineering. THERMOMECHANICAL CYCLIC HARDENING BEHAVIOR OF HASTELLOY-X M.S. Thesis P. A. BARTOLOTTA Nov. 1985 54 p refs (Contract NAG3-379) (NASA-CR-174999; NAS 1.26:174999) Avail: NTIS HC A04/MF A01 CSCL 20K Experimental evidences of thermomechanical history dependence on the cyclic hardening behavior of a representative combustor liner material Hastelloy-X is presented, along with a discussion about the relevant concept of thermomechanical path dependence. Based on the experimental results, a discussion is given on the inadequacy of formulating nonisothermal constitutive equations solely on the basis of isoothermal testing. Finally, the essence of a mathematical representation of thermoviscoplasticity is presented that qualitatively accounts for the observed hardening behavior. This is achieved by formulating the scalar evolutionary equation in an established viscoplastic theory to reflect thermomechanical path dependence. Although the necessary nonisothermal tests for further quantifying the thermoviscoplastic model have been identified, such data are not yet available. Author

N86-16611# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. MASS BALANCING OF HOLLOW FAN BLADES R. E. KIELB 1986 15 p refs Proposed for presentation at the 31st International Gas Turbine Conference, Dusseldorf, West Germany, 8-12 Jun. 1986; sponsored by ASME (NASA-TM-87197; E-2651; NAS 1.15:87197) Avail: NTIS HC A02/MF A01 CSCL 20K A typical section model is used to analytically investigate the effect of mass balancing as applied to hollow, supersonic fan
blades. A procedure to determine the best configuration of an internal balancing mass to provide flutter alleviation is developed. This procedure is applied to a typical supersonic shrouded fan blade which is unstable in both the solid configuration and when it is hollow with no balancing mass. The addition of an optimized balancing mass is shown to stabilize the blade at the design condition.

Author

Anisotropic high-temperature alloys are used to meet the safety and durability requirements of turbine blades for high-pressure turbopumps in reusable space propulsion systems. The applicability to anisotropic components of a simplified inelastic structural analysis procedure developed at the NASA Lewis Research Center is assessed. The procedure uses as input the history of the total strain at the critical crack initiation location computed from elastic finite-element analyses. Cyclic heat transfer and structural analyses are performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine. The blade alloy is directionally solidified MAR-M 246 (nickel base). The analyses are based on a typical test stage engine cycle. Stress-strain histories for the final critical location are computed using both the MARC nonlinear finite-element computer code and the simplified procedure. Additional cases are analyzed in which the material yield strength is arbitrarily reduced to increase the plastic strains and, therefore, the severity of the problem. Good agreement is shown between the predicted stress-strain solutions from the two methods. The simplified analysis uses about 0.02 percent (5 percent with the required elastic finite-element analyses) of the CPU time used by the nonlinear finite element analysis.

Author

Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.

Author

The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Corioli effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Corioli terms and several other structurally nonlinear terms are studied, and their relative importance is examined.

Author

N98-18750* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. ESTIMATING THE R-CURVE FROM RESIDUAL STRENGTH DATA T. W. ORANGE 1985 17 p refs Presented at the International Conference and Exhibition on Fatigue, Corrosion Cracking, Fracture Mechanics and Failure Analysis, Salt Lake City, Utah, 2-6 Dec. 1985; sponsored by the American Society for Metals (NASA-TM-87182; E-2832; NAS 1.15:87182) Avail: NTIS HC A02/MF A01 CSCL 20K

A method is presented for estimating the crack-extension resistance curve (R-curve) from residual-strength (maximum load against original crack length) data for precracked fracture specimens. The method allows additional information to be inferred from simple test results, and that information can be used to estimate the failure loads of more complicated structures of the same material and thickness. The fundamentals of the R-curve concept are reviewed first. Then the analytical basis for the estimation method is presented. The estimation method has been verified in two ways. Data from the literature (involving several materials and different types of specimens) are used to show that the estimated R-curve is in good agreement with the measured R-curve. A recent predictive blind round-robin program offers a more crucial test. When the actual failure loads are disclosed, the predictions are found to be in good agreement.

Author

A significant research activity at the NASA Lewis Research Center is the computational simulation of complex multidisciplinary engine structural problems. This simulation is performed using computational engine structural analysis (CESA) which consists of integrated multidisciplinary computer codes in conjunction with computer post-processing for problem-specific application. A variety of the computational simulations of specific cases are described in some detail in this paper. These case studies include: (1) aeroelastic behavior of bladed rotors, (2) high velocity impact of fan blades, (3) blade-loss transient response, (4) rotor/stator/squeeze-film/bearing interaction, (5) blade-fragment/rotor-burst com-
These representative case studies are selected to demonstrate the breadth of the problems analyzed and the role of the computer including post-processing and graphical display of voluminous output data.

Author

EXTENSIONS OF THE RITZ-GALERKIN METHOD FOR THE FORCED DAMPED VIBRATIONS OF STRUCTURAL ELEMENTS
A. W. LEISSA and T. H. YOUNG
Avail: NTIS HC A98/MF A01 CSCL 20K

The Ritz-Galerkin methods were used to obtain approximate solutions for free undamped, vibration problems. It is demonstrated that these same methods may be used straightforwardly to analyze forced vibrations with damping without requiring the free vibration eigenfunctions. It was shown that the Galerkin method is an effective technique for these types of problems. The Ritz method has the advantage that it does not need to satisfy the force-type boundary conditions, which is particularly important for plates and shells. Proper functionals representing the forcing and damping terms were developed. Two types of damping—viscous and material (hysteretic) are discussed. Distributed and concentrated exciting forces are treated. Numerical results are obtained for cantilevered beams and rectangular plates. The rates of convergence of the solutions are shown. Approximate solutions from the present methods are compared with the exact solutions for the cantilever beam.

E.A.K.

BURNER LINER THERMAL-STRUCTURAL LOAD MODELING
R. MAFFEO 1986 205 p (Contract NAS3-23272)

The software package Transfer Analysis Code to Interface Thermal/Structural Problems (TRANOTS) was developed. The TRANOTS code is used to interface temperature data between thermal and structural analytical models. The use of this transfer module allows the heat transfer analyst to select the thermal mesh and thermal analysis code best suited to solve the thermal problem and gives the same freedoms to the stress analyst, without the efficiency penalties associated with common meshes and the accuracy penalties associated with the manual transfer of thermal data.

E.A.K.

N86-21951# Syracuse Univ., N. Y. Dept of Mechanical and Aerospace Engineering.
FATIGUE CRACK GROWTH UNDER GENERAL-YIELDING CYCLIC-LOADING
(NASA-CR-175048; NASA 1.28:175048) Avail: NTIS HC A03/MF A01 CSCL 20K

In low cycle fatigue, cracks are initiated and propagated under general yielding cyclic loading. For general yielding cyclic loading, Dowling and Begley have shown that fatigue crack growth rate correlates well with the measured delta. The correlation of da/dN with delta J was also studied by a number of other investigators. Solomon measured fatigue crack growth in specimens in general yielding cyclic loading. The crack tip fields for Solomon's specimens are calculated using the finite element method and the J values of Solomon's tests are evaluated. The measured crack growth rate in Solomon's specimens correlates very well with the calculated delta J.

Author

ANISOTROPIC CONSTITUTIVE MODEL FOR NICKEL BASE SINGLE CRYSTAL ALLOYS: DEVELOPMENT AND FINITE ELEMENT IMPLEMENTATION Final Report
L. T. DAME and D. C. STOUFFER Mar. 1986 130 p refs (Contract NAG3-511)
(NASA-CR-175015; NASA 1.28:175015) Avail: NTIS HC A07/MF A01 CSCL 20K

A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurgical concepts utilizing a crystallographic approach. A non-Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cubic slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty nodded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.

Author

N86-25622# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
CYCLIC CREEP ANALYSIS FROM ELASTIC FINITE-ELEMENT SOLUTIONS

A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.

Author

EXPERIMENTAL EVALUATION CRITERIA FOR CONSTITUTIVE MODELS OF TIME DEPENDENT CYCLIC PLASTICITY Final Report
J. F. MARTIN 1986 13 p (Contract NASA-3-511)
(NASA-CR-178621; NASA 1.28:178621) Avail: NTIS HC A02/MF A01 CSCL 20K

Notched members were tested at temperatures far above those reached in service. Simulation of the notch root stress relaxation was accomplished to establish notch stress-strain behavior. Cyclic stress-strain profiles across the net-section were recorded and on-line direct notch strain control was accomplished. Data are compared to three analysis techniques with good results. The
objective of the study is to generate experimental data that can be used to evaluate the accuracy of constitutive models of time dependent cyclic plasticity.

N86-25851# Case Western Reserve Univ., Cleveland, Ohio.

FATIGUE CRACK LAYER PROPAGATION IN SILICON-IRON
Final Report
Y. BIROL, G. WELSCH, and A. CHUDNOVSKY May 1986 47 p refs (Contract NAG3-223)

N86-25851# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

LOW-CYCLE THERMAL FATIGUE

A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.

N86-25852# Battelle Columbus Labs., Ohio.

B. N. LEIS and T. P. FORTE 6 Apr. 1983 101 p refs (Contract NAS3-22825)

NASA-CR-175057; NAS 1.26:175057; ANL-85-74) Avail: NTIS HC A06/MF A01 CSCL 20K

The objective of this program is to assess the viability of a damage postulate which asserts that the fatigue resistance curve of a metal is history dependent due to inelastic action. The study focusses on OFE copper because this simple model material accentuates the inelastic action central to the damage postulate. Data relevant to damage evolution and crack initiation are developed via a study of surface topography. The effects of surface layer residual stresses are explored via comparative testing as were the effects in initial prestraining. The results of the study very clearly show the deformation history dependence of the fatigue resistance of OFE copper. Furthermore the concept of deformation history dependence is shown to qualitatively explain the fatigue resistance of all histories considered. Likewise quantitative predictions for block cycle histories are found to accurately track the experimental results. In this respect the assertion that damage per cycle for a given level of the damage parameter is deformation history dependent appears to be physically justified.

N86-27680# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

RE-EXAMINATION OF CUMULATIVE FATIGUE DAMAGE ANALYSIS: AN ENGINEERING PERSPECTIVE

A method which has evolved in our laboratories for the past 20 yr is re-examined with the intent of improving its accuracy and simplicity of application to engineering problems. Several modifications are introduced both to the analytical formulation of the Damage Curve Approach, and to the procedure for modifying this approach to achieve a Double Linear Damage Rule formulation which immensely simplifies the calculation. Improvements are also introduced in the treatment of mean stress for determining fatigue life of the individual events that enter into a complex loading history. While the procedure is completely consistent with the results of numerous two level tests that have been conducted on many materials, it is still necessary to verify applicability to complex loading histories. Caution is expressed that certain phenomena cannot also influence the applicability, for example, unusual deformation and fracture modes inherent in complex loading - especially if stresses are multiaxial. Residual stresses at crack tips, and metallurgical factors are also important in creating departures from the cumulative damage theories; examples of departures are provided.
39 STRUCTURAL MECHANICS

N85-28455*# Texas A&M Univ., College Station. Dept. of Aerospace Engineering.

Four current viscoplastic models are compared experimentally with incanol 716 at 1100 F. A series of tests were performed to create a sufficient data base from which to evaluate material constants. The models used included Bodner’s anisotropic model; Krieg, Swearengen, and Rhode’s model; Schmidt and Miller’s model; and Walker’s exponential model.

N86-28461*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

The utility of advanced constitutive models and structural analysis methods in predicting the cyclic life of an air-cooled turbine blade is assessed. Five structural analysis methods were exercised in calculating the cyclic stress-strain response at the airfoil critical location. The methods studied were a cyclic elastic finite-element analysis; nonlinear finite-element analysis based on classical inelastic models and the unified models of Bodner and Walker; and a simplified inelastic procedure. These analyses were compared in terms of computing times and of predicted crack initiation lives using the Strainrange Partitioning method. Author

N86-28462*# Georgia Inst. of Tech., Atlanta. School of Engineering Science and Mechanics.
(NASA-CR-177194; NAS 1.26:177194) Avail: NTIS HC A00/MF A01 CSCL 20K

A general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads was sought. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. A complete, true ab-initio rate theory of kinematics and kinetics for continuum ad curved thin structures, without any restriction on the magnitude of the strains or the deformations, was formulated. The time dependence and large strain behavior are incorporated through the introduction of the time rates of classical and curvature in two coordinate systems: fixed (spatial) and convected (material). The relations between the time derivative and the covariant derivative (gradient) was developed for curved space and motion, so the velocity components supply the connection between the equations of motion and the time rates of change of the metric and curvature tensors. A time and temperature dependent viscoplasticity model was formulated to account for finite strains and rotations. Author

N86-28464*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

Comparative thermal-fatigue and oxidation resistances of cobalt-modified wrought Udiment 700 alloy (obtained by reducing the cobalt level by direct substitution of nickel) were determined from fluidized-bed tests. Bed temperatures were 1010 and 288 C (1850 and 550 C) for the first 5500 symmetrical 6-min cycles. From cycle 5501 to the 14000-cycle limit of testing, the heating bed temperature was increased to 1050 C (1922 F). Cobalt levels between 0 and 17 wt% were studied in both the bare and NiCrAlY overlay coated conditions. A cobalt level of about 8 wt% gave the best thermal-fatigue life. The conventional alloy specification is for 18.5% cobalt, and hence, a factor of 2 in savings of cobalt could be achieved by using the modified alloy. After 13500 cycles, all bare cobalt-modified alloys lost 10 to 13 percent of their initial weight. Application of the NiCrAlY overlay coating resulted in weight losses of 1/20 to 1/100 that of the corresponding bare alloy. Author

J-INTEGRAL ESTIMATES FOR CRACKS IN INFINITE BODIES Final Report N. E. DOWLING Jul. 1986 42 p (Contract NAG3-438)
(NASA-CR-179474; NAS 1.26:179474) Avail: NTIS HC A03/MF A01 CSCL 20K

An analysis and discussion is presented of existing estimates of the J-integral for cracks in infinite bodies. Equations are presented which provide convenient estimates for Ramberg-Osgood type elastoplastic materials containing cracks and subjected to multiaxial loading. The relationship between J and the stress normal to the crack is noted to be only weakly dependent on state of stress. But the relationship between J and the stress normal to the crack is strongly dependent on state of stress. A plastic zone correction term often employed is found to be arbitrary, and its magnitude is seldom significant. Author

N86-29271*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

Experimental results are presented that show the effects of blade pitch angle and number of blades on classical flutter of a composite advanced turboprop (propfan) model. An increase in the number of blades on the rotor or the blade pitch angle is destabilizing which shows an aerodynamic coupling or cascade effect between blades. The flutter came in suddenly and all blades vibrated at the same frequency but at different amplitudes and with a common predominant phase angle between consecutive blades. This further indicates aerodynamic coupling between blades. The flutter frequency was between the first two blade normal modes, signifying an aerodynamic coupling between the normal modes. Flutter was observed at all blade pitch angles from small to large angles-of-attack of the blades. A strong blade response occurred, for four blades at the two-per-revolution (2P) frequency, when the rotor speed was near the crossing of the flutter mode frequency and the 2P order line. This is because the damping is low near the flutter condition and the interblade phase angle of the flutter mode and the 2P response are the same. Author
Topics covered include: numerical integration techniques; thermodynamics and internal state variables; experimental lab development; comparison of models at room temperature; comparison of models at elevated temperature; and integrated software development.

An algorithm is presented which can be used to develop compliance matrices for cracked bodies. The method relies on the numerical solution of singular integral equations with Cauchy-type kernels and provides an efficient and accurate procedure for relating applied loadings to crack opening displacements. The algorithm should be of interest to those performing repetitive calculations in the analysis of experimental results obtained from fracture specimens.

The governing coupled flapwise bending, edgewise bending, and torsional equations are derived including third-degree geometric nonlinearities. Furthermore, inclusion of third-degree elastic nonlinear terms improves the correlation between the theory and the linearized perturbation equations are solved by using the Galerkin method, and by utilizing the nonrotating normal modes for the shape functions. Parametric results obtained for various cases of rotating blades from the present theoretical formulation are compared to those produced from the finite element code MSC/NASTRAN, and also to those produced from an in-house code.

The objective of this overall effort is directed towards the development of solar photovoltaic devices suitable for use in low-earthorbit (LEO) application where the cycle life requirements are much more severe than the geosynchronous-orbit (GEO) technology. The objective is to assess the relative attractiveness of the many bipolar battery designs using active cooling that are being developed at NASA Lewis Research Center and under contract. These principles are rather straightforward applications of capillary force formalisms, coupled with the slowly developing data base resulting from careful post test analyses.

A straightforward analysis of special limiting cases has permitted the determination of the range of possible open circuit voltage losses due to a defective BSF (back surface field) layer. An important result of the analysis is the finding that it is possible to have a fully effective BSF region, regardless of the spatial distribution of the defective areas, as long as the total defective area is reduced below certain limits. Distributed defects were found to be much more harmful than lumped defects.

The coupled flapwise bending, edgewise bending, and torsional equations are derived including third-degree geometric nonlinearities by making use of the geometric nonlinear theory of elasticity in which the elongations and shears are negligible compared to unity. These equations are specialized for component pore sizes and pore size distributions, as well as the more recent bipolar battery designs using active cooling that are being developed at NASA Lewis Research Center and under contract. These principles have been translated into operating hardware.

Advanced designs for individual pressure vessel nickel hydrogen cells were conceived which should improve the life cycle at deep elevated temperatures, part 1, final report.

Advanced designs for individual pressure vessel nickel hydrogen cells were conceived which should improve the life cycle at deep elevated temperatures, part 1, final report.
A86-24840* Massachusetts Inst. of Tech., Cambridge.

A PRELIMINARY STUDY OF THE MODIFIED ERICSSON FOR SPACE POWER

Simple modifications of the Ericsson cycle are analyzed for their application as high power, compact and reliable space power systems. They use the same components as the technologically advanced and reliable Brayton system. These modifications approximate the Ericsson cycle's isothermal expansion by several stages of expansion with reheat and the isothermal compression by several compression stages with intercooling. Preliminary cycle analysis including non-ideal components indicates potential advantages in both power per unit area and efficiency over the Brayton system. Evaluation of the system mass indicates a significant mass and radiator area advantage of a Modified Ericsson cycle using one reheat and one expansion stage when a high temperature titanium radiator is used. Whereas the configuration using one reheat and one intercooling with two stages of compression and expansion provided the lowest mass per unit power using a lower temperature aluminum radiator. Author.

A86-24849* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CYCLING PERFORMANCE OF THE IRON-CHROMIUM REDOX ENERGY STORAGE SYSTEM

Extended charge-discharge cycling of this electrochemical storage system at 65°C was performed on 14.5 sq cm single cells and a four cell, 867 sq cm bipolar stack. Both the anolyte and catholyte reactant fluids contained 1 molar concentrations of iron and chromium chlorides in hydrochloric acid and were separated by a low-selectivity, cation-exchange membrane. The effect of cycling on the chromium electrode and the cation-exchange membrane was determined. Bismuth and bismuth-lead catalyzed chromium electrodes and a radiation-grafted polyethylene membrane were evaluated by cycling between 5 and 95 percent state-of-charge at 80 mA/sq cm and by periodic charge-discharge polarization measurements to 140 mA/sq cm. Greater performance losses occurred on the anolyte side which were recoverable by completely discharging the system. Good scale-up to the 867 sq cm stack was achieved. The only difference appeared to be an unexplained resistive-type loss which resulted in a 75 percent W-hr efficiency (at 80 mA/sq cm versus 81 percent for the 14.5 sq cm cell). A new rebalance cell was developed to maintain reactive ion balance. The cell successfully reduced ferric ions in the iron reactant stream to ferrous ions while chloride ions were oxidized to chlorine gas. Author.

LIQUID FUELED EXTERNAL HEATING SYSTEM FOR STMT-140 STIRLING ENGINE

The STMT-140 Stirling engine, currently under development at Stirling Thermal Motors, Inc., is a 40 kW variable stroke engine with indirect heating using a sodium heat pipe. The engine is functionally separated into an application independent Energy Conversion Unit (ECU) consisting of the Stirling cycle and drive system. Condensing sodium and the application dependent External Heating System (EHS), designed to supply the ECU with...
sodium vapor heated by the particular energy source, connected by tubes with mechanical couplings. This paper describes an External Heating System for the STM4-120 ECU designed for the combustion of liquid fuel, comprised of a recuperative preheater, a combustion chamber, and a heat exchanger/evaporator where heat is transferred from the flue gas to the sodium causing it to evaporate. The design concept and projected performance are described and discussed.

Author

A Stirring engine was tested without auxiliaries at NASA-Lewis. Three different regenerator configurations were tested with hydrogen. The test objectives were (1) to obtain steady-state and dynamic engine data, including indicated power, for validation of an existing computer model for this engine; and (2) to evaluate structurally the use of silicon carbide regenerators. This paper presents comparisons of the measured brake performance, indicated mean effective pressure, and cyclic pressure variations with those predicted by the code. The measured data tended to be lower than the computer code predictions. The silicon carbide foam regenerators appear to be structurally suitable, but the foam matrix tested severely reduced performance.

Author

A mathematical representation for the charge and discharge of a sodium-sulfur cell is developed. These equations are then used as the basis for a computerized model to examine the effects of cell arrangement in the design of a large multi-kilowatt battery from a group of hypothetical individual cells with known variations in their anode capacity and internal resistance. The cycling characteristics of 216 individual cells arranged in six different configurations are evaluated and the results are directed towards minimizing the adverse effects that are introduced due to the stochastic aspects of groupings of cells, as well as the possibility of cell failures in both the open and shorted mode. Although battery systems based on sodium-sulfur cells are described in this example, any of the newer electrochemical systems can be fitted into this framework by making appropriate modifications to the basic equations.

Author
evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.

Author

N86-11688* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. RE-1000 FREE-PISTON STIRLING ENGINE UPDATE

(Contract DE-A105-82OR-1005)

(NASA-TM-87126; E-2597; DOE/NASA/1005-6; NAS 1.15:87126)

Avail: NTIS HC A02/MF A01 CSCL 10B

A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given. Author

N86-11670* Michigan State Univ., East Lansing. Div. of Engineering Research. AC, DC MOTOR AND GENERATOR REQUIREMENTS FOR ISOLATED WECs

G. L. PARK, P. J. MCCLEER (Michigan Univ.), B. HANSON (SWX Corp.), B. WEINBERG, and O. KRAUSS Oct. 1985 82 p rens (Contract NAG3-530)

(NASA-CR-176315; DOE/NASA/0530-1; NAS 1.26:176315)

Avail: NTIS HC A05/MF A01 CSCL 10A

After surveying electrically driven loads used on productive farms, the investigators chose three pumps for testing at voltages and frequencies far outside the normal operating range. These loads extract and circulate water and move heat via air, and all are critical to farm productivity. The object was to determine the envelope of supply voltage and frequency over which these loads would operate stably for time intervals under 1 hour. This information is among that needed to determine the feasibility of supplying critical loads, in case of a utility outage, from a wind driven alternator whose output voltage and frequency will vary dramatically in most continental wind regimes. Other related work is surveyed. The salient features and limitations of the test configurations used and the data reduction are described. The development of simulation models suitable for a small computer are outlined. The results are primarily displayed on the voltage frequency plane with the general conclusion that the particular pump models considered will operate over the range of 50 to 90 Hz and a voltage band which starts below rated, decreases as frequency decreases, and is limited on the high side by excessive motor heating. For example, centrifugal pump operating voltage ranges as extensive as 4 to 1 appear possible. Particular problems with starting, stalling due to lack of motor torque, high speed cavitation, and likely overheating are addressed in a listing of required properties for wind driven alternators and their controllers needed for use in the isolated or stand alone configuration considered. Author

N86-11671* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. A 25.5 PERCENT AMO GALLIUM ARSENIDE GRATING SOLAR CELL

(NASA-TM-87134; E-2748; NAS 1.15:87134)

Avail: NTIS HC A02/MF A01 CSCL 10A

Recent calculations have shown that significant open circuit voltage gains are possible with a dot grating junction geometry. The feasibility of applying the dot geometry to the GaAs cell was investigated. This geometry is shown to result in voltages approach 1.120 V and efficiencies well over 25 percent (AMO). If good collection efficiency can be maintained, the latter is shown to be possible if one chooses the proper base resistivity and cell thickness. The above advances in efficiency are shown to be possible in the P-base cell with only minor improvements in existing technology. Author

(Contract DENG-241; DE-A101-80ET-17088)

(NASA-CR-174948; DOE/NASA-0241-15; NAS 1.26:174948; QR-14)

Avail: NTIS HC A02/MF A01 CSCL 10B

Two 25 cell stacks of the 13 inch x 23 inch cell size (about 4kW) remain on test after 4000 hours and 2900 hours, respectively, using simulated reformate fuel. These tests are focusing on the durability of fuel cell stack components developed through the end of 1983. Also, these stacks are serving as forerunners of a 25kW stack that will contain 175 cells of the same size and will employ the same technology base. The stack technology development program has focused on a low cost bipolar plate edge seal technique and evaluation of advanced cathode catalysts, an electrolyte replenishment system, and nonmetallic cooling plates in small stacks. Author

(Contract DENG-241; DE-A101-80ET-17088)

(NASA-CR-174988; DOE/NASA-0241-17; NAS 1.26:174988; QR-16)

Avail: NTIS HC A02/MF A01 CSCL 10B

A 25 cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 6000 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests were carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. In light of the favorable results obtained, a 25kW stack that will contain 175 cells of the same size is being constructed using the same technology base. The components for the 25kW stack have been completed. A methanol steam reformer with a design output equivalent to 50kW has been constructed to serve as a hydrogen generator for the 25kW stack. This reformer and the balance of the fuel processing sub system are currently being tested and debugged. The stack technology development program focused on cost reduction in bipolar plates, nonmetallic cooling plates, and current collecting plates; more stable cathode catalyst support materials; more corrosion resistant metal hardware; and shutdown/start up tolerance. Author
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 3, book 1 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. Each subsystem - the rotor, drivetrain, racelle, tower and foundation is described in detail.

Author

The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 4 contains the drawings and specifications developed for the final design. Volume 3 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. The subsystem for power generation, control, and instrumentation subsystems is described in detail. The manufacturing and construction plans, and the preparation of a potential site on Oahu, Hawaii, are documented. The quality assurance and safety plan, and analyses of failure modes and effects, and reliability, availability and maintainability are presented.

Author

The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 4 contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. This is the first of five books of volume four. It contains structural design criteria, generator step-up transformer specs, specs for design, fabrication and testing of the system, specs for the ground control enclosure, systems specs, slip ring specs, and control system specs.

E.R.
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. This is the second book of volume four. Some of the items it contains are specs for the emergency shutdown panel, specs for the simulator software, simulator hardware specs, site operator terminal requirements, control data system requirements, software project management plan, elastomeric teeter bearing requirement specs, specs for the controls electronic cabinet, and specs for bolt pretensioning.

The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator are documented. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. This volume contains 5 books of which this is the fourth, providing drawings 47A380128 through 47A387125. In addition to the parts listing and where-used list, the logic design of the controller software and the code listing of the controller software are provided. Also given are the aerodynamic profile coordinates.

The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator are documented. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. Detail drawings of several assemblies and subassemblies are given. This is the fifth book of volume four.

The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator are documented. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. Detail drawings of several assemblies and subassemblies are given. This is the fifth book of volume four.

Developed high efficiency at AM0 irradiance and resistance to high energy radiation. Gallium arsenide, with a band gap of 1.43 eV, is one of the most efficient sunlight to electricity converters (25%) when the simple diode model is used to calculate efficiencies at AM0 irradiance, GaAs solar cells are more radiation resistant than silicon solar cells and the N/P GaAs device has been reported to be more radiation resistant than similar PIN solar cells. This higher resistance is probably due to the fact that only 37% of the current is generated in the top N layer of the NIP cell compared to 69% in the top layer of a PIN solar cell. This top layer of the cell is most affected by radiation. It has also been theoretically calculated that the optimized NIP device will have a higher efficiency than a similar P/N device. The use of a GaP window layer on a GaAs solar cell will avoid many of the inherent problems normally associated with a GaAlAs window.
while still proving good passivation of the GaAs surface. An optimized circular grid design for solar cell concentrators has been shown which incorporates a multi-layer metallization scheme. This multi-layer design allows for a greater current carrying capacity for a unit area of shading, which results in a better output efficiency. Author

HIGH-EFFICIENCY ALGAA-GAAs CASSEGRAINIAN CONCENTRATOR CELLS
(Available from preceding program phase. These activities are defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently. Author

N85-17855*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
RADIATION DAMAGE IN HIGH-RESISTIVITY SILICON SOLAR CELLS
I. WEINBERG, C. K. SWARTZ, and C. GORADIA (Cleveland State Univ., Ohio) In Its Space Photovoltaic Research and Technology 1985 p 111-118 1985 refs
(Available from preceding program phase. These activities are defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently. Author

N85-17860*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PERFORMANCE OF HUGHES GAAS CONCENTRATOR CELLS UNDER 1-MEV ELECTRON IRRADIATION
H. B. CURTIS and C. K. SWARTZ In Its Space Photovoltaic Research and Technology 1985 p 169-173 1985 refs
(Available from preceding program phase. These activities are defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently. Author

N86-17866*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
DEMONSTRATED RESULTS OF WELDED AND SOLDERED INTERCONNECTIONS
R. E. HART, JR. In Its Space Photovoltaic Research and Technology 1985 p 239-241 1985 refs
(Available from preceding program phase. These activities are defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently. Author

N86-17873*# United Technologies Corp., South Windsor, Conn.
OFFSITE 40-KILOWATT FUEL CELL POWER PLANT MANUFACTURING AND FIELD TEST PROGRAM Interim Report
Feb. 1985 162 p refs
(Contract DENS-255; DE-AI31-80ET-17086)
(NASA-CR-174988; DOE/NASA/0255-1; NAS 1.26/174988; FCR-8666) Available from preceding program phase. These activities are defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently. Author

DEVELOPMENT AND TESTING OF TIP DEVICES FOR HORIZONTAL AXIS WIND TURBINES Final Report
G. W. GYATT and P. B. S. LISSAMAN May 1985 86 p refs
(Contract DEN3-326; DE-AI01-76ET-20320)
(NASA-CR-174991; DOE/NASA/0341-1; NAS 1.26/174991; AV-FR-85/802) Available from preceding program phase. These activities are defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently. Author
turbine rotors. The objective was to improve performance by the reduction of tip losses. While power output can always be increased by a simple radial tip extension, such a modification also results in an increased gale load both because of the extra projected area and longer moment arm. Tip devices have the potential to increase power output without such a structural penalty. A vortex lattice computer model was used to optimize three basic tip configuration types for a 25 kW stall limited commercial wind turbine. The types were a change in tip planform, and a single-element and double-element nonplanar tip extension (winglets). A complete data acquisition system was developed which recorded three wind speed components, ambient pressure, temperature, and turbine output. The system operated unattended and could perform real-time processing of the data, displaying the measured power curve as data accumulated in either a bin sort mode or polynomial curve fit. Approximately 270 hr of performance data were collected over a three-month period. The sampling interval was 2.4 sec; thus over 400,000 raw data points were logged. Results for each of the three new tip devices, compared with the original tip, showed a small decrease (of the order of 1 kW) in power output over the measured range of wind speeds from cut-in at about 4 m/s to over 20 m/s, well into the stall limiting region. Changes in orientation and angle-of-attack of the winglets were not made. For aircraft wing tip devices, favorable tip shapes have been reported and it is likely that the tip devices tested in this program did not improve rotor performance because they were not optimally adjusted. Author

N86-18775# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SUMMARY OF TOWER DESIGNS FOR LARGE HORIZONTAL AXIS WIND TURBINES

Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-SB presently being fabricated. Design goals and requirements that influence tower configuration, height, and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

Author

N86-19721# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A redox cell which operates at elevated temperatures and which utilizes the same two metal couples in each of the two reactant fluids is disclosed. Each fluid includes a bismuth salt and may also include a lead salt. A low cost, cation permselective membrane separates the reactant fluids.

Official Gazette of the U.S. Patent and Trademark Office

N86-19742# Georgia Inst. of Tech., Atlanta.

The dipole pattern of the antenna was confirmed and work on the MOM diode began. The antenna - detector structure was modified and the measurement apparatus reconfigured to permit precise antenna pattern measurements. Fabrication of the MOM diode was initiated after antenna action from the new structures was observed. An improved antenna structure was developed. The previous antenna design allowed currents induced by the incident radiation in the bonding wires to flow through the bolometer. The detector was thus responding to both the antenna and bonding wire currents. A low pass filter was added to the antenna structure to improve the detection scheme. The new design uses an interdigitated capacitor to prevent the induced current in the bonding wires from flowing through the detection element.

Author

N86-21978# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

The nickel electrode was identified as the heaviest component of the nickel hydrogen (NiH2) battery. The NASA Lewis Research Center is developing nickel electrodes for NiH2 battery devices which will be lighter in weight and have higher energy densities when cycled under a low Earth orbit regime at deep depths of discharge. Lightweight plaques are first exposed to 31 percent potassium hydroxide for 3 months to determine their suitability for use as electrode substrates from a chemical corrosion standpoint. Pore size distribution and porosity of the plaques are then measured. The lightweight plaques examined are nickel foam, nickel
felt, nickel plastic and nickel plated graphite. Plaques are then electrochemically impregnated in an aqueous solution. Initial characterization tests of the impregnated plaque are performed at the discharge levels of 1 C, 2.0 C and 2.74 C rates. Electrodes that passed the initial characterization screening test will be life cycle tested. Lightweight electrodes are approximately 30 to 50 percent lighter in weight than the sintered nickel electrode.

A controller for stand-alone photovoltaic systems has been developed using a microprocessor. It performs battery state of charge estimation, array control, load management, instrumentation, automatic testing, and communications functions. Array control options are sequential subarray switching and maximum power control. A calculator keypad and LCD display provides manual control, fault diagnosis and digital multimeter functions. A thin LS-232 port provides data logging and remote control capability. A prototype 5 kW unit has been built and tested successfully. The controller is expected to be useful in village photovoltaic power systems, large solar water pumping installations, and other battery management applications.

N86-23035 National Aeronautics and Space Administration. ASSESSMENT OF COMMERCIALLY AVAILABLE AND EXPERIMENTAL HYDROGEN ELECTRODES J. A. CHARLESTON 1986 9 p refs To be presented at the 32nd International Power Sources Symposium, Cherry Hill, N.J., 9-12 Jun. 1986; sponsored by Army (NASA-TM-87264; E-2958; NAS 1.15:87264) Avail: NTIS HC A02/MF A01 CSCL 10A

NASA Lewis Research Center is currently involved in advanced development of nickel-hydrogen cells and batteries. Long life, high energy density, improved performance and reliability are required for energy storage systems in future space missions. Commerically available as well as experimental hydrogen electrodes were assessed and compared to the state-of-the-art hydrogen electrode that is currently being used in nickel-hydrogen batteries. The experimental electrodes were evaluated by scanning electron microscopy and standard electrochemical polarization measurements. Production variables such as Teflon content and platinum catalyst loading were considered in order to assess various hydrogen electrodes with regard to the different electrode manufacturing processes.

The activity in the field of photovoltaic semiconductor superstructures is described. Progress was accomplished in the two principal directions previously defined in our initial proposal, i.e.: (1) Theoretical investigation of the optical properties of superlattices; and (2) New solar cell concepts and device modeling. Although important information concerning the optical constants of the superlattices and the quantum well structures was obtained from our computer model, most of the theoretical efforts have progressively shifted from the former to the latter aspect of the project because of the discovery of a new kind of photovoltaic device which may exhibit improved performances with respect to conventional solar cells.

N86-25039 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. PRINCIPLES FOR SYSTEM LEVEL ELECTROCHEMISTRY L. H. THALLER 1986 13 p refs Presented at the 15th International Power Sources Symposium, Brighton, England, 7-11 Apr. 1986 (NASA-TM-87283; E-2908; NAS 1.15:87283) Avail: NTIS HC A02/MF A01 CSCL 10C

The higher power and higher voltage levels anticipated for future space missions have required a careful review of the techniques currently in use to preclude battery problems that are related to the dispersion characteristics of the individual cells. Not only are the out-of-balance problems accentuated in these larger systems, but the thermal management considerations also require a greater degree of accurate design. Newer concepts which employ active cooling techniques are being developed which permit higher rates of discharge and tighter packing densities for the electrochemical components. This paper will put forward six semi-independent principles relating to battery systems. These principles will progressively address cell, battery and finally system related aspects of large electrochemical storage systems.

A 30-cell, full area short stack containing advanced cell features was tested for 2900 hours. A stack acid addition approach was selected and will be evaluated on the stack at 5000 hours test time. A brassboard inverter was designed and fabrication was initiated. Evaluation of this brassboard inverter will take place in 1984. A Teflon coated commercial heat exchanger was selected as the preferred approach for the acid condenser. A reformer catalyst with significantly less pressure drop and equivalent performance relative to the 40-K baseline catalyst was selected for the development reformer. The early 40-KW field power plant history was reviewed and adjustments were made to the On-Site Technology Development Program to address critical component issues.

The work performed in this reporting period has concentrated on the metal-oxide-metal (MOM) diode. The fabrication procedure begins with the deposition of gold probing pads to provide a non-oxidizing contact to test the dc characteristics to the diode accurately. A thin patch capped with an insulating SiO2 layer, is deposited next to form the first half of the diode. The other half of the diode, typically Ni, is deposited completing the conduction path from the oxidized edge of the Ni patch to the opposite gold probing pad. It is important in this step that the last metallization takes place without exposing the newly oxidized surface to the atmosphere. Successful production of diodes has been achieved. Work on millimeter wave frequency rectennas incorporating known semiconductor diode technology has been initiated.

Author

187
LONG LIFE NICKEL ELECTRODES FOR A NICKEL-HYDROGEN CELL: CYCLE LIFE TESTS

H. S. LIM and S. A. VERZWYVELT 1985 14 p refs Previously announced as N84-33696
(Contract NAS3-23284; NASA-CR-174815; NAS 1.26:174815) Avail: NTIS HC A02/MF A01 CSCL 10C

In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels of planar mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

N86-25874* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

OXYGEN RECOMBINATION IN INDIVIDUAL PRESSURE VESSEL NICKEL-HYDROGEN BATTERIES Patent

A metal-hydrogen cell is described which avoids damage and retards flooding of the hydrogen electrodes by providing for chemical recombination of oxygen and hydrogen in areas or sites remote from the hydrogen electrodes. In the metal-hydrogen cell, a plurality of electrical cell units are placed side by side and each unit has a gas screen which is made of INCO nickel powder type 287 and has median pore size of 13 micron. R.J.F.

N86-25877* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

OXYGEN RECOMBINATION IN INDIVIDUAL PRESSURE VESSEL NICKEL-HYDROGEN BATTERIES Patent

A. KAUFMAN and J. WERTH Oct. 1984 236 p (Contract DEN3-241; DE-A01-80ET-107088)

Work has been performed leading toward the development of a 50kW on-site integrated energy system. A sub-scale 5kW system was constructed and tested in the steady-load (with shutdowns) and transient modes. A parallel effort has been conducted to develop the full-size sub-systems for the on-site system; these include the fuel cell stack, a methanol processor, and a d.c.-a.c. power conditioner. Stack technology development activities have been carried out to improve the performance, cost and reliability of stack components and hardware. In the fuel processing area, screening tests have been conducted for various methanol steam-reforming catalysts, and the preferred catalysts have been subjected to extended testing. Application-related work has been pursued for large energy applications. The theory, used in the vibration analysis codes, is based on a lumped mass formulation for the blade and counterweight assemblies. The codes are general and applicable to various building types was analyzed and the potential economic attractiveness ascertained. The overall system was analyzed in terms of its operating characteristics at part load and its response to transients. Preferred heating, ventilating, and air conditioning approaches for various building types using fuel cell cogeneration units are determined.

Author
designs can be readily analyzed. The input for the codes is generally interactive to facilitate usage. The output of the codes is both tabular and graphical. Listings of the codes are provided. Predicted natural frequencies of the first several modes show reasonable agreement with experimental results. The analysis codes were originally developed on a DEC PDP 11/34 minicomputer and then downloaded and modified to run on an ITT XTRA personal computer. Studies conducted to evaluate the efficiency of running the programs on a personal computer as compared with the minicomputer indicated that, with the proper combination of hardware and software options, the efficiency of using a personal computer exceeds that of a minicomputer. Author

N86-29409*# Akron Univ., Ohio. Dept. of Chemical Engineering.
THEORETICAL AND EXPERIMENTAL FLOW CELL STUDIES OF A HYDROGEN-BROMINE FUEL CELL, PART 1 M.S. Thesis. Final Report
(NASA-CR-177165; NAS 1.25:177165) Avail: NTIS HC A10/MF A01 CSCL 10B

There is increasing interest in hydrogen-bromine fuel cells as both primary and regenerative energy storage systems. One promising design for a hydrogen-bromine fuel cell is a negative half cell having only a gas phase, which is separated by a cationic exchange membrane from a positive half cell having an aqueous electrolyte. The hydrogen gas and the aqueous bromide solution are stored external to the cell. In order to calculate the energy storage capacity and to predict and assess the performance of a single cell, the open circuit potential (OCP) must be estimated for different states of change, under various conditions. Theoretical expressions were derived to estimate the OCP of a hydrogen-bromine fuel cell. In these expressions temperature, hydrogen pressure, and bromine and hydrobromic acid concentrations were taken into consideration. Also included are the effects of the Nafion membrane separator and the various bromide complex species. Activity coefficients were taken into account in one of the expressions. The sensitivity of these parameters on the calculated OCP was studied. Author

ADVANCED ON-SITE POWER PLANT DEVELOPMENT TECHNOLOGY PROGRAM Annual Report, 1984
F. S. KEMP and others 27 Oct. 1985 189 p (Contract DEN3-289; DE-AI21-80ET-17088)
(NASA-CR-175007; NAS 1.26:175007; FCR-6848; DOE/NASA/0389-9) Avail: NTIS HC A13/MF A01 CSCL 10B

A 30-cell stack was tested for 7200 hours. At 6000 hours the stack was successfully refilled with acid with no loss of performance. A second stack containing the advanced Configuration B cell package was fabricated and assembled for testing in 1985. A 200-kW brassboard inverter was successfully evaluated, verifying the design of the two-bridge ASCR circuit design. A fuel processing catalyst train was tested for 2000 hours verifying the catalyst for use in a 200-kW development reformer. The development reformer was fabricated for evaluation in 1985. The initial test plan was prepared for a 200-kW verification test article. Author

N86-30251*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
DESIGN AND INITIAL TESTING OF A ONE-BLADED 30-METER-DIAMETER ROTOR ON THE NASA/DOE MOD-O WIND TURBINE Final Report
(Contract DE-AI01-76ET-20320) (NASA-TM-88810; E-3162; DOE/NASA-20320/70; NAS 1.15:88810) Avail: NTIS HC A02/MF A01 CSCL 10A

The concept of a one-bladed horizontal-axis wind turbine has been of interest to wind turbine designers for many years. Many designs and economic analyses of one-bladed wind turbines have been undertaken by both United States and European wind energy groups. The analyses indicate significant economic advantages but at the same time, significant dynamic response concerns. In an effort to develop a broad data base on wind turbine design and operations, the NASA Wind Energy Project Office has tested a one-bladed rotor at the NASA/DOE Mod-O Wind Turbine Facility. This is the only known test on an intermediate-sized one-bladed rotor in the United States. The 15.2-meter-radius rotor consists of a tip-controlled blade and a counterweight assembly. A rigorous test series was conducted in the Fall of 1985 to collect data on rotor performance, drive train/generator dynamics, structural dynamics, and structural loads. This report includes background information on one-bladed rotor concepts, and Mod-O one-bladed rotor test configuration, supporting design analysis, the Mod-O one-blade rotor test plan, and preliminary test results. Author

N86-31979*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PARAMETRIC AND CYCLE TESTS OF A 40-A-HR BIPOLAR NICKEL-HYDROGEN BATTERY

A series of tests was performed to characterize battery performance relating to certain operating parameters which included charge current, discharge current, temperature and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions. Spacecraft power requirements are constantly increasing. Special spacecraft such as the Space Station and platforms will require energy storage systems of 130 and 25 kWh, respectively. The complexity of these high power systems will demand high reliability, and reduced mass and volume. A system that uses batteries for storage will require a cell count in excess of 400 units. These cell units must then be assembled into several batteries with over 100 cells in a series connected string. In an attempt to simplify the construction of conventional cells and batteries, the NASA Lewis Research Center battery systems group initiated work on a nickel-hydrogen battery in a bipolar configuration in early 1981. Features of the battery with bipolar construction promise in improving both volumetric and gravimetric energy densities as well as thermal management. Bipolar construction allows cooling in closer proximity to the cell components, thus heat removal can be accomplished at a higher rejection temperature than conventional cell designs. Also, higher current densities are achievable because of low cell impedance. Lower cell impedance is achieved via current flow perpendicular to the electrode face, thus reducing voltage drops in the electrode grid and electrode terminals tabs. Author

189
44 ENERGY PRODUCTION AND CONVERSION

N86-31980*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EFFECT OF IMPREGNATION METHOD ON CYCLE LIFE OF THE NICKEL ELECTRODE

(NASA-TM-87326; E-3037; NAS 1.15:87326) Avail: NTIS HC A02/MF A01 CSCL 10C

The nickel electrode has been identified as the life limiting component for individual pressure vessel (IPV) nickel-hydrogen cells when cycled under a low earth orbit (LEO) cycle regime at deep depths of discharge. As a part of an overall program to develop a long life nickel electrode for nickel-hydrogen cells, the effect of two different methods of electrochemical impregnation on the cycle life of the nickel electrode was investigated. One method was the Pickett (aqueous/ethanolic) process. The other was the modified Bell (aqueous) process. The plagues for both impregnation methods were made by sintering dry carbonyl nickel powder in a reducing atmosphere. The plagues contain a nickel screen substrate. Electrodes made from both processes were cycle tested in Air Force design IPV nickel-hydrogen cells. The only factor different for this test was the method of plague impregnation; all other factors were the same. The cells were cycled to failure under a 90 min LEO cycle regime at a deep depth of discharge (80 percent DOD). Failure for this test was defined to occur when the cell voltage degraded to 1.0 V prior to the completion of the 35 min discharge. The cell voltage degraded to 1.0 V prior to the completion of the 35 min discharge. The cell voltage degraded to 1.0 V prior to the completion of the 35 min discharge.

Author

N86-31981*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DESIGN CONSIDERATIONS FOR ADVANCED BATTERY CONCEPTS

(NASA-TM-87319; E-3055; NAS 1.15:87319) Avail: NTIS HC A02/MF A01 CSCL 10C

A mathematical representation for the charge and discharge of a sodium-sulfur cell is developed. These equations are then used as the basis for a computerized model to examine the effects of cell arrangement in the design of a large multi-kilowatt battery from a group of hypothetical individual cells with known variations in their ampere hour capacity and internal resistance. The cycling characteristics of 216 individual cells arranged in six different configurations are evaluated with the view towards minimizing the adverse effects that are introduced due to the stochastic aspects of the cell. The results of the computer model and the possibility of cell failures in both the open and shorted mode. Although battery systems based on sodium-sulfur cells are described in this example, any of the newer electrochemical systems can be fitted into this framework by making appropriate modifications to the basic equations.

Author

N86-31982*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ESTIMATED HEATS OF FUSION OF FLUORIDE SALT MIXTURES SUITABLE FOR THERMAL ENERGY STORAGE APPLICATIONS
A. K. MIRSA (Case Western Reserve Univ., Cleveland, Ohio) and J. D. WHITTINGBERGER 1986 26 p

(NASA-TM-87320; E-3057; NAS 1.15:87320) Avail: NTIS HC A02/MF A01 CSCL 10A

The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60KClF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions. M.G.

N86-31983*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SUMMARY OF THE NASA/DOE AILERON-CONTROL DEVELOPMENT PROGRAM FOR WIND TURBINES Final Report

(Contract DE-A101-76ET-20320)

(NASA-TM-88811; DOE/NASA-20320/71; E-3163; NAS 1.15:88811) Avail: NTIS HC A03/MF A01 CSCL 10A

The development of aileron-control for wind turbines is discussed. Selected wind tunnel test results and full-scale rotor test results are presented for various types of ailerons. Finally, the current status of aileron-control development is discussed. Aileron-control was considered as a method of rotor control for use on wind turbines based on its potential to reduce rotor weight and cost. Following an initial feasibility study, a 20 percent chord aileron-control rotor was fabricated and tested on the NASA/DOE Mod-0 experimental wind turbine. Results from these tests indicated that the 20 percent chord ailerons regulated power and provided overspeed protection, but only over a very limited windspeed range. The next aileron-control rotor to be tested on the Mod-0 had 38 percent chord ailerons and test results showed these ailerons provided overspeed protection and power regulation over the Mod-0's entire operational windspeed range.

Author

GAS COOLED FUEL CELL SYSTEMS TECHNOLOGY DEVELOPMENT Final Report, May 1983 - May 1984
J. M. FERET Aug. 1986 282 p (Contract DEN3-290; DE-A101-80ET-17088)

The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.

Author

N86-32875*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

LITHIUM COUNTERDOPED SILICON SOLAR CELL Patent
I. WEINBERG, inventor (to NASA) and H. W. BRANDHORST, JR., inventor (to NASA) 26 Aug. 1986 7 p Filed 07 Nov. 1984

(Contract DE-AI01 -76ET-20320)

(Contract DEN3-290; DE-A101-80ET-17088)

The resistance to radiation damage of an n+p boron doped silicon solar cell is improved by lithium counterdoping. Even though lithium is an n-dopant in silicon, the lithium is introduced in small enough quantities so that the cell base remains p-type. The lithium is introduced into the solar cell wafer by implantation of lithium ions whose energy is about 50 keV. After this lithium implantation, the wafer is annealed in a nitrogen atmosphere at 375 °C for two hours. Official Gazette of the U.S. Patent and Trademark Office

190
ENVIRONMENT POLLUTION

Includes atmospheric, noise, thermal, and water pollution.

OXIDES OF NITROGEN EMISSIONS FROM THE COMBUSTION OF MONODISPERSE LIQUID FUEL SPRAYS Ph.D. Thesis
H. SARV Jun. 1985 173 p refs (Contract NAG3-1)
(NASA-CR-178373; NAS 1.26:178373) Avail: NTIS HC A08/MF A01 CSCL 13B

A study of NO sub x formation in a one dimensional monodisperse spray combustion system, which allowed independent droplet size variation, was conducted. Temperature, NO and NO sub x concentrations were measured in the transition region, encompassing a 26 to 74 micron droplet size range. Emission measurements of hydrocarbons, carbon monoxide, carbon dioxide and oxygen were also made. The equivalence ratio was varied between 0.8 and 1.2 for the fuels used, including methanol, isopropanol, n-heptane and n-octane. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives in order to simulate synthetic fuels. Results obtained from the postflame regions using the pure fuels indicate an optimum droplet size in the range of 43 to 58 microns for minimizing NO sub x production. For the fuels examined, the maximum NO sub x reductions relative to the small droplet size limit were about 10 to 20% for lean and 20 to 30% for stoichiometric and rich mixtures. This behavior is attributed to droplet interactions and the transition from diffusive to premixed type of burning. Preflame vaporization controls the gas phase stoichiometry which has a significant effect on the volume of the hot gases surrounding a fuel droplet, where NO sub x is formed.

GEOPHYSICS

Includes aeronomy; upper and lower atmosphere studies; ionospheric and magnetospheric physics; and geomagnetism.

SIMULTANEOUS MEASUREMENTS OF CARBON MONOXIDE AND OZONE IN THE NASA GLOBAL ATMOSPHERIC SAMPLING PROGRAM (GASP)
(Contract NAS3-22541; DE-AC02-76MF A01 CSCL 13B)

It is noted that the Global Atmospheric Sampling Program (GASP) was intended to establish global baseline values of selected atmospheric constituents that could be used for studies of the dynamics of the sampled region as well as for modeling purposes. Instrument packages were carried on four Boeing 747 aircraft in routine commercial service. Carbon monoxide and ozone data were collected simultaneously from early 1977 to early 1979 when GASP terminated. CO was measured with an infrared absorption analyzer using dual isotope fluorescence. Ozone was measured via absorption of UV light. Correlations between the CO and the O3 are tabulated; they are clearly negative for both troposphere and stratosphere in middle latitudes, indicating that transport processes between the stratosphere and troposphere (discussed) dominate. But in the low latitude troposphere the correlations are positive, indicating the possible influence of photochemical effects. D.H.

METEOROLOGY AND CLIMATOLOGY

Includes weather forecasting and modification.

A86-17982* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. MERIT - A NEW APPROACH TO UPPER AIR FORECASTING FOR AVIATION

The development of a man/computer data enhancement and management system to provide very-short range upper air forecasts is examined. The forecast accuracy and precision problems encountered with the current numerical weather prediction models are discussed. The proposed system is to utilize both radiosonde data and automated pilot reports and provide a 2-12 hour analysis/forecast with a 3 hour forecast cycle. The minimum energy routes using interactive techniques (MERIT) system is described and a diagram is provided. The preliminary testing of a modified MERIT system reveals that the system is not as accurate as the Spectral 12 hour forecast, but is more accurate than the spectral 24 hour forecast. The complete testing and validation of the MERIT system is required before a comparison with present techniques is possible. I.F.

A86-28963* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. A NOTE ON THE FINITE DIFFERENCING OF THE LINEARIZED PRIMITIVE EQUATIONS' LOWER BOUNDARY CONDITION
D. JACQMIN (NASA, Lewis Research Center, Cleveland, OH; Harvard University, Cambridge, MA) Pure and Applied Geophysics (ISSN 0033-4553), vol. 123, no. 3, 1985, p. 441-447. refs
(Contract NSF ATM-82-05638; NGL-22-007-228)

This note examines the accuracy of finite difference solutions of the midlatitude primitive equations and the quasi-geostrophic equation. First order accurate forward differencing of the equations' lower boundary condition is shown to poorly simulate the radiating wave response to midlatitude heating. Forward differencing always exaggerates the magnitude of the radiating response. For a realistic heating height scale and for a reasonable mesh size this exaggeration is on the order of 50 percent. Central differencing of the lower boundary condition gives an error of only about 3 percent.

A86-37501* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. UPPER AIR FORECASTING FOR AVIATION IN THE UNITED STATES

It is shown that the present forecast models used in the aviation digital forecast (ADF) product for automated flight planning in the U.S. did not improve in accuracy and precision over the past two decades. A new approach to the upper air forecasting is presented in the NASA/NOAA MERIT project. In MERIT, a concept of a tailored analysis is used, based on a high density automated aircraft report database (including radiosonde and satellite data), producing an accurate and precise description of the initial state of the atmosphere, and a relatively simple forecast model to move the forecast forward in time. The steadily updated 2-12 h forecasts provided every 3 h will be more efficient and accurate than the present 18 and 24 h forecasts provided every 12 hours. I.S.
and flight tests were used to scale the results to reflect ionospheric conditions at about 220 km altitude. It is predicted that the orthofabric loses mass in the ionosphere at a rate of about 66% of the original orthofabric mass/yr. The outer layer of the two-layer orthofabric test samples shows few easily visible signs of degradation, even when observed at 440X. It is concluded that the orthofabric could suffer significant loss of performance after much less than a year of total exposure time, while the degradation might be undetectable in post flight visual examinations of space suits. E.A.K.

59

MATHEMATICAL AND COMPUTER SCIENCES (GENERAL)

Some parallel processing environments provide for asynchronous execution and completion of general purpose parallel computations from a single computational phase. When all the computations from such a phase are complete, a new parallel computational phase is begun. Depending upon the granularity of the parallel computations to be performed, there may be a shortage of available work as a particular computational phase draws to a close (computational rundown). This can result in the waste of computing resources and the delay of the overall problem. In many practical instances, strict sequential ordering of phases of parallel computation is not totally required. In such cases, the beginning of one phase can be correctly computed before the end of a previous phase is completed. This allows additional work to be generated somewhat earlier to keep computing resources busy during each computational rundown. The conditions under which this can occur are identified and the frequency of occurrence of such overlapping in an actual parallel Navier-Stokes code is reported. A language construct is suggested and possible control strategies for the management of such computational phase overlapping are discussed. Author

60

COMPUTER OPERATIONS AND HARDWARE

Includes hardware for computer graphics, firmware, and data processing.

High-accuracy optical linear algebra processors are addressed with attention to three new aspects. These include: their application to the solution of finite-element problems; the first error-source models for component errors in such processors; and the first analysis of error sources in such processors. Author
COUPLED PROCESSING ELEMENTS Final Report
J. DAVIDSON, H. R. OTTEY, P. SAWITZ, and F. S. ZUSMAN
10 Jun. 1986 124 p
(Contract NAS3-22885)
(NASA-CR-174890; NAS 1.26:174890; TR-2273-VAL-2) Avail:
NTIS HC A06/MF A01 CSCL 09B

The development of multiprocessor simulations from a serial set of ordinary differential equations describing a physical system is described. Degrees of parallelism (i.e., coupling between the equations) and their impact on parallel processing are discussed. The problem of identifying computational parallelism within sets of closely coupled equations that require the exchange of current values of variables is described. A technique is presented for identifying this parallelism and for partitioning the equations for parallel solution on a multiprocessor. An algorithm which packs the equations into a minimum number of processors is also described. The results of the packing algorithm when applied to a turbojet engine model are presented in terms of processor utilization.

Author

A software package has been developed to transfer three-dimensional transient thermal information accurately, efficiently, and automatically from a heat transfer analysis code to a structural analysis code. The code is called three-dimensional TRANSFER Analysis Code to Interface Thermal and Structural codes, or 3D TRANSCITS. TRANSCITS has the capability to couple finite difference and finite element heat transfer analysis codes to linear and nonlinear finite element structural analysis codes. TRANSCITS currently supports the output of SINDA and MARC heat transfer codes directly. It will also format the thermal data output directly so that it is compatible with the input requirements of the NASTRAN and MARC structural analysis codes. Other thermal and structural codes can be interfaced using the transfer module with the neutral heat transfer input file and the neutral temperature output file. The transfer module can handle different elemental mesh densities for the heat transfer analysis and the structural analysis.

Author

A COMPUTER PROGRAM TO CALCULATE THE RESISTIVITY OF A THIN FILM DEPOSITED ON A CONDUCTIVE SUBSTRATE FROM FOUR-POINT PROBE MEASUREMENTS

(NASA-TM-87262; E-2954) Avail: NTIS HC A03/MF A01 CSCL 09B

A series of FORTRAN-77 programs is described which correct for the effect of a conducting substrate when a linear four-point probe is used to measure the resistivity of a thin film. The resistivity of the film is given in terms of the thicknesses of the film and substrate, the known resistivity of the substrate, and the measured delta V/I. A full development is given as well as a complete description of the operation of the programs. The programs themselves can be obtained through COSMIC, and are identified as LEW No. 14381.

Author

A COMPUTER ANALYSIS PROGRAM FOR INTERFACING THERMAL AND STRUCTURAL CODES

The problem of identifying computational parallelism within sets of coupled processing elements is described. The appendixes of the user manual are presented. Input forms which may be used to prepare data for the SOUP5V3.4 of the R2BCSAT-82 data base are given. The IBM job control language which can be used to run the SOUP5 system from a magnetic tape is described. Copies of a run using the delivered tape and IBM OS/MVS Job Control Language card deck are illustrated. Numerical limits on scenario data requests are listed. Error handling, error messages and editing procedures are also listed. Instructions as to how to enter a protection ratio template are given. And relation between PARC parameter, channelization, channel families, and interference categories are also listed.

E.R.
62 COMPUTER SYSTEMS

62 COMPUTER SYSTEMS

Includes computer networks and special application computer systems.

A86-32051* University of Southern California, Los Angeles.
PERFORMANCE EVALUATION OF A SIMULATED DATA-FLOW COMPUTER WITH LOW-RESOLUTION ACTORS
J. L. GAUDIOT (Southern California, University, Los Angeles) and
M. D. ERECCEVAC (California, University, Los Angeles) Journal of Parallel and Distributed Computing (ISSN 0743-7315), vol. 2, Nov. 1985, p. 321-351. refs
(Contract NSF ECS-84-04345; NAG3-132)

Basic problems related to the exploitation of parallelism in a program include sequencing of the instructions and communication of the data. It is pointed out that the data-flow approach offers an elegant solution to the sequencing problem, since all data dependencies are automatically handled and only instructions with ready input sets are activated. It is shown that a change in the level of subcomputations (actors) affects communications costs. The concept of variable resolution is discussed, and the testbed environment is examined. Attention is given to the architecture of the processing elements, the communication network, and the software. A description of the analytical model is also provided. Simulation and results are discussed, taking into account test programs and allocation, the variation of the number of processing elements, the variation of the resolution in directed acyclic graphs, performance in processing loops, and array handling.

A86-28851* National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
HARDWARE CONFIGURATION FOR A REAL-TIME MULTIPROCESSOR SIMULATOR
(NASA-TM-88802; E-3141; NASA 1.15:88802) Avail: NTIS HC A02/MF A01 CSCL 08E

The Real-Time Multiprocessor Simulator (RTMPS) is a multiple microcomputer system used to investigate the application of parallel-processing concepts to real-time simulation. This users manual describes the set-up and installation considerations for the RTMPS hardware. Any modifications or further improvements to the RTMPS hardware will be documented in an addendum to this manual.

63 CYBERNETICS

Includes feedback and control theory, artificial intelligence, robotics and expert systems.

A86-35419* Notre Dame Univ., Ind.
NONLINEAR OPTIMAL CONTROL WITH TENSORS - SOME COMPUTATIONAL ISSUES
(Contract NSF-3048)

Some computational issues associated with the calculation of optimal feedback controls for nonlinear systems in a tensor setting are described. The specific issues addressed pertain to the combinatorial nature of the loading of the elements into tensors used to represent the system, cost, and feedback, and the subsequent calculations involving these elements. Particular attention is given to: the symmetric tensor algebra which is a natural setting for representing polynomials; the conversions between symmetric and nonsymmetric tensors; the general nature of the calculations required; and the solution equation for nonlinear optimal feedback control. It is concluded that nonlinear tensor feedback can improve performance both in terms of system responses and in terms of system stability region.

A86-20033* Massachusetts Inst. of Tech., Cambridge.
PROPAGATION AND STABILITY OF WAVELIKE SOLUTIONS OF FINITE DIFFERENCE EQUATIONS WITH VARIABLE COEFFICIENTS
(Contract NAG3-9)

The propagation and dissipation of wavelike solutions to finite difference equations is analyzed on the basis of an asymptotic approach in which a wave solution is expressed as a product of a complex amplitude and an oscillatory phase function whose frequency and wavenumber may also be complex. An asymptotic expansion leads to a local dispersion relation for wavenumber and frequency; the first-order terms produce an equation for the amplitude in which the local group velocity appears as the convection velocity of the amplitude. Equations for the motion of wavepackets and their interaction at boundaries are derived, and a global stability analysis is carried out.

A86-30814* Cleveland State Univ., Ohio.
AN EMBEDDING METHOD FOR THE STEADY EULER EQUATIONS
S.-H. CHANG (Cleveland State University, OH) and G. M. JOHNSON (Institute for Computational Studies, Fort Collins, CO) Journal of Computational Physics (ISSN 0021-9991), vol. 63, March 1986, p. 191-200. refs
(Contract NAG3-339)

Certain difficulties arise in connection with the numerical solution of a direct finite difference representation of the steady Euler equations. Johnson (1979, 1981, 1982) has, therefore, proposed a surrogate-equation technique, in which the first-order steady Euler equations are embedded in a certain second-order system of equations. The present paper is concerned with the theoretical justification for such an embedding approach. For the numerical solution of the two-dimensional steady Euler equations, it is shown that, under a continuity restriction, it is possible to solve a second-order embedded system together with appropriate additional boundary conditions. The result indicates that a more direct and potentially more efficient approach to the steady solutions exists than the alternative of solving the unsteady equations.

A86-35386* Ohio State Univ., Columbus.
POLYNOMIC NONLINEAR DYNAMICAL SYSTEMS - A RESIDUAL SENSITIVITY METHOD FOR MODEL REDUCTION
S. YURKOVICH (Ohio State University, Columbus), D. BUGAJSKI (Honeywell Systems and Research Center, Minneapolis, MN), and M. SAIN (Notre Dame, University, IN) IN: 1985 American Control Conference, 4th, Boston, MA, June 19-21, 1985, Proceedings. Volume 2 . New York, Institute of Electrical and Electronics Engineers, 1985, p. 933-939. Research supported by the University of Notre Dame.

The motivation for using polynomic combinations of system states and inputs to model nonlinear dynamics systems is founded on the fact that, under a continuity restriction, it is possible to solve a second-order embedded system together with appropriate additional boundary conditions. The result indicates that a more direct and potentially more efficient approach to the steady solutions exists than the alternative of solving the unsteady equations.
upon the classical theories of analysis and function representation. A feature of such representations is the need to make available algebraic models in the governing equations, up to the degree specified, so as to provide for the description of widely varying functions within a broad class. For a particular application, however, certain monomials may be quite superfluous. This paper examines the possibility of removing monomials from the model in accordance with the level of sensitivity displayed by the residuals to their absence. Critical in these studies is the effect of system input excitation, and the effect of discarding monomial terms, upon the model parameter set. Therefore, model reduction is approached iteratively, with inputs redesigned at each iteration to ensure sufficient excitation of remaining monomials for parameter approximation. Examples are reported to illustrate the performance of such model reduction approaches.

Author

A86-49850* Technion - Israel Inst. of Techn., Haifa.

ACCELERATION OF CONVERGENCE OF VECTOR SEQUENCES
A. Sidi (Technion - Israel Institute of Technology, Haifa, Israel), W. F. Ford (NASA, Lewis Research Center, Cleveland, OH), and D. A. Smith (Duke University, Durham, NC) SIAM Journal of Numerical Analysis (ISSN 0363-1435), vol. 23, Feb. 1985, p. 176-196. Previously announced in STAR as N84-13868. refs (Contract NASA-29260; NSG-3160)

A general approach to the construction of convergence acceleration methods for vector sequence is proposed. Using this approach, one can generate some known methods, such as the minimal polynomial extrapolation, the reduced rank extrapolation, and the topological epsilon algorithm, and also some new ones. Some of the new methods are easier to implement than the known methods and are observed to have similar numerical properties. The convergence analysis of these new methods is carried out, and it is shown that they are especially suitable for accelerating the convergence of vector sequences that are obtained when one solves linear systems of equations iteratively. A stability analysis is also given, and numerical examples are provided. The convergence and stability properties of the topological epsilon algorithm are likewise given.

Author

N86-10860*# Georgia Inst. of Tech., Atlanta. School of Engineering Science and Mechanics.

BOUNDING SOLUTIONS OF GEOMETRICALLY NONLINEAR VISCOELASTIC PROBLEMS

Integrals transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums or products of ratios of known transforms. Exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The effect of system input excitation, and the effect of discarding monomial terms, upon the model parameter set. Therefore, model reduction is approached iteratively, with inputs redesigned at each iteration to ensure sufficient excitation of remaining monomials for parameter approximation. Examples are reported to illustrate the performance of such model reduction approaches.

Author

N86-28661*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SOLUTION OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS BY FAST POISSON SOLVERS USING A LOCAL RELAXATION FACTOR. 1: ONE-STEP METHOD

An algorithm for solving a large class of two- and three-dimensional nonseparable elliptic partial differential equations (PDE's) is developed and tested. It uses a modified D'Yanov-Gunn iterative procedure in which the relaxation factor is grid-point dependent. It is easy to implement and applicable to a variety of boundary conditions. It is also computationally efficient, as indicated by the results of numerical comparisons with other established methods. Furthermore, the current algorithm has the advantage of possessing two important properties which the traditional iterative methods lack; that is: (1) the convergence rate is relatively insensitive to grid-cell size and aspect ratio, and (2) the convergence rate can be easily estimated by using the coefficient of the PDE being solved.

Author

N86-28662*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PHYSICAL AND NUMERICAL SOURCES OF COMPUTATIONAL INEFFICIENCY IN INTEGRATION OF CHEMICAL KINETIC RATE EQUATIONS: ETIOLOGY, TREATMENT AND PROGNOSIS
D. T. Pratt (Washington Univ., Seattle) and K. Radhakrishnan May 1986 12 p (Contract NAG-3-147) (NASA-TP-2590; E-2587; NASA 1.60:2590) Avail: NTIS HC A02/MF A01 CSCL 12A

The design of a very fast, automatic block-box code for homogeneous, gas-phase chemical kinetics problems requires an understanding of the physical and numerical sources of computational inefficiency. Some major sources reviewed in this report are the stiffness of the governing ordinary differential equations (ODE's) and its detection, choice of appropriate method (i.e., integration algorithm plus step-size control strategy), nonphysical initial conditions, and too frequent evaluation of their chemical and kinetic properties. Specific techniques are recommended (and
some advised against) for improving or overcoming the identified problem areas. It is argued that, because reactive species increase exponentially with time during induction, and all species exhibit autocatalysis, exponential decay with time during equilibration, exponential-fitted integration algorithms are inherently more accurate for kinetics modeling than classical, polynomial-interpolant methods for the same computational work. But current codes using the exponential-fitted method lack the sophisticated stepsize-control logic of existing black-box ODE solver codes, such as EPISODE and LSODE. The ultimate chemical kinetics code does not exist yet, but the general characteristics of such a code are becoming apparent.

Author

66 SYSTEMS ANALYSIS

includes mathematical modeling; network analysis; and operations research.

Equations for a lumped parameter mathematical model of a subsonic wind tunnel circuit are presented. The equation state variables are internal energy, density, and mass flow rate. The circuit model is structured to allow for integration and analysis of tunnel subsystem models which provide functions such as control of altitude pressure and temperature. Thus the model provides a useful tool for investigating the transient behavior of the tunnel and control requirements. The model was applied to the proposed NASA Lewis Altitude Wind Tunnel (AWT) circuit and included transfer function representations of the tunnel supply/exhaust air and refrigeration subsystems. Both steady state and frequency response data are presented for the circuit model indicating the type of results and accuracy that can be expected from the model. Transient data for closed loop control of the tunnel and its subsystems are also presented, demonstrating the model's use as a control analysis tool.

70 PHYSICS (GENERAL)

A86-16521 Massachusetts Inst. of Tech., Cambridge, GRID-FREE SIMULATION OF DIFFUSION USING RANDOM WALK METHODS A. F. GHONIEM (MIT, Cambridge, MA) and F. S. SHERMAN (California, University, Berkeley) Journal of Computational Physics (ISSN 0021-9991), vol. 61, Oct. 1985, p. 1-37. refs (Contract NAG3-131; NSF CPE-84-04811)

The simulation of the diffusion of a continuum field by the random walk (RW) displacement of a set of particles is considered. Elements of the gradients of the diffusive concentration are transported by computational particles. It is demonstrated that, by the use of concentration gradients in the RW process, statistical errors are reduced and each realization of the numerical solution is a representation of the exact solution. The algorithm is grid-free, and the computational elements move to follow the gradients; hence, the algorithm is self-adaptive, and uniform resolution is achieved for all times. B.J.

71 ACOUSTICS

includes sound generation, transmission, and attenuation.

The major objective of the present study is an understanding of the mechanism of broadband jet noise augmentation due to upstream excitation, in terms of the relationship between excitation characteristics, changes in large scale and or small scale turbulence structure of the jet, and sound radiated to the far field under both static and simulated forward velocity conditions. A systematic set of acoustic measurements was accordingly made for a range of flow conditions in the acoustic research facilities of a large transport aircraft manufacturer. After analyzing acoustic results, turbulence measurements were made with a laser velocimeter for those jet conditions at which jet noise amplification was important. A theory was developed to account for static and in-flight simulation results.

Attention is given to acoustic results from an experiment designed to deepen insight into the noise generated by a tone-excited jet, with emphasis on the mechanism of broadband jet noise amplification. Results are presented for both heated and unheated jets, with and without the effect of forward flight simulation over a range of excitation frequencies and levels, and for zero-order and first-order spinning modes. Broadband jet noise amplifications of up to 5 dB have been observed in this study. Relative velocity effects are the same for both excited and unexcited jets. It is concluded that small scale turbulence generates the additional broadband noise upon excitation of the jet by an upstream-injected discrete tone acoustic wave.

A86-16470* Florida State Univ., Tallahassee, TONE EXCITED JETS. V - A THEORETICAL MODEL AND COMPARISON WITH EXPERIMENT C. K. W. TAM (Florida State University, Tallahassee) and P. J. MORRIS (Pennsylvania State University, University Park) Journal of Sound and Vibration (ISSN 0022-460X), vol. 102, Sept. 8, 1985, p. 119-151. Research supported by Lockheed Internal Research and Development Program. refs (Contract NAS3-21987)

A mathematical model of tone-excited jets is developed which consists of two major components: a mathematical description of the process by which the intrinsic instability waves of the jet are excited by the upstream tones; and the modeling of the nonlinear interaction between the mean flow of the jet, the excited large-scale instability waves or turbulence structure, and the fine scale turbulence. It is assumed that all of these jet flow components can be characterized by a few parameters, which are then related by a set of conservation equations that are supplemented by closure models. This quasi-linear model's results are compared with experimental measurements, and good agreement is obtained over
a wide range of excitation frequencies and excitation levels.

O.C.

A86-20130*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. TIME-DEPENDENT WAVE ENVELOPE FINITE DIFFERENCE ANALYSIS OF SOUND PROPAGATION

A86-20364*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. THE EFFECT OF ACOUSTIC REFLECTIONS ON COMBUSTOR NOISE MEASUREMENTS

A86-20795* Missouri Univ., Rolla. A NUMERICAL MODEL OF ACOUSTIC CHOKING. II - SHOCKED SOLUTIONS

N. J. WALKINGTON and W. EVERSMAN (Missouri-Rolla, University, Rolla) Journal of Sound and Vibration (ISSN 0022-469X), vol. 104, Jan. 8, 1986, p. 81-107. refs (Contract NSG-3231)

The one dimensional equations of gas dynamics are used to model subsonic acoustic choking. This model can accommodate non-linear distortion of waves and the eventual formation of shock waves. Several finite differencing schemes are adopted to obtain solutions. The results obtained with the various schemes are compared with the asymptotic results available. The results suggest that no one finite differencing scheme gives solutions significantly better than the others and that most of the difference solutions are close to the asymptotic results. If the acoustic shock wave is sufficiently strong it almost annihilates the acoustic wave; in this situation numerical errors may dominate the results. Such solutions involve very large acoustic attenuations. Author

A86-22747*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. REVERBERATION EFFECTS ON DIRECTIONALITY AND RESPONSE OF STATIONARY MONOPOLE AND DIPOLE SOURCES IN A WIND TUNNEL

Analytical solutions for the three dimensional inhomogeneous wave equation with flow in a hardwall rectangular wind tunnel and in the free field are presented for a stationary monopole noise source. Dipole noise sources are calculated by combining two monopoles 180 deg out of phase. Numerical calculations for the modal content, spectral response and directivity for both monopole and dipole sources are presented. In addition, the effect of tunnel alterations, such as the addition of a mounting plate, on the tunnels reverberant response are considered. In the frequency range of practical importance for the turboprop response, important features of the free field directivity can be approximated in a hardwall wind tunnel with flow if the major lobe of the noise source is not directed upstream. However, for an omnidirectional source, such as a monopole, the hardwall wind tunnel and free field response are not comparable. Author

A86-26542*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. SCALING ATTENUATION DATA CHARACTERIZES CHANGES IN MATERIAL MICROSTRUCTURE

Ultrasonic attenuation was measured for polycrystalline samples of nickel and copper with various grain-size distributions produced by heat treatment. Attenuation as a function of frequency was determined for a sample having a known mean grain diameter D. It was found that, once this function is determined, it can be scaled to determine the mean grain size of other samples of the same material with different mean grain diameters. These results were obtained using broadband pulse-echo ultrasound in the 25 to 100 MHz frequency range. The results suggest an ultrasonic, nondestructive approach for verifying heat treatment of metals. Author

A86-31593*# Lockheed-Georgia Co., Marietta. AN EXPERIMENTAL STUDY OF TONE-EXCITED HEATED JETS

In this paper an extensive study of non-linear effects in finite amplitude wave propagation through ducts and nozzles is summarized. Some results from earlier studies are included to illustrate the non-linear effects on the transmission characteristics of duct and nozzle terminations. Investigations, both experimental and analytical, were carried out to determine the magnitudes of the effects for high intensity pulse propagation. The results derived from these investigations are presented in this paper. They include the effect of the sound intensity on the acoustic characteristics of duct and nozzle terminations, the extent of the non-linearities in the propagation of high intensity impulsive sound inside the duct and out into free field, the acoustic energy dissipation mechanism at a termination as shown by flow visualizations, and quantitative evaluations by experimental and analytical means of the influence of the intensity of a sound pulse on the dissipation of its acoustic power. Author

A86-35857*# Lockheed-Georgia Co., Marietta. NON-LINEAR EFFECTS IN FINITE AMPLITUDE WAVE PROPAGATION THROUGH DUCTS AND NOZZLES

In this paper an extensive study of non-linear effects in finite amplitude wave propagation through ducts and nozzles is summarized. Some results from earlier studies are included to illustrate the non-linear effects on the transmission characteristics of duct and nozzle terminations. Investigations, both experimental and analytical, were carried out to determine the magnitudes of the effects for high intensity pulse propagation. The results derived from these investigations are presented in this paper. They include the effect of the sound intensity on the acoustic characteristics of duct and nozzle terminations, the extent of the non-linearities in the propagation of high intensity impulsive sound inside the duct and out into free field, the acoustic energy dissipation mechanism at a termination as shown by flow visualizations, and quantitative evaluations by experimental and analytical means of the influence of the intensity of a sound pulse on the dissipation of its acoustic power. Author

A86-41689*# Missouri Univ., Rolla. MODELING WIND TUNNEL EFFECTS ON THE RADIATION CHARACTERISTICS OF ACOUSTIC SOURCES

An analysis is developed for the noise generated by the interaction of a rotor viscous wake with a cascade of swept stator vanes. The stator vanes span a channel formed by infinite parallel walls containing a subsonic mean flow. High frequency interactions, for which the noise generation is concentrated at the vane leading edge, are considered. The analysis utilizes a superposition of the solution to the isolated stator vane problem, presented in an earlier paper, to develop an approximate solution to the cascade problem. The rotor wake model includes the features of wake circumferential lean and a linear spanwise variation of the magnitude of the wake deficit velocity. Calculations are performed which show that, for rotor wakes with moderate circumferential lean, stator wake sweep produces substantial reductions in noise level. The vane sweep must be oriented to enhance the phase lags along the vane leading edge produced by wake shear. The noise levels are found to be fairly insensitive to spanwise variations in the wake deficit.

Author

The Proplfan Test Assessment (PTA) contract, awarded recently to Lockheed by the NASA-Lewis Research Center, required a comprehensive series of near field acoustic measurements. These were to use transducers mounted on the surfaces of a one-ninth scale model of the Gulfstream G-II aircraft, modified to the PTA single proplfan testbed configuration. The 16-foot Transonic Wind Tunnel at the NASA Langley Research Center was chosen as the facility to be used for these model acoustic tests. Since the tunnel was hard-walled, it is not clear to what extent the propfan noise signals, reaching the various transducers, might be contaminated by reflections from the walls. A Multidriver Acoustic Source was built, and using an impulse and time domain averaging technique, the reflection contaminations in the wind tunnel were measured at selected microphone locations. Results of the investigations of near field measurements exists, due to reflections from the hard walls of the wind tunnel.

Author

An unsteady lifting surface theory for the counter-rotating propeller is presented using the linearized governing equations for the acceleration potential and representing the blades by a surface distribution of pulsating acoustic dipoles distributed according to a modified Birnbaum series. The Birnbaum series coefficients are determined by satisfying the surface tangency boundary conditions on the front and rear propeller blades. Expressions for the combined acoustic resonance modes of the front prop, the rear prop and the combination are also given.

Author

This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise
Questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

N86-12011# Texas A&M Univ., College Station. Dept. of Aerospace Engineering.
A NUMERICAL METHOD OF CALCULATING PROPELLER NOISE INCLUDING ACOUSTIC NONLINEAR EFFECTS

K. D. KORKAN In NASA. Lewis Research Center Numerical Tech. in Acoustics p 9-10 Oct. 1985 refs

(Contract NASG-354)
Avail: NTIS HC A02/MF A01 CSCL 20A

Using the transonic flow fields generated by the NASP+E computer code for an eight blade SR-3-series propeller, a theoretical method is investigated to calculate the total noise values and frequency content in the acoustic near and far field without using the FLowcs Williams - Hawkings equation. The flow field is numerically generated using an implicit three dimensional Euler equation solver in weak conservation law form. Numerical damping is required by the differencing method for stability in three dimensions, and the influence of the damping on the calculated acoustic values is investigated. The acoustic near field is solved by integrating with respect to time the pressure oscillations induced at a stationary observer location. The acoustic far field is calculated from the near field primitive variables as generated by NASP+E computer code using a method involving a perturbation velocity potential as suggested by Hawkings in the calculation of the acoustic pressure time-history at a specified far field observed location. The methodologies described are valid for calculating total noise levels and are applicable to any propeller geometry for which a flow field solution is available.

Author

N86-14006# National Aeronautics and Space Administration.
PRELIMINARY MEASUREMENT OF THE NOISE FROM THE 2/9 SCALE MODEL OF THE LARGE-SCALE ADVANCED PROPFAN (LAP) PROPELLER, SR-7A

J. H. DITTMAR Sep. 1985 22 p refs
(NASA-TM-87116; E-2716; NAS 1.15:87116) Avail: NTIS HC A02/MF A01 CSCL 20A

Noise data on the Large-scale Advanced Propfan (LAP) propeller model SR-7A were taken into the NASA Lewis 8- by 6-Foot Wind Tunnel. The maximum blade passing tone decreases from the peak level when going to higher helical tip Mach numbers. This noise reduction points to the use of higher propeller speeds as a possible method to reduce airplane cabin noise while maintaining high flight speed and efficiency. Comparison of the SR-7A blade passing noise with the noise of the similarly designed SR-3 propeller shows good agreement as expected. The SR-7A propeller is slightly noisier than the SR-3 model in the plane of rotation at the cruise condition. Projections of the tunnel model data are made to the full-scale LAP propeller mounted on the test bed aircraft and compared with design predictions. The prediction method is conservative in the sense that it overpredicts the projected model data.

Author

N86-14007# National Aeronautics and Space Administration.
SOME DESIGN PHILOSOPHY FOR REDUCING THE COMMUNITY NOISE OF ADVANCED COUNTER-ROTATION PROPELLERS

J. H. DITTMAR Aug. 1985 29 p refs
(NASA-TM-87099; E-2692; NAS 1.15:87099) Avail: NTIS HC A03/MF A01 CSCL 20A

Advanced counter-rotation propellers have been indicated as possibly generating an unacceptable amount of noise for the people living near an airport. This report has explored ways to reduce this noise level, which is treated as being caused by the interaction of the upstream propeller wakes and vortices with the downstream propeller. The noise reduction techniques fall into two categories: (1) reducing the strength of the wakes and vortices, and (2) reducing the response of the downstream blades to them. The noise from the wake interaction was indicated as being reduced by increased propeller spacing and decreased blade drag coefficient. The vortex-interaction noise could be eliminated by having the vortex pass over the tips of the downstream blade, and it could be reduced by increased spacing or decreased initial circulation. The downstream blade response could be lessened by increasing the reduced frequency parameter omega or by phasing of the response from different sections to have a mutual cancellation effect. Uneven blade to blade spacing for the downstream blading was indicated as having a possible effect on the annoyance of counter-rotation propeller noise. Although there are undoubtedly additional methods of noise reduction not covered in this report, the inclusion of the design methods discussed would potentially result in a counter-rotation propeller that is acceptably quiet.

Author

N86-19125# National Aeronautics and Space Administration.
LABORATORY EXPERIMENTS ON ACTIVE SUPPRESSION OF ADVANCED TURBOPROP NOISE

J. H. DITTMAR Dec. 1985 18 p refs
(NASA-TM-87129; E-2740; NAS 1.15:87129) Avail: NTIS HC A02/MF A01 CSCL 20A

The noise generated by supersonic tip speed propellers may be a cabin environment problem for future propeller-driven airplanes. Active suppression from speakers inside the airplane cabin has been proposed for canceling out this noise. The potential of active suppression of advanced turboprop noise was tested by using speakers in a rectangular duct. Experiments were first performed with sine wave signals. The results compared well with the ideal cancellation curve of noise as a function of phase angle. Recorded noise signals from subsonic and supersonic tip speed propellers were then used in the duct to determine the potential for cancelling their noise. The subsonic propeller data showed significant cancellations but less than those obtained with the sine wave. The blade-passing-tone cancellation curve for the supersonic propeller was very similar to the subsonic curve, indicating that it is potentially just as easy to cancel supersonic as subsonic propeller blade-passing-tone noise. Propeller duct data from a recorded propeller source and spatial data taken on a propeller-drive airplane showed generally good agreement when compared versus phase angle. This agreement, combined with the similarity of the subsonic and supersonic duct propeller data, indicates that the area of cancellation for advanced supersonic propellers will be similar to that measured on the airplane. Since the area of cancellation on the airplane was small, a method for improving the active noise suppression by using outside speakers is discussed.

Author

N86-22970# National Aeronautics and Space Administration.
ULTRASONIC CHARACTERIZATION OF STRUCTURAL CERAMICS

S. J. KLIMA and G. Y. BAAKLIN In its Analytical Ultrasonics in Materials Research and Testing p 117-126 Jan. 1986 refs
Avail: NTIS HC A16/MF A01 CSCL 20A

Ultrasonic velocity and attenuation measurements were used to characterize density and microstructure in monolithic silicon nitride and silicon carbide. Research samples of these structural ceramics exhibited a wide range of density and microstructural variations. It was shown that bulk density variations correlate with and can be estimated by velocity measurements. Variations in microstructural features such as grain size or shape and pore morphology had a minor effect on velocity. However, these features had a pronounced effect on ultrasonic attenuation. The ultrasonic results are supplemented by low-energy radiography and scanning laser acoustic microscopy.

Author
Virginia Polytechnic Inst. and State Univ., Blacksburg.

ANALYTICAL ULTRASONICS FOR EVALUATION OF COMPOSITE MATERIALS RESPONSE. PART 2: GENERATION AND DETECTION

Avail: NTIS A16/MF A01 CSCL 20A

To evaluate the response of composite materials, it is imperative that the input excitation as well as the observed output be well characterized. This characterization ideally should be in terms of displacements as a function of time with high spatial resolution. Additionally, the ability to prescribe these features for the excitation is highly desirable. Various methods for generating and detecting ultrasound in advanced composite materials are examined. Characterization and tailoring of input excitation is considered for contact and noncontact, mechanical, and electromechanical devices. Type of response as well as temporal and spatial resolution of detection methods are discussed as well. Results of investigations at Virginia Tech in application of these techniques to characterize the response of advanced composites are presented.

Author

N86-22975# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EFFECT OF STRESS ON ULTRASONIC PULSES IN FIBER REINFORCED COMPOSITES
J. H. HEMANN (Cleveland State Univ., Ohio) and G. Y. BAAKLINI In its Analytical Ultrasonics in Materials Research and Testing p 181-191 Jan. 1986 refs Previously announced in IAA as N83-33160 (Contract NAG3-106)

Avail: NTIS HC A16/MF A01 CSCL 20A

An acoustical-ultrasonic technique was used to demonstrate relationships existing between changes in attenuation of stress waves and tensile stress on an eight ply 0 degree graphite-epoxy fiber reinforced composite. All tests were conducted in the linear range of the material for which no mechanical or macroscopic damage was evident. Changes in attenuation were measured as a function of tensile stress in the frequency domain and in the time domain. Stress wave propagation in these specimens was dispersive, i.e., the wave speed depends on frequency. Wave speeds varied from 267,400 cm/sec to 680,000 cm/sec as the frequency of the signal was varied from 150 kHz to 1.9 MHz which strongly suggests that flexural/lamb wave modes of propagation exist. The magnitude of the attenuation changes depended strongly on tensile stress. It was further observed that the wave speeds increased slightly for all tested frequencies as the stress was increased.

Author

N86-22976# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ULTRASONIC VERIFICATION OF MICROSTRUCTURAL CHANGES DUE TO HEAT TREATMENT
E. R. GENERAZIO In its Analytical Ultrasonics in Materials Research and Testing p 207-217 Jan. 1986 refs

Avail: NTIS HC A16/MF A01 CSCL 20A

Ultrasonic attenuation was measured for polycrystalline samples of nickel and copper with various grain-size distributions produced by heat treatment. Attenuation as a function of frequency was determined for a sample having a known mean grain diameter. Once this function was determined, it could be scaled to determine the mean grain size of other samples of the same material with different mean grain diameters. These results were obtained by using galvanon pulse-echo ultrasound in the 25 to 100 MHz frequency range. The results suggest an ultrasonic, nondestructive approach for verifying heat treatment of metals.

R.J.F.

N86-22980# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TRANSFER FUNCTION CONCEPT FOR ULTRASONIC CHARACTERIZATION OF MATERIAL MICROSTRUCTURES
A. VARY and H. E. KAUTZ In its Analytical Ultrasonics in Materials Research and Testing p 251-297 Jan. 1986 refs

Avail: NTIS HC A16/MF A01 CSCL 20A

The approach given depends on treating material microstructures as elastomechanical filters that have analytically definable transfer functions. These transfer functions can be defined in terms of the frequency dependence of the ultrasonic attenuation coefficient. The transfer function concept provides a basis for synthesizing expressions that characterize polycrystalline materials relative to microstructural factors such as mean grain size, grain-size distribution functions, and grain boundary energy transmission. Although the approach is nonrigorous, it leads to a rational basis for combining the previously mentioned diverse and fragmented equations for ultrasonic attenuation coefficients.

Author

N86-22983# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

QUANTITATIVE FLAW CHARACTERIZATION WITH SCANNING LASER ACOUSTIC MICROSCOPY

Avail: NTIS HC A16/MF A01 CSCL 20A

Surface roughness and diffraction are two factors that have been observed to affect the accuracy of flaw characterization with scanning laser acoustic microscopy. In accuracies can arise when the surface of the test sample is acoustically rough. It is shown that, in this case, Snell's law is no longer valid for determining the direction of sound propagation within the sample. The relationship between the direction of sound propagation within the sample, the apparent flaw depth, and the sample's surface roughness is investigated. Diffraction effects can mask the acoustic images of minute flaws and make it difficult to establish their size, depth, and other characteristics. It is shown that for Fraunhofer diffraction conditions the acoustic image of a subsurface defect corresponds to a two-dimensional Fourier transform. Transforms based on simulated flaws are used to infer the size and shape of the actual flaw.

Author

FREE JET FEASIBILITY STUDY OF A THERMAL ACOUSTIC SHIELD CONCEPT FOR AST/VCE APPLICATION-DUAL FLOW. COMPREHENSIVE DATA REPORT. VOLUME 1: TEST NOZZLES AND ACOUSTIC DATA

Avail: NTIS A22/MF A01 CSCL 20A

Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles. The tested nozzles included baseline (unshielded), 180 deg shielded, and 360 deg shielded dual flow coannular plug configurations. The baseline configurations include a high radius ratio unsuppressed coannular plug nozzle and a coannular plug nozzle and a coannular plug nozzle with a 20-chute outer stream suppressor. The tests were conducted at nozzle temperatures and pressure typical of operating conditions of variable cycle engine.

Author
ENGINEERING AND TECHNOLOGY

72 ATOMIC AND MOLECULAR PHYSICS

Includes atomic structure, electron properties, and molecular spectra.

refs (Contract NAS3-32585; NSF ECS-83-05693) A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus.
through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

Author

73 NUCLEAR AND HIGH-ENERGY PHYSICS

Includes elementary and nuclear particles; and reactor theory.

A86-22890* Systems Science and Software, La Jolla, Calif.

ENERGY BROADENING DUE TO SPACE-CHARGE OSCILLATIONS IN HIGH CURRENT ELECTRON BEAMS

During electron beam accelerator operation on Spacelab I, substantial fluxes of electrons were observed with energies greater than the initial beam energy. Numerical calculations are performed for the emission of an unneutralized, one-dimensional electron beam. These calculations show clearly that space charge oscillations, which are associated with the charge buildup on the emitter, strongly modify the beam and cause the returning beam particles to have a distribution of kinetic energies ranging from half to over twice the initial energy.

Author

74 OPTICS

Includes light phenomena; and optical devices.

A86-11905* John Carroll Univ., Cleveland, Ohio.

ALL-FIBRE SENSING LOOP USING PULSE-MODULATED LIGHT-EMITTING DIODE

G. ADAMOVSKY (John Carroll University, Cleveland, OH) Electronics Letters (ISSN 0013-5194), vol. 21, Sept. 25, 1985, p. 922, 923.

A sensing system is presented which includes a pulse-modulated light-emitting diode (LED) and an all-fibre-optic loop generating a reference signal in the time domain. The basic principle of operation and parameters are introduced, and some properties of such a system are experimentally examined using a microbond sensor.

Author

A86-15263* Babcock and Wilcox Co., Alliance, Ohio.

THERMAL DEPENDENCE OF STRESS-INDUCED BIREFRINGENCE IN SINGLE MODE OPTICAL FIBERS

Measurements of the change in stress-induced birefringence with temperature in single mode optical fibers are reported. The fibers examined include those with low residual stress birefringence that have circular and elliptical cores. A section of each fiber was placed under constant load with weights and heated inside a furnace. Polarized light was coupled into and out of the fiber ends outside the furnace. Two mutually perpendicular polarization components were analyzed and detected at the fiber output end. Changes in the detected signal levels were monitored as a function of the temperature of the single mode fiber stressed under constant load. Discussion of results and applications to localized stress measurements at high temperatures are presented.

Author

PERFORMANCE OF DIRECT AND ITERATIVE ALGORITHMS ON AN OPTICAL SYSTOLIC PROCESSOR

The frequency-multiplexed optical linear algebra processor (OLAP) is treated in detail with attention to its performance in the solution of systems of linear algebraic equations (LAEs). General guidelines suitable for most OLAPs, including digital-optical processors, are advanced concerning system and component error source models, guidelines for appropriate use of direct and iterative algorithms, the dominant error sources, and the effect of multiple simultaneous error sources. Specific results are advanced on the quantitative performance of both direct and iterative algorithms in the solution of systems of LAEs and in the solution of nonlinear matrix equations. Acoustic attenuation is found to dominate iterative algorithms and detector noise to dominate direct algorithms. The effect of multiple spatial errors is found to be additive. A theoretical expression for the amount of acoustic attenuation allowed is advanced and verified. Simulations and experimental data are included.

Author

A86-31565* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

DIFFRACTION EFFECTS AND SPECIAL ADVANTAGES IN ELECTRONIC HETERODYNE MOIRE DELECTOMETER

Effects of diffraction on the performance of electronic heterodyne readout of moire fringes are investigated. The sensitivity, accuracy, and resolution of the system are calculated, and it is shown that these features are significantly improved compared with the conventional intensity moire readout technique. The sensitivity of the system can be tripled without changing the distance between gratings. The system was evaluated experimentally by measuring the refractive-index derivative of a weak phase object consisting of a large KD*(asterisk)P crystal. Effects of nonlinear fringe modulation were studied both theoretically and experimentally. It is shown that in this case the electronic phase is not linearly related to the fringe shift, and calibration of the system is necessary.

Author

SPACE AND FREQUENCY-MULTIPLEXED OPTICAL LINEAR ALGEBRA PROCESSOR - FABRICATION AND INITIAL TESTS

A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.

Author

202
DEVELOPMENT OF OPTICAL DIAPHRAGM DEFLECTION SENSORS Final Report

W. L. GHERING, D. VARPHEHNYA, L. A. JEFFERS, R. T. BAILEY, and J. W. BERTHOLD

June 1985 49 p

Contract NAS2-23712

(NASA-CR-175008; NAS 1.26:175008; RDD:85:4101-12:01:01)

NITIS HC A03/MF A01 CSCL 20F

C in a propane-air flame. Comparison with the reference optical pyrometer shows an accuracy of + or - 25 C at 1700 C for this initial development. One hundred cycles from room temperature to 1700 C left the sapphire cone intact, but some loss of the platinum, 6% rhodium coating was observed. Several areas for improving the overall performance and durability are identified.

Author

PLASMA PHYSICS

Includes magnetohydrodynamics and plasma fusion.

A86-11001# Michigan State Univ., East Lansing.

MEASUREMENTS OF ENERGY DISTRIBUTION AND WALL TEMPERATURE IN FLOWING HYDROGEN MICROWAVE PLASMA SYSTEMS

Contract NSG-3299

(AIAA PAPER 85-2052)

An electrothermal propulsion concept utilizing a microwave plasma system as the mechanism to convert electromagnetic energy into translational energy of the flowing gas is being investigated. A calorimetric experimental system has been designed and built enclosing the microwave plasma system to accurately determine the net energy transferred to the flowing gas. For a flow rate of 8900 micromoles/sec, a pressure of 7.4 torr, and an absorbed power level of 80 W, an energy transfer efficiency of 50 percent has been measured. A heat transfer model that characterizes the energy transfer processes in the plasma is developed. A wall temperature for the plasma system is calculated.

Author

A86-16254# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

RADICAL MOLECULE AND ION-MOLECULE MECHANISMS IN THE POLYMERIZATION OF HYDROCARBONS AND CHLOROSILANES IN R.F. PLASMAS AT LOW PressURES (BELOW 1.0 TORR)

R. AVNI (NASA, Lewis Research Center, Cleveland, OH), U. CARMI, A. INSPEKTOR, and I. ROSENTHAL (Atomic Energy Commission, Negev Nuclear Research Centre, Beersheba, Israel)

Previously announced in STAR as N84-21329. refs

The ion-molecule and the radical-molecule mechanisms are responsible for the dissociation of hydrocarbons, and chlorosilane monomers and the formation of polymerized species, respectively, in the plasma state of a RF discharge. In the plasma, of a mixture of monomer with Ar, the rate determining step for both dissociation and polymerization is governed by an ion-molecular type interaction. Additions of H2 or NH3 to the monomer Ar (+) mixture transforms the rate determining step from an ion-molecular interaction to a radical-molecule type interaction for both monomer dissociation and polymerization processes.

Author
75 PLASMA PHYSICS

FUNDAMENTAL STUDIES ON A HEAT DRIVEN LAMP Final Report, 1 Sep. 1983 - 1 Sep. 1984
J. L. LAWLESS 1985 40 p refs (Contract NAG3-437)
(NASA-CR-176381; NASA 1.25:176381) Avail.: NTIS HC A03/MF A01, CSCI 201
A detailed theoretical study of a heat-driven lamp has been performed. This lamp uses a plasma produced in a thermionic diode. The light is produced by the resonance transition of cesium. An important result of this study is that up to 30% of the input heat is predicted to be converted to light in this device. This is a major improvement over ordinary thermionic energy converters in which only approx. 1% is converted to resonance radiation. Efficiencies and optimum inter-electrode spacings have been found as a function of cathode temperature and the radiative escape factor. The theory developed explains the operating limits of the device.

Author

76 SOLID-STATE PHYSICS

Includes superconductivity.

A86-16288* Nebraska Univ., Lincoln.
OPTICAL AND INTERFACIAL ELECTRONIC PROPERTIES OF DIAMOND-LIKE CARBON FILMS

Hard, semitransparent carbon films were prepared on oriented polished crystal wafers of silicon, indium phosphide and gallium arsenide, as well as on KBr and quartz. Properties of the films were determined using IR and visible absorption spectroscopy, ellipsometry, conductance-capacitance spectroscopy and alpha particle-proton recoil spectroscopy. Preparation techniques include RF plasma decomposition of methane (and other hydrocarbons), ion beam sputtering, and dual-ion-beam sputter deposition. Optical energy band gaps as large as 2.7 eV and extinction coefficients lower than 0.1 at long wavelengths are found. Electronic state densities at the interface with silicon as low as 10 to the 10th states/eV sq cm were found.

Author

A86-18567* Rensselaer Polytechnic Inst., Troy, N.Y.
THE EFFECT OF PROCESSING CONDITIONS ON THE GAAS/PLASMA-GROWN INSULATOR INTERFACE
The effect of processing conditions on the interface state density was evaluated from C-V measurements on metal-oxide-semiconductor capacitors. The optimum processing conditions for the minimum surface state density was found to be related to the postoxidation annealing temperature and time, and was independent of chemical treatments prior to oxidation. Annealing at the optimum condition (i.e., at 350 °C for 1 h in either nitrogen or hydrogen gas, with or without an aluminum pattern on the oxide) reduces the fast surface state density by about one order of magnitude. By using a nitrogen/oxygen plasma, the static dielectric constant of the oxide decreased as the N/O ratio was increased, and nitrogen was incorporated into the oxide. In addition, the fast surface state density was reduced as a result of this nitridation process.

Author

A86-28076* Oregon Graduate Center for Study and Research, Beaverton.
THE EFFECT OF OXYGEN PRESSURE ON VOLATILITY AND MORPHOLOGY OF LABS SINGLE CRYSTAL CATHODES
P. R. DAVIS, G. A. SCHWIND, and L. W. SWANSON (Oregon Graduate Center, Beaverton) Journal of Vacuum Science and Technology B (ISSN 0734-211X), vol. 4, Jan.-Feb. 1986, p. 117-125. refs (Contract AF-AFOSR-83-0105; NAG3-434; F19628-84-K-0026)
The effect of oxygen pressure on the volatility and morphology of single crystal LaB6 cathodes, heated to different temperatures, was investigated. At a temperature of 1600 K, an increase of oxygen pressure from 1 x 10 to the -8th torr to 1 x 10 to the -6th torr has led to a 100-fold enhancement in cathode volatility. The enhancement effect of oxygen pressure diminished with increasing temperature: at a cathode operating temperature of 1900 K, the volatility enhancement due to the same oxygen pressure was negligible. It was shown that the faceting frequently observed during evaporation of conically shaped emitters is due to a crystallographic anisotropy of the oxidation rate of LaB6. No facet formation occurs during evaporation at oxygen pressures below -110 to the -8th torr. I.S.

Author

A86-37075* City Coll. of the City Univ. of New York.
INFRARED-PHOTOINDUCED-ABSORPTION STUDIES IN SOLUBLE TRANS-POLYACETYLENE
The observation of photoinduced excitations in trans-polyacetylene in its liquid form in the frequency range from 2000 to 6000/cm is reported on. These measurements strongly suggest that transpolyacetylene is capable of supporting charged solitons even in solution.

Author

A86-37441* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
COMPUTER SIMULATION OF THIN-FILM NUCLEATION AND GROWTH - THE MULTILAYER MODE

The computer simulation of thin-film nucleation and growth, which was previously performed for the case of single monolayer, has been extended to the case of multilayer growth. The simulation results show that the kinetics of multilayer growth is nearly identical to that of monolayer growth. The cluster density resulting from the multilayer mode is similar to that resulting from the monolayer mode at low coverage. At high coverage, multilayer growth results in substantially higher cluster density than that resulting from monolayer growth.

Author

A86-47068* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
ION BEAM SPUTTER DEPOSITED ZINC TELLURIDE FILMS

Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter deposition are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq cm resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material.
Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x 10 to the -6th/ohm cm for 300 angstrom film to 2.56 x 10 to the -1/ohm cm for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

Optical properties of three types of insulating films that show promise in potential applications in the 3-4 semiconductor technology were evaluated, namely a-C:H, BN and CaF2. The plasma deposited a-C:H shows an amorphous behavior with optical energy gaps of approximately 2 to 2.4 eV. These a-C:H films have higher density and/or hardness, higher refractive index and lower optical energy gaps with increasing energy of the particles in the plasma, while the density of states remains unchanged. These results are in agreement, and give a fine-tuned positive confirmation to an existing conjecture on the nature of a-C:H films (1). Ion beam deposited BN films show amorphous behavior with energy gap of 5 eV. These films are nonstoichiometric (B/N approximately 2) and have refractive index, density and/or hardness which are dependent on the deposition conditions. The epilaxially grown CaF2 on GaAs films have optical parameters equal to bulk, but evidence of damage was found in the GaAs at the interface.

Dielectric carbon films were grown on n- and p-type GaAs and InP substrates using plasmas generated at 30 KHz from gaseous hydrocarbons. The effect of gas source, flow rate, and power on film growth were investigated. Methane and n-butane gases were utilized. The flow rate and power ranged from 30 to 50 sccm and 25 to 300 W, respectively. AES measurements show only carbon to be present in the films. The relative Ar ion sputtering rate (3 KeV) of carbon depends on the ratio power/pressure. In addition, the degree of asymmetry associated with the carbon-semiconductor interface is approximately power-independent. SIMS spectra indicate different H-C bonding configurations to be present in the films. Band gaps as high as 3.05 eV are obtained from optical absorption studies.
results are in good agreement with the experimental data.

N86-25267*† National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMPENSATION IN EPITAXIAL CUBIC SiC FILMS

Hall measurements on four n-type cubic SiC films epitaxially grown by chemical vapor deposition on SiC substrates are reported. The temperature dependent carrier concentrations indicate that the samples are highly compensated. Donor ionization energies, E sub D, are less than one half the values previously reported. The values for E sub D and the donor concentration N sub D, combined with results for small bulk platelets with nitrogen donors, suggest the relation E sub D (N sub D) = E sub D (0) - alpha N with a generally accepted value of E sub D (0) for nitrogen donors in cubic SiC.

E.A.K.

N86-25268*† National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

AUGER ELECTRON SPECTROSCOPY, SECONDARY ION MASS SPECTROSCOPY AND OPTICAL CHARACTERIZATION OF A-C:H AND BN FILMS

The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 discharges were determined.

Author

THEORETICAL STUDY OF THE TRANSVERSE DIELECTRIC CONSTANT OF SUPERLATTICES AND THEIR ALLOYS Ph.D Thesis

The optical properties of II-VI binary and ternary compounds and GaAs-AlxGa1-xAs superlattices are determined by calculating the real and imaginary parts of the transverse dielectric constant. Emphasis is given to determining the influence of different material and superlattice parameters on the values of the index of refraction and absorption coefficient. In order to calculate the optical properties of a material, it is necessary to compute its electronic band structure. This was accomplished by introducing a partition band structure approach based on a combination of the vector k x vector p and nonlocal pseudopotential techniques. The advantages of this approach are that it is accurate, computationally fast, analytical, and flexible. These last two properties enable incorporation of additional effects into the model, such as disorder scattering, which occurs for alloy materials and excitons. Furthermore, the model is easily extended to more complex structures, for example multiple quantum wells and superlattices.

The results for the transverse dielectric constant and absorption coefficient of bulk III to V compounds compare well with other one-electron band structure models and the calculations show that for small frequencies, the index of refraction is determined mainly by the contribution of the outer regions of the Brillouin zone.

Author

N86-25284*† National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THERMAL DESORPTION STUDY OF PHYSICAL FORCES AT THE PTFE SURFACE

Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the xenon sublimation energy. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol, less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

Author

N86-28776*† National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

UNIVERSALITY IN THE COMPREHENSIVE BEHAVIOR OF SOLIDS

It was discovered that the isothermal equation of state for solids in compression is a simple, universal form. This single form accurately describes the pressure and bulk modulus as a function of volume for tonic, metallic, covalent, and rare gas solids.

Author

N86-28777*† National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TEMPERATURE EFFECTS ON THE UNIVERSAL EQUATION OF STATE OF SOLIDS

Recently it has been argued based on theoretical calculations and experimental data that there is a universal form for the equation of state of solids. This observation was restricted to the range of temperatures and pressures such that there are no phase transitions. The use of this universal relation to estimate pressure-volume relations (i.e., isotherms) required three input parameters at each fixed temperature. It is shown that for many
solids the input data needed to predict high temperature thermodynamical properties can be dramatically reduced. In particular, only four numbers are needed: (1) the zero pressure (P=0) isothermal bulk modulus; (2) its P=0 pressure derivative; (3) the P=0 volume; and (4) the P=0 thermal expansion; all evaluated at a single (reference) temperature. Explicit predictions are made for the high temperature isotherms, the thermal expansion as a function of temperature, and the temperature variation of the isothermal bulk modulus and its pressure derivative. These predictions are tested using experimental data for three representative solids: gold, sodium chloride, and xenon. Good agreement between theory and experiment is found. Author

N86-30556*# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

STABILITY OF SURFACE NUCLEATION
J. SAlIK Aug. 1986 9 p
(NASA-TM-88806; E-3104 NAS 1.15:88806) Avail: NTIS HC A02/MA A01 CSCLO5B

The growth and decomposition rates of nuclei on a surface are expressed in microscopic terms. A stability factor is defined and employed for the derivation of a criterion for nucleus stability. Simulation results indicate that the stability factor can be used as a measure of the system stability. Author

82 DOCUMENTATION AND INFORMATION SCIENCE

81 ADMINISTRATION AND MANAGEMENT

Includes management planning and research.

A86-24798* National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

DEVELOPMENT OF THE POWER SYSTEM FOR THE UNITED STATES MANAGED SPACE STATION

The definition and preliminary design study effort for the Space Station Electric Power System is described. The requirements to be met by the Power System, the characteristics of the major technology options being considered, and the approach to be taken in the definition studies are considered. The role of advanced development in the definition process and the specific tasks to be performed in the preliminary design study are reviewed. The NASA approach to managing the complex Power System interfaces across the Space Station is also discussed.

C.D.

80 SOCIAL SCIENCES (GENERAL)

Includes educational matters.

N86-13219*# Akron Univ., Ohio. Dept. of Civil Engineering.
Nasa LERC/Akron university Graduate Cooperative Fellowship Program and Graduate Student Researchers Program Interim Report, Nov. 1981 - Oct. 1983
D. G. FERTIS Oct. 1983 59 p refs
(Contract NASG-50; NGT36-001-800; NGT36-001-801) (NASA-CR-174826; NAS 1.15:174826; NAUPF-202-3) Avail: NTIS HC A04/MF A01 CSCLO5B

On June 1, 1980, the University of Akron and the NASA Lewis Research Center (LERC) established a Graduate Cooperative Fellowship Program in the specialized areas of Engine Structural Analysis and Dynamics, Computational Mechanics, Mechanics of Composite Materials, and Structural Optimization, in order to promote and develop requisite technologies in these areas of engine technology. The objectives of this program are consistent with those of the NASA Engine Structure Program in which graduate students of the University of Akron participate by conducting research at Lewis. This report is the second on this grant and summarizes the second and third year research effort, which includes the participation of five graduate students where each student selects one of the above areas as his special field of interest. Each student is required to spend 30 percent of his educational training time at the NASA Lewis Research Center and the balance at the University of Akron. His course work is judiciously selected and tailored to prepare him for research work in his field of interest. A research topic is selected for each student while in residence at the NASA Lewis Research Center, which is also approved by the faculty of the University of Akron as his thesis topic for a Master's and/or a Ph.D. degree. Author

N86-21427*# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

RESEARCH AND TECHNOLOGY, LEWIS RESEARCH CENTER Annual Report, 1985
1985 57 p (NASA-TM-87179; NAS 1.15:87179) Avail: NTIS HC A04/MF A01 CSCLO5B

The NASA Lewis Research Center's research and technology accomplishments for fiscal year 1985 are summarized. The report is organized into five major sections covering aeronautics, aerospace technology, spaceflight systems, space station systems, and computational technology support. This organization of the report roughly parallels the organization of the Center into directorates. Where appropriate, subheadings are used to identify special topics under the major headings. Results of all research and technology work performed during the fiscal year are contained in Lewis-published technical reports and presentations prepared either by Lewis scientists and engineers or by contractor personnel. In addition, the Lewis Distinguished Paper for 1984 to 1985, which was selected by the Chief Scientist and a research advisory board, is included and so identified.

Author
85 URBAN TECHNOLOGY AND TRANSPORTATION

Includes applications of space technology to urban problems; technology transfer; technology assessment; and surface and mass transportation.

An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (Lewis) free-piston Stirling engine activities is presented. These activities include: (1) a generic free-piston Stirling technology project being conducted to develop technologies synergistic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE/Oak Ridge National Laboratory (ONRL)), and (2) a free-piston Stirling space-power technology demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), DOE, and NASA/Lewis. The generic technology effort includes experimental, parametric testing of a 1 kWe free-piston Stirling engine (RE-1000), development of a free-piston Stirling performance computer code, and fabrication and initial testing of an hydraulic output modification for the RE-1000 engine. The space power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including early test results.

Author

(NASA-TM-87175; DOE/NASA/50112-60; E-2821; NAS 1.15:87175). Available: NTIS HC A02/MF A01 CSCL 100

The supporting research and technology effort is intended to provide technical support to the current engine program and also to investigate advanced concepts for the next generation of Stirling engines. Technical areas represented are: seals, materials, engine experiments, combustion, system analysis, ceramics, and tribology. A collage of more recent work in each area is presented. Under seals, analysis and some experimental data on the effect of wear on rod seal performance is presented. The material work described concerns the effect of water content on hydrogen permeation. Results of experiments with the Philips' Advenco engine are presented. A comparison is made of two combustor nozzles, an air atomizing and an ultrasonic atomizing nozzle. A new venture in systems analysis to provide more rigorous Stirling engine simulation is discussed. The results of hydrogen corrosion tests on silicon carbide are presented. Friction and wear tests on candidate materials for engine hot ring tests are discussed.

Author

A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.

Author

A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantial net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.

Author
LONG-TERM STABILITY AND PROPERTIES OF ZIRCONIA CERAMICS FOR HEAVY DUTY DIESEL ENGINE COMPONENTS

Final Report
(Contract DE-NC-35-80CSC-0184)
(NASA-CR-174943; DOE/NASA-0305-1; NAS 1.26:174943)
Avail: NTIS HC A12/MF A01 CSCL 13F

Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000°C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.

Author

FUTURE HEAVY DUTY TRUCKING ENGINE REQUIREMENTS

Final Report
L. W. Strawhorne and V. A. Suski Mar. 1985 166 p refs
(Contract NASG-457; DE-A01-80CSC-0184)
(NASA-CR-174986; DOE/NASA-0457-1; NAS 1.26:174986)
Avail: NTIS HC A08/MF A01 CSCL 13F

Developers of advanced heavy duty diesel engines are engaged in pursuing the opportunities presented by new materials and techniques. This process is technology driven, but there is neither assurance that the eventual users of the engines so developed will be comfortable with them nor, indeed, that those consumers will continue to exist in either the same form, or numbers as they do today. To ensure maximum payoff of research dollars, the equipment development process must consider user needs. This study defines motor carrier concerns, cost tolerances, and the engine parameters which match the future projected industry needs. The approach taken to do that is to be explained and the results presented. The material to be given comes basically from a survey of motor carrier fleets. It provides indications of the role of heavy duty vehicles in the 1988 period and their desired maintenance and engine performance parameters.

Author

N86-19234*# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio

OVERVIEW OF FREE-PISTON STIRLING SP-100 ACTIVITIES AT THE NASA LEWIS RESEARCH CENTER

(Contract DE-A01-80SR-1005)
(NASA-TM-87224; E-2834; DOE/NASA-1005-5; NAS 1.15:87224)
Avail: NTIS HC A02/MF A01 CSCL 10B

An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) SP-100 free-piston Stirling engine activities is presented. These activities are being conducted in support of the Department of Defense (DOD), Department of Energy (DOE), and NASA. The space-power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE). Another facet of the SP-100 project covers the status of an endurance test. Dynamic balancing of the SPDE engine is discussed along with a summary covering the parametric results of a study showing the relationship between power-converter specific weight and efficiency both as a function of Stirling engine heater to cooler temperature ratio. Design parameters and conceptual design features are presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. And finally, a description of a hydrodynamic gas bearing concept is presented.

Author

N86-21456*# Westinghouse Research and Development Center, Pittsburgh, Pa.

DESIGN AND EVALUATION OF FLUIDIZED BED HEAT RECOVERY FOR DIESEL ENGINE SYSTEMS

(Contract DE-NC-35-80CSC-0184)
(NASA-CR-174989; DOE/NASA-0345-1; NAS 1.26:174989)
Avail: NTIS HC A11/MF A01 CSCL 13F

The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subsonic exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with R-1 working fluid, turbocompound power turbine with steam injection, and Stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

E.A.K.

N86-21457*# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio

AUTOMOTIVE STIRLING SUMMARY AND OVERVIEW

Final Report
(Contract DE-A01-80SC-50112)
(NASA-TM-87177; E-2825; DOE/NASA-50112-61; NAS 1.15:87177)
Avail: NTIS HC A02/MF A01 CSCL 13F

Government funded studies for adapting the Stirling engine to an automotive application started in 1971. The initial studies were to reduce exhaust emissions and were later broadened to include fuel economy and alternate fuels. With the passage of the Automotive Propulsion Research and Development Act of 1978, the studies matured into the current Automotive Stirling Engine (ASE) Program. After eight years of development effort, the accomplishments of the ASE Program are reviewed to assess the outlook for program success at its scheduled completion in September 1987. One important goal of the ASE Program is the transfer of Stirling engine technology to the USA. The technology transfer to the ASE Program team members was accomplished. To expand the transfer in the USA, various activities were initiated to make available the developed automotive Stirling engine technology to other U.S. industries, including nonautomotive.

Author

209

The objective of this program is to develop an insulating structural ceramic for application in a heavy duty diabatic diesel engine. The approach is to employ transformation toughening (TTT) by additions of zirconia-hafnia solid solution (ZHSS). The feasibility of using ZHSS as a toughening agent in mullite and alumina has been demonstrated in Phase 1 of this work. Based on Phase 1 results, a decision was made to concentrate the Phase 2 effort on process optimization of the TT mullite. A strong factor in that decision was the low thermal conductivity and high thermal shock resistance of the mullite. Results of the Phase 2 effort indicate that optimum toughening of mullite by additions of ZHSS is difficult to achieve due to apparent sensitivity to morphology. The 48 ksi room temperature modulus-of-rupture (MOR) achieved in selected specimens is approximately 50% of the original strength target. The MOR deteriorated to 34 ksi at 800 C.

This report describes work done during Phase 2 of a 3 year program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/temperature transients in the engine structure. During Phase 2, radiation heat transfer model was developed, which accounts for soot formation and burn up. A methodology was developed for carrying out the multi-dimensional finite-element heat conduction calculations within the overall framework. Studies were carried out using the integrated methodology to address key issues in low heat rejection engines. A wide ranging design analysis matrix was covered, including a variety of insulation strategies, recovery devices and base engine configurations. A single cylinder Cummins engine was installed at Purdue University, and it was brought to a full operational status. The development of instrumentation was continued, concentrating on radiation heat flux detector, total heat flux probe, and accurate pressure-crank angle data acquisition.

The results of an experimental assessment of some advanced Stirling engine component concepts are presented. High performance piston rings, reciprocating oil scrapers and heat pipes with getters and with mechanical couplings were tested. The tests yielded the following results: (1) Bonded, split, pumping piston rings, in preliminary testing, proved a promising concept, exhibiting low leakage and friction losses. Solid piston rings proved impractical in view of their sensitivity to the operating temperature; (2) A babbitt oil scraper in a compliant housing performed well in atmospheric endurance testing. In pressurized tests the scraper did not perform well as a containment seal. The latter tests suggest modifications which may adapt Ti successfully to that application; and (3) Heat pipe endurance tests indicated the adequacy of simple, inexpensive fabrication and filling procedures. Getters were provided to increase the tolerance of the heat pipes to the presence of air and commercially available couplings were demonstrated to be suitable for heat pipe application. In addition to the above tests, the program also included a design effort for a split shaft applicable to a swashplate driven engine with a pressurized crank-case. The design is aimed, and does accomplish, an increase in component life to more than 10,000 hours.

The Stirling Powered Van Program (SPVP) is a multiyear, multiphase program to evaluate the automotive Stirling engine (ASE) in Air Force vans under realistic conditions. The objective of the SPVP is to transfer to manufacturer and end user(s) (i.e., on the path to commercialization) the second-generation Mod 2 ASE upon completion of the Automotive Stirling Engine Program in 1987. In order to meet this objective, the SPVP must establish Stirling performance, integrity, reliability, durability and maintainability. The ASE program background leading to the van program is reviewed and plans for evaluating the kinematic Stirling engine in Air Force vans examined. Also discussed are the NASA technology transfers to industry that have been accomplished and those which are currently being developed.

An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space PowerDemonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas-lubricated bearing concept is presented whereby the displacer of a 1 kW free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.
system for the same peak temperature and output power.

This is the sixth Semianual Progress Report prepared under the Automatic Stirling Engine Development Program. It covers the twenty-fourth and twenty-fifth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a semiannuat format. This report summarizes activities performed on Mod I engine characterization and analyses, Mod I Transient Test Bed fuel economy, upgraded Mod I performance and testing. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low cost casting alloys. The overall program philosophy is outlined, and data and results are presented. Author

The DOE/NASA Automatic Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

Free piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology Program. This five year program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable candidate. Under this program the research findings of the 25 kWe opposed piston Space Power Demonstrator Engine (SPDE) are presented. Included in the SPDE discussions are initial differences between predicted and experimental power outputs and the effect of output variations in regenerators. Projections are made for future space power requirements over the next few decades. And a cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton

This is the ninth Semianual Technical Progress Report prepared under the Automatic Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semianuual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented.

In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle System Program, the NASA Lewis Research Center investigated whether bypassing the P-40 Stirling engine heater during regenerative cooling would improve engine performance. The Lewis modal-analysis Stirling engine computer simulation was used for this investigation. Results for the heater-bypass concept showed no significant improvement in the indicated thermal efficiency for the P-40 Stirling engine operating at higher power and improved conditions. Optimizing the heater bypass length produced a small increase in the indicated thermal efficiency with the heater-bypass concept.

This report is the tenth in a series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Carbonubon Company, and AirResearch Consulting Company. The Project is administered by Mr. Thomas N. Strom, Garrett Manager, NASA-Lewis Research Center, Cleveland, Ohio. This report covers plans and progress for the period July 1, 1984 through June 30, 1985.

Author
I that state recovery significantly affects creep buckling under superimposed on a constant load. The calculated results show include rapid cyclic unloading/reloading sequences and intermittent nozzle liners of reusable rocket engines. Variable loading histories characterize Narloy 2, a representative copper alloy used in thrust the commonly employed Norton creep model, incorporates a material parameters of the constitutive model are chosen to representation of both dynamic and thermal (state) recovery. The idealized (Shanley) sandwich column. The constitutive model, unlike dynamic and thermal recovery on the creep buckling of a column variable loading. Structural alloys embody internal mechanisms that allow recovery of state with varying stress and time. Author

91

LUNAR AND PLANETARY EXPLORATION

includes planetology; and manned and unmanned flights.

90

ASTROPHYSICS

Includes cosmology; celestial mechanics; space plasmas; and interstellar and interplanetary gases and dust.

99

GENERAL
is to make a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead ultimately to the development of new materials and processes in Earth-based commercial applications, adding to this nation's technological base. An important resource that U.S. researchers have readily available to them is the new Microgravity Materials Science Laboratory (MMSL) at NASA Lewis Research Center in Cleveland. A typical scenario for a microgravity materials experiment at Lewis would begin by establishing 1-g baseline data in the MMSL and then proceeding, if it is indicated, to a drop tower or to simulated microgravity conditions in a research aircraft to qualify the project for space flight. A major component of Lewis microgravity materials research work involves the study of metal and alloy solidification fundamentals.
Typical Subject Index Listing

SUBJECT INDEX

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>NASA ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABRSORPTION</td>
<td>Theoretical study of the transverse dielectric constant of superalloys and their alloys</td>
<td>p 206</td>
<td>N86-28759</td>
<td></td>
</tr>
<tr>
<td>ABRASION</td>
<td>Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with mating laps</td>
<td>p 104</td>
<td>N86-24838</td>
<td></td>
</tr>
<tr>
<td>ABSORPTIVITY</td>
<td>Theoretical study of the transverse dielectric constant of superalloys and their alloys</td>
<td>p 206</td>
<td>N86-28759</td>
<td></td>
</tr>
<tr>
<td>ABSTRACTS</td>
<td>Bibliography of Lewis Research Center technical publications announced in 1985</td>
<td>p 208</td>
<td>N86-32236</td>
<td></td>
</tr>
<tr>
<td>AC GENERATORS</td>
<td>AC motor and generator requirements for isolated WECS</td>
<td>p 182</td>
<td>N86-11670</td>
<td></td>
</tr>
<tr>
<td>ACCOMMODATION</td>
<td>Robust detection-isolation-accommodation for sensor failures</td>
<td>p 121</td>
<td>N86-16486</td>
<td></td>
</tr>
<tr>
<td>ACCUATOMETERS</td>
<td>Verification of an improved computational design procedure for TWT-dynamic relcooler-MOC systems with secondary electron emission losses</td>
<td>p 125</td>
<td>N86-32625</td>
<td></td>
</tr>
<tr>
<td>ACCURACY</td>
<td>Effect of accuracy of wind power prediction on power system operator</td>
<td>p 181</td>
<td>N86-11667</td>
<td></td>
</tr>
</tbody>
</table>

ACE PROGRRAM
Subscale-model and full-scale engine mixed-flow exhaust system performance comparison

ACETYLENE
Carbon-rich ceramic composites from ethynyl aromatic precursors

ACOUSTIC ATTENUATION
Nondestructive characterization of structural ceramics

ACOUSTIC EMISSION
Analytical Ultrasonics in Materials Research and Testing

ACOUSTICS
Nondestructive characterization of structural ceramics

ACOUSTIC SCATTERING
Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry

ACOUSTIC VELOCITY
Ultrasonic characterization of structural ceramics

ACOUSTICS
Quarter-wavelength flow characteristic with scanning laser acoustic microscopy

ACTIVATION ENERGY
An analysis for ACTIVATION-ENERGY material processing

ADAPTIVE FILTERS
Adaptive antenna arrays for weak interfering signals - in satellite communication

ADDITIONS
Structure and grain coarsening during the sintering of aluminas

ADJUSTMENTS
A high-order language for a system of closely coupled processing elements

ADVISORY COMMITTEE
Advisory board on the Marshall Space Flight Center's program for advanced propulsion systems

ADHESION
Fundamental tribological properties of ceramics

A-1

Turbotail aft duct suppressor study program listing and user's guide

A-2

A-1

A-2

A-3

A-4
BOUNDARY LAYER STABILITY
Entainment region phenomena for a large plane shear layer.
[NASA-TM-87351] p 122 A96-30211

BOUNDARY LAYER TRANSITION
Heat transfer and fluid mechanics measurements in transitional boundary layer flows.
[ASME PAPER 85-GT-113] p 126 A86-12068
A review and analysis of boundary layer transition data for film cooling application.
[ASME PAPER 85-GT-83] p 129 A86-22054
Entainment region phenomena for a large plane shear layer.

BOUNDARY LAYERS
Comparison of calculated and experimental cascade performance for controlled-diffusion compressor stator blading.
Low Reynolds number boundary layers in a disturbed environment.
[NASA-CR-175031] p 139 A96-17665
Experiments for the determination of convective diffusion heat/mass transfer to burner rig test targets comparable in size to jet stream diameter.
[NASA-TM-87196] p 139 A96-18646
Criteria for significance of simultaneous presence of both compressible vortices and viscous sources on mass transfer (deposition) rates.

BOUNDARY VALUE PROBLEMS
Analysis of an externally radially crack ring segment subject to three-point radial loading.
[216 A86-20710]
Boundary perturbation method for free boundary problem in convectively cooled continuous casting.
[213 A86-20549]
An embedding method for the steady Euler equations.
[214 A86-30814]
Effect of triangular element orientation on finite element solutions of the inviscid equation.
[NASA-TM-87351] p 201 A96-32247

BOXES
Hybrid deployable/extendable solar dynamic box truss system.
[AIAA PAPER 86-0955] p 47 A96-38883

BRAGG ANGLE
Characteristics of an axi-symmetric sudden expansion flow.

BRANCING (MATHEMATICS)
Bifurcation techniques for nonlinear dynamic analysis of compressor stall phenomena.
[22 A96-35403]

BRAYTON CYCLE
Technology for Brayton-cycle powerplants using solar and nuclear energy.
[NASA-CR-1749051] p 115 A96-12377

BROADCASTING
Optical and interfacial electronic properties of diamond-like carbon fibers.
[204 A86-16255]
Optical and interfacial electronic properties of diamond-like carbon fibers.
[204 A86-16255]

BUBBLE TECHNIQUE
Theoretical modeling of the vapor cavitation in dynamically loaded internal bearings.
[ASME PAPER 85-TRIB-51] p 130 A86-24496
Theoretical modeling of the vapor cavitation in dynamically loaded internal bearings.
[NASA-TM-87076] p 137 A96-10483

BUBBLES
Mass transport phenomena between bubbles and dissolved gases in liquids under reduced gravity conditions.
[06 A96-10110]
Thermocapillary and diffusocapillary migration of a fluid drop.
[40 A86-10128]

BULK MODULUS
Universal properties in the compressive behavior of solids.
Temperature effects on the universal equation of state of solids.
[NASA-TM-87321] p 206 A96-28775

BUOYANCY
Effects of buoyancy on gas jet diffusion flames - Experiment and theory.
[IAF PAPER 85-288] p 72 A96-15804
Buoyancy effects on smoldering combustion.
[IAF PAPER 85-289] p 72 A96-15805
Buoyancy effects upon vapor flame and explosion processes.
[41 A96-10161]
Fundamental studies of droplet combustion at reduced gravity.
[42 A96-10165]

BURNERS
Ribbon-burner simulation of T-700 turbine shroud for ceramic-lined seats research.
[18 A96-15225]
Burner rig corrosion of SiC at 1000 C.
[99 A96-36328]

BURNING RATE
Determination of convective diffusion heat/mass transfer rates to burner rig test targets comparable in size to cross-stream jet diameter.
[ASME PAPER 86-GT-68] p 136 A96-48140
Burner liner thermal structural load modeling.
[173 A96-11154]
Component-specific modeling.
[25 A96-11155]
Validation of structural analysis methods using burner liner cyclic rig test data.
[173 A96-11158]
Determinative of convective diffusion heat/mass transfer to burner rig test targets comparable in size to cross-stream jet diameter.
Experiments for the determination of convective diffusion heat/mass transfer to burner rig test targets comparable in size to jet stream diameter.
[NASA-TM-87196] p 139 A96-18646

BURNING RATE
Effect of gravity on laminar premixed gas combustion. I. Flammability limits and burning velocities.
[72 A96-12413]
A fundamental study of smoldering with emphasis on experimental design for zero-g.
[41 A96-10162]

CALCULATION
Characterization of the tribological coating composition.
[77 wt % CoCr - 23 wt % LiF] p 105 A96-27452

CALCIFICATION
Calibration of droplet size and liquid water content instruments: Survey and analysis.
[NASA-CR-175099] p 149 A96-25496
High accuracy fuel flowmeter.
[NASA-CR-174869] p 150 A96-31030

CAMBERED WINGS
Influence of airtail camber on convected gust interaction noise.
[IAIA PAPER 86-1873] p 198 A96-45489

CAMS
Constitutive modeling of lubricants in concentrated contacts at high slide to roll ratios.

CANTILEVER MEMBERS
Influence of rotation and pretwist on cantilever fan blade flutter.
[17 A96-11886]
Analytical and experimental investigation of the coupled blade-flap vibration of a cantilevered turbine blade.
[ASME PAPER 86-GT-98] p 24 A96-48163

CANTILEVER PLATES
Joint research effort on vibrations of twisted plates.
[172 A96-10579]

CAPACITIVE-CAPACITANCE-VOLTAGE CHARACTERISTICS
Resonant power processors. II - Methods of control.
[117 A96-14482]

CAPACITORS
The effect of processing conditions on the GaAs/p-graded-insulator interface.
[204 A86-18567]

CAPILLARY FLOW
Oscillatory thermocapillary flows.
[129 A86-22413]
Convective and absolute instability of a viscous liquid jet.
[123 A96-34377]
Energy stability of thermocapillary convection in models of the zone process.
[140 A96-10129]
Thermocapillary and diffusocapillary migration of a fluid drop.
[40 A96-10128]
Validation of capillary reinforced composites.
[NASA-CR-175061] p 70 A96-24760

CARBON
Composition and properties of the so-called diamond-like amorphous carbon films.
[96 A86-16255]
Optical and interfacial electronic properties of diamond-like carbon films.
[96 A86-16255]
Thin film growth rate effects for primary ion beam deposited diamondlike carbon films.
[100 A86-47088]
Diamonlike carbon films on semiconductors for insulated-gate technology.
[120 A96-12135]
Surface modification strategies for (100)3C-SiC.
[76 A86-7083]

TWT efficiency enhancements achieved with textured carbon surfaces on copper MDC electrodes... multilayer depresssed collectors.
[120 A86-49617]
Dual-ion-beam deposition of carbon films with diamond-like properties.
[65 A86-49595]
Carbon films grown from plasma on III-V semiconductors.
[205 A96-12135]
Textured carbon on copper: A novel surface with extremely low secondary electron emission characteristics.
[NASA-TP-2543] p 105 A96-15394
Auger electron spectroscopy, secondary ion mass spectrometry and optical characterization of a-C:H and SiN films.
Textured carbon surfaces on copper by reactive ion beam deposition.

CARBON FIBER REINFORCED PLASTICS
Tetraglycidycyloxy resins and graphite fiber composites cured with flexibilized aromatic diamines.
[67 A86-36999]
PMR polyimides from solutions containing mixed endcaps.
[100 A86-11265]
Aliphatic diamine end-capped polyquinoline and polyimide matrix resins.
[120 A96-11265]
Replacement of MDA with more oxidatively stable diamines in PMR-polyimides.
[101 A96-11275]

CARBON FIBERS
Environmental stability of intercalated graphite fibers.
[98 A96-31825]
Negative magnetoresistance of pitch-based carbon fibers.
[98 A96-35702]

CARBONIZABLE WOODS
Development of LC-10C NMR.

CARBON MONOXIDE
Two dimensional, transient catalytic combustion of CO or platinum.
[71 A86-10201]
Carbon monoxide production in low energy oxygen ion bombardment of pyrolytic graphite and Kapton surfaces.
[AIA PAPER 86-1873] p 149 A96-25496
Simultaneous measurements of carbon monoxide and ozone in the NASA Global Atmospheric Sampling Program.
[ASME PAPER 86-GT-98] p 24 A96-48163

CARBON 13
Development of LC-10C NMR.
CLOSED CIRCUITS
CLOSED CIRCULATIONS
CLOUD GLACIATION
Experimental measurements of heat transfer from an ice covered surface during artificial and natural cloud icing conditions [AIAA PAPER 86-1352] p 36 A96-39946
CLOUD FORMATION
Characterization and simulation of small droplet icing clouds [AIAA PAPER 86-0409] p 145 A96-22700
Particle cloud combustion experiment p 41 N86-10160
CMOS
COATING
COATING PROPERTIES
Dissolution-beam deposition of carbon films with diamond-like properties p 65 A86-49855
How to evaluate solid lubricant films using a pin-on-disc tribometer [NASA-TM-87236] p 102 N86-19465
COAXIAL FLOW
Mass and momentum turbulent transport experiments with swirling confined coaxial jets II [AIAA PAPER 88-1665] p 134 A86-42780
Effectiveness of vapor flame and explosion processes p 41 N86-10161
COBALT
Reactions of cobalt, iron and nickel in SO2 atmospheres Similitudes and differences p 75 A86-40677
The response of cobalt-free Udiment 700 type alloy to modified heat treatments p 85 A86-46037
COBALT ALLOYS
Slow plastic strain rate compressive flow in binary Co-Al intermetallics p 70 A86-11478
Distortions in discreted Co-43 at. % pct Al p 83 A86-45081
CODERS
Wavelength-division multiplexed digital optical position transducer p 145 A96-20798
CODING
COEFFICIENT OF FRICTION
Comparison of the contact stress and friction behavior of SC and 302 materials p 95 A86-15237
COHENBERG
Develop and test fuel cell powered on-site integrated power systems p 107 A86-37074
COLD CATHODES
Develop a program on a cold cathode electron gun [NASA-CR-174792] p 121 N86-14489
COLD GAS
Resistive operation with various propellants [AIAA PAPER 85-1158] p 107 N86-27074
COLD PLASMAS
Effect of argon and hydrogen on deposition of silicon from tetraethylsilane in cold plasma jets [NASA-TM-87219] p 65 N86-17472
COLD WEATHER TESTS
COLLIMATION
Lens collimation and testing using a Twyman-Green interferometer with a self-pumped-phase-conjugating mirror p 146 A86-29280
CORDER RATE RATES
Rapid rates of ion thruster lifetime using optical emission spectroscopy [AIAA PAPER 85-2011] p 51 N86-17851
Rapid ionization of ion thruster lifetime using optical emission spectroscopy [NASA-TM-87103] p 56 N86-10280
COLLOCATIONS
Analysis of an externally radially crack ring segment subject to three-point radial loading p 167 A86-20710
COMBUSTIBLE FLOW
Occasional oscillations observed in swirling flows with and without combustion p 73 A86-22755
Numerical simulation of a tubular flame stabilized behind a rearward-facing step p 73 A86-22754
Backward boundary layers in downward flame spread p 73 A86-22753
Formation and inflammation of a tubular jet p 130 A86-23131
Direct numerical simulations of chemically reacting turbulent mixing layers p 130 A86-23567
Theory of interactive combustion of counterflow premixed flames p 73 A86-23722
COMBUSTION
New integration techniques for chemical kinetic rate equations, II - Accuracy comparison [ASME PAPER 85-GT-200] p 73 A86-22756
Buoyancy effects upon vapor flame and explosion processes p 41 N86-10161
Fundamental studies of droplet combustion at reduced gravity p 42 N86-10165
Turbine Engine Hot Section Technology (HOST) [NASA-TM-88605] p 172 N86-11495
COMBUSTION CHAMBERS
Combustion research for gas turbine engines p 17 A86-11609
Small gas turbine combustor experimental study;
Compliant metal/ceramic liner and performance evaluation

COMBUSTION PHYSICS
Effect of gravity on laminar premixed gas combustion.
I - Flammability limits and burning velocities
 p 72 A86-12413
Effect of gravity on laminar premixed gas combustion.
II - Ignition and extinction phenomena
 p 72 A86-12414
Dynamic features of combustion
 p 72 A86-12625
Buoancy effects on smoldering combustion
[IAF PAPER 85-293] p 72 A86-15805
An experimental investigation on flame interaction and
the existence of negative flame speed
 p 74 A86-22816

Spray atomization and combustion
[AIAP PAPER 86-0136] p 131 N86-25506
New integration techniques for chemical kinetic rate
equations. I - Efficiency comparison
 p 75 N86-38309
Particle cloud combustion experiment
 p 41 N86-10150

COMBUSTION PRODUCTS
Influence of temperature and hydroxyl concentration on
induction period formation in premixed flames
 p 74 A86-29070

COMBUSTION STABILITY
Longitudinal mode combustion instabilities of a
high-pressure-fuel-rich LOX/RP-1 preburner
 p 56 A86-49640
Combustor flame flashback
An examination of combustion instabilities of a
high-pressure-fuel-rich LOX/RP-1 preburner
 p 165 N86-28250

COMBUSTION TEMPERATURE
A fundamental study of smoldering with emphasis on
experimental design for zero-g
 p 41 N86-10162

COMMERCIAL SPACECRAFT
Evaluation of spacecraft technology programs (effects
on communication satellite business ventures), volume 1
Evaluation of spacecraft technology programs (effects
on communication satellite business ventures), volume 2
COMMUNICATION
Research and technology, Lewis Research Center

COMMUNICATION EQUIPMENT
The baseband processor in future satellite
communication systems
 p 109 A86-21882

COMMUNICATION NETWORKS
The baseband processor in future satellite
communication systems
 p 109 A86-21882
Application of interstellar links to domestic satellite
systems
[AIAP PAPER 86-0604] p 44 A86-29580
Impact of the 1985 Space World Administrative Radio
Conference on frequency/orbit planning and use
[AIAP PAPER 86-0640] p 110 A86-49567
Application of interstellar links to domestic satellite
systems

Engineering calculations for communications satellite
systems planning
Impact of the 1985 Space World Administrative Radio
Conference on frequency/orbit planning and use
Spectrum orbit utilization program technical manual
SOUPS Version 3.8

Communication platform payload definition study
Communications platform payload definition study,
effective summary report

COMMUNITIES
An analysis of b-directional use of frequencies for
satellite communications
Engineering calculations for communications satellite
systems planning
Broadcasting satellite service synthesis using gradient
and cyclic coordinate search procedures
Satellite voice broadcast. Volume 1: Executive
summary. Volume 2: System study
Impact of the 1985 Space World Administrative Radio
Conference on frequency/orbit planning and use
Spectrum orbit utilization program documentation:
SOUPS version 3.8 user's manual, volume 1, chapters 1
through 5
COMMUNITIES
Some design philosophy for reducing the community
noise of advanced counter-rotation propellers
 p 199 N86-14001

COMPACTING
Structure and grain coarsening during the sintering of
alumina
 p 98 A86-26341

COMPRESSOR ROTORS
Composite sandwich thermostructural behavior -
Computational simulation
[NAA PAPER 86-0049] p 170 A86-38842
Computational composite mechanics for aerospace
propulsion structures
[NAA PAPER 86-0049] p 67 A86-40596
Aerodynamic behavior of low aspect ratio metal and
composite blades
[NAA PAPER 86-0049] p 171 A86-48271

COMPRESSIBILITY
The plastic compressibility of 7075-T651 aluminum-alloy
plates
 p 140 A86-19555
Compressive creep behavior of alloys based on
B-Fe
University in the compressive behavior of solids

COMPRESSIBLE FLOW
Inverse design of axisymmetric flow passages using
compressible viscous flow theory
 p 4 A86-26412
Recent skin friction techniques for compressible flows
 [AIAA PAPER 86-1099] p 147 A86-34640
An approach to the calculation of the pressure
field produced by rigid wall flow with rotation propellers
of high solidity in compressible flow
Viscous compressible flow direct and inverse
computation and illustrations
An analysis of the sound field produced by a
cord dual rotation propellers of high solidity in
compressible flow
 p 11 N86-21517

COMPRESSION LOADS
Orientation and temperature dependence of some
mechanical properties of the single-crystal nickel-base
superalloy Rene N4. III - Tension-compression
anisotropy
 p 66 A86-50323

COMPRESSION TESTS
Slow plastic strain rate compressive flow in binary
CoAl intermetallics
 p 78 N86-11478

COMPRESSION STRENGTH
Longitudinal compressive failure modes in fiber
carbon composites
 p 61 N86-13199

COMPRESSOR BLADES
Boundary layer measurements on an airflow in cascade
using laser Doppler anemometry
[AIAA PAPER 86-0072] p 145 A86-19670
Comparison of calculated and experimental cascade
performance for controlled-diffusion compressor stator
blading

COMPONENT RELIABILITY
Comparison of calculated and experimental cascade
performance for controlled-diffusion compressor stator
blading

COMPENSATION
Component compensation for reducing the community
noise of advanced counter-rotation propellers

COMPUTER MATHEMATICAL SYSTEMS
A-11
A new approach for solving the three-dimensional steady Euler equations. I. General theory p 135
Direct numerical simulations of a reacting mixing layer with chemical heat release p 76 AIAA-4711
Transonic potential flow in hyperbolic nozzles p 5 AIAA-4723
An ILU scheme for high speed inlet analysis (AIAA PAPER 86-1520) p 6 AIAA-42676
Improved Euler analysis of advanced turbojet propulsion flows (AIAA PAPER 86-1521) p 6 AIAA-42668
Numerical analysis of some super sonic viscous flows related to jet and nozzle systems (AIAA PAPER 86-1597) p 134 AIAA-42738
Assessment of a parabolic analysis for axisymmetric internal flows in ducts (AIAA PAPER 86-1598) p 134 AIAA-42729
A comparison of computational methods for three-dimensional turbulent turbine flow fields (AIAA PAPER 86-1599) p 6 AIAA-42740
A numerical analysis applied to high angle of attack three-dimensional inlets (AIAA PAPER 86-1527) p 6 AIAA-42760
A space-marching method for viscous incompressible internal flows p 135 AIAA-43007
Transient two-phase flow in annular seals [ASLE PREPRINT 86-AM-6] p 156 AIAA-45391
Finite element simulation of temperature dependent free surface flows p 136 AIAA-47012
Computation of three-dimensional, rotational flow through turbomachinery blade rows for improved aerodynamic design studies (AIAA PAPER 86-GT-26) p 7 AIAA-48117
Validation of viscous and inviscid computational methods for turbomachinery components (AIAA PAPER 86-GT-42) p 7 AIAA-48126
On the application of an integrated unsteady potential flow analysis to fan-lip cascades (AIAA PAPER 86-GT-87) p 7 AIAA-48153
Application of a computational model for vortex generators in subsonic internal flows (AIAA PAPER 86-1458) p 136 AIAA-49612
Local equilibrium assumption for round jet calculations p 136 AIAA-49629
Is Navier-Stokes turbulence chaotic? p 137 AIAA-50275
Validation of viscous and inviscid computational methods for turbomachinery components (AIAA PAPER 86-GT-26) p 7 AIAA-48117
Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer (AIAA PAPER 86-GT-11) p 139 AIAA-46518
Viscous compressible flow direct and inverse computation and illustrations (AIAA PAPER 86-GT-11) p 20 AIAA-29091
An ILU implicit scheme for high speed inlet analysis (AIAA PAPER 86-GT-11) p 139 AIAA-46598
A numerical analysis applied to high angle of attack three-dimensional inlets (AIAA PAPER 86-GT-11) p 139 AIAA-46598
Application of a computational model for vortex generators in subsonic internal flows (AIAA PAPER 86-1458) p 136 AIAA-49612
Numerical simulation of the flowfield over ice accretion shapes (AIAA PAPER 86-1460) p 144 AIAA-50003
Thermodynamic evaluation of transonic compressor rotors using the finite volume approach (AIAA PAPER 86-GT-11) p 139 AIAA-46598
Computational Grids
Multigrid methods for the solution of incompressible Navier-Stokes equations p 128 AIAA-21029
A mesh re-zoning technique for finite element simulation of metal forming processes p 135 AIAA-36268
A two-dimensional numerical study of the flow inside the combustion chambers of a modern turbo jet engine (AIAA PAPER 86-GT-11) p 139 AIAA-46598
Effect of triangular element orientation on finite element solutions for the Hele-Shaw equation (AIAA PAPER 86-GT-11) p 201 AIAA-53224
Computational Fluid Dynamics
Structural tailoring of SSME turbopump blades (SSME/STAEL) -- Structural Tailoring of Engine Blades (AIAA PAPER 86-0847) p 54 AIAA-38985
Verification of computer-aided designs of traveling-wave tubes utilizing novel dynamic recombines and graphite electrodes for the multistage depressurization system (AIAA PAPER 86-0847) p 54 AIAA-38985

Burner liner thermal structural load modeling (NASA-TM-871492) p 96 AIAA-21932
Burner liner thermal structural load modeling: TRACENTS program user's manual (NASA-TM-179491) p 142 AIAA-24931
Generation of spiral bevel gears with zero kinematic errors and computer aided tool contact analysis (NASA-TM-873271) p 147 AIAA-25793
Dynamic loading on parallel shaft gears (NASA-TM-179472) p 161 AIAA-28433
Performance of oil pumping rings: An analytical and experimental study (NASA-TM-175063) p 144 AIAA-31000
Computer Graphics
Study of journal bearing dynamics using 3-dimensional motion pictures (NASA-TM-871160) p 140 AIAA-16467

Computer Programming
Simulating a small turbofan engine in real-time (NASA-TM-872161) p 27 AIAA-18521

Computer Programs
DEAN - A program for Dynamic Engine Analyses (AIAA PAPER 85-1354) p 14 AIAA-11440
Modeling dilution of jet fields (AIAA PAPER 85-2086) p 135 AIAA-40663
An experimental method for measuring droplet impingement efficiency on two- and three-dimensional bodies (AIAA PAPER 86-0406) p 131 AIAA-26630
An investigation of the transient thermal analysis of spur gears (AIAA PAPER 84-DE-92) p 155 AIAA-40683
Dynamic stress analysis of smooth and notched fiber composite flexural specimens (AIAA PAPER 84-1410) p 67 AIAA-40683
A fast approach to calculating time histories and pressures in electrolydynamically lubricated contacts at high loads (AIAA PAPER 85-TRIB-42) p 155 AIAA-43541
Validation of viscous and inviscid computational methods for turbomachinery components (AIAA PAPER 85-GT-42) p 7 AIAA-48126
Progressive damage, fracture predictions and post mortem correlations for fiber composites (NASA-TM-87101) p 68 AIAA-10290
A numerical method of calculating propeller noise including acoustic nonlinear effects (NASA-TM-87101) p 155 AIAA-40683
A FORTRAN computer code for calculating flows in multiple-blade-element cascades (NASA-TM-87104) p 98 AIAA-12895

Secondary pattern correlation of an offset reflector antenna (NASA-TM-87160) p 112 AIAA-14479
Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments (NASA-TM-87167) p 68 AIAA-15378
Validation of viscous and inviscid computational methods for turbomachinery components (NASA-TM-87193) p 10 AIAA-16194
LOX/LH2 vane pump for auxiliary propulsion (NASA-TM-87194) p 98 AIAA-17397

A numerical and experimental investigation of electrochemical aircraft deicing (NASA-TM-175001) p 14 AIAA-20380
A computer program to calculate the resistivity of a thin film deposited on a conductive substrate from four-point probe measurements (NASA-TM-87262) p 193 AIAA-22150
Mutual coupling effects in antenna arrays, volume 1 (NASA-TM-176669) p 114 AIAA-22782
SSME fueled preburner two-dimensional analysis (NASA-TM-87299) p 4 AIAA-23816
Theoretical analysis of the electrical aspects of the basic electrical interface problem in aircraft deicing applications (NASA-TM-176608) p 17 AIAA-26330
Computational simulation of progressive fracture in fiber composites (NASA-TM-87341) p 71 AIAA-26376
Structural tailoring of engine blades (STAEL) user's manual (NASA-TM-175113) p 31 AIAA-27284
A personal computer for the uncomplicated vibration analysis of wind turbine blade and counterweight assemblies (NASA-TM-175090) p 186 AIAA-28511
DAMPING

DEFECTS

A new ply model for interlaminate stress analysis p 66 A86-20629

Dynamic delamination crack propagation in a graphite/epoxy laminate p 66 A86-43010

DELOADING

The continuing battle against defects in nickel-base superalloys [NASA-TM-87343] p 93 N86-31701

DEFLECTION

DEFORMATION

Creep of chemically vapour deposited Sic fibres p 66 A86-21486

The tensile and fatigue deformation structures in a single crystal Ni-base superalloy p 83 A86-25697

Bouning solutions of geonetrically nonlinear viscolastic problems [AIAA PAPER 86-0943] p 170 A86-38838

Bouning solutions of geonetrically nonlinear viscolastic problems p 195 N86-10960

Yielding and deformation behavior of the single crystal nickel-base superalloy PWA 1490 [NASA-CR-17910] p 91 N86-25455

DEGRADATION

All- aromatic biphenyl end-capped polyquinoxine and polimide matrix resins p 100 N86-11267

Analytical determination of ppilferer performance and degradation due to ice accretion [NASA-CR-175092] p 15 N86-23577

Effect of crystallographic and geometrical changes of a ferrite head on magnetic signals during the sliding process with magnetic tape [NASA-TM-87277] p 106 N86-31728

DESIGN

A structural dynamics investigation related to EID applications -- Electro-impulse Deicing [AIAA PAPER 86-0950] p 16 A86-19942

Piezoelectric deicing device [NASA-CR-175052] p 70 A86-22067

Analyses and tests for design of an electro-impulse de-icing system [NASA-CR-175491] p 15 N86-27268

De-icing of the altitude wing tunnel turning vanes by electro-magnetic impulse [NASA-CR-177260] p 38 N86-27201

DEICING

Designing an electro-impulse de-icing system [AIAA PAPER 86-0945] p 16 A86-19940

A numerical and experimental investigation of electro-magnetic aircraft deicing [NASA-CR-175024] p 14 A86-20380

Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications [NASA-CR-176089] p 17 N86-26350

Calculation of droplet sizing and liquid water content instruments: Survey and analysis [NASA-CR-175092] p 149 N86-26596

Analyses and tests for design of an electro-impulse de-icing system [NASA-CR-174919] p 15 N86-27268

DEPOLYMERIZATION

Effect of argon and hydrogen on deposition of silicon from tetraethoxysilane in cold plasma [NASA-TM-87219] p 16 A86-67427

A computer program to calculate the reactivity of a thin film deposited on a conductive substrate from four-point probe measurements [NASA-TM-87262] p 193 N86-22150

DEPOITS

Fuel deposit characteristics at low velocity [AIAA PAPER 85-IGT-130] p 107 A86-23922

DERIVATION

DESIGN ANALYSIS

Velocity and temperature decay characteristics of inviered-profile jets [AIAA PAPER 86-0312] p 2 A86-22693

Inverse design of axisymmetric flow passages using compressible viscous flow theory p 4 A86-25612

Rotary transformer design with fixed magnetizing and/or leakage inductances p 19 A86-40462

Design considerations for advanced battery concepts [AIAA PAPER 86-164] p 181 A86-40297

High Temperature Polymer Matrix Composites [NASA-CP-3365] p 66 N86-11260

Velocity and temperature decay characteristics of inviered-profile jets [NASA-CR-175119] p 5 N86-14223

Preliminary design of a supersonic cruise aircraft high-pressure turbine [NASA-CR-174878] p 26 N86-14272

Onsite 4-kilowatt fuel cell power plant manufacturing and field test program [NASA-CR-174988] p 185 N86-18773
SUBJECT INDEX

- **Torsional vibrations and dynamic loads in a basic planetary gear system**
- **Study of journal bearing dynamics using 3-dimensional motion picture graphics**
- **Dynamic loading on parallel shaft gears**

DYNAMICAL MODELS
- **Development and application of dynamic simulations of a subsonic wind tunnel**
 - [NASA-TM-87217] p. 43 N86-18339

BURNER LINER
- **Thermal linear/stiff/structural load modeling**

DYNAMIC RESPONSE
- **The dynamics of a flexible bladed disc on a flexible rotor in a rotor-stator system**
 - [NASA-TP-2544] p. 27 N86-15313
- **Extensions of the Ritz-Galerkin method for the forced, damped vibrations of structural elements**
- **Dynamic loading on parallel shaft gears**

DYNAMIC STRUCTURAL ANALYSIS
- **A structural dynamic investigation related to EIDI applications**
- **Powerful aerothermodynamic systems**
- **The effects of shock loading on coupled bending-torsion flutter of tuned and untuned ducts**
- **Probabilistic finite elements for transient analysis of nonlinear continua**
- **Efficient algorithms for use in probabilistic finite element analysis**
- **Dynamic characteristics of an assembly of prop-fan bladed discs**
- **Advanced three-dimensional dynamic analysis by boundary element methods**
- **Parameter sensitivity in the dynamics of rotor-bearing systems**
- **NASA LeRC/Akon University Graduate Collaborative Fellowship Program and Graduate Student Researchers Program**
- **An analysis of cross-coupling of a multicomponent jet engine test stand using finite element modeling techniques**
- **Extrapolations of the Ritz-Galerkin method for the forced, damped vibrations of structural elements**
- **Advanced turbogasdynamic vibratory characteristics**
- **Burner liner thermal/structural load modeling**
- **Theoretical and software considerations for general dynamic analysis using multiview substructured models**
- **Identification of differences between finite element models and experimental data**
 - [NASA-TM-87438] p. 149 N86-27617
- **Structural dynamic measurement techniques**
 - [NASA-TM-87246] p. 35 N86-32433

DYNAMICAL SYSTEMS
- **Ritz-Galerkin method of direct solution**
- **Polytopic nonlinear dynamical systems**

DYNAMICS
- **A comparison of experimental and theoretical results for delay, response, gradients, and control parameters for tanks and annular gas storage**
LIQUID VAPOR INTERFACES

- Theory of homogeneous nucleation - A chemical kinetic view (p. 72)
- Liquid-vapor interface locations in a spherical container under low pressure (p. 72)

LIQUID FUELS

- Liquid fueled external heating system for STMA-120 (p. 190)
- Ignition and flame spread above liquid fuel pools (p. 81)

LIQUID FLOW

- Convective and absolute instability of a viscous liquid jet (p. 132)
- Flow and atomization in flashing injectors (p. 136)

LIQUID FUELS

- Liquid fueled external heating system for STMA-120 (p. 190)
- Ignition and flame spread above liquid fuel pools (p. 81)

LIQUID METALS

- Lithium counterdoped silicon solar cell (p. 190)
- Lithium counterdoped silicon solar cell (p. 190)
- Lithium counterdoped silicon solar cell (p. 190)

LIQUID NITROGEN

- SSME long-life bearings (p. 83)

LIQUID OXYGEN

- Turbulent two-phase flow in annular seals (p. 54)

LIQUID ROCKETS

- Rocket propellant systems (p. 190)
- Liquid rocket propulsion (p. 190)

LIQUID SOLIDIFICATION

- Development of the VOLT-A shuttle experiment (p. 190)
- Development of the VOLT-A shuttle experiment (p. 190)

LIQUID SURFACES

- Free surface phenomena under low- and zero-gravity operations (p. 29)

LIQUID-SOLID INTERFACES

- Interaction of flows with the crystal-melt interface (p. 132)
- Operating aspects of an oil pumping ring seal (p. 136)

LIQUID-VAPOR INTERFACES

- Theory of homogeneous nucleation - A chemical kinetic view (p. 72)
- Liquid-vapor interface locations in a spherical container under low pressure (p. 72)

LUBRICATION

- Low-speed performance of an asymmetrical, micro-precision, superlubricating inserts with auxiliary inserts (p. 26)
- Low-speed wind tunnel tests (p. 3)
- Low Reynolds number boundary layers in a disturbed environment (p. 12)

LUMINESCENCE

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LOW PRESSURE

- Low pressure test rig for low-speed thrust engines (p. 190)
- Low pressure test rig for low-speed thrust engines (p. 190)

LOW TEMPERATURE

- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)
- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)

LOW THRUST PROPULSION

- Analysis of low-speed, resistojet booster for the Space Station (p. 190)

LUBRICANT TESTS

- Lubricant testing (FORCES) (p. 190)

LUBRICANTS

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LUBRICATION

- Low-speed performance of an asymmetrical, micro-precision, superlubricating inserts with auxiliary inserts (p. 26)
- Low-speed wind tunnel tests (p. 3)
- Low Reynolds number boundary layers in a disturbed environment (p. 12)

LUMINESCENCE

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LOW PRESSURE

- Low pressure test rig for low-speed thrust engines (p. 190)
- Low pressure test rig for low-speed thrust engines (p. 190)

LOW TEMPERATURE

- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)
- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)

LOW THRUST PROPULSION

- Analysis of low-speed, resistojet booster for the Space Station (p. 190)

LUBRICANT TESTS

- Lubricant testing (FORCES) (p. 190)

LUBRICANTS

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LUMINESCENCE

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LOW PRESSURE

- Low pressure test rig for low-speed thrust engines (p. 190)
- Low pressure test rig for low-speed thrust engines (p. 190)

LOW TEMPERATURE

- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)
- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)

LOW THRUST PROPULSION

- Analysis of low-speed, resistojet booster for the Space Station (p. 190)

LUBRICANT TESTS

- Lubricant testing (FORCES) (p. 190)

LUBRICANTS

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LUMINESCENCE

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LOW PRESSURE

- Low pressure test rig for low-speed thrust engines (p. 190)
- Low pressure test rig for low-speed thrust engines (p. 190)

LOW TEMPERATURE

- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)
- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)

LOW THRUST PROPULSION

- Analysis of low-speed, resistojet booster for the Space Station (p. 190)

LUBRICANT TESTS

- Lubricant testing (FORCES) (p. 190)

LUBRICANTS

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LUMINESCENCE

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LOW PRESSURE

- Low pressure test rig for low-speed thrust engines (p. 190)
- Low pressure test rig for low-speed thrust engines (p. 190)

LOW TEMPERATURE

- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)
- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)

LOW THRUST PROPULSION

- Analysis of low-speed, resistojet booster for the Space Station (p. 190)

LUBRICANT TESTS

- Lubricant testing (FORCES) (p. 190)

LUBRICANTS

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LUMINESCENCE

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LOW PRESSURE

- Low pressure test rig for low-speed thrust engines (p. 190)
- Low pressure test rig for low-speed thrust engines (p. 190)

LOW TEMPERATURE

- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)
- Jet engine icing at low temperatures with notes on n-alkane crystals (p. 190)

LOW THRUST PROPULSION

- Analysis of low-speed, resistojet booster for the Space Station (p. 190)

LUBRICANT TESTS

- Lubricant testing (FORCES) (p. 190)

LUBRICANTS

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)

LUMINESCENCE

- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
- Eclipsometric surface analysis of wear tracks produced by different lubricants (p. 178)
MACH NUMBER
Passive control of aerodynamically forced vibrations of supersonic turbine rotors by spiral pylon Control
(AsA PAPER 86-1240) p 22 A86-38892
Vortex modeling of single and multiple diffusion jet mixing in a coaxial flow
(AsA PAPER 85-1130) p 8 A86-48261
A model for closing the inviscid form of the average-passage equation system
(AsA PAPER 87-157) p 10 A86-74261
Ignition and flame spread above liquid fuel pools
(AsA PAPER 87-1637) p 41 A86-10163

Dendritic solidification in a binary alloy melt: Steady-state versus morphological stability theories
Component-specific modeling of aeroengine materials
A model for closing the inviscid form of the average-passage equation system
(A86-1541) p 10 A86-45211
Interliminar fracture toughness: Three-dimensional finite element modeling for end-notch and mixed-mode failure
(MAGNETIC MATERIALS) 69 A86-14316
A computer simulation of the turbogenerated turbo-

MACH NUMBER
Passive control of aerodynamically forced vibrations of supersonic turbine rotors by spiral pylon Control
(AsA PAPER 86-1240) p 22 A86-38892
Vortex modeling of single and multiple diffusion jet mixing in a coaxial flow
(AsA PAPER 85-1130) p 8 A86-48261
A model for closing the inviscid form of the average-passage equation system
(AsA PAPER 87-157) p 10 A86-74261
Ignition and flame spread above liquid fuel pools
(AsA PAPER 87-1637) p 41 A86-10163

Dendritic solidification in a binary alloy melt: Steady-state versus morphological stability theories
Component-specific modeling of aeroengine materials
A model for closing the inviscid form of the average-passage equation system
(A86-1541) p 10 A86-45211
Interliminar fracture toughness: Three-dimensional finite element modeling for end-notch and mixed-mode failure
(MAGNETIC MATERIALS) 69 A86-14316
A computer simulation of the turbogenerated turbo-

MACH NUMBER
Passive control of aerodynamically forced vibrations of supersonic turbine rotors by spiral pylon Control
(AsA PAPER 86-1240) p 22 A86-38892
Vortex modeling of single and multiple diffusion jet mixing in a coaxial flow
(AsA PAPER 85-1130) p 8 A86-48261
A model for closing the inviscid form of the average-passage equation system
(AsA PAPER 87-157) p 10 A86-74261
Ignition and flame spread above liquid fuel pools
(AsA PAPER 87-1637) p 41 A86-10163

Dendritic solidification in a binary alloy melt: Steady-state versus morphological stability theories
Component-specific modeling of aeroengine materials
A model for closing the inviscid form of the average-passage equation system
(A86-1541) p 10 A86-45211
Interliminar fracture toughness: Three-dimensional finite element modeling for end-notch and mixed-mode failure
(MAGNETIC MATERIALS) 69 A86-14316
A computer simulation of the turbogenerated turbo-
subject index

Design considerations for advanced battery concepts [NASA-TM-87161] p 190 N86-31891

MATRIX MATERIALS
Surface protection of graphite fabric/P/MR-15 composites subjected to thermal oxidation p 68 N86-11281

MATRIX THEORY
Performance of direct and iterative algorithms on an optical systolic processor p 202 A86-17421

MEASUREMENTS INSTRUMENTS
How to evaluate solid lubricant films using a pin-on-disc tribometer [NASA-TM-87326] p 102 N86-19465
Rig-Integration technique for capacitance-type blade-tip clearance measurement [NASA-TM-87241] p 149 N86-23964

Advanced instrumentation for aeroneumatic propulsion research [NASA-TM-88653] p 150 N86-32703

MECHANICAL DRIVES
Generation of spiral bevel gears with zero kinematical errors and computer aided simulation of their meshing and contact p 154 A86-40656

MECHANICAL MEASUREMENT
Advanced instrumentation for aeroneumatic propulsion research [NASA-TM-88653] p 150 N86-32703

MECHANICAL PROPERTIES
Densification and properties of alpha-silicon carbide [SPE PAPER 851786] p 54 A86-11426
The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys [SPE PAPER 851787] p 79 A86-12966
The effect of grain-boundary crystallization on the high-temperature strength of silicon nitride [SPE PAPER 851789] p 98 A86-33495
Strength and microstructure of Si3N4 sintered with ZrO2 additives [SPE PAPER 851790] p 99 A86-36230
Tetraglycidyl epoxy resins and graphite fiber composites cured with flexibilized aromatic diamines [SPE PAPER 851791] p 67 A86-36999
Fabrication of ceramic components for advanced gas turbine engines [AIAA PAPER 85104] p 86 A86-14067
High temperature properties of an aluminosilicate refractory with ternary additions [SPE PAPER 851792] p 84 A86-47252
Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4 I. Tensile behavior p 86 A86-50231
Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4 II. Low cycle fatigue behavior p 86 A86-50232
High temperature dispersion strengthening of NiAl [NASA-CR-175073] p 90 N86-22656

MECHANICAL PROPERTIES FORMULATION
Formulation of the nonlinear analysis of shell-like structures, subjected to time-dependent mechanical and thermal loading [NASA-CR-171761] p 170 N86-28462
ICAN: A versatile code for predicting composite properties [NASA-TM-87334] p 71 N86-31664
Acousto-ultrasonic verification of the strength of filament wound composite material [NASA-TM-88827] p 166 N86-32764
MELT SPINNING
Interaction of flows with the crystal-melt interface [NASA-CR-175045] p 32 N86-29459
Influence of melt convection on solid-liquid interface under terrestrial and reduced gravity environments p 39 N86-10083
Dendritic solidification in a binary alloy melt: Steady-state versus morphology stability theories p 42 N86-10261

MEMBRANES

MENTAL PERFORMANCE
The effects of syndactyly on the human-computer interaction p 102 A86-36172

MESSAGE PROCESSING
The baseline processor in future satellite communication systems p 109 A86-21682

METAL BONDING

METAL COATINGS
Modeling degradation and failure of Ni-Cl-Al overlay coatings p 60 A86-16276
Film and interstitial formation of metals in plasma-sprayed ceramics [NASA-CR-175052] p 97 A86-17484
Pre-treatment effects on the morphology and properties of aluminum oxide thermally grown on NiCoCrAY p 97 A86-17495
The use of silver in self-lubricating coatings for extreme temperatures p 99 A86-44425
The low cycle fatigue behavior of a plasma-sprayed coating material [NASA-TM-87318] p 92 N86-31699

METAL CRYSTALS
The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys p 79 A86-12996

METAL FIBERS
Optical and other properties changes of M-50 bearing steel surfaces for different lubricants and additives prior to severe wear p 97 A86-35325
The plastic compressibility of 7075-T651 aluminum-alloy plates p 85 A86-46960

METAL PROPULSANTS
Compatibility of platinum-stabilized uranium with candidate propellants for reentry vehicles [AIAA PAPER 85-8020] p 51 N86-17835
Current evaluation of the bipropellant concept [AIAA PAPER 85-1041] p 56 A86-46815

METAL SURFACES
Surface effects of corrosive media on hardness, friction, and wear of materials p 94 A86-10825
Binary alloy model for neon Auger spectra from neon ion bombardment of the aluminum surface p 76 A86-43457
Validation of structural analysis methods using burner liner test data p 173 A86-11518

METAL WELDING
A mesh-re-zoning technique for finite element simulations of metal forming processes p 153 A86-36298

METALS
Current viewpoints on oxide adhesion mechanisms [NASA-TM-87168] p 87 N86-13409
Mechanical glasses

Metallic structures

Metallic glasses

Metallic structures

Metallurgical processing

Metallic glasses

Metallic glasses

Metallurgical processing
METHODOLOGY

Application of an optical emission mass spectrometer to chlorine reactions

[NASA-TP-2601] p 62 N86-28124

Current evaluation of the tipological concept

[NASA-TP-2601] p 62 N86-28124

MICROPROCESSORS

Upper air forecasting for aviation in the United States

[ASA-3764] p 191 AE6-37501

METHANE

Shock-tube pyrolysis of chlorinated hydrocarbons - Formation of soot

[ASA-3764] p 77 N86-21635

Nondes~characterization of short ultrasound

[ASA-3764] p 81 A86-15273

METHANOL

Mutual coupling effects in antenna arrays, volume 1

[ASA-3764] p 114 AE6-22782

METHYL CHLORIDE

Research and development of neat alcohol fuel usage in automobiles

[ASA-3764] p 108 AE6-24740

METHYL ALCOHOL

Shock-tube pyrolysis of chlorinated hydrocarbons - Formation of soot

[ASA-3764] p 75 AE6-35125

MICROCOMPUTERS

Hardware configuration for a real-time multiprocessor simulation

[ASA-3764] p 194 AE6-26651

MICROCRACKS

Extended phosphor bronze under cavitation attack in a mineral oil

[ASA-3764] p 81 AE6-23234

Cavitation of fatigue cracks at high strains

[ASA-3764] p 175 AE6-17788

MICROFIBERS

Simplified composite micromechanics for predicting microstress

[ASA-3764] p 70 N86-24759

MICHROHARDNESS

Surface effects of corrosive media on hardness, friction, and wear of materials

[ASA-3764] p 94 N86-10825

Frictional and structural characterization of ion-nobled low and high chromium steels

[ASA-3764] p 81 AE6-17787

MICROMECHANICS

A classical of micromechanics equations for high temperature metal matrix composites

[ASA-3764] p 70 N86-24757

Single-crystal composite micromechanics for predicting microstresses

[ASA-3764] p 70 N86-24759

MICROWAVE ANTENNAS

Input impedance of a probe-fed circular microstrip antenna with thick substrates

[ASA-3764] p 120 AE6-46386

Characterization of MIMC devices for active array antennas

[ASA-3764] p 111 N86-14004

MICROWAVE ATTENUATION

Normal modes in an overmoded circular waveguide coated with lossy material

[ASA-3764] p 119 N86-44078

MICROWAVE RING CAVITY

Characterization of MIMC devices for active array antennas

[ASA-3764] p 111 N86-14004

Reflection of reflector surface distortions using conjugate field matching

[ASA-3764] p 113 N86-14861

MICROWAVE PHOTOELECTRIC EFFECT

Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

[ASA-3764] p 123 N86-21757

MICROWAVE EQUIPMENT

10-30 GHz monolithic GaAs travelling-wave divider/combiner

[ASA-3764] p 118 N86-34882

Analysis of optically controlled microwave/millimeter wave device structures

[ASA-3764] p 123 N86-24907

MICROWAVE FREQUENCIES

Radiofrequency testing of satellite segment of simulated 30/20 GHz satellite communications system

[ASA-3764] p 114 N86-19494

MICROWAVE SENSORS

Time domain referencing in intensity modulation fiber optic sensing systems

[ASA-3764] p 17 N86-24691

MICROWAVES

Measurement of energy distribution in flowing hydrogen microwave plasma

[ASA-3764] p 52 N86-18041

Monolithic optical integrated control circuitry for GaAs micromachined phased arrays

[ASA-3764] p 116 N86-14567

MMIC devices for active phased array antennas

[ASA-3764] p 116 N86-30037

IMPLANTATION OF CELLS

A note on the finite differencing of the linearized primitive equations' lower boundary condition

[ASA-3764] p 191 AE6-28963

MILITARY OPERATIONS

Review and critical analysis: Rolling-element bearings for anisotropic life and reliability

[ASA-3764] p 159 N86-24981

MILLIMETER WAVES

Do and microwave characteristics of a high current double interface GaAs/InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistor

[ASA-3764] p 118 AE6-36900

Circularly polarized microstrip antennas

[ASA-3764] p 112 N86-11407

Analysis of optically controlled microwave/millimeter wave device structures

[ASA-3764] p 123 N86-24907

MILITARY (MACHINES)

Factors influencing the ball milling of SiN4 in water

[ASA-3764] p 95 N86-15239

Parametric evaluation of ball milling of SiN4 in water

[ASA-3764] p 95 N86-15240

Particle size reduction of Si3N4 with Si3N4 milling hardened ball in water

[ASA-3764] p 104 N86-24839

The milling of prinite and brominated P-100 graphite fibers

[ASA-3764] p 106 N86-32573

MINERAL OILS

Thermophysical properties of Rbec oil under cavitation attack

[ASA-3764] p 79 N86-13001

Erosion of phosphor bronze under cavitation attack in a mineral oil

[ASA-3764] p 81 N86-23234

The mechanism of erosion of metallic materials under cavitation attack

[ASA-3764] p 156 N86-15552

MINORITY CARRIERS

Minority-carrier mobility anisotropies in low-resistivity silicon single crystalline solar cells

[ASA-3764] p 181 AE6-48215

MIRRORS

Laser collimation and testing with a Twoym-Green interferometer with a self-pumped phase-conjugating mirror

[ASA-3764] p 146 N86-20248

MIS (SEMICONDUCTORS)

Growth and characterization of epitaxial Sr2F on InP(100)

[ASA-3764] p 205 A86-47076

Diamond-like carbon films on semiconductors for insulated-gate technology

[ASA-3764] p 20 N86-47077

MISSALIGNMENT

A generalization of spiral beam gears with zero kinematical errors and corner aligned tooth contact analysis

[ASA-3764] p 150 N86-25793

MISSION PLANS

Tethered nuclear power for the space station

[ASA-3764] p 53 A86-24806

Orbital transfer vehicle engine integration study

[ASA-3764] p 58 AE6-17416

MIXERS

Three-dimensional inviscid flow in mixers, I - Mixer analysis using a Cartesian grid

[ASA-3764] p 56 N86-39090

Three-dimensional inviscid flow in mixers, II - Analysis of suction forced mixers

[ASA-3764] p 6 A86-46316

MIXING

Particle cloud combustion experiment

[ASA-3764] p 41 N86-10160

Dilution jet mixing experiment, phase 2

[ASA-3764] p 142 N86-24998

MOIST RESPONSE

Model test/analysis correlation for Centaur G Prime launch vehicle

[ASA-3764] p 43 A86-39843

Quas-imodal vibration control by means of active control bearings

[ASA-3764] p 159 N86-21856

Theoretical and software considerations for general dynamic analysis using multilevel substructured models

[ASA-3764] p 8 A86-17882

Identification of differences between finite element analysis and experimental vibration data

[ASA-3764] p 149 N86-27617

MODELS

Theoretical modeling of the vapor cavitation in dynamically loaded journal bearings

[ASA-3764] p 186 N86-28997

Theoretical and experimental analysis of chemical vapor deposition with prediction of gravity effects

[ASA-3764] p 41 N86-10122

Theoretical modeling of the vapor cavitation in dynamically loaded journal bearings

[ASA-3764] p 187 N86-14728

Constitutive modeling for isotropic materials (HOST)

[ASA-3764] p 157 N86-10463

Chemical control of rate and onset temperatures of graphite polymerization

[ASA-3764] p 101 N86-11271
PREBURNERS
Longitudinal mode combustion instabilities of a high-pressure fuel-rich LOX/RP-1 preburner

SSME fuel splitter preburner two-dimensional analysis

Longitudinal mode combustion instabilities of a high-pressure fuel-rich LOX/RP-1 preburner

p 165 N86-28250

PREDICTION ANALYSIS TECHNIQUES
Heat transfer and fluid mechanics measurements in transboundary layer flows

[ASME PAPER 85-GT-113] p 125 A86-13068

Comparison of viscous flows in turbomachinery cascades with a space-marching method

p 5 A86-30897

Efficiency of nonstandard and high contact ratio involute spur gears

[ASAE PAPER 84-DET-172] p 155 A86-42555

Effect of accuracy of wind power prediction on power system operator

p 1 A86-11358

An update of the total-strain version of SRP

[NASA-TC-2499] p 1 N87-12295

Ceramic automotive member thermal barrier coatings

[NASA-CE-175022] p 58 N86-20497

Life prediction and constitutive models for engine hot section anisotropic materials program

[NASA-CE-174952] p 185 N86-25003

Computational simulation of progressive fracture in fiber composites

[NASA-TM-873141] p 1 N86-12576

Effects of surface chemistry on hot corrosion life

Micromechanisms of thermonuclear mechanical fatigue: A comparison with isothermal fatigue

[NASA-CE-175022] p 92 N86-28164

Experimental and theoretical study of propeller spinner/shaft interference

[NASA-CE-174954] p 13 N86-29773

PREDICTIONS
Progressive damage, fracture predictions and post mortem correlation for fiber composites

Gas side heat transfer

p 138 A86-11507

Life prediction and constitutive behavior

p 173 A86-11520

Creep fatigue life prediction for engine hot section materials (isotropic)

Preliminary measurement of the noise from the 2/9 scale model of the Large-scale Advanced Propfan (LAP) propeller, SR-7A

Ceramic automotive member stringy engine coatings

[NASA-CE-174907] p 208 N86-16185

Future heavy duty trucking engine requirements

[NASA-CE-174907] p 209 A86-17226

Satellite voice broadcast

Volume 1: Executive summary

[NASA-CE-175016] p 115 N86-24875

Communication Platform Payload Definition (CPPD) study. Volume 1: Executive summary

[NASA-CE-175022] p 49 N86-27403

[NASA-CE-174922] p 49 N86-27404

Communication Platform Payload Definition (CPPD) study. Volume 3: Addendum

[NASA-CE-174930] p 49 N86-27405

Structural analysis of turbine blades using united constitutive modes

Formation of the non-linear analysis of shell-like structures, subjected to time-dependent mechanical and thermal loading

PRELAUNCH TESTS
Modal test/test/correlation for Centaur G Prime launch vehicle

[AIAA PAPER 86-1002] p 43 A86-38943

PREMIXED FLAMES
Effect of gravity on laminar premixed gas combustion. I: Flammability limits and burning velocities

p 72 A86-12413

Effect of gravity on laminar premixed gas combustion II: Ignition and extinction phenomenon

p 72 A86-12414

Numerical simulation of a turbulent flame stabilized behind a solid rigid leading edge step

p 73 A86-22774

An experimental investigation on flame interaction and the existence of negative flame speeds

p 74 A86-22216

Influence of temperature and hydroxyl concentration on incipient soot formation in premixed flames

p 74 A86-29070

PRESTRESSING
Influence of rotation and preheat on canister fan blade flutter

p 17 A86-11868

Vibration and buckling of rotating, pretrained, preheated beams induced by red-stripe effects

p 168 A86-26910

Nonlinear bending-torsional vibration and stability of rotating, pretrained, preheated blades including Conifor effects

[NASA-TM-87207] p 175 N86-17786

PROBLEM SOLVING
New integration techniques for chemical kinetic rate equations. II - Accuracy comparison

PROPELLER DESIGN
Development program on a cold cathode electron gun

[NASA-CR-174792] p 121 A86-14499

Development and testing of tip devices for horizontal axis wind turbines

[NASA-CR-174991] p 185 A86-18774

PROFAN TECHNOLOGY
Dynamic characteristics of an assembly of propfan blades

[ASME PAPER 85-GT-134] p 21 A85-32956

Numerical evaluation of propeller noise including nonlinear effects

p 23 A86-41726

Evaluation of propeller/nacelle interactions in the PTA propulsion system

[AIAA PAPER 86-1552] p 6 A86-42709

Propeller noise caused by blade tip radial forces

[AIAA PAPER 86-1892] p 23 A86-45504

Preliminary measurement of the noise from the 5/9 scale model of the Large-scale Advanced Propfan (LAP) propeller, SR-7A

Advanced turboprop vibratory characteristics

Evaluation of propfan propulsion applied to general aviation

Advanced Propfan Push-on Prop-Fan (LAP) pitch change actuator and control design report

[NASA-CR-174786] p 31 A86-27282

Experimental classical flutter result of a composite advanced turboprop model

System design and integration of the large-scale advanced propfan

PROPAGATION MODES
Shear fatigue crack growth - A literature survey

p 167 A86-22421

Normal modes in an overmoded circular waveguide coated with lossy material

p 119 A86-44078

PROPAGATION VELOCITY
An experimental investigation on flame interaction and the existence of negative flame speeds

p 74 A86-22816

PROPELLANT SPRAYS
Oxides of nitrogen emissions from the combustion of monopropellant hybrid rocket fuel

PROPELLANT STORAGE
Impact of subcooling on the on-orbit pressurization rate of cryogenic propellant tankage

[AIAA PAPER 86-1253] p 54 A86-39877

PROPELLANT TESTS
Compatibility requirements of facilities, materials, and propellants for electrothermal thrusters

p 59 A86-17426

SUBJECT INDEX
Oxidation protecting coatings for polymers

Characterization of the tribological coating composition 77 wt % CaF₂ - 23 wt % Li F彼此混合至 IN-738 alloy 105 N66-24343
Effects of surface chemistry on high corrosion life 32 N68-28007

PROTON IRRADIATION
Performance and temperature dependencies of proton irradiated n/p GaAs and n/p silicon cells 106 N68-32569

PUBLIC RELATIONS
Some design philosophy for reducing the community noise of advanced counter-rotation propellers 124 N66-27578

PULSE DURATION MODULATION
Resonant power processors. II. Methods of control 119 N66-14482
Power electronics for a 1-kilowatt arc thruster 150 N66-31030

PUMP SEALS
Operating aspects of an oil pumping ring seal 123 N66-25694

PUMPS
Laser velocimeter measurements in shrouded and unshrouded radial flow pump impellers 144 N66-31000

PUMPSELLS
LOX/LH₂ vane pump for auxiliary propulsion systems 58 N66-17397

PYROLYSIS
A ceramic matrix composite based on polymerization and pyrolysis of ethylammoniac polymers 65 N65-3143

PYROLYTIC GRAPHITE
The production of low energy ion bombardment of pyrolytic graphite and Kapton surfaces 76 N66-47076

QUALITY CONTROL
Temperature Polymer Matrix Composites 68 N66-11260
Review and critical analysis: Rolling-element bearings for system life and reliability 159 N66-35125

QUANTUM MECHANICS
Full assessment of the theory of stimulated Raman scattering 150 N66-24991

QUANTUM WELLS
Cyclic operation of pseudomorphic AlGaAs/InGaAs single-quantum-well MODFETs 117 N66-11998
QUINOLINE

Radiation shielding effectiveness of high density polyethylene, polyethylene terephthalate and polystyrene against gamma and neutron radiations

R

Radar Absorbers
Normal modes in a multilayer circular waveguide coated with lossy material

Radar antennas
Near-field spillover from a subreflector: Theory and experiment

Radial flow
Three-dimensional inviscid analysis of radial-turbine flow and a limited comparison with experimental data

Radian heating
An analysis of bi-directional use of frequencies for satellite communications

Radian heat load
Effect of upwind wake tunnel wall absorption on the incineration characteristics of superphosphorus

Radiation absorption
Modeling the effects of wind tunnel wall absorption on the incineration characteristics of superphosphorus

Radiation damage
Radiation damage in high-resitivity silicon solar cells

Radiation distribution
Normal modes in an overmoded circular waveguide coated with lossy material

Radiation dosage
Radiation exposure and performance of multiple beam LED color overlay trajectories

Radiation effects
Potential for use of indium phosphide solar cells in the space radiation environment

Radiation Tolerance
A possible radiation-resistant solar cell geometry using superphosphorus

Radiative heat transfer
Performance analysis of radiation cooled dc transmission lines for high power space systems

Radar frequencies
Linearized traveling wave amplifier with hard limiter characteristics

Radar Frequency Interference
A possible bi-directional use of frequencies for satellite communications

Real gases
Real gas effects on the numerical simulation of a hypersonic jet

Characterization of real gas properties for space shuttle main engine fuel turbine and performance calculations

Real time operation
Development and testing of tip devices for horizontal and vertical wind tunnels

RECOMBINATION REACTIONS
A possible radiation-resistant solar cell geometry using superphosphorus

Recording heads
Effect of crystallographical and geometrical changes of a ferrite head on magnetic signals during the sliding process with magnetic tape

Rectangular waveguides
High frequency analysis of electromagnetic plane wave scattering by perfectly-conducting semi-infinite parallel plate and rectangular waveguides with absorber covered inner walls

Red cells
Cycling performance of the iron-chromium redox energy storage system

Reduced gravity
Effects of buoyancy on gas jet diffusion flames - Experiment and theory

Recycled materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Reduced gravity
Light scattering tests of fundamental theories of transport properties in the critical region

Redox
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface-tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Redox cells
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling Materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Redox cells
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Redox cells
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface-tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity

Recycling materials
Surface tension driven convection in a channel with a horizontal impermeable plate and rectangular waveguides with absorber covered inner walls

Reduced gravity
Mass transport phenomena between bubbles and droplets in liquids under reduced gravity conditions

Recycling materials
Light scattering tests of fundamental theories of transport properties in the critical region

Redox cells
Surface tension induced instabilities in reduced gravity
RELAY SATELLITES
Satellite voice broadcast system study. Volume 1: Executive summary
[AIAA PAPER 85-1030-1] p 115 N86-24878

RELIABILITY
Life and reliability modeling of bevel gear reductions
[ASME PAPER 85-DE-7] p 151 A86-14466

REDUCTIONS
and reliability modeling of bevel gear reductions
[ASME PAPER 85-DE-7] p 151 A86-14466

REFLECTOR ANTENNAS
Near-field spillover from a subreflector: Theory and experiment

REFLECTORS
Strategy for reflector pattern calculation - Let the computer do the work
[NASA-TM-87137] p 110 A86-12485

REFRACTION
Parametric study of beam refraction problems across laser anemometer windows

REFRACTIVITY
A comparison of electronic hydronome more deflectometry and electronic hydronome holographic interferometry for flow measurements
[SAE PAPER 851549] p 146 A86-38385

REFRACTIVE COATINGS
The low cycle fatigue behavior of a laser-sprayed coating

REFRACTIVE MATERIALS
Sintered silicon nitride carbide ceramics for high temperature structural application - Status report and recent developments
[ASME PAPER 85-IGT-127] p 97 A86-29321

REFRACTORY METALS
Thermal effects in refractory metal alloys

REFRIGERATORS
Low-power liquid-cooled vaccine refrigerator: Freezer systems field test results

REFUSION THERAPY
Design of a regenerative fuel cell system for Space Station Station
[ASME PAPER 85-1030-1] p 115 N86-24878

REGENERATORS
An overview of the Small Engine Component Technology (SECT) studies

REFINACING FIBERS
Rheological, processing, and 371 deg C mechanical properties of C2000/6N/graphite/nanoidime modified PMR composites
[ASME PAPER 85-1030-1] p 115 N86-24878

RELAY SATELLITES
Satellite voice broadcast system study. Volume 1: Executive summary
[AIAA PAPER 85-1030-1] p 115 N86-24878

RELIABILITY
Life and reliability modeling of bevel gear reductions
[ASME PAPER 85-DE-7] p 151 A86-14466

REDUCTIONS
and reliability modeling of bevel gear reductions
[ASME PAPER 85-DE-7] p 151 A86-14466

REACTOR ANTENNAS
Near-field spillover from a subreflector: Theory and experiment

REFLECTORS
Strategy for reflector pattern calculation - Let the computer do the work
[NASA-TM-87137] p 110 A86-12485

REFRACTION
Parametric study of beam refraction problems across laser anemometer windows

REFRACTIVITY
A comparison of electronic hydronome more deflectometry and electronic hydronome holographic interferometry for flow measurements
[SAE PAPER 851549] p 146 A86-38385

REFRACTIVE COATINGS
The low cycle fatigue behavior of a laser-sprayed coating

REFRACTIVE MATERIALS
Sintered silicon nitride carbide ceramics for high temperature structural application - Status report and recent developments
[ASME PAPER 85-IGT-127] p 97 A86-29321

REFRACTORY METALS
Thermal effects in refractory metal alloys

REFRIGERATORS
Low-power liquid-cooled vaccine refrigerator: Freezer systems field test results

REFUSION THERAPY
Design of a regenerative fuel cell system for Space Station Station
[ASME PAPER 85-1030-1] p 115 N86-24878
An iterative finite element-integral technique for predicting sound radiation from turbulent inlets in steady flight p 198 A06-49806

An analysis of the sound field produced by rigid wall plus conductive rotation propellers of high solidity in compressible flow p 198 A06-49806

SPACEx MISSIONS

SPACEx POWER REACTORS

Overview of the 1985 NASA Lewis Research Center Sp-100 free-piston Stirling engine system p 153 A06-24484

SPACEx PROCESSING APPLICATIONS ROCKET

Accommodation requirements for microgravity science and applications research on space station (NASA-CR-175038) p 42 A06-18334

SPACE SHUTTLE MAIN ENGINE

Probabilistic structural analysis for space propulsion system components p 166 A06-28659

Analysis of a two row hydrostatic journal bearing with variable properties, inertia effects and surface roughness p 153 A06-30599

Structural tailoring of SSME multistage blades (SSME/STABIL) -- Structural Tailoring of Engine Blades p 154 A06-38885

Probabilistic structural analysis methods for critical SSME propulsion components p 54 A06-40595

Structural integrity and durability for Space Shuttle main engine and future reusable space propulsion systems (NASA-PAPER-86-15131) p 55 A06-22808

Simplified cyclic structural analyses of SSME turbine blades (NASA-TM-872141) p 175 A06-16615

SSME fuel/seed preburner two-dimensional analysis (NASA-TM-87299) p 54 A06-23616

Structural integrity and durability for Space Shuttle main engine and future reusable space propulsion systems (NASA-TM-87290) p 61 A06-25409

Characterization of real gas properties for the space shuttle main engine fuel turbine and performance calculations (NASA-CR-175038) p 61 A06-27418

SPACEx SHUTTLE PAYLOADS

Cryogenic Fluid Management Facility p 108 A06-37053

Communication Platform Payload Definition (CPPD) study, Volume 1: Executive summary (NASA-CP-2404) p 49 A06-27403

Communication Platform Payload Definition (CPPD) study, Volume 3: Addendum p 49 A06-27405

SPACE SHUTTLES

NASA Lewis Research Center low-gravity fluid management technology program p 44 A06-32006

Structural integrity and durability for Space Shuttle main engine and future reusable space propulsion systems (NASA-PAPER-86-15131) p 55 A06-22808

NASA Lewis Research Center low-gravity fluid management technology program p 44 A06-11128

Advanced research and technology program for advanced high pressure hydrogen-oxygen rocket propulsion p 58 A06-17405

Structural integrity and durability for Space Shuttle main engine and future reusable space propulsion systems (NASA-PAPER-84-14700) p 61 A06-25408

SPACE STATION POWER SUPPLIES

Space station power system p 50 A06-12676

Space Station Power System Advanced Development p 52 A06-24778

Design tradeoffs for a Space Station solar-Brayton power system p 53 A06-24790

Development of the power system for the United States' Manned Space Station p 207 A06-24798

Tethered nuclear power for the space station p 53 A06-24808

Design of a regenerative fuel cell system for Space Station p 53 A06-24857

Hybrid deployable/erectable solar dynamic box truss system (NASA-PAPER-86-0947) p 54 A06-38885

SOlar dynamic power for the Space Station (NASA-PAPER-86-1299) p 54 A06-39906

A 20 kilohertz space station power system p 53 A06-24790

Parametric and cycle tests of a 40-A-hr bipolar nickel-hydride battery p 189 A06-31979

SPACE STATION PROPULSION

A 10,000 hour life multipropellant engine for Space Station application p 53 A06-25492

(AIAA PAPER 86-1403) p 54 A06-42416

A long-life 50 lb H2/O2 thruster for Space Station auxiliary propulsion (AIAA PAPER-86-1404) p 55 A06-42417

Theoretical study on the effect of the design of small (milli-Newton) thruster jets on molecular contamination for the space station p 177 A06-27263

NASA-CR-177263) p 48 A06-26538

SPACE STATIONS

An analysis of low-thrust, resistojet reboost for the Space Station (AIAA PAPER 85-2042) p 51 A06-14447

Compatibility of grain-stabilized platinum with candidate propellants for accommodation requirements for microgravity science and applications research on space station (NASA-CR-175038) p 42 A06-18334

Space Station Power System Advanced Development p 52 A06-24778

Design tradeoffs for a Space Station solar-Brayton power system p 53 A06-24790

Development of the power system for the United States' Manned Space Station p 207 A06-24798

Tethered nuclear power for the space station p 53 A06-24808

Performance analysis of radiation cooled dc transmission lines for high power space systems p 56 A06-42480

Design of a regenerative fuel cell system for Space Station p 53 A06-24857

Space Station benefits from ECLS - Propulsion system synergies (AIAA PAPER 86-1407) p 47 A06-42619

Performance and endurance tests of a multipropellant resistojet for space station auxiliary propulsion (NASA-TM-87210) p 55 A06-42640

NASA electrothermal auxiliary propulsion technology (NASA-PAPER-86-1703) p 55 A06-42799

Compact cryogenic rocket motor and applications research on space station (NASA-CR-175038) p 42 A06-18334

Space station 20-kHz power management and distribution system p 56 A06-24874

Performance and endurance tests of a multipropellant resistojet for space station auxiliary propulsion (NASA-PAPER-86-1299) p 56 A06-24874

Advanced high pressure oxygen-hydrogen rocket propulsion p 58 A06-17405

Accommodation requirements for microgravity science and applications research on space station (NASA-CR-175038) p 42 A06-18334

Space Station Power System p 56 A06-32026

Electrical power system for the U.S. space station p 64 A06-32520

Proven, long-life hydrogen/oxygen thrust chambers for space station propulsion (NASA-TM-86867) p 64 A06-32521

Proven, long-life hydrogen/oxygen thrust chambers for space station propulsion (NASA-TM-86867) p 64 A06-32521

SPACE SUITS

Advances in shuttle suit material technology following immediate simulated ionospheric atomic oxygen bombardment (NASA-TM-87148) p 192 A06-13899

SPACE TRANSPORTATION

Rail accelerators for space transportation: An experimental investigation (NASA-TF-2571) p 62 A06-28123

SPACExEORRNE EXPERIMENTS

Cryogenic Fluid Management Facility p 108 A06-37053

SPACECRAFT ANTENNAS

MMIC antenna technology development in the 30/20 gigahertz band (AIAA PAPER 86-0666) p 45 A06-29628

A numerical method for approximating antenna surfaces defined by discrete surface points (NASA-TM-87125) p 111 A06-10381

MMIC antenna technology development in the 30/20 gigahertz band (NASA-TM-87192) p 46 A06-17368

SPACECRAFT COMMUNICATION

MMIC antenna technology development in the 30/20 gigahertz band (AIAA PAPER 86-0666) p 45 A06-29628

Adaptive antenna arrays for weak interfering signals - in satellite communication (AIAA PAPER 86-15131) p 55 A06-22808

Compact cryogenic rocket motor and applications research on space station (NASA-CR-175038) p 42 A06-18334

Bit error rate testing of a proof-of-concept model based on the proposed station (NASA-TM-87206) p 46 A06-18343

A-59
SUBJECT INDEX

<table>
<thead>
<tr>
<th>A comparison of computational methods for three-dimensional, turbulent turbomachinery flow fields (AIAA PAPER 85-1598)</th>
<th>p 6 A86-42740</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation of viscous and inviscid computational methods for turbomachinery components (NASA-TM-87193)</td>
<td>p 10 N86-18194</td>
</tr>
<tr>
<td>Time domain referencing in intensively modulated fiber optic links (NASA-CR-176424)</td>
<td>p 37 N86-15232</td>
</tr>
<tr>
<td>Thermodynamic evaluation of transonic compressor rotors using the finite volume approach (NASA-TM-87139)</td>
<td>p 26 N86-16202</td>
</tr>
<tr>
<td>Three-dimensional fluid flow phenomena in the blade end wall corner region (AIAA PAPER 86-22929)</td>
<td>p 27 N86-16220</td>
</tr>
<tr>
<td>THREE DIMENSIONAL MOTION</td>
<td></td>
</tr>
<tr>
<td>Three-dimensional unsteady aerodynamics and aerodynamic response of advanced turbomachinery rotors (NASA-PG-86-0846)</td>
<td>p 22 A86-38984</td>
</tr>
<tr>
<td>Experimental and theoretical study of propeller spinner/shank interference (NASA-CR-176954)</td>
<td>p 13 N86-29733</td>
</tr>
<tr>
<td>THRUST BEARINGS</td>
<td></td>
</tr>
<tr>
<td>Lateral dampers for thrust bearings (AIAA PAPER 85-14777)</td>
<td>p 157 N86-11474</td>
</tr>
<tr>
<td>Thrust chambers</td>
<td></td>
</tr>
<tr>
<td>Rapid evaluation of ion thruster lifetime using optical emission spectroscopy (AIAA PAPER 85-15911)</td>
<td>p 51 N86-17851</td>
</tr>
<tr>
<td>Time domain analysis of sound propagation p 197 A86-20130</td>
<td></td>
</tr>
<tr>
<td>TIME DEPENDENCE</td>
<td></td>
</tr>
<tr>
<td>Time domain analysis of sound propagation p 197 A86-20130</td>
<td></td>
</tr>
<tr>
<td>TIME MARCHING</td>
<td></td>
</tr>
<tr>
<td>Thermodynamic evaluation of transonic compressor rotors using the finite volume approach (NASA-CR-176428)</td>
<td>p 27 N86-16220</td>
</tr>
<tr>
<td>Time marching</td>
<td></td>
</tr>
<tr>
<td>TIME MARCHING</td>
<td></td>
</tr>
<tr>
<td>Thermodynamic evaluation of transonic compressor rotors using the finite volume approach (NASA-CR-176420)</td>
<td>p 143 N86-26546</td>
</tr>
<tr>
<td>TIME OF FLIGHT SPECTROMETERS</td>
<td></td>
</tr>
<tr>
<td>TIME TEMPERATURE PARAMETER</td>
<td></td>
</tr>
<tr>
<td>Heat-flux measurements for the rotor of a full-stage turbine, II - Description of experimental techniques and typical time-resolved measurements (AIAA PAPER 86-GT-78)</td>
<td>p 24 A86-43164</td>
</tr>
<tr>
<td>TIME-TEMPERATURE PARAMETER</td>
<td></td>
</tr>
<tr>
<td>Characteristics of vibration on the hot section of a high-pressure, axial-flow compressor (NASA-CR-175109)</td>
<td>p 17 N86-24691</td>
</tr>
<tr>
<td>Time dependence of strain gauge partitioning life reliability (NASA-CR-174946)</td>
<td>p 174 N86-13755</td>
</tr>
</tbody>
</table>

TRANSITION TEMPERATURE

<table>
<thead>
<tr>
<th>Transition forces at solid-lubricated rolling/sliding contacts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[AIAE PREPRINT 85-AM-4E-2]</td>
<td>p 151 A86-11091</td>
</tr>
<tr>
<td>Spin analysis of concentrated traction contacts (NASA PAPER 84-DET-99)</td>
<td>p 155 A86-45257</td>
</tr>
<tr>
<td>Design of traction drives (NASA-TP-1154)</td>
<td>p 157 N86-13734</td>
</tr>
</tbody>
</table>

TRANSFER ORBITS

| Transfer function concept for ultrasonic characterization of metallic microstructures (NASA-TM-87910) | p 200 N86-22980 |
| A lumped parameter method for modeling of acoustical wind tunnels (NASA-TMD-4) | p 196 N86-27036 |

TRANSFORMATIONS (MATHEMATICS)

| Bounding solutions of geometrically nonlinear viscoelastic problems (NASA-TM-86-0643) | p 170 A86-38636 |

TRANSVECTOR AMPLIFIERS

Nondestructive characterization of RBSOA of high-power bipolar transistors - Reversal-bias safe operating area	p 118 A86-35718
TRANSVECTOR CIRCUITS	
Designing a 25-kilowatt high frequency series resonant inverter (NASA-CR-176774)	p 123 N86-24906

TRANSITION FLOW

| Low Reynolds number boundary layers in a disturbed environment (NASA-CR-175031) | p 139 N86-17685 |

TRANSITION SPIKE FILTERS

Graphite/PMR polimide composites with improved toughness (NASA-TM-87307)	p 179 N86-31920
Glassy/graphite composites for improved toughness (NASA-TM-87508)	p 33 N86-30733
Glassy PMR polimide composites with improved toughness (NASA-TM-87307)	p 175 N86-17789

TRANSVERSE TORQUE

| Design of a low-speed, high-speed application motor (NASA-PG-86-0846) | p 151 N86-11091 |
TURBOPROP ENGINES

SUBJECT INDEX
Design and initial testing of a one-bladed
30-meterdiameter rotor on the NASAlDOE mod-0 wind
turbine
[NASA-TM-888101
p 189 N86-30251
System design and integration of the large-scale
advanced propfan
INASA-CR-1747891
N86-31536
.. .
-D 13
Summary of NASAlDOE Aileron-Control Development
Program for Wind Turbines
[NASA-TM-88611]
p 190 N86-31983
l
.
.

Structural dynamic measurement practices for
turbomachinery at the NASA Lewis Research Center
[NASA-TM888571
P 35
TURBINE ENGINES
Long term deposit formation in aviation turbine fuel at
elevated temperature
o7
gg29
[A I M PAPER 86-05251
Application of FDI metrics to detection and isolation 01
sensor failures in turbine engines
p 21 A86-35400
Toward improveddurabilityin advancedcombustorsand
turbines . Progress in prediction of thermomechanical
loads
[ASME PAPER 86-GT-1721
p 24 A86-48224
Film cooling on a convex wall: Heat transfer and
hydrodynamic measurements for full and partial
coverage
[NASA-CR-t749641
p 137 N86-10461
Turbine engine Hot Section Technology (HOST)
project
p173 N86-11496
HOST instrumentation R and D program overview
p 147 N86-11497
Assessment of a 3-D boundary layer code to predict
heat transfer and flow 10858s in a turbine
p 138 N86-11508
Preliminary design 01 a supersonic cruise aircraft
high-pressureturbine
[NASA-CR-1748781
p 26 N86-14272
Simulating a small turboshaft engine in real-time
multiprocessor simulator (RTMPS) environment
[NASA-TM-872161
p 27 N86-16221
A real-time simulation evaluation of an advanced
detection. Isolation and accommodation algorithm for
sensor failures in turbine engines
[NASA-TM-872891
p 30 N86-24697
Combined fringe and Fabry-Perot laser anemometer for
three component velocity measurements in turbine stator
cascade facility
[NASA-TM-87322]
p 149 N86-24967
Structural tailoring of engine blades (STAEBL)
theoretical manual
[NASA-CR-175112]
p 31 N86-27283
Uniform engine testing program phase 7: NASA Lewis
Research Center second entry
[NASA-TM-87272]
p 31 N86-28085
Variable area radial turbine fabrication and test
prowam
[NASA-CR-t75091]
p 32 N86-28947
Research instrumentation for hot section components
of turbine engines
[NASA-TM-88851]
p 150 N86-32702
TURBINE EXHAUST NOZ7LES
Plume charactenstics of single-stream and dual-flow
conventional and inverted-profile nozzles at equal IhNSl
[A I M PAPER 86-18091
p 8 A86-49585
Plume characteristics of single-stream and dual-flow
conventional and inverted-pofile nozzles at equal thNSt
[NASA-TM-67323]
p 1 2 N86-26285
TURBINE PUMPS
Structural tailoring of SSME turbopump blades
Structural Tailoring of Engine
(SSMEISTAEBL)
Blades
[A I M PAPER 86-08471
p 5 4 A86-38895
Advanced seals for Liquid Oxygen (LOX) turbopumps
p 157 N86-17408
Passive eddy-cument damping as a means of vibration
control in clyogenic turbomachinary
[NASA-TP-25621
p 4 4 N86-24722
Characterization01 real gas propwties foc space shuttle
main engine fuel turbine and performance calculations
[NASA-CR-175066]
p 6 1 N86-27418
SSME long-life bearings
[NASA-CR-179455]
p 160 N86-27643
Evaluation of a hybrid hydrostatic bearing for cryogenic
turbopump application
[NASA-TM-672551
p 6 3 N86-31649
TURBINE WHEELS
The dynamicsof a flexible bladeddisc on a flexible rotor
in a two-rotor system
p 2 0 A8625743
Turbine-stage heat transfer - Comparison of
shonduration measurements with state+l-the-art
prdiitions
[A I M PAPER 86-1465)
p 134 A8642656
Heat-flux measurements for the rotor of a full-stage
turbine. I Time-averaged results
[ASME PAPER 86-GT-771
p 2 4 A8648145

-

Heat-flux measurements for the rotor of a full-stage
turbine. II - Description of analysis technique and typical
time-resolved measurements
[ASME PAPER 86-GT-763
p 24 A86-48146
TURBINES
Extended parametricrepresentationof compressor fans
and turbines. Volume 2 Part user's manual (parametric
[NASA-CR-174646]
p 159 N86-23937
Two-phase flows within systems with ambient
P 161 N86-30167
Ware
TURBOCOMPRESSORS
A theory of post-stall transients in axial compression
systems. I Development of equations
[ASME PAPER 85-GT-1711
p l 9 A86-22088
A meory of post-stall transients in axial compression
systems. 11 4Nmtion
P 19 A86-22089
[ASME PAPER 85-GT-1723
End-wall and profile losses in a low-speed axial flow
rotor
{ASME PAPER 85GT-1741
DPO A86-22090
Modeling the 3-0 flow effects on d h t i o n angle for
axial compressw middle stages
[ASME PAPER 85-GT-1891
p 2 A86-22102
Three-dimensional boundary layer on a compressor rotor
blade at peak pressure rise coefficient
[ASME PAPER 86-GT-1861
p 7 A86-48236
Fluid machines: Expanding the limits, past and future
p 26 N86-12227
[NASA-TM-67161J
TURBOFAN AIRCRAFT
Aerodynamic detuning analysis of an unstalled
supersonic turbofan cascade
[ASME PAPER 85GT-1921
p 3 A86-22732
The STOL performance of a two-engine, USE
powered-li aircraft with crosshafted fans
[SAE PAPER 8518391
p 1 6 A86-38336
TURBOFAN ENGINES
DEAN A program for Dynamic Engine ANalysis
[A I M PAPER 85-13541
p l 8 A86-14430
The dynamicsof a flexible bladeddisc on a flexible rotor
in a two-rotor system
p 20 A86-25743
Three-dimensional inviscid flow in mixers. I Mixer
p 5 A8639090
analysis using a Cartesian grid
Three-dimensional inviscid flow in mixers. II Analysis
of turbofan forced mixers
p 6 A8646316
An iterative finite element-integral technique for
predicting sound radiation from turbofan inlets in stea&y
flight
p 198 A86-49806
A real-time simulation evaluation of an advanced
detection. Isolation and accommodation algonthm for
sensor failures in turbine engines
[NASA-TM-67289]
p 30 N86-24697
Turbofan aft duct suppressor study program listing and
user's guide
[NASA-CR-1750671
p 3 0 N86-25357
A supersonic fan equipped variable cycle engine for a
Mach 2.7 supersonic transport
[NASA-CR-177141]
p 3 2 N86-28946
HYTESS 2: A Hypothetical Turbofan Engine Simplified
Simulation with multivariablecontrol and sensor a n a w l
redundancy
[NASA-TM-673441
p 124 N86-30068
Feasibili sludy lor convertible engine torque
converter
[NASA-CR-I750821
p 3 3 N86-30733
An ovefview of the Small EngineComponentTechnology
(SECT) studies
[NASA-TM-887961
p 3 4 N86-31587
TURBOFANS
Analytical and experimental investigation of the coupled
bladed disklshafl whirl of a cantilevered turbofan
[ASME PAPER 86-GT-981
p 2 4 A86-48163
Modeling the effects of wind tunnel wall absorption on
the acoustic radiation characteristics of propellers
[NASA-TM-673331
p201 N86-29630
TURBOJET ENGINE CONTROL
Robust detection, isolation. and accommodation for
sensor failures in jet engine control systems
p 2 1 A8635402
The application of LQR synthesis techniques to the
turboshaft engine control proMem
Linear Quadratic
Regulator
p 2 2 A86-35614
TURBOJET ENGINES
Experimental study of ceramiccoated tip seals for
turbojet engines
p 152 A86-15227
TURBOMACHINE BLADES
Vibration analysis of rotating turbomachinery blades by
an improved finite diflerence method p 18 A86-14338
Vibration characteristics of mistuned shrouded blade
assembhes
[ASME PAPER 65-GT-1151
p l 9 A86-22068
Model equation for simulating flows in multistage
turbomachinery
[ASME PAPER 85-GT-2261
p 2 A86-22123
Unsteady transonic flow over cascade blades
D 3 A86-23141
~

-

~

-

-

-

-

Unsteady transonic flow in cascades
p 4 A86-24693
The effects of strong shock loading on coupled
bending-torsion flutler of tuned and mistuned cascades
p 2 0 A86-28893
TURBOMACHINERY
Future directions in aerowowlsion technoloav
p t z6-11602
Development of an explicit multigrid algorithm for
quasi-three-dimensional visaws flows in turbomachinery
[A I M PAPER 8600321
p l A86-18644
Model equation for simulating flows in multistage
turbomachinery
[ASME PAPER 85-GT-2261
p 2 A86-22123
Aeroelastic formulations lor lwtmnachines and
propeiim
p 2 0 A86-24677
The use of an optical data acquisition system for bladed
disk vibrationanalysis
p 146 A86-26909
Computation of viscous flows in turbomachinery
cascades with a space-marching method
D5
- A86-39089
. .-. - - Assessment of a parabolic anarysls for axisymmetric
internal flows in rocket and turbomachinery ducts
[A I M PAPER 86-15981
p 134 A8642739
A comparison of computational methods for
three-dimensional, turbulent turbomachinery flow fields
[AIAA PAPER 86-15991
p 6 A8642740
Computation of three-dimensional, rotational flow
through hntmmachioery blade rows for improved
aerodynamic design studies
[ASME PAPER 86-GT-261
p 7 AB648117
A model for closing the inviacid form 01 the
averagepassageequation system
[ASME PAPER 86-GT-2271
p 8 A86-48261
Development of an explicit multigrid algorithm for
quasi-three-dimensional viscous flows in turbo-machinery
[NASA-TM-671281
p 1 N86-11146
Laser anemometry for hot section applications
p151 N86-11503
A FORTRAN computer code for calculating flows in
multiple-blade-elementcascades
[NASA-TM-67104]
p 9 N86-13295
A model for closing the inviscid form of the
averagepassageequation system
[NASA-TM-87199]
p 1 0 N86-14224
Compliant hydrodynamic fluid journal bearing
p l 5 8 N86-19606
[NASA-CASE-LEW-13670-1]
Rampintegration technique for capacitance-type
bladetip clearance measurement
[NASA-TM-87241]
p149 N86-24964
Application of laser anemometry to turbomachineryflow
field measurements
p 160 N86-27640
Laser fringe anemometry for aero engine components
[NASA-TM-88798]
p 1 2 N86-28053
Instability in Rotating Machinery
1NASA-CP-24091
p 1 6 t N86-30160
Structural dynamic measurement practices for
turbomachinery at the NASA Lem's ResearchCenter
[NASA-TMgBB57]
p 3 5 N86-32433
TURBOPROP AIRCRAFT
Three dimensional unsteady aerodynamics and
aeroelastic response of advanced turboprops
[AIAA PAPER 86-08461
p 2 2 A86-38894
An expetimental investigation of reducing advanced
turboprop cabin noise by wing shielding
[A I M PAPER 86-19661
p 1 6 A86-45449
Acwstic reflection contamination measurements in the
16foot NASA Langley Transonic Wind Tunnel
[A I M PAPER 86-16881
p198 A8645501
Summary of recent NASA propeller research
p 2 5 N86-11158
Laboratory experiments o n active suppression of
advanced turboprop noise
[NASA-TM-67129]
p 1 W N86-19125
An estimate of the enroute noise of an advanced
turboprop airprane NASA-TM-67302 E-3020 NAS
1.t 587302 HC AO2/MF A01
[NASA-TM-673021
p201 N86-25217
An experimental investigation of reducing advanced
turboprop cabin noise by wing shielding
[NASA-TM-871121
p201 N86-25216
TURBOPROP ENGINES
ImprovedEuler analywsof advencedtwboproppropeller
flows
[A I M PAPER 86-15211
p 6 A8642688
Rotorcraft propulsion lor year 2ooo plus
[A I M PAPER 86-15431
p 2 3 A86-42702
Small engine technology payoffs for Mure m m u l e r
airuaft
[A I M PAPER 86-15441
p 2 3 AB642703
Fatigue life analysis of a turboprop reduction gearbox
[ASME PAPER 8SDET-IO]
p 155 A8645256
Development of an impulsive noise source to study the
acoustic reRection charactmistics of hard-walled wind
tunnels
[A I M PAPER 86-18871
p l 9 8 A8845500

. .

__


TURBONETSJET ENGINES

A numerical simulation of the inviscid flow through a counter-rotating propeller [NASA-TM-872200].

Experimental claffoand cutater results of a composite advanced turboprop model [NASA-TM-872766].

System design and integration of the large-scale advanced propfan [NASA-CP-120747].

An overview of the Small Engine Component Technology (SCT) studies [NASA-CP-87996].

TURBOMACHINES

Turbulence and LQR synthesis techniques to the turboshaft engine control problem — Linear Quadratic Regulator [NASA-CP-38974].

Simulating a small turboshaft engine in real-time multiprocessor simulator (RTMPS) environment [NASA-TM-872116].

Turbulence model criteria for ceramic-coated surfaces [NASA-TM-873278].

TURBULENT JETS

Numerical and experimental investigation of nonswirling and swirling confined jets [AIAA PAPER 86-1742].

Film cooling on a convex wall — Heat transfer and hydrodynamic measurements for full and partial coverage [NASA-CR-176944].

Effect of liquid droplets on turbulence in a round gaseous jet [NASA-JT-19603].

Review and evaluation of recent developments in melt flow measurement and wind tunnels [NASA-CR-175063].

TURBULENT BOUNDARY LAYER

Boundary layer measurements on an airfoil in cascade using laser Doppler anemometry [AIAA PAPER 86-0072].

Direct numerical simulations of chemically reacting turbulent mixing layers [NASA-CR-179062].

Buoyancy effects upon vapor flame and explosion processes [NASA-CP-10161].

TURBULENT DIFFUSION

Turbulent jet diffusion and diffusion transport in a separating and reattaching flow [AIAA PAPER 86-1724].

TURBULENT FLOW

Numerical study of three-dimensional turbulent flow interactions between blockage models and wind tunnels including wind tunnel calibration test sections [AIAA PAPER 86-1507].

Influence of large-scale motion on turbulent transport for cascade-cooled jets, Volume 1: Analytical analysis of the experimental data using conditional sampling [NASA-CR-179053].

Measurements of a turbine-hsroshoe vortex formed around a cylinder [NASA-CR-39896].

TURBULENT JETS

Turbulent jet visualization of lateral jet injection into a swirling cross flow [AIAA PAPER 86-0055].

Turbulence and fluid mechanics measurements in transpiration-boundary layer flows [AIAA PAPER 86-1711].

Drop-turbulence interactions in a diffusion flame [NASA-CR-18596].

Swirling flows in typical combustor geometries [AIAA PAPER 86-20207].

Calculations of two and three-dimensional turbulent cross flow fields using the Navier-Stokes equations [AIAA PAPER 85-GT-06].

A review and analysis of boundary layer transition data for application [AIAA PAPER 85-GT-83].

PRELIMINARY RESULTS OF A STUDY OF THE RELATIONSHIP BETWEEN FREE STREAM TURBULENCE AND STAGNATION REGION HEAT TRANSFER [ASME PAPER 85-GT-84].

Prediction of heat release effects on a mixing layer [AIAA PAPER 85-GT-0036].

Computational turbulence modeling of a channel flow with an algebraic Reynolds stress model [AIAA PAPER 86-02514].

A three-dimensional axisymmetric calculation procedure for turbulent flows in a radially vaned diffuser [AIAA PAPER 86-02514].

Periodical oscillations in swirling flows with and without combustion [NASA-CR-172733].

Accuracy and directional sensitivity of the single-wire technique [NASA-CR-28541].

Triple-strength products in a channel between a backward-facing step [NASA-CR-41725].

Turbulence and dispersion in a separating and reattaching flow [AIAA PAPER 86-1724].

Turbulence and dispersion in a single two-phase flow in annular seals [NASA-CR-179054].

Measurements of a single lateral jet injected into swirling crossflow [NASA-CR-179054].

Measurement of a single lateral jet injected into swirling crossflow [NASA-CR-179051].

Measurements of a single lateral jet injected into swirling crossflow [NASA-CR-179050].

Shake layer extinction, experiment variety theory [NASA-CR-17604].

Contributions to the understanding of large-scale coherent structures in developing free shear flows [NASA-CR-178772].

Measurement of a turbine horseshoe vortex formed around a cylinder [NASA-CR-39966].

Turbulent dispersion of the icing cloud from spray nozzles used in icing tunnels [NASA-TM-87316].

Periodic turbulence in a radial vaneless diffuser [NASA-CR-179053].

Implementation of a new approach for the design of the flow in the combustion chambers of a motorized rotary engine [NASA-CR-179061].

Turbulence and dispersion of the icing cloud from spray nozzles used in icing tunnels [NASA-TM-87316].

TURBULENT JETS

Turbulent jet visualization of lateral jet injection into a swirling cross flow [AIAA PAPER 86-14561].

Tone excited jets. III - Flow measurements [NASA-CR-185881].

Influence of large-scale motion on turbulent transport for cascade-cooled jets, Volume 1: Analytical analysis of the experimental data using conditional sampling [NASA-CR-179053].

Heat transfer and fluid mechanics measurements in transpiration-boundary layer flows [AIAA PAPER 86-1711].

Structure of nonswirling sprays. II - Drop and turbulence properties [NASA-CR-24518].

Scalor and momentum turbulent transport experiments with swirlng and nonswirling flows [NASA-CR-18663].

Heat transfer and fluid mechanics measurements in transpiration-boundary layer flows [AIAA PAPER 86-1711].

TURBULENT WAKES

Measurements of a single lateral jet injected into swirling crossflow [NASA-CR-179044].

Measurement of a single lateral jet injected into swirling crossflow [NASA-CR-179043].

Prediction of heat release effects on a mixing layer [NASA-CR-179042].

Influence of rotation and preheat on cattlemen fan blower [NASA-CR-178767].

Joint research effort on vibrations of twisted blade phase I: Final results [NASA-RP-1950].

TWO DIMENSIONAL BOUNDARY LAYER

Turbulence external heat transfer. Volume 1: Analytical and experimental evaluation of surface in transfer distributions with leading edge skewhood and cooling [NASA-CR-174827].

A two-dimensional numerical study of the flow in the combustion chambers of a motorized rotary engine [NASA-CR-179061].

Thermodynamic evaluation of transonic compressor rotors using the finite volume approach [NASA-CR-179055].

TWO PHASE FLOW

Prediction of the structure of fuel sprays in gas turbine combustors [AIAA PAPER 86-0040].

A stagnation pressure probe for droplet-laden air flow [AIAA PAPER 86-260].

Computational simulation of liquid rocket jet interfaces and the flow [AIAA PAPER 86-1424].

Turbulent two-phase flow in annular seals [ASLE PREPRINT 86-AM-43].

Two-phase flow in annular seals [NASA-CR-175040].

Two-phase flow in annular seals [NASA-CR-175031].

Influence of large-scale motion on turbulent transport for cascade-cooled jets, Volume 1: Analytical analysis of the experimental data using conditional sampling [NASA-CR-179053].

Measurements of a single lateral jet injected into swirling crossflow [NASA-CR-179054].

Shake layer extinction, experiment variety theory [NASA-CR-17604].

Contributions to the understanding of large-scale coherent structures in developing free shear flows [NASA-CR-178772].

Measurement of a turbine horseshoe vortex formed around a cylinder [NASA-CR-39966].

Thermodynamic evaluation of transonic compressor rotors using the finite volume approach [NASA-CR-179047].

Turbulent dispersion of the icing cloud from spray nozzles used in icing tunnels [NASA-TM-87316].

Flow measurements of a single lateral jet injected into swirling crossflow [NASA-CR-179050].

An economical model for the structured turbulence in gas turbine combustors [NASA-CR-179028].

Two-phase flow and heat transfer with internal and ambient pressure above the thermodynamic critical pressure [NASA-CR-179052].

Heat transfer to two-phase air/water mixtures flows in small tubes with inlet desuperheating [NASA-CR-179051].

Two-phase flow in sudden expansion at supercritical pressures and below atmospheric pressure [NASA-CR-179050].

Two-phase flow in annular seals [NASA-CR-179049].

Two-phase flows in systems with amb June pressure [NASA-CR-179055].

Modelling of zero gravity venting: Studies of two-phase heat transfer under reduced gravity [NASA-CR-179062].

TWO REFLECTOR ANTENNAS

Near-field testing of the 30 GHz TRW proof-of-concept multibeam antenna [NASA-TM-67357].

TWO STAGE TURBINES

Small, two-stage, partial-admission turbine [NASA-P-1188-4706].

U

UDIMET ALLOYS

The response of cobalt-free Udimet 700 type alloy to modified heat treatments [AIAA PAPER 85-GT-03].

ULTRASONIC FLAW DETECTION

Surface modification strategy for (100)3csic [AIAA PAPER 86-424].

Ultrasonic flaw detection using the ultrasonic wave method [NASA-CR-87271].

Factors influencing the ultrasonic wave interaction in composite material structures [NASA-CR-87271].

UH

ORIGINAL PAGE IS OF POOR QUALITY
UNSTEADY FLOW
UNIVERSITIES

\[
\text{Unsteady transonic flow over cascade blades} \quad p.3 \quad \text{AIAA-23411}
\]

Aerodynamic formulations for turbomachinery and propellers
\[
\text{VACUUM} \quad p.20 \quad \text{AIAA-24677}
\]

Unsteady transonic flow in cascades
\[
\text{AIAA PAPER 86-1556} \quad p.134 \quad \text{AIAA-42711}
\]

Three dimensional unsteady aerodynamics and aerelastic response of advanced turboprops
\[
\text{AIAA PAPER 86-0845} \quad p.22 \quad \text{AIAA-38994}
\]

Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine
\[
\text{AIAA PAPER 86-1556} \quad p.200 \quad \text{N86-29277}
\]

Nondestructive techniques for characterizing mechanical properties of structural materials - An overview
\[
\text{ASEM PAPER 86-GT-75} \quad p.163 \quad \text{AIAA-48143}
\]

Ultrasound evaluation of mechanical properties of thick, multilayered, filament wound composite materials
\[
\text{NASA-TM-87086} \quad p.163 \quad \text{N86-10561}
\]

Nondestructive techniques for characterizing mechanical properties of structural materials: A review
\[
\text{NASA-TM-78348} \quad p.163 \quad \text{N86-10561}
\]

Theory and application of scanning laser acoustic microscopy
\[
\text{NASA-SR-174495} \quad p.26 \quad \text{N86-12226}
\]

Vacuum testing of vacuum systems in remote locations
\[
\text{NASA-TM-87146} \quad p.26 \quad \text{N86-12229}
\]

Vacuum chamber design
\[
\text{NASA-CR-177220} \quad p.36 \quad \text{N86-19654}
\]

Preliminary results of a study of the relationship between free stream turbulence and stagnation region heat transfer
\[
\text{AIAA PAPER 85-GT-84} \quad p.129 \quad \text{AIAA-22055}
\]

Steady and unsteady pressure measurements for the SR-3 propeller
\[
\text{NASA-PAPER 86-2462S} \quad p.9 \quad \text{AIAA-46925}
\]

Application of a linearized unsteady aerodynamic analysis to standard cascade configurations
\[
\text{NASA-CR-39401} \quad p.116 \quad \text{N86-31205}
\]

Preliminary results of unsteady blade surface pressure measurements for the SR-3 propeller
\[
\text{NASA-TM-87352} \quad p.12 \quad \text{N86-27213}
\]

Unsteady state forces on counter-rotating propeller blades
\[
\text{AIAA PAPER 86-18546} \quad p.22 \quad \text{AIAA-37627}
\]

UPPER ATMOSPHERE
Air pressure for forecasting in aviation for the United States
\[
\text{NASA-TM-87355} \quad p.44 \quad \text{N86-31621}
\]

UPPER STAGE ROCKET ENGINES
Centaur engine gimbal friction characteristics under simulated thrust loads
\[
\text{NASA-TM-87099} \quad p.199 \quad \text{N86-14007}
\]

USER MANUALS
Integrated Composite Analyzer (ICAN): Users and programmers manual
\[
\text{NASA-TM-2515} \quad p.69 \quad \text{N86-21614}
\]

B binder linear thermal/structural load modeling: TRANSCITS program user's manual
\[
\text{NASA-CR-175067} \quad p.30 \quad \text{N86-25557}
\]

Structural tailoring of engine blades (STABEL) theoretical manual
\[
\text{NASA-CR-175112} \quad p.31 \quad \text{N86-27283}
\]

Spectrum Orbital Utilization Program documentation: SOUPS version 3.8 user's manual, volume 1, chapters 1 through 5
\[
\text{NASA-CR-174788} \quad p.200 \quad \text{N86-27927}
\]

Spectrum Orbital Utilization Program documentation: SOUPS version 3.9 user's manual, volume 2, appendices A through G
\[
\text{NASA-CR-174680} \quad p.193 \quad \text{N86-27028}
\]

USER REQUIREMENTS
Future heavy duty trucking engine requirements
\[
\text{NASA-CR-174649} \quad p.159 \quad \text{N86-29308}
\]

Extended parametric representation of compressor fans and turbines: Volume 2: Part user's manual (parametric turbine)
\[
\text{NASA-CR-175113} \quad p.31 \quad \text{N86-27284}
\]

VARIABLE CYCLE ENGINES
\[
\text{NASA-CR-174817} \quad p.200 \quad \text{N86-23371}
\]

\[
\text{NASA-CR-174818} \quad p.201 \quad \text{N86-23372}
\]
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>WING FLAPS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>WING LOADING</td>
</tr>
<tr>
<td>[AIAA PAPER 86-1873] p 196 A86-45493</td>
</tr>
<tr>
<td>WING MACROCELL CONFIGURATIONS</td>
</tr>
<tr>
<td>[AIAA PAPER 86-1552] p 6 A86-42709</td>
</tr>
<tr>
<td>WINGLETs</td>
</tr>
<tr>
<td>WINGS</td>
</tr>
<tr>
<td>[AIAA PAPER 86-1066] p 16 A86-45449</td>
</tr>
<tr>
<td>An experimental investigation of reducing advanced turboprop cabin noise by wing shielding</td>
</tr>
<tr>
<td>[NASA-TM-87172] p 201 A86-25218</td>
</tr>
<tr>
<td>In-flight photogrammetric measurement of wing ice accretions</td>
</tr>
<tr>
<td>WOOD</td>
</tr>
<tr>
<td>WORK FUNCTIONS</td>
</tr>
<tr>
<td>WORKING FLUIDS</td>
</tr>
<tr>
<td>Effect of an oxygen plasma on the physical and chemical properties of several fluids for the liquid droplet radiator</td>
</tr>
</tbody>
</table>

X

| X RAY ANALYSIS | NDE of structural ceramics |
| [ASME PAPER 86-GT-279] p 163 A86-48298 |
| NDE of structural ceramics |
| [NASA-TM-87106] p 164 A86-16566 |
| X RAY DENSITY MEASUREMENT | Correlation of processing and sintering variables with the strength and radiography of silicon nitride |
| X RAY DIFFRACTION | Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings |
| p 96 A86-16269 |
| X RAY INSPECTION | Factors that affect reliability of nondestructive detection of flaws in structural ceramics |
| [NASA-TM-87348] p 166 A86-31912 |
| XENON | Light scattering tests of fundamental theories of transport properties in the critical region |
| p 39 A86-10113 |
| Performance characteristics of ring-cusp thrusters with xenon propellant |
| [NASA-TM-87338] p 93 A86-31650 |

Y

| YIELD STRENGTH | The effects of grain size on the flow and fracture of long-range ordered alloys |
| p 64 A86-147243 |
| Modifications of system for elevated temperature tensile testing and stress-strain measurement of metal matrix composites |
| Simplified cyclic structural analyses of SSME turbine blades |
| [NASA-TM-87214] p 175 A86-16615 |
| Yielding and deformation behavior of the single crystal nickel-base superalloy PWA 1480 |
| YTTERBIUM | Optimization of the Ni-Cr-Al-Y/ZrO2-Y2O3 thermal barrier system |
| p 82 A86-31746 |

Z

| ZIRCONIUM COMPOUNDS | Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components |
| ZIRCONIUM OXIDES | Character of laser-glazed, plasma-sprayed zirconia coatings on stainless steel substrata |
| p 95 A86-15229 |
| Comparison of the contact stress and friction behavior of SC and ZrC2 materials |
| p 95 A86-15237 |
Acoustic reflection contamination measurements in the 16-foot NASA Langley Transonic Wind Tunnel

BARTLOTTA, P. A.
Thermomechanical cyclic hardening behavior of Hastelloy-X

BARTON, J. M.
Improved Euler analysis of advanced turbopropeller flows
[AIM PAPER 86-1521] p 6 A86-42686

BASKAKIS, Y. D.
Nondestructive characterization of structural ceramics
p 99 A86-37114

BASU, P.
The effect of limiting aerodynamic and structural coupling in models of mistuned bladed disk vibration
p 21 A86-29605

BATAKIS, A. P.
Rocket thrust chamber thermal barrier coatings

BAUMBACK, R. J.
Fiber optics for propulsion control systems
[ASME PAPER 84-AT-97] p 17 A86-13054

BAUMEISTER, K. J.
Time-dependent wave envelope finite difference analysis of sound propagation
p 107 A86-20130

Beverer effects on directionality and response of stationary monopole and dipole sources in a wind tunnel
[ASME PAPER 85-GT-207] p 117 A86-22724

Berger, J. H.
Wind tunnel tests of rotor blade sections with replications of ice formations accreted in hover

BERGSTROM, S. I.
Measurement of the density of base fluids at pressures to 2.20 GPa

BERGOECD, D. N.
NASA electric propulsion technology
[AIM PAPER 85-1899] 51 A86-17831

BERLAD, A. W.
Particle cluster combustion experiment
p 41 A86-10160

BERNHART, W. D.
Aeroelastic behavior of low aspect ratio metal and ceramic blades
[AIM PAPER 86-04671] 198 A86-29636

BERNHEIM, D. W.
Analysis and tests for design of an electro-impulse de-icing system

BERNDT, C. C.
Gain in communication and optical link experiments

BERNOLES, Y.
Laser beam monitoring and control circuitry for GaAs heterojunction devices

BESSENDORF, Y.
Lightweight two-stroke cycle aircraft diesel engine
[NASACR-174980] p 105 N86-28511

BESNIT, P. M.
Influence of large-scale motion on turbulent transport experiments in a transonic oscillating cascade
[AIM PAPER 86-04671] p 198 A86-29636

BEZEMER, D. G.
NASA/DOE automotive Stirling engine project: Overview 1986

BERENYI, S. G.
Lightweight two-stroke cycle aircraft diesel engine technology evaluation program, volume 1
[NASA-CR-174923-VOl-1] p 26 A86-13328

BERNIE, J. E.
Year 2000 small engine technology payoff in cruise missiles
[AIM PAPER 86-1546] 23 A86-42705

BENTS, D. J.
High-pressure creep tests
p 82 A86-30041

BIRO, Y.
Turbulent two-phase flow in annular seals
[NASA-CR-175031] p 82 A86-30010

Bir's fall and response of a real-time multiprocessor simulator

BISHOP, J. D.
Infrared-photodissociation experiments studies in soluble trans-polyacetylene
p 204 A86-37075

Birbal, Y.
Thermal-fatigue and oxidation resistance of cast cobalt-modified Udimet 700 alloy
[NASA-TP-2991] 117 A86-27651

BLACK, J. D.
Lifeextinction behavior of turboprop reduction gears
[ASME PAPER 85-DET-10] p 155 A86-45256

BLAKNEY, D. F.
Tone excited jets. IV - Acoustic measurements
p 196 A86-16469

BLECH, R. A.
Methods for heat transfer and temperature field analysis of the insuieed diesel phase 2 progress report

BLOOMFIELD, H. S.
Reliability and mass analysis of dynamic power conversion systems with parallel of standby redundancy

BLUMBERG, P. N.
Constitutive modeling for isotropic materials (HOST)

BLOOMFIELD, S.
Software development for the National Science Foundation's Cyberinfrastructure program, volume 2

BOHNER, V. J.
Wavelet analysis and modeling of Nasa electric propulsion technology
[AIM PAPER 86-1521] p 6 A86-42686

BONACORE, W. D.
Analysis of the sound field produced by rigid wide cord dual rotation propellers of high solidity in compressible flow
[NASA-TM-86-0487] 198 A86-49566

BOLDMAN, D. R.
Creep-rupture behavior of iron superalloys in high-pressure hydrogen
[NASA-CR-175072] p 89 A86-17531

BOJAN, V. J.
Monolithic optical integrated control circuitry for GaAs laser diodes
[NASA-TM-87189] p 177 A86-27651

BOJAN, V. J.
Development of the VOLTA A shuttle experiment
[AIM PAPER 86-1521] p 212 A86-14100

BOGOLIUBOV, N. A.
A short -range electron cloud laser diode

BOECKER, W. D.
NASA Engineering and Space Flight Agency

BOECKER, W. D.
Sintered alioxide silicon carbide ceramics for high temperature structural applications - Status review and requirements
[ASME PAPER 85-IGT-127] 97 A86-29321

BOJAN, V. J.
Mass spectrometric studies of the electrical breakdown of thin polymer films
p 100 A86-47070

BOLDMAN, D. R.
Unsteady pressure measurements on a biconvex airfoil
[ASME PAPER 85-IGT-212] p 3 A86-22731

BOSMAN, W. J.
Three-dimensional fluid flow phenomena in the blade and wake region
[ASME PAPER 86-0487] p 7 A86-48229
CARLSON, A. W.
Heat pipe radiator technology for space power systems
[AIAA PAPER 86-1300] p 47 A86-39907

CARLSON, R. L.
Analysis of large, non-isothermal elastic-viscoplastic deformation
[AIAA CR-178220] p 172 N86-10568
Formulation of the nonlinear analysis of shell-like structures, subjected to time-dependent thermal and mechanical loading
[AIAA CR-177194] p 178 N86-28462

CANT, U.
Radical molecule and ion-molecule mechanisms in the polymerization of hydrocarbons and chloroalanes in R.F. plasmas at low pressures (below 1.0 Torr)
[203 A86-16254

CARNEY, K. B.
Joint research effort on vibrations of twisted plates, phase I: Final results
[AIAA RP-1150] p 172 N86-10579

CARNEY, M. J.
NASA Lewis Research Center low-gravity fluid management technology program
[44 A86-32906
NASA Lewis Research Center low-gravity fluid management technology program
[44 A86-11128
Liquid-vapor interface locations in a spheroidal container under low gravity
[AIAA CR-178223] p 141 N86-23854

CAPRINNER, R. T.
Improvement of ion thruster design
[AIAA CR-177223] p 81 N86-27419

CARROLL, D. R.
The processor in future satellite communication systems
[390 A86-21182
On the effectiveness of onboard processing
[AIAA RP-107213] p 45 N86-29567

CASTALDI, P.
Large-Scale Advanced Prop-Fan (LAP) pitch change actuator and control design report
[156 AIAA CR-17878] p 21 N86-27222

CASBENET, B. H.
Composite modeling for isotropic materials (HOST)
[172 N86-10568

CASTOR, J. C.
Preliminary evaluation of a compound cycle engine for shipboard gaswars
[AIAA CR-178451] p 186 N86-26820

CATALDO, R. L.
Life cycle test results of a bipolar nickel hydrogen battery
[202 A86-17421
Parametric and cycle tests of a 40-A bipolar nickel-hydrogen battery
[AIAA CR-178792] p 186 N86-31569

CATCHART, J. A.
Advanced orbit transfer vehicle propulsion system study
[AIAA CR-174843] p 60 N86-24746

CAUGHLEY, D. A.
An implicit LU scheme for the Euler equations applied to arbitrary cascades
[202 A86-20131
Transonic potential flow in hypersonic nozzles
[5 A86-41723

CAUFIELD, T.
Intradiaphragm effects between tungsten fibers and an iron-nickel-base alloy
[AIAA CR-178250] p 65 N86-33013

CAWLEY, J. D.
Phenomenological study of the behavior of some silicon fibers in a high velocity jet fuel burner

CELESTINA, M. L.
A model for closing the inviscid flow of the average- passage system equation
A model for closing the inviscid flow of the average-passage system equation
[AIAA CR-178792] p 10 A86-105424
A numerical simulation of the inviscid flow through a counter-rotating propeller
[AIAA CR-178720] p 10 A86-18169

CEAYSAN, H. P.
Ignition characteristics of rich n-heptane fuel sprays in the transition region

Analysis of the effects of fuel spray characteristics on NOx formation

Transition region ignition characteristics of n-heptane fuel sprays
[AIAA CR-178694] p 77 N86-14321
Combustion characteristics in the transition region of liquid fuel sprays
[AIAA CR-178654] p 77 N86-20517

CHAL, A. T.
Transport processes in solid state crystal growth
[AIAA CR-178620] p 29 N86-10107
Surface tension induced instabilities in reduced gravity: The Benard problem
[40 N86-11017
The capillary motion research
[40 N86-11025

CHAMELIN, R.
Subscale-model and full-scale engine mixed-flow exhaust system performance correlation
[18 A86-14528

CHARMS, C. C.
Longitudinal compressive failure modes in fiber composites End attachment effects on IITRI flat test specimens
[96 A86-15999
NASA Lewis Research Center/university graduate research program on engine structures
Designing for fiber composite structural durability in hypothermomechanical environments
[67 A86-27734
Composite sandwich thermostructural behavior
[210 A86-38964
Computer aided derivation of equations for composite mechanics problems and finite element analysis
[170 A86-38964
Probabilistic structural analysis methods for critical SSME propulsion components
[54 A86-30956
Computational composite mechanics for aerospace propulsion structures
[54 A86-30956
Dynamic stress analysis of smooth and notched fiber composite flexural specimens
[67 A86-41070
Computational engine structural analysis
[AIAA RP-88-GT-70] p 23 A86-24814
Interlaminate fracture toughness: Three-dimensional finite element modeling for end-notch and mixed-mode flexure
[AIAA RP-87-138] p 89 A86-14316

CHANG, S. C.
Computational engine structural analysis
[AIAA RP-87-139] p 175 A86-15983
Integrated Composite Analyzer (ICAN): Users and programmers manual
[AIAA RP-87-139] p 50 N86-21814
Thermoelastic nonlinear constitutive relationships for structural analysis of high temperature metal matrix composites
[AIAA RP-87-139] p 70 N86-24756
A unique set of micromechanics equations for high temperature metal matrix composites
[AIAA RP-87-139] p 70 N86-24757
Simplified composite micromechanics for predicting microstresses
[AIAA RP-87-139] p 70 N86-24759
Fracture characteristics of aged laminates fabricated from overaged graphite/epoxy prepreg
[5 A86-30517
Computational simulation of progressive fracture in fiber composites
[AIAA RP-87-139] p 70 N86-25547
Tesseral composite sandwich thermostructural behavior: Computational simulation
[AIAA RP-87-139] p 71 N86-31863
ICAN: A versatile code for predicting composite properties
[AIAA RP-87-139] p 71 N86-31864

CHANG, K. S.
Constitutive modeling for isotropic materials (HOST)
[AIAA CR-174840] p 172 N86-10568

CIRINCIONE, R.
Influence of rotation and prewett on camfilever fan blade flutter
[17 A86-11886

CIRIC, B. C.
Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor: 1- One step method
[AIAA RP-87-139] p 195 N86-25681
Three-dimensional/inviscid analysis of radial turbine flow and a limited comparison with experimental data [NASA-TM-87091] p 9 N86-10017

CHORIN, A. J.
Numerical simulation of a turbulent flame stabilized behind a rearward-facing step p 73 A86-22774

CHRISTO, R. M.
Development of seeding techniques for small supersonic wind tunnel p 147 N86-11452

CHUANG, B. L.

CHUANG, B. L.
Normal modes in an overmoded circular waveguide coated with lossy material p 119 A86-44078

CHURCH, D. C.
Analysis of the Gas Particle Radiator (GPR) [NASA-TM-83562] p 83 N86-25581

CHURIDOVSKY, A.
The crack layer approach to toughness characterization in steel p 82 A86-30010

Fatigue crack layer propagation in silicon iron [NASA-CH-175115] p 177 N86-25581

COHONG, D. F.
Thermomechanical design criteria for ceramic-coated surfaces [NASA-TM-87328] p 143 N86-25726

CIEPUCH, C. C.
Progress in the Lewis Research Center Attitude Wind Tunnel (AWT) Modeling Program [NASA-PAPER 86-07577] p 36 A86-24744

CIEPUCH, C. C.

CIVINIKAS, K. C.

CIVINIKAS, K. C.
Three-dimensional inviscid analysis of radial-turbine flow and a limited comparison with experimental data p 4 A86-28702

CIVINIKAS, K. C.
Three-dimensional inviscid analysis of radial-turbine flow and a limited comparison with experimental data [NASA-TM-87091] p 9 N86-10017

CLAIRK, B. J.
Preliminary results of unsteady blade surface pressure measurements for the SR-3 propeller [NASA-PAPER 86-1893] p 8 A86-49625

Preliminary results of unsteady blade surface pressure measurements for the SR-3 propeller [NASA-TM-87352] p 12 N86-27213

CLAIRK, D. A.
Effect of area ratio on the performance of a 5.5:1 pressure ratio centrifugal impeller [NASA-PAPER 86-48315] p 8 A86-49625

CLAIRK, D. A.
Effect of area ratio on the performance of a 5.5:1 pressure ratio centrifugal impeller [NASA-TM-87227] p 10 N86-18920

CLAIRK, R.
A possible radiation-resistant solid cell geometry using semiconductor [NASA-PAPER 86-11890] p 155 N86-17851

CLAIRK, R.

COHORD, N. W.
Communications platform payload definition study [NASA-CR-174986] p 48 N86-27402

COC, H. N.
Lubrication and performance of high-speed rolling-element bearings p 152 A86-19375

COFFIBNRR, G. A.

COHEN, B.
Simultaneous measurements of velocity and pressure fields in subsonic and supersonic flows through image-processed detection of laser-induced fluorescence [NASA-PAPER 85-0618] p 145 A86-19726

COHEN, B.
Flowfield characteristics at low velocity [NASA-PAPER 85-IGT-130] p 107 A86-28322

COLE, G. L.

COLEMAN, E. B.

COLES, E. F.

Liquid droplet radiator program at the NASA Lewis Research Center [NASA-TM-87139] p 48 N86-12248

Effect of an oxygen plasma on the physical and chemical properties of several fluids for the droplet radiator [NASA-TM-88839] p 49 N86-31364

COLES, D.
Free surface phenomena under low- and zero-gravity conditions p 39 N86-10108

COLLINS, R. E.

COLLINS, W. R.
A high-order language for a system of closely coupled processing elements [AAIA PAPER 86-11275] p 193 N86-27900

CONCUS, P.
Free surface phenomena under low- and zero-gravity conditions p 39 N86-10108

CONNOLLY, D. J.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications [NASA-PAPER 86-0687] p 110 A86-29858

Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications [NASA-TM-872118] p 113 N86-18458

COONEY, M. J.

CORELATA, R. T.
Ka-band metallic gain control amplifiers p 119 A86-41343

CONVERSE, G. L.

COOPER, L. F.
Landing orbital transfer vehicle propulsion [NASA-PAPER 86-1228] p 50 A86-14429

Status of advanced orbital transfer propulsion [JAP-PAPER 86-164] p 51 A86-17850

COOPER, T. W.
Advanced orbit vehicle propulsion system studies [NASA-CR-174843] p 60 N86-24746

CORELLI, S. R.
Interaction of fluids with the crystal-melt interface p 132 A86-25419

CORNEIL, C. C.

CORRIGAN, R. D.
Vortex generators as a means for increasing rotor performance p 4 A86-24928

Effect of design and initial testing of a one-bladed 30-meter-diameter rotor on the NASA DOE mod-O wind tunnel [NASA-TM-88810] p 189 N86-30251

CORRIGANNO, R. M.
Advanced orbit vehicle propulsion system studies [NASA-CR-174843] p 60 N86-24746

COSTL, T.
Effect of accuracy of wind power prediction on power system operator [NASA-CR-176900] p 118 N86-11867

COSTL, T.

COVERакс, G. L.
COWELL, L. W.
- Spontaneous ignition delay characteristics of hydrocarbon fuel-air mixtures (NASA-CR-175064)
- Solar sensor for system life and reliability (NASA-CR-174652)
- 296 A85-23598

COY, J. J.
- Personal Author Index
- NASA-TP-87261
- p103 N86-11283

COYNER, J. V.
- Satellite voice broadcast. Volume 1: Executive summary
- NASA-CR-175016
- p115 N86-24875

CRANER, E. E.
- Aerostatic turbochargers for combustion engines
- NASA-CR-174811
- p139 N86-15518

CRANK, J. Jr.
- Visualization of flows in a motored rotary combustion engine using holographic interferometry
- NASA-CR-174891
- p296 A86-16165

CRAPP, R. A.
- Solar Dec. arcjet operation with hydrogen/nitrogen mixtures
- NASA-CR-175074
- p89 N86-21656

CRAMP, M. A.
- Robust detection-isolation-accommodation for sensor failures
- NASA-CR-174797
- p120 A85-16846

CRAY, L. H.
- Aerosol analytical and experimental investigation of the coupled bladed-disk shaft whirl of a centerturbined turbine
- ASME PAPER 86-DET-1101
- p154 A86-48163

CRIM, M. A.
- Effect of boron on tensile properties of B2aSi
- NASA-CR-175045
- p211 N86-30579

CRUPPA, D. N.
- Mass flow requirements in high pressure arc discharges
- NASA-AIAA 86-9695
- p47 A87-38883

CROW, D. B.
- Advanced orbit transfer vehicle propulsion system study
- NASA-CR-174843
- p60 N86-24746

CRONIN, M.
- Automotive Strirling Engine Development Program
- NASA-CR-174749
- p211 N86-28017

CRONIN, M. S.
- Automotive Strirling engine development program
- NASA-CR-175045
- p211 N86-30579

CUMMINS, R. E.
- Passive eddy-current damping as a means of vibration control in cryogenic turbomachinery
- NASA-TF-2562
- p44 N86-24722

CURRAN, P. M.
- Hollow cylinders in high pressure arc discharges
- AIAA PAPER 86-2035
- p50 A86-14446

DECKER, A.
- Beam-modulation methods in quantitative and flow visualization holographic interferometry
- NASA-TM-87300
- p148 N86-24958

DELLA-CARTA, C.
- Thermal barrier coating life prediction model development
- NASA-CR-175067
- p120 N86-22713

DENNIS, R. E.
- Low-cost single-crystal turbine blades, volume 2
- NASA-CR-174652
- 296 A85-23598

DENNISON, S. R.
- Review and evaluation of recent developments in melt-inlet dynamic flow distortion prediction and compressor program development and user's manual estimating maximum instantaneous inlet flow distortion from steady-state total pressure measurements with full, limited, or no dynamic data
- NASA-CR-176765
- p143 N86-24455

DERRIER, W. J.
- Review and critical analysis: Rolling-element bearings for system life and reliability
- NASA-CR-174710
- p159 N86-24991

DEGIOVANNI, P. S.
- Liquid droplet radiator for space applications
- 1009 N86-13370

DEKIS, G. C.
- N/P GaAs concentrator solar cells with an improved grid autocorrelation pattern contact design
- NASA-AIAA 86-1299
- p54 A86-39906

DELAUNAY, J.
- Efficient algorithms for use in probabilistic finite element analysis
- NASA-AIAA 86-1299
- 186 A86-25655

DELFOSSE, P.
- Modifications of system for elevated temperature tensile testing and stress-strain measurement of metal matrix composites
- NASA-TM-871172
- 65 N86-13370

DELCARLO, J. A.
- Creep of chemically vapor deposited SiC fibres
- NASA-AIAA 86-1192
- p86 A86-21486

DEMIR-KISIRIOG, P. S.
- Liquid droplet radiator thermal characteristics
- NASA-PAPER 86-1162
- 133 A86-40578

DEWEZ, B.
- Liquid droplet radiator program at the NASA Lewis Research Center
- ASME PAPER 68-HT-15
- p48 A86-49821

DIEM-KIRSOP, P. S.
- Beam-modulation methods in quantitative and flow visualization holographic interferometry
- NASA-TM-87300
- p148 N86-24958
GABB, T. P.
The tensile and fatigue deformation structures in a single crystal Ni-base superalloy are p. 83, A68-25607
The cyclic stress-strain behavior of a nickel-base superalloy at 650 C is p. 83, A69-45715
Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N. I - Tensile behavior are p. 86, A68-50123
Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N. IV - Low cycle fatigue behavior are p. 86, A68-50122
Fatigue crack propagation of nickel-base superalloys at 650 deg C are p. 87, A68-12294
The low cycle fatigue behavior of a plasma-sprayed coating material are p. 92, A68-31669
GAYDOON, D.
Compressive creep behavior of alloys based on B2 FeAl are p. 92, A69-28165
GODDIN, D. J.
Rapidly solidified NiAl and FeAl are p. 94, A68-47839
Tensile behavior of Fe-40Al alloys with B and Zr additions are p. 97, A68-25435
GEODEL, J.
Ka-band monostatic gain control amplifier are p. 118, A86-41343
GEDYMIN, J. S.
DC actuator microcharacteristics of a high current double interface GaAs/InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistor are p. 118, A86-36509
GEIL, T.
Gas flow environmental and heat transfer nonrotating program are p. 137, A66-11506
GEIDER, T. F.
Wind tunnel turning vanes of modern design are p. 137, A66-19654
Wind tunnel turning vanes of modern design are p. 137, A66-12293
GENSIBLODO, E. R.
Scaling attenuation data characteristics in material microstructure are p. 197, A69-25645
Quantitative flaw characterization with scanning laser acoustic microscopy are p. 197, A68-25542
Quantitative flaw characterization with scanning laser acoustic microscopy are p. 200, A66-22093
determination of grain size distribution function using two-dimensional Fourier transforms of tone pulse encoded images are p. 186, A66-31065
Quantitative void characterization in structural ceramics using scanning laser acoustic microscopy are p. 186, A68-39113
GEORGE, W. K.
Heat flux measurements for the rotor of a full-stage turbine. II - Description of analysis technique and typical time-resolved measurements are p. 200, A66-22093
AIAA PAPER 86-05451
AIAA PAPER 86-04061
AIAA PAPER 85-GT-833
AIAA PAPER 85-GT-781
AIAA PAPER 86-86-61
AIAA PAPER 86-6146
GERTZ, J.
Rotor wake characteristics of a transonic axial flow fan are p. 13, A66-28055
GHIU, K. N.
Multi-grid technique for the solution of incompressible Navier-Stokes equations are p. 126, A86-12029
GIH, U.
Multi-grid technique for the solution of incompressible Navier-Stokes equations are p. 126, A86-12029
GHONEIM, A. F.
Grid-free simulation of diffusion using random walk methods are p. 195, A86-16521
Numerical simulation of a turbulent flame stabilized behind a rearward-facing step are p. 73, A86-22774
Formation and inflammation of a turbulent jet are p. 190, A86-22131
GHRISH, A. K.
Performance of direct and indirect algorithms on an optical systolic processor are p. 202, A66-17421
GHOST, S. K.
Simulation effects on the hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion are p. 140, A86-19558
GRIEST, P. H.
A structural dynamics investigation related to EIDI applications are p. 16, A86-19942
GIPFIN, R. G.
Extended parametric representation of compressor fans and turbines. Volume 1: CMGEN user's manual are p. 156, A86-23936
GILES, M. B.
Propagation and stability of wave-like solutions of finite difference equations with variable coefficients are p. 194, A86-20033

G

Fatigue crack propagation of nickel-base superalloys at 650 deg C are p. 87, A68-12294
The low cycle fatigue behavior of a plasma-sprayed coating material are p. 92, A68-31669
Compressive creep behavior of alloys based on B2 FeAl are p. 92, A69-28165
Rapidly solidified NiAl and FeAl are p. 94, A68-47839
Tensile behavior of Fe-40Al alloys with B and Zr additions are p. 97, A68-25435
Ka-band monostatic gain control amplifier are p. 118, A86-41343
DC actuator microcharacteristics of a high current double interface GaAs/InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistor are p. 118, A86-36509
Gas flow environmental and heat transfer nonrotating program are p. 137, A66-11506
Wind tunnel turning vanes of modern design are p. 137, A66-19654
Wind tunnel turning vanes of modern design are p. 137, A66-12293
Quantitative flaw characterization with scanning laser acoustic microscopy are p. 197, A68-25542
Quantitative flaw characterization with scanning laser acoustic microscopy are p. 200, A66-22093
determination of grain size distribution function using two-dimensional Fourier transforms of tone pulse encoded images are p. 186, A66-31065
Quantitative void characterization in structural ceramics using scanning laser acoustic microscopy are p. 186, A68-39113
Heat flux measurements for the rotor of a full-stage turbine. II - Description of analysis technique and typical time-resolved measurements are p. 200, A66-22093
AIAA PAPER 86-05451
AIAA PAPER 86-04061
AIAA PAPER 85-GT-833
AIAA PAPER 85-GT-781
AIAA PAPER 86-86-61
AIAA PAPER 86-6146
Rotor wake characteristics of a transonic axial flow fan are p. 13, A66-28055
Multi-grid technique for the solution of incompressible Navier-Stokes equations are p. 126, A86-12029
Multi-grid technique for the solution of incompressible Navier-Stokes equations are p. 126, A86-12029
Grid-free simulation of diffusion using random walk methods are p. 195, A86-16521
Numerical simulation of a turbulent flame stabilized behind a rearward-facing step are p. 73, A86-22774
Formation and inflammation of a turbulent jet are p. 190, A86-22131
Performance of direct and indirect algorithms on an optical systolic processor are p. 202, A66-17421
Simulation effects on the hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion are p. 140, A86-19558
A structural dynamics investigation related to EIDI applications are p. 16, A86-19942
Extended parametric representation of compressor fans and turbines. Volume 1: CMGEN user's manual are p. 156, A86-23936
Propagation and stability of wave-like solutions of finite difference equations with variable coefficients are p. 194, A86-20033
Gyekenyesi, J. P.

Gyekenyesi, J. P.
HENDERSON, T. High-performance characteristics of a high current double interface GaAs/InAlGaAs pseudomorphic modulation-doped field-effect transistor 118 A86-36009
High-frequency noise of InAlGaAs/AlGaAs MODFETs and comparison to GaAs/AlGaAs heterostructure devices 119 A86-42014
HENDERSON, T. B. Determination of carrier saturation velocity in InGaAs/InAlAs heterostructure modulation-doped field-effect transistors (with y between 0 and 0.2) 118 A86-37295
HENDRICKS, B. Inertial high-temperature thermochemical response of ceramic coated gas turbine seals 116 A86-37799
HENDRICKS, R. C. Finite-burner simulation of 7-700 thrust shroud for ceramic-lined seals research 118 A86-15225
Finite element analysis of residual stress in plasma-sprayed ceramic components 95 A86-15228
Experimental study of ceramic-coated tip seals for turbojet engines 152 A86-15227
Fabrication of ceramic substrate-reinforced and free forms by mandal plasma spraying metal-ceramic composites 64 A86-17483
Film and interstitial formation of metals in plasma-sprayed ceramics 96 A86-17484
An experimental investigation and some analytical considerations concerning the vaporous/gaseous cavity characteristics of an eccentric shaft seal for bearings 130 A86-24463
Heat transfer in space power and propulsion systems 53 A86-26642
Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure 119 NASA-TM-87228
Thermomechanical design criteria for ceramic-coated surfaces 143 NASA-TM-87328
Two-phase flows within systems with ambient pressure below the thermodynamic critical pressure 186 NASA-TM-88025
HENNEKE, E. Q. Personal Author Index
HENDERSON, T. S. Henderson, T. [AIM Paper 8523011 p47 A8649553
HENDERSON, T. S. [NASA-TM-8804] p33 NE631583
HENDERSON, T. S. [NASA-CR-1749711 p208 N88-18164
HENDERSON, T. S. [AIM Paper 85-01051 p88 A8643049
HENGST, W. R. Development of seeding techniques for small supersonic wind tunnel 147 N86-11452
HIPPENSTEEL, S. A. High-temperature theroempocipe and heat flux gauge using a unique thin film-hardware hot junction 145 N86-13059
Local heat-transfer measurements on a large scale-model turbine blade airfoil using a composite of a heater element and liquid crystals 126 N86-13061
HOBBERECHT, M. A. Design of a regenerative fuel cell system for Space Station 105 N86-38457
HOCHEST, J. I. NASA Lewis Research Center low-gravity fluid management technology program 44 A86-39390
Effect of subcooling on the on-orbit pressurization rate of cryogenic propellant tankage 54 A86-39877
NASA Lewis Research Center low-gravity fluid management technology program 44 N86-11218
HOFMANN, R. A. Growth and characterization of epitaxial SrF2 on Si(100) 205 N86-47076
HOFMANN, R. W. Carbon monoxide production in low energy oxygen bombarding of pyrolytic graphite and Kapton surfaces 78 N86-23136
A study of Kapton degradation under simulated shuttle environment 78 NASA-CR-176650
HOLANDA, R. High-temperature thermocouple and heat flux gauge using a unique thin film-hardware hot junction 145 N86-13059
HOLDEMAN, J. D. Modeling dilution of jet flows 128 A86-20362
Perspectives on dilution jet mixing 25 A86-49614
HOLDEMAN, J. D. [AIM Paper 86-10145 p37 A86-25232
PERSPECTIVES ON DILUTION JET MIXING 128 A86-20362
PERSPECTIVES ON DILUTION JET MIXING 25 A86-49614
HOLDA, D. Variables controlling fatigue crack growth of short cracks 90 N86-21661
HOLLAND, C. E. Thermal noise measurements for on-line dispanser cathode diagnostics for linear beam microwave tubes 25 N86-32342
HOLLAND, C. E. Development program on a cold cathode electron gun 121 N86-14495
HOLLAND, L. R. Accommodation requirements for microgravity science and applications research on space station 42 N86-18334
HOLMES, P. Performance of oil pumping rings: An analytical and experimental study 114 N86-31000
HOPKINS, C. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1 [NASA-CR-1749711] 208 N86-16164
HINNERN, D. H. Lateral dampers for thrust bearings 157 N86-11474
HILL, M. Fluid management and its role in the future of Space Station 47 A86-49553
HILLER, B. Simultaneous measurements of velocity and pressure fields in supersonic and subsonic flows through image-intensified detection of laser-induced fluorescence [AIM Paper 86-0181] 145 N86-18729
HINCKEL, J. N. Relaminarization of the boundary layer over a flat plate in shock tunnel experiments 133 A86-39085
HINTZ, W. R. Development of seeding techniques for small supersonic wind tunnel 147 N86-11452
HOROWITZ, S. J. Detonation dynamics of an unstabilized supersonic jetcombustible case 133 A86-17483
HOPKINS, D. A. Ion-beam nitriding of steels 28 N86-20393
HOROWITZ, S. J. Numerical simulation of a turbulent flame stabilized behind a rearward-facing step 73 A86-22774
Aerodynamic and structural detuning of supersonic turbine blades 121 N86-31585
PASSIVE CONTROL OF AERODYNAMICALLY FORCED VIBRATIONS OF SUPERCRI RONIC TURBINE ROTORS BY SPLITTER BLADES [AIM Paper 86-06544] 22 N86-36892
Forced response analysis of an aerodynamically detached supersonic turbine rotor 9 N86-10019
The predicted effect of aerodynamic detuning on coupled bending-torsion uninstalled supersonic flutter [AIM Paper 87-62740] 11 N86-21513
HUFF, R. P. The effect of acoustic reflections on combustion noise measurements 197 N86-20364
HULL, D. R. Measurement of ultrasonic velocity using phase-slope and cross-correlation methods 162 A86-13192
Hulse, C. High temperature static strain sensor development 148 N86-11500
HUMES, R. L. In-flight photogrammetric measurement of wing ice accretion 17 N86-31590
HUNTER, A. B. Characterization methodology for PMR-15 65 N86-11272
MULLIN, E. M.

Three-dimensional inviscid flow in mixers. I. Mixer analysis using a Cartesian grid p 5 A88-30000
Three-dimensional inviscid flow in mixers. II. Analysis of turbulent forced mixers p 6 A88-40516
MURPHY, B. T.

SSME long-life bearings p 180 N86-27640
MURTHY, K. N.

Laser Doppler velocimeter measurement in the tip region of a compressor p 5 A86-30064
MURTHY, P. L. M.

Composite sandwich structural behavior - Computational Simulation [AIAA PAPER 86-0948] p 170 A86-38842
Dynamic stress analysis of smooth and notched fiber composite fuselage specimens p 67 A86-41070
Interlaminar fracture toughness: Three-dimensional finite element modeling for end-notch and mixed-mode flexure [NASA-TM-87138] p 68 N86-14316
MURTHY, S. B. N.

A stagnation pressure probe for droplet-laden air flow Transient engine performance with water injection [AIAA PAPER 86-1821] p 210 A86-42555
MUSIKANT, R.

Ceramic automotive Stirling engine study [NASA-CR-174907] p 206 N86-16185
Transformation toughened ceramics for the heavy duty diesel engine technology program, engine 2 [NASA-CR-175054] p 210 N86-22451
MYERS, G.

Dilution jet mixing program, phase 3 [NASA-CR-174884] p 142 N86-24908
MYERS, M. R.

Influence of airflow convection on cavitation interaction noise [AIAA PAPER 86-1873] p 198 A86-45493

NAGAMATSU, H. T.

Relaminarization of the boundary layer over a flat plate in shock tube experiments [AIAA PAPER 86-1238] p 133 N86-39685
NAGTEGAAL, J. C.

Efficient algorithms for use in probabilistic finite element analysis p 188 A86-26855
Iterative methods for mixed finite element equations p 189 A86-34461
NAKAMURA, H.

Improved fracture toughness corrosion-resistant bearing material [NASA-CR-174990] p 162 N86-32743
NAKA, K. W.

Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low earth orbit [AIAA PAPER 86-0420] p 96 A86-14428
NAKAHARA, J.

NAKAHARA, J. H.

The effects of metals and inhibitors on thermal oxidative degradation reactions of unbranched perlflurolylthioether fluids p 49 A86-40682
NAKANISHI, S.

Lower power dc arc jet operations with hydrogen/nitrogen/propylene mixtures [NASA-TM-87-279] p 61 A86-25407
NAKAZAWA, S.

Iterative methods for mixed finite element equations p 189 A86-34461
NAMER, L.

Ignition characteristics of rich n-heptane fuel sprays in the transition region [AIAA PAPER 85-WA-HT-46] p 107 N86-38393
Transition region ignition characteristics of n-heptane fuel sprays [NASA-CR-17664] p 77 N86-14331

Combustion characteristics in the transition region of liquid aerosol sprays [NASA-CR-175664] p 77 N86-20517
NATARAJAN, V.

Thermal and interfacial electronic properties of diamond-like carbon films p 204 A86-16280
NATARAJAN, V.

The influence of cobalt, tantalum, and tungsten on the microstructure of single crystal nickel-base superalloys [NASA-CR-174955] p 180 N86-27643
The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys p 79 A86-12996
Temperature dependence of gamma-gamma prime lattice mismatch in nickel-base superalloys p 81 A86-21849
Tensile behavior of Fe-40Al alloys with B and Zr additions [NASA-TM-87-290] p 91 N86-25453
Microstructure-property relationships in directionally solidified single crystal nickel-base superalloys [N12 aircraft] p 78 A86-31700
NEITZEL, G. P.

Energy stability of thermocapillary convection in models of solar heat pipe [40 A86-10123
NELSON, C. E.

Theory versus experiment for the rotordynamic coefficients of annular gas seals. I. Test facility and apparatus [ASME PAPER 85-TRIB-1] p 152 A86-24481
NELSON, H. D.

NESSBITT, J. A.

Modeling degradation and failure of Ni-Co-Al overlay coatings p 80 A86-16276
NEUMAN, C. P.

Performance of direct and iterative algorithms on an optical systolic processor p 202 A86-17421
NEWBY, R. A.

NEWILL, R.

Simultaneous measurements of carbon monoxide and ozone in the NASA Global Atmospheric Sampling Program (GASP) p 181 A86-48620
NEWTON, J.

Ice shapes and the resulting drag increase for a NACA 0012 airfoil [AIAA PAPER 84-0109] p 14 A86-14427
NEWTON, J. E.

Ice accretion on icing wind tunnel components [AIAA PAPER 86-0290] p 36 A86-26620
Icing and ice accretion on icing wind tunnel components [NASA-TM-87095] p 37 N86-18232
NEUMANN, W.

Real gas effects on the numerical simulation of a hypersonic inlet [86 463344
NEUMAN, L.

Fluid flow and fuel-air mixing in a motorized wind tunnel with two rotor engine [AIAA PAPER 86-1556] p 134 A86-42711
NIGHTMARE, T. T.

Vortex simulation of model and multiple jet mixing in a cross flow [AIAA PAPER 85-1521] p 135 A86-45318
NICHOLSON, S.

Thermodynamic evaluation of transonic compressor rotors using the finite volume approach [NASA-CR-175428] p 77 N86-16220
NICKS, C.

Theory versus experiment for the rotordynamic coefficients of annular gas seals. I - Test facility and apparatus [ASME PAPER 85-TRIB-1] p 152 A86-24481
NIEDZWIECKI, R. W.

An overview of the Small Engine Component Technology (SCCT) study [NASA-TM-38796] p 34 N86-31587
NIGHTINGALE, N.

NIKOOJY, M.

Numerical simulation of a turbulent flame stabilized behind a rearward-facing step p 73 A6E-22774
Formation and inflammation of a secondary electron emission sites p 130 A6E-23131
ORANGE, T. W.
Wide-range weight functions for the strip with a single edge crack p 167 A6E-20709
OREZAK, S. A.
Direct numerical simulations of chemically reacting turbulent mixing layers p 130 A6E-25567
ORUGUANT, R.
Resonant power processors. I - State plane analysis p 117 A6E-14482
Resonant power processors. II - Methods of control p 117 A6E-14482
State-plane analysis of parallel resonant converter p 119 A6E-40431
OSHIDA, Y.
OSTRACH, S.
Oscillatory thermocapillary flows p 129 A6E-22413
Surface-tension driven convection p 40 N6E-10124
OSULIVAN, J. A.
Nonlinear optimal control with sensors - Some computational issues p 194 A6E-35419
OSWOLD, F. B.
OTTLEY, H. R.
Spectrum Orbit Utilization Program documentation: SOUPS version 3.8's user's manual, volumes 1, 2, appendices A through D [NASA-CR-174890] p 193 N6E-29727
OWEN, A. K.
PACIOREK, K. J. L.
A sensor failure simulator for control system reliability studies [NASA-TM-87271] p 124 N6E-31792
OBERLE, J. J.
In-flight photogrammetric measurement of wing ice formation and inflammation [AIAA PAPER 84-0109] p 88 A6E-31792
OBERLE, L. A.
Reduced errors in laser anemometry using counter-procesor p 146 A6E-34431
OBERLE, L. G.
Laser anemometry for high speed applications p 151 N6E-11503
A computer program to calculate the resistivity of a thin film deposited on a conductive substrate from four-point probe measurements [NASA-TM-87252] p 193 N6E-22150
A minor failure simulator for control system reliability studies [NASA-TM-87271] p 124 N6E-31792
OBERLE, L. G.
Laser anemometry for high speed applications p 151 N6E-11503
A computer program to calculate the resistivity of a thin film deposited on a conductive substrate from four-point probe measurements [NASA-TM-87252] p 193 N6E-22150
A minor failure simulator for control system reliability studies [NASA-TM-87271] p 124 N6E-31792
OBERL, W.
Improvement of perfluorocarboxylate fluid development [NASA-TM-87278] p 104 N6E-25474
PACIOREK, K. J. L.
The effects of metals and inhibitors on thermal oxidative degradation reactions of unbranched perfluoropolyether ethers p 99 A6E-40362
PADOWAN, J.
Hierarchical implicit dynamic least-square solution algorithm p 167 A6E-29680
Inelastic high-temperature thermomechanical response of ceramic coated gas turbine seals p 169 A6E-37379
Locally bound constrained Newton-Raphson solution algorithms p 171 A6E-43771
Constrained hierarchical least square nonlinear solvers p 171 A6E-43774
Thermomechanical design criteria for ceramic-coated surfaces [NASA-TM-87328] p 143 N6E-25726
PAIGH, R. J.
PAGNI, P. J.
Temperature and velocity profiles in sooting free boundary layer flames [AIAA PAPER 86-0575] p 73 A6E-19962
A fundamental study of scramming with emphasis on experimental design for zero-g p 41 N6E-10162
PAIK, D. K.
Low-Reynolds number boundary layers in a disturbed environment [NASA-CR-175031] p 139 N6E-17665
PAIK, R. L.
In-flight photogrammetric measurement of wing ice accretions [NASA-TM-87191] p 17 N6E-31562
PALMER, R. W.
Verification of an improved computational design procedure for TVC/DFC rotocover-MDC system with secondary electron emission sites p 119 A6E-45194
Verification of computer-aided designs of traveling-wave tubes utilizing novel dynamic refocusers and graphite electrodes for the multistage depressed collector [NASA-TP-2524] p 121 N6E-13843
PALLONI, W.
Dry etching of beta-Si in CF4 and CF4 + O2 mixtures p 76 A6E-47069
PAPADAKIS, M.
An experimental method for measuring droplet impingement efficiency on two- and three-dimensional bodies [AIAA PAPER 86-0406] p 131 N6E-26630
PARENT, A. M.
Stratified charge rotary engine for general aviation [ASME PAPER GT-86-161] p 24 A6E-48231
PARK, G. L.
AC motor and generator requirements for isolated WECS [NASA-CR-176135] p 182 N6E-11870
PARK, T.
Immiscible potential flow in hyperbolic nozzles [AIAA PAPER 86-0344] p 5 A6E-41722
PARKER, R. J.
Operating characteristics of a 0.87-kW freejet energy storage module p 152 A6E-24864
Evaluation of propeller/nacelle interactions in the PTA program [AIAA PAPER 86-1552] p 56 A6E-42709
PARKS, D. E.
Threshold determining mechanisms for discharges in high voltage coaxial arrays [AIAA PAPER 86-0364] p 52 A6E-19834
Energy broadening due to space-charge oscillations in high current electron beams p 152 A6E-24864
The role of unneutralized surface ions in negative potential arcing p 118 A6E-25105
PARSONS, M. L.
Spectral resolution of scattered light for target detection [AIAA PAPER 86-1121] p 51 A6E-17851
Spectral resolution of scattered light for target detection [AIAA PAPER 86-1121] p 51 A6E-17851
PARIS, C. E.
Stress and deformation modeling of multiple rotary combustion engine trochoid housings [SPE PAPER 860014] p 156 A6E-49624
PATER, R. H.
Phonological, processing, and 371 deg C mechanical properties of Carbon 6000/N-phenynalimide modified PMR composites p 68 N6E-11276
High temperature resistant polyimide from buna ester, diamine, and araldite [NASA-CASE-LEW-13864-1] p 102 N6E-19457
PAIK, P. H.
PATTERSON, W.
Alloys based on NbAl for high temperature applications [AIAA PAPER 86-2811] p 84 A6E-47261
PATRICK, W. R.
Low Reynolds number separation bubble research at UTRC p 128 A6E-16311
PATTERSON, M. J.
Performance characteristics of ring-cusp thrusters with xenon propellant [NASA-TR-2528] p 63 N6E-31650
PATTITAPILK, K. R.
Application of FDI metrics to detection and isolation of sensor failures in turbine engines p 21 A6E-35400
Robust detection-isolation-accommodation for sensor failures [NASA-CR-174797] p 121 N6E-16498
PEBLER, A.
Transmission electron microscopy of powder and fuel cell components p 74 A6E-23253
PEEFER, R. K.
PELLOUX, R. M.
Thermal-mechanical fatigue crack growth in Inconel X-750 p 81 A6E-20862
CORPORATE SOURCE INDEX

Typical Corporate Source Listing

<table>
<thead>
<tr>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>NASA ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of a two-way hydrostatic journal bearing with variable properties, inertia effects and surface roughness</td>
<td>p 153</td>
<td>NASA-CR-30599</td>
<td></td>
</tr>
<tr>
<td>Analysis of inelastic high-temperature thermomechanical response of ceramic coated gas turbine seals</td>
<td>p 169</td>
<td>NASA-CR-37799</td>
<td></td>
</tr>
<tr>
<td>Locally bound constrained Newton-Raphson solution algorithms</td>
<td>p 171</td>
<td>NASA-CR-43771</td>
<td></td>
</tr>
<tr>
<td>Constrained hierarchical least square nonlinear equation solvers</td>
<td>p 171</td>
<td>NASA-CR-43774</td>
<td></td>
</tr>
<tr>
<td>Fatigue life analysis of a turboprop reduction gearbox</td>
<td>p 155</td>
<td>NASA-CR-45265</td>
<td></td>
</tr>
<tr>
<td>NASA LeFd/Akon University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program</td>
<td>p 207</td>
<td>NASA-CR-174826</td>
<td></td>
</tr>
<tr>
<td>System life and reliability modeling for helicopter transmissions</td>
<td>p 174</td>
<td>NASA-CR-16610</td>
<td></td>
</tr>
<tr>
<td>Effects of state recovery on creep buckling under variable loadings</td>
<td>p 182</td>
<td>NASA-CR-175097</td>
<td></td>
</tr>
<tr>
<td>Aircraft cyclic hardening behavior of Hastelloy-X</td>
<td>p 121</td>
<td>NASA-CR-25310</td>
<td></td>
</tr>
<tr>
<td>Theoretical and experimental flow cell studies of a hydrogen-bromine fuel cell, part 1</td>
<td>p 189</td>
<td>NASA-CR-171165</td>
<td></td>
</tr>
<tr>
<td>Jet fuel viscosity at low temperatures with n-nonane crystals</td>
<td>p 198</td>
<td>NASA-CR-29409</td>
<td></td>
</tr>
<tr>
<td>Former state recovery on creep buckling under variable loadings</td>
<td>p 124</td>
<td>NASA-CR-30022</td>
<td></td>
</tr>
<tr>
<td>Application of FDI metrics to detection and isolation of sensor failures in turbine engines</td>
<td>p 21</td>
<td>NASA-CR-35400</td>
<td></td>
</tr>
<tr>
<td>Robust detection-isolation-accommodation for sensor failures</td>
<td>p 121</td>
<td>NASA-CR-156486</td>
<td></td>
</tr>
<tr>
<td>Future heavy duty trucking engine requirements</td>
<td>p 206</td>
<td>NASA-CR-17229</td>
<td></td>
</tr>
<tr>
<td>Ames Lab., Iowa.</td>
<td>p 83</td>
<td>NASA-CR-45091</td>
<td></td>
</tr>
<tr>
<td>Detectors in extruded Co-49 at. pct AI</td>
<td>p 83</td>
<td>NASA-CR-45091</td>
<td></td>
</tr>
<tr>
<td>Analex Corp., Cleveland, Ohio.</td>
<td>p 134</td>
<td>NASA-CR-45091</td>
<td></td>
</tr>
<tr>
<td>Testing of 30-GHz low noise receivers</td>
<td>p 45</td>
<td>NASA-CR-45091</td>
<td></td>
</tr>
<tr>
<td>Low power dc arcjet operation with hydrogen/nitrogen propellant mixtures</td>
<td>p 155</td>
<td>NASA-CR-45091</td>
<td></td>
</tr>
<tr>
<td>Verification of an improved computational design procedure for TWT-dynamic rarocuider-MDC systems with secondary electron emission losses</td>
<td>p 119</td>
<td>NASA-CR-45194</td>
<td></td>
</tr>
<tr>
<td>Argonne National Lab., III.</td>
<td>p 145</td>
<td>NASA-CR-45194</td>
<td></td>
</tr>
<tr>
<td>Effects of high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics</td>
<td>p 177</td>
<td>NASA-CR-175057</td>
<td></td>
</tr>
<tr>
<td>Arizona State Univ., Tempe.</td>
<td>p 177</td>
<td>NASA-CR-175057</td>
<td></td>
</tr>
<tr>
<td>Concentration distributions in cylindrical combustors</td>
<td>p 126</td>
<td>NASA-CR-11937</td>
<td></td>
</tr>
<tr>
<td>Rapid evaluation of ion thruster lifetime using optical emission spectroscopy</td>
<td>p 51</td>
<td>NASA-CR-17851</td>
<td></td>
</tr>
<tr>
<td>Concentration distributions in a model combustor</td>
<td>p 133</td>
<td>NASA-CR-38575</td>
<td></td>
</tr>
<tr>
<td>Parameter sensitivity in the dynamics of rotating-bearing systems</td>
<td>p 154</td>
<td>NASA-CR-38620</td>
<td></td>
</tr>
<tr>
<td>Local equilibrium assumption for round jet calculations</td>
<td>p 158</td>
<td>NASA-CR-38620</td>
<td></td>
</tr>
<tr>
<td>Energy stability of thermocapillary convection in models of the flat zone process</td>
<td>p 70</td>
<td>NASA-CR-38620</td>
<td></td>
</tr>
<tr>
<td>AIAA Paper 86-11023</td>
<td>p 159</td>
<td>NASA-CR-38620</td>
<td></td>
</tr>
<tr>
<td>Energy transfer characteristics within an array of impinging jets. Effects of crossflow temperature relative to jet temperature</td>
<td>p 139</td>
<td>NASA-CR-38620</td>
<td></td>
</tr>
<tr>
<td>Heat transfer to two-phase air/water mixtures flowing in small tubes with inlet disequilibrium</td>
<td>p 141</td>
<td>NASA-CR-22802</td>
<td></td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by corporate source. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document cited (e.g., NASA report, translation, NASA contractor report). The NASA accession number denotes the number by which the citation is identified. The titles are arranged under each corporate source in ascending accession number order.

Experimental and theoretical analysis of chemical vapor deposition with prediction of gravity effects

Aerojet Technological Systems Co., Sacramento, Calif.

Longitudinal mode combustion instabilities of a high-pressure fuel-rich L/D/R-1 preburner

Aerotech, Inc., Monrovia, Calif.

Development and testing of tip devices for horizontal axis wind turbines

Aerospace Corp., El Segundo, Calif.

Cousling conditions for integrating boundary layer and rotational inviscid flow

Aerovironment, Inc., Monrovia, Calif.

Development and testing of tip devices for horizontal axis wind turbines

Air Force Geosciences Lab., Washington, D.C.

Development of a new aerosol size determination technique

Allis-Chalmers Corp., Terrace, Calif.

Fabrication of ceramic components for advanced gas turbine engine

SAE Paper 851786

Testing of injection molding of silicon nitride for engine applications

SAE Paper 851787

Processing study of injection molding of silicon nitride for engine applications

Altron, Inc., Ohio.

Life and reliability modeling of bevel gear reductions

SAE Paper 85-DE-7

An experimental investigation and some analytical considerations concerning the vaporous/gaseous cavity characteristics of an eccentric shaft seal bearing

SAE Paper 85-DE-7

An experimental investigation and some analytical considerations concerning the vaporous/gaseous cavity characteristics of an eccentric shaft seal bearing

SAE Paper 85-DE-7

An experimental investigation and some analytical considerations concerning the vaporous/gaseous cavity characteristics of an eccentric shaft seal bearing

SAE Paper 85-DE-7

An experimental investigation and some analytical considerations concerning the vaporous/gaseous cavity characteristics of an eccentric shaft seal bearing

SAE Paper 86-DE-7

An experimental investigation and some analytical considerations concerning the vaporous/gaseous cavity characteristics of an eccentric shaft seal bearing

C-1
in a transonic oscillating cascade

Aerodynamic detuning analysis of an unstalled supersonic turbine cascade

Forced response analysis of an aerodynamically detuned supersonic turbine rotor

Influence of temperature and hydrogen concentration on incipient scot formation in premixed flames

Aerodynamic and structural detuning of supersonic turbine blades

Passive control of aerodynamically forced vibrations of supersonic turbine rotors by splitter plates

Three dimensional unsteady aerodynamics and aerodynamic forces of advanced turbofans

A stagnation pressure probe for droplet-laden air flow

Transient engine performance with water ingestion

Dynamic deformation crack propagation in a graphite/epoxy laminate

Characteristics of an axisymmetric sudden expansion flow

The predicted effect of aerodynamic detuning on coupling between expansion unstalled supersonic turbine blades

Elliptic surface analysis of wear tracks produced by different lubricants

The effect of processing conditions on the GaAs/plasma-sprayed insulator interface

RCA Astro-Electronics Div., Princeton, N. J.

Communications platform payload definition study

Communications platform payload definition study, executive summary

Rensselaer Polytechnic Inst., Troy, N. Y.

Elliptic surface analysis of wear tracks produced by different lubricants

The effect of processing conditions on the GaAs/plasma-sprayed insulator interface

Optical and other properties changes of M-50 bearing steel surfaces for different lubricants and additives prior to scoring

Interaction of flows with the crystal-melt interface

Relaminarization of the boundary layer over a flat plate in a crossflow

Rice Univ., Houston, Tex.

Numerical synthesis of tri-variety velocity realizability of turbulence

Rockwell International Corp., Canoga Park, Cali.

A 10,000 hour life multipropellant engine for Space Station applications

Rockwell International Corp., Canoga Park, Cali.

Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task 0.1/0.3

SSME long-life bearings

Saint Mary's Coll, Notre Dame, Ind.

Surface modification strategies for (100)Cr-5Si

Santa Clara Univ., Calif.

Research and development of neat alcohol fuel usage in automobiles

Science Applications, Inc., Chatsworth, Calif.

Buoyancy effects upon vapor flame and explosion propagation

Science Applications International Corp., Chatsworth, Calif.

Effects of buoyancy on gas jet diffusion flames - Experiment and theory

Numerical study of three-dimensional turbulent flow interactions between blockage models and wind tunnels including longitudinally slotted test sections

Bistatic techniques for nonlinear dynamic analysis of compressor stall phenomena

Sikorsky Aircraft, Stratford, Conn.

The performance characteristics of simulated ice on rotating blades

Traction forces at solid-lubricated rolling/sliding contacts

Southwest Research Inst., Houston, Texas

Effect of elevated temperature and pressure on sprays from simple and complex atomizers

Southwest Research Inst., San Antonio, Tex.

Properly structured analysis for space propulsion system components

SOHO Engineered Materials Co., Niagara Falls, N. Y.

Numerical simulation of solidification for high temperature structural application - Status review and recent developments

Rocket thrust chamber thermal barrier coatings

Sorby, B., 1981

The performance characteristics of simulated ice on rotating blades

Space Shuttle, NASA

Effect of elevated temperature and pressure on sprays from simple and complex atomizers

Space Shuttle, NASA

Properly structured analysis for space propulsion system components

Space Station, NASA

Simultaneous measurements of velocity and pressure fields in subsonic and supersonic flows through image-intensified detection of laser-induced fluorescence

Space Station, NASA

Advanced engine study, task 0.1/0.3

St. John's University, Jamaica, N. Y.

Theory of homogenous nucleation - A chemical kinetic view

Influence of rotation and prewatt on combustor fan blade vibrations

In National Academy of Engineering seal

Experimental assessment of advanced Sintering concept

Run tests of a 40 kW Sinter engine and comparison with the NASA Lewis computer code predictions

Prediction of the structure of fuel sprays in gas turbine combustors

Unified constitutive materials model development and evaluation for high-temperature structural analysis applications

Prediction of the structure of fuel sprays in gas turbine combustors

Calif. Inst. of Tech., Pasadena

Fatigue crack growth under high cycle fatigue loading

Grain boundary oxidation and oxidation accelerated fatigue crack growth in superalloys

NASA Lewis nodal-analysis performance code

Synapse Unite., N. Y.

Shear fatigue crack growth - A literature survey

NASA Lewis

Aging test results of supersonic gas turbine combustor material

Grain boundary oxidation and oxidation accelerated fatigue crack growth in superalloys

NASA Lewis

Fatigue crack growth under high-cycle fatigue loading

NASA Lewis

Robust detection, isolation and accommodation for sensor failures

NASA Lewis

System Science and Software, La Jolla, Calif.

Threshold determining mechanisms for discharges in high voltage solar arrays

NASA Lewis

NASA Lewis
CORPORATE SOURCE

Effect of subcooling on the on-orbit pressurization rate of cryogenic propellant tankage
[AI9A PAPER 86-1252 p 54 A68-39877]
Westinghouse Electric Corp., Baltimore, Md.

Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests
[AI9A PAPER 86-32272 p 202 A86-48552]

Gas cooled fuel cell systems technology development
[NASA-CR-175047 p 190 N86-31984]
Westinghouse Research and Development Center, Pittsburgh, Pa.

Transmission electron microscopic examination of phosphoric acid fuel cell components
[AI9A PAPER 86-22352 p 74 A86-36627]

Growth and characterization of epitaxial SrF2 on InP(100)
[AI9A PAPER 86-21456 p 205 A86-47076]

Design and evaluation of fluidized bed heat recovery for diesel engine systems
[NASA-CR-174888] p 208 N86-21456

Double-injection, deep-impurity switch development

Wichita State Univ., Kan.

An experimental method for measuring droplet impingement efficiency on two- and three-dimensional bodies
[AI9A PAPER 86-0406 p 131 A86-26630]

Particle trajectory computation on a 3-dimensional engine inlet

Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications

Analysis and tests for design of an electro-impulse de-icing system
[NASA-CR-174919] p 15 N86-27268

De-icing of the altitude wind tunnel turning vanes by electro-magnetic impulse

Wichita Univ., Kan.

Designing an electro-impulse de-icing system
[AI9A PAPER 86-0545] p 18 A86-19940

A structural dynamics investigation related to EIDI applications
[AI9A PAPER 86-0550] p 16 A86-19942

Wisconsin Univ., Madison.

The plastic compressibility of 7075-T651 aluminum-alloy plate
[AI9A PAPER 86-0670] p 85 A86-49690

Containerless processing of undercooled melts
[AI9A PAPER 86-10093] p 39 N86-10093

Undercooling and solidification behavior in the InSb-Sb system

Power conversion distribution system using a resonant high-frequency AC link
[NASA-CR-176804] p 123 N86-25694

Wisconsin Univ., Milwaukee.

Triple-velocity products in a channel with a backward-facing step
[AI9A PAPER 86-1724] p 135 A86-42812

Turbulence energy and diffusion transport in a separating and reattaching flow
[AI9A PAPER 86-1724] p 135 A86-42812

Improvement of the second- and third-moment modeling of turbulence: A study of Reynolds-stress closure model
[NASA-CR-178478] p 139 N86-18519

Wright State Univ., Dayton, Ohio.

Numerical simulation of unsteady flow in an axisymmetric shear layer

Wyle Labs., Inc., Huntville, Ala.

Accommodation requirements for microgravity science and applications research on space station

Yale Univ., New Haven, Conn.

Thermophoretically augmented mass transfer rates to solid walls across laminar boundary layers
[AI9A PAPER 86-1724] p 128 A86-20150

Yardney Electric Corp., Pawcatuck, Conn.

Sputter nickel-hydrogen battery development
[AI9A PAPER 86-24823 p 190 A86-24823

Yardney Electric Corp., Pawcatuck, Conn.
Listings in this index are arranged alphanumerically by contract number. Under each contract number the NASA accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order. The NASA accession number denotes the number by which the citation is identified.
<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>643-10-20</td>
<td>p 115</td>
</tr>
<tr>
<td>650-80-20</td>
<td>p 116</td>
</tr>
<tr>
<td>650-80-29</td>
<td>p 114</td>
</tr>
<tr>
<td>650-80-26</td>
<td>p 48</td>
</tr>
<tr>
<td>674-25-05</td>
<td>p 90</td>
</tr>
<tr>
<td>674-29-05</td>
<td>p 212</td>
</tr>
<tr>
<td>776-33-41</td>
<td>p 172</td>
</tr>
<tr>
<td>776-52-41</td>
<td>p 181</td>
</tr>
<tr>
<td>776-54-01</td>
<td>p 181</td>
</tr>
<tr>
<td>776-36-12</td>
<td>p 210</td>
</tr>
<tr>
<td>776-35-03</td>
<td>p 89</td>
</tr>
<tr>
<td>776-35-13</td>
<td>p 208</td>
</tr>
<tr>
<td>927-80-01</td>
<td>p 141</td>
</tr>
<tr>
<td>928-80-02</td>
<td>p 44</td>
</tr>
</tbody>
</table>
Bibliography of Lewis Research Center Technical Publications Announced in 1986

This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1986. All the publications were announced in the 1986 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.