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4. Concluding Remarks
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1. Background and Objectives

As the normal angle of attack, normal Mach number and sweep-back angle are
varied; complex flows develop around Delta and Delta-17ke wings.

These flows are characterized with the formation of large and small scale
vortices, weak and strong shock waves, and shock induced separations. The

experimental Miller and Wood Classification Diagram shows seven regions of this

flow.,

These flows become highly complex when vortex breakdown occurs in the vicinity of
the wing or when the wing undergoes unsteady motion due to maneuvering or
flutter.

The main objectives of this ongoing research research work are to develop

efficient and reliable computational schemes which are capable of predicting the

distributed aerodynamic characteristics of these wings in steady and unsteady
flows over a wide range of angles of attack, sweep-back angles, Mach numbers and
configurations.

1l Classical
Vortex

2 Separation
Bubble with
No Shock

3 No Shock/
No Separation

N\ 4 Shock with no
Separation

5 Shock~-1Induced
Separation

6 Separation
Bubble with
Shock

J 7 Vortex with
2.0 Shock

10

Fig. 1 Miller and Wood! Classification Diagram.

263



2. \Unsteady Euler Equations in a Rotating Frame of
Reference for Transonic-Vortex Flows

Formulation

e Conservation Form of Euler Equations in a Space-Fixed Frame of Reference

o0, o of  of

ot X oy dz

where
a = [p, pu, pv, pwW, pe]t
- 2 t
E = [pu, pu + p, puv, puw, puh]
= 2 t
F = [pv, puv, pv  + p, pww, pvh]
- 2 t
G = [pw, puW, pvW, pWw + p, PWh]
e = p/p(y-1) + (uZ + V% +wP)/2
h=ce+p/p

e Rewriting the Equations in the Vector Form
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And Using the Substantial and Local Derivatives Relations

Da D'a 22 d'a - -
— D tm— — T e - °
ot SBt tat ot T Ve VeV (11)
DA DA - A _ 3'A - - - -
H‘BT*‘”XA’%'E_B?—+(V'V)'VA+“’XA (12)
- - - - D' '
where V = Vr + wxr ; 7 %? = Substantial and Local Derivative in the Rotating
Frame
e We get the Conservative Form of Euler Equations for the Relative Motion
d'p by
—_— =
ot v (p VI") 0 (13)
3'(p V) . - .. - - -
-——————+ . = =
= v e[p Vr Vr +p 1] plwxr + ZwXVr + wx(wxr)] (14)
' (p e ) i S oot
v +Ve[ph V]=-p[V o (wxr) + (wxr) o (wxr)] (15)
where
oV 1
= e e - - WX T = - V . WX T 16
S e i |oxr| = e -V o (wxr) (16)
Vi 2
h =—1p—-—+——-—|mxr| =h -V e (uxr) (17)
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Method of Solution

e The Abstract Conservative Form of the Relative Motion in Terms of Rotating
Ccordinates are

+ + + =S 18
ot dX oy Y4 (18)
where
§ = lp, ou, ov., oW, pe ]t (19)
r Ps P re p re p re p r
E = [pu éEo+ u v W, ouhl (20)
r UL, PUL T Py UYL pUM, pUR :
F = [pv uv v2 + VoW v h Tt (21)
r P¥ps P Fps PY, Pa PV M. PV I
G =[pw , pUW , pvV W pW2 +p, pw h 1t (22)
r r> rr S rr Ur rr-
- . 2 . 2 . . (X} 2
S =100, 0, plwz + 2w Wotw ¥)s - plwy + 2wvr -w2z), - p(-vr wZ + ¥ wy + ey

+ wozl)t (23)

x ? =0 éx

e Egs. (18)-(23), (16) and (17) are Solved Using a Central-Difference, Finite-Volume
Scheme Using Four-Stage Runge Kutta Time Stepping with Added Second- and Fourth-
Order Dissipation Terms.

Ele

- The Source Term S has been Written for w = w e

e The Computer Procram is a Three-Dimensional Program,
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Local-Conical Flow Problem

e If the Conical Coordinates are Used to Transform the Relative Motion Ecuation,
Eqs. (18)-(22), the Resulting Equations will not Represent a Conical Flow.

o If the Conical Coordinates are Used to Transform the Absolute Motion Equations,
Eqs. (1)-{7), the Resulting Equations will Represent a Conical Flow for the Steady
Flow. For the Unsteady Flow, the Problem is Made "Locally Conical" if it is Solved

at a Fixed Axial Location.

e In the Three-Dimensional Program, Local Conical Flow Solutions are Obtained at x=1
by Eaquating the Absolute Motion in the First and Third Planes:

(o) yp = (Vg > (V) g = (V) = (o¥ ), + 0 xlog ry = oy Py (24)
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1. Initial Condition:

- For Constant Rolling Problem (w = -w_ € ), the Flow Corresponds to a Uniform
Translation Plus a Rigid Body Rotat18n ~wXT.

- For Rolling Oscillation (w = -w, sin kt éx), the Flow Corresponds to a Uniform
Translation Only.

2. Boundary Conditions:

- Normal Momentum Equat1on is Used on the Wing Surface
B (Vo o0 ) =0, &2 =0)

- - - aP :
. . — + . + + 1
o Vr (Vr vn) 5 e n [2wa wxr + wx{wxr)] (26)

- In the Farfield, a Uniform Translation Plus the Corresponding Rotation are
Imposed Outside of the Bow Shock.
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SYMMETRIC CONICAL FLOW

This is a verification test case for the three-dimensional procgram which has
been solved earlier by using a conical flow programz. Figure 2 shows the results
for a flat plate sharp-edged delta wing at M_ =2, o = 100

and g (sweep angle)
using a modified Joukowski transformation?

of 128x64 cells around and normal to the
wing has been used for the whole computational region. Figure 2 (a--d) shows the

surface pressure, cross-flow velocity, cross-flow Mach contours and static pressure
contours. It is clear that two symmetric leading-edge vortices have been captured on
the suction side along with a weak cross-flow shock under each vortex. The outer bow
shock is clearly visible in the lower portions of the cross-flow Mach and static
pressure contours. The surface pressure, Mach contours and static-pressure contours

match those obtained by using the conical flow program for half of the computational
region,
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a. surface pressure b. cross-flow velocity

Fig., 2 Steady symmetric flow around a delta
wing, M_=2, «=10%, B=70°
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c. cross-flow Mach d. static pressure

Fig.. 2 Steady symmetric flow around a delta
wing, M_=2, «=10°, =70°
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ORIGINAL PAGE IS
OF POOR QUALITY THREE-DIMENSIONAL TRANSONIC FLOW

Figure 3 shows the results of a sharp-edged delta wing for M, = 0.7, a = 100 and
aspect ratio of 1.5 using a number of cells of 80x38x48 in the x, n and ¢ direc-
tions; respectively. The results of Figures 3a and 3b show, from left to right,
the surface pressure, the static pressure contours and the cross-flow velocity; each
at the chord stations of 0.52 and 0.81. Figure 3c shows the static pressure
contours and the cross-flow velocity at the chord station of 1.01 and Figure 3a
shows the static pressure contours and the cross-flow velocity at the chord station
of 1.25. At x = 0.81, comparisons of the computed surface pressure with the

experimental data3 shows that the location of vortex core is well predicted, while
the value of peak suction pressure under the vortex core is slightly under-
predicted. At x = 1.25, the static pressure contours and the cross-flow velocity
show the formation of trailing-edge vortex core and its interaction with the leading-
edge vortex core. Our cross-flow planes are taken normal to the wing surface.
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Figure 3 . Three-Dimensional Transonic Flow, Standard Euler Set, Sharp-edged delta
wing, 80X38x48 cell, M_=0.7, a=159, AR=1.5, c2=0.12. 54=0.005.
(a.b.) 1. Surface Pressure, 2. Static Pressure Contours, 3. Crossflow

velocity )
(c.d.)1.Static pressure Contours, 2. Crossflow velocity
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Figure 3 . Three-Dimensfonal Transonic Flow, Standard Euler Set, Sharp-edged delta
wing, 80X38X48 cell, M_=0.7, a=15%, AR=1.5, ¢,=0.12, €,=0.005,
(a,b.) 1. Surface Pressure, 2. Static Pressure Contours, 3. Crossflow

velocity
(c.d.)1.Static pressure Contours, 2. Crossflow velocity
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THREE-DIMENSIONAL LOW-SPEED FLOM QUALITY

Figure 4 shows the results of a sharp-edged delta wing for M_= 0.3, o = 20.50
and aspect ratio of 1 using a number of cells of 80x38x48 in the X, n, and ¢
directions; respectively. The results of Figures 4a and 4b show, from left to

right, the surface pressure and the experimental data of Humme1? the static-pressure-
coefficient contours and the cross-flow velocity at the chord stations of 0.52 and
0.81. The results of Figures. 4c and.4d show, from left to right, the experimental
static-pressure-coefficient contours? (cross-flow planes are normal to wind
direction), the computed static-pressure-coefficient (cross-flow planes are normal to
wing surface) and the computed cross-flow velocity at the chord stations 1.02 and
1.25.

The results show that the location of leading-edge vortex core is accurately
predicted, the suction pressure peak is accurately predicted at x = 0.52 but it is
overpredicted at x = 0.81, the location of the trailing-edged vortex core is slightly
off that of the experimental data. A finer grid than the one used in this example is
expected to give a more accurate prediction.
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Figure 4, Three-dimensional subsonic flow, isentropic Euler set, sharp-edged
delta wing, 80x38x48 cell, My, = 0.3, a = 20.5°, AR = 1, €, =
0.12, €, = 0,005, (a.sb.) 1. surface pressure, 2, static presure
contours, Cp, 3. crossflow velocity
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Figure 4. Three-dimensional subsonic flow, isentropic Euler set, sharp-edged
delta wing, 80x38x48 cell, My, = 0.3, a = 20.5°, AR = 1, ¢, =

0.12, €, = 0.005, (c.d.) 1. experimental
static pressure contours, Cp, (normal to wind direction),
2. static pressure contours, Cp, (normal to wing surface),
3. crossflow velocity.
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UNIFORM ROLLING IN A CONICAL FLOW

Figure 5 shows the results for a flat plate sharp-edoed delta wing which is
undergoing uniform rolling in ghe counter-clockwise direction around its axis ox' at

*
a constant angular speed u = ﬁﬂL-= 0.5; where w and w are the dimensional and

co

dimensionaless angular speeds, & is the wing root chord and U_ is the freestream
speed. The wing angle of attack a = 0 and hence the flow is steady in the rotating

frame of reference. Figure 5a shows the upper "o" and lower "A" surface

pressure. As symmetric surface pressure. Figures 5b, 5c¢ and 5d show the
corresponding cross-flow velocity, cross-flow Mach contours an static pressure
contours. On the cross-flow Mach contours and under the anti-symmetric Teading-edge

vortices, one notices a weak cross-flow shock.

. R
& Upper
W b Lower »
AR B /b
g\ d
\ /]
\\-L hb
| TN _e.habBBE
L1 _IaSRAMMRRRLCT I8
in ) nﬁﬁhhbu_'a N E ANV} E) 1
[
[
rf‘b
l\b 193}~
&
i
o sl
8-
a.surface pressure b. cross-flow velocity

Fig. 5 « Uniform rolling of a delta wing,
M_=2, a=0°, B=70°, w=0.5
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ROLLING OSCILLATION IN A LOCALLY-CONICAL FLOW

The wing is given a rolling sinusoidal oscillation of w and 8 of w = - w, €OS kt

e v and ¢ = - Onax S1N kt, WheEgzemax = wo/k and k is the dimensionless reduced

frequency of oscillation (K = Tr—-is,the dimensional frequency). Choosing

Onax ~ w/12 and wy = 0.35, the ?orresponding k = 1.337 and the period of oscillation

= 4.699. Figure 6 shows the rolling oscillation motion.
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Fig. 6. Roll angle, angular speed and angular
acceleration of the rolling oscillation
motion.
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ROLLING OSCILLATION (CONTINUED)

Figure 7 shows the results for the time range t = 0 -1.07. Ry the end of this
time, the wing has rolled through an angle & = -14.850 which corresponds to the end
of the first quarter of the cycle. At t =0, |o] = w, .and |u| decreases in the

counter-clockwise direction within that time. Figure 7a shows the surface pressure
after each 400 time steps covering a total of 2000 time steps. On the upper surface,
the suction pressure on the left is higher than that on the right, and the suction
peak is moving in the spanwise direction in the positive z direction. On the lower
surface, the surface pressure is decreasing on the left side while it is increasing
on the right side. Figures 7b, 7c and 7d show the cross-flow velocity, cross-flow
Mach contours and static pressure contours at t = 1.07 and ¢ = -14.850, At this
moment, a large leading-edge vortex appears on the left and a small leading-edge
vortex appears on the right. The cross-flow Mach contours show shocks above and
below the left leading-edge vortex. It also shows the outer bow shock with varying
strength (lower portion of the figure).
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Fig.7 . Rolling oscillation of a delta wing,
M_=2, a=10%, B=70°, w=0.35, k=1.337,

2160 +20- 0( = 0
emax-ls , t=0-1.07, 6=0-(-1485")
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c. cross-flow Mach d. static pressure

Fig.7 « Rolling oscillation of a delta wing,
M_=2, a=10%, B=70%, w=0,35, k=1,337,

=180 =()- =0=( - 0
emax-ls » t=0-1.07, 6=0-(-1485")
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ROLLING OSCILLATION (CONTINUED)

Figure 8 shows the results for the time range t = 1.077 - 2.16. Within this
time, the wing has reversed it direction |w|, and by the end of this time, the
wing roll angle 8 = -3.760. Figure 8a shows the surface pressure after each 400 time
steps covering the range of time steps from 2,001-4,000. The peak suction pressure
on the left is decreasing corresponding to a decrease in size of the left vortex
while that on the right is increasing corresponding to an increase in size of the
right vortex. Figures8b, 8c and 8d show the cross-flow velocity, cross-flow
Mach contours and static-pressure contours at t = 2.16, o = -3.760.
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Fig.8 . Rolling oscillation of a delta wing,
M_=2, a=10°, B=70°, w=0.35, k=1,337,

o =150, t=1.07%-2.16, 6=(-14.85%)-(~3.76%)
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c.cross-flow Mach d. static pressure

Fig.8 . Rolling oscillation of a delta wing,
M_=2, a=10°, 8=70%, w=0.35, k=1.337,
8.ax=15% t=1.077-2.16, 0=¢14.85%)-

[}
(-3.7¢")
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ROLLING OSCILLATION (CONTINUED)

Figure 9 shows the results for the time range t = 2.16% - 3.19 during which the
wing is rotating in the clockwise direction with decreasing |w|. By the end of this
time, the roll angle is o = 13,50, Figure 9a shows the surface pressure covering
the range of time steps 4,001-6,000. The peak suction pressure on the left is moving
to the left as the vortex is disappearing, and an attached flow is forming. Thepeak
suction pressure on the right is moving inboards to the left, while the shock under
the vortex is growing. Fiagures 9b, 9c and 9d show the cross-flow velocity, cross-
flow Mach contours and static pressure contours at t = 3.19 and 5 = 13.50,

1=.237t1
1=.2586+1
Ts.277Ee|
T=.290€|
12819840

a. surface pressure b. cross-flow velocity

Fig. 9. Rolling oscillation of a delta wing,
M_=2, a=10°, B=70%, w=0.35, k=1.337,
o =159, t=2.16%-3.19, 6=(-3.769)-
maXx 0
(+13.6")
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¢c. cross-flow Mach d. static pressure

Fig. 9.. Rolling oscillation of a delta wing,
M2, a=10°, B=70°, w=0.35, k=1.337,
6 =159, t=2,16 -3.19, 6=(-3.76°)-
max "o
(+13.5°)
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ROLLING OSCILLATION (CONTINUED)

Figure 10(a-d) shows the results for the time rancge t = 3.19% - 4.31 during -
which the wing has reversed the direction of rotation from the CW to CCW, and Iw has
reached a zero value and then increases. The vortex on the left is growing, and the
corresponding peak suction pressure is increasing and moving inboards to the right.
The vortex on the right is flattening, and its peak suction pressure is decreasing
and movigg inboards to the left. By the end this time t = 4.31; the roll angle
8 = 7.460,
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Fig. 10. Ro1ling oscillation of a delta wing,
M_=2, a=10%, B=70", w=0.35, k=1.337,

=150 = +— = 0y 0
®max 15%, t=3.19 -4.31, 6=(+13.5")- (+7.46")
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v

c. cross-flow Mach d. static pressure

Fig.10. Rol1ling oscillation of a delta wing,
M_=2, a=10°, B=70%, w=0.35, k=1.337,
6., ~15%, t=3.197-4.31, 0=(+13.59)-
(32469
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ROLLING OSCILLATIOM (CONTINUED)

Within the time range t = 4.31Y - 5,35, the wing is still rotating in the CCW,
and |m| has reached its maximum value and then decreases. At t = 4.7, the wing has
already completed one cycle of oscillation. The peak suction pressure on the left is
moving inboards to the right, and the peak suction pressure on the right is moving

outboards to the right, Figure 11 (a--d). By the end of this time t = 5.35, the roll
angle o = -11.460.
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Fig.l1l. Rolling oscillation of a delta wing,
M_=2, a=10°, B=70°, w=0.35, k=1.337,

= 0 = +- = 9y~ - °
emax 159, t=4.31 -5.35, 6=(+7.46")- (-11.46°)
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c.cross-flow Mach d. static pressure

Fig.11, Rolling oscillation of a delta wing,
M_=2, a=10°, B=70°, w=0.35, k=1.337,

~1c0 - +_ = 0y
emax-ls , t=4.31 -5.35, 0=(+7.45")
(-11.46°)
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ROLLING OSCILLATION (CONTINUED)

Figures 12a-12d and 13a-13d show the results covering the ranges of time steps
10,001-12,000 and 12,001-14,000, respectively. Figures 5-11 cover a total of 1.56
cycles of oscillation. The results show the successive increase, decreased and
motion of the left and right vortices and their corresponding peak suction pressure.
They also show the formation and disintegration of the shocks below and above the
vortices, and the motion and strength variation of the outer bow shock.
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Fig.12. Rolling oscillation of a delta wing,
M_=2, a=10%, B=70%, w=0.35, k=1.337,
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fHili

a. surface pressure b- cross-flow velocity

c. cross-flow Mach d. static pressure

Fig. 13.Rol1ling oscillation of a delta wing,
M_=2, «=10°, B=70", w=0.35, k=1.337,
o . ~15% t=6.46%-7.48, 0=(10.63%)-(+8.17°)
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ORIGIMNAL PAGE 15
OF POOR QUALITY

ROLLING OSCILLATION (CONCLUDED)

Steady state oscillation response is reached after 3 cycles of transient
response, Figure 14 (a--g).
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Fig. 14 . Rolling oscillatjons from t = 7.48%
to t = 15.0, steady state oscilla-
tion is reached.

290



50 r.smen

o]

3 1:.100E«2
-4 =0 T=.103€02

A ¥:.DsEe2

N Tz.0%e2

50 1
0O T=.1126+2
Y S O £ P
A Tz.6Ee2
DN T:z.i18Ee2

-

--—---....._.......:-l
e Sevngan,

Fig. 14. Continued.

ORIGINAL PARE IS
OF POOR CLIALITY

291



292

T=.120E+2

[rd - XeJako]

T2.131€+2
T=.1338+2
T=.135E2
Tz.137E2
Tz 1392

7
/ui

iiii!

/

i
////'/f [

ii

Continued.

ORIGINAL FAGE IS
OF POOR QUALITY




O T:z.41Ee2
0 T-.143€+2

4O Tz.INBE2
O Tz.198E+2
h

T=.1S0€+2

Fig. 14. Concluded.

293



ROLLING OSCILLATION, LIFT AND ROLLING-MOMENT COEFFICIENTS

Figure 15 shows the time history of the 1ift and rolling-moment coefficients
along with roll angle variation. Steady-state oscillation response is reached by
the third cycle.yhile the phase angle between C, and 61is 90° C, is in phase with w.
Although CM and 6 have the same frequency, CL SKBWS twice the vg1ue of that freauency.

FIGURE 15. TIME HISTORY OF THE LIFT AND ROLLING-MOMENT COEFFICIENTS
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3. Integral Sclution of Full-Potential Equation
With and Without Embedded Euler Domains

Formulation

Full Potential Equation (Shock Capturing, SC; Shock Capturing-Shock Fitting, SCSF)

+ =
X% ny G (1)
¢ =t (p, &+
P px % py @y) (2)
-1 2 2 2.,1/y-
= +L - - Yl
p=ll+=mM_ (-0 2] (3)
V@ e n =0 on g(x, y) =0 (4)
V% > e away from g (5)
AC =0
PlrE ®)

Integral Solution of Velocity Field With Explicit Shock Surface Contribution

VQ(x,y) = e +_¢ q S) (x g) i + (Y T)) j ds
g & (x-8)% + (y-m)?

Q Y (s) (y-n) 1 - (x=E) j
g (x-£)% + (y=n)?

"'_"ff G(E,m) (x=&) 1+ (y-n) J dEdn
(x-g)? + (y-m)?

) (x=E) 1 + (y-n) j (M

1
+<=0 q.(s
2 s S (x-E) + (y-n)
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Shock Fitting

2V

In 1
ln
(v-1) Min + 2
Von = D) 12 Vin
Y 1n
Vae ® Vi
2
(y+1) Mln
P, = p
S VLA B
172
_ -1 1.2 sinf sinB _ 1
B = sin [ cos (B=9) + 2]
M
1
-1 I'l
2 ~
M=, |vel o) T, My =M B /e
Pressure Coefficient
e Y/v-1
c =—2 (1 +XL ¥ -a?-o?) -1}
P Y M2 2 =
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Euler Equations (Integral Equation With Embedded Euler Domains)

3 dE . aF
+ — 4+ =< =
3t T ox Ty = 0 (15)
a=1 t
Py pu, pv, pe] (16)
E = 2 t
Pu, pu + p, puv, puh] (17)
?‘ = [ov 2 t
PV, puv, pv" + p, pvh] (18)
N S S =
&= Tylp © (" +v7)/2, h=-e+plp (19)
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Method of Solution

e Shock-Capturing Shock-Fitting (SCF) Scheme:

- Shock Capturing Part

1. In Eq. (7), Set G = g5 = 0, Use Eq. (7) to Satisfy B.C.S; Eqgs. (4), (6).
Find dq and Yg (piecewise linear distribution).

2. Ca1cu1a§e Initial Values of G at the Centroids of Field Elements
(G =M u).

3. With g5 = 0, Eq. (7) is Used to Satisfy B.C.S.

4. Calculate p and G Using Eas. (2), (3) (Type Finite Difference is Used
for py» py).

5. Steps (3) and (4) are Repeated Until Captured Shock Location is Fixed.

- Shock Fitting Part

€. Shock Panels are Introduced, qq - term in Eq. (7) is activated.

7. Eqs. (8) and (12) are Used to Find qg and g, and Eqs. (9)-(12) are Used to
Cross the Shock.

g. Iterative Procedure is Continued Until Convergence.
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e Integral Eauation With Embedded Euler (IEEE) Scheme (For Strong Shocks)

CRIGINAL PAGE I3
OF POOR QUALITY

1.
2.

Shock Capturing is t!'sed to Locate the Shock.

A Computational Fine-Grid Domain is Constructed Around the Shock for Euler

Computations.

With B.C. and I.C. Found From Step (1), Euler Egs. (15)-(19) are solved by Using

a Central-Difference Finite-Volume Solver with Four-Stage Runce-Kutta Time

Stepping and Added Second- and Fourth-Order DMissipation.

Fixing q Values Found From the Euler Calculations, the Intecral Ea. is Used to

Update the B.C.

The Iterative Procedure is Continued Until Converaence is Achieved.
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Fig.16 Integral Equation Grid with an

Embedded-Euler Domain.
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SHOCK-FREE FLOW

The first step to validate the computer program is to check the sensitivity of
the IE solution to the size of the computational domain. Fiqure 17 shows the
solutions for the NACA 0012 airfoil at M_ = 0.72 and o = 00 using vortex panels only
on the airfoil surface. We used a total of 140 vortex panels on the airfoil surface
and a 64x60 field elements around the airfoil. The solutions show the surface
pressure using two sizes of the computational domains; 2x1.5 and 3x2.5. In Figure 18,
we repeat the same test for a lifting case of the same airfoil at M = 0.63 and
a =20, The results of these two cases show that a computational domain of 2x1.5
gives as accurate solutions as those of the 3x2.5 computational domain.

n64 5
P b\ ————— 3 X 2,5
] p ™ 0O O O 2x1.5
-.4 é b\
/ o
- 2_? \
b s
€ 0.0 -JP \R
) .
' i
¢ ‘
;  — T i
.2 .6 .8 1.0 ) . . .
x/c b ¥
Fig. 17 Effect of the Computational Domain Fig, 18 Effect of the Computational Domain
Size, Surface Vortex Panels, NACA Size, Surface Vortex Panels. NACA
0012, M_=0.72, a=0°. 0012, M_=0.63, a=20. '
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SHOCK-FREE FLOW

The second numerical test is aimed at comparing the results of the IE solution
using vortex panels only and source panels only with the solution of Euler

equationss. Figure 19 shows the results of this test for the MACA 0012 airfoil at
M, = 0.7 and o = 00,  The computational domain is 2x1.5, and the same numbers of

surface panels and field elements as those of Figure 17 have been used. It is clear

that the IE solution with surface vortex panels is superior to that of the source
panels.

-.B8 T — - a— Eu]gr‘s
© O O Present with vertex
panels
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(3&6
AG
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a
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8
1] 0&
.2 ®
a
(4]
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0
.6
.8
1.0 T T I T |
0 2 .6 .8 1.0
x/c

Fig. 19 Comparisons of IE Solution with
Surface Vortex Panels and Surface
Source Panels with Euler Solution,
NACA 0012, M_=0.72, =07,
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TRANSCNIC FLOW

First, we present a numerical test case to show the effect of introducing the
shock panels and their fitting as explained earlier. Figure 20 shows a comparison
between the shock capturing results and the SCSF-scheme results for the NACA 0012
airfoil at M_= 0.8 and a = 00, It is clear that the SCSF-scheme sharpens the
shock, as expected, with this relatively coarse grid. Next, we compare the SCSF-
scheme with the experimental data and other computational results. Figure 21 shows
the results of the SCSF-scheme for NACA 0012, M_= 0.8 and o = 09, along with
comparisons with the computational results of Garabedian, Korn and Jameson6 and the
experimental data taken from reference 7. The SCSF-scheme took 12 iteration cycles
of shock capturing (SC) and 13 cycles of shock fitting (SF) to achieve convergence.
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c .2 4 .6 .8 1.0 =l T 1 { T 1
0 .2 4 .6 .8 1.0

x/c

Integra) Equation Solution with
SCSF-Scheme, NACA 0012, M_=0.8,
=09,

Fig. 20 Shock Capturing vz. SCSF-Scheme, Fig.21
NACA 0012, M_=0.8, a=0°,
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TRANSONIC FLOW

Figure 22 shows the results of the IFFE-scheme for the same case along with a

comparison with the computational results of Jameson8, who also used the finite-
volume Fuler scheme with four-stage Runge-Kutta time stepping. In the present IEEE-
scheme, the embedded Euler domain has a size of 0.5x0.6 around the shock region with
a grid of 25x30. This case took 10 iteration_cycles of SC, 250 times cycles of Euler
iterations to achieve a residual error of 1073 and 5 IE cycles to update the Euler

domain boundary conditions.

-1.0 A

o ool ?
ol .
2 Y

\

é
|
d

4 —_————— Jm!lcaxon8 (Euler)
0 O O Present {(IEEE)

Fig.22 Integral Equation with Embedded-
Euler Domain Solution, NACA 0012,
M_=0.8, a=0°.

303



TRANSONIC FLOW

Figures 23 and 24 show the results of the SCSF-and IEEE-schemes for NACA 64A010A,
M = 0.796, o = 00 along with comparisons with the computational results of Edwards,

Bland and Seidel? who used the TSP-equation, and the experimental data taken from
reference 9. With the SCSF-scheme, the numbers of SC and SF iteration cycles to
achieve convergence are the same as those of the case presented in Figure 2l. With
the IEEE-scheme, the embedded Euler domain has a size of 0.7x0.6 with a grid size of
35x30. This case, Fig. 24, took 10 iteration cycles of SC, 130 time cycles of Euler

jterations to achieve a residual error of 103 and 3 IE cycles to update the Euler
domain boundary conditions.
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Fig. 23 Integral Equation Solution with Fig. 24 Integral Equation with Embedded-
SCSF-Scheme, NACA 64A010A, Euler Domain Solution, NACA 64A010A,
M =0.796, a=0°. M_=0.796, a=0°.
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TRANSONIC FLOW

Figures 25 and 26 show the results of the SCSF- and IEEE-schemes for the 1ifting
case of NACA 0012, M_= 0.75 and a = 20 along with the computational results of

Steger and Lomaxlo, and the experimental data taken from the same reference. The
size of the grids and the number of iteration cycles used to achieve convergence are
the same as those of the cases given in Fiqures 21 and 22.
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Fig. 25 Integral Equation Solution with Fig. 26 Integral Equation with Embedded-
SCSF-Scheme, NACA 0012, M_=0.75, Euler Domain Solution, NACA 0012
a=20. Mm=0'75’ a=20. ’
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TRANSONIC FLOW WITH STRONG SHOCKS

For stronger shocks than those considered above the IE computational domain is
extended in the longitudinal and lateral directions and so is the embedded Euler
computational domain. The Euler domain is extended beyond the trailing edge to allow
for the vorticity to be shed downstream where the overlapping region with the IE
equation exists. Figure 27 shows a typical computational domain with details of the

enmbedded Fuler domain.

Integral Eq. Domain

HTHTY

Euler Eq. Domain 3

- e

Fig. 27 Embedded Euler Domain and Grid for
Strong Shocks.
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TRAMSONIC FLOW WITH STRCNG SHOCKS

Ficure 28 shows the results of the IEEE for MACA 0012, M°° = 0,812 and o« = 00
along with the experimental data of reference 7. In Figure 29, the results of the
IEEE for NACA 0012, M_ = 0.82 and o = 00 are shown along with the three-dimensional
solution at the wing root chord of Tseng and Morinolz, who use the IE for the TSP,
and the results of reference 11. The size of the embedded Euler domain for these
cases is C.8x0.8 and its orid size is 40x40.
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Fig.f28 Integral Equation with Embedded-
Euler Domain Solution, NACA 0012,
M_=0.812, a=07,
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TRANSOMIC FLOW WITH STRONG SHOCKS

Figure 30 shows the results of the IEEE for NACA 0012, M_ = 0.84 and a

= 00
along with comparisons with the nonisentropic FP-solution of Whitlow, et a].,3 and
the Euler equaticns solution of Jameson€. The size of the embedded Euler domain for
this case is 1.5x1.0 and its grid size is 60x40.

This case took 10 IE iteration, 300
time cycles of Euler iterations and 3 IE cycles to update the Euler domain boundary
conditions,

—1.07
//”’\‘l
oo
-.8= O.//,/ ‘ | —=— Nonisentropic
o FP, Whitlow
/ | | et al,13
6 / ‘ .= Euler, Jameaon8
TP ? ‘ QO O Present with
J \ | Buler Domain
¢ o' |
-4 | ! \
¢ |
i |
-.2
¢ i !
| X
g ol
c, 0.0 ‘P ovy®
* \ S
v ®
~)
4 i
.6
-8 I | | I !
0.0 2 4 .6 .8 1.0

Fig. 30 Integral Equation with Embedded-

Euler Domain Solution, NACA 0012,
M_=0.84, a=00,
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4. Concluding Remarks

Two Methods have been Presented for Inviscid Transonic Flows:

- Unsteady Euler Equations in a Rotatina Frame of Reference for Transonic-Vortex
Flows.

- Intearal Solutien of Full-Pctential Equation with and without Embedded Euler
Domains for Transonic Airfoil Flows.

e The Computational Results Covered:
- Steady and Unsteady Conical Vortex Flows
- Three-Dimensional Steady Transonic Vortex Flow
- Transonic Airfoil Flows

e The Results are in good agreement with Other Computational Results and
Experimental Data.

e The Rotating Frame of Reference Solution is Potentially Efficient as Compared
with the Space-Fixed Reference Formulation with Dynamic Gridding.

e The Integral Equation Solution with Embedded Euler Domain is Computationally
Efficient and as Accurate as the Euler Equations.

Currently the Rotating Frame of Reference Eule Solver is Applied to Three-
Dimensional Unsteady Transonic-Vortex Flows. The IEEE-Scheme is Being Extended

to the Unsteady Transonic Airfoil Calculations.
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