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ABSTRACT

Adaptive/general learning algorithms using varying neural network
models are considered for the intelligent control of robotic arm
plus dextrous hand/manipulator systems. Results are summarized and
discussed for the use of the Bartos/Sutton/Anderson neurconlike, un-
supervised learning controller as applied to the stabilization of an
inverted pendulum on a cart system. Recommendations are made for the
application of the controller and a kinematic analysis for trajec—
tory planning to simple object retrieval (chases/approach and cap-
ture/grasp) scenarios in two dimensions.

INTRCODUCTION

Qverview

The research work reported herein is important to the future
development of the NASA/JISC EVA Retriever. This highly autonomcus,
free—-flying robot or robotic system is comprised of MMU, arm and
smart hands. It is being developed to aid crewmen in the perfor-
mance of EVA tasks including the chases, capture and return capabili-
ty required for adrift crewmen or station equipment. The ultimate
goal of the work in developing this system is to enhance the effec-
tiveness of EVA crewmen [1, 233. -

The intelligent control of robotic arm/hand systems using
neural network learning controllers is very relevant to EVA Retrie-
ver development. This follows because of the need for autonomous,
adaptive behavior in both planned and unplanmned contexts in the
space environment. Neural networks and related advanced learning
controllers offer such capabilities [(231].

The work reported herein is concerned wilth the investigation
and development of neural networks or other types of advanced
learning controllers as:

(a) Supervised controllers with training which because of
their connective, associative memory structure can
develop significant controller generalization capabili-
ty. Such generalization can lead to similar performance
of the retriever arm/hand controller in different but
analogous physical system situations and in stochastical-
ly related loading/excitation environments.

(b) Unsupervised controllers which can self train/adapt to
new learning situations and also exhibit significant
generalization capability. As learning develops. and un-
familiar situations become familiar ones, these neural
networks should provide feedforward compensation with
less compensation via the feedback path [7, 11, 15, 261.
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Neural Networks for Intelligent Control

Neural rnetworks are massively parallel, distributed processing
systems. They have the ability to continuously improve their pecrfor-
mance via dynamic learning {7, 9, 13-18, 361. As used in this re-
port, neural networks refers to "artificial”, i.e., programmable
systems of processing elements. As such they form a research area
of intense interest in artificial intelligence.

Initial neural network research concentrated on the computa-
tionally intensive areas of adaptive signal processing,; as, ©.g.,
pattern recognition, real-time speech recognition and image inter-
pretation. Recently there has been a resurgence of interest in
neural networks because of (a) Advances in trailning algorithms for
networks, and (b) Availability of extremely fast, relatively inex-
pensive computers for implementing these algorithms. These develop-
ments have lead to the consideration of neural networks for the
real-time identification and control of large flexible/articulated
aerospace and robotic systems [7., 27, 281.

Neural networks can provide mechanisms for (a) Associative
memory, (b) Pattern recognitions and (c) Abstraction. These are
emergent properties of networks of neuronlike units with adaptive
synaptic connections [10, 14, 22, 29, 32]. These mechanisms arise
from the neural network being a system of interconnected '"neuron-
like" elements modeled after the human brain. This system operates
on input data in an "all at once"” maode rather than in a conventional
camputer’s "step by step" algorithmic approach (7, 9, 29]. Differ-
ent learning architectures can be used 1n training for intelligent
control. This is done to provide appropriate inputs to the system so
that the desired responses are obtained. Uncertainty and noise can
be handled by a neural network via the Hebbian type of assocliative
learning arising from adaptively modified connection strengths L[2l,
29]1. Kawato el al [15-181 indicate that a neural network model can
be used to control voluntary movement with applications to robotics.
Implemented as a multilayered, hierarchically intelligent control
system, neural networks can be implemented to effect the following:

{a) Pattern reccognition/ condition matching

(b) Trajectory and approachs grasping, etc. opertation

(c) "Point of view" transformations - as, e.g.s visual to
sensor/end effector to object, etc.

{d) System (robot, object, etc.) state observer or model
synthesis and simulation behavior

(e} Generation of motion/actuator commands.

Adaptive control is useful for systems which perform over the
large ranges of uncertainties which result from large variations in
physical and operating parameter values, environmental conditions.
and signal inputs. However, adaptive controcl as such (i.e.. without
unsupervised learning/unanticipated problem solving features) has
difficulty with the following generic problems in designing
controllers: -

* Sensor data overlocad - arising from (a) Data redundancy
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per ses and (b) Specialized, rarely required data

# Multi-spectral, multi-sensor data fusion and mapping/use
in the proper feedback control law

# Need for system robustness to handle large paramester
excursions

# Required high-speed. real-time control degradation resul-
ting from time consuming artificial intelligerce calzula-
tions '

# Unsolved sensor choice and placement problems for
raobotic/large control systems.

It should be noted that human intervention is used 1n traditional
control systems operating with large uncertainty. Such interven-
tion is unacceptable in many real-time applications. This is espec-
ially true for the hostile space environment in which the MASA EVA
Retriever is to operate [1, 23]. It means that automatic technigues
for handling uncertainty must be developed. Neural networks show
great promise for the intelligent, unsupervised caontrol of the mul-
tiple arm plus dextrous robotic hands of the Retriever. The ne=xt
section of the report describes the author’s research work with the
Barto et al intelligent controller which 1s a special kind of neural
network with associative search and associative critic neuronlike
elements.

ACE/ASE NEURONLIKE LEARNING CONTROLLER

The Barto/Sutton/Anderson adaptive learning contraoller 1is
composed of two types of neuraonlike elements with significant
unsupervised problem—-solving capacities. These elements are the
associative search element (ASE) and adaptive critic glement (ATE)D.,
Barto et al 1983 used a single element of each type. Their ASE
element exhibits a learning strategy which is similar to the earlier
"BOXES" adaptive problem solving system of Michie and Chambers
[24, 251. The ASE/ACE elements embody refinements discussed in the
literature by Barto and colleagues [2-6, 30-311. They evolwved from
the heterostatic brain function and adaptive systems work of Klopf
(19, 203. Adding & single ACE element improves the learning perfor-
mance aover that of a single ASE alone. This can be clearly shown by
comparing the problem-solving capabilities of BOXES with those of a
single ASE/single ACE learning system and sclving the control prob-
lem of balancing an inverted pendulum on a cart. It is interesting
to note that strong analogies exist between the behavorial inter-
pretations of the ASE, ACE adaptive elements and animal bebavior in
instrumental learning. There are also strong parallels with the
"bootstrap adaption” systems work of Widrow et al [33-331. This
work considered the (a) punish/reward critical learning and (b) pat-
tern recognizing control problems. Relevant artificial (i.e.,
programmable) neural networks the ASE, ACE neuronlike slements are
significant. This follows because they indicate that if adaptive
elements are to learn effectively as network components, then they
are constrained to have adaptive capabilities at least as robust as
these Barto et al learning controller elements (21.

Figure 1 depicts the inverted pendulum on a cart system which is
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Figure 1. Representative Model for Cart and Inverted Pendulum
System.
ﬂWﬂuCEMﬂT
r
ACE
R INTER ME
.- O/IATE
¢ LPROVED /N TELNAL
C AEIm ciwﬁw'}'
e For KRE/N FORCEDIEA 7~
STATES By
X, 2
X
a. |PECODER . e ASE b4 c:-’-;:
6, . % . .
. SpOp > X
",
S10te Yeoler
Figure 2.

ASE and ACE Controller for Cart Plus Inverted Pendulum
System
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to be controlled. Here the cart can move within the bounds
indicated on a one-~-dimensional track. The pendulum can move only in
the vertical plane of the cart and the track. The applied force
F’t) results from the output of the learning controller. It is
aoplled in a bang-bang (+/-) manner and acts with a fixed magnitude
to the left or right at discrete time intervals. The pendulum-cart
system is described by a four state variable model in the time

domain [8]. The four state variables are as follows: (a) Xc - the
nosition of the cart on the track, (b)é;p - the argle of the
pendulum with the vertical, (c) }e - the cart velocity, and (d)

E;p - the rate of change of the pendulum angular displacement. The
=tate variable model for this system can be written as

’
c = Ve
»
&, = w;
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s 2
Ve the + MpJ trpirCos(&p)3 tprirsin(@pretsh - MensgniVe) + Fappit)) (o

o

= 2
2 e
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Physical parameters in the above equations specify pendulum length
and mass, cart masss the coefficients of friction between the cart
and the track and at the pin connection between the pendulum and the
cart, the applied control force, the force due ta gravity, and time.
Table 1 defines the notation used in eguation 1.

The system of first order eguations has been solved using second
order numerical intergration procedures which have been implemented
in the FORTRAN computer program NRLNET. In implementing the
learning controller alqgorithm the state space has been partitioned
bacsed on the following 292 quantization interval thresholds:

(1) Cart position wc: +/~- 0.8, +/—- 2.4 m (4 quantiza-
tion intervals including failed regions above and
below 2.4 m)

(2) Pendulum angular displacement 69p- Q.,+/— 1, +/- &,
+/—- 12 degrees, (7 gquantization intervals including
failed regzons above and below 12 degrees)

(3) Cart velocity XC- +/— 0.5y +/-0@ m/ss (3 quantiza-
tion intervals)

(4) Pendulum angular velocity é;p- +/= 30, +/—- @@ degrees
per second, (3 quantization intervals)

Figure 2 depicts the ASE plus ACE adaptive learning controller
2f Barto et al [2]. The neurcnlike learning system can be described
by the following eguations:

Element output v(t) which is determined from the decoded state
gquantization interval vector input

y = FLO w(Ist) * x(I,t)) + n(t)] (2)
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Here the noise n(t) is a real random variable with probability
function p(x) and f is either a threshold, sigmoid, or i1dentity
transfer function. For the work reported herein, p(x) 1s the zero
mean Gaussian distribution with standard deviation @ , and f is
the bang-bang type threshold function:

f(x) = +1, x .EG. O (applied force action
to the right) ) (3)
-1,y %x .LT. O (applied force action
to the left)

ASE weights w(I,t), 1 .LT. I .LT. N which change over discrete time
as follows:

wWw{Ist+1l) = wi(lst) + ALPHA * r(t) # e(l.t) t4)
In equation 4:

ALPHA = positive constant determining the rate of
change in w(l,t)

rct) = real-valued reinforcement at time t

e(l,t) = eligibility at time t via the input pathway I.

Eligibility traces for the ASE weights which ewponentially decay
with increasing time, given in equation 3 as: :

DELTA ¥ e(I,t) + (1-DELTA) * y{t) # x(I,t) (353

E(I5t+1)

in which,

DELTA the eligibility decay rate.

ACE weights v(I,t). 1 .LT. I .LT. M which change over discrete time
as follows:

v(iI,t+1) = wv(I,t) + BETA # rhat(t) ¥ xbar(I,t) (6)

In equation 6,

BETA = positive constant defining the rate of change
of v(I,t)

rhat(t) = r(t) + GAMMA * p(t) - p(t-1), the imgroved
internal reinforcement signal for the critic
element

xbar(I,t) = LAMBDA % xbar(I,t) + (1-LAMBDA) * x{(I,t),
the eligibility traces for the ACE weights

p(t) = %;\/(I,t) * ¥(I,t), the prediction of sventual

reinforcement
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reinforcement learning rate

i

GAMMA

xbar(l.,t) trace delay welght

LAMBDA

Barto and Sutton [2, 51 explain the derivation of the ACE learning
rule as used above. Additional discussion of the ASE, ACE adaptive
learning controller can be found in references [30, 311.

ASE/ACE LEARNING CONTROLLER RESULTS

This sectian of the report discusses representative results
obtained by the author with his FORTRAN computer program NRLNET131
implementing the Barto et al ASE/ACE neuronlike learning control-
ler. This program is the result of several modifications by the
author to incorporate general data file input and the file and prin-
ter plot output of the applied control force and the four state
variables as functions of time. The original FORTRAM program
NRLNETOO was the author’s implementation of a PASCAL program written
in 1988 by Doug Walker of GHG in support of the Special Frojects
Branch (ECS) in the Crew and Thermal Systems Division at NASA/JISC.

TABLE 1. SUMMARY OF PHYSICAL PARAMETER VALUES FOR CART PLUS IMVERTED
PENDULUM SYSTEM

Mc = Cart Massy 1.0 kg

Mp = Pendulum Mass, 0.10 kg

Lp = Pendulum Length, 0.50 m

MUc = Cart Coefficient of Coulomb Friction, 0.0095

MUp = Pendulum/Cart Pin Coefficient of Friction, 0.000CZ
N m sec/rad
Magnitude of Force Applied to Cart in x Direction,
(+/-) 10 N

Fapp

TABLE 2. SUMMARY OF THE ASE/ALCE NEURONLIKE LEARNING CONTROLLER

PARAMETERS
ALPHA = Rate Constant for ASE Weights, 1000.C
BETA = Rate Constant for ACE Weights, 0.50
DELTA = Decay Rate for ASE Eligibility Traces, 0.90
GAMMA = Learning Rate for Improved Internal Reinforce-
ment, 0.95
LAMBDA = Decay Rate for ACE Eligibility Traces, 0.93
AL = Mean Value for Gaussian Normal Distribution Used
toc Define ASE/ACE Qutput Noise Function, 0.00 and
0.10
g = Standard Deviation Value for BGaussian Normal Dis-

tribution Used to Define ASE/ACE Cutput Noise
Function, 0-01, 0.0S, O-lo; 0-159 O.EO, and 0.25

Table 1 gives the physical and control parameter values used in
the simulation work with NRLNET131 for the cart plus inverted pendu-
lum system depicted in Figure 1. Values used for the ASE/ACE neuron-
like learning controller parameters are summarized in Table 2. These
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parameter values were used to generate the simulation perfarmance
results plotted in Figures 3 and 4. Figure 3 plots curves for the
number of time steps until failure versus the trial number. These
are typical curves for individual runs of the ASE/ACE learning con-
troller system. Figure 4 gives plots of the average number of trials
which are required to stabilize the cart plus pendulum system for
5000 time steps (100 seconds with &t = 0.02 seconds). The average
number of trials are given as a functian of the standard deviation
for the Gaussian normal random noise process with the mean for the
process as parameter. The mean equal zero curve indicates a trend
toward an increasing number of trials as the standard deviation is
increased from 0.01 to 0.25. The other curve for the mean equal to
0.10 shows relative constancy over the same range in standard devia-
tion. These runs were originally made to examine the sensitivity of
the ASE/ACE learning controller performance to variation in the
noise process used in generating its output function. An additional
objective was to develaop a base from which the generalization and
robustness properties of the controller weights could be investi-
gated. Five runs were used to generate each point plotted in Figure
4. The results shown in Figures 3 and 4 are in general agreement
with those published by Barto et al [{2]. However, the author has
found that his NRLNET131 implementation of the ASE/ACE controller
usually takes a lesser number of trials for successfully learning to
stabilize the cart plus pendulum system for both the 5000 A t (100
seconds) cases shown here and the 200,000 At (66.7 minutes) cases
which the author ran to directly compare his results with those of
Barto et al. Extensive runs were not made for the 200,000 A t (66.7
minutes) stabilization period because of the excessively long
elapsed time rerequired for the VAX system available to the author
to return answers for a single run.

Figure 5 shows the controller output force which is applied to
the cart in stabilizing the inverted pendulum. Here the applied
force is plotted as a function as a function of time over the first
100 At intervals (2 seconds). Extensive runs have been made with the
ASE/ACE controller system and all exhibit the characteristic +/- 10N
on-off or bang-bang behavior with At = 0.02 sec. This value of the
time increment should be adequate, based on physical system oscilla-
tion behavior, for the second order numerical integration scheme
used.

Figures 6-9 plot‘the four state variables: cart displacement
(32, cart velocity (¥X), pendulum angular displacement (&, and
pendulum angular velocity ( s respectively. They are af;o plotted
as functions of time over the first 1004t intervals (2 seconds).
Consideration of these and similar time domain results for the state
variables and the applied force indicates that (a) significant in-
efficiencies can occur with respect to the input force and its im-—
pact on the actual state variable behavior of the cart plus pendulum
system, (b) withA t = 0.02 sec there may be some interaction be-
tween the numerical integration method used and the dynamics of the
ASE/ACE learning controller. To investigate (b) above, additional
runs were made in which At was reduced (At= 0.01, 0.005, 0.001
sec). These results although not included here did show significant
reduction with decreasing At in the bang-bang nature of the input
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force and the higher frequency oscillations present in the state
behavior over time (especially for the cart linear and the pendulum
angular velocities).

The author has extended the single ASE/single ACE learning con-
troller system to include two search and two critic elements. The
elements in each pair work in parallel. Since the outputs are aver-
aged in the 2 ASE/Z2 ACE learning controller system, it has —-Fapp, 0.
+Fapp as three possible outputs. This extension was implemented in
the author’s FORTRAN computer program NRLNET20. Initial runs indi-
cate that the new cantroller as implemented has good performance up
to a maximum learning point (maximum time for stability as a func-
tion of number of trials). Beyond this point the learning is severe-
ly degraded with increasing trials, or a form of limit cycle behav-
ior occurs. These results indicate that the split-decision nature of
the 2 ASE/2 ACE system as implemented in its averaging form may
cause the observed behavior. In this case using a 3, 3, etc.(i.@..
odd number of elements) in the ASE/ACE system may be warranted.
These controllers would also have a "smoother” (i.e., less bang-
bang) countrol action. Another alternative to improve performance 1s
to more richly connect the elements both within and acraos. the
search element and the critic element layers. This would give the
ASE/ACE neuronlike controller system a counter propagation/Grossberg
. layer plus Kohonen layer type of neural network structure (12, 131.

CONCLUSIONS

An examination has been made of the use of neural networks for
the intelligent control of robotic arm-plus hand/manipulator sys-
tems for the EVA Retriever. Based largely to the present time on a
review of the literature and computer simulation work, this examlina-
tion has indicated that a hierarchical, multi-layer neural network
system can be used for intelligent control. Baseline feedforward
control is used in conjunction with trajectory planning in these
systems. Joint torgue feedback provides the correction signal. These
systems have the characteristic that as additional response behav-
iors are learned, much of the control action passes to the feedfor-
ward path.

Additional investigation inta neural networks for intelligent
control has focused on the use and extension of the Bartao et al
neuronlike ASE/ACE intelligent controller. A FORTRAN family of com-
puter programs (NRLNETXX) were developed by the author as extensions
of a previous Pascal language implementation of the controller at
NASA/JSC. Work with these programs has concentrated on the follow-
ing: (a) Verifying published results for convergence to stable solu-
tion (number of trials for a specified period of stability), (b)
Develaoping graphics, etc. feedback tools to monitor system behavior
(as, ©.9.s given by the applied contraol force and the four state
variables as functions of time), (c) Investigate learning control
behavior as a function of the number of unsupervised trials reguired
to obtain stability and the random process parameters (Gaussian pro-
cess mean and standard deviation), and (d) Basic extensions to the
learning controller network incorporating two adaptive search ele-
ments (ASEs) and 2 adaptive critic elements (ACEs) in i1ts structure.
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RECOMMENDATIONS

This section of the report presents recommendations for the

intelligent control of smart robotic arm plus hand systems using
neural networks. These recommendations are based on the results

presented above and on additional related work done by the suthor
during Summer 1988. They are presented in the form of & research

and

development program plan. The R & D program plan gives activ-

ities that can continue the author’s research begun during the 1988
summer program. )

(1) Investigation of two dimensional graphics as a kinematic
simulation tool for planning EVA object retrieval in terms
of the approach to and grasping of objects using an artic-
ulated two-1link arm/scissor hand system.

(2) Implementation of dynamics, sensing, and control models of
the articulated two—-link arm/scissor hand system. It 1is
desired to mount this arm/hand system on a cart to repre-
sent the EVA Retriever in two dimensions.

(3) Examination of hierarchical neural retworks with fuzzy
logic reasoning as adaptive/general learning systems com-
prised of (a) Network architectures, (b) Transfer func-
tions, and (c) Dynamic learning rules. These systems can
employ joint torque and state vector feedback to contivol
the arm/hand system{(s) in abject retrieval as discussed
above.

(4) Investigation of extensions to the Barto/Anderson neuron-
like learning system and counter propagation/back propaga-
tion type networks to the related problem of stabilizing/
controlling the motion of simple and compound f(articulated
linkage) pendulums on a cart. Successful employment here
can lead to similar use with the arm/hand retriever sys-
tems. '
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