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SUMMARY 

A unified formulation is presented based on the full potential framework coupled with an ap- 
propriate structural model to compute steady/unsteady flows over rigid/flexible configurations for 
across the Mach number range (subsonic to supersonic). The unsteady form of the full potential 
equation in conservation form is solved using an implicit scheme maintaining time accuracy through 
internal Newton iterations. A flux biasing procedure based on the unsteady sonic reference con- 
ditions is implemented to compute hyperbolic regions with moving sonic and shock surfaces. The 
wake behind a trailing edge is modeled using a mathematical cut across which the pressure is satis- 
fied to be continuous by solving an appropriate vorticity convection equation. An aeroelastic model 
based on the generalized modal deflection approach interacts with the nonlinear aerodynamics and 
includes both static aa well aa dynamic structural analyses capability. Figure 1 shows a schematic 
of the coupling process. Some of the topics to be discussed are 1) mechanism for coupling the 
aerodynamic and the aeroelaatic equations, 2) update of geometry and grid at each time level to 
maintain time accuracy, and 3) prediction of flutter point dynamic pressure. 

Results are presented for rigid and flexible configurations at different Mach numbers ranging 
from subsonic to supersonic conditions. The dynamic response of a flexible wing below and above 
its flutter point is demonstrated. 
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Fig. 1. Schematic of CFD/Aeroelastic Coupling 



AERODYNAMIC FORMULATION 

The conservation law form of the time-dependent full potential equation cast in an arbitrary 
coordinate system (7, C ,  q ,  t )  is written as 

The density p is given by Bernoulli’s law 

where U, V, and W are the contravariant velocities. 

Associating the subscripts i , j , k  with the C,q,t directions, a numerical approximation to Eq. (1) 
can be written in the semidiscrete conservation law form given by 

- _ -  e - -  

where E,F,G are representative fluxes approximating the real fluxes E,F,G of Eq. (1). 
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I NEWTON ITERATION 
In terms of the velocity potential, Eq. (3) can be represented as 

where qi is the unknown to be solved at every grid point (2, j, I C )  in the current (n + 1) time plane. 
The Newton iteration for solution to Eq. (4) is 

where & is the currently available 6 at the ( n  + 1) level and A$ = 4 - q$*. At convergence, A4 
will approach zero driving qi to qP+l. (See Fig. 2). 
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Fig. 2. Update of 4 Based on Newton Iteration 
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TIME LINEARIZATION 
Treatment of & ( 5 )  in Eq. (1) 

where 
a1 = (AT1 +  AT^)^ ; AT1 = T " + ~  - 7" ;  AT^ = 7" - T " - - I ,  

The unknown quantity in Eq. (6) is p"+'. Following Eq. (5 ) ,  this is written &s 

where A4 = 4 - &, and 

is a differential operator. The speed of sound is denoted by a. 
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FLUX BIASING 

Equation (3) requires evaluation of E, F, and 5 at various spatial half node points. As 
represents E appearing in Q. (1). The fluxes are defined in the following mentioned earlier, 

manner. 

where p" is an upwind biased value of density, designed to produce the necessary artificial viscosity 
for treatment of hyperbolic regions. 

1 where Q = JU2 + V2 + W 2 .  

The quantity (pq)-  appearing in Eq. (10) is defined to be 

( p d -  = PQ - P*Q* if Q > Q* 
= o  if q 5 q* . 

The quantities peg*. p* ,  and q* represent sonic values of the flux, density, and total velocity, 
respectively. These quantities are evaluated at half node grid points. (See Fig. 3). 
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Fig. 3. Notation for Flux Biasing 



AEROELASTIC MODEL 

The aeroelastic model is based on the generalized modal approach. In the physical space, the 
structural equation is written as 

[ m ] z +  [.I;+ [n]  = {f} 

where rn, c, I C ,  and f represent the mass, damping, stiffness, and force, respectively. The structural 
deflection is given by z. Using the generalized mode shape, 4, one can rewrite the above equation 
as 

where M, C, and K are generalized mam, damping, and stiffness matrices and { F} is the gener- 
alized aerodynamic force. These are defined by 

C = d T c 4  , F=g5Tf and z = + q  , 

where q is the generalized deflection. 
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STATIC FLEXIBLE CASE 

The flexibility of the structure comes into the calculation through stiffness (K) and generalized 
mode shapes (4). The steps involved in computing the static flexible equilibrium aerodynamics are 
given below: 

1. Solve rigid aerodynamics for lift force. 

2. Solve Kq = F + { z }  = [4] { q } .  

3. Increment { z }  in smaller steps and compute modified aerodynamic force, Figure 4. 

4. Repeat Step 2. 

5. Continue until { z }  and lift converge. 
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DYNAMIC FLEXIBLE CASE 

The aerodynamics and the structural response are computed rri a time accurate fashion wing 
internal Newton iterations. The various steps involved in this computation are 

1. Compute rigid aerodynamics. 

2. Compute static flexible for a given dynamic pressure Q. 
3. Set up an initial perturbance by perturbing either q or q of any mode. 

4. Solve Mi + Ci  + Kq = F + {z). 
5. Compute Zt,Yr,zr on the surface, 

6. Define xr,yr,zr for each field grid point allowing their values to go to zero at outer boundary, 

7. Compute new grid location zn+l = xn + xTAr, 0 and new metrics. 

8. Converge aerodynamics using internal Newton iteration. 

9. Repeat Step 4. (For prediction of flutter Q gradually vary Q and monitor generalized modal 
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Fig. 5. Grid Update for Dynamic Flexible Calculations 
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OTHER FEATURES OF AERODYNAMIC/AEROELASTIC PROCEDURE 

Aerodynamics solved by triple approximate factorization scheme 

Wake cut modeled by unsteady vorticity convection equation 

Implicit boundary conditions 

Internal Newton iteration for time accuracy. 

= LcLeL, 

I Code Capabilities 

0 Static Rigid 

0 DynamicRigid 

0 Static Flexible 

0 Dynamic Flexible 
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FLEXIBLE WING MODEL 

Figure 6 shows the planform shape of a flexible low aspect ratio fighter wing. A sectional 
airfoil profile is also shown in Fig. 6. Note that there are two bumps in the lower section which are 
due to the leading edge and trailing edge control surface actuators. This model was designed and 
built by Etockwell and currently is being tested in NASA Langley Research Center’s 16 foot TDT 
wind tunnel. 
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Fig. 6. Planform Shape of a Flexible Fighter Wing 
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NATURAL MODE SHAPES 

Figure 7 shows the first ten natural frequency mode shapes for aeroelastic analysis. Mode 
shapes are prescribed at every grid point on the wing surface. 

MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 
6.33 Hr 10.27 Hz 13.92 Hz 22.73 Hz 32.73 Hz 

MODE 6 MODE 7 MODE 8 MODE 9 MODE 10 
35.48 Hz 40.71 Hz 52.75 Hz 54.03 Hz 55.96 Hz 

Fig. 7. Selected Mode Shapes for Aeroelastic Analyses 



RESULTS FOR STATIC FLEXIBLE CASE 

Figure 8 shows results for a static flexible computation at M ,  = 1.15, a = 6" for two different 
dynamic pressure conditions. Q = 0 corresponds to the rigid case. The deflected shape of the wing 
for Q = 288 psf shows the nose down rotation of the airfoil near the wing tip resulting in tip load 
reduction. This is essential for the wing to be aeroelastically stable. 
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Fig. 8. Static Flexible Computation, M ,  = 1.15, a = 6" 
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CL VERSUS a FOR STATIC FLEXIBLE 

The CL versus a curves at two different Mach numbers are shown in Fig. 9. Table 1 shows the 
change in total lift coefficient between rigid and flexible cases for different Mach numbers, angles 
of attack, and Q conditions. 

b - 

A4 a Q(psf) CLt,.t CLflex CLrigid 
-- - 

1.05 1.6 335 0.0785 0.0800 0.1450 

1.15 0.5 230 0.0433 0.0400 0.0685 

0.90 0.0 220 0.0446 0.0441 0.0637 

Table 1. Comparison of Lift Coefficients between Rigid and Flexible Calculations 
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Fig. 9. CL versus a for the Flexible Wing 
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STATIC FLEXIBLE WITH DEFLECTED CONTROLS 
Figure 10 shows a similar static aeroelastic calculation with leading and trailing edge control 

surfaces deflected. Also shown are the surface chordwise pressure distributions at various span 
stations and a cross section of the wing with deflected control surfaces. The span stations where 
the deflected control surfaces are present are drastically altered. 
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Fig. 10. Static Aeroelastic Computations with Deflected Control Surfaces 
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DYNAMIC FLEXIBLE CASE 

Figures 11-13 show results for dynamic aeroelastic computations at three different dynamic 
pressures (Q). Figure 11 is for Q < QFlntter. The structure is aerodynamically stable as shown by 
the decaying amplitudes of various quantities. Figure 12 is exactly at the flutter dynamic pressure. 
The value for the flutter Q was obtained by the nonlinear aerodynamics/aeroelastic code through 
numerical search. Exactly at the flutter Q, the dynamic response of the structure does not decay aa 
shown by results of Fig. 12. Figure 13 illustrates the structural response above the flutter Q. The 
structure is aerodynamically unstable aa shown by the growing amplitudes of various quantities. 
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Fig. 11. Dynamic Flexible Computation - below Flutter, M ,  = 1.15, cy = O", Q = 360 psf 
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DYNAMIC FLEXIBLE CASE (CONTINUED) 
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Fig. 12. Dynamic Flexible Computation - at Flutter Point, M ,  = 1.15, a = O", Q = 490 psf 
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Fig. 13. Dynamic Flexible Computation - above Flutter, M, = 1.15, cy = O", Q = 550 psf 
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