
ORIGINAL PAGE IS
OF POOR QUALITY N89- 1981 8

'I' H E S C H I? 1) U I, I N G 'I' I? C' I-I N I 0 IJ I' S 0 I' I< S I' 2

John P. Jaap
and

Elizabeth K. Davis

Mission Integration/EL22
Marshall Space Flight Center

Huntsville, A 1 35812

ABSTRACT

The Mission Analysis Division of the Systems
Analysis and Integration Laboratory at the
Marshall Space Flight Center has developed a
robust automatic scheduler which can produce
detailed schedules for the multi-step
activities required for payload operations
on the Space Station. This scheduler, a
part of the Expert Scheduling Program
(ESPZ), has five components: the book-
keeper, checker, loader, selector, and
explainer. The bookkeeper maintains the
usage profiles for nondepletable resources,
consumables, equipment, crew, and the times
of all the steps for the payload activities
for several different schedules simultan-
eously. The checker searches the data
maintained by the bookkeeper and finds times
when the constraints of each step of an
activity are satisfied. The loader is an
expert system which uses the techniques of
forwardchaining, depth-first searching, and
backtracking to manage the workings of the
checker so that activities are placed in the
schedule without violating constraints (such
as crew, resou~ces, and orbit opportuni-
ties). The selector has several methods of
choosing the next activity for the loader to
schedule; new methods using rule-based
technology are being studied. The explainer
shows the user why an activity was or was
not scheduled at a certain time; it offers
a unique graphical explanation of how the
expert system (the loader) works.

INTRODUCTION

The Experiment Scheduling Program (ESP) has
been used to schedule the payload activities
of most Spacelab missions and several
partial payloads. For Space Station,
features are being added to ESP that will
automate many of the tasks that now must be
done by an expert user. New strategies,
rules, and capabilities for scheduling are
being developed. A new name, the Expert
Scheduling Program, and a new acronym, ESP2,
have been adopted to emphasize the improve-
ments being made to the program. These
improvements are integrated into this
presentation.

Before a description of the scheduling
process is given, a few facts about the
input data should be stated. The input
database to ESP2 contains a mission model,
multiple payload activity models each with
multiple steps, and the orbit opportunity
timelines required by the activity models.
The paper entitled "Space Station Payload
Operations Scheduling with ESP2" published
concurrently with this paper describes the
activity modeling capabilities. The program
converts the activity requirements to
feasibilitytests, availabilitywindows, and
backtracking rules. The synthesis of the
availability windows and backtracking rules
into a schedule is the focus of this paper.

THE SCHEDULING PROCESS

When generating a trial schedule, ESP2 first
initializes the schedule. Then it begins
the "select, check, insert" loop which
continues until all requested performances
are attempted. The checking process is
based on calculating windows which are
nested in a hierarchy such that each lower
window is totally contained within the
window above it. At each level of the
hierarchy, a window may contain many windows
at the next lower level, and each of these
may contain many windows. Checking of
constraints begins at the topmost window and
proceeds downward and across. When an
acceptable window is found, checking
proceeds immediately to the next lower
level. If, at any level, an acceptable
window cannot be found, the window above it
is failed, and the next window at the level
of the failed window is deEined. This
technique is a micro-example of depth-first
searching. Checking is successfully
completed whenever an acceptable window is
found at the bottom level. Checking fails
whenever another window at the top level
cannot be defined. Models with two-way
concurrency (mandatory concurrency) are
processed simultaneously. There are eleven
different types of windows within the
hierarchy. Five of these apply to the
entire performance and six apply to each
step of the activity model. The windows for
each step are independently nested; i.e.,
the crew subwindow for step 5 of a model is

1

ne s t ed w i t h i n nonde p 1 e tab 1 e iequ i pme n t
subwindow for step 5, but is not nested
within any of the windows for the othei
steps on that model. If a model or s t p p
does not have a particular requirement, the
associated window is set equal to the next
higher level window.

The scheduler is described by presenting
on a step-by-step basis how an expert
mission planner would do the task manually
and then by showing how this approach is
implemented in ESP2. Since the scheduler
emulates how an expert would do the task
manually it meets the primal definition of
an "expert system." When explaining the
scheduling process, it is convenient to
start at the bottom (the bookkeeper) and
work upwards to the selector.

Figure 1 shows the major components of the
program (only ESP) and their interfaces.
While the primary purpose of the bookkeeper
and the checker is to support the loader,
they also support other features of ESP2
such as retrieving a previously generated
schedule from a file, schedule editing,
schedule validating, and automatically
resolving conflicts.

the

I
1 USER INTERXCTIOh' L

I

S E L E C T O R ~ E X P L A I N E R 1.1
LOAD€ * EDITOR

/
CHECKER

1

1

f BOOKKEEPER

Figure 1. Major Components h Interfaces

THE BOOKKEEPER

Assume that a mission planner wants to
schedule some activities which require
power. Also assume the planning period is
one week and the available power is 10.0
kilowatts. The planner would initialize a
table like the one shown in Figure 2 with
the initial time and value and the final
time and a value of zero. The table is
read: beginning at time O / O O : O O : O O (zero
days, zero hours, zero minutes, zero
seconds), the power available is 10.0
kilowatts; at 7/00:00:00, the power avail-
able changes to 0 .0 kilowatts.

Suppose that an activity is scheduled from
1/13:45:00 to 3/16:00:00 using 2.5 kilo-
watts of power. Also suppose that another
activity is scheduled from 4/03:28:45 to
4/09:00:15 using 3.75 kilowatts of power.

FOUK new times are inserted into the table
showing the reduction and restoration of
power by each activity.

The process becomes more intricate when
activities overlap each other. Assume that
another activity is added from 3/16:00:00 to
5/18:35:30 using 1.25 kilowatts of power.
Since the start time already exists in the
table, it is only necessary to insert one
new time. However, the power availability
for all the time points between the start
and stop times must be updated.

1

With 3 c insert
T i m e P o w e r

7/00:00:00 0.00 1/13:45:00 7.50 1/13:45:00 7.50
3/16:00:00 10.00 3/16:00:00 8.75
4/03:28:45 6.25 4/03:28:45 5.00
4/09:00:15 10.00 4/09:00:15 8.75
7/00:00:00 0.00 5/18:35:30 10.00

7/00:00:00 0.00

Initial With 2 inseitr;
T i m e Power Time Power _____- o/oo:oo:oo 10.00 o/oo:oo:oo 10.00 o / o o : n o : o o 10.00

Figure 2. Sample Bookkeeper Table

This example is lacking only in scale!
Doing the task manually would require
keeping up with dozens of resources and
thousands of events. In addition to keeping
up with resource and crew usage, it is also
necessary to keep up with the activity
schedule s o that sequencing, concurrency,
and performance delays can be checked, and
to keep up with crew location so that crew
translation time can be allotted. Notice
that the length of the table is a function
of the number of resource level changes, not
the duration of the flight increment being
scheduled.

The bookkeeper in ESP2 emulates the manual
process described above by using specially
designed file formats and processing
techniques to rapidly access and update the
data. Updating all the intervening time
points between the start and stop times of
an activity consumes time but permits the
checker to operate much more efficiently.
Since ESP2 is implemented on a 32-bit
machine and time is maintained in integral
seconds, the flight increment length is
limited to the largest integer that can be
stored in a 32-bit word; i.e., 2,147,483,654
seconds or 68+ years.

Space Station payload activity scheduling
philosophy calls for scheduling models or
groups of models within resource allocation
envelopes. In this case, the bookkeeper is
pre-loaded from a database containing the
envelopes.

THE CHECKER

The data from the bookkeeper and the model
requirements can be used to derive avail-
ability windows for most model requirements.
A mission planner performing the checking
function might want to know, "Where does the
available power first exceed 8 . 0 0 kilo-
watts?" A quick scan of the table in Figure
2 would determine that the window opens
at O / O O : O O : O O and closes at 1/13:45:00.

MGlNAL PAGE IS
OF m R QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

If the next window were needed, the mission
planner would remember how far down t h P
table checking had proceeded, resume th,.: P
and find that the next window runs from
3/16:00:00 to 4/03:28:45, followed by the
window from 4/09:00:15 to 7 / 0 0 : 0 0 : 0 0 .

In ESPZ, the request presented to the
checker might be, "Give me the first window
where all the resources required foi my
activity are available." The request would
also contain earliest and latest times of
interest. This limiting of the search range
allows the checker to respond much faster.
The rules for converting the model require-
ments to windows reside within the checker.
It can respond to questions about avail-
abilities of orbit opportunities, equipment,
nondepletable resources, or crew. It can
also respond to queries about the windows
where performance delay, sequencing, and
concurrency requirements are met. Allowing
time for crew movement from one location to
another is accomplished by subtracting the
translation time from each end of the crew
availability windows. A matrix of trans-
lation times is provided in the database.

THE LOADER

The first step in describing how the loader
works is to describe how a mission planner
would load a single step into the schedule.
After checking to see that the consumables
were available, the mission planner would
determine the window in which the step might
be scheduled. The planner would then choose
one o f the requirements and find the first
window satisfying that requirement. If
this window were long enough, the mission
planner would check for the window of
another requirement. Checking would con-
tinue in this manner until all requirements
were met. If the intersection of the
windows were as long as the step, the step
could be scheduled. In ESP2 the loading,
or scheduling, of steps is accomplished
in a manner similar to the human process
described above. The requirements are
checked in a particular order; i.e., the
windows have a defined hierarchy. Each
window is the search range for determining
the window below it in the hierarchy.
Whenever a window is unacceptable (shorter
than the minimum step duration), the next
window in the same search range (next higher
window) is requested. Whenever no usable
window is found at a particular level, the
window above it becomes unacceptable and the
next window at that level is checked.
Checking continues in this manner until a
set of nested windows for all requirements
has been generated OK there are no more
windows at the highest level and the step
cannot be loaded. The reader has probably
noticed that the bulk of the summary given
in a preceding section was merely a synopsis
of the loader.

Once a lowest-level acceptable window is
found, the step is loaded within this window
according to several rules. The highest
priority rule is to start the step as early
as possible (front load). Another rule is
to maximize the step duration within the

window up to the limit specified on the
model. If after assigning the start and
stop t mes of the step there remains a
choice of crew members to assign, then
they are assigned so as to balance the
crew usage.

But the task is not just to schedule steps,
but to schedule performances of multi-step
models! This task requires finding a place
in the schedule which meets not only the
requirements of all steps individually, but
also the delay constraints between steps and
performances, the resource carry-through
requirements, the sequencing and concurrency
requirements, and the performance windows
specified with the model.

Confronted with this larger task, the
mission planner would begin by defining a
window in which the performance must be
scheduled. This window is determined by
considering the window from the selector,
the performance window from the model,
performance delays, and sequencing. The
mission planner would load the steps in this
window on a trial basis, moving them around
until all steps were validly loaded. Only
then would the bookkeeping function be
conducted and the performance actually
scheduled. A detailed example of front
loading a Performance is given in Figure 3.

_ _
16 1 7 18

PERFORMANCE L ~ ' " " t " " " ' " ' ' " " " ' ' l
W I N D O W I------l 1

(S T E P 11 S T E P W I N D O W 1 I 2
S T E P L O A D E D 0 3

S T E P W I N D O W I 4 I (S T E P 2)

S T E P L O A D E D - 5

(S T E P 1) N E W S T E P W I N D O W 1 1 h
STEP L O A D E D 0 7

NEW STEP W I N D O W

STEP L O A D E D :
2 1

(S T E P 2 1
- - + E - 9

POWER 2 - 7-
AVAILABLE 1 -

0 - I , I I (1 1 1 1 1 ' , , (

16 1 7 18
T I M E - hours

MODEL:
Performance window: 0/16:00 t o 0/18:30

S t e p 1: Operate air sample collector
Duration: 0 / 0 0 : 2 0 t o 0 / 0 0 : 3 0 POWER: 0.889

s t e p 2: Analyze air sample
Delay: O/OO:OO t o 0/00:15

T h e program computes t h e w i n d o w for t h e first step t o
b e loaded (i t e m 2 a b o v e) , beginning at t h e start o f
the performance w i n d o w litem 1) and leaving enough
room for t h e remaining steps. T h e step is then loaded
a s early a s possible f o r as long a s possible within
t h e w i n d o w (i t e m 3). T h e w i n d o w for t h e second step
(i t e m 4) is similar t o t h e first s t e p except that 1t
starts after t h e e n d o f t h e first step by an amount
equal t o t h e minimum step delay. The loading of the
second step (i t e m 5) is delayed by resource avail-
abilities. Note that the step delay relative t o step 1
i s violated. T h e w i n d o w f o r step 1 is recomputed
(i t e m 6) and the step is again loaded (i t e m 7) a s
early a s possible for as long a s possible. Note that
t h e s t e p overlaps step 2. T h e window for step 2 is
recomputed (i t e m E) , a n d t h e step is reloaded (i t e m 9) .

Figure 3 . Performance Loading
with Backtracking

3

Model requirements such as the delay between
steps, resource carry-through, crew lockin,
maximum performance duration, and others arc?
implemented as backtracking rules in the
loader. Firing one of these rules results
in already-loaded steps being reloaded.
When reloading steps, the program adjusts
the step window s o that the same back-
tracking rule is not violated again.

The above discussion does not take into
consideration all of the requirements that
exist in the domain specified for ESP2.
Other rules are included to check for
consumables. If consumable usage is a
function of time, the step durations may
have to be chosen at less than the otherwise
available maximum. The scheduling and
descheduling of startup and shutdown steps
must be performed and crew monitoring must
be scheduled.

After all steps of a performance are loaded,
the performance is scheduled and all
bookkeeping functions are conducted. In
addition to asking the bookkeeper to update
its data, the loader also updates the crew
balancing parameters, the grading equation
parameters and other data.

ESP2 does one more thing that a good mission
planner would do. After scheduling a
performance of a model, the program saves a
snapshot of its computed data. When asked
to schedule another performance of that
model, the program resumes scheduling based
on the snapshot. This heuristic feature
significantly enhances the response time.
However, it is possible for a snapshot to
be invalidated by the scheduling of another
model. Therefore after scheduling each
performance, ESP2 checks all snapshots and
clears those that are invalid.

This is only half of the story! When
scheduling models with two-way concurrency
(neither model can be scheduled without the
other), ESP2 processes them simultaneously.
The complexity of the loading task is at
least doubled. Since both models are active
at the same time and may require the same
resources, the checker must account for the
already loaded steps of the other model when
computing availabilitywindows. Determining
when and how to backtrack is more complex
and the computation of step windows is more
difficult .

The loader has a last-chance ploy that is
invoked after all other attempts to schedule
a performance have failed. If any steps
have variable durations, these durations
are forced to the minimum value and the
loading process is repeated. Remember,
the original desire was to maximize step
du t a t i ons .
The preceding description applies to front
loading; i.e., loading the performance as
early as possible. Back loading (loading
the performance as late as possible) is the
mirror image of front loading.

THE SELECTOR

The loader places the models in the schedule
based on model requirements and current
availabilities. Since the program cannot
deschedule or reschedule a performance
(global backtracking) while generating a
schedule, the order of attempting to
schedule the models, referred to as the
selection order, has a significant effect on
the schedule. Selecting the next model/
performance to schedule is the function of
the selector. The selector also determines
the topmost window in the performance-level
hierarchy, the steps to be scheduled (the
model scenario), and the loading algorithm.

The selector may specify the topmost window
so as to force the loader to place the
performance as required by a particular
scheduling strategy. Possible scheduling
strategies are resource usage leveling,
reserving certain times for other yet to be
scheduled activities, etc.

As part of the input database, the user
specifies multiple scenarios for executing a
performance of a model and the value, or
weight, of each. Normally the selector
requests that the loader attempt to schedule
the highest-valued scenario; and, if it
fails, the selector requests the next lower
scenario; and s o forth. Alternately, the
user can specify a selection method that
selects an equal number of each scenario or
selects them proportional to the values.

The user also specifies which loading
algorithm to use or specifies that the
selector itself is to choose the algorithm.
But most importantly, the selector chooses
which model to schedule next. The user
divides the models to be scheduled into
groups, assigns a selection method to each
group, and then specifies the order in
which to process the groups. The selector
processes the groups and passes the models
to the loader one performance at a time.
The four most commonly used selection
methods are described below.

The fixed-order method allows the user to
specify the complete order of selecting
the models, possibly on a performance-by-
performance basis. The user also specifies
the rules for selecting the model scenario.
When processing a fixed-order group, ESP2
makes automatic adjustments to account for
sequencing and concurrency. ESP2 supplies a
command which can reorder the members of a
fixed-order group s o that the most difficult
to schedule is selected first. This command
considers the time windows, the orbit oppor-
tunity requirements, and the number and
duration of performances requested by the
model.

The random-order method requires the user to
specify a seed for a pseudo-random number
generator, the group members, relative
weighting factors for the members, and the
scenario selection rules. As it processes
a random-order group, ESP2 takes into
account sequencing and concurrency. At the
user's request, ESP2 automatically generates

4

ORIGINAL PAGE IS
OF POOR QUALITY

multiple schedules and saves the "best" one.
This Monte-Carlo technique allows the
program to perform exhaustive searches
without further user intervention.

The maximize-grade method allows the user
to specify the members of the groups, the
weighting factors for each of the schedule
grading parameters, and special scenario
selection rules. The scheduling order is
determined by the selector based on which
model (if scheduled) would yield the maximum
increase in the grade.

The program also provides a pseudo O K
manual selection method. The scheduler
editor provides a gateway to the automatic
scheduler which bypasses the selector. In
this mode the user performs the task of
the selector - selecting the model and
specifying the scenario and the topmost
window.

THE EXPLAINER

As a companion to the loader, ESP2 provides
a package which traces the step-by-step
activities of the loader. This package can
help the user understand why the program
could not schedule another performance of a
model OK why it scheduled the performance
where it did. The program usually cannot
tell why a model cannot be scheduled.
Indeed, there is often not a single reason.
The crew may be available when the orbit
opportunity is not, or the orbit opportunity
may be available when the power is not,
etc. No one reason can be stated for the
failure. The trace package can show
(literally) why the performance could not
be scheduled. In order to interpret the
trace, the user only needs a basic under-
standing of the scheduling process.

Primarily, the trace shows the windows
returned by the checker and the firing of
backtracking rules. The data delivered by
the selector and feasibility test failures
are also shown. The text presentation
contains messages like the following:
"resource window from 17 /23:45 to 18/3:30", -

window returned from the checker,
"end of window checking crew", - the checker

could not find a window within the specified
search range (next-higher window),

"window unacceptable", - window is shorter
than the minimum step duration,

"step 4 scheduled from 18/1:25 to 18/2:25", --
step is tentatively loaded,

"delay from step 3 to step 4 violated", - the
loader must backtrack and reschedule step 3

"chosen crew: 1,3", - crew members 1 and 3 are
assigned to the step, and

"minimizing" - the loader has invoked the last-
chance rules.

These are only a sampling of the 74 possible
messages.

The trace display is divided into two
windows; one window containing the text and
the other the graphics. Only the messages

containing times (window and scheduled
messages) are plotted. Figure 4 shows a
typical trace display for a model without
two-way concurrence. When models with two-
way concurrence are scheduled, both are
loaded and traced at the same time. Then
both sets of performance level windows are
shown above the dotted line. Since the
loader only processes one step at a time,
only one is shown below the dotted line.

I

Figure 4 . Typical Trace Display

The scale of the performance level portion
of the plot is determined by the topmost
window. The user may pan and zoom in the
bottom (the step level) portion of the plot.
The user may also scroll forward and back-
Ward through the messages. As each window
OK scheduled message is presented in the
text window, it is plotted in the graphics
window.

SUMMARY

In the Expert Scheduling Program all model
requirements are reduced to feasibility
tests, windows, or backtracking rules.
Which model/performance is scheduled next
is determined by the selector. The checker
calculates the windows, and the loader
combines the windows and executes the back-
tracking rules. The explainer presents the
user with a trace of the loading process.

This technique has been proven over the
last ten years by scheduling Spacelab
payload activities. Only two conditions are
necessary for it to support Space Station
payload activity planning: the activity
requirements must be reducible to a com-
bination of feasibility tests, windows, O K
backtracking rules; and robust selection
methods must be found to eliminate the
now-required assignment of selection methods
by an expert user.

Surveys of future payload descriptions have
uncovered only a few requirements which
are difficult to express in the required
formats; for example: after-effects of an
activity require including a step in the
model which uses the affected resource.

5

The portfolio of selection methods in E S P 2
is easy to expand and many- additional
scheduling strategies can be .implemented
a s selection methods. Several additional
selection methods have been designed and
are being implemented. A n expert system
for dividing the payload activities into
groups and choosing the best selection
method (scheduling strategy) for each is
being considered.

There is a parallel effort within our group
and the community at-large to formulate a
different (and better) method to schedule
Space Station payload activities. A s with
any research effort, there is no guarantee
that the research will be be successful,
especially within the limited time span
available before Space Station will become
a reality.

ACKNOWLEDGEMENTS

The authors would like to acknowledge
Mr. Jerry Weiler, the scheduling expert
whose guidance was invaluable.

IllHLlOGKAPHY

1. Britt, D.L.; Geoffroy, A.L; Schaefer, P.R.;
Gohring. J.R.: "Scheduling Spacecraft Operations",
Conference on Ar ti f icial-In telligence for Space
Applications, Huntsville, AI., Nov. 13-14, 1986.

2 . Deuermeyer, B.L.; Shannon, R.E.; Underbrink,
A.J. ,Jr.: "Creation of the Selection List for
the Experiment Scheduling Program (ESP)", Indus -
trial Engineering Division, Texas Engineering
Experiment Station, Texas A C M University,
College Station, Texas. Final Report of NASA
Contract No. NAS8-35972, NAS8-1778861, May, 1986.

3 . Kurtzman, C.R.: "Time and Resource constrainted
Scheduling, with Application to Space Station
Planning", Ph.D. Thesis, Massachuet ts Institute
of Technology, Cambridge, Ma., 1988

4. Maxwell, T.G.: "Investigation of Experiment
Selection Order Determination for Space Hission
Scheduling", M.S. Thesis, University of Alabama
in Huntsville, 1987.

5. Stacy, K.L.; Jaap, J.P.: "Space Station Payload
Operations Scheduling with ESPZ", Second Annual
UorkshoponSpaceAutomationandRobotics(SOAR88),
Dayton, Ohio, July 20-23, 1988.

6

