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1.0 SUMMARY

With the current interest in turboprop-powered airplanes, specific inlet configurations must be

designed that cannot be readily designed by existing procedures. Since existing techniques employ

computer codes for design and analysis for all early configuration development, these codes must

be adapted to the complex geometry of turboprop inlets. These adapted codes must be used in the

design of turboprop inlet/diffuser systems, and the resulting designs must be tested before a great

deal of confidence can be placed in them.

The design procedure discussed in this document employed an adapted design code to design a

series of inlet/diffusers with a fixed system of constraints based on engine-gearbox and overall

nacelle geometry. The design code used the supereUipse to def'me mathematically all cross sections,

and duct centerline shape was a spline fit to a small number of specified end points.

An arbitrary superellipse was defined for the diffuser throat, and the design code transitioned to

the circular cross section at the compressor face. Since the plane of the throat need not be parallel

to the compressor face plane_ it could be canted to one side to accommodate swirl. The superellipse

transition from throat to compressor face was made to follow a specified area progression.

The parametric design involved configurations that would investigate and establish trends in

diffusion rate, cross-section aspect ratio, lip thickness, and shaft fairing geometry.

The results of the test program, run at tunnel Mach numbers to 0.35 and angles of attack to 15 deg,

show that the lower 10% diffusion rate duct provides higher pressure recoveries particularly at

angle of attack. The higher aspect ratio cross-section configuration had marginally higher pressure

recovery than the low-aspect-ratio configuration. The very thin lip configuration separated at low

forward speeds, however, above M=0.2 little difference between the three lips was experienced.

Results indicate that the thin lip provides superior performance to either the very thin or thick

lips. Of the shal_ fairings tested, none were markedly superior indicating that shaft fairing

configuration has a second-order effect on overall performance. The shaft fairing data indicates

that careful design of cumulative diffusion (sum of duct diffusion and local diffusion from the shaft

fairing) may improve compressor face distortion.



2.0 INTRODUCTION

Thecontinuingadvancesin the capabilitiesof three.dimensional flow analysis codes have led to

the reduced use of wind tunnel testing as an inlet development tool. Adding to this trend has been

the increasing confidence in the inlet design procedures, developed over many years, used to design

inlets for commercial airplanes.

With the recent increase of interest in turboprop-powered airplanes, inlets may be required that

cannot be designed by existing procedures. The inlet/diffuser centerline may be highly curved, and

the inlet/throat/diffuser cross-section may be far from round. To develop families of inlet/diffusers

systematically, design codes have been written that subject lip shape, throat and diffuser

cross-section shape, centerline shape, and area progression to mathematical formulation.

Inlet/diffuser systems developed with these codes are designed for high total pressure recovery and

low levels of compressor face distortion; however, since a large experimental data base does not

exist, nor have the flow analysis codes been applied to inlets of these shapes, confidence in the

design codes mLmt be achieved through wind tunnel test correlation (see fig. 1, 2, and 3).

The wind tunnel test covered by this document provides data for this correlation, but because of

the nature of the configurations tested, the parametric variations provide design trends for

beginning the optimization process without a detailed knowledge of the design codes.

The most basicparameters ofinletdesign,inletcontractionratio,throatMach number fora given

compressorfaceMach number (diffusionrate),throataspectratio(height-to-widthratio),and shaft

fairingshape,were variedparametricallytoendeavor toestablishperformancetrendstoaidinthe

initialdesignprocess.
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3.0 SYMBOLS AND ABBREVIATIONS

Semimajor axis of superellipse

Aspect ratio of throat cross section

Semiminor axis of supereUipse

Total rake height

Total height of boundary-layer rake installed

Length

Pounds mass

Exponent in equation for superellipse

Mach number

Exponent in equationforsuperellipse

Pressure

Compressor face total pressure

Freestream total pressure

Radius ..

Radius

Corrected airflow--lb/s

Axial distance

Axial distance

Height above surfacemin

Angle of attack--deg

Angle of yaw--deg

Angle of rotation--clockwise looking aft--deg
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4.0 APPROACH

4.1CONFIGURATIONS

Thedesignrationalefor choosingthe overall nacelle configuration, around which the parametric

configuration variations were developed, was one of picking a configuration accommodating all of

the design variables thought significant. The nacelle configuration was one in a series being

investigated in the preliminary design phase of configuration development.

The design was of a wing mounted tractor installation employing a single rotation propeller and

an offset gearbox. In order to keep the landing gear a reasonable length, while maintaining

adequate propeller-ground clearance, the gearbox output shaft was not parallel to the engine

centerline. This out of parallelism was termed spinner droop (fig. 4 and 5).

The specific design variables used in this study will be discussed in the paragraphs that follow.

4.1.1 Diffusion Rate

Even though little information was available on the relative flow angles in front of and aft of the

propeller disk at angle-of-attack, it was thought that the propeller would attenuate angle-of-attack

effects. In other words, the turboprop inlet in a tractor installation would not see the flow angles

that turbofan inlets do for similar flight conditions. Propeller generated swirl will contribute to

flow angularity at the inlet location, but since no propeller was used in this test, this effect could

only be simulated through yawing the model.

With this thought in mind, it was deemed possible to not only make inlet lips sharper or thinner

but to safely have higher throat Mach numbers. Two of the diffusers were designed for IV[throat= 0.7

resulting in a 16.2% diffusion rate. The third was designed for approximately an Mthroat= 0.6 with

the attendant 10% diffusion rate. The compressor-face Mach number was approximately 0.5 in all

design cases.

4.1.2 Aspect Ratio

The aspect ratio, defined as the ratio of major-to-minor axis of the superellipse that defines the

throat, was approached from the standpoint of minimizing corner effects at the ends of the major

axis and having a diffuser penetration of the outer nacelle surface that would result in a relatively

low-drag, boundary.layer diverter between the lip and the nacelle surface.

It was felt that the highest aspect ratio possible would provide the lowest drag installation because

the inlet can more closely conform to the nacelle lines. The high-aspect-ratio diffuser was designed

with the longest major axis possible without severely compromising the boundary-layer diverter.

Since the major axis at the throat is a circular arc, the outer corners of the inlet and diffuser may

be pulled away from the nacelle surface by making the center of this arc on the opposite side of the

propeller centerline. This results in a larger radius and a flatter arc. This allows the outer corners

of the diffuser to penetrate the nacelle surface further aft with the results of a sharper

boundary-layer diverter. The aspect ratio of this diffuser was 3.7. The exponents for the

supereUipse at the throat were 3.2 and 3.2 (fig. 6).



The low-aspect-ratioconfiguration(aspectratio 2.1)was the lowest aspect ratio design thought

possible with the same diffuser centerline as the high-aspect-ratio duct. The result of having the

same centerline while reducing the aspect ratio made the boundary-layer diverter thinner and

thinner. The superellipse exponents were 3.2.

The lower diffusion rate duct again maintained the same centerline; however, the throat area was

increased to provide the designed diffusion rate. The throat cross-section shape was identical to the

high-diffusion rate, aspect ratio 3.7, duct.

4.1.3 Lip Thickness/Contraction Ratio

The requirements for lip thickness and contraction ratio are dependent upon location around the

inlet. At the inlet crown line section, the lip can be the thinnest because the local flow angle is

dictated by local flow along the spinner surface. At the extreme inlet corner section, the local flow

angularity will be effected by both swirl and angle of attack. At the inlet keel section line, both

angle of attack and swirl effect the local flow angle. Conventional inlet lips are typically thickest

at this point, and this is also the case with the inlets tested here.

The design procedure started with a circle of the appropriate throat area. The lip, with an

appropriate distribution on thickness from crown to keel, was applied to the circular throat, then

the circlewas transformed mathematically to the "bent" ellipse desired at the throat. As a result,

the variable lip thickness and contraction ratio were distributed around the superelliptical inlet.

4.1.4 Shaft Fairing

The basic, nonrotating round shaft fairing presents a nominally acceptable fairing since the flow

passes over the fairing at approximately a 35-deg angle resulting in an elliptical cross section

relative to the flow. Three other shaft fairings were designed with the largest one having a larger

maximum thickness than the round one, but a chord equal to the maximum diameter of the

compressor-face hub fairing (nonrotating). The two intermediate ones ranged down to the least

chord compatible with maintaining nonseparated flows. All shaft fairings had the same maximum
thickness.

4.2 TEST PROGRAM

The test program itself was run in a singularly parametric way (only one variable was investigated

at a time) so that identified trends were pure.

Boundary-layer investigation rakes were fabricated to make it possible to determine boundary

layer thickness and profile shape at locations both inside and outside the diffuser. Of interest were

several locations inside the diffuser as well as the boundary layer immediately upstream of the

boundary-layer diverter.



4°3 INSTRUMENTATION AND DATA

The primary instrumentation in the model was of two types: static pressure taps and total pressure

instrumentation at the compressor face. Static pressure taps were located primarily on the

centerline at the crown and keel and secondarily at the intersection of the major axis and the

sidewalls. These taps were installed to provide data for flow code verification and to provide details
of local flow conditions.

The compressor face total pressure instrumentation was such that the compressor face was mapped

with 240 total pressure measurements. This density was designed to provide detailed, specific

information on the effect of design variables on the flow entering the engine.



5.0 MODEL AND APPARATUS

5.1MODEL SCALE

Thesizeofthe modelwasdictatedby thedesireto useanexistingrotatingcompressorfacetotal
pressurerake.This rake was used previously for inlet development testing, and software for data

acquisition and reduction was in place. The size of the rotating rake (15-in outer diameter)

basically set the model scale when related to the engine-gearbox system used to develop the overall

configuration. This relationship produced a scale factor of 0.168 or approximately one-sixth scale.

5.2 15-IN-DIA ROTATING RAKE

The 15-in-dia rotating rake has the capability of being built up with a range of inner diameters so

that it could represent the compressor face of a wide variety of engine configurations. Typical

utilization of the rake would involve a new centerbody to provide the proper hub-to-tip ratio and

new rake arms. Since each of the four arms had 10 total pressure probes, a complete compressor

face survey comprised of six steps of the rake produced 240 total pressure data points. The arms

were rotated clockwise, looking downstream, by a hydraulic motor fed by 2000 lb/in 2 hydraulic

fluid from outside the tunnel (fig. 7 and 8).

The position of the arms was determined from the output of a rotary potentiometer, and the

closed-loop rake control system, utilizing the signal from the potentiometer, could be programmed

for various rotational steps in the data acquisition process. In this case, the system was

programmed for 15-deg steps.

Two additional rake arms were installed, one at 135 deg and the other at 315 deg (looking aft), for

dynamic pressure instrumentation. Each of the arms was instrumented with five dynamic

pressure transducers (fig. 9).

5.3 EJECTOR

The desire to have airflows through the diffuser system representing takeoff and cruise conditions

made it necessary to augment the airflows that could be achieved from natural ram effects, as well

as providing takeoff airflow with no external flow. An existing supersonic ejector employing 28

primary nozzles and built to be used with the 15-in-dia rotating rake assembly was employed (fig.

10).

5.4 BASIC FABRICATION TECHNIQUES

Since the airloads on the model were not excessive, the maximum Mach number in the test

program was 0.35, the model was fabricated of aluminum and fiber glass/epoxy.

The primary structural frame was of welded and machined aluminum with the outer aerodynamic

surfaces of aluminum skin and fiberglass/epoxy layups.
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The s-duct diffusers were of molded fiberglass/epoxy construction formed around a male mold of

16-1b tooling foam. The male foam molds were cut on a two-head numerically controlled mill

utilizing tapes developed from computer files generated in the duct design process. In this way,

elaborate lofting and template cutting were not required. The ducts were made in two halves for

attachment to the main support structure of the model. The split-plane between the right and left

halves was offset to the right (looking aft) so that a row of static taps could be installed on the

crown and keel centerline. This offset parting plane also facilitated partial disassembly to

photograph internal flow visualization results.

Various lip configurations were machined of solid aluminum, again utilizing numerically

controlled mills, so that no lofting was required. Shaft fairings of solid aluminum were also

machined in this manner. A solid aluminum hub fairing (fig. 11) was designed and fabricated.

5.5 INSTRUMENTATION

Model instrumentation, other than the rotating compressor-face rake, was comprised of static

pressure taps and boundary layer total pressure rakes. Static pressure taps were installed using

stainless steel tubing polished flush with sharp edged holes (fig. 12, 13, and 14).

The boundary-layer rakes were each 1-in high with 20 tubes. They were designed to be easily

mounted in any location by introducing a simple hole in the duct wall (fig. 15).



6.0 TEST PROCEDURE

6.1 EJECTOR CALIBRATION

Because the operating characteristics of the multitube supersonic ejector coupled with the s-duct

diffuser model were unknown, a static calibration of the entire system was run early in the

program. The ejector was run over a complete range of operating primary pressures with the

secondary or compressor face weight flow measured by integrating the compressor face rake

pressures.

The calibration showed that full takeoff weight flow of approximately 26 lb/s could be obtained

with no ram pressure.

6.2 EJECTOR OPERATION WITH TUNNEL FLOW

With tunnel flow, the performance of the ejector was heavily influenced by the effect of ram

pressure ratio. With no tunnel flow, the idle airflow of 6 lb/s could be easily obtained. However, as

the tunnel Mach number increased, the low value of alrflow became impossible to attain. At the

maximum tunnel Mach number model internal airflow was above takeoff levels at all times.

To allowtestingoflower airflowvalues,aflataluminum ringwas attachedtothe end ofthe ejector

diffuserto reducethe exitflowarea to the pointwhere both takeoffand cruiseairflowscouldbe

attainedatthe higherMach numbers.

6.3 ANGLES OF ATTACK AND YAW (SWIRL SIMULATION)

The 10-by 10-fttunnelat theLewis Research Center can vary model attitudeonlyinpitch.To yaw

the model (tosimulateswirl),itmust be rotated90 deg on the supportstingand then pitched.The

pitchmechanism was such thatitpitchedthe model about a virtualcenterwellforwardsothatthe

inletremained near thecenterofthe tunnelat any angleofattack.Pitchoryaw was limitedto 15

deg because ofthe excessivelengthofthe model.

6.4 FLOW VISUALIZATION

Flow visualizationwas accomplished by opening the diffuserand dottingthe interiorsurface

where flowvisualizationwas desiredwith a mixture ofpigment and oil.Internalflowwas initiated

to the desiredweight flowlevel,and tunnelflowwas brought up tothe desiredMach number as

quicklyas possible.Both tunneland model internalflowwas turned offas soon as adequate oil

streakswere obtained.The model was then opened up and photographed.

10



7.0 RESULTS AND DISCUSSION

Since thiswas a basicparametricinvestigation,only one variablewas changed at a time.As a

consequence,each variablewillbe discussedseparately.

7.1 DIFFUSION RATE

At the time of this program, there was no concrete evidence defining the effect of the propeller disk

on local flow in the inlet area at angle of attack. What information that was available indicated

that the propeller disk attenuated the flow angle; i.e., when the nacelle was pitched to 15 deg, the

flow into the inlet only went to, say, 10 deg.

The reduced flow angles that must be accommodated by the inletsystem reduces the burden

imposed on the inlet/diffuserby changes in flow angle from variousflightmaneuvers. Inletlips

may be sharperand throatMach numbers higher.

Design throatMach number forthehigh-diffusionrateducts(16% diffusionrate)was 0.70.For the

low-diffusionrate duct (10% diffusionrate),the design throatMach number was 0.64.These

conditionswere derivedfrom cruiseengine airflowand airplanecruiseMach number.

Figure 16 (athrough e)shows thecompressorfacetotalpressurerecoveryas a functionofcorrected

airflowthrough thecompressorface.For the caseofangleofattack,thedata shows a definitetrend

toward higher pressure recoveryforlower diffusionrates.In other words, higher throatMach

numbers penalizepressurerecoveryperformance.At these low forward speeds,the acceleration

around the lipisgreater,and the higherdiffusionratewould resultin an increasein secondary

flow effects.

Figure 17 (a through f)shows the crown and keel Mach number distributionsas well as the

compressor facetotalpressurecontours.The Mach numbers forthe 16% diffusionduct and the

contourplotsindicateslightlyworse profilesatthe compressorface.Compressor facedistortionfor

the diffusionratecomparison isshown in Figure24.

7.2 ASPECT RATIO

Aspect ratio is defined as the ratio of the minor to major axes of the superellipse defining the

throat of the inlet/diffuser system. The high-aspect-ratio diffuser has a ratio of 3.7 and the low of

2.1. The primary advantages of the low-aspect-ratio configuration are that it allows a sharper

boundary-layer diverter, and the inlet experiences less corner flow subject to the effect of swirl or

yaw.

Figure 19 (a through i) shows compressor face total pressure recovery as a function of corrected

airflow. At zero angle of attack and Mach numbers up to 0.2, the high-aspect-ratio configuration

has an incrementally higher total pressure recovery of approximately 0.1%. As the angle of attack

and Mach number increases, the pressure recovery of the low-aspect-ratio configuration becomes

high.
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Examinationof Figures20 (a throughi) and21 (a throughi), whichdepictwall Machnumber
distributions and compressorface contourplots, show that the higher aspectratio diffuser
consistentlyhadlowerwall Machnumbersdownthe keel with Machnumberson the leeward,
windward, and crown sides similar to those of the low-aspect-ratioconfiguration. The
correspondingcontourmapsshowthe higheraspectratio diffuserto havelargerareasof locally
lower total pressurerecovery,comparedto the low-aspect-ratioduct,at zeroangleof attack and
zeroMachnumber,as well as Machnumberabove0.2. Thesecontourmap trends compare
favorablytothe trendsin evidenceon the pressurerecoveryplots.

7.3LIP THICKNESS

The thickness of the lip, forward of the throat, determines the contraction ratio of the inlet. The

flowfield in the area of the inner inlet lip, that is that part of the inlet nearest the propeller spinner

surface, will experience small variations in local flow angle with airplane maneuver because of the

effects of the cowling and spinner surface. The lower inlet lip, that part farthest from the spinner,

will experience the greatest variation in local flow angle because angle of attack and swirl angle

are relatively unattenuated in that area. The lip on that part of the inlet farthest from the vertical

plane of symmetry experiences primarily crosswind effects. The basis of lip and cowl shape is

shown in Figure 22, and a photograph of all the lips is shown in Figure 23.

With these flow angularity effects, the inlet lips were designed with thickness, or contraction ratio,

to accommodate them. However, the thinnest inlet lip was designed with a constant contraction

ratio around its periphery in hopes that it would provide an end point in design. Lip internal flow
visualization is shown in Figures 24 and 25.

The designprocedurewas tosetup the desireddistributionoflipthicknessaround a circularinlet

of the required throat area, then mathematically transform the throat from a circleto a

superellipse.All throatsuperellipseshad exponents of3.2.Sincethe lipthicknessvariedaround

the circularinlet,the centerlineofthe circularthroatand circularhighlightwere not coincident.A

schematic of this geometry and contractionratiodetailsprior to the transformationinto a

superellipseisshown in Figure22.

The total pressure recovery as a function of corrected airflow plots shown in Figure 26 (a through i)

indicates a strong fall off in pressure recovery with air flow. Wall Mach number distributions and

compressor face contour plots are contained in Figure 27 (a through i). For the thin and thick lips,

forward speed has a negligible effect on recovery. For the very thin lip, the zero forward speed case

indicates severe lip separation resulting in deterioration in total pressure recovery. Once

freestream Mach number was brought up to the M=0.20 level, the performance of the very thin lip

was basically the same as the thin and thick lips. The zero forward speed compressor face

distortion map, for takeoff airflow, graphically illustrates this separation effect (see fig. 27a). Also

shown in this figure are the wall Mach number comparisons for the three lips. The compressor face

map comparison indicates that the crown and sidewalls are similar for all three lips, but for the

very thin lip, the keel indicates complete separation propagating to the compressor face. For all the

forward speed cases, the total pressure ratio curves, as well as the compressor face maps, are

similar indicating that the thin lip would be the better configuration. The compressor face total

pressuredistortionforlipconfigurationsisshown in Figure28.

12



7.4 SHAFT FAIRING

The basic design philosophy for the shaft fairing was to minimize friction and profile drag, while

ensuring that separation did not occur around the shaft or fairing. It must be kept in mind that the

flow over the shaft fairing was at approximately 35 deg to the shaft centerline, resulting in a

smaller effective thickness ratio than the classical one based on thickness divided by chord. The

basic circular shaft, then, actually presented an elliptical section to the diffuser flow. Basic shaft

fairing cross sections are shown in Figure 29, and a photograph of fairings is shown in Figure 30.

The thicknessof allof the shaftfairingswas set by the diameter of the round shaft and an

allowanceforthe thicknessofthe structureofthe fairingplacedaround it.The wetted area and

separationcharacteristicsvariedwith the chord ofthe fairings.Typicalflowoverthe shaftfairing

isshown inFigures31 and 32,and internalductflowshowing the effectofcumulativediffusionis

shown in Figures33 and 34.

The largestfairing,referredtoaslargeon the plots,was designedwith the trailingedge coincident

with the maximum radiusofthe compressor-facehub fairing.The largefairinghad a thicknessto

chordratioof32%, which would presentan 18.4% thickprofilewith the flowtraversingthefairing

at 35 deg tothe shaftcenterline.

The small fairing,whose leading and trailingedges fellshort of the maximum radius of the

compressor-facehub fairing,was 47% thicknormal tothe shaftcenterline,but was 27.1% with the

flow at 35 deg.

The round shaft fairing, with the flow at 35 deg, would present the flow with an elliptical cross

section of 57.3% thickness ratio (see fig. 29).

In Figures 35 (a through f) is shown the compressor face total pressure recovery as a function of

corrected airflow for various freestream Mach numbers, angles of attack, and yaw. All of these

data were taken with a 16.2% diffusion rate, 3.7 aspect ratio, thin lip configuration. These data

show that the large fairing has consistently the highest total pressure recovery. The differences

between the highest and lowest total pressure recoveries for all of the conditions tested was on the

order of 0.1% or less. This indicates that the configuration of the shaft fairing over fairly large
limits does not have a first-order effect.

Figures 36 (a through g) and 37 (a through g) show the wall Mach number distributions for crown,

keel, windward and leeward walls, and compressor face total pressure contour maps for the three

shaft fairing configurations at various corrected airflows and freestream Mach numbers.

The wall Mach number distributions show little or no variation with shaft fairing configuration.

Predictable variations, in wall Mach independent of configuration, occur as a function of

freestream Mach number or corrected airflow. Angle of attack or yaw did not have an appreciable
effect on wall Mach number distributions.
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The compressor face total pressure maps provide more insight into what is actually taking place in

the flow around the shaft fairings. The wake behind the round shaft fairing (or elliptical cross

section relative to the flow) indicates that separation behind the fairing impacts the compressor

face map in the top of the annulus and was the primary contributor to the lower total pressure

recovery experienced by that configuration. The upper annulus part of the maps, for both small

and large shaft fairings, reflects the different wake characteristics of the two fairing

configurations. The large shaft fairing appears not to have separated, and the "stem" at the top of

the map shows typical wake characteristics from normal boundary layer growth on the fairing.

The "stem" on the maps for the small shaft fairing indicates that some separation occurred further

forward on the aft surfaces of the fairing, but the flow in the wake has accelerated back toward the

overall compressor face Mach number. The trailing edge of the large fairing is closer to the

compressor face, and the wake has not had a long enough distance to decay.

As the freestreamMach number increased,the wake characteristicsbehind the large fairing

remained relativelyunchanged. However, the "stem" behind the smallfairingdecreasedin width

and disappeared.Of interestisthe thickeningofthe boundary layeron the hub fairingjustatthe

base ofthe "stem" This was interactionofthe separatedwake from the fairingwith the boundary

layeron the hub fairing.

The two bulges at the top of the annulus were apparently the result of secondary flow effects which

were considered quite strong in diffuser configurations such as these. Compressor face total

pressure distortion, as a function of shaft fairing configuration, is shown in Figure 38.

7.5 BOUNDARY LAYER

The boundary-layerprofiles,coupledwith flow visualizationphotographs,graphicallyillustrate

detailsofthe flow,particularlyin theregionsaround the shaftfairing.Boundary-layerprofilesare

given in Figures39 (athrough h) and 40 (athrough d).

The boundary-layer profiles for the aft most rake position (X/L=0.703) show a flat vertical profile

indicating, at least locally,, separated flow. The flow visualization photographs show fairly large

separation bubbles on either side of the shaft fairing toward the trailing edge. This phenomena

was apparent early on in the program and was considered the source of the "bulges" in the upper

two quadrants of the compressor face maps.

The boundary-layerprofilesforward ofthe separationbubblesindicatefullydevelopedturbulent

boundary layers.

The cause of the separation bubbles was considered to be the combined diffusion. In other words,

the local sum of overall duct diffusion and that associated with that part of the shaft fairing aft of

the point of maximum fairing thickness. Since the "bulges" appear on nearly all of the compressor

face maps, it may be necessary to locally contour the walls to relieve the local diffusion rate in

these areas. Eliminating these "bulges" should have an appreciable impact on total pressure

recovery and compressor face distortion.
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8.0 CONCLUSIONS

Based on the resultsofthe overallprogram, itmay be concludedthat:

(1) The analytical design codes, as adapted for the complex geometry of turboprop inlets, are
suitable for use.

(2) The 10% diffusion rate configuration had slightly better performance than the_16.2%

configuration, suggesting that conventional, lower, diffusion rates are a preferable choice.

(3) The lower aspect ratio cross-section configuration had marginally superior performance,

particularly with respect to compressor face distortion.

(4) The three lip configurations tested all provided acceptable performance at Mach numbers

above 0.2. Below this value the thinnest lip separated with attendant loss in total pressure

recovery and increase in distortion. The intermediate thickness lip was deemed the better of
the three.

(5) Of the three shaft fairing configurations tested, all presented a faired surface to the flow since

the flow crossed the shaft at approximately a 35-deg angle. This resulted in even the round

shaft presenting an elliptical section to the flow. Test results indicated that the smallest of

the two airfoil shaped failings was superior because of minimal wake, small wetted area, and

the least aggregate duct diffusion.

The adapteddesigncodesprovidedconfigurationsthatresultedinacceptableperformanceinterms

of distortionand totalpressurerecovery.Further configurationoptimizationmay be achieved,

withoutcode modification,by utilizingestablishedtrendsto refinedesigninputs.
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Figure 30. Small and Large Shaft Fairings (the Largest Was Not Tested)
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Figure 31. Flow Visualization Streamlines Over Large Shaft Fairing and Compressor-Face
Hub Fairing
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Figure 32. View of Round Shaft and Compressor-Face Hub Fairing
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Figure 33. Internal Duct Left Side Showing Separation Bubble (Shaft Fairing Removed for
Photography)
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Figure 34. Internal Duct Right Side Showing Separation Bubble
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Figure 39. Diffuser Boundary-Layer Profiles for 16.2% Diffuser and 3. 7.Aspect-Ratio Duct
With Thin Lip and Large Shaft Fairing

96



e = 315 deg

b) Mach number .102
Angle of attack 0 deg
Angle of yaw 0 deg
Airflow 16.9 Ibis (7.67 kg/s)

Compressor face

1180 deg

L =42.16 in !
(1.07m)

L

X/L = 0.373

Nondimensional .6

height
above wall, .5
Y/H

.4

1,0 w

.9' J

.8

.7 !

.3

I.

080 .84 .88 .92

Probe total pressure / PTO

.96 1o00

Figure 39. Diffuser Boundary-Layer Profiles for 16.2% Diffuser and 3. 7-Aspect-Ratio Duct
With Thin Lip and Large Shaft Fairing (Continued)
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® = 300deg

c) Mach number .102
Angle of attack 0 deg
Angle of yaw 15 deg
Airflow 18.7 Ibis (8.48 kg/s)

Compressor face

Rake --_

270 d__ d_

! 180 deg L I
X/L = 0.373

1.0

Nondimensional

height
above wall,
Y/H

.9

.8

.7

.6

.5

o4

.3

.2

.1

0 _"
.80

.J
,J

f

J

f

J

.84 .88 .92 .96 1.00

Probe totai pressure / PTO

Figure 39. Diffuser Boundary-Layer Profiles for 16.2% Diffuser and 3.7-Aspect-Ratio Duct
With Thin Lip and Large Shaft Fairing (Continued)
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® = 315 deg

d) Mach number .102
Angle of attack 0 deg
Angle of yaw 15 deg
Airflow 18.7 Ibis (8.48 kg/s)

Compressor face

d_._ deg

1180 deg

X/L = 0.703

L =42.16 in I
(1,07m) I

L , I

I. I
I- X =1

1o0 ¸

.9

.8

.7

Nondimensional

height
above wall,
Y/H

.6

.5

.4

.3

.2

.1
Ir

if

If

080 .84 .88 .92

Probe total pressure / PT0

.96 1.00

Figure 39. Diffuser BoundaryoLayer Profiles for 16.2% Diffuser and 3. 7-AspectoRatio Duct
With Thin Lip and Large Shaft Fairing (Continued)
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e = 300 deg

e) Mach number .203
Angle of attack 0 deg
Angle of yaw 0 deg
Airflow 18.5 Ibis (8.39 kg/s)

Compressor face

Rake ,__e

270 deg_ deg

1180 deg

.1:---'1 • .I

X/L = 0.373

1.0

Nondimensional

height
above wall,
Y/H

.9

.8

.7

.6

.5

.4

.3

.2

.1

0 *
.80

f

J
r

J

)
I.

tl,

.84 .88 .92 .96 1.00

Probe total pressure / PT0

Figure 39. Diffuser Boundary-Layer Profiles for 16.2% Diffuser and 3. 7-Aspect-Ratio Duct
With Thin Lip and Large Shaft Fairing (Continued)
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® = 315 deg

f) Mach number .203
Angle of attack 0 deg
Angle of yaw 0 deg
Airflow 18.5 Ibis (8.39 kg/s)

Compressor face

Rake

X/L = 0.703

L =42.16 in I
(1.07m) tL

I1: X =I

Nondimensional

height
above wall,
Y/H

1.0

,8 _

.7 t.6

.5 i

.4

.3

•2 J'

.1

0
.80 .84 .88 .92 .96 1.00

Probe total pressure / PT0

Figure 39. Diffuser Boundary=Layer Profiles for 16.2% Diffuser and 3. 7-Aspect-Ratio Duct
With Thin Lip and Large Shaft Fairing (Continued)
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e = 300 deg

g) Mach number .203
Angle of attack 0 deg
Angle of yaw 15 deg
Airflow 17.0 Ibis (7.71 kg/s)

Compressor face

Rake .=_e

' 1180 deg

X/L = 0.373

1.0

.g

.8

Nondimensionai

height

above wall,
¥/H

.7

.6

.5

.4

.3

.2

.1

e

0
.80

f

J

.84 .88 .92 .96 1.00

Probe total pressure / PT0

Figure 39. Diffuser Boundary-Layer Profiles for 16.2% Diffuser and 3. 7-Aspect-Ratio Duct
With Thin Lip and Large Shaft Fairing (Continued)

102



e = 315 deg

h) Mach number .203
Angle of attack 0 deg
Angle of yaw 15 deg
Airflow 17.0 Ibis (7.71 kg/s)

Compressor face

Rake

270 de_O d_J

1180 deg

X/L = 0.703
t.,_=--.-- X

L =42.16 in
(1.07m)

L

1.0

.9

.8

.7

Nondimensional .6

height
above wall, .5
Y/H

.4

.3

.2
Ik

.1

0
.80 .84 .88 .92 .96 1.00

Probe total pressure / PT0

Figure 39. Diffuser Boundary-Layer Profiles for 16.2% Diffuser and 3, 7oAspect-Ratio Duct
With Thin Lip and Large Shaft Fairing (Concluded)
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a) Mach number .353
Angle of attack 0 deg
Angle of yaw 0 deg

Airflow 23.2 Ibis (10.52 kg/s)

Compressor face

Rake _,_

O = 0 deg 270 deg_l deg

180 deg

X/L = 0.024

1.0

.9

Nondimensional

height
above wall,
Y/H

.8

.7

.6

.5

.4

.3

.2

.1

%5

J

J
,e

J

/
/

/.
i"

/

.96 .97 .98 .99 1.0

Probe total pressure / PT0

Figure 40. Spinner Boundary-Layer Profile for 10% Diffuser and 3. 7-Aspect-Ratio Duct With
Thin Lip and Small Shaft Fairing
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b) Mach number .304
Angle of attack 0 deg
Angle of yaw 0 deg
Airflow 20.81 Ibis (9.44 kg/s)

Compressor face
Rake _ , e

® = 0 deg 270 de__0
deg

180 deg

JK
-_ .1:- _ I_o_1

X/L = 0.024

Nondimensional

height
above wall,
Y/H

.8 ¸

.7

.6

.5

.4

.3

.2

.1

o.95 •96 .97 .98 .99 1.0

Probe total pressure / PT0

Figure 40. Spinner Boundary-Layer Profile for 10% Diffuser and 3. 7-Aspect-Ratio Duct With
Thin Lip and Small Shaft Fairing (Continued)

105



c) Mach number .203
Angle of attack 0 deg
Angle of yaw 0 deg
Airflow 14.9 Ibis (6.76 kg/s)

Compressor face

Rake _g

® = 0 deg 270 d_90 deg

180 deg

X,L'T'_ L ,(T_(1.07rn) I

X/L = 0.024

1.0

Nondimensional

height
above wall,
Y/H

.9 -----_

.8

.7

.6

.5

.4

.3

.2

.1

0
.95

J
.96 .97 .98 .99

Probe total pressure / PT0

/

1.0

Figure 40. Spinner Boundary.Layer Profile for 10% Diffuser and 3. 7-Aspect-Ratio Duct With
Thin Lip and Sma/I Shaft Fairing (Continued)
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e = 0 deg

d) Mach number .101
Angle of attack 0 deg
Angle of yaw 0 deg
Airflow 7.6 Ibis (3.45 kg/s)

Compressor face

Rake _e

270 d_ dag

H80 deg ,c-i_._ (1.07m) I• .I

X/L = 0.024

.8:

Nondimensional

height
above wall,
Y/H

.7

.6'

.5

.4

.3

.1

95 .96 .97 .98 .99 1.0

Probe total pressure / PT0

Figure 40. Spinner Boundary-Layer Profile for 10% Diffuser and 3. 7-Aspect-Ratio Duct With
Thin Lip and Small Shaft Fairing (Concluded)
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TYPICAL SUPER-ELLIPSE

CROSSECTION_I "UNBENT" _
i

m-J DEFINED BY
CENTERLINE
COORDINATES

YC

STA

(STA; YC)

MAJOR AXIS BEND RADIUS IS 37 INCHES FULL SCALE.

RADIUS IS == AT 50% OF CENTERLINE LENGTH

CENTERLINE

SLOPE YC' "
Z_YC

Z_STA

TYPICALDUCT SIDE VIEW

Figure A-1. Sketch of Duct for Geometry Definition
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Table A- 1. Low Aspect Ratio S-Duct_16.2% Diffusion (Continued)

THROATTO COMPRESSOR FACE Oimm_si_s ;n Inches - Full acal,

CENTERLINE COOROINATES CENTERLJNE SLOPES SUPER ELLIPSE CROSS

EQUATION VARIA8LES EECTIONAL

-2.511t

02.1Y24
-t01454

010522_
"1.2241
-v.$SJ6

-_.712b
-e._a]o

-O,|S_7
"q.i142
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Table A-1. H/gh Aspect Ratio S-Duct-- 10 % Diffusion (Concluded)

THROAT TO COMPRES3OR FACE Dimemio_ in Inches. Full _:aJe

CF=NT'ER f,,JN E COOROINAI"T_
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Table A-2.

i

.@_._,?007, QU__LITY

High Aspect Ratio Duct--16.2% Diffusion Thick Lip Inlet Configuration Lines

$TA
i

-6t1.83333
.0o.|3:00
.42.40201
.84.0275o
.66.43357
.e8.08133
.iT.,is91
.01.$6009
.60.26224
-69.82912
-70.2|103
-70.03681
-70.91439
*71.11003
-71.20360
*T1.33100
-71.36425

Dimensions in inches - Full Sca_

COWL -- Trailing Edge to HighiZght

CROWN

Y

-16.36761
o15.31|10
-f6.26003
-16.20641
-16.35495
-18.44701
,15.66102
*15.6|$34
-IS.62050
-15.16304
-10.065|3
-18.21469
-15.33915
-18.4600|
-10.67455
*16.01o0e
-10.70764

5"I"A

-01.02148
-42.31709
-03,$6703
-46.30062
-46.74090
-47.|3401
-46.$3806
-06.78212
-?0.43065
-70.98674
-71o36678
-11.71753
-71.04752
*72,14908
-12.27071
-72,33527
-72,34600

KEEL

.

-$1.38414
-31.11811
-30.66264
-30.00104
-30.296|1
-20.|0439
-29.70156
-29.42781
-2|.17563
-20o04685
-26.73708
-2|.54810
-21.37716
-2|.22308
-26.o6539
-27.90551
*27,|7429

LIP - Highlight to Throat

114

CROWN

STA

-T1.3|425
*ti.3|583
-71.37707
*71.35780
-71.32520
-71,28217
*71.22357
*71,14|41
-T1,05400
-70.03752
-T0.79510
"T0.52273
-70.41505
-70.16|06
*09.|7112
-t9.50462
-66,91415
-47.82820

Y

-15.70705
*18.|444|
-15.|2242
-17.00160
-17.0123|
-17.10471
*17.24|08
-17.334o0
-17,43oni
-17.50758
-17.50388
-17.87103
-17.75111
_17.|3215
.17.100o7
-17.15520
-I$.01644
-16,12612

KE£L

STA Y

-72.
-72.
-72.
-72.
*72.
*72.
*71 •
-T1.
-71.
-71.
-'tO.
*TO.
-T0.
-e'O.
-et}.
-(Jl.
-45.

35500
33516
20255
22745
13613
02282
07633
70216
40073
24051
94141
61234
23200
11020
36275
00650
37374

-27.17429
-27,76040
-27.54612
-27.53729
-27.427|7
-27.32001
-27.21415
-27,11104
-27.01109
-26.81042
-20.13296
-25.7$653
*20.60e85
-20.66679
-26.038|I
-20.64137
-28.871|6
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Table A-3. High Aspect Ratio Duct--16.2% Diffusion Very Thin Lip Inlet

Configuration Lines

Dimension in Inches - Full Scale

COWL - Trailing Edge to Highlight

STA

-64.33655
-64.97638
-65.74897
-66.53190
-67.27586
r67.95379
-68.55207
-69.06759
-69.50276
-69.86379
-70.15776
-70.39207
-70.57276
-70.70552
-70.79466
-70.84328
-70.85448

Y

-30.24138
-30.16103
-30.02259
-29.84328
-29.63621
-29.41362
- 29.18517
-28.95862
-28.73862
-28.52845
-28.32983
-28.14379
-27.97034
-27.81034
-27.66431
-27.53517
-27.43552

LIP -Highlight to Throat

STA Y

-70.84241
-70.81759
-70.77966
-70.72776
-70.66052
-70.57672
-70.47431
-70.35138
-70.20586
-70.03586
-69.84052
-69.61931
-69.37414
-69.10810
-68.82707
-68.53879
-65.82448

-27.36931
-27.30397

-27.23948
-27.17586
-27.11310
-27.05155
-26.99155
-26.93397
-26.87966
-26.83000
-26.78672
-26.75172
-26.72741
-26.71586
-26.71845
-26.73621
-26.87328
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Table A-4. High Aspect Ratio Duct--16.2% Diffusion Thin Lip Inlet Configuration Lines

Dimemk_'_ in in_es. Full Sc_dt

I
COWL -- Trai|_g Edge to H[ghi[gttt

i

CROWN

STA Y

-Q1.55017
-_2.44890
-_3.53452
-_4.626_S
-e5.6S2S6
-68.S7320
-67.37389
-69.0543S
-_1.822g!

-69.472|2
-49,7766g
*70.0t480
-;0,|2430
-70.32104
-7o,_989e
,7o,4294l

-16.S1227
-15.2S249
-18.2804=
-15.212g0
-18.353e8
-18.48:$1
-15,57405
-18.7o94e
-15.94510
-15.|1572
-le.12S4t
-18.28259
-16,39579
.le.s24o9
-18.84517
-16.75929
-18.95119

KEEL

STA y

*12.lg061

*+4.98551
*#8.92563
-68.|2346
-17,11271
-+8.8903T
-+1.22781
*+1.78+35
-70,20028
-70,58097
-70.12710
-71.03147
.71.tg2ge
-71.29659
-71.35388
-71,3877o

-+O,e|+2l
-I0,82829
-80.3495|
-I0.12715
-|I,II01+
-2g.82185
-2g.$8423
-21,t1885
-21,II0+I
*21.99o8e
-|1.48890
-29,281g0
-|1.09837
-27.1:998
-2T.Tgg01
-27,97187
-27,57599

LIP -- Highlight to Throat

|

STA

-70,4294!
-70,4300_
-t0.42223
-7g,4_260
-70.37|42
-70,321:3
-70.20874
-TO.t9357
-70. ^ +0,9.4

-_9._a789
-69,400_2
-6P.21322

-6_.54999
-qT.9593_
-_7.62529

CROWN

Y

-18,18111
*1B.92902
*17.00599
*17.08820
-17.19S92
-17.24928
*17.38220
-17.41783
*17.8041S
*17.5910g
*!7,87739
-17.78t58
*!7.94171
-.17.g1671
-17.t9181
*|1.03974
-|9.099gl
-19.12112

KEEL

STA

-71,39770
-71.=5209
-71.32010
-71.27|09
-71.203g=
-71.11710
-71.00191
-70,17817
-70,717t_
-70.52907
-70,30946
-70,05_79
-99,77090
-6g.4537!
-99,10979
-69,748_|
-49,31374

Y

-27,$7S9g
.*27.4g028
-27.40898
-27,_2283
-27.24028
-27,159t7
-27,0798|
-27.00208
-28,12781
-28.18723
-28.70=00
-28.7_70_
-29.89193
*28.08064
-20.848SI
-28.84895
-2e,e7119

116 ORIGINAL PAGE IS

OF POOR QUALITY



Table A-5.

ORZGIHAL PAGE IS

OF POOR QUALITY

Low Aspect Ratio Duct--16.2% Diffusion Thin Lip Inlet
Configuration Lines

Dimensions in !nd_ - Full Sc_Je

COWL - Trailing Edge to HZ_hlrght

-01.37220
,62.20104
-e3.21137
-64.24527
-45.23716
-88.14gS8
-48.9832g
-67.87200
-68.27771
-81.71700
-89,20840
-80,$$087
-8g,$2151
-70,028S8
-T0,17812
-70,28724
-T0,30482

Y

-13.27eo4
-13,23728
-13,241o2
.13.298oo
-13,3|317
-13,$2552
-13.81835
-13.18105
-14.04842
-14,23813
-14.42628
-14.81412
-14,79T81
®_4.97498
-15,14397
-15.30047
-15,42722

STA

-43,08158
-83,||159
-44.15841
-48,18403
-88,|8410
.e7.73o21
-e|.5039T
-¢9.17141
-81,73573
-70.20435
-70,58632
-T0.88077
-T1,12593
-71.29tT4
-T1.414TO
-71.47797
-71.4922|

KEEL

Y

-12.OOTSf
-32.88373
-12,31481
-33.18182
-11,1121!
-31,59323
-31,29548
-$0.99942
;30,71181
-3O.4304=
-30.175D0
-22,|3158
-29.703T$
-29.49322

• -22.30115
-39.13109
-21.|9915

LIP -- Highligh_ to Throat

CROWN

STA

-70,304|2
-TO ,30841
-T0,39788
-T0,27S011
-T0 °24604
-T0,2027S
-10,14418
-TO,OOIOI
-SO, 97488
-09.18109

• ®89.71581
-Bgo t54331
..69.33824
-89 °08884
®86,79171
-el,42541
-87 ° 13477
-87.40181

Y

-18.42722
-lS.$0408
-18,81200
-I$.08123
-18.74198
-18,1242g
-15,10824
-18,99308
-18.01010
-18.18713
o10.35343
®18.33700
-18.41775
-18.40175
-18,$8788
-18,8147|
-10.87502
-18,70418

KEEL

STA Y

-11,41221
-71.47888
-T1,4444|
-T1.39887
-71.32181
-71,24f0|
-TI.13319
-71,00078
-70.|4177
_70,$8388
-70.43404
-70.11137
-eI,10841
-60,57129
-69,2343T
-65,87109
-81,40132

-|1.19i15
-21,91422
-21.82gll
-21.74641
-|1.88422
-21,81313
-21,50354
-21,42803
o21,35147
-21°21120
-21.21698
-21,16091
=2g.11589
-28.0844g
-21,08047
-25.07291
-21,09514
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Table A-5. High Aspect Ratio Duct--l O% Diffusion Thin Lip Inlet Configuration Lines

(Concluded)

Oimer_ons In Inches - Full Sclk

STA

-11,_|O41
-62.24776 "
-e_;37272
-e4.S0484
-0$.$67$0
-68.$2155
-e7.3$111
-OI.05031
-e|.04S46
-e0.13019
-49.82846
-69.1410S
-70.01771
-70.27_79
-70.40514
-f0.4151l
-70.6174=

COWL --Tra_ing Edge to Highlight

CROWN

Y

-ll.OS84S
-11.00313
-14.1114S
-IS_02499
-16.0083S
-1S.20210
-16.S2887
-ls.443:o
-f|.$0767
*IS.TS$=I
-18.1|111
-16.04017
*1e.17;=I
-I0._1110
-16.43787
-18.$64i0
-16.88011

STA

-e2.7o$47

-64,741s|
-e6,1|o4T
-4e.I144|
-67,10600
-il.O013S
-t1,2710T
-19,12723
-7o.279oe
-T0.04_40
-T0.129S_
-TI.|4866
-T1.$0166
-TI.41602
-TI.4T511
-TI,41972

KEEL

Y

,lO.9J|O!
-I0.1207:
-|0.637|1
-_0.40790
-$0.1Sli0
-29,IIS:4
-21,81060
-2!.16001
-|9.11622
-II.IITil
-21.87021
-|1.4115l
-29.$0210
-21.1_966
-27.99215
-27,162T0
-27.76346

LIP -- Highllg_ to Throat
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CROWN

STA

-70.81743
-70.$1006
-70.50900
-70.419TI
-70.46134
-TO.4116S
-70.3S00_
-70.21303
-T0.17S20
-70.05450

-_9.00e04
-69.72032
-69.$|374
-60.2S717
-68.04040
*es.s6001
-6T.9S718
-47.61272

Y

*le.e6oll
-Io.72o13
.|6.11o40
.|6,8020o
.|o,91025
.17.oe151
*17.14|40
-17.23701
-!7.$2673
-IT.41683
-17.60026
-17.69347
-17.87e$3
-17.75321
-17.02140
-17.10009
-17.04_11
-17.173_1

ETA

-71.4egT2
-71.41:S3
-71.440_0
-71._1960
-T1._2001
-T1.2_003
-71,11751
-TO.|I03I
-70,11S64
-70.42070
-70.30314
-70.13132
-6900350T
-eo.$o0=9
-60.14009
-60.7735e
"II.31T21

KEEL

Y

-27.Te$4s
-27.$74T2
-27.$1725
-2T.$oool
.27.4150e
-21.$31o3
-27.24Ole
-27o|0003
-27.09151
-27.01076
-25.0S220
-20.10410
-26.84746
-20.61404
-20.70e_7
-26.80293
-26.1260g
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Table A-6. Shaft Fairing Configuration Lines

SMALL SHAFT FAIRING

X Y

.04241
°60345
o10586
.21172
.42328
.63500
.84672

1.27000
1=69345
2_11672
2.5400
2.96345
3.38672
3°81O17
4.23345
4°65672
5.08017
5.50345
5.92690
6.35017
6.77345
7.19690
7.62017
8.04362
8.46690

.40810
.49621
.63276
.87362

1.18776
1.40328
1.56466

• 1.78603
1.91707
1.98517
2.00534
1.98759
1.93897
1o86466
1076897
1.65483
1 °52483
1.38086
1.22431
1.05603

.87655

.68586

.48379

.26948

.04207

LARGE SHAFT FAIRING

X Y

.1551Z

.31207

.62241

.93448
1.24483
1.86724
2.48966
3°11379
3.73621
4.98103
6.22586
7.47069
8.71552
9.96207

11.20690
11o82931

.63276
.87414

1.18793
1.40345
1.56379
1.78621
1.91724
1.98448
2.00517
1.95517
1.76897
1.52414
1.22414

.87586
.48448
.26897

K
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