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Abstract 
In recognizing objects in an outdoor scene, range and reflectance 
(or color) data provide complementary information. This paper 
presents the results of experiments in recognizing outdoor scenes 
containing roads, trees. and cars from the CMU Navlab (Navi- 
gation Laboratory) project. The recognition program uses range 
and reflectance data obtained by a scanning laser range finder, as 
well as color data from a color TV camera. After segmentation of 
each image into primitive regions. models of objects are matched 
using various properties. 

1 Introduction 
In order to be able to handle a variety of environments and tasks. 
a mobile robot must be able to extract features from its visual sen- 
sors that enable it to correctly interpret its environment. Many 
sensing strategies are now possible, from standard video cam- 
eras to sophisticated ranging systems. A single sensing modality 
cannot provide enough information to interpret outdoor scenes 
however. Geometrical data from ranging systems is necessary for 
describing the shapes of tlie observed objects, but some type of re- 
flectance data is also necessary to properly analyze their physical 
properties, such as terrain type or surface markings. Combining 
different types of sensor data is not an easy task however. It in- 
volves the combination of data sets that are measured by sensors 
with different characteristics of Eeld of view, range, and accu- 
racy. It also involves the combination of sets of informations 
of different nature that have been extracted using very different 
algorithms. such as the combination of surface patches and color 
edges, for example. 

In this paper, we investigate ways to combine geometrical in- 
formations from a laser range finder with physical informations 
from a color camera and an active reflectance sensor (Actually 
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the reflectance images are also provided by the range sensor). We 
demonstrate the approaches to the combination of those sensors 
in two examples. The 6rst one concerns the analysis of outdoor 
for the recognition of natural objects, such as trees. for which 
only weak models exist. The second one is the recognition of 
landmarks for which an accurate geometric model is available. 
In both cases, the combination of shape and reflectance informa- 
tion provides a better. more reliable, interpretation of the sensor 
data We have implemented all the techniques described in this 
paper on the CMU Navlab (Navigation Laboratory) which is a 
self-contained mobile robot designed for navigation in outdoor 
terrain [12]. 

2 Description of the sensors 
In this Section, we describe the geometry and the outputs of the 
two sensors that we use: a laser range finder, and a color camera. 
Even though some of the characteristics are fairly specific to the 
particular sensor, the geometries and noise models of the sensors 
are representative of a wide range of existing visual sensors. 

2.1 The range and active reflectance sensors 
The basic principle of active sensing techniques is to observe the 
reflection of a reference signal (sonar, laser, radar..etc.) produced 
by an object in the environment in order to compute the distance 
between the sensor and that object. In addition to the distance, 
the sensor may report the intensity of the reflected signal which 
is related to physical surface properties of the object. In accor- 
dance with tradition, we will refer to this type of intensity data as 
"reflectance" data even though the quantity measured is not the 
actual reflectance coefficient of the surface. 

Active sensors are attractive to mobile robots researchers for 
two main reasons: first, they provide range data without the 
computation overhead associated with conventional passive tech- 
niques such as stereo vision, which is important in time critical 
applications such as obstacle detection. Second. it is largely in- 
sensitive to outside illumination conditions. simplifying consider- 
ably the image analysis problem. This is especially important for 
images of outdoor scenes in which illumination cannot be con- 
trolled or predicted. For example, the active reflectance images 
of outside scenes do not contain any shadows from the sun. In 
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addition, active range finding technology has developed to the 
extent [ 11 that makes it realistic to consider it as part of practical 
mobile robot implementations in the short term. 

The range sensor is a time-of-flight laser range finder de- 
veloped by the Environmental Research Institute of Michigan 
(ERIM). The basic principle of the sensor is to measure the dif- 
ference of phase between a laser beam and its reflection from the 
scene [7]. A two-mirror scanning system allows the beam to be 
directed anywhere within a 30" x 80' field of view. The data pro- 
duced by the ERIM sensor is a 64 x 256 range image, the range is 
coded on eight bits from zero to 64 feet, which corresponds to a 
range resolution of three inches. In addition to range images. the 
sensor also produces active reflectance images of the same for- 
mat (64 x 256 x 8 bits). the reflectance at each pixel encodes the 
energy of the reflected laser beam at each point. Figure 1 shows 
a pair of range and reflectance images of an outdoor scene. 

Figure 1: Range and reflectance images 

The position of a point in a given coordinate system can be 
derived from the measured range and the direction of the beam at 
that point. We usually use the Cartesian coordinate system shown 
in Figure 2. in which case the coordinates of a point measured 
by the range sensor are given by the equations: 

x = DsindcosB 

y = Dcosq5cose 
2 = DSinB 

where q5 and 0 are the vertical and horizontal angular angles 
of the beam direction. The two angles are derived from the row 
and column position in the range image (r, c). by the equations: 

e 3 e o + c x A e  
4 = 90 + r  x Aq5 (4) 

where 80 (resp. 40) is the starting horizontal (resp. vertical) 
scanning angles. and AB (resp. Ad)  is the angular step between 
to consecutive columns (resp. rows). Figure 3 shows an overhead 
view of the scene of Figure 1. the coordinates of the points are 
computed using Equ. (4). 

As is the case with any sensor, the range sensor returns values 
that are measured with a limited resolution which are corrupted 
by measurement noise. In the case of the ERIM sensor, the main 
source of noise is due to the fact that the laser beam is not a 

Figure 3: Overhead view 
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Line in space but rather a cone whose opening is a 0.5" solid 
angle (the instantaneous field of view). The value returned at 
each pixel is actually the average of the range of values over a 
2-D area, thefoofprinf. which is the intersection of the cone with 
the target surface. Simple geometry shows that the area of the 
footprint is proportional to the square of the range at its center. 
As a result, the accuracy of the sensor degrades rapidly as the 
measured points are further away from the sensor which makes 
the feature extraction a difficult task. The footprint affects all 
pixels in the image. 

There are other effects that produce distortions only at specific 
locations in the image. The main effect is known as the "mixed 
point" problem in which the laser footprint crosses the edge be- 
tween two objects that are far from each other. In that case, the 
returned range value is some combination of the range of the two 
objects but does not have any physical meaning. This problem 
makes the accurate detection of occluding edges more difficult. 
Another effect is due to the reflectance properties of the observed 
surface; if the surface is highly specular then no laser reflection 
can be observed. In that case the ERIM sensor returns a value 
of 255. This effect is most noticeable on man-made objects that 
contain a lot of polished metallic surfaces. 

2.2 The video camera 
The video camera is a standard color vidicon camera equipped 
with wide-angle lenses. The color images are 480 rows by 512 
columns, each band is coded on eight bits. The wide-angle lens 
induces a significant geometric distortion, that is, the relation 
between a point in space and iis projection on the image plane 
does not obey the laws of the standard perspective transformation. 
We alleviate this problem by first transforming the actual image 
into an "ideal" image: if (R, C) is the position in the real image, 
then the position (r,  c)  in the ideal image is given by: 

(5 )  

Ideal image 
Figure 4: Geometry of the video camera 

necessarily mean an array that stores those Bdimensional pixels, 
but rather a set of functions that provide access to the range and 
color data at any point as described in Section 3.1.4. Our first 
task for building a colored-range image is to express the points 
in video and range image in a common reference frame, that is 
to solve the registration problem. 

3.1 The registration problem 
Range sensor and video cameras have different fields of view. 
orientations, and positions. In order to be able to merge data from 
both sensors, we fust have to estimate their relative positions. this 
is known as the calibration, or registration problem (Figure 5) .  
We approach the problem as a minimization problem in which 
pairs of pixels are selected in the range and video images. The 
pairs are selected so that each pair is the image of a single point in 
space as viewed from the two sensors. The problem is then to find 
the best calibration parameters given these pairs of points. The 
problem is further divided into two steps: we first use a simple 
linear least-squares approach to find a rough initial estimate of the 
parameters, and then apply a non-linear minimization algorithm 
to compute an optimal estimate of the parameters. 

where f, and fc are third order polynomials. This correction is 
cheap since the right-hand side of ( 5 )  can be put in lookup tables. 
The actual computation of the polynomial is described in [9] The 
geometry of the ideal image obeys the laws of the perspective 
projection in that if P = [x ,  y, z]' is a point in space, and (r,  c)  is 
its projection in the ideal image plane, then: 

r = fx/z, c = fy/t ( 6 )  

wheref is the focal length. In the rest of the paper, row and 
\ column positions will always refer to the positions in the ideal 

image, so that perspective geometry is always assumcd. Figure 5:  Geometry of the calibration problem 

Merging range and video images 3.1.1 The calibration problem as a minimization prob- 
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where R is a rotation matrix, and T is a translation vector. R is a 
non-linear function of the orientation angles of the camera: pan 
(a), tilt (j3). and rotation (y). Pi can be computed from a pixel 
location in the range image. e is not completely known, it is 
related to the pixel position in the video image by the perspective 
transformation: 

zfri = fxf 
ZfCi = fyf 

where f is the focal length. Substituting (7) into (8) and (9) 
we get: 

where R,. R,. and R. are the row vectors of the rotation matrix 

We are now ready to reduce the calibration problem to a least- 
squares minimization problem. Given n points Pi, we want to 
find the transformation (R, T )  that minimizes the left-hand sides 
of equations (10) and (11). We lirst estimate T by a linear least- 
squares algorithm, and then compute the optimal estimate of all 
the parameters. 

Assuming that we have an estimate of the orientation R. we 
first want to estimate the corresponding T. The initial value of R 
can be obtained by physical measurements using inclinometers. 
Under these conditions. the criterion to be minimized is. 

R. and =fr,, =fr,- 

C ( A i  - T,Ei -/Ci +E)' t (Di - TzEi - F i  + <f (12) 
i=l 

where Ai = RzCri ,  Ei = ri, Ci = R z E ,  Di = R,Cci .  Ei = ci. 

Equation (12) can be put in matrix form: 
and Fi = R Y E  are known and T,. c. q, f are the unknowns. 

C = IlU - AVl12 t (IW - BV1I2 (13) 

where V = [c,G,Tx,fl' is the vector of unknowns, and 
A, U, W, E are matrices that are functions of the known quan- 
tities only. The minimum for the criterion of Equation (13) is 
attained at the parameter vector: 

V =  (A'A +E'B)-l(A'U +E'W)  (14) 

Once we have computed the initial estimate of V. we have to 
compute a more accurate estimate of (R, 7). Since R is a function 
of (a,p,y), we can lransform the criterion from equation (12) 
into the form: 

I 

i=l 

where Ii  is the 2-vector representing the pixel position in the video 
image. l i  = [ri,ci]',  and S is the full vector of parameters, S = 
[E, q, T,,f, a, p, 71'. We cannot directly compute c;, since 
the functions fli are non-linear. instead we linearize C by using 
the first order approximation of If; (81 Uius reducing the problem 
IO a linear least-squares minimization that can be solved directly. 
The procedure is iterated until S cannot be improved any further. 

3.13 Implementation and performance 
The implementation of the calibration procedure follows the steps 
described above. Pairs of corresponding points are selected in a 
sequence of video and range images. We typically use twenty 
pairs of points carefully selected at interesting locations in the 
image (c.g. comers). An initial estimate of the camera orientation 
is (0, p ,  0). where fl is physically measured using an inclinometer. 
The final estimate of S is usually obtained after less than ten 
iterations. This calibration procedure has to be applied only once, 
as long as the sensors are not displaced. 

Once we have computed the calibration parameters, we can 
merge range and video images into a colored-range image. In- 
stead of having one single fusion program. we implemented this 
as a library of fusion functions that can be divided in two cate- 
gories: 

1. Range 4 video: This set of functions takes a pixel or a 
set of pixels (r', c') in the range image and computes the 
location (f, c') in the video image. This is implemented 
by directly applying Equations (10) and (11). 

2. Video -+ range: This set of functions takes a pixel or a set 
of pixels (f, c') in the video image and computes the lo- 
cation (?, c') in the range image. The computed location 
can be used in turn to compute the location of a intensity 
pixel in 3-D space by directly applying Equation (4). The 
algorithm for this second set of functions is more involved 
because a pixel in the video image corresponds to a line 
in space (Figure 4) so that Equations (10) and (11) cannot 
be applied directly. More precisely. a pixel (f, c') corre- 
sponds, after transformation by (R, 7), to a curve C in the 
range image. C intersects the image at locations (P ,  I?), 
the algorithm reports the location (r', c') that is the min- 
imum among all the range image pixels that lie on C of 
the distance between (f ,  6) and the projection of (r', 8)  
in the video image (using the first set of functions). The 
algorithm is summarized on Figure 6. 

Backprojection of 
a ran e pixel from (e) Projection of he line 

in range image m co P or wage space 

/T 1 Linefrom - inverse perspective 

Figure 6: Geometry of the "video -+ range" transformation 

Figure 7 shows the colored-range image of a scene of stairs 
and sidewalks, the image is obtained by mapping the intensity 
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values from the color image onto the range image. Figure 8 
shows a perspective view of the colored-range image. In this 
example [lo]. we first compute the location of each range pixel 
(r', c') in the video image, and then assign the color value to the 
64 x 256 colored-range image. The final display is obtained by 
rotating the range pixels. the coordinates of which are computed 
using Equation (4). 

Figure 7: Colored-range image of stairs 
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Figure 8: Perspective view of registered range and color 
images 

3.2 Application to outdoor scene analysis 
An example of the use of the fusion of range and video images 
is outdoor scene analysis [6,10] in which we want to identify the 
main components of an outdoor scene, such as trees. roads, grass, 
etc. The colored-range image concept makes the scene analysis 
problem easier by providing data pertinent to both geometric in- 
formation (e.g. the shape of the trees) and physical information 
(eg. the color of the road). 

3.2.1 Feature extraction from a colored-range image 

The features that we extract from a colored-range image must be 
related to two types of information: the shapes and the physical 
properties of the observed surfaces. 

The geometric features are used to describe the shape of the 
objects in the scene. We propose to use two types of features: 
regions that correspond to smooth patches of surface, and edges 
that correspond either to transitions between regions, or to tran- 
sitions between objects (occluding edges). Furthermore, we must 
be able to describe the features in a compact way. One common 
approach is to describe the regions as quadric patches, and the 
edges as sets of tridimensional line segments. More sophisti- 
cated descriptions are possible [4]. such as bicubic patches or 
curvature descriptors. We use simpler descriptors since the range 
data is relatively low resolution. and we do not have the type of 
accurate geometric model that is suited for using higher order ge- 
omebic descriptors. The descriptors attached to each geometric 
feature are: 

The parameters describing the shape of the surface patches. 
That is the parameters of the quadric surface that approx- 
imate each surface patch. 
The shape parameters of the surface patches such as center. 
area, and elongations. 
The 3-D polygonal description of the edges. 
The 3-D edge types: convex, concave, or occluding. 

The surface patches are extracted by fitting a quadric of equa- 
tion FAX + B'X + C = 0 to the observed surfaces, where X is the 
Cartesian coordinate vector computed from a pixel in the range 
image. The fitting error. 

E(A, B ,  C )  = [YMi + B'Xi + C]* (16) 

is used to control the growing of regions over the observed 
surfaces. The parameters A,B,  C are computed by minimizing 
E(A,B,C)  as in [3]. 

The features related to physical properties are regions of ho- 
mogeneous color in the video image, that is regions within which 
the color values vary smoothly. The choice of these features is 
motivated by the fact that an homogeneous region is presumably 
part of a single scene component, although the converse is not 
true as in the case of the shadows cast by an object on an homo- 
geneous patch on the ground. The color homogeneity criterion 
we use is the distance (X - m)'C-'(X - m) where m is the av- 
erage mean value on the region, C is the covariance matrix of 
the color distribution over the region, and X is the color value of 
the current pixel in (red, green, blue) space. This is a standard 
approach to color image segmentation and pattern recognition. 
The descriptive parameters that are retained for each region are: 

Xi €patch 

The color statistics (m, E). 
The polygonal representation of the region border. 

Shape parameters such as center or moments. 
The range and color features may overlap or disagree. For 

example, the shadow cast by an object on a flat patch of ground 
would divide one surface patch into two color regions. It is there- 
fore necessary to have a cross-referencing mechanism between 
the two groups of features. This mechanism provides a two-way 
direct access to the geometric features that intersect color fea- 
tures. Extracting the relations between geomebic and physical 
features is straightforward since all the features are registered in 
the colored-range image. 

An additional piece of knowledge that is important for scene 
interpretation is the spatial relationships between features. For 
example. the fact that a vertical object is connected to a large flat 
plane through a concave edge may add evidence to the hypothesis 
that this object is a tree. As in this example. we use three fypes 
of relational data. 

The list of features connected to each geomelric or color 
feature. 
The type of connection between two features (con- 
vex/concave/occluding) extracted from the range data 

The length and strength of the connection. This last item is 
added to avoid situations in which two very close regions 
become accidentally connected along a small edge. 
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3.2.2 Scene interpretation from the colored-range im- 
age 

Interpreting a scene requires the recognition of the main compo- 
nents of the scene such as trees or roads. Since we are dealing 
with natural scenes, we cannot use the type of geometric match- 
ing that is used in the context of industrial parts recognition [4]. 
For example, we cannot assume that a given object has specific 
quadric parameters. Instead, we have to rely on "fuzzier" evi- 
dence such as the verticality of some objects or the flatness of 
others. We therefore implemented the object models as sets of 
properties that translate into constraints on the surfaces. edges. 
and regions found in the image. For example, the description 
encodes four such properties: 

P1: The color of the trunk lies within a specilic range 
constraint on the statistics (m, .E) of a color region. 

0 p2: The shape of the trunk is roughly cyclindrical 
constraint on the distribution of the principal values of the 
matrix A of the quadric approximation. 

P3: The mnk is connected to a flat region by a concave 
edge 3 constraint on the neighbors of the surface, and 
the type of the connecting edge. 
P4: The tree has two parallel vertical occluding edges a 
constraint on the 3-D edges description. 

Other objects such as roads or grass areas have similar de- 
scriptions. The properties Pi of the known object models Mj are 
evaluated on all the features Fb extracted from the colored-range 
image. The result of the evaluation is a score Sg for each pair 
(Pi, Ft). We cannot rely on individual scores since some may not 
be satisfied because of other objects, or because of segmentation 
problems. In the tree hllnk example, one of the lateral occluding 
edges may itself be. occluded by some other object, in which case 
the m e  for P4 would be low while the score for the other prop- 
erties would still be high. In order to circumvent this problem, 
we first sort the possible interpretations Mj for a given feature Fk 
according to all the scores (Si)i. In doing this, we ensure that 
all the properties contribute to Uie final interpretation and that no 
interpretations are discarded at U i i s  stage while identifying the 
most plausible interpretations. 

We have so far extracted plausible interpretations only for in- 
dividual scene features A. The final stage in the scene interpre- 
tation is to find the interpretations (Mi,, F t )  that are globally con- 
sistent. For example, property P3 for the tree implies a constraint 
on a neighboring region, namely that this has to be a flat ground 
region. Formally, a set of consistency constraints C, is asso- 
ciated with each pair of objects (M", M"). The C, constraints 
are propagated through the individual interpretations (Mi,, Ft) by 
using the connectivity information stored in the colored-range 
feature description. The propagation is simple considering the 
small number of features remaiidng at this stage. 

The final result is a consistent set of interpretations of the scene 
features. and a grouping of the features into sets that correspond 
to the same object. The last result is a by-product of the con- 
sistency check and the use of connectivity data. Figure 9 shows 
the color and range images of a scene which contains a road, a 
couple of trees. and a garbage can. Figure 10 shows a display of 
the corresponding colored-range image in which the white pixels 

are the points in the range image that have been mapped into 
the video image. This set of points is actually sparse because of 
the difference in resolutions between the two sensors. and some 
interpolation was performed to produce the dense regions of Fig- 
ure 10. 

Only a portion of the image is registered due to the difference 
in field of view between the two sensors (60" for the camera ver- 
sus 30" in the vertical direction for the range sensor). Figure I2 
shows a portion of the image in which the edge points from the 
range image are projected on the color image. The edges are 
interpreted as the side edges of the tree and the connection be- 
tween the ground and the tree. Figure l l  shows the 6nal scene 
interpretation. The white dots are the main edges found in the 
range image. The power of the colored-range image approach is 
demonstrated by the way the road is extracted. The road in this 
image is separated into many pieces by strong shadows. Even 
though the shadows do not satisfy the color constraint on road 
region, they do perform well on the shape criterion (flatness). and 
on the consistency criteria (both with the other road regions, and 
with the trees). The shadows are therefore interpreted as road 
regions and merge with the other regions into one road region. 
This type of reasoning is in general difficult to apply when only 
video data is used unless one uses stronger models of the objects 
such as an explicit model of a shadowed road region. Using the 

colored-range image also makes the consistency propagation a 
much easier task than in purely color-based scene intapretation 
programs [ll]. 

Figure 9: Color and range images of an outdoor scene 

4 Merging range and active re- 
flectance images 

In the previous section we discussed ffie fusion of data from a 
vidco camera and a range sensor. We now discuss the fusion 
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Figure 10: A view of the corresponding colored-range im- 
age 

Figure 12: Edge features from the colored-range image 

of two types of data from the ERIM sensor: range and active 
reflectance. This problem is somewhat simpler since the two im- 
ages are already registered by the sensor itself. We will therefore 
focus our attention on the analysis of the active reflectance im- 
ages, and the application of simultaneous range and reflectance 
processing to object recognition. 

4.1 Correction of active reflectance images 
A reflectance image from the ERIM sensor is an image of the 
energy reflected by the reflection of a laser beam. Unlike con- 
ventional intensity images, this data provide us information which 
is to a large extent independent of the environmental illumina- 
tion. In particular. the reflectance images contain no shadows 
from outside illumination. The measured energy depends also 
on the shape of the surface, and its distance to the sensor. We 
correct the image so that the pixel values are functions of the 
material reflectance only. The measured energy. f,elmn, depends 
on the specific material reflectance, p, the range, D. and the angle 
of incidence, y: 

Due to the wide range of F,.lyTn, the value actually reported 
in the reflectance image is compressed by using a log transform. 
That is, the digitized value, PL.,,,~, is of the form [ 141: 

f - *  = A log(p COS y) + E log D (18) 

where A and 11 are constants that depend only on the charactcr- 
istics of the laser, the circuilry used for the digitization, and the 
physical properties of the ambiant atmosphere. Since A and B 
cannot be computed directly, we use a calibration procedure in 
which a homogeneous flat region is selected in a training im- 
age, we then use the pixels in this region to estimate A and E 
by least-squares fitting mu. (18) to the actual reflcctancdrange 
data. Given A and B, we correct subscquent images by: 

Figure 1 I: Final scene interpretation P a w - i m g e  = (PL. , , ,~  - B logL))/A (1% 

The value P,,,,,,-L.,,,~, depends only on thc material reflectance and 
the angle of incidencc. This a sufficient approximation for our 
purposes since for snioolh surfaces. such as smooth terrain, the 
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cosy factor does not vary widely. For efficiency purposes, the 
right-hand side of 19 is precomputed for all possible combina- 
tions (P+,,D) and stored in a lookup table. Figure 1 shows 
an example of ERIM image and Figure 13 shows the resulting 
corrected image. 

Figure 13: Corrected reflectance image 

4.2 Application to 3-D feature extraction for 
object recognition 

W e  now tackle the problem of fusing range and reflectance data 
for recognizing objects for landmark-based robot navigation [5]. 
The problem is different from the previous scene description 
problem in several respects. First of all. we assume that we 
have a geometric model of the landmark. Furthermore, we want 
to not only identify the object in the scene, but also to compute 
its position and attitude. It is critical to extract accurate geomet- 
ric features from the images in order to relate the observed scene 
to the stored models. The fusion of range and reflectance data is 
used to improve the quality of the surface description extracted 
from the image data. 

The 3-D features that are needed for object recognition are 
connected surface patches. Each patch corresponds to a smooth 
portion of the surface and is approximated by a parameterized 
surface. In addition to the parameters and the neighbors. each 
region has two uncertainty factors: u., and Ud. u. is the variance 
of the angle between the measured surface normal and the surface 
normal of the approximating surface at each point. a d  is the 
variance of the distance between the measured points and the 
approximating surface. Those two attributes are used in theobject 
recognition algorithm. 

Several range image segmentation techniques have been pro- 
posed in previous works 141. These techniques are based either 
on clustering in some parameter space, or region growing using 
the smoothness of the surface. We chosc to combine both ap- 
proaches into a single segmentation algorithm. The algorithm 
h s t  attempts to find groups of points that belong to the same 
surface, and then uses these groups as secds for region growing. 
so that each group is expanded into a smooth connected surface 
patch. The smoothness of apatch is evaluated by fitting a surface, 
plane or quadric, in the least-squares sense. 

The strategy for expanding a region is to merge the best point 
at the boundary of each region at each step. This strategy guar- 
antees a near optimal segmentation. It has. however, two major 
drawbacks: it may be computationally expensive. and it may lead 
to errors due to sensor mors on isolated points, such as mixed 
points. To alleviate these problenls, we use a multi-resolution 
approach. We first apply the segmentation to a reduced image in 
which each pixel corresponds to a n x n window in the original 

image., n being the reduction factor. This Erst, low-resolution, 
step produces a conservative description of the image. The low- 
resolution regions are then expanded using the full-resolution im- 
age. No new regions are created at full resolution. 

The region segmentation algorithm should produce a reliable 
description of a scene from a range image. The range measure- 
ments are corrupted by sensor noise (Section 2.1) which may 
produce gross errors in the segmentation. Thc first source of 
error is the sensor accuracy which degrades rapidly as the mea- 
surements me taken further away from the sensor. Due to the 
limited sensor accuracy, it is difficult to separate regions whose 
differences in orientation are of the order of the sensor noise. 
The second source of error is the presence of mixed points at 
the occluding edges of objects. This problem my lead to erro- 
neous segmentation of the regions that border an object, as well 
as errors in the estimation of the parameters of those regions. 

Merging informations from the reflectance images with the 
pure range image segmentation removes both types of segmen- 
tation errors. Specifically, we are interested in using the edges 
ffom the reflectance image. The edges correspond either to oc- 
cluding edges or to edges on the surface of the object In the 
first case, the reflectance edges indicate the possible locations of 
mixed points, which can therefore be removed from the range 
image prior to segmentation. In the second case, the reflectance 
edges may correspond to boundaries between surface patches that 
may not be distinguishable in the range image due to sensor noise. 
In the low-resolution segmentation step, pixels that correspond to 
a window that contains at least one edge pixel are removed so 
that mixed points at the occluding edges are removed. In the full- 
resolution step, regions are expanded so that they do not cross 
an edge. As a side effect, edge pixels are all part of the regions 
boundaries. 

As an example. Figure 15 shows the edges extracted &om the 
reflectance image of Figure 14. The edges were extracted by 
using a 10 x 10 Canny edge detector [2]. Figure 16 shows the 
corresponding low resolution segmentation for a reduction factor 
of n = 2. Each region is displayed with a different gray level. 
Figure 17 shows the final segmentation obtained at full resolution. 

Figure 14: Range and refleclance images 
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the bottom part of the Figures shows an overhead view of the 
scene with the object superimposed at Uie computed location. 
These results show that the combination of range and reflectance 
images provides the necessary features to accurately recognize 
and locate 3-D objects in outdoor scenes. 

Figure 15: Edges from reflectance image. 

Figure 16: Low-resolution segmentation (n = 2) 

4.3 Object recognition from range and re- 
flectance images 

The 3-D features extracted from the range and reflectance images 
are matched against stored models in order to recognized known 
objects in the scene. The models are described by a set of surface 
patches and constraints between them. The constraints encap- 
sulated geometrical properties of the object such as "these two 
patches are roughly orthogonal", for example. The constraints are 
implemented as numerical tests on the parameters of the regions 
extracted from the images. Instead of using strict constraints, 
such as "the normals v1 and vz of those two regions are exactly 
orthogonal". we use intervals of confidence within which a given 
constraint is satisfied, such as "the angle between v1 and \r2 must 
be within the interval [el, az]". Using intervals allows us to take 
into account the imprecision on the parameters of the features, 
and the fact that the stored model may not correspond exactly to 
the observed object. 

The matching between scene and model features first generates 
hypothesis for each scene feature, and then explores the set of 
hypothesis in order to find rnatcliings that satisfy the constraints 
stored in the model. The final product of the matching algo- 
rithm is a set of interpretations. that is a set of possible positions 
of the object in the scene. The interpretations are weighted by 
comparing the projection of the model onto the range image at 
the computed location. and the actual observed scene. The in- 
terpretation with the largest correlation is retained as the final 
interpretation (See [5 ]  for a complete description of the recog- 
nition algorithm). Figures 18 and 19 show two examples of an 
object recognized in a range iniage (in this case a car). The top 
image is the reflectance image of the scene, the middle image 
shows the computed location of the car in the range image. and 

Figure 18: Result of object recognition from range and 
reflectance images 

5 Conclusion 
We have developed techniques for the fusion of data from mul- 
tiple sensors. We have demonstrated the relevance of the re- 
sulting merged sensor data in the context of object recognition 
and scene interpretation for autonomous mobile robots. The ex- 
periments with real images showed conclusively that sensor data 
fusion provides useful additional information for scene interpre- 
tation. In order to represent the merged data, we have proposed 
the concept of a colored-range image in which pixels contain 
data from different sensors. One obstacle to building colored- 
range images is the geometric registration between sensors that 
may take images from different vantage points and with different 
fields of view. We have found that a simple sensor calibration 
scheme provides the parameters necessary to perform the reg- 
istration. Even though we applied the data fusion approach to 
only three types of data, video, range, and active reflectance im- 
ages, it is clear that the concept of colored-range image should 
be extended to other sensor$ such as sonars, active muluband 
reflectance. or multiple cameras. The sensor fusion techniques 
have been successfully integrated into the large autonomous mo- 
bile robot systems developcd at CMU [10,12], and provide the Figurc 17: Final segmentation 
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[8] D.G. Lowe. Solving for the parameters of object models 
from image descriptions. In ARPA Image Understanding 
Workrhop. 1980. 

[9] H.P. Moravec. Obstacle avoidance and nuvigaion in the 
real world by a seeing robot rover. Technical Report CMU- 
RI-TR-3. Camegie-Mellon University, 1980. 

[lo] Y. Goto K. Matsuzaki I. Kweon T. Obatake. Cmu sidewalk 
navigation system: a blackboard-bascd outdoor navigation 
system using sensor fusion with colored-range images. In 
Proc. First Join! Cornpuler Conference, Dallas, 1986. 

111 Y. Ohta Knowledge-based Interpretation of Ourdoor Natu- 
ral Color Scenes. Pittman Publishing, Inc., 1984. 

121 C.E. Thorpe M. Hebert T. Kanade S.A. Shafer. Vision and 
navigation for the carnegie-mellon navlab. PAMI. 10(3), 
1988. 

131 J. Bares W. Whittaker. Configuration of an autonomous 
robot for mars expolration. In Proc. World Conference on 
Robotics, Pittsburgh, PA, 1988. 

(141 R. Watts F. Pont D. Zuk. Characferizalion offhe ERIMIALV 
sensor - range and reflectance. Technical Report , Envi- 
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Figure 19: Result of object recognition from range and 
reflectance images 

basis for the development of perception systems for Planetary 
exploration robots [13]. 
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