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Abstract 

The efficiency and positional accuracy of a lightweight flexible manipulator are 

limited by its flexural vibrations, which last after a gross motion is completed. The 

vibration delays subsequent operations. 

In the proposed work, the vibration is suppressed by inertial force of a small arm 

in addition to the joint actuators and passive damping treatment. The proposed ap

proach is : 1) Dynamic modeling of a combined .system, a large flexible manipulator 

and a small arm, 2) Determination of optimal sensor location and controller algo

rithm, and 3) Verification of the fitness of model and the performance of controller. 
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I . Introduction 

Most industrial robots have limit ations on efficient usage and wide application 

because of short arm lengths and heavy s teel construction. An alternative approach 

to. expand the capabilities is to design the robot with light weight flexible links which 

have safe strength. 

A large, two degree of freedom flexible manipulator which has a small arm at one 

end has been constructed at the Flexible Automation Laboratory in Georgia Institute 

of Technology as shown in Fig. 1. The large flexible manipulator is for gross motions, 

and the small arm is for fine motions. The large manipulator consists of two ten foot 

long links made of aluminum tubing actuated hydraulically through a parallel link 

drive. The small arm is actuated by three brushless D.C. motors through harmonic 

drives at each joint. 

Such a configuration has many advant ages compared to conventional industrial 

robots, that is, larger workspace, fast er motion time for large motion and higher 

payload to weight rat ios. It would be useful for welding, riveting, assembly, and 

inspection of large vessels, structures and vehicles. The manipulator, however, has 

some technical problems t hat need to be solved. Such problems are due to the 

flexibility of the large manipulator, dynamic coupling between the large manipulator 

and the small arm, and the friction and elasticity of a drive at the joints of the small 

arm. 

The amplitude of t he flexural vibrat ion of the manipulator increases with oper

ating speed and payload. In order to apply a bracing strategy[5] for efficiency and 

positioning accuracy without collision between contacting parts, the vibration of the 

1 
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manipulator needs to be suppressed as quickly as possible. Before working on fine 

motion jobs, the actuators of the small arm have little to do, and can generate inertial 

forces to reduce vibrations. In this research, t he inertial force of the small arm is 

to be used for suppressing the vibrations of the large manipulator together with the 

hydraulic actuators of that arm and a passive damping treatment . 

A variety of st udies have been done to control the flexural vibration of a ma-

nipulator and a st ructure in several engineering areas . Most of them considered the 

control of one dimensional vibration of a beam-like structure[2j,[21j,[22j,[26j,[28j,[31j, 

a plate[lj,[25j, one link manipulator[7j ,[10j, [14],[17j, and two serial link manipulator 

[4],[12j,[29j. Only a few of them have considered two dimensional vibration[9],[30j, 

and dynamic coupling between a beam and an actuator[24]. However the proposed 

manipulator has some additional problems. F irst of all, the parallel link mechanism 

gives mQre complicat ed nonlinear dynamic equations, and, the manipulator shows 

three directional vibrations induced by t he inertial force of the small arm. Moreover 

the dynamics of the small arm are inherently coupled to the dynamics of the large 

manipulator. Such coupling must be modeled. T he coupling is due to the fact that 

the reference frame of the small arm is dependent on the dynamics of the large ma

nipulator. Also, the joint friction and flexibility of the small arm are not negligible. 

These features give complicat ed coupled nonlinear dynamic equations. In order to 

design a controller, the coupled dynamic equations should be determined and verified. 

Besides the complexity of the dynamics, the manipu lator has an infinite number 

of modes. It is practically impossible to design a cont roller based on an infinite di-

mensional dynamic model. The actuators ~ the hydraulic cylinder and the small arm, 

have limited bandwidths. Also, the limitations on cost and space restricts number 

of sensors to be used. Hence a controller should be designed with limited number 

2 
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of sensors and a reduced order model which exhibits the b est dynamic performance 

within these limit ations . In this case, truncated higher modes can cause instabiI

ity[2]. This phenomenon is called spillover. T he sp illover instability depends on 

the dynamics of a cont rolled system[16] and the location of sensors[17]. Since the 

proposed manipulator has highly coupled dynamic equations. A more sophisticated 

control algorithm is required to obt ain stability. The spillover phenomenon will be 

studied by computer simulat ion, and examined by experiments. In relation to this 

problem, the effectiveness of the passive damping is t o b e studied. Also, the optimal 

location of sensors and the opt imal posture of the small arm will be studied. 

In positioning stages, the movement of the large m anipulator is small compared 

to the gross mot ion. Then the dynamic equat ions can be linearized at a certain 

configuration. These linearized equations will be used for a controller design. The 

characteristics of the equations varies with the change in the payload and the con

figuration of the manipulator. Modeling errors are inevitable. In order to obtain a 

good performance, the controller designed should compensate the modeling errors 

and adapt the change of the dynamic characteristics. At the first stage of this re

search, a simple control algorithm will be used t o ex amine the system performance. 

Later more sophist icat ed controller will be designed. 

3 
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II. Related Previous W ork 

The dynamics of a flexible manipulator is viewed as coupled rigid and flexible 

motion. The flexible motion is governed by a partial differential equation. In order 

to obtain ordinary differential equations from the partial differential equation, modal 

analysis is commonly used. 

The flexible manipulator can be modeled in terms of either constrained modes of 

vibration where the joint is held motionless , or the unconstrained modes of vibration 

where the entire body vibrates. Most researchers have used constrained modes in 

a dynamic modeling. In one link arm, the dynamic model using the constrained 

modes showed good agreement with the results of experiments[9],[14], [17]. A few 

researchers studied multi-link arms us ing the constrained modes [4],[27],[29]. In the 

case of multi-link arm, dynamic interactions between the links affect the boundary 

conditions at the joints. Hence the selection of mode shapes is a difficult problem. 

The accuracy of the constrained mode method has not been experimentally confirmed 

in modeling a multi-link arm. 

A few researchers used unconstrained modes In a dynamic modeling. In this 

case, the dynamic model using unconstrained mode is m ore rigorous . However the 

determination of the ejgenfunctions becomes more complicated as the number of links 

increases. Using the unconstrained mode, Cannon Jr. and Schmitz[7], and Fukuda 

and Arakawa(121 derived a dynamic model for a one link arm and for a two link arm 

respectively. 

Another approach in modal analysis is to use the fin ite element method. Usoro 

et al [34] modeled a two link arm by the finite element method. Lee[19] is also mod-

4 
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eling the manipulator having parallel link mechanism by the finite element method. 

The finite element method is useful for the complicated structure whose boundary 

conditions are difficult to ident ify. 

Several r esearchers have investigated joint flexibility and friction. Joint flexibility 

can cause large amplitude vibration and inaccurate positioning. The flexibility due 

to a harmonic drive shows nonlinear behavior similar to that of a hardening spring 

[35]. Sweet and Good[32] derived a nonlinear model for a robot drive system, which 

had strong anti-resonance/resonance properties . However, most researchers assume 

the joint flexibility t o be a linear spring[1l],[20j,[23j. T hey confirmed the assumption 

by experiments. 

Friction is always present to some extent, and causes poor motion accuracy. To 

find an exact model is difficult, hence several models of friction have been discussed 

in the literature[8],[13]. Canudas, et al[8] modeled static and viscous friction as 

nonlinear functions of angular velocity. Kubo, et al[I8] used ideal Coulomb friction 

model in controlling a robot arm. 

To control flexural vibration, most researchers have used joint actuators. The 

joint actuator also controls rigid body motion. An a lternative is to use additional 

actuators which cont rol flexible motions. A few researchers have studied this. Za

lucky, and Hardt[36] designed two parallel beams with a hydraulic actuator mounted 

at one end. This arrangement was used to com pensate deflection and to improve 

dynamic response. A similar configuration was applied to tracking control[lOj. Singh 

and SchY[30j studied control of the vibration by external forces acting at one end. All 

of them neglected dynamic coupling between the act uator and manipulator. How

ever, the movement of t he manipulator can affect actuator dynamics. Ozguner and 

Yurkovich [24] have studied the vibration control of a beam coupled dynamically with 

5 
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an actuator, but their work is still preliminary. Chiang[37] studied a fast wrist to 

achieve better end point control when a large link was vibrating. He decoupled the 

dynamic motion of the end point from the movement of the large link by locating 

the end point at the center of percussion of the wrist. 

The flexural vibration has an infinite number of modes. But it is more difficult 

to design a controller based on an infinite dimensional model. Hence, all of the 

researchers have used a reduced order model fOT designing a controller[4]'[29],[7] . In 

this case, control and observation spillover can occur. Balas[2] showed that the effect 

of spillover could destabilize a large flexible space structure system. He suggested a 

comb filter to eliminate the instability. However Trunckenbrodt[33] indicated that 

the control spillover was not necessarily bad, and the comb filter was not useful for 

preventing the observation spillover instability. Book, Dickerson et al[6] proposed a 

passive damper to overcome the spillover instability. They showed that an unstable 

system due to truncated higher modes could be stabilized by passive damper. Alberts 

et al[O] suggested a combined active/passive control scheme. They improved system's 

stability using a constrained viscoelastic layer method. 
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TIl. The Objective of t he Research 

Many researchers have studied the control of a flexible manipulator. However, 

most of them have used only joint actuators for the vibration control. The objective 

of this research is to develop a control scheme which suppresses the vibration of 

the large flexible manipulator in minimum t ime. This is approached by using the 

inertial force of a small arm as well as the joint actuators and passive damping. 

The issues surrounding the change of configuration of both the large and small arm 

will be addressed. When the large manipulator changes configuration, the modes of 

the manipulator change. When the small arm changes configuration, the ability to 

influence these modes will change. The result of the proposed research may contribute 

to the modeling and control of the flexible manipulator with high efficiency and 

positional accuracy. No previous study of this type is known. 

7 
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IV. Proposed A p p roach 

The small arm will be used as the actuator for suppressing the flexural vibration. 

Hence it is important to find t he dynamic characteristics of the small arm. Its 

links are essentiallr rigid but its joints have flexibility and friction. Its friction and 

flexibility will be identified by experiment. 

Although much work has been done on modeling the large flexible manipulator 

at Georgia Tech[15j,[19j, they have not included _ the dynamics of the small arm and 

the out of plane motions of t he manipulator. The dynamics of the combined system 

will be obtained by applying Lagrange 's equations to the energy terms which are to 

be derived with assumed mode shapes. The mode shapes will be found by using the 

finite element method. 

The dynamic equations of motion could be linearized at a certain configuration. 

The linearized equations can be writ ten as 

[Z~: Z~~ 1 [ t 1 + [~ ~ 1 [ t 1 + [~ ; 1 [ :~ 1 = [ Z~ 1 T (~) 
where subscripts r and f denote r igid and flexible coordinates respectively, q is 

generalized coordinate vector, M is generalized m ass matrix, D is damping matrix, 

K is elastic stiffness matrix, N is input matrix, and T is generalized force vector 

related to joint torque. The dynamics of the combined system will be verified by 

experiments. 

The equation (1) can be expressed in state variable form as 

(2) 
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where subscript c and t denote controlled modes and truncated modes respec-

tively. Theoret ically, the system has an infinite number of modes, but considering 

passive and structural damping, one can assume that the sum of nand t modes ac-

curately represents dynamic behavior. The control1aw of the reduced order system 

can be given by 

(3) 

where F is the feedback gain matrix. 

By using equations (2) ,(3) and a matrix C included in the output equations, the 

full order closed loop system can be written as 

(4) 

or simply 

X=AX (5) 

Even though the reduced order closed loop system, Ac - BcFCc, is stable, the 

full order syst em can be unstable. The matrices A and B are related the posture 

of the small arm and the configuration of the large manipulator. The matrix C is 

a function of sensor location. Hence an optimally select ed gain, sensor location and 

posture give the minimum real part of the eigenvalues of A. These will be studied 

computationally. 

At first stage of this research, the const ant gain matrix F will be used in the ex-

periment. The displacement and velocity of the vibrat ion will be estimated from the 

measured signal of strain gages and acoustic gap sensors. A controller should process 

many input and output signals with high speed. In order to increase the processing 

9 
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rate of the cont roller, multip le processors will be used. Later more sophisticated 

control algorithms , such as decentralized adaptive control and robust sliding mode 

control algorithm , will be considered for implem entat ion. 

10 
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Figure 1: The Robotic Arm. Large and Flexible (RALF) carrying the Small 
Articulated Manipulator (SAM). 
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