Structural Tailoring of Advanced Turboprops (STAT)

Programmer's Manual

K. Brown
UNITED TECHNOLOGIES CORPORATION
Pratt & Whitney
400 Main Street
East Hartford, CT 06108

March 1989

Prepared for
Lewis Research Center
Under Contract NAS3-23941
This manual describes the programming aspects of the Structural Tailoring of Advanced Turboprops (STAT) system. The manual is divided into seven main sections, each of which describe module intent and interaction within the STAT program. Section 1 discusses the overall program flow and categorization of the modules. The ADSREAD subsystem, which provides a means for the analysis modules to access a description of the current blade design, is described in Section 2. The function of each high-level module is given in Section 3. The file units and common blocks are described in Sections 4 and 5, respectively. Section 6 describes the method in which refined analysis modules can be added to the program, and Section 7 defines the job control language for the CRAY COS version of STAT.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Program Description</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Categorization of Modules</td>
<td>3</td>
</tr>
<tr>
<td>2.0 THE ADSREAD SUBSYSTEM</td>
<td>4</td>
</tr>
<tr>
<td>3.0 PROGRAM FLOW CHARTS</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Main Program</td>
<td>5</td>
</tr>
<tr>
<td>3.2 STATIN</td>
<td>7</td>
</tr>
<tr>
<td>3.3 ASSOCS</td>
<td>8</td>
</tr>
<tr>
<td>3.4 OPT003</td>
<td>9</td>
</tr>
<tr>
<td>3.5 OPT009</td>
<td>10</td>
</tr>
<tr>
<td>3.6 ADS</td>
<td>12</td>
</tr>
<tr>
<td>3.7 EFFICH</td>
<td>14</td>
</tr>
<tr>
<td>3.8 BDS</td>
<td>15</td>
</tr>
<tr>
<td>3.9 FEARUN</td>
<td>16</td>
</tr>
<tr>
<td>3.10 FLUTER</td>
<td>17</td>
</tr>
<tr>
<td>3.11 GAEROH</td>
<td>19</td>
</tr>
<tr>
<td>3.12 DBNF</td>
<td>20</td>
</tr>
<tr>
<td>3.13 ONEPFR</td>
<td>21</td>
</tr>
<tr>
<td>3.14 OBJF</td>
<td>22</td>
</tr>
<tr>
<td>3.15 DEFCON</td>
<td>23</td>
</tr>
<tr>
<td>3.16 REPORT</td>
<td>24</td>
</tr>
<tr>
<td>4.0 FILE UNITS</td>
<td>25</td>
</tr>
<tr>
<td>5.0 STAT COMMON BLOCKS</td>
<td>26</td>
</tr>
<tr>
<td>5.1 Common Blocks Sorted by Routine</td>
<td>33</td>
</tr>
<tr>
<td>6.0 ADDING REFINED ANALYSIS MODULES TO STAT</td>
<td>42</td>
</tr>
<tr>
<td>6.1 Work Storage Array</td>
<td>44</td>
</tr>
<tr>
<td>7.0 JCL FOR THE CRAY COS VERSION OF THE STAT PROGRAM</td>
<td>45</td>
</tr>
<tr>
<td>7.1 Executing the STAT Program</td>
<td>45</td>
</tr>
<tr>
<td>8.0 REFERENCES</td>
<td>46</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>47</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The Structural Tailoring of Advanced Turboprops (STAT) computer program was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints.

The STAT analyses include an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution (one-p) forced response life prediction capability. The STAT constraints include blade stresses, blade resonances, flutter, tip displacements and a one-p forced response life fraction. The STAT variables include all blade internal and external geometry parameters needed to define a composite material blade. The STAT objective function is dependent upon a blade baseline definition which the user supplies to describe a current blade design for cost optimization or for the tailoring of an aeroelastic scale model.

To perform a blade optimization, three component analysis categories are required: an optimization algorithm; approximate analysis procedures for objective function and constraint evaluation; and refined analysis procedures for optimum design validation. The STAT computer program contains an executive control module, an optimizer, and all necessary approximate and refined analyses. The optimization algorithm of STAT is the Automated Design Synthesis (ADS) optimization package, which is a proven tool for optimizations with a small to medium (1 to 30) number of design variables. A flowchart of the STAT procedure is shown in Figure 1.

The approximate analyses of STAT utilize an efficient, coarse mesh, plate finite element blade vibration analysis procedure. The finite element analysis provides blade natural frequencies and mode shapes, stress under centrifugal and pressure loads, and blade weight. Additional constraint evaluations, including flutter, power, acoustic and one-p calculations, utilize output from the finite element analysis.

After each completed design iteration, the current design is verified by applying refined analyses to assure that all constraints are satisfied. If the constraints are not all satisfied, then correction factors are applied to the approximate analyses to better calibrate them with the refined analyses results. The optimization process continues to the next completed design move until a local optimum design has been found whose constraints satisfy refined analyses.

To use the blade optimization system, design variable (parametric) curves used to describe the external and internal geometry of a turboprop fan blade must be defined. External geometry curves define blade thickness, section stacking, camber, chord, twist and conical sections. Internal geometry curves define individual layer thickness, percent chord coverage and position over the entire blade.
STAT PROCEDURAL OUTLINE

INPUT

INITIALIZE

BEGIN OPTIMIZATION LOOP

NO

OPTIMUM DESIGN FOUND?

YES

NO

RUN REFINED ANALYSES?

YES

PRINT COMPARISON TABLE OF REFINED VS. APPROXIMATE RESULTS

STOP

----------> Read user input file defining blade and optimization parameters.

----------> Initialize design curves, ADS, and calculate initial airloads.

----------> Successive calls to ADS, FEA, Flutter, Aero, Acoustic, 1-P Forced Response, Objective and Constraint calculations.

----------> Successive calls to refined FEA, Flutter, Aero and Acoustic calculations.

Figure 1 Structural Tailoring of Advanced Turboprops Overall Program Flow

The STAT system has been applied to the Large-Scale Advanced Propfan (LAP) SR-7 blade, the LAP SR-7 aeroelastic scale model blade and the 18E SR-7 infeasible blade design, as detailed in Reference 1. The STAT program made significant improvements in all three cases and demonstrated the great potential for design enhancements through the application of numerical optimization to turboprop fan blades of composite construction.

This manual describes the functionality of the STAT system from a programmer's viewpoint. It provides a top-down description of module intent and interaction. The purpose of this manual is to familiarize the programmer with the STAT system so that he/she may enhance or verify the program's function.
1.1 PROGRAM DESCRIPTION

The STAT program was originally written in FORTRAN 77 and compiled with the IBM VSFORT 1.4.1 compiler. It has since been modified to be compatible with the CRAY CFT 1.14BF4 compiler.

STAT provides for the numerical optimization of turboprop blades. The program's goal is to iteratively improve the design of a blade by modification of the design variables of the analysis. The initial blade, called the 'baseline', is described by the user's data set. The output of the program is a set of design variable values which describe improvements to the baseline blade. User input to the program may be categorized as follows:

1. Data which describes the baseline design
2. Data which describes the design variables and constraints
3. Data which controls the method of the optimization
4. Data which controls the output of information to the user.

1.2 CATEGORIZATION OF MODULES

The STAT program consists of four logically different types of modules. The first of these is the analysis module. The analysis modules provide the system with a description of the behavior of the blade that is currently defined by the design variables. The aerodynamic analysis, the finite element analysis, and the flutter analysis are examples of analysis modules.

The second type of module is the objective function. The objective function is the user's numerical description of goodness of a design, stated so that the best design produces the minimum value of the objective function.

Thirdly, STAT contains modules which comprise the optimizer. The optimizer uses the current design variable definition of the blade, the value of constraints on blade behavior and the value of the objective function to suggest a modification to the current blade (again stated in terms of the design variables). STAT utilizes the ADS optimizer, developed by G. N. Vanderplaats (ref. 2).

The final class of modules provides communication between the design vector description of the blade and the analysis modules. These routines are collectively referred to as the ADSREAD system. ADSREAD provides for the mnemonic description of the blade given by the user and a means for analysis routines to retrieve a meaningful description of the current design. Understanding the operation of the ADSREAD subsystem is necessary for understanding the STAT program's function.
2.0 THE ADSREAD SUBSYSTEM

The ADSREAD subsystem provides a means for the analysis modules to access a description of the current blade design. This description is by means of cubic spline curves which the user has defined through CURVE cards. Many of these CURVE cards are required; the curve name is reserved and understood by the geometry and model pre-processors.

ADSREAD is also used to define variables and constraints on the model to be optimized. This ability is provided through VARIABLE, CUTOFF and CONSTNRT cards. These cards are explained in the STAT User's Manual (ref. 3).

There are three services provided by ADSREAD. First, ADSREAD allows the user to describe the baseline model. Second, ADSREAD allows the user to constrain and vary the model. Finally, ADSREAD provides a means to interpret the ADS design variables in terms of the design variables of the model.

All aspects of the model design, which equate to design variables and define the dynamic description of the blade, are contained in the array COEF. Primarily, this array contains cubic spline coefficients of the current design variable curves. The COEF array is acted upon in the following ways.

Baseline Description

Before entering the optimization loop, the program calls STATIN to read the baseline description. The data read describes the design by means of abscissa and ordinate curve definitions which parameterize the design. The curve description is then translated into cubic spline coefficients in the routine OPT003. Both of these routines are visible from the main routine.

Current Curve Update

After each iteration of the optimization loop, ADS returns a new design vector. The design vector must then be interpreted in terms of the curve(s) it modifies. The routine OPT009, visible from the main routine, is responsible for the translation. Note that at the beginning of execution, the design vector is zero. This is because the current design is represented by a perturbation of the baseline design. That is, the current design is equal to the baseline design curve plus the delta addition to that curve provided by the ADS design vector.

Design Curve Value Retrieval

The analysis modules need a description of the blade to be analyzed. Some of the information about this model is found in the data dedicated to that analysis (such as ASETs and SPCs of the FEA). Most of the data which describes the current geometry of the model is retrieved from the COEF splines using the routine OPT001. OPT001 simply takes as input the name of the curve on which values are required and the abscissa values along that curve where the values are required. The output is ordinate values of that curve.
This section depicts the flow of the STAT program, and describes the function of each high-level module.

3.1 MAIN PROGRAM

<table>
<thead>
<tr>
<th>FLOW</th>
<th>ROUTINES USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
<td></td>
</tr>
<tr>
<td>Initialization</td>
<td></td>
</tr>
<tr>
<td>Read user input</td>
<td>STATIN</td>
</tr>
<tr>
<td>Define objective function variables</td>
<td>ASSOCS</td>
</tr>
<tr>
<td>Initialize design curves</td>
<td>OPT003</td>
</tr>
<tr>
<td>Initialize ADS</td>
<td>OPT009</td>
</tr>
<tr>
<td>Initial AERO analysis</td>
<td>ADS</td>
</tr>
<tr>
<td>Begin Approximate Optimization Loop</td>
<td>EFFICH</td>
</tr>
<tr>
<td>This loop terminates when ADS has found an optimum design (and returns INFO = 0), or when the maximum number of iterations (MXITER) has been exceeded, or when the maximum number of design steps (IDM) has been exceeded.</td>
<td></td>
</tr>
<tr>
<td>Call optimizer for next design vector</td>
<td>ADS</td>
</tr>
<tr>
<td>Update design curves</td>
<td>OPT009</td>
</tr>
<tr>
<td>Produce shape description of airfoil</td>
<td>BDS</td>
</tr>
<tr>
<td>Finite Element Analysis (FEA)</td>
<td>FEARUN</td>
</tr>
<tr>
<td>If FEA yields a singular stiffness matrix during a warm-start:</td>
<td></td>
</tr>
<tr>
<td>Then re-run FEA in cold-start mode</td>
<td></td>
</tr>
<tr>
<td>If FEA yields a singular stiffness matrix during a cold start:</td>
<td></td>
</tr>
<tr>
<td>Then STOP</td>
<td></td>
</tr>
</tbody>
</table>
Flutter analysis
Deflected geometry update
Aero analysis
Acoustic analysis
1-P aerodynamic analysis
1-P forced response
Objective function
Constraint calculations
Output results

End Approximate Optimization Loop

Update design curves with final design variables and plot final design variables
Output final results of approximate optimization
Determine if sufficient data has been input to perform a refined analysis
If data is insufficient:
Then STOP
Begin Refined Analysis

Produce refined shape description of optimum airfoil
Refined finite element analysis
IF FEA yields a singular matrix:
Then STOP
Refined flutter analysis
(This is not available in the NASA public version)
Deflected geometry update
Refined aero analysis
Refined acoustic analysis
(This is not available in the NASA public version)
Output table comparing results of approximate and refined analyses.
STOP
3.2 STATIN

STATIN reads all program input except finite element data (FEA data is read separately due to the program's storage strategy). Optimization, Objective function, Aero Analysis and Mesh generation data are read here.

FLOW

START

Initialization

Process optimization input contained on the following cards:

- OPTIMIZE
- VARIABLE
- CONSTRAINT

- CURVE
- ABSCISSA
- DEBUG

- CONSTANT
- DEPEND
- PLOT

- CUTOFF
- MATERIAL
- LAY-UP

- PRIORITY
- *END_OPT
- $ (comments)

Performs initial validity check.

Process efficiency analysis input contained on the following cards:

- BLADE
- ENVIRON
- AIRFOIL

- AXIALV
- FILR/R
- *END_EFF

Performs initial validity check.

Process objective function input contained on the following cards:

- OBJTYPE
- BASELINE
- SENSE

- BLDDATA
- BLDFREQ
- BLDMASS

- BLDEFL
- *END_OPJ

Performs initial validity check.

Process geometry generation input contained on the following cards:

- GEOMGEN
- CHORDTAB
- SPANTAB

- ATTACHMT
- *END_GEN

Performs initial validity check.

RETURN
ASSOCS associates locations of the input arrays BASE and SENSE with particular variables used by the objective function. By using this method rather than a direct read into those variables, it is easier for the programmer to change objective functions. The programmer assigns different meanings to the fields of the BASE and SENSE cards and writes a new ASSOCS routine.

FLOW

START

Associate user input data in arrays BASE and SENSE with specified variables used by the objective function.

RETURN
3.4 OPT003

OPT003 requires the abscissa and ordinate values from the input curve data, read by STATIN. It outputs the spline coefficients of the baseline design curves.

```
FLOW

START

Initialization

Begin Loop 1
For i = 1...number of curves do
Verify that an ABSCISSA card has been input which matches the abscissa of curve(i).
If no match exists
Then
print error message
STOP
Endif
Save baseline coefficients of curve(i) in array COEF.
Plot curve(i)
End Loop 1

Begin Loop 2
For i = 1...number of cutoffs do
Enter value of cutoff(i) into array COEF.
If no cutoff is explicitly specified
Then set the value to the appropriate abscissa endpoint.
End Loop 2

RETURN
```
3.5 OPT009

OPT009 transforms the baseline curves in array COEF into current curves based on the ADS design vector, X.

FLOW

START

Initialization

BEGIN LOOP 1
For i = 1...number of curves do
 If no variables or constants reference curve(i)
 Then goto End Loop 1.

BEGIN LOOP 2
For j = 1...number of design variables do
 If design variable(j) does not reference curve(i)
 Then goto End Loop 2.

Create delta design variable curve. X vector consists of abscissa values contained in VARABS and DEPLOC arrays. Y vector consists of delta design variables contained in ADS design variable array.

END LOOP 2

BEGIN LOOP 3
For j = 1...number of constants do
 If constant(j) does not reference curve(i)
 Then goto End Loop 3.

Create constant curve. X vector consists of abscissa values obtained from CONSTANT cards. Y vector consists of ordinate values from CONSTANT cards.

END LOOP 3

Merge the delta design variable curve and the constant curve to form a single delta design variable (DDV) curve.

Fit a cubic spline through the DDV curve and determine the coefficients for an interpolating polynomial.

VMERGE

BMFIT

ROUTINES USED

ZERO
Evaluate the DDV curve at the points where the baseline curve(i) is defined.

Add the delta curve values to the baseline curve(i) and store as the current curve(i).

Re-spline the current curve(i) and place the coefficients in array COEF.

If requested, plot current curve(i).

End Loop 1

Update COEF array with any cutoff design variable.

Update COEF array with any material angle design variable.

RETURN
3.6 ADS

ADS is a general purpose numerical optimization program containing a wide variety of algorithms. Its purpose is to minimize an objective function subject to various user-defined constraints.

FLOW

START

If first time in routine
Then

Check for valid input combinations
Initialize scalar parameters
Define work array storage
RETURN
Endif

Get scalars from work array
Set idv = idv + 1
If idv le number of design variables
Then

Calculate finite difference gradient of design variable(idv)

Evaluate objective function

Begin Loop 1
For j = 1..number of constraints
Evaluate constraint(j)
End Loop 1

Output values of gradients, objective, and constraints
Else
Set idv = 0
Perform one-dimensional search
Evaluate objective function

Begin Loop 2
For j = 1...number of constraints
Evaluate constraint(j)
End Loop 2

Output values of gradients, objective, and constraints

Check convergence criteria to determine if optimization is complete
If optimization is complete
Then output final results
Endif
RETURN
3.7 EFFICH

EFFICH performs an aerodynamic analysis on the airfoil. It outputs propfan performance characteristics and blade loads.

FLOW

START

Initialization

Retrieve t/b, chord, and cone angle design curves from work array (HOB, BOD, and CONE)

If first time in routine
Then

Retrieve design curves representing 'cold' geometry blade (BETA, CLD, XOR, YOR, and ZOR)

Set 'cold' blade angle

Else

Retrieve design curves representing 'hot' geometry blade (BETAH, CLDH, XORH, YORH, and ZORH)

Calculate 'hot' blade angle

Endif

Calculate activity factors

Calculate aerodynamic blade loads

PNPINT

Calculate propfan performance parameters (thrust, shaft h.p., efficiency, ...)

Store propfan data in common for later use

RETURN

ROUTINES USED

OPTOO1

AFFIDC

LINHTT

MNPANP

AIRFLT
3.8 BDS

BDS, the Blade Design System, interpolates design curve data and outputs a set of radial splines which define the airfoil external surface, leading edge radius centers, stacking points, and trailing edge radius centers.

FLOW
START

Initialization

Interpolate blade design curves from sparse definition (design variables) to dense definition. Blade design curves are HOB, CLD, BOD, BETA, Cone, XOR, YOR, and ZOR.

Calculate current blade angle

Calculate external airfoil conic sections, stacking points, leading edge radius and trailing edge radius centers.

RETURN
3.9 FEARUN

FEARUN controls execution of the finite element input reader, mesh generator, and finite element analysis.

FLOW

START

If entering routine for the first time
Then
Initialize counters and storage arrays.
Allocate storage in work array for input items.
Read user input finite element bulk data.

Else
Then retrieve previous deflection vectors and bulk data from scratch file.

Endif

Create blade finite element model, including material definition.
If requested, print bulk data listing.
Perform finite element analysis.
If FEA yields a singular stiffness matrix
Then RETURN

Recover stresses of laminate materials and calculate Tsai-Wu failure criteria
Store current deflection vector and bulk data on scratch file.

RETURN
3.10 FLUTER

FLUTER determines the classical flutter stability of propellers with swept blades in a high subsonic flow environment. It takes beam equivalent mode shapes that have been derived from the plate finite element analysis, and calculates the damping ratio and natural frequencies for six Mach number cases for the first four natural modes. A stall flutter parameter and the flutter Mach number are output from this routine.

FLOW

START

Initialization

Define non-dimensional radial sections for analysis

Define the four solution modes

Calculate the stall flutter parameter

Define the six Mach number cases

10 Set npass = npass + 1

Set air density = air density * 0.7

Begin Loop 1

For i = 1...number of Mach number cases

Calculate the blade rotation needed to align the 3/4 chord with the 3/4 relative velocity(i)

Calculate radius and relative velocity vectors

Define aerodynamic sweep

Calculate mode shapes at the previously defined analysis sections

Calculate chord, sweep, and twist at the analysis sections

Calculate gap chord ratio

Calculate radial span lengths

ROUTINES USED
Assemble aerodynamic modal matrix using calculated section properties. Solve matrix to obtain modal frequencies and damping.

Save frequencies and damping for number of modes for Mach number(i)

If any mode of Mach number case(i) has damping > 1.0
Then goto 10 (divergence)

If npass ≥ 20
Then goto 20

End Loop 1

If any mode of any Mach number case has damping < 0.0
Then goto 10 (instability)

20 Calculate flutter Mach number, correcting for cascade effect

RETURN
3.11 GAEROH

GAEROH calculates 'hot' propeller geometry.

FLOW

START

Initialization

Calculate change in stacking due to blade deflections from f.e.a.

Calculate change in radial tilt, tangential tilt, axial tilt and twist due to blade deflections from f.e.a.

Calculate change in camber due to blade deflections from f.e.a.

Generate and store spline coefficients for 'hot' geometry curves. These curves are BETAH (twist), CLDH (camber), XORH, YORH, AND ZORH (tilt).

RETURN

ROUTINES USED

QSPLIN

OPT001

OPT002
3.12 DBNF

DBNF calculates blade noise and passage frequency.

FLOW

START

Initialization

Calculate blade passage frequency as a function of tip speed and blade diameter.

Calculate corrected tip speed, tpcor

Calculate corrected tip clearance, tccor

Calculate corrected activity factor, afcor

Calculate corrected sweep, swcor

Calculate corrected number of blades, nbcor

Calculate total blade noise as a function of altitude, temperature, tpcor, tccor, afcor, swcor, and nbcor.

RETURN
3.13 ONEPFR

ONEPFR calculates maximum static and vibratory TSAI-WU stresses, and outputs the maximum stress failure ratio.

FLOW

START

Initialization

Retrieve current f.e. deflection vectors and bulk data from scratch file.

Calculate aerodynamic loads

If specified, output aerodynamic loads

Calculate modal loads, generalized stiffness, and amplification factors.

Calculate a steady stress Tsai-Wu value for each layer of every airfoil element.

Calculate an equivalent Tsai-Wu stress by summing the Tsai-Wu stresses for each mode multiplied by their respective amplification factors. The result will be the vibratory Tsai-Wu stress to be measured on a 'Tsai-Wu Goodman Diagram'.

Determine maximum static/vibratory Tsai-Wu stress ratio from 'Tsai-Wu Goodman Diagram'.

RETURN
3.14 OBJF

OBJF uses data generated by the analysis modules, such as stress, noise, efficiency, etc..., to calculate an objective function value. The value of the objective function is used by ADS to evaluate design goodness.

FLOW

START

Initialization

If objective function type eq 1
Then
Calculate scaled blade efficiency value, ddoc1
Calculate scaled blade weight value, ddoc2
Calculate scaled blade noise value, ddoc3
Calculate blade acquisition cost, ddoc4
Calculate blade maintenance cost, ddoc5
Calculate objective function (delta direct operating cost) by adding ddoc1, ddoc2, ddoc3, ddoc4, and ddoc5.
Endif

If objective function type eq 2
Then
Calculate frequency correlation, ddoc1
Calculate blade mass distribution, ddoc2
Calculate modal deflections at tip, ddoc3
Calculate static blade untwist, ddoc4
Calculate objective function (aero-differences between full and scale models) by adding ddoc1, ddoc2, ddoc3, and ddoc4.
Endif

RETURN
3.15 DEFCON

DEFCON maps program analysis outputs into the appropriate positions of the TERMS array. NOTE: The positioning of TERMS values is application dependent and defines the values of ITERM on CONSTRTNT cards.

FLOW

START

Initialization

Frequencies for first 10 modes (From FEA) are stored in TERMS(1..10).

Tsai-Wu layer stresses are stored in TERMS(11..30).

Flutter Mach number is stored in TERMS(31).

Stall flutter parameter is stored in TERMS(32).

Power is stored in TERMS(33).

Activity factor is stored in TERMS(34).

Max. von Mises stress is stored in TERMS(35).

Tip uncamber is stored in TERMS(36).

Tip untwist is stored in TERMS(37).

Tip leading edge axial displacement is stored in TERMS(38).

Tip trailing edge axial displacement is stored in TERMS(39).

One-p force response maximum stress failure ratio is stored in TERMS(40).

RETURN
3.16 REPORT

REPORT outputs program results.

FLOW

START

Determine elapsed CPU time.

If optimization is not complete (INFO ne 0)
Then
Output results from current function call.

If current function call is not a design move
Then RETURN

Store design move results for summary print.

Output summary print every nine design moves.

RETURN

Endif

Output final optimization results.

RETURN
4.0 FILE UNITS

The STAT program uses auxiliary files for data storage in various ways. Particular FORTRAN unit numbers are used for certain program functions. Table I lists the file unit numbers. Any units not listed are available for use as scratch files by the user. All file units listed are sequential access.

Table I File Units

<table>
<thead>
<tr>
<th>FORTRAN Unit Number</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>STAT input</td>
<td>Card image</td>
</tr>
<tr>
<td>6</td>
<td>STAT output</td>
<td>Line printer</td>
</tr>
<tr>
<td>7</td>
<td>Internal scratch file</td>
<td>Formatted</td>
</tr>
<tr>
<td>8</td>
<td>Internal scratch file</td>
<td>Formatted</td>
</tr>
<tr>
<td>10</td>
<td>Internal scratch file</td>
<td>Formatted</td>
</tr>
<tr>
<td>14</td>
<td>Internal scratch file</td>
<td>Formatted</td>
</tr>
<tr>
<td>17</td>
<td>Internal scratch file</td>
<td>Formatted</td>
</tr>
<tr>
<td>18</td>
<td>Internal scratch file</td>
<td>Unformatted</td>
</tr>
<tr>
<td>19</td>
<td>STAT diagnostic output</td>
<td>Line printer</td>
</tr>
<tr>
<td>20</td>
<td>Internal scratch file</td>
<td>Formatted</td>
</tr>
<tr>
<td>21</td>
<td>Internal scratch file</td>
<td>Unformatted</td>
</tr>
<tr>
<td>22</td>
<td>Internal scratch file</td>
<td>Unformatted</td>
</tr>
<tr>
<td>24</td>
<td>Internal scratch file</td>
<td>Formatted</td>
</tr>
<tr>
<td>26</td>
<td>Internal scratch file</td>
<td>Formatted</td>
</tr>
<tr>
<td>30</td>
<td>Mesh generator diagnostic output</td>
<td>Formatted</td>
</tr>
<tr>
<td>39</td>
<td>Finite element bulk data</td>
<td>Formatted</td>
</tr>
<tr>
<td>40</td>
<td>STAT summary report</td>
<td>Line printer</td>
</tr>
<tr>
<td>41</td>
<td>Finite element scratch file</td>
<td>Unformatted</td>
</tr>
<tr>
<td>42</td>
<td>Finite element scratch file</td>
<td>Unformatted</td>
</tr>
<tr>
<td>43</td>
<td>Finite element scratch file</td>
<td>Unformatted</td>
</tr>
<tr>
<td>44</td>
<td>Finite element scratch file</td>
<td>Unformatted</td>
</tr>
<tr>
<td>45</td>
<td>Finite element scratch file</td>
<td>Unformatted</td>
</tr>
<tr>
<td>46</td>
<td>Finite element scratch file</td>
<td>Unformatted</td>
</tr>
<tr>
<td>47</td>
<td>Finite element modeshapes</td>
<td>Unformatted</td>
</tr>
<tr>
<td>48</td>
<td>Finite element stresses</td>
<td>Unformatted</td>
</tr>
</tbody>
</table>
5.0 STAT COMMON BLOCKS

COMMON /ABCONV/ ICONVG(10)
COMMON /ABDATA/ CLAFAB(100,10), CLGSAB(100,10), PHIAB(100,10),
. ALPHAB(100,10), BETAAB(100,10), ITNO(10)
COMMON /ABITER/ PHIINT, CLA1
COMMON /ADSTMP/ XIDM
COMMON /AERDAT/ THETA(15,6,2), AA(15,6,2), DIAG(15,6,2),
. CONST(15,6,2), CMACH(15,6,2), SMACH(15,6,2),
. CFDP(15,6,2), SKEW(15,6,2)
COMMON /AFCPIT/ AFXX, CLIXX
COMMON /AIRALZ/ ALZA01(308), ALZA03(268), ALZA07(15)
COMMON /AIRCDF/ CDFA01(50), CDFA03(11), CDFA08(17)
COMMON /AIRCDM/ CDMA01(19), CDMA03(29), CDMA07(25), CDMA08(25)
COMMON /AIRDAT/ FAIR(1000)
COMMON /ALFEXT/ XCL2(10), ALPFS(10), CLFS(10)
COMMON /ALLDAT/ TITLE1(18), TITLE2(18), TITLE3(7), DATA(2260)
COMMON /APEFFC/ EFFX
COMMON /ARGOT2/ TEMP2, POP2
COMMON /ARGOUT/ ALTO, TSS, SHPDD, AFF, DIAMM, XNBB, SWEPTT
COMMON /BARSAV/ ICTBAR, IDBAR(10), ICPBAR(10), IDBAR(10),
. IELBAR(10), IPDBAR(10), IGIBAR(10), IG2BAR(10),
. T1BAR(10), T2BAR(10), T3BAR(10), IPABAR(10),
. IMDBAR(10)
COMMON /BARX/ EE(500), GG(500), RIY(25), RIZ(25), RJ(25), YA1(25),
. ZA1(25), YA2(25), ZA2(25), AREA(25), IBAR(25), NBAR,
. RK1(25), RK2(25)
COMMON /BDSC01/ A0(20), A1(20), A2(20), C1(20), C2(20), C3(20),
COMMON /BDSC02/ TERAD, GOCODE
COMMON /BDSC03/ T10(48),T16(150),T63(48),T64(150),T65(48),
.TOO(48), PX(22), PAN(55), T66(48), TCA(96), T230(96), XZ(18),
.NACA62, NACA63, NACA64, NACA65

COMMON /BIGMAT/ PHI(400),RW(6000),ZW(6000)

COMMON /CALSP/ EPS(50)

COMMON /CASDAT/ SIGMA(15,2),THETA(15,2),THETA(15,6,2),
.TAUB(15,2)

COMMON /CCOM/ CHORD(15,2),ALCRAD(15,2),ALCPHI(15,2),ALCAXL(15,2)

COMMON /CDPER/ DFR,DPR

COMMON /CINCOM/ CINPUT(15,2),ALCIRD(15,2),ALCIPH(15,2),
.ALCIAX(15,2)

COMMON /CLCDDT/ CLSAV(15,6,2),CSAV(15,6,2),ALPHA(15,6,2),PHIHD(15,6,2),
.CDO(15,6,2),CIRC(15,6,2),SAVCR(15,6,2),FTRAN(15,6,2,3)

COMMON /CMOMNT/ CMC4

COMMON /CMPNUM/ NCOMP

COMMON /CM104C/ CM14C(15,6,2)

COMMON /COMPR/ KC(10)

COMMON /CONDAD/ PI,RADDEG,DEGRAD

COMMON /CONSTI/ RPM,SOUND,DENSTY,VIMOM(2),BL,R(2),STN,
.THETA0(2),HUBQ(2),DPsi,REV,CPII,TOL,CNSECT,SCOO(2),RADCAS(2),
.VORCR,DCPDT,STACK,CTII,DCTDT,ZHUB,VKTASS,TIPM(2),RDTRAN(2)

COMMON /CONST/: PI1,R4PI(2),ONO4PI(2),RSCSQ

COMMON /CONTS2/ DIA(2),OMGR(2),ZMSQ,UAX,PIND(2),ZJII,MJ(2)

COMMON /CORD/ ICID(300),AI(3,300),AJ(3,300),AK(3,300)

COMMON /COSNSW/ COSS(15,6,2)

COMMON /CPTHET/ NCPO,ICPOK,THET0(10,2),CPCALC(10),CTCALC(10)

COMMON /CRSAV/ DATCR(1260,2)
COMMON /CRUVS /VAIOV(10,2),VTIOV(10,2),LPRNT,ICRIT,ICR,KCONV,
 .CTX(2),CPX(2),DIAMX(2),ZJXX(2),BETAX(2)
COMMON /CYC1/ IS1(600),IS2(600)
COMMON /CYJOIN/ NSEG,NSIDE,ISIDE1(50),ISIDE2(50)
COMMON /C10/ F(175)
COMMON /DATIP/ DAT(700)
COMMON /DZLETE/ DLEX, ZLEX, DTEx, ZTEX
COMMON /EFFICA/ EATA, BET75 , HP
COMMON /ELCONT/ IELID
COMMON /ELEPX/ CLOCD(10),DFDR(10),DTDR(10)
COMMON /EMGEST/ ELID,ISILS(3),THETA, EPS, THEST(3),
 . TDFALT,FI2,FI3,FMU,Z1,Z2,
 . A MTVMP,MID1,MID2,MID3,MID4,R1(3),R2(3),R3(3),IC1,IC2,IC3
COMMON /EMGPRM/ IKGG,IMGG,NOGO,ICMBAR
COMMON /FCOM/
 . FTOT(15,6,2),ALFRAD(15,6,2),ALFPHI(15,6,2),ALFAXL(15,6,2),
 / FLTOT(15,6,2),ALFLRD(15,6,2),ALFLPH(15,6,2),ALFLAX(15,6,2),
 . FDTOT(15,6,2),ALFDRD(15,6,2),ALFDPH(15,6,2),ALFDAX(15,6,2)
COMMON /FLIGHT/ ZMO(15,2), ZJO(15,2)
COMMON /FLOWDT/ DENS(15,2),SOUN(15,2),VONVO(15,2),URONVO(15,2),
 . VZERO(15,2),VZEROB(16,2)
COMMON /FLOWFD/ AOMT(50), VTOVZA(10,50), CMAA(10,50)
COMMON /FORCOM/ FRAD(15,2),FPHI(15,2),FAXL(15,2)
COMMON /FORCON/ ZMFS, ZMROT, PHI010(10), AAA(10)
COMMON /F91OUT/ CGAA(10), FAD(10), SWP1(10), BETAG(10),
 . CMACHG(10), CLIG(10), CDIG(10)
COMMON /GAMUV/ GAMMA(10), UX(10), VX(10)
COMMON /GAUSIN/ GCINPU(10,2), GDTET(10,2), GTOVER(10,2),
 . GAFoil(10,2), GDESCL(10,2), GRSCIN(10,2),
 . GVONVO(10,2), GURONV(10,2), GTHETA(10,2)
COMMON /INDEX5/
 . IKGG ,IMGG ,IMELM ,IKELM ,IKECS ,IKSF ,IB001 ,IKNM ,IG01 ,
 . IB002 ,IG02 ,IGM ,IKMM ,IZ ,IFORCE,ISPAC ,ISPAC1
COMMON /INPTP/ UBHP, UPRPM, UALT, UVKAS, UT
COMMON /INTDT1/ ITOT,KTOT,JTOT,NTOT,BJTOT,JTOTI,IBB,LTOT,NPROP,
 . MSIZE,LTOTI
COMMON /INTDT2/ NCOMPR,NEVARD,IPRMAT,IPROPT,IPNT,ITYPES,NCFLOW,
 . IWAKOP,NACWAK,IJUNK,ISKIN,ICASDE,ICAS,DEBUG,MATSOL,NCBWAK,
 . IPC,H,ITYPCS
COMMON /IOUNIT/ IOIN,IOOUT,IOIN,IOOAKA,IOKAA1,IOKDLM,
 . IOELM,IOKGG,IOOMODE,IOSTRS
COMMON /IOUNIT/ NREAD,NWRITE,NPUNCH
COMMON /IUNITD/ IUNIT(2,2)
COMMON /JUNK99/ BLANGL(90)
COMMON /KCLSAY/ XKCL(10)
COMMON /MACHNO/ ZMO
COMMON /MATIN / MATID,INFLAG,ELTEMP,SINTH,COSTH
COMMON /MATOUT/ G3X3(6),RHAY,ALPHAS(3),TZERO,GE,G2X2(3)
COMMON /MATSAV/ ANGS,ATTS
COMMON /MAXSIZ/ MAXGRD,MAXEL,MAXPSL,MAXMAT,MAXCOR,MAXRFC
COMMON /MCONED/ XMC(2),YMC(2),ZMC(2),XMCT(2),YMCT(2),ZMCT(2)
COMMON /MCRITJ/ ZMCRTJ(16)
COMMON /MCRITS/ YMCRIT(10)
COMMON /MCRIT2/ ZMCR2D(16)
COMMON /MHCONED/ NSTAT(6,2),XKCON(15,6,2)
COMMON /MZERO / ZMSQ
COMMON /NETF/ ICALC,XEFFA,XCTA,SEFF(3),YCTA(3),SARNO(10),SVOV(10),
 . JRET
COMMON /NORCOM/ ALNRAD(15,2),ALNPHI(15,2),ALNAXL(15,2)
COMMON /NUMCAS/ NNCASE,JJCASE,IPOREV
COMMON /OPTOPT/ NCALC
COMMON /PHICOM/NPHI,DELPHI(16,37),COSDPH(16,37),SINDPH(16,37)
COMMON /PHIZER/ ABOVE(15,2)/ BELOW(15,2)
COMMON /PLTFRM/ IPLTFM
COMMON /PRESCV/ UOVERV(10),VOVERV(10),SWIRLA(10),UWOVO(10),
.TEMPR(10),ZMOMO(10),PRESRA(10),ZETAD(10),HIHO2
COMMON /RECALL/ MATRIX(20,11),ITAPE,LPERC,MAXCAS,KERREC,MBEST,IEND
COMMON /REYNXX/ REYNOS(10)
COMMON /RFRC/ RFA,RFN1,RFN2,RFN3,RFDRPM
COMMON /RFRC8/ RFA8(8),RFN18(8),RFN28(8),RFN38(8),RFDRP8(8),
.IDRF8(8)
COMMON /ROLL/ TRUNCT(2),TRUNCI(2),ROLLUP(2)
COMMON /SAVECM/ CMA1(10),ZMETHD(10),CMA(10),IJWRIT
COMMON /SAVEPL/ DCPDX(15,6,2),DCTDX(15,6,2),PHIDE(15,6,2),
.DEIX(15,2),DI(15),TL(2),QL(2),QL(2),QIL(2),QIL(2),QIL(2),Qil(2),PL(2),
.HPL(2),VNT(15,6,2),VCT(15,6,2),VST(15,6,2),VT(15,6,2),VXT(15,6,2),
.DTL(15),DD(15),DD(15),DQ1(15),DQ1(15),DQ0(15)
COMMON /SAVH/ KICON,KIFOR,KNTYPE,KNOF,KIPR,TBHP,TPRPM,TALT,
.TVKTAS,TT,TPXI,TS1,TS2,TS3,TS4,PSZJ,PSZMN
COMMON /SAVP/ PSZJ, PSS1, PSZMN, PSD342, PSD343
COMMON /SAVPSI/ SINPSI(73),COSPSI(73),PSII(73)
COMMON /SER16/ QFREQ(801),QREAL(801),QIMAG(801)
COMMON /STACOM/ STABAR(15,2),ALSRAD(15,2),ALSPHI(15,2),ALSAXL(15,2)
COMMON /STCSTR/ STRSTC(17,500)
COMMON /STRS/ S(288),E(18),TT(54),P(36),AVGTHK,INERTA
COMMON /TANVEL/ V20V2A(10,50),ITEST
COMMON /THDESCV/ DTHETS(10),DECLS(10)
COMMON /THICKD/ THK(15,2),ALTIRD(15,2),ALTIPH(15,2),ALTIA(15,2)
COMMON /TIPDAT/ S,CO,LAMLE,LAMTE
COMMON /TITEL/ TITLE(10)
COMMON /TQLOAD/ RIN1(10),XMC41(10),DTDR1(10),DFDR1(10)
COMMON /TSOTYP/ ITSO,TSO,TEK,TEKTP
COMMON /TWENTY/ X20(20),CL20(20),CLD20(20),TOB20(20),ZMCH2(20),ZMCOS(20),ZMIN20(20),ZMEF20(20)
COMMON /TWISTC/ DTW1ST(16,2),TW1ST(16,2)
COMMON /TYPE/ ITYP(500)
COMMON /U1COM/ U1R(15,6,2),U1T(15,6,2),U1Z(15,6,2)
COMMON /UUCOM/ U1R(15,2),U1T(15,2),U1Z(15,2)
COMMON /VCOM/
 ALPHAN(15,6,2),VS(15,6,2),VC(15,6,2),VN(15,6,2),VTOT(15,6,2),ALVRAD(15,6,2),ALVPHI(15,6,2),ALVAXL(15,6,2)
COMMON /V1DAT/ VIS(15,6,2),VIC(15,6,2),VIN(15,6,2)
COMMON /VKARM/ VKOPT
COMMON /VONCOM/ INCONQ,IXC141
COMMON /WAKCOM/ KTRUCT(2),JTRUCT(2),JTRUCI(2)
COMMON /Z12Z2/ Z12(10)
5.1 COMMON BLOCKS SORTED BY ROUTINE

<table>
<thead>
<tr>
<th>Common</th>
<th>Routine Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLNK</td>
<td>ABFIX ABRAT AZPOS ACHART AEROMO AEROMX</td>
</tr>
<tr>
<td></td>
<td>AIRFLT AIRFLT CLAS CLAS CPH444 EFFIC EFFICH HUBXX</td>
</tr>
<tr>
<td></td>
<td>CLIBS CNCY COSN COSN CPH444 EFFIC EFFICH HUBXX</td>
</tr>
<tr>
<td></td>
<td>INPUTA INPUTA KAPXX KAPXX LINTHT LINTFR LINTFR LINTFR</td>
</tr>
<tr>
<td></td>
<td>ONEP OPTNS MCRCLO MCRCLO MCRCLO MCRCLO MCRCLO MCRCLO</td>
</tr>
<tr>
<td></td>
<td>YAWAN ZLABEL ZLABEL ZLABEL ZLABEL ZLABEL ZLABEL ZLABEL</td>
</tr>
<tr>
<td>ABCCONV</td>
<td>ABFIX ONEP ONEP ONEP ONEP ONEP ONEP ONEP</td>
</tr>
<tr>
<td>ABDATA</td>
<td>ABSTR CLAS CLAS CLAS CLAS CLAS CLAS CLAS CLAS</td>
</tr>
<tr>
<td>ABITER</td>
<td>ABSTR CLAS CLAS CLAS CLAS CLAS CLAS CLAS CLAS</td>
</tr>
<tr>
<td>ADSTMP</td>
<td>ADS402 MAIN MAIN MAIN MAIN MAIN MAIN MAIN</td>
</tr>
<tr>
<td>AERDAT</td>
<td>BLDGEO CALCGC CO FINAIR FINAIR FINAIR FINAIR FINAIR</td>
</tr>
<tr>
<td></td>
<td>PERFOR SOLVE SOLVE SOLVE SOLVE SOLVE SOLVE SOLVE</td>
</tr>
<tr>
<td></td>
<td>LINTHT LINTFR LINTFR LINTFR LINTFR LINTFR LINTFR LINTFR LINTFR</td>
</tr>
<tr>
<td>AFCPIT</td>
<td>LCPITR LINTHT LINTHT LINTHT LINTHT LINTHT LINTHT LINTHT LINTHT</td>
</tr>
<tr>
<td>AIRALZ</td>
<td>AIRCDM AIRFL AIRFL AIRFLX AIRFLX AIRFLX AIRFLX AIRFLX AIRFLX</td>
</tr>
<tr>
<td></td>
<td>AIR24 CASARF DRAG24 ISOAFL ISOAFL ISOAFL ISOAFL ISOAFL ISOAFL</td>
</tr>
<tr>
<td></td>
<td>ISOARF LIFT24 MCLPFN MCRCLO MCRCLO MCRCLO MCRCLO MCRCLO MCRCLO</td>
</tr>
<tr>
<td></td>
<td>REYNLS SWPARF THIKAR TMCRT TMCRT TMCRT TMCRT TMCRT TMCRT</td>
</tr>
<tr>
<td>AIRCDF</td>
<td>AIRCDM AIRFL AIRFL AIRFLX AIRFLX AIRFLX AIRFLX AIRFLX AIRFLX</td>
</tr>
<tr>
<td></td>
<td>AIR24 CASARF DRAG24 ISOAFL ISOAFL ISOAFL ISOAFL ISOAFL ISOAFL</td>
</tr>
<tr>
<td></td>
<td>ISOARF LIFT24 MCLPFN MCRCLO MCRCLO MCRCLO MCRCLO MCRCLO MCRCLO</td>
</tr>
<tr>
<td></td>
<td>REYNLS SWPARF THIKAR TMCRT TMCRT TMCRT TMCRT TMCRT TMCRT</td>
</tr>
<tr>
<td>AIRCDM</td>
<td>AIRCDM AIRFL AIRFL AIRFLX AIRFLX AIRFLX AIRFLX AIRFLX AIRFLX</td>
</tr>
<tr>
<td></td>
<td>AIR24 CASARF DRAG24 ISOAFL ISOAFL ISOAFL ISOAFL ISOAFL ISOAFL</td>
</tr>
<tr>
<td></td>
<td>ISOARF LIFT24 MCLPFN MCRCLO MCRCLO MCRCLO MCRCLO MCRCLO MCRCLO</td>
</tr>
<tr>
<td></td>
<td>REYNLS SWPARF THIKAR TMCRT TMCRT TMCRT TMCRT TMCRT TMCRT</td>
</tr>
<tr>
<td>AIRDAT</td>
<td>AIRFL AIRFLT AIRFLX AIROFF AIROFF AIROFF AIROFF AIROFF AIROFF</td>
</tr>
<tr>
<td></td>
<td>CASARF DRAG24 ISOAFL ISOAFL ISOAFL ISOAFL ISOAFL ISOAFL ISOAFL</td>
</tr>
<tr>
<td></td>
<td>LIFT24 MCLPFN MCRCLO RATARF RATARF RATARF RATARF RATARF RATARF</td>
</tr>
<tr>
<td></td>
<td>SWPARF THIKAR TMCRT TMCRT TMCRT TMCRT TMCRT TMCRT TMCRT</td>
</tr>
<tr>
<td>ALFEXT</td>
<td>AEROMO AEROMO AEROMO AEROMO AEROMO AEROMO AEROMO AEROMO AEROMO</td>
</tr>
</tbody>
</table>

Additional Information
- **ABFIX**
- **ABITR**
- **ABRAT**
- **ACHART**
- **AEROMO**
- **AEROMX**
- **AIRFLT**
- **AIRFL**
- **AIRFLX**
- **AIROFF**
- **AIR23**
- **AIR24**
- **CASARF**
- **DRAG24**
- **ISOAFL**
- **ISOARF**
- **LIFT24**
- **MCLPFN**
- **MCRCLO**
- **RATARF**
- **RENUM**
- **ZEROAL**

The table lists common blocks and routine names sorted by routine.
FLIGHT : FINAIR INITIAL PCHOUT PERFOR RWZW1 SOLVEL
FLOWDT : FINAIR FVECTR INITIAL LINTHT LINTRF NSTACO
FLOWFD : AEROMO AIRFL CL1BS ONEP
FORCOM : PCHOUT PERFOR
FORCON : CONECK ONEP VMOM2
F91OUT : EFFICH PERFOR PNPINT
GAMUV : ONEP
GAUSIN : LINTHT LINTRF PNPINT
GCDIMD : CALCAG C WAKE WRTGC
GCKGSK : CYCLC2 CYCLIC INPUTT
GEODAT : BLDGEO CALCAG C FINAIR FVECTR GCAK W INDVEL
INTIAL LINTHT LINTRF MNPANP MNPANP RWZW1 RWZW1
NSTACO PCHOUT PERFOR PNPINT PNPINT PRWZW PRWZW
RWZW7 SOLVEL SOLVEN VECTOR VVCTR VVCTR
GEOLNP : BLDGEO CALCAG C FINAIR FVECTR GCAK W INDVEL
INTIAL LINTHT LINTRF MNPANP MNPANP RWZW1 RWZW1
NSTACO PCHOUT PERFOR PNPINT PNPINT PRWZW PRWZW
RWZW7 SOLVEL SOLVEN VECTOR VVCTR VVCTR
GEOMOD : BLDGEO CALCAG C FINAIR FVECTR GCAK W INDVEL
INTIAL LINTHT LINTRF MNPANP MNPANP RWZW1 RWZW1
NSTACO PCHOUT PERFOR PNPINT PNPINT PRWZW PRWZW
RWZW7 SOLVEL SOLVEN VECTOR VVCTR VVCTR
GEOOUT : BLDGEO CALCAG C FINAIR FVECTR GCAK W INDVEL
INTIAL LINTHT LINTRF MNPANP MNPANP RWZW1 RWZW1
NSTACO PCHOUT PERFOR PNPINT PNPINT PRWZW PRWZW
RWZW7 SOLVEL SOLVEN VECTOR VVCTR VVCTR
GGCKSK : CYCLC2 CYCLC3
HARMNC : INPUTT
HMTOUT : ETR3D
<table>
<thead>
<tr>
<th>HSQPL</th>
<th>CALSW2</th>
<th>EFFICH</th>
<th>GAEROH</th>
<th>LMCONE</th>
<th>PERFOR</th>
<th>PNPINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEX</td>
<td>BDSO14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDEX1</td>
<td>FEA</td>
<td>FEAGEO</td>
<td>FEARUN</td>
<td>INPUTT</td>
<td>ONEWFR</td>
<td>PREMAP</td>
</tr>
<tr>
<td>INDEX2</td>
<td>FEA</td>
<td>FEAGEO</td>
<td>FEARUN</td>
<td>INPUTT</td>
<td>ONEWFR</td>
<td>PREMAP</td>
</tr>
<tr>
<td>INDEX3</td>
<td>FEA</td>
<td>FEAGEO</td>
<td>FEARUN</td>
<td>INPUTT</td>
<td>ONEWFR</td>
<td>PREMAP</td>
</tr>
<tr>
<td>INDEX4</td>
<td>FEA</td>
<td>FEAGEO</td>
<td>FEARUN</td>
<td>INPUTT</td>
<td>ONEWFR</td>
<td>PREMAP</td>
</tr>
<tr>
<td>INDEX5</td>
<td>FEA</td>
<td>FEARUN</td>
<td>ONEWFR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPTP</td>
<td>INPUTA</td>
<td>LINHTH</td>
<td>LINTRF</td>
<td>RDEFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPT23</td>
<td>INPUTA</td>
<td>LINHTH</td>
<td>LINTRF</td>
<td>ONEW</td>
<td>RDEFF</td>
<td></td>
</tr>
<tr>
<td>INTDT1</td>
<td>BLDGE0</td>
<td>CALCGC</td>
<td>CHKNP</td>
<td>EFFICH</td>
<td>FINAIR</td>
<td>FVECTR</td>
</tr>
<tr>
<td></td>
<td>GCWAKE</td>
<td>INDVEL</td>
<td>INITIAL</td>
<td>LINHTH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINTRF</td>
<td>MNPANP</td>
<td>NSTACO</td>
<td>PCHOUT</td>
<td>PERFOR</td>
<td>PHICAL</td>
</tr>
<tr>
<td></td>
<td>PNPTINT</td>
<td>PRWZW</td>
<td>RWZW1</td>
<td>RWZW1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RWZW7</td>
<td>SOLEN</td>
<td>SOLVEN</td>
<td>SOLVIT</td>
<td>VECTOR</td>
<td>VVECTR</td>
</tr>
<tr>
<td></td>
<td>WRITGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTDT2</td>
<td>BLDGE0</td>
<td>CALCGC</td>
<td>CHKNP</td>
<td>FINAIR</td>
<td>FVECTR</td>
<td>GCWAKE</td>
</tr>
<tr>
<td></td>
<td>INDVEL</td>
<td>INITIAL</td>
<td>LINHTH</td>
<td>LINTRF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNPANP</td>
<td>NSTACO</td>
<td>PCHOUT</td>
<td>PERFOR</td>
<td>PHICAL</td>
<td>PNPTINT</td>
</tr>
<tr>
<td></td>
<td>PRWZW</td>
<td>RWZW1</td>
<td>RWZW7</td>
<td></td>
<td>VECTOR</td>
<td>VVECTR</td>
</tr>
<tr>
<td></td>
<td>SOLVEK</td>
<td>SOLVEN</td>
<td>SOLVIT</td>
<td></td>
<td>VECTOR</td>
<td>WRTMG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOUNIT</td>
<td>ADDCCD</td>
<td>ADSRD</td>
<td>ALOAD</td>
<td>ASEMBL</td>
<td>BANDER</td>
<td>BAR1</td>
</tr>
<tr>
<td></td>
<td>BMADD</td>
<td>CHKLOG</td>
<td>CNRN</td>
<td>CNSTRN</td>
<td>CNTMASS</td>
<td>DEFCON</td>
</tr>
<tr>
<td></td>
<td>CNVRG1</td>
<td>CNVRT</td>
<td>COMAP</td>
<td>COPY88</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EIGEN</td>
<td>EIGS</td>
<td>ELAREA</td>
<td>EMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMGG</td>
<td>EMGPOM</td>
<td>ETR33</td>
<td>FEA</td>
<td>FEAGEO</td>
<td>FEARUN</td>
</tr>
<tr>
<td></td>
<td>FFORCE</td>
<td>FREQT</td>
<td>FREQY</td>
<td>GEOIDG</td>
<td>GP6X6</td>
<td>GTOCOR</td>
</tr>
<tr>
<td></td>
<td>GETMAT</td>
<td>GMMATD</td>
<td>GMPC</td>
<td>GP6X6B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTMODE</td>
<td>IDENT</td>
<td>INPUTT</td>
<td>INTNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KGIG1</td>
<td>KNN</td>
<td>LAJA</td>
<td>LAMIN8</td>
<td>LTRAN</td>
<td>MAIN</td>
</tr>
<tr>
<td></td>
<td>MAPPERS</td>
<td>MACMP</td>
<td>MERGE</td>
<td>MGG1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODPRT</td>
<td>ONEPFR</td>
<td>OPT001</td>
<td>OPT002</td>
<td>OPT003</td>
<td>OPT004</td>
</tr>
<tr>
<td></td>
<td>OPT005</td>
<td>OPT007</td>
<td>OPT008</td>
<td>OPT009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PARAM</td>
<td>PFORCE</td>
<td>PGG1</td>
<td>PRECMP</td>
<td>PRLAM</td>
<td>PREPRO</td>
</tr>
<tr>
<td></td>
<td>PRINX</td>
<td>PRTBBB</td>
<td>PRTBFB</td>
<td>PRTF4F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSTCMP</td>
<td>Q1J</td>
<td>RAJA</td>
<td>RDEFF</td>
<td>RDGGEN</td>
<td>RDOBJ</td>
</tr>
<tr>
<td></td>
<td>REBAND</td>
<td>REDUCE</td>
<td>RELDEF</td>
<td>REORDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>REPORT</td>
<td>RESTOR</td>
<td>RLOAD</td>
<td>SCLRVR</td>
<td>SPCARD</td>
<td>SPCARR</td>
</tr>
<tr>
<td></td>
<td>SPRING</td>
<td>STATIN</td>
<td>STRAIN</td>
<td>STRESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STRPRT</td>
<td>STR31D</td>
<td>STR32D</td>
<td>THKEFF</td>
<td>TRANSD</td>
<td>TSAIWU</td>
</tr>
<tr>
<td></td>
<td>VMERGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

37
<table>
<thead>
<tr>
<th>IOUNT</th>
<th>AF65A</th>
<th>BLDGEO</th>
<th>CALCGC</th>
<th>CHKINP</th>
<th>CSCDI</th>
<th>FINAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVECTR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERFOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWZW1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VECTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| ITER | ONEP | | | | | |

<table>
<thead>
<tr>
<th>IUNITD</th>
<th>BLDGEO</th>
<th>CALCGC</th>
<th>CHKINP</th>
<th>FINAIR</th>
<th>FVECTR</th>
<th>GCWAKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITVEL</td>
<td></td>
<td>INITIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINTRF</td>
<td>NSTACO</td>
<td>PCHOUT</td>
<td>PERFOR</td>
<td>PHICAL</td>
<td>PNPINT</td>
<td></td>
</tr>
<tr>
<td>PRWZW</td>
<td>RWZW1</td>
<td>RWZW7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLVENC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VVECTR</td>
<td>WRTGCH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNK99</th>
<th>ABFIX</th>
<th>ABRAT</th>
<th>ACHART</th>
<th>AEROMO</th>
<th>AEROMX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRFL</td>
<td></td>
<td>AZPOS</td>
<td>CLIAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL1BS</td>
<td></td>
<td>CPH444</td>
<td>EFFIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ONEP</td>
<td></td>
</tr>
<tr>
<td>PRECOV</td>
<td>RDEFF</td>
<td>SINGL</td>
<td>VMOM2</td>
<td>YAWAN</td>
<td>ZLABEL</td>
<td></td>
</tr>
</tbody>
</table>

| KCLSAV | ISOARF | | | | | |

| MACHNO | EFFICH | PNPINT | | | | |

MATIN	ETR3D	MAT	STR3D			
MATOUT	ETR3D	MAT	STR3D			
MATSAV	SCLRVR					
MAXSIZ	INPUTT					

<table>
<thead>
<tr>
<th>MCONED</th>
<th>BLDGEO</th>
<th>CALCGC</th>
<th>FINAIR</th>
<th>FVECTR</th>
<th>GCWAKE</th>
<th>INDVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTIAL</td>
<td>LINHT</td>
<td>LINTRF</td>
<td>MNBPANP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSTACO</td>
<td>PCHOUT</td>
<td>PERFOR</td>
<td>PNPINT</td>
<td>PRWZW</td>
<td>RWZW1</td>
<td></td>
</tr>
</tbody>
</table>

MCRITJ	AIRFLT					
MCRITS	AIR23					
MCRIT2	AIRFLT	EFFICH	MCRCTO			

| MHCON | FINAIR | INITIAL| PCHOUT | PERFOR | RWZW1 | SOLVENC|

<p>| MZERO | AIRFLT | | | | | |</p>
<table>
<thead>
<tr>
<th>NETF</th>
<th>CPH444</th>
<th>ONEP</th>
<th>SINGL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORCOM</td>
<td>FINAIR</td>
<td>FVECTR</td>
<td>INTIAL</td>
</tr>
<tr>
<td>PCHOUT</td>
<td>PERFOR</td>
<td>PNPI NT</td>
<td>SOLVE L</td>
</tr>
<tr>
<td>SOLVEN</td>
<td>VECTOR</td>
<td>VVECTR</td>
<td></td>
</tr>
<tr>
<td>NUMCAS</td>
<td>ONEP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTOPT</td>
<td>ONEP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHICOM</td>
<td>CALCGC</td>
<td>WAKMOD</td>
<td></td>
</tr>
<tr>
<td>PHIZER</td>
<td>PERFOR</td>
<td>PNPI NT</td>
<td></td>
</tr>
<tr>
<td>PLTFRM</td>
<td>ELAREA</td>
<td>MAIN</td>
<td>PRECMP</td>
</tr>
<tr>
<td>TOTARE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESCV</td>
<td>ONEP</td>
<td>PRECOV</td>
<td></td>
</tr>
<tr>
<td>RECALL</td>
<td>ABFIX</td>
<td>ABITR</td>
<td>ABRAT</td>
</tr>
<tr>
<td>AIRFL</td>
<td>AIRFLT</td>
<td>AZPOS</td>
<td>CL1AS</td>
</tr>
<tr>
<td>CL1BS</td>
<td>CNCY</td>
<td>CPH444</td>
<td>ONEP</td>
</tr>
<tr>
<td>INPUTA</td>
<td>KAPXX</td>
<td>ONEP</td>
<td>OPTNS</td>
</tr>
<tr>
<td>PRECOV</td>
<td>RDEFF</td>
<td>SINGL</td>
<td>VMOM2</td>
</tr>
<tr>
<td>ZNTEGR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REYNXX</td>
<td>ABFIX</td>
<td>ABITR</td>
<td>ABRAT</td>
</tr>
<tr>
<td>AIRFL</td>
<td>AIRFLT</td>
<td>AZPOS</td>
<td>CL1AS</td>
</tr>
<tr>
<td>CL1BS</td>
<td>CNCY</td>
<td>CPH444</td>
<td>ONEP</td>
</tr>
<tr>
<td>INPUTA</td>
<td>KAPXX</td>
<td>ONEP</td>
<td>OPTNS</td>
</tr>
<tr>
<td>PRECOV</td>
<td>RDEFF</td>
<td>SINGL</td>
<td>VMOM2</td>
</tr>
<tr>
<td>ZNTEGR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFRC</td>
<td>CHKLOG</td>
<td>CMASS</td>
<td>FREQTB</td>
</tr>
<tr>
<td>RLOAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFRC8</td>
<td>CHKLOG</td>
<td>INPUTT</td>
<td></td>
</tr>
<tr>
<td>ROLL</td>
<td>INTIAL</td>
<td>LINTHT</td>
<td>LINTRF</td>
</tr>
<tr>
<td>SAVECM</td>
<td>AEROMO</td>
<td>AEROMX</td>
<td>ONEP</td>
</tr>
<tr>
<td>SAVEPL</td>
<td>PCHOUT</td>
<td>PERFOR</td>
<td></td>
</tr>
<tr>
<td>SAVH</td>
<td>ONEP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVP</td>
<td>LINTHT</td>
<td>LINTRF</td>
<td></td>
</tr>
<tr>
<td>VCOM</td>
<td>BLDGEO</td>
<td>FVECTR</td>
<td>INTIAL</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>SOLVEL</td>
<td>SOLVEN</td>
<td>VECTOR</td>
</tr>
<tr>
<td>VIDAT</td>
<td>FVECTR</td>
<td>INDVEL</td>
<td>PCHOUT</td>
</tr>
<tr>
<td>VKARM</td>
<td>AIRFLT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VONCOM</td>
<td>AIRFLT</td>
<td>LINTHT</td>
<td></td>
</tr>
<tr>
<td>WAKDAT</td>
<td>CALCGC</td>
<td>INTIAL</td>
<td></td>
</tr>
<tr>
<td>ZJ2ZJ2</td>
<td>ABFIX</td>
<td>ABITR</td>
<td>ABRAT</td>
</tr>
<tr>
<td></td>
<td>AIRFLT</td>
<td>AIRFLT</td>
<td>AZPOS</td>
</tr>
<tr>
<td></td>
<td>CLIBS</td>
<td>CNCY</td>
<td>CPH444</td>
</tr>
<tr>
<td></td>
<td>INPUTA</td>
<td>KAPXX</td>
<td>ONEP</td>
</tr>
<tr>
<td></td>
<td>PRECOV</td>
<td>RDEFF</td>
<td>SINGL</td>
</tr>
</tbody>
</table>
6.0 ADDING REFINED ANALYSIS MODULES TO STAT

Due to the proprietary nature of the STAT refined acoustic and flutter modules, only dummy functional modules are currently provided in the public distribution version of STAT. To enable an independent user to insert his/her own analyses into STAT, subroutine call statements have been included in the refined analysis control section of the code. The full analysis calling statements from the refined analysis control module are included below, with module inputs and outputs listed.

```
SUBROUTINE FLUTTR(NSTAS,GL,GT,GM,NFREQ,DGM,FREQX,GENMAS,XNB,
                   RPM,SOS,RHO,STALL,FMNEW,IDBG08,INFO,LOOPK)

C Refined Flutter Analysis

C INPUT

C NSTAS - Number of radial stations
C GL - Leading edge displaced geometry - xyz coordinates (in.)
C GT - Trailing edge displaced geometry - xyz coordinates (in.)
C GM - Mid-chord displaced geometry - xyz coordinates (in.)
C Note: GL, GT, and GM are the finite element coordinates for the hot (running position)
C blade, and are output from the finite element analysis. The nodal positions align with the
C locations at which the mode shapes, DGM, are output.
C NFREQ - Number of frequencies (hz)
C DGM - Mode shapes at mid-chord in the swept normal coordinate system for all six degrees of freedom (in. and rad.)
C FREQX - Natural frequencies (hz)
C GENMAS - Generalized masses (in-lb-s**2)
C XNB - Number of blades
C RPM - Propeller speed (rpm)
C SOS - Speed of sound (fps)
C RHO - Air density (slugs / cu. ft.)
C IDBG08 - Debug indicator
C 0 - Skip diagnostic messages
C 1 - Print diagnostic messages
C INFO - Optimization status indicator
C 0 - Optimizer found an optimum design
C 1 - Refined analysis being performed at requested design iteration
C LOOPK - Approximate optimization loop counter

C OUTPUT

C STALL - Stall flutter parameter
C FMNEW - Classical flutter Mach number, least stable mode
```
REAL*8 GL, GT, GM, FREQX, GENMAS, DGM
DIMENSION GL(20,3), GT(20,3), GM(20,3), FREQX(5), GENMAS(5,5), 1
DGM(20,6,5)

C C User coding
C
RETURN
END

SUBROUTINE NOISE(XMO,XMT,TEMP,XNB,DIAM,X,HOB,BOD,CGA,ACB,FAD,BET, 1
CLX,CDX,REL,TIPCL,POP,CLD,CRT,SWP,EXP,BPF1,TDB1,WORK)

C C Refined Acoustic Analysis
C
C INPUT
C XMO - Flight Mach number
C XMT - Tip rotational Mach number
C TEMP - Ambient temperature (F)
C XNB - Number of blades
C DIAM - Blade diameter (ft)
C X - Gauss stations and tip station (X(1)=root X(11)=1.0)
C HOB - Thickness to chord ratio at 10 Gauss stations
C BOD - Chord to diameter ratio at 10 Gauss stations
C CGA - C.G. over diameter at 10 Gauss stations
C ACB - Aero center (from l.e. to c.g.) at 10 Gauss stations
C FAD - Face alignment over diameter at 10 Gauss stations
C BET - Blade Twist (Beta) at 10 Gauss stations
C CLX - Lift coefficient at 10 Gauss stations
C CDX - Drag coefficient at 10 Gauss stations
C REL - Section relative Mach number (10 Gauss stations)
C TIPCL - Tip clearance (in blade diameters)
C POP - Pressure ratio
C CLD - Design lift coefficient at 10 Gauss stations
C CRT - 2-D critical Mach numbers at 10 Gauss stations
C (Created in Subroutine EFFICH of the aero module)
C SWP - Aerodynamic sweep at 10 Gauss stations
C EXP - Sweep exponents at 10 Gauss stations
C (Created in Subroutine EFFICH of the aero module)
C WORK - Work array, used as scratch storage - 280,000 Words of
storage are available.
C
C OUTPUT
C BPF1 - Frequency of blade passage harmonic
C SPL1 - Maximum SPL located on fuselage surface, db
6.1 WORK STORAGE ARRAY

The STAT program is a large, multi-disciplinary system, tying together a
number of diverse analyses. Due to the number of program modules employed,
computer storage space has always been in short supply. To provide adequate
storage without requiring program overlays, STAT utilizes a large work storage
area (currently 280,000 words in length) that is accessible for use by all
modules.

Within the approximate optimization loop, this work array contains details of
the finite element mesh, as well as displacement and stress results, and
vibratory mode shapes. These arrays are used by the finite element module, the
graphology update module, the flutter module, and others. Areas of the work
array beyond the space required for the above matrices may be used as
temporary scratch storage space by any of the modules, thus alleviating local
matrix storage requirements.

Due to the higher storage requirements of detailed, refined analyses, the
biggest core storage requirements are seen in the final, refined analysis
step. For refined analyses, the entire work storage area is available. This
use of local scratch storage is recommended where possible to reduce overall
storage requirements.
7.0 JCL FOR THE CRAY COS VERSION OF THE STAT PROGRAM

This section is intended to provide instructions for setting up job control for STAT on the NASA-Lewis Research Center CRAY XMP utilizing COS 1.14BF4. Note that this set of instructions is intended as a guideline only; dataset names may vary and local system modifications may necessitate JCL modifications.

7.1 EXECUTING THE STAT PROGRAM

The following JCL procedure may be submitted from VM or TSS. It will execute STAT and route the output, diagnostic, and summary report files back to the front-end machine.

Determining the exact time required for a STAT optimization run is a complex task, and very problem dependent. Experience, however, has shown that the following formula provides a good time estimation:

\[\text{Time} = 8 \times (\text{NDV} \times 20 + 30) \text{ seconds, NDV = number of design variables.} \]

\[\text{JOB, JN=jobname, MFL=1000000, T=time.} \]
\[\text{ACCOUNT, AC=acct, APW=pw.} \]
\[\text{ACCESS, DN=STAT, PDN=STATLIB, ID=SMSTAT, OWN=SMSTAT.} \]
\[\text{LDR, DN=STAT, LIB=IMSLLIB.} \]
\[\text{DISPOSE, DN=FT19, SDN=DIAG.} \]
\[\text{DISPOSE, DN=FT40, SDN=REPORT.} \]
\[/EOF \]
\[\text{Insert STAT input data here} \]
\[/EOF \]

7.2 UPDATING THE STAT PROGRAM

The following JCL procedure may be submitted from VM or TSS. It will compile FORTRAN routine(s) and update the STAT object module. Output is sent back to the front-end machine.

NOTE: Prior to submitting this procedure, the user must be permitted WRITE access to STATLIB from userid SMSTAT.

\[\text{JOB, JN=jobname, MFL=1000000, T=time.} \]
\[\text{ACCOUNT, AC=acct, APW=pw.} \]
\[\text{ACCESS, DN=$OBL, PDN=STATLIB, ID=SMSTAT, OWN=SMSTAT, UQ.} \]
\[\text{CFT.} \]
\[\text{BUILD.} \]
\[\text{DELETE, DN=$OBL.} \]
\[\text{SAVE, DN=$NBL, PDN=STATLIB, ID=SMSTAT, OWN=SMSTAT, PAM=R.} \]
\[/EOF \]
\[\text{Insert FORTRAN update(s) here} \]
\[/EOF \]
8.0 REFERENCES

DISTRIBUTION LIST

NASA-Lewis Research Center
Attn: Contracting Officer, MS 500-313
21000 Brookpark Road
Cleveland, OH 44135

NASA-Lewis Research Center
Attn: Tech. Report Control, MS 60-1
21000 Brookpark Road
Cleveland, OH 44135

NASA-Lewis Research Center
Attn: Tech. Utilization Office, MS 7-3
21000 Brookpark Road
Cleveland, OH 44135

NASA-Lewis Research Center
Attn: Div Contract File, MS 49-6 (2 copies)
21000 Brookpark Road
Cleveland, OH 44135

NASA-Lewis Research Center
Attn: Library, MS 60-3
21000 Brookpark Road
Cleveland, OH 44135

NASA-Lewis Research Center
Attn: Adv. Turboprop Project, MS 86-7
21000 Brookpark Road
Cleveland, OH 44135

NASA-Lewis Research Center
Attn: R. E. Kielb, MS 49-8
21000 Brookpark Road
Cleveland, OH 44135

NASA-Lewis Research Center
Attn: D. A. Hopkins, MS 49-8 (2 copies)
21000 Brookpark Road
Cleveland, OH 44135

NASA-Lewis Research Center
Attn: C. C. Chamis, MS 49-8
21000 Brookpark Road
Cleveland, OH 44135

NASA-Lewis Research Center
Attn: L. Berke, MS 49-6
21000 Brookpark Road
Cleveland, OH 44135

NASA-Lewis Research Center
Attn: L. J. Kiraly, MS 23-3
21000 Brookpark Road
Cleveland, OH 44135

NASA-Lewis Research Center
Attn: T. O. Cressman, MS 86-10
21000 Brookpark Road
Cleveland, OH 44135

National Aeronautics & Space Administration
Attn: NHS-22/Library
Washington, DC 20546

NASA S&T Information Facility
Attn: Acquis. Dept. (5 copies)
P. O. Box 8757
B.W.I. Airport, MD 21240

NASA Ames Research Center
Attn: Library
Mail Stop 202-3
Moffett Field, CA 94035

NASA John F. Kennedy Space Center
Attn: Library
Mail Stop AD-CSO-1
Kennedy Space Center, FL 32931

NASA Langley Research Center
Attn: Library
Mail Stop 185
Hampton, VA 23665-5225

NASA Langley Research Center
Attn: M. F. Card
Mail Stop 244
Hampton, VA 23665-5225

NASA Goddard Space Flight Center
Attn: 252/Library
Greenbelt, MD 20771

NASA LBJ Space Center
Attn: JM6/Library
Houston, TX 77001
DISTRIBUTION LIST (continued)

NASA Marshall Space Flight Center
Attn: AS61/Library
Marshall Space Flight Center, AL 35812

Jet Propulsion Laboratory
Attn: Library
4800 Oak Grove Drive
Pasadena, CA 91103

AFFDL/FBE
Attn: D. W. Smith
Wright-Patterson AFB, OH 45433

Air Force Aero. Propulsion Lab.
Attn: N. Khot
Wright-Patterson AFB, OH 45433

Air Force Systems Command
Aeronautical Systems Division
Attn: Library
Wright-Patterson AFB, OH 45433

Department of the Army
U. S. Army Material Command
Attn: AMCRD-RC
Washington, DC 20315

U. S. Army Missile Command
Redstone Scientific Info. Center
Attn: Document Section
Redstone Arsenal, AL 35808

Commanding Officer
U. S. Army Research Office (Durham)
Attn: Library
Box CM, Duke Station
Durham, NC 27706

Bureau of Naval Weapons
Department of the Navy
Attn: RRRE-6
Washington, DC 20360

Commander, U. S. Naval Ordnance Lab.
Attn: Library
White Oak
Silver Springs, MD 20910

Director, Code 6180
U. S. Naval Research Laboratory
Attn: Library
Washington, DC 20390

Aerospace Corporation
Attn: Library-Documents
2400 E. El Segundo Blvd.
Los Angeles, CA 90045

Boeing Company
Attn: Library
Wichita, KA 67201

General Dynamics
Attn: Library
P. O. Box 748
Fort Worth, TX 76101

General Dynamics/Convair Aero.
Attn: Library
P. O. Box 1128
San Diego, CA 92112

General Electric Company
Attn: Dr. R. L. McKnight, MS K221
Interstate 75, Bldg. 500
Cincinnati, OH 45215

Grumman Aircraft Eng. Corp.
Attn: Library
Bethpage, Long Island, NY 11714

Grumman Aircraft Eng. Corp.
Attn: H. A. Armen
Bethpage, Long Island, NY 11714

Lawrence Livermore Laboratory
Attn: Library
P. O. Box 808, L-42
Livermore, CA 94550

McDonnell Douglas Aircraft Corp.
Attn: Library
P. O. Box 516
Lambert Field, MO 63166
<table>
<thead>
<tr>
<th>Report No.</th>
<th>NASA CR-182164</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title and Subtitle</td>
<td>Structural Tailoring of Advanced Turboprops (STAT) Programmer's Manual</td>
</tr>
<tr>
<td>Author(s)</td>
<td>K. W. Brown and P. R. Harvey</td>
</tr>
<tr>
<td>Performing Organization</td>
<td>UNITED TECHNOLOGIES CORPORATION Pratt & Whitney, Commercial Engineering 400 Main St., East Hartford, CT 06108</td>
</tr>
<tr>
<td>Sponsoring Agency</td>
<td>National Aeronautics and Space Administration Lewis Research Center 21000 Brookpark Road, Cleveland, Ohio 44135</td>
</tr>
<tr>
<td>Abstract</td>
<td>The Structural Tailoring of Advanced Turboprops (STAT) computer program was developed to perform numerical optimizations on highly swept propfan blades. This manual describes the functionality of the STAT system from a programmer's viewpoint. It provides a top-down description of module intent and interaction. The purpose of this manual is to familiarize the programmer with the STAT system should he/she wish to enhance or verify the program's function.</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST (continued)

Northrop Space Laboratories
Attn: Library
3401 West Broadway
Hawthorne, CA 90250

North American Rockwell, Inc.
Rocketdyne Division
Attn: Library, Dept. 596-306
6633 Canoga Avenue
Canoga Park, CA 91304

North American Rockwell, Inc.
Space & Info. Systems Div.
Attn: Library
12214 Lakewood Blvd.
Downey, CA 90241

Republic Aviation
Fairchild Hiller Corporation
Attn: Library
Farmingdale, NY 11735

IIT Research Institute
Technology Center
Attn: Library
Chicago, IL 60616

United Technologies Corporation
Pratt & Whitney
Attn: Library, MS 732-11
P. O. Box 109600
West Palm Beach, FL 33410-9600

United Technologies Corporation
Pratt & Whitney
Attn: Library, MS 169-31
400 Main Street
East Hartford, CT 06108

United Technologies Corporation
Hamilton Standard
Attn: A. Weisbrich
Windsor Locks, CT 06096

United Technologies Corporation
Hamilton Standard
Attn: F. Metzger
Windsor Locks, CT 06096

United Technologies Corporation
Hamilton Standard
Attn: R. Sherman
Windsor Locks, CT 06096

United Technologies Corporation
Hamilton Standard
Attn: J. Baum
Windsor Locks, CT 06096

United Technologies Corporation
Hamilton Standard
Attn: B. Gatzen
Windsor Locks, CT 06096