
f. I9 
TDA Progress Report 42-96 October- December 1988 

/ 

N8 9 - 1 9 4 5  4 

The Use of Interleaving for Reducing Radio Loss in 
Convolutionally Coded Systems 

D. Divsalar 
C o m m u n i c a t i o n s  Systems Research Sect ion 

M. K. Simon 
T e l e c o m m u n i c a t i o n s  Systems Sect ion  

J. H. Yuen 
T e l e c o m m u n i c a t i o n s  Science a n d  Eng ineer ing  D iv i s ion  

A 

N C /  /L. P J ~ ) ~ ~  
. e Lhe use of  interleaving after convolutional coding and deinterleaving 

' b e c e c o d i n g  is proposed. This effectively reduces radio loss at low-loop W5" 
,cn Lo3<5P/?s) 

/' by several decibels and at high-loop SNRs by a few tenths of a decibel. Performance of 
the coded system can further be enhanced if the modulation index is optimized for this 

w 
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I I 

1 ' 
system. This will correspond to a reduction o f  bit SNR at a certain bit error rate for the 
overall system. The introduction o f  interleaving/deinterleaving into communication 
systems designed for future deep space missions does not substantially complicate their 
hardware design or increase their system cost. 

'!, 

1. Introduction 
In analyzing the performance of coherent receivers of con- 

volutionally encoded phase modulation, one often makes the 
simplifying assumption that the reference signal used for de- 
modulation is perfectly phase synchronized to the transmitted 
signal, Le., one assumes ideal coherent detection [ I ]  . 

In a practical receiver, such as that used by NASA's Deep 
Space Network, the coherent demodulation reference is de- 
rived from a carrier synchronization subsystem, e.g., a type of 
phase-locked loop or Costas loop, resulting in a performance 
degradation due to  the phase error between the received signal 
and the locally generated reference. Since this subsystem 

forms its demodulation reference from a noise-perturbed ver- 
sion of the transmitted signal, the phase error is a random 
process. The manner in which this process degrades the system 
error probability performance depends on the ratio of data 
rate to loop bandwidth, i.e., the rate of variation of the phase 
error over the data symbol interval [2, 31 . 

In this article, the above degradation in signal-to-noise ratio 
(SNR) performance (often referred to  as radio or noisy refer- 
ence loss) is discussed, and it is shown how it can be reduced 
by employing interleaving/deinterleaving. Specific closed form 
results are derived for both discrete and suppressed carrier sys- 
tems and the differences between the two are discussed and 
numerically illustrated. 
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II. Upper Bound on the Average Bit Error 

A. Perfect Carrier Phase Synchronization 

For a convolutionally encoded binary phase-shift-keyed 
(BPSK) modulation transmitted over a perfectly phase- 
synchronized additive white Gaussian noise (AWGN) channel 
(Fig. l ) ,  an upper bound on the average bit error probability is 
given as [ 11 

Probability Performance 

_ x , Z E  c 

where a@, 5) is the number of bit errors that occurs when the 
sequence 5 is transmitted and the sequence 5 # x is chosen by 
the decoder,' p ( g )  is the a priori probability of transmitting 
- x, and C is the set of all coded sequences. Also, in Eq. ( l ) ,  
P(_x -+ 2 )  represents the pairwise error probability, i.e., the 
probability that the decoder chooses 2 when indeed x was 
transmitted. The upper bound of Eq. ( 1 )  is efficiently evalu- 
ated using the transfer function bound approach [ I  ] . 

In general, evaluation of the pairwise error probability 
depends on the proposed decoding metric, the presence or 
absence of channel state information (CSI), and the type of 
detection used, i.e., coherent versus differentially coherent. 
For the case of interest here, namely, coherent detection with 
no CSI and a Gaussian metric (optimum for the AWGN chan- 
nel), it is well known [ l ]  that the pairwise error probability 
is given by 

I where 

(3) 

represents the Hamming distance between x and 2, i.e., the 
number of symbols in which the sequences 5 (the correct one) 
and (the incorrect one) differ. In Eq. ( 2 ) ,  E, is the energy- 

'For simplicity of notation, the sequences & and 2 are assumed to be 
normalized such that their elements take on  values il. 

per-output coded symbol and No is the single-sided noise spec- 
tral density. 

6. Imperfect Carrier Phase Synchronization 

1. Discrete Carrier (No Interleaving). When a carrier phase 
error @(t )  exists between the received signal and the locally 
generated demodulation reference, then the result in Eq. (2) 
is modified as follows. 

Assuming the case in which the data symbol rate 1/T, is 
high compared to  the loop bandwidth BL, then @(t) can be 
assumed constant (independent of time) over a number of 
symbols on the order of 1 /BL T,. In this case, let @(t) = @. Since 
the decoder has no knowledge of @, the decoding metric can 
make no use of this information and as such is mismatched to 
the channel. Under these conditions, it can be shown (see the 
Appendix) that using the maximum-likelihood metric for a 
perfectly phase-synchronized AWGN, one obtains 

(4) 

where h 2 0 is a parameter to be optimized. Note that for @ = 
0, the expression 4h(1 - A) is maximized by the value h = 1/2, 
which when substituted in Eq. (4) yields Eq. (2) as it should. 

Letting p ( @ )  denote the probability density function (p.d.f.) 
of the phase error 4, the average bit error probability is upper 
bounded by2 

Pb < 

where E@ { .} denotes statistical averaging over the p.d.f. 
p ( @ ) .  Using Eq. (4), the statistical average required in Eq. (5) 
becomes 

'Later on a tighter bound for this case is presented by optimizing on A 
prior to performing the expectation over @. 
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2. Discrete Carrier (With In erleaving). Ordinarily, one 
thinks of using interleaving/deinterleaving to  break up the 
effects of error bursts in coded communication systems. One 
can gain an intuitive notion of how it may be applied in sys- 
tems with noisy carrier phase reference by considering the 
cos @ degradation factor as an “amplitude fade” whose dura- 
tion is on the order of l/BLT, symbols. Thus, if we break up 
this “fade” by interleaving to a depth on the order of l/BLT,, 
then, after deinterleaving, the degradation due to  cos @ will be 
essentially independent from symbol to  symbol. From a mathe- 
matical standpoint, this is equivalent to replacing Eq. (4) by3 

dH 

1 ;  cos(bn<0 
n = l  

dH 
; c o s @ n > o  

n= 1 

(7)  

where the @,, variables are independent identically distributed 
(i.i.d.) r andom variables wi th  p.d.f .  p ( @ ) ,  and  refers t o  the  
vector whose components are @ns. The derivation of Eq. (7) 
is given in the Appendix. The expectation required in Eq. ( 5 )  
now involves computation of multidimensional integrals over 
regions of @ corresponding to  the inequalities in Eq. (7). In 
these regions, since the intervals of integration per dimension 
are dependent on one another, the expectation required in 
Eq. ( 5 )  is extremely difficult to  compute. 

Thus, instead we turn to  a looser upper bound on condi- 
tional pairwise error probability, which has the advantage of 
not having to separate the multidimensional integration re- 
quired in Eq. ( 5 )  into two disjoint regions. Indeed, it is straight- 

~ ~ 

3Herein, for simplicity of notation, we drop the dependence of dH on 
x a n d .  

forward to see that the right-hand side of Eq. (7) is upper 
bounded by the exponential in its first line (without the factor 
of 1/2) over the entire domain of @, i.e., {@n E (-n, n); n E Q}. 
Hence, 

- 

which is identically equal to  the Chernoff bound. Now, sub- 
stituting Eq. (8) into Eq. ( 5 )  gives the much simpler result 

3. Suppressed Carrier (No Interleaving). When the carrier 
synchronization loop used t o  track the input phase is of the 
suppressed carrier type (e.g., a Costas loop), then the results 
of Section B.l have to  be somewhat modified since the appro- 
priate domain for @ is no longer (-n, n). In fact, for suppressed 
carrier tracking of BPSK with a Costas-type loop, and assum- 
ing perfect phase ambiguity resolution, @ takes on values only 
in the interval (-n/2,  n/2)  [2 ] .  Thus, the interval of integra- 
tion for the first integral in Eq. (6) becomes (-n/2,  n/2)  and 
the second integral  in Eq. (6) disappears,  i.e., 

The significance of the second integral in Eq. (6) being equal 
to zero will be mentioned shortly relative to  a discussion of 
irreducible error probability. 

4. Suppressed Carrier (With Interleaving). Once again assum- 
ing suppressed carrier tracking of BPSK with a Costas-type 
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loop, and perfect phase ambiguity resolution, one obtains, 
analogous to  Eq. (9); 

111. Carrier Synchronization Loop Statistical 
Model and Average Pairwise Error 
Pro ba bi I ity Eva1 uat ion 

To evaluate Eq. (9, using Eqs. (6), (9), (lo), or (1  l),  one 
must specify the functional form of the probability density 
function (p.d.f.) p(@) of the modulo 2n reduced phase error 
@. For a discrete carrier synchronization loop of the phase- 
locked type,p(@) is given by the Tikhonov p.d.f. [2] 

where p is the SNR in the loop bandwidth 

In order to allow evaluation of Eq. ( 5 )  in closed form, one. 
must recognize that for the case of no interleaving, Eq. (6) can 
be further upper bounded by using (-n, n) instead of (-n/2, 
n/2) in the first integral. Then, making this replacement 

min E @ { P ( ~  -2 19; A) 1 < 
A 

E, 

H No 
PA e p - 4 d  A- 

r r n  1 

4Note that the factor of 1/2 can be included here since for 0 Q I & /  
< n/2; n E q ,  the condition on  the first line of Eq. (7) is always satis- 
fied and thus we need not use the looser upper bound of Eq. (8). 

When Eq. (13) is substituted into Eq. (5). the term I will con- 
tribute an irreducible error probability. i.e., the system will 
exhibit a finite error probability when p is held fixed and 
E, /No approaches infinity. An example of such a system is one 
which apportions a fixed amount of the total available input 
power to a discrete carrier component for the purpose of de- 
riving a coherent carrier reference at the receiver. 

When interleaving is employed, Eq. (9) (minimized over A) 
together with Eq. (12) become 

min E,{P(X+B 19; A)\  < 
h 

For suppressed carrier tracking with a biphase Costas loop, 
p(@) again has a Tikhonov-type p.d.f., which is given by [2] as 

\ O  ; otherwise 

Here p is the “effective” loop SNR which includes the effects 
of S X S, S X N ,  and N X N degradations commonly referred 
to as “squaring loss.” Since suppressed carrier systems of this 
type derive their carrier demodulation reference from the data- 
bearing signal, the loop SNR, p,  is directly proportional to 
%/No; thus there can be no irreducible error probability since 
p -+ 00 when ,!?,/No + w .  Furthermore, for perfect phase ambi- 
guity resolution, it has been shown previously that for no inter- 
leaving, the term I is identically zero since the p.d.f. is zero in 
the region (n/2, n). Thus, the average pairwise error proba- 
bility results become 

I E, 
No 

p c o s 2 @ - 4 d  A -  cos@ d@ 
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for no interleaving and 

for the case of interleaving 

In arriving at Eqs. (13), (14), (16), and (17), we have 
assumed the “same type” of Chernoff bound in the sense that 
in all cases, the minimization over h was performed after the 
averaging over @. The principal reason for doing this is to  allow 
comparison of performance with and without interleaving 
using bounds with “similar degrees of looseness.” For the case 
of no interleaving, one can actually achieve a tighter bound 
than that given above by performing the minimization over h 
on the conditional pairwise probability in Eq. (4).  When this is 
done. one obtains 

1 
2 hopt = - cos @ 

and Eq. (4) becomes 

Unfortunately, the integral of Eq. (19) over the p.d.f.s of 
Eqs. (12) and (1  5) cannot be obtained in closed form. Defining 
the integral 

then, the average pairwise error probabilities are now as 
follows: 

Discrete Carrier 

where I is defined in Eq. (1 3). 

Suppressed Carrier 

Using Eqs. (21) and (22) (rather than Eqs. 13 and 16) will 
result in a smaller improvement in performance due to  inter- 
leaving/deinterleaving since Eqs. (21) and (22) result in a 
tighter bound on Pb (no interleaving). 

IV. Evaluation of Bit Error Probability 
A. Discrete Carrier Tracking 

To evaluate the upper bound on bit error probability, e.g., 
Eq. (5), we use the transfer function bound approach [ I ] ,  
which, for the ideal case of perfect carrier synchronization, 
gives 

1 d  
2 dz pb Q - - T ( D , Z ) I  

z= 1 

where T ( D ,  z )  is the transfer function of the pair-state dia- 
gram associated with the trellis diagram of the code. When 
noisy carrier synchronization references are present, the appro- 
priate upper bound on bit error probability for the case of no 
interleaving becomes 
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where I is defined in Eq. (13) and from Eq. (19), the equiva- 
lent Bhattacharyya parameter becomes 

For the case of interleaving, we use Eq. (23) without the fac- 
tor 1/2 and withD defined in accordance with Eq. (14), namely, 

In arriving at Eq. (26), we have made use of the fact that, for 
any d ,  

Figures 2 through 1 0  illustrate the upper bound on bit error 
probability versus bit energy-to-noise ratio Eb/No ( Eb is related 
to  E, by E, = rEb where r is the code rate) for the rate 1/2, con- 
straint length 7 Voyager code, the rate 1/4, constraint length 
15 Galileo experimental code [4],  the rate 1/6, constraint 
length 15 “2 dB” code [5] , and various values of loop SNR, p .  
In these curves we have assumed carrier synchronization with 
a PLL, i.e., the discrete carrier case.’ On each figure are plot- 
ted the results for the case of no interleaving, the case of inter- 
leaving, and the case of no radio loss, Le., ideal carrier synchro- 
nization. The transfer function bounds (truncated to  15 terms) 
on Pb for the above three codes are given in Table 1. 

One may observe from the results in Figs. 2 through 1 0  that 
even for large values of p ,  e.g., 13 dB, a substantial reduction of 
bit error rate is possible by using interleaving. Also, since the 
tighter bound was used for the no-interleaving case and the 
looser bound for the interleaving case, the performance improve- 

’Also, in the computation of Eq. (24), we have set the value of one- 
half the derivative of the transfer function evaluated at z = 1 to one 
whenever it would normally exceed one. This is allowable since the 
conditional error probability cannot exceed one. Doing so results in 
a tighter bound. 

ment illustrated is, as previously mentioned, somewhat pessi- 
mistic, i.e., in reality, one will do even better than shown. 

B. Suppressed Carrier Tracking 

leaving case is analogous to  Eq. (23), and is given by 
The upper bound on bit error probability for the no-inter- 

with p ( @ )  as in Eq. (15) and D($) as in Eq. (25). For the case 
of interleaving and the tighter upper bound, we again use Eq. 
(23) with, however, D now defined analogous to Eq. (26) by 

where f B  ( p )  is given in Eq. (17). 

Assuming a Costas loop with integrate-and-dump arm filters 
(matched filters), the equivalent loop SNR is given by [2, 31 

E 

L ’ L .  

NO 

where S, denotes the “squaring loss” associated with BPSK 
modulation. Figures 1 1 through 18 illustrate results analogous 
to Figs. 2 through 1 0  for the case of suppressed carrier track- 
ing and variousvalues of BLTb. Since, as already mentioned, in 
suppressed carrier systems there is no irreducible error (since, 
from Eq. (30), p -+ m as Eb/No -+ m), the noisy reference losses 
are much smaller to begin with (Le., no interleaving) than for 
the discrete carrier case. Thus, for sufficiently small B,T,, 
interleaving does not provide significant improvement. We also 
observe from the above figures that the noisy reference losses 
are much larger for the rate 1/4 and rate 1/6 codes than for 
the rate 1/2 code. The reason for this is that for a given Eb/No, 
the value of E,/No is 3 dB smaller for the rate 1/4 code and 
4.77 dB smaller for the rate 1/6 code than for the rate 1/2 
code and thus, from Eq. (30), for the same value of Br, q, the 
equivalent loop SNR is smaller because of the increased 
squaring loss. 
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V. Concluding Remarks the particular convolutional code used and the region of 
operation of the system as characterized by such parameters as 
bit error rate and loop SNR. In some cases, the performance of 
the interleaved system is close to that of the ideal coherent 
detection case. 

It has been shown that by interleaving the transmitted coded 
bits in convolutionally coded systems the radio loss can be sig- 
nificantly reduced. The amount of this reduction depends on 
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Table 1. Transfer function bounds of r = 112, K = 7, r = 114, 
K = 15, and r = 1/6, K = 15 convolutional codes 

m 

r =  1 / 2 , K =  I r = 1/4, K = 15a r = 116, K = 15 

d - 
10 
11 
12 
13 
14 
15 
16 
11 
18 
19 
20 
21 
22 
23 
24 

36 
0 

211 
0 

1404 
0 

11633 
0 

11433 
0 

502690 
0 

3 3 2216 3 
0 

21292910 

35 
36 
31 
38 
39 
40 
41 
42 
43 
44 
45 
46 
41  
48 
49 

6 56 
2 57 

16 58 
8 59 

11 60 
20 61 
24 62 
16 63 

126 64 
180 65 
255 66 
416 6 1  
628 68 
850 69 

1313 IO 

2 
15 

2 
0 

12 
25 
56 
43 
24 
44 
62 
48 
62 

161 
162 

aThis code has been incorporated as an experiment for the Galileo 
mission, I t  is a good code for a concatenated coding scheme but not 
the optimum code from the standpoint of maximizing dr. 
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INPUT 

MODULATOR 

OUTPUT 
BITS 
4 

DECODER 

Fig. 1. System block diagram. 

loo: 

BIT SNR. dB 

Fig. 3. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1/2, constraint length 7 convolutional 
code; loop SNR = 10 dB; discrete carrier. 

BIT SNR. dB 

Fig. 2. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 112, constraint length 7 convolutional 
code; loop SNR = 7 dB; discrete carrier. 
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Fig. 4. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1/2, constraint length 7 convolutional 
code; loop SNR = 13 dB; discrete carrier. 

BITSNR. dB 

Fig. 5. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1/4, constraint length 15 convolutional 
code; loop SNR = 7 dB; discrete carrier. 
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0 1 2 3 4 5 6 
BIT SNR, dB 

Fig. 6. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 114, constraint length 15 convolutional 
code; loop SNR = 10 dB; discrete carrier. 

\\ INTERLEAVING \ '\ 
\ 

I I I I i 
0 1 2 3 4 5 6 

BIT SNR, dB 

Fig. 7. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 114, constraint length 15 convolutional 
code; loop SNR = 13 dB; discrete carrier. 
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l o o i l  
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BIT SNR, dB BIT SNR. dB 

Fig. 8. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1 /6, constraint length 15 convolutional 
code; loop SNR = 7 dB; discrete carrier. 

Fig. 9. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1 /6, constraint length 15 convolutional 
code; loop SNR = 10 dB; discrete carrier. 
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BIT SNR, dB 

Fig. 10. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1 /6, constraint length 15 convolutional 
code; loop SNR = 13 dB; discrete carrier. 

I 
\ \ 

10-7 I I \d 1 
~ 

2 3 4 5 6 7 8 
BIT SNR, dB 

Fig. 11. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1 /2, constraint length 7 convolutional 
code; suppressed carrier; l/BLTb = 10. 
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BIT SNR, dB 

Fig. 12. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1/2, constraint length 7 convolutional 
code; suppressed carrier; l/E,Tb = 20. 

BITSNR. dB 

Fig. 13. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1/4, constraint length 15 convolutional 
code; suppressed carrier; l/E,Tb = 10. 
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BIT SNR, dB 

Fig. 14. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 114, constraint length 15 convolutional 
code; suppressed carrier; l/BLTb = 20. 

1 I I 1 I 

C I  

BIT SNR, dB 

Fig. 15. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1/4, constraint length 15 convolutional 
code; suppressed carrier; l/BLTb = 40. 
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I I I I I -1 

BIT SNR. dB BIT SNR, dB 

Fig. 16. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1/6, constraint length 15 convolutional 
code; suppressed carrier; l/BLTb = 10. 

Fig. 17. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1/6, constraint length 15 convolutional 
code; suppressed carrier; l/BLTb = 20. 
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0 1 2 3 4 5 6 

BIT SNR, dB 

Fig. 18. Upper bound on average bit error probability versus bit 
energy-to-noise ratio for rate 1/6, constraint length 15 convolutional 
code; suppressed carrier; l/B,T, = 60. 
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Appendix 

Derivation of an Upper Bound on the Pairwise Error Probability 
for Convolutionally Coded BPSK With Imperfect Carrier 

I Phase Reference 

Let 2 = ( y , ,  y 2 ,  . . . , y N )  denote the received sequence 
when the normalized (to unit power) sequence of MPSK sym- 
bols = ( x l ,  x2 ,  . . . , xN) is transmitted. A pairwise error 
occurs if 2 = (.̂ , , z2, . . . , zN) # _x is chosen by the receiver, 
which, if the receiver uses a distance metric to make this deci- 
sion, implies y is closer to x^ than to x. Assuming that distance 
metric whichis maximum-likelihoodfor ideal coherent detec- 
tion (perfect carrier phase reference), then such an error 
occurs whenever 

then 

var Re I 

I Since BPSK is a constant envelope signaling set, we have 
1xnI2 = Jzn12 = 1 (assuming a normalized signal) and Eq. (A-1) 
reduces to 

N N 

fl= 1 fl= 1 

Letting nn represent the additive noise in the nth signaling 
interval, and Gfl the phase shift introduced by imperfect carrier 
demodulation in that same interval, then y ,  and x,, are related 
by 

yfl = x n e j @ n t n n ;  n = 1 , 2 ,  . . . ,  N (A-3) 

I Substituting Eq. (A-3) into Eq. (A-2) and simplifying gives 

xn(xn -a)* e]@" 

64-41 

where 7) is the set of all n such that xfl #Tfl. 

Since for an AWGN channel, n, is a complex Gaussian ran- 
dom variable whose real and imaginary components have 
variance 

E([Re (n,)] '1 = E {  [Im(nfl)]21 u2 ( '4-5)  

and the conditional pairwise error probability P(x + 2 19) is 
given by 

I P ( x _ + ~ ( @ )  = Pr - -  

= Q  

where 9 = (G1, G2,  . . . , GN) is the sequence of carrier phase 
errors and Q ( x )  is the Gaussian integral defined by 

(A-8) 

To simplify Eq. (A-7), proceed as follows. For BPSK 
modulation 

and 
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Thus, Eq. (A-7) can be written as Thus, for u > 0, 

where dH(_x, g) is the Hamming distance between 5 and 2, 
i.e., the number of elements in the set 17 (see Eq. 3). 

The argument of the Gaussian integral in Eq. (A-11) is in 
the form u/&. For u > 0, we can upper bound this integral 
by' 

(A- 12) 

Since for any A ,  we have ( a  - 2hb)2  > 0, rearranging this 
inequality gives the equivalent form 

U2 - 2 4Au -4A2b (A-13) b 

'Note that for perfect carrier demodulation, Le., @ = 0, we always have 
a > 0. 

(A- 14) 
1 < T expl-2A [ a  - Ab]\ 

For u < 0, the loose upper bound must be used 

Q(L) = Q (-m) = 1 - Q (L) < 1 (A-15) 
fi 6 fi 

Finally, using Eqs. (A-14) and (A-15) in Eq. (A-11) gives 
the desired upper bound on pairwise error probability as 

(A- 16) 

In Eq. (A-16), use is made of the fact that for the unnormal- 
ized system, 1/2u2 =&/No where E, is the symbol energy and 
No the noise spectral density, and A is replaced by the normal- 
ized quantity Xu2. Also, note that if Eq. (A-16) is minimized 
over A ,  then it is identically in the form of a Chernoff bound. 
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