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FOREWORD

This document, "The Investigation of Advanced Remote Sensing, Radiative
Transfer and Inversion Techniques for the Measurement of Atmospheric
Constituents," is the final report on investigations performed for the
National Aerocnautics and Space Administration (NASA) by the Institute for
Atmospheric Optics and Remote Sensing (IFAORS), under Contract NAS1-15198.
The period of performance was from December 15, 1977 to March 15, 1985.

" We gratefully acknowledge M. P. McCormick, L. R. McMaster, G. K. Yue, W. P.
Chu, and R. R. Adams for stimulating discussions and encouragement during the

course of this work.
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SUMMARY

Since atmospheric particulates and gaseous species (such as ozone)
play a vital role in the modification and retention of the solar radiation
in the atmosphere due to scattering and absorption, there has been an
enhanced interest in recent years in the study of variability and background
levels of atmospheric aerosols and gaseous species.

In order to fully understand how aerosols and gaseous species, such as
ozone, affect the atmospheric quality, atmospheric chemistry, radiation
balance, climate and transport processes, it is necessary to obtain accurate
data of their optical, physical, spatial and temporal properties. In order
to achieve these goals, IFAORS was awarded Contract NAS1-15198 by NASA-Langley
Research Center, with the objective of developing advanced space and ground-
based techniques for determining the characteristics of aerosol and gaseous
species and their variability.

Work was performed on the development of the solar aurecle technique,
which is a simple, accurate and practical technique for the measurement of
columnar aerosol size distributions. The experimental and theoretical
details of the technique and its experimental validation are discussed in
this report.

In addition, a multispectral solar extinction technique for the measure-
ment of aerosol characteristics is also discussed. The various aspects and
results of three satellite techniques, based on the multispectral measurement
of horizon limb radiance, solar occultation, as in SAM II and SAGE, and
upwelling radiance, as in LANDSAT and GOES satellites, are discussed.

The corrections to the aerosol extinction measurements due to the

forward single and multiple scattered radiation entering the detector's

vii



field of view along with the direct radiation are also discussed for both
laser transmissometry and solar radiometry. Also discussed are the
simulation of limb solar aureole radiance, and the variability of ozone

at high altitudes during satellite sunrise/sunset events, using models
based on earth's curvature. Analytical models used for representing typical
aerosol size distributions are described along with examples of the

parameterized graphical catalog plots.
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SECTION 1

INTRODUCTION

Atmospheric particulates and gaseous species (such as ozone) have been
of interest to atmospheric scientists and climatologists for their contribu-
tion to environmental guality, visibility, global radiation budget, global
circulation and climate change. They play a vital role in the modification
and possible retention of the Sun's radiation in the atmosphere due to
scattering and absorption. Their effect on the atmosphere visibility and
sky brightness is well known.

In order to fully understand how aerosols affect atmospheric quality,
atmospheric chemistry, radiation balance, climate and transport processes,
it is necessary to obtain accurate data of the physical, spatial, and
temporal properties of aerosols in the atmosphere.

The overall objectives of this research program are to develop space
and ground-based remote sensing techniques, involving the application of
sophisticated radiative transfer codes and inversion techniques, for the
determination of aerosols and gaseous characteristics and their variability.

In this connection, science support was provided to the NASA Langley
Research Center under NASA Contract NAS1-15198 on the different tasks listed
as follows:

1. Continue development of the ground-based solar aureole technique
for monitoring aerosol size distributions.

2. Analysis of SAGEl/AEM—B and SAM II2/NIMBUS—7 experiment data using
the modified SLIC and other computer programs to retrieve aerosol character-

istics and optical properties.



3. 1Investigate the diurnal variations, if any, in the retrieved
aerosol and gaseous characteristics for studying radiative interactions
with the atmosphere.

4, Develop the theory and design of new instrument technigues and
optimize them for extracting maximum information content about aerosols
and gaseous species.

5. Determine the corrections due to multiple scattering, polarization,

absorption and spherical atmospheres.

1.1 ORGANIZATION OF THE REPORT
In order to facilitate the readers' understanding the contents of the
work performed under Contract NAS1-15198, this report has been organized into

the following sections.

Section 2 contains the details of the work performed on the solar aureole
technique for the measurement of aerosol size distributions. A multispectral
solar extinction technique for the measurement of aerosol characteristics is
discussed in Section 3. Section 4 contains the discussions on forward
scattering corrections to aerosol extinction measurements by both laser
transmissb&etry and solar radiometry. Section 5 discusses the analytical
modeling of aerosol size distributions. Section 6 gives the details of satel-

lite techniques based on the measurements of limb radiance, solar occultation

and upwelling radiance - for the global measurement of aerosol characteristics.

lStratospheric Aerosol and Gas Experiment

2Stratospheric Aerosol Measurement



The simulation of limb solar aureole radiance is presented in Section 7. 1In
Section 8 the variability of ozone at high altitudes during satellite
sunrise/sunset events, with the models utilizing the earth’s curvature effects

is discussed. Section 9 contains the acknowledgments, and Section 10, the

references.



SECTION 2
SOLAR AUREOLE AERQOSOIL MEASUREMENT TECHNIQUE

2.1 INTRODUCTION

The solar aureole is a region of enhanced sky brightness extending for
about 20° around the sun's disk. It is attributed to the predominant forward
scattering of sunlight by atmospheric aerosols. The gradient of angular
distribution of radiance in the solar aurecle region is highly sensitive to
the aerosol size distribution. Measurement of solar aureole radiance can,
therefore, be effectively used to determine atmospheric aerosol properties.
For this purpose, a simple photographic solar aureole measurement (PSAM)
technique, developed in 1970 (Ref. 1), has since been successfully used to
make radiance measurements along the almucantar, a scan for which the observation
zenith angle equals the solar zenith angle, with local zenith as the axis of
rotation. Almucantar radiance data in the solar aureole region has been
successfully used to retrieve aerosol size distributions (Refs. 2-4). Such
retrieval methods will be referred to as the solar aureole almucantar radiance
(SAAR) methods. Subsequently, in 1974, the photographic solar aureole
isophote (PSAI) method (Refs. 5-7) for determining aerosol characteristics
was developed. The techniques for making solar aureole radiance measurements
for the two methods are the same; the difference lies in the selection of
scattered radiance data for determination of the aerosol size distributions.
In one case, it is the almucantar radiance data; in the second, the isophote
locii and their shapes. In the following sections we describe the various
aspects of: 1) the experimental procedure (Section 2.2) which includes the
photography and photographic~photometry aspects of making accurate measure-

ments of the sky radiance distribution that are essential to the two



methods; 2) the radiative transfer and multiple scattering problems
(Section 2.3); and, 3) the inversion of radiance data“to retrieve the aerosol
characteristics (Section 2.4).

It is hoped that this description will assist others in setting up
their own photographic solar aureole measurement systems. Since a camera
(single lens reflex) is likely to be a part of any laboratory, relatively
inexpensive, portable photographic systems for making aureole measurements
can readily be set up and thus employed to form a global network of

stations for making measurements of atmospheric aerosol characteristics.

2.2 THE EXPERIMENTAL PROCEDURE
Descriptions of the photometry, sensitometry and densitometry techniques
employed for extracting accurate sky radiance data from the photographs are

given in the subsequent sections.

2.2.1 Historical Background

For many years, Volz (Ref. 8) has taken excellent color photographs of
the solar aureole by occulting the sun with various kinds of objects, such
as, a hand, pillar, or wall edge, for the purpose of visual and gualitative
analysis of the sky scene in connection with his turbidity measurements. 1In
1970, on the suggestion of Professor A.E.S. Green, the author (A.D.) started
making solar aureole radiance measurements with a Polaroid Land Camera,

using the commercially available Black and White Polaroid-46L



transparency film (Ref. 1). Since then, such photographic measurements have
been successfully performed for the puréose of retrieving aerosol size
distributions (Refs. 2-7). Photoelectric measurements of the solar aureole
radiance have been made by many researchers (Refs. 1, 9-15). Subsequently,
a 35-mm SLR Minolta camera, with a 50-mm focal length lens, and Kodak Tri-X
film were used (Ref. 2). The occultation of the sun was done by a 4.0D
neutral density filter disk located coaxially on a support about 1.2 m from

the lens. Later, solar aureole measurements were made with a Nikon camera

" with a 55-mm focal length lens, and a Hasselblad camera with an 80-mm lens,

and using Kodak Plus-X film (Refs. 5-6). Excellent results have been obtained

with the latter equipment.

2.2.2 Advantages of Photographic Measurements

Photographic film offers the following advantages over the photo-
electric detectors. Photographic film is still the most compact recording
device for storing large amounts of information (e.g., a 35-mm film frame
typically contains about lO6 individual picture elements, known as pixels).
The f£ilm also has the capability of integrating over exposure times, thereby
extending its range of detectability. Moreover, photography is relatively
easy to use, and the stored records of the scene are permanent. Perhaps
the greatest advantage of the film lies in the fact that the complete solar
aureole scene can be recorded instantaneously. A scanning radiometer approach
could take several minutes and introduce significant measurement errors,

under time-varying conditions (clouds, smoke plumes, aircraft contrails, etc.)



or from moving platforms, such as balloons, aircrafts or satellites. It
enables one to easily relate the radiance along a particular line-of-sight
to some specific sky detail that may not be apparent otherwise. 1In addition,
the use of photogrammetry enables one to make measurements not only of the
radiance of, say, a cloud, but also of its dimensions.

A small format (35-mm or 70-mm) camera is a portable system which needs
no external power supply, and its operating costs are relatively low. These
attributes fulfill one of the aims of this research effort; namely, the
development of inexpensive systems for making sky radiance and atmospheric
extinction measurements, which may be inverted to retrieve the characteristics

of atmospheric species.

The problems generally attributed to the use of photographic f£ilm as
a photometric measure include such things as nonlinear response, limited
dynamic range, reciprocity failure (the reduction in sensitivity as exposure
time is increased), adjacency effects (nonindependence of adjacent pixels), and
relatively high granularity. Camera shutter speed variations are also a
source of error. Procedures will be described that overcome, minimize or

take account of these effects.

2.2.3 Comparison with Photoelectric Measurements

Comparison of the results of simultaneous measurements of the solar
aureole radiance by photographic and photoelectric methods, performed in
1970 at Gainesville, Florida (Ref. 1) and in 1977 at Tucson, Arizona (Ref. 16),
in each case show extremely good agreement (within 2 percent) between the two

sets of data. 1In the case of the experiment at Tucson, Arizona, in May 1977,



the data were obtained with our system and the University of Wisconsin Solar

Aureole Photometer (Ref. 14). The agreement between the data is shown in

Fig. 2.1.

2.2.4 Description of Experimental Equipment

Essentially, one needs the following equipment: camera, lens, film,
spectral filters, adapters for mounting them on the lens and on the camera
body, a neutral density (ND) occulting disk, a tripod with azimuth and
elevation controls, a flat sturdy camera platfaorm, an inclinometer (e.qg.,
a plumb line and a protractor) for elevation measurements, and an accurate
spirit level for adjusting the platform to attain horizontal level.
Following is a brief description of the exposure equipment, which is

schematically shown in Fig. 2.2 a), b).
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FIG. 2.2 a):
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Schematic Diagram of the Solar Aureole Photography Equipment

and the Geometry of the Experimental Technique.

NO FILTER

P RETAINING RING
FILTER HOLDER

STEM

Schematic Diagram of a Section of the Neutral Density Filter Disk
Assembly, Showing the Filter Held in a Circular
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(i) Cameras and Lenses

Photography, in our case, was performed using a Nikon FTN 35-mm
camera with a 55-mm lens, as well as a Hasselblad 70-mm camera with an 80-mm
lens. The choice of lens is governed by two competing requirements: (1) we
want to photograph as wide an angular field as possible around the sun, which
implies a short focal length lens; while (2) we want the sun image size to be
large enough (long focal length) to permit accurate microdensitometer
measurements to be made of the image optical density. A 55-mm lens gives a
FOV of about 36° on a 36-mm film frame, and the 80-mm lens, a FOV of 38° on
a 56—mm’frame, with diameters of the respective images of the half-degree sun
of 0.48-mm and 0.70-mm. These choices have been found suitable for our

purposes.

(ii) Photographic Film

For solar aureole photography, the requirements for the film
are: good resolution, reasonably high speed, and a spectral response curve
S(A) which is fairly uniform in the visible region. Kodak Tri-X and Plus-X
films, both meet these criteria, and have, therefore, been used extensively
in our work. Plus-X (ASA-125) has higher resolution but lower speed than
Tri-X (ASA-400), and so in most of our work, we used the former. For photography
at A = 0.7 um, Kodak Plus-X Aerial film 3401 with extended red sensitivity,
was used. When using the Hasselblad camera, it was found very convenient
to load the film in several detachable film magazines and take them along

for field use.



(iii) Spectral Filters

Narrow band (AA ~ 0.0l um) interference filters, which peak at
Ao = 0.40, 0.50, 0.55, 0.60, and 0.70 um, were used to simplify the inversion
and could easily be mounted in front of the camera lens. The use of narrow
bandwidth simplifies the computations in that it permits the integration
over the spectral transmission curve T(A) of the filter to be replaced by a
factor T(Ay) AA. If broadband Wratten filters are used, then integration
must be formed over T(A) (Ref. 3). Since, in general, interference filters
are designed for normal incidence, then as the incidence angle ¢ increases,
: the peak wavelength A, of the filter is reduced and is given by the

¢
relation (Ref. 17):

(1)

where AN is the peak wavelength at normal incidence and m' is the effective
refractive index of the filter. For small ¢, the shape of the bandpass
does not change appreciably except for a small decrease in overall trans-
mission. In a converging beam, because of the varying angles, the effective
bandwidth is broadened and, in general, the peak wavelength is shifted to
shorter wavelengths. The narrower the bandwidth, the more noticeable are the
effects of the angle change.

On the other hand, an increase in temperature causes interference

filters to shift in peak wavelength to larger wavelengths due to the expansion

of the layers. For example, some typical filters at room temperature show a



shift of approximately 0.004 percent of the peak wavelength per ©°c. The

shape T(A} of the bandpass curve and the transmission outside the bandpass

are important, as they can greatly effect the unwanted "noise" background.
Thus, there is some advantage in choosing slightly broader bandpass

filters. Inversion of aureole scattering data seems to be relatively more

sensitive to the filter peak wavelength than to the filter bandwidth.

(iv) The Neutral Density Disk Assembly

The neutral density (ND) disk, made up of a 4.0D Kodak Wratten
filter having a diameter slightly larger than that of the camera lens, is
mounted in a narrow circular snap type frame with a thin stem attached to it.
This complete unit will be referred to as the "neutral density or ND lollipop."
Of the several designs of the ND lollipop tested, the one that minimizéd the
amount of edge reflections and diffraction effects is shown schematically
in Fig. 2.2 b).

The lollipop stem is mounted upright, on a support rod, about

1.2 m in front of the lens, so that the ND disk is coaxial with the lens.

Its position along the support rod can be adjusted. All metal parts are
painted black to minimize reflections and glint, which are nearly impossible
to eliminate at grazing angles of incidence. The Wratten ND filter does not

usually have a flat spectral response DND(X) but typically varies with A

in the spectral range 0.4 ym and 0.8 um, as shown in Fig. 2.3.
The use of 4.0D filter, instead of an opagque occulting disk,
permits the sun's disk, which is lO4 to 106 times brighter than the sky

(Fig. 1 in Ref. 1), to be photographed by suppressing the glare and flare
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effects. The "noise" due to these effects is reduced to within the fog
level of the film. The sun's image not only provides the exact location of
the sun's disk for measuring angular distances accurately, but, in addition,
provides a reference optical density level relative to which the entire
photograph can be calibrated.

Glass ND filters were also tried, but because of their much
heavier weight and greater inertia, it was often difficult to dampen their
small oscillatory motions in the breeze outside, thereby reducing the changes

of taking of good solar aureocle photographs.

2.2.5 Photography of Sun and Its Aureole

Described in the following is a step-by-step procedure for taking
quality solar aureole photographs with an SLR camera (Hasselblad):

1. The camera platform is mounted on a sturdy tripod, and the tripod
.adjusted until the camera mounting plate is completely horizontal, as determined
by an accurate spirit level.

2. The camera is mounted on the mounting plate, such that the lens axis
is parallel to the plane of the inclinometer and the camera mounting plate
(Fig. 2.2 a).

3. The inclinometer, consisting of a protractor behind a plumb line,
is adjusted so that the elevation angle reads 90°.

4. The long support rod is then mounted on the platform and the alignment
of the ND-disk adjusted, by watching through the viewfinder, such that the disk
is coaxial with the camera lens, with its plane parallel to the lens. The disk

is held at about 1.2 m (4 feet) from the lens; but its position can be adjusted.

2-11



5. A 2.0D ND filter is installed on the lens and the lens is manually
stopped down to £/22. The reason for using the smallest possible f-stop is
to obtain the largest possible depth-cf-field, so that everything from the ND
disk to infinity is focused as sharply as possible on the film plane.

6. Adjust the tripod elevation and azimuth such that the ND disk shadows
the lens completely and concentrically. Then, by looking through the viewfinder,
fine adjustments of the tripod azimuth and elevation controls are made until the
solar disk appears centered in the ND disk. This centering is important to assure
good quality pictures (Fig. 2.4), since in such a position, glint and othef
reflection effects are minimized. A photograph with the sun off-center within

the ND~disk may sometimes give pictures which show this edge reflection.

FIG. 2.4: Example of Good Quality Photograph of the Sun

and its Aureole



7. Focus the lens to twice the distance between the lens and the occulting
disk and stop the lens down to its smallest opening. This will have the effect
of placing the occulting disk at the near limit of the "depth of field," as
defined by the circle of confusion (Ref. 18) whose diameter is given by

F2

€= Fu - rF)

where F is the lens focal length, u is the focus distance and £ is the lens
f/stop. When the resulting negatives are scanned on the microdensitometer,

.the scanning aperture, as projected onto the specimen, should be adjusted

to be equal to or greater than c¢ as defined above.

8. Remove the 2.0D ND-filter, cycle the camera and attach the film
magazine. A remote shutter cord is useful to minimize disturbance of the
ND occulting disk.

9. Mount the wavelength filter on the lens and take a series of photographs
at shutter speeds, bracketing those that are predetermined as optimum for each
wavelength filter. The optimum exposure times used for solar aureole photography
through wavelength filters primarily depend on the filter bandwidth and peak
transmittance, speed, spectral response, and processing of the film, lens
f/stop, atmospheric haze and the sun's elevation. Repeat exposures for each
wavelength filter in succession. For example, for wavelength filters
(A 400 nm - A 650 nm) with bandwidth AA ~ 8 nm - 10 nm, Kodak Plus-X (ASA-125)
Panchromatic film, lens aperture £f/22, relatively clear skies, solar zenith
angles between 15° to 60°, the optimum exposure time was found to be 1/15 to
1/30 second. The film was processed for photographic gamma close to unity.

These exposure times should be considered as a starting point, from which one

can determine the appropriate exposure times for one's own set of conditions.



We found that taking photographs at four exposure times from 1/8 to 1/60 second
almost always provided at least one analyzable negative under the aforementioned
conditions. The criterion for a good analyzable solar aureole exposure is that
the optical density at the edge of the negative be only slightly greater than
the density of the unexposed part of the film, with the processing gamma
adjusted to place the highest density reading, including the occulted sun,

well below the shoulder of the characteristic curve and within the range of

the densitometer employed.

10. The time of day at which photographs are taken are noted, and at

.- each of these times the solar zenith angle is read by the plumb-line.

The entire photography sequence should be completed as quickly as possible
(less than a minute) so that the solar zenith angle and sky conditions can be
assumed to remain practically constant for that set of photographs. About

25 cm of each film roll should be left unused for performing film sensitometry

in the laboratory prior to processing of the film.

2.2.6 Laboratory Photgraphic Calibration Techniques

(A} Sensitometry

(i) Exposure
The photographic effect or the developed image optical density D

increases up to a certain limit with increasing exposure E, which is defined

by (Ref. 19-20)
E = It (2)

where I is the intensity of incident light and t the exposure time.
The relation between the density D and the amount of exposure is usually

expressed by plotting D vs log, . E on linear graph paper. The plot is
10

2-14



referred to as the characteristic curve or the H-D curve (after Hurter
and Driffield). In the linear portion of the curve, the density D is

given by the relationship

DNET =D - DF =y (logloE - logloEF) (3)

where 7Y, the slope of the straight portion of the plot is called the photo-
graphic gamma, D is the gross visual density, DF is the base-plus-fog
density, and EF is the extrapolated exposure corresponding to zero density
above base plus fog (Fig. 2.5). Typical values of Yy range between 0.9 and
i 1.2 for Kodak Plus-X film when processed in the way described below.

In our case, the H-D curve was obtained by performing film sensitometry
(Ref. 21) on the unexposed portion of the film for each roll before it was
processed. An EG&G Xenon Flash Senitometer, which provides uniform illumination
over the entire length of a Kodak No. 2 Step Tablet was used for this purpose.
The step tablet has 21 calibrated d&nsity steps, ranging from 0.04D to 3.04D.
A Wratten 1.0D filter was installed inside the sensitometer, along with an EG&G
three~line filter, to control the exposure intensity. A sufficient length of
unexposed film was pulled from the film magazine (in total darkness) to cover
the sensitometer exposure plate and the step tablet, making sure that the film
emulsion side faced the plate. The sensitometer cover was closed and the film
was exposed for 1/100 second.

(ii) Processing

Once sensitometric exposure has been completed, the film is ready

for processing. Uniform processing is required for photographic photometry.

Ideally, use of a sensitometric processing machine is recommended. However, such

equipment is not generally available to the researcher. While commercial
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roller transport processors are quite adequate for pictorial photography,

forced processing using relatively high temperatures often results in longitudinal
streaking, rendering the negatives useless for aureole application. Similarly,
use of rewind processors produced objectional end-to-end development variations
and localized turbulance effects. These problems have been largely overcome by
use of spiral reel processors in combination with chemistry and techniques- which
are extremely tolerant to unavoidable procedural variations. The Kodak Plus-X
film is developed in undiluted Kodak D-76 developer for 11 minutes at 68° F.
Agitation is continuous for the first 30 seconds and 5 seconds every 30 seconds
thereafter until development is complete. The remainder of the process is
standard. Uniform and repeatable development to a gamma of about 1.0, low

fog, and relatively fine grain are the results. An added bonus is extended
dynamic range which assures that all densities fall well below the shoulder of
the H~D curve over a variety of sky conditions and filter wavelengths.

(B) Densitometry

In the field of photographic densitometry and sensitometry, the concept
of optical density, as a measure of the attenuation of radiant flux, is of
fundamental importance. When the attenuation related to the flux transmitted
by the developed image, the term transmission density is used.

The transmission density is defined, in general, as the logarithm to
the base 10 of the opacitance (0) or reciprocal transmittance (T) of the
developed image, which is just the ratio of the radiant flux ¢O incident

on the developed image to the radiant flux ®T transmitted by the image.

L]

D= loglo(O) = loglo [%} = log (4)

|
K |o



Densitometry has been performed by both a Joyce-Loebl (J~L) Scanning
Microdensitometer/Isodensity tracer (MDM) and a MacBeth transmission-type
spot densitometer. The former not only provides a digitized magnetic tape
output, but also a graphical plot of isodensity contours (Fig. 2.6 a)). Iso-
densities are lines of equal optical density in the image space; and isophotes
are lines of equal brightness in the object space. By the use of photogrammetry
and photometry relations described in later sections, one can obtain the
solar aurecle isophotes (Fig. 2.6 b)) from the MDM digital density data output an
the optical density along the almucantar (Fig. 2.7) from the spot densitometer
¢ measurements; whereas the J-L Microdensitometer measures the specular density,
the spot densitometer measures the diffuse density. The ratio of the specular
to the diffuse densities is generally defined as the Callier factor (Ref.!19),
which is typically larger than 1.0. In both cases, the almucantar or the sun
vertical measurements, are made by the use of photogrammetric formulas (Ref. 22),
which provide the x and y coordinates on the photograph, for points along
the almucantar and sun-vertical projections. In the case of the spot densitomete:
positioning of the spot on the photograph is done manually, a process which is
cumbersome and prone to error. However, after some experience, it is possible
to obtain accurate density measurements. This is shown in Fig. 2.7 by a com-
parison between the almucantar optical density data, obtained by the two
types of densitometers, plotted as a function of scattering angle. The plots

show agreement to within 3 percent between the two sets of data. It should be

pointed out that the H-D curves (Fig. 2.8) obtained by the two densitometers
differ in slope, since one measures specular, and the other, diffuse densities.
The detailed method for making accurate almucantar optical density measurements

with a spot densitometer is described in Appendix I.

[\®]
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FIG. 2.6 a): Isodensity Contours of the Solar Aureole Photograph,

Made with a Joyce-Loebl Microdensitometer Isodensitracer.
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(C) Off-Axis Illumination Distribution

When a lens forms an image of an extended object, then the illumination
for the off-axis image points, even where there is no vignetting, is usually
lower than for the coaxial point. The intensity distribution at an angle 6
in the image space is ideally given by cos4 8. The deviation from the "cosine
fourth" relationship can be brought about by several means; for example, when
the lens construction is such that the apparent size of the pupil increases for
the off-axis points. In that case, the off-axis distribution may be given by
some other power, o, of cosine 8. The determination of the off-axis distribution
of intensity for the camera should be performed both with and without spectral
filters mounted on the lens. Procedures for making such a determination are
described in detail in Ref. 23, and so will not be presented here. The
value of o varies with different spectral filters mounted on the lens
(Ref. 23). A plausible explanation for this variation is that it results from
the combined effects of spectral behavior of the wavelength filters as a function
of incidence angle and the film.

(D) Spectral Response of the Film

Kodak Plus-X film has a spectral response which varies slightly about a
uniform average over the entire visible range. Tests were performed to study
the spectral dependence of the H-D curve for the film, by performing
sensitometry on the film through Wratten filters placed inside the sensitometer.
For Kodak Plus-X film, sensitometry was performed with three Wratten filters
(Nos. 72B, 75, and 93) and the characteristic curves obtained therefrom

were, for all practical purposes, identical in shape.

2.2.7 Photogrammetry Theoretical Relations

The formulas relating to the film projection of different points in the

sky are given in Ref. 22. The almucantar scan projects as a conic on the



film (Fig. 2.9). If the sun's image is at the geometrical center of the
photographic frame, then the film projection of the almucantar is a conic

defined by the relation

(v, -a)? =
pc bc _
2 =1
a b
= - = - . , -th dinat
where ypc yp yc, xpc xp xc, (xc yc), (xp, yp) are e coordinates

of the center C and a point P on the frame; a and b are the

ALMUCANTAR PROJECTION ON FILM

ALMUCANTAR PROJECTION ON FiLM
Focol Length =53 mm

Focol Length* 80 mm

35

25*

FIG. 2.9: Curves Represent Film Projections of Almucantar Scans for Sun at

Various Solar Zenith Angles for a Camera Lens of Focal Length 80 mm.
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characteristic distances of conics. If the solar zenith ¢S is 450,

the conic is a parabola

where F 1is the lens focal length. If ¢s > 459, the conic is a y-hyperbola,
with a and b being the distances from center to vertex and covertex;

¢s < 45°, the conic is ah ellipse, with a and b as the semimajor and semi-
minor axes. This is illustrated in Fig. 2.9 for lens focal lengths 55mm and 80 mm.

i The details of formulations and results are given in Appendix 2.

2.2.8 Photometry Relations

Photographic-photometry is concerned with relations that exist between

the radiation flux from the object space and the resultant optical density
in the image space, the main problem being that of reconstructing intensity
or radiance levels in object space by means of the image sﬁace optical
density data. From the theories of photographic image (Ref. 21), off-axis
illumination (Ref. 23) and photogrammetry (Ref. 22), we obtain various
formulas that relate the density of each point on the photograph with radianée
of a corresponding direction in the sky. The relations for the photometry
are given in Refs. 1 and 19. They are recapitulated here for the sake of
completeness.

The image irradiance, IP(A), of a point P on the image plane at an
angular distance § from the geometrical center of the image is related
to the radiance Bp(k) of the scene element in the sky by the formula

(Ref. 24);



2 ()

2 o 2
Ip(k) = Bp(l) F" (cos Gp) TgTV/4V £
where F = focal length, V = image distance, f = F/d (the f-number),
d = aperture diameter, Tg = transmission factor due to reflection and
absorption by glass, TV = transmissiocn factor at points off-axis due to
vignetting by the lens barrel, and o = exponent of cosine Gp giving the
off-axis illuminétion distribution for the lens.

If the object is at infinity, as it is in our case,
I_(A) =B_(A\) TT (cos & )%/ag? (6)
p p gv P

But Ip(l) is related to the optical density Dp for the linear portion 6f

the H-D curve by the photographic equation

I D€ M - 10{PpPF) 4y (7)
so that

B () =K 10 PP’Y (cos 6 )™ (8)

p P
where

~Dp/Y [_ ag?
K =10 TT_Aht )
L vy

This equation then relates the density, D, of the point P to the sky

radiance at angle GP from the axis for the linear portion of the H-D curve.



If we know the spectral irradiance, H(A), measured in absolute
units (LW cm-2 u_l), which produces a certain density, Ds' for the sun's
image, it may be possible to calibrate the photographic image in absolute
units. The absolute calibration of the film requires that a known optical
density on the film correspond to a known intensity of a direction in sky.,
the co-direction image point of which is at an angular distance Gs from
the geometrical center O; then the radiance BS(A) of sun's direct light

is related to Ds by an equation similar to Egqg. (8):

BS(A)lo'DND==1o Ds/Y (cos Gs)‘a X (10)

where DND is the density of the ND filter.
Since we photographed the sun and the aureole on the same
photograph, the K factor is the same in Egs. (8) and (10). Substituting K

from Eq. (9) in Eg. (8), we obtain the radiance for any point P in the

sky

-a
B (A\) =K 10 Dp/Y (cos § ) (8)
P P
where K is the calibration factor given by

K = BS(A)lo“(Ds+ D

ND)/Y(cos 5S)a {11)
It is easier and more accurate to obtain K from Eq. (11) than from Egq. (9).

2.2.9 Photographic Radiance Measurements

(A) Photographic solar almucantar radiance measurements

The problem of inversion of solar aureole data to determine aerosol

characteristics can be made tractable, if we make the following reasonable
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assumptions (Ref. 7), namely that, particles are spherical; polarization

is neglected in the forward direction; absorption effects are ignored by
selecting the appropriate wavelength filters to work with; zenith angles are
kept less than 80°, so that the spherical Earth corrections can be excluded.
Under these assumptions, theory shows that the almucantar radiance becomes
independent of aerosol altitude distribution and depends only on the (columnar)
size distribution, n(r) (Refs. 1, 7, 25-27). In Refs. 1 and 7, the theory
of solar aureole neglects multiple scattering (MS) and considers only single
scattering (SS); in Refs. 26 and 27, we have shown how MS effects can be

taken into account in order to obtain more accurate retrieved size distribution
results. Almucantar radiance can easily be obtained from almucantar optical
density measurements. The theoretical considerations regarding radiative
transfer and multiple scattering problems'will bé discussed in Section 2.3 and

those regarding inversion methods in Section 2.4.

(B) TIsodensities and Isophotes

As defined earlier, isodensities are lines of equal optical density on a
photographic image; and isophotes, lines of equal radiance in the object
space. We have used two ways to obtain isodensity contours. One is by the
J-L MDM isodensitracer which yields isodensity tracings on a sheet of paper
(Fig. 2.6 a)). The other is by a video scanning color-coded TV system (Spatial
Data Systems, Inc.), which gives multicolored isodensity contours, each color
denoting a specific density value (Fig. 2.10). The contours are displayed
on a TV screen that can be photographed. The contour mapping by the MDM
takes about an hour per frame, while that by the video scanner is done
instantaneously (1/30 sec.). The isophotes are produced by computer graphics
from the radiance data obtained from the reduction of the digitized optical

density data output of each photograph.
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2.3 SINGLE AND MULTIPLE SCATTERING CONSIDERATIONS

Single and multiple scattering contributions to the circumsolar
radiation along the almucantar and sun vertical have been computed
by a Gauss-Seidel solution to the radiative transfer equation. In
the near forward direction, the multiple scattering contributions are
significant for optical depths of the order of 0.4. Howe?er, the
shape of the angular distribution of almucantar radiance up to 10°
appears less sensitive to multiple scattering. The results have been
compared against an existing radiative transfer code, and have also

been discussed in Refs 28 and 29.

2.3.1 8ingle Scattering Theory of the Solar Aurecle

In this section we consider the single scattering (SS) theory, in
which we make the following reasonable simplifying assumptions:

(1) Particles are spherical so that results of the Mie theory can
be used in computations.

(2) The atmosphere is horizontally homogeneous and vertically
inhomogeneous.

(3) Absorption effects are ignored by selecting to work in spectral
regions for which atmospheric absorption is nil.

(4) The polarization effects are small for forward scattered light
and can be ignored.

(5) For relatively clear days (visibility > 15 km), the MS effects
at the forward scattering angles are small compared with SS (Ref 30 ) and

can be ignored.

ORIGINAL FAGE fs
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(6) An average value for the refractive index of all atmospheric
aerosols is assumed for forward scattering.

(7) The atmosphere is treated as plane-parallel; the spherical Earth
effects, which become significant for zenith angles ¢ larger than 750, are
incorporated into the theory by the use of the generalized Chapman type
functions S(¢) (Refs. 30 and 31) in place of the secant functions.

Figure 2.12 illustrates the geometry of the calculation. Shown is an
acceptance cone df! originating at the detector and a solid angle d2' centered
at the elemental scattering volume dV at altitude y(km). ¢g and ¢ are the
zenith angles of the Sun and the narrow view cone and w is the dihedral
angle between the normals to the Sun zenith and view cone zenith planes

intersecting at dV. The scattering angle ¥ is then given by the relation

cos Y = cos ¢ cos ¢s - sin ¢ sin ¢s Ccos W (12)

The element dV is given by

dv = RZ 40 S(¢) dy (13)
Zenith Sun
ﬁé%
i
i w

(NORMAL SURFACE)

FIG. 2.11: The geometry of the sky single scattering problem.



where the generalized Chapman type functions

S(¢) = sec ¢ (for ¢ = 750)
(14)
The optical depth defined by
T.(2, ¥) = J B (A, v) (3 =M, A
] j ) =M, A) (15)
Yy
for a ray traversing the distance from the Sun to the air mass
element 4V is given by
T, = LT YIS (e (3 = M, ) (16)
and from the air mass to the detector by
1, = . {t.(x, 0) = T (X, }s. ‘
> 375 T] y) J(¢) (17)

where M denotes air molecules; A, the aerosol species; A, thé wavelength}
and R' the volume scattering coefficient (VSC) (km_l) at altitude y for

BI

the jth constituent. In this paper, all quantities represented by T A’

A,

F P!, and P_ are functions of m, even though their m dependence

L]
BFA'A a

A’ A’

is not indicated in their representation form. The primes denote the
y-dependence of the quantities. BA and Bﬁ are defined by the following

relations:

r
1 -
BA(X, y) = J n(r, y)nr2Q(x, m)dr (18)

r
2

where Q(x, m) is the efficiency factor (Ref. 32), x = 2Tr/A is the particle

size parameter, rl and r2 are minimum and maximum values of r and m = m' - im"

the complex refractive index of aerocsols.



1 _ (l9a)
BM(X, y) = BM(A)%q(Y)

where the VSC for molecules is

8r3(n2 - 1)2 (4 + 3d) (19b)
N A" (4 - 3d)

By (M) =

In Eq. 19(b),|N is the number of molecules cm-3; n, the refractive index
of the medium, d = 4A/(1 - A); and A is the depolarization of scattered
light at a scattering angle of 90° for a linearly polarized incident
radiation with its electric vector perpendicular to the scattering plane.
For unpolarized incident light, A is replaced by £ = 2A/(1 + A). Then
the volume scattering function (VSF) for air molecules (j = M) is

' _ -1 -1
Py A ¥) = B OB, (Mo, (v),  Jm lsr (20)

where the molecular phase function is

= = 2 -1
Py(¥) = Ter (1 + cos®y), sr (21)

where pM(y) is the dimensionless function representing the altitude

distribution of molecular density. The VSF for aerosols (j = A) is

' - ' ] 22
FA(¢. A, y) BA(X, y)PA(¢, A, y) (22)

where the aerosol volume phase function is

r
2
I, A, y) = —————— J n(r, i b, &, x) +
2k28, (A, y) £ (23)

i I~I }d
lz(w m, Xx) r

and il and i2 are the Mie intensity functions and k = 2m/A.

The sky radiance due to the molecules and aerosols in the volume

element dV is then given by



dB(¢I ¢sl W, A) = Ho()\) {SM(¢)FD'4(w' Ar Y) +
(24)
-(T; + 1)
S, (#)F, (b, A, y)} e dy

-

Integrating over all such elemental volumes, the total single scattered

sky radiance is

-z.rjsj(¢)( ® -zjrj(x, y)D. ‘ .
B(o, o, w, A) = H (M) e 33 Sy () Je Filbs Ao y)dy
0
w -L.T.(A, Y)D,
) e (. (25)
+ sA(¢)J e Y A, y)dy
0
where
. =S, - s, (7 = M, A) (26)
DJ J(dis) J(45) j

2.3.2 Multiple scattering contributions to circumsolar radiance

Questions have been raised as to whether multiple scattering (MS)
contributions to the solar aureole have any significant effect on the
retrieval of the SD. This question has been answered in two steps. The
first step is to compare the contributions to the angular distribution
of the almucantar radiance in the forward direction due to MS relative
to those due to SS. The second Etep is to determine the effect of MS
on the retrieval of the aerosol SD. In this section (2.3.2), only the
first step will be considered; the second being left to section 2.4.
Thus, for the purpose of calculating the SS and MS contributions, a
computer code was developed which employed the Gauss-Seidel Interative

approach to the solution of the radiative transfer equation for a plane



parallel atmosphere composed of air molecules, ozone and aerosol particles.
Our code is essentially similar to the radiative transfer (RT) code written
by J. V. Dave (Ref. 33) except in the construction of the source matrix. The
difference in the two codes is outlined as follows.

Prior to utilizing our code in actual problems, we decided to check
some results obtained by it for SS and MS radiance contributions in an
aerosol atmosphere. But, unfortunately, we were unsuccessful in locating a
set of standard tables of downwelling and upwelling radiance and polarization
for atmospheres containing inhomogeneously distributed aerosol particles.
Dave and Furukawa's tables (Ref. 34) and Coulson, Dave and Sekera tables
(Ref. 35) are meant for only molecular atmospheres, with and without ozone,
respectively. Therefore, the following strategy was adopted. First, it was
decided to check the results obtained by ours and Dave's RT codes, using
identical molecular data input, against the tables in Refs. 34 and 35. If
the three sets of values agreed to within say 1% to 2%, then one could assume
the two codes work correctly for both SS and RT in molecular atmosphere.
Next step was to add aerosols into the molecular atmosphere, and use
identical aerosol data input for the two codes and compare their results.
If the two sets of results agreed with one another within 1%, then it would
be safe to assume that our code was as accurate as Dave's RT code, which
we treated as our standard against which to check. (Plans for checking
our code against other codes were considered but abandoned in view of the

high computer costs involved.)

(i) The Gauss-Seidel Technique
Before discussing the results of the aforementioned computations a

brief description of the two codes and their similarities and differences




seems appropriate. Both codes are based on a Fourier decomposition method
of solving the RT equation for downwelling and upwelling radiances and
polarization. Following Herman's method (Ref. 36), the atmosphere is
divided into a number of levels, and a Gauss-Seidel iterative scheme is
employed, passing first in a downward direction, then upward, repeating
the procedure until convergence is reached. In what follows we consider

a downwards pass, the extension to upwards pass being similar.

The downwards intensity at level L (Fig. 2.12) is taken to be the
downwards intensity at level L-1, attenuated by its passage through the
intervening layer, plus the source matrix contribution from this layer.

A layer is characterized by an optical thickness, T, single scattering
albedo, Go, and turbidity factor, T (= the ratio of particulate to total
extinction coefficients), each assumed constant.

To obtain the source matrix for a given layer, one combines the
optical properties of the layer with the average of the intensities of
the levels which bound it. Using the Gauss-Seidel technique, the most
recent values of the intensity are used at each iteration stage. Dave's
code requires four subroutine calls: one each for the upward and downward
intensities of each level involved; whereas, our code requires only two
calls: The two levels being handled simultaneocusly, which results in a

saving of about 20% in execution time.

(ii) Comparison of the Computer Codes
To illustrate the difference between codes, we have used the data
set which Dave employed as his example in his documentation (Ref. 33).
The important input data information is listed in Table 2.1. The vertical

aerosol profile is that of Ref. 33 and the ozone absorption is ignored.
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TABLE 2.1: Input Data

Wavelength A = 0.55 Um
Rayleigh optical depth TR = 0.1
Particulate scattering optical depth TPS = 0.01026
Particulate absorption optical depth TPA = 0.00236
Ozone absorption optical depth TO3 = 0.0
Total optical depth T = 0.11262
Solar zenith angle ¢SUN = 60°
Unattenuated solar flux F = 1007

Aerosol Characteristics:

Refractive index m

1.50 - i 0.03

Size distribution : n(r)

C, 0.03Um £ r £0.1 um

C(r/O.l)_4 O.lum < r £ 2.0um -

0 otherwise

The value of C is determined by T

PS
. - ~10 -1 .
Volume scattering coefficient Egcat = 4.85 x 10 cm per particle
Volume absorption coefficient fgbs =1.12 x 10-10 cm—l per particle

5.97 x 10_10 c:m-1 per particle

Volume extinction coefficient ‘%xt



The output from Dave's code checks out to be in complete agreement with
that published in Ref. 30. However, the output from our code differs
from these results, most notably in the near forward direction. This is
illustrated in Tables 2.2 and 2.3 and In Fig. 2.13.

Rather than reproduce the entire output of each code (a total of
more than 3,000 numbers each), we give the results for the almucantar scan
(observation zenith angle equal to solar zenith angle) in Table 2;2 and, tﬁe
sun-vertical scan (observation azimuth angle equal to solar azimuth angle)
in Table 2.3. In addition, the almucantar results for nogfound reflectivity
(A = )) are plotted in Fig. 2.13. &Each table consists of five columns:
the first two gi;e Dave's results for ground reflectivities (A) of 0.0
and 0.25; the last two give results of our code; the middle column gives
the single scattering (SS) results.

The most striking (and significant) result is contained in the very
first row of Table 2.2 where we see that the SS contrihution for scattering
apgle Y = 0° is greater than Dave's RT results for both values of A. This

can also be seen clearly in Fig. 2.13, where Dave's results are shown as
a broken line. Turning to Table 2.3, we see that the SS contribution is

higher than Dave's result with A = 0.0 for zenith angles of 500, 600, and

70°.

In order to make sure that our SS results are indeed correct, we
compared them with Dave and Furukawa's tables (Ref. 34) for air, ozone
but no aerosols, and found agreement between them to within 0.5%, for
zenith angles up to 75°. For zenith angles of 80° and 850, the discrep-
ancy was only slightly greater. We feel the reason for this small dis-
crepancy, is due to the Fourier decomposition of the phase function used

in Box and Deepak's (and Dave's) code, which clearly must be truncated at

some finite order.



TABLE 2.2; Almucantar Radiances IS IRT(Dave) and IRS(BD) obtained by SS

SI
theory, Dave's and Our Codes, respectively

Azi:Tzhl IRT (Dave) ISS IRT (BD)
(Deg) A = 0.0 A =0.25 (A = 0.0) A =0.0 A =0.25
o 15.556 16.627 17.015 18.003 19.056
30 7.864 8.935 7.209 8.142 9.195
60 5.450 6.522 4,655 5.452 6.506
90 4.086 5.158 3. 352 4.039 5.092
120 3.843 4.915 3.123 3.780 4.833
150 4.293 5.365 3.530 4.214 5.268
180 4.588 5.660 3.796 4.501 5.550

TABLE 2.3:  sun-vertical Radiances I o, Ipn, (Dave) and I, (BD) obtained by
SS theory, Dave's and Box and Deepak’'s (BD) RT Codes, respectively

Zenith IRT (Dave) ISS IRT (BD)

Angle A-0.0 A=0.25 (A = 0.0) A = 0.0 A = 0.25

(Deg)
0 2.486 J.044 2.157 2.471 3.017
10 2.903 3.470 2.553 2.905 3.459
20 3.514 4.107 3.141 3.553 4.132
30 4.407 5.048 4.030 4,526 5.152
40 5.812 6.532 5.500 6.112 6.816
50 8.574 9.423 8.613 9.388 10.220
60 15.556 16.627 17.015 18.003 19.056
70 15.225 16.730 15.283 16.624 18.110
80 20.889 23.495 19.720 21.892 24.482
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As an alternative verification, we have used the formula of Green,

et al. (Ref. 1) for the almucantar SS radiance, viz.

I, () = F sec ¢_ e™T S€C ¥5 (TR + TPSP(IJ)))/MT (27)

where R and P are the (normalized) Rayleigh and particulate phase func-
tions, Y is the scattering angle and.¢sis the solar zenith angle. Eq. (1)
is a special case of the more general formula for SS scattering (Ref. 1),
since for almucantar scan the observation angle is equal to O. To obtain
the first value in Table 2.2, we choose y = Oo, so that R(0O) = 3/2. From
earlier results in Dave's documentation (Ref. 5), P(0) = 26.94. Using
these values along with the data in Table 2.1, yields ISS(O) = 17.2, in
excellent agreement with our result in Table 2.2.

Figure 2.13 shows that Dave's code gives a flatter almucantar radiance
scan, than our code, implying a less forward-peaked phase function.
The phase function is constructed as a linear combination of Rayleigh
and particulate phase functions, and these results suggest that Dave's
code incorporates too little of the particulate contribution to the
total phase function.

In constructing the source matrix for, say layer L, it is necessary to
combine the scattering properties of layer L with the intensities of levels
L + 1 and L. It seems that in Dave's code, the intensities of level L + 1
are combined with the apprqpriate scattering properties of layer L, but the
intensities of level L are combined-with the turbidity factor of layer L - 1
(i.e., the layer above the correct layer). As ihe scale height of the aerosol

profile is much smaller than that for the molecular profile (in the



troposphere), the turbidity factor decreases with height. Thus, by taking

the turbidity factor for the layer above the required layer, Dave's code appears

to include insufficient aerosol scattering.

Thus, we see from Tables 2.2 and 2.3, that whereas the results for sS

and total radiance (ISS and IRT’ respectively) obtained bv the two

codes (i.e., ours and Dave's) for the molecular atmosphere agree to within

1% to 2%, those for molecular plus aerosol atmosphere show a discrepancy. How-
ever, for the latter case, the values if IRI obtained by Davg's code turn

out to be less than ISS values in the -forward direction, which is

obviously incorrect; whereas IRT values obtained by our code are

greater than the ISS values for all angles, as they should be.

(iii) Effects of Multiple Scattering

We use our code to compute the SS and total radiance for different
optical depths, solar zenith angles, aerosol characteristics and wave-
lengths of incident solar radiation. An example of a typical input
data is as follows. The aerosol size distribution (Refs. 1 and 37)

is a Modified Gamma Distribution (MGD) given by

2 -br

n(r) =ar’ e $£2.0um . b= 10.0 pym * (28)

, 0.03 < r ,

the particle refractive index m = 1.55; volume scattering (and extinc-—
. . . 1 = = .116

tion) coefficients, Bsc (and Bext)’ are given by Bext Bsc 1 x

10—8 cm—1 per particle; and A = 0.55um. The results are given in

Table 2.4, for solar zenith angles 300, 450, and 600, and optical depth

components for Rayleigh (TR) and Mie (TPS) particles, being ( 0.1,

0.2) and (0.2, 0.2), respectively.



N .
Table 2.4: Normalized Almucantar Radiance Values Izs and IRT and for different

and .
¢sun' Tp @n Tps

Azimuth  Scattering N IN N N N
Angle Angle ISS RT <IRT ISS)/IS§
(Deg) (Deg) A

0
e

A = 0.25 A=0 A =0.25

Solar Zenith Angle = 30°

T = T__ = 0.
R = 0.1 , PS 0.2
Normalization Constant = 1.0920 1.1406 1.1574 4.5 6.0
0 0.0 1.0000 1.0000 1.0000 0.0 0.0
4 240 0.9779 0.9787 0.9790 0.1 0.1
.8 4.0 0.9161 0.9191 0.9202 0.3° 0.4
12 6.0 0.8257 0.8318 0.8342 0.7 1.0
16 8.0 0.7211 0.7306 0.7344 1.3 1.8
TR = 0.2, TPS= 0.2
Normalization Constant = 1.0003 1.0652 1.0904 6.5 9.0
0 0.0 1.0000 1.0000 1.0000 0.0 0.0
4 2.0 0.9785 0.9797 0.9802 0.1 0.2
8 4.0 0.9183 0.9227 0.9245 0.5 0.7
12 6.0 0.8303 0.8393 0.8430 1.1 1.5
16 8.0 0.7284 0.7426 0.7485 1.9 2.8
Solar Zenith Angle 60°
T = - T = -
R 0.1, P5 0.2
Normalization Constant = 1.4679 ) 1.5860 1.6026 8.0 9.2
0 0.0 1.0000 1.0000 l.OOOQ 0.0 0.0
4 3.5 0.9360 ° - 0.9399 0.9405 0.4 0.5
8 6.9 0.7774 0.7908 0.7930 1.7 2.0
12 . 10.4 0.5932 0.6167 0.6207 4.0 4.6
16 13.9 0.4347 0.4658 0.4714 7.2 8.4
T = " T =
R 0.2 , og 0.2
Normalization Constant = 1.2357 1.3683 1.3905 10.7 12.5
0 0.0 1.0000 1.0000 1.0000 0.0 0.0
4 3.5 0.9377 0.9429 0.9438 0.6 0.7
8 6.9 0.7833 0.8012 0.8043 2.3 2.7
12 10.4 0.6039 0.6343 0.6414 5.0 6.2
16 13.9 0.4494 0.4920 0.5001 9.5 11.3




Table 2.4: (Continued)

Azimuth Scattering N N N N N
Angle Angle ISS IRT (IRT-ISS)/I§§
(Deg) (Deg) A= 0O A= 0.25 A=0 A =0.25

Solar Zenith Angle = 45°
T. =0.1,T = 0.
R 0.1, s 0.2 B
Nermilization Constant = 1.2373 1.3062 1.3231 5.6 6.9
0 0.0 1.0000 1.0000 1.0000 0.0 0.0
4 2.8 0.9566 0.9585 0.9590 0.2 0.3
8 5.7 0.8424 0.8492 0.8511 0.8 1.0
12 8.5 0.6942 0.7071 0.7108 1.9 2.4
16 11.3 0.5479 0.5663 0.5718 3.4 4,4
TR = 002 ’ TPS= 002
Normalization Constant = 1.1044 1.1911 1.2155 7.9 10.0
0 0.0 1.0000 1.0000 1.0000 0.0 0.0
4 2.8 0.9577 0.9605 0.9613 0.3 0.4
8 5.7 0.8466 0.8563 0.8592 1.1 1.5
12 8.5 0.7022 0.7207 0.7263 2.6 3.4
16 11.3 4.8 6.2

0.5597 0.5864 0.5%946




The results presented in Table 2.4 have been arranged to illustrate

two points: the MS contributions to the absolute magnitude of the
almucantar radiance, and the MS contributions to the shape of the.
almucantar radiance curve. Thus the first row in each of the 6

sections of the Table gives the actual radiance for zero degree azimuth
angle (and hence, zero degree scattering angle). Note that the incident
flux was taken as F =7 for these computations. All other rows in each

. . . . N
section give the normalized radiances, I

N
ss and IRT’ where

N =1 (p/1) (29)

Finally, in the two right-hand columns, we give the percentage differ-

N N

ences (Ig -1 )/ISS , which serves to indicate the deviation in the

T SS

shape of the almucantar radiance curve due to MS.

(iv) Concluding Remarks

From the results given in Table 2.4, we see that MS contributes

between 4.5% and 12.5% to the magnitude of the aureole radiance, with-
in the range of parameters we have considered. Of more concern to the

retrieval of the size distribution from almucantar radiances, however,
is the MS contribution to the shape of the almucantar radiance curve.

Table 2.4 suggests that provided we restrict ourselves to scattering angles
of less than about lOo, the error in the shape of the curve is unlikely
to exceed 3%. The azimuth range implied by this range of scattering

angles is quite strongly dependent on solar zenith angle ¢sun'



2.3.3 An Approximation to Multiple Scattering in the Earth's Atmosphere:

Almucantar Radiance Formulation

In our radiative transfer code (Section 2.3.2), based on the Gauss-

Seidel approach, the particulate phase function P_ is expanded as a Legendre

P
series so that as many as 100 or more terms may be involved compared to only three
for the molecular phase function PM. Thus with the inclusion of aerosols,
the computation costs can be enormously increased. If such a code were used
in an iterative inversion scheme, such as the nonlinear least squares method,
the retrieval would become prohibitively expensive; hence, the necessity of
making some simplifying approximations to the solutions of radiative transfer
equation. Therefore, in order to make the inversion problem in aerosol remote
sounding tractable, it becomes imperative to use extremely fast programs
for computing the radiance fields in which MS is included. It is for this
reason, that we developed our MS approximation, described in Refs. 27 and 28,
the fast computation of the almucantar radiance field.

In this section, a phenomenological derivation of the MS approximation
formula (Ref. 27) for the total almucantar radiance field, differing slightly
from the expression in Ref. 28, will be given. Formulas for the correction
factors which incorporate the effects of MS and nonzero ground albedo A
will also be given. In addition, the use and accuracy of our MS approximation

in direct problems of radiative transfer associated with almucantar radiance

will be discussed with examples.



(i) Theoretical Considerations
The solar aureole theory and its use for determining aerosol size
distributions has also been discussed in detail by Deirmendjian in Refs. 48

through 41. In the SS approximation, the almucantar radiance is given by

55 (y,n) = H_ sec ¢_ e"Tr 8¢ ¢ | TPy )+ Fpo () | (30)

where Ho is the incident flux; ¢S is the solar zenith angle; T is the total

is the molecular optical thickness (subscripts M and P

3

denote molecules and particles, respectively); PM = Tom (1 + cosz¢) is the

optical thickness; M

molecular phase function (sr~l); Y is the scattering angle given by

cos Y = cos2 ¢s + sin2 ¢S cos w (31)

and w is the azimuth angle measured in a counterclockwise direction relative

to the sun vertical; and ch(w,x) is the columnar particulate scattering

function (sr—l) defined by

2
_ L e
FPC(\P,X) = > J (J.l + 12) Nc(r) dr (32)
2k
- rl
= Tog () (32a)

. . . . . -2 . . .
where NC is the columnar size distribution (cm Hm ) ; 11 and 12 are Mie

intensity coefficients; and rl and r, are lower and upper limits of radii.

As indicated in Eg. (33a), F is usually factored into a particulate scat-

PC

tering optical thickness, TPS' and a particulate phase function, Pp



In Section 2.3.2 (Ref. 28), we compared the results of Eq. (30)

with those obtained by our radiative transfer code, and showed that

although Eq. (30) provided a reasonable approximation under relatively clear
sky conditions, the MS contributions to the solar aureole were often non-
negligible compared to the SS contributions. In addition, it was éhown
that the main MS contribution to almucantar radiance was due to molecules
alone; the increase of aerosol loading had a relatively small effect on MS

contributions. In Ref. 26, it was shown that size distributions
retrieved in the SS approximation from radiance data for TM = 0.1, showed
relatively small discrepancy from true values; however, those from TM = 0.2
showed considerably larger error, thereby suggesting that the MS effect due
to aerosols is distinctly smaller than that due to molecules.

In our MS approximation, following Ref. 38, it was assumed
that the solar aureole radiance was esseptially due to SS by aerosols and

molecules, and MS by molecules alone. The derivation of expressions for

taking into account the effects of MS and ground albedo will be presented

next.

(ii) Factorization of the Transfer Equation

Our MS approximation to the equation of radiative transfer in an aerosol-
laden atmosphere follows the suggestion first made by Sekera (Ref.42 ) and
subsequently developed by Diermendjian (Refs. 38, 39, 41), who referred to it as
a perturbation approximation. (See also Ref. 40.) We start with
the equation of radiative transfer in a plane-parallel, vertically inhomogeneous

atmosphere, which we may write in the form



%(T;E) =L=- He e B(1) P(T,Er‘io) - J L(T,&") w(t) P(T,§,8") a&"' (33.)
where B =cosd, U = cos¢_; £ stands for (u,¢)
ost*% Ty
P(1) = {oPp, + 0PV (o + 0pg) (33a)
Ty .
o, =~ 5.  1i=M PS, TOT (33b)

and

- _ 330
w(T) (QM + qps) / OTOT (33c!

Equation (30)can be obtained from Eq. (33) by ignoring the integral on the

right hand side, and setting p = uo.

Following Sekera (Ref. 42) and Diermendjian (Refs. 40, 431)r We may rewrite

Eq. (33a) in the following form

= 34

P(T) PM + £(1) Py (34)
where PD = PP - PM (35a)
and £(t) = GPS/(QM + GPS) (35b)

£(t) is known as the turbidity coefficient, and w{T) is the single scattering
albedo, both being functions of the altitude
Similarly, we may separate the light field into two parts, viz.,

L(T,§) = Ly (1,8 + L (T,£) (3¢



wheré LM represents the radiance field produced by molecular scattering
alone, and may be defined as the solution to the equation

aLM(TIE) . -T/UO -
e =L -H e H(t) P (E,Eo) - w(T) JLM(T'E') PM(E,S') ag’ (37)

M o M
Note that this equation is to be solved for a molecular atmosphere having an
optical thickness equal to the total optical thickness TT of the actual
molecular-plus-aerosol atmosphere, and not TM'
If we now substitute Eq. {36) into Eq. (33), and make use of Egs. (34),(35),
and (37),we obtain the following integrodifferential equation for LD’ which
represents the departure from, or "perturbation" to a purely molecular radiance

field:

L (T,&) -T/u
o ~ .
u > = LD(‘[‘,F,) - Ho e w(t] £(1) PD(g’EO)

- o ' ' v 38
J LD [B, (E,€") L (1,8 + £(1) P (L, + L)] a& (38)

{(a) Approximate Solution to Eq. (38)

Equation (38) is clearly more complex than the original Eq. (33).

Sekera (Ref. 42) suggested that the method of successive scattering may be most

appropriate for solving it (provided L, (T,£) is known throughout the atmosphere) ;

M

as yet we know of no attempt to pursue this idea.

In the region of the solar aureole, Deirmendjian (Ref. 38, 41) employed
a single stattering approach to the solution of Eq. (38). Thus, by neglecting
the integral terms, we may cobtain

T 1 -1

-T_/u T - -y )
Ss -1 T/ - o)
Ly oM e PD(E,EO) Io B(T) £(T) e art (39a)



Along the almucantar (g = uo) this equation must be replaced by

-t/ Tp
Lss (H/mu) e T Ho P J W(t) £(1) drt
o o D 0

"TT /}Jo P
(Ho/uo) e ‘L‘PS(PP - M)

L, represents the perturbation to the molecular radiance distribution

LM which the inclusion of aerosols requires. By adopting the SS

(39b)

approximation to L_, our approximation corresponds to first-order perturbation

D

theory.

(b) Parametrization of L“
In a purely molecular atmosphere, there is no solar aureole,

due to the nearly isotropic nature of the Rayleigh phase function.
As a result, for visible or ultraviolet wavelengths, we cannot expect the
single scattering approximation to Eq.(37) to prove particularly accurate.
(In fact, if the single scattering approximation to Eq. (37) is combined
with Eq. (39), the result would be Egq. (30), and nothing at all would have
been gained.)

Instead, we followed a suggestion of McPeters. and Green (Ref. 4).
As is fairly well known (see for example, Ref. (35), the nature

of the Rayleigh Phase function dictates that L, must be expressible in the

M

following form

_ (o) (1)
LM(T,u,m) = LM (T,u,uo) + LM (T,u,uo) cos w
(2) .
+ LM (T,u,uo) cos 2w (40)



(0)

A complete parametrization of L 6 would require empirical formulae for LM

ﬁ;J and q;) --three functions, each of 3 variables. Such a parametrization

M

is beyond the scope of this paper. In this paper, we restrict our formulation
and computations mainly to the almucantar, defined by U = uo. This reduces

the three functions ﬁ;)

to functions of only 2 variables. From a study of
the tabulated results of Ref. 35 and 4, it was noted

that, for a wide range of circumstances, LM followed the angular pattern
predicted by the single scattering approximation, except that it had been
scaled up somewhat. Our own examination of Ref. 35 results

confirm this idea, provided ¢y is not greater than 70°. Thus we chose to

write our parametrization of LM along the almucantar as follows

-TT/MO

L = (Ho/uo) e (r._+ TMS) Py (41)

where

T = WT, =T, + T (42)

is the total scattering optical thickness, and Tyg’ 20 adjustable parameter

dependent on T and My is the correction term due to multiple scattering.

SS
Note that Eq. (41) implies a definite relationship between the three

L; ) functions, a relationship which may not always be exactly satisfied.
However, in the region of the solar aureole, cosw = 1 = cos 2w, so that
small deviations from this relationship should have a minimal effect on

the accuracy of Eg. (41).

Substituting Egs. (39b) and (41) in Eq. (36), one obtains

L=1L + L7 =~ (H
( o/“o) € {tms PM * Tps Pp} (43a)



where

tMS = TM+TMS (43b)

is the effective molecular scattering optical thickness.
Equation (43) is, of course, formally identical to Eq. (30) differing

from it only in the amount of molecular scattering it provides. Although

such an equation could have been postulated directly from Eq.(30) , we believe
that the steps outlined in this section provide considerable insight into the

nature of the correction term, T and also suggests a procedure for calculatinc

Ms’
this factor. In the next section, we discuss this procedure, as well as the

empirical formula which we have selected.

(iii) Formulation of Correction Factors for MS and Ground Albedo Effects

The most obvious way to obtain Tus would be to solve Eq. (37) each time as
we require it; this, however, is contrary to our desire for simplicity. In
paper A, we did solve Eq. (37) though we also expressed the opinion that it
would be preferable to have some empirical formula for further use. We have
since developed such a formula, which is discussed in this secticon.

Since we can assume that almucantar radiance LM has the same w dependence
as obtained by the SS approximation L;S, and that TMS is a function of uo and

Tec,we may define T, _ by setting , = 0° and p_(0°) = 3 in Eq. (41) as:
SS S M 8t

M

T sec 8
T =L (w=0% yu e °gn/ 3 H - T (44)
o SS

Here LM and hence TMS has no ground albedo dependence (i.e., A = 0).

In order to obtain an empirical formula for T1_., we first produced a

MS
data base from the tables of Ref. 35 for optical thicknesses

of 0.02, 0.05, 0.1, 0.15, 0.25 and 0.5, and zenith cosines 0.4, 0.92 and 1.0.
To fill in some of the gaps, we supplemented these data with some further

values generated by our own radiative transfer code. This data was all

restricted to a conservative atmosphere, for which w=1, i.e., TT = TM + TPS'
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The final parameterized expression for TMS is restricted to three adjustable
parameters, which were then iterated to obtain the best fit to the data base

by using a non-linear least squares code, to give the relation

1/4

2
= 0. + 1. (45)
T 0.02 TSS 1.2 Tss/uo

MS
This expression is, in general, accurate to within 1%, for optical thicknesses
o
up to 0.6 and zenith angles up to 70 . As a test of Egq. (45), we have compared

its results, when inserted into Eq. (41), with the tables of Dave and

Furukawa (Ref. 34), which include ozone absorption. This comparison is shown in
|

Table 2.5, where we see that the biggest error is only 1.2%. Thus we see that

Eq. (41), along with the empirical relation Eq. (45), provides a highly accurate

approximation to the almucantar radiance, at least in the aureole region, for
both conservative and non-conservative atmospheres.

Until now, our discussion has ignored the contribution from ground reflec-
tivity or albedo, a deficiency we now proceed to rectify. As is well known

(e.g., Refs. 43, 44, and 35), the radiance L(A) in the presence of a ground

albedo, A > O, may be related to the zero ground albedo radiance

L(A = 0), and to certain ahxiliary functions, as

A F(T . ,4) G(T ,H )
L(A)=L(A=O)+|: T T °] H,

(46)
1 -2 S(TT)
where G(TT,UO) is the transmission function of the atmosphere
F(TT,U) is the reflection function of the atmosphere for diffuse
source at the ground
1
and §(TT) =2 J F (T, M) U du (47)

0
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TABLE 2.5 : Comparison of Radiance Values from a Dust Free Atmosphere at a
Scattering Angle of 0°.
A
(um) TM To o Dave & Furukawa Our MS
H 3 (deg) Results Approximation
0. 6550 0.04823 0.02016 0 0.01824 0.01821
30 0.02089 0.02084
60 0.03448 0.03435
0.6150 0.06224 0.03834 0 0.02316 0.02311
30 0.02640 0.02634
60 0.04249 0.04232
0.5750 0.08179 0.04048 0 0.03048 0.03035
30 0.03465 0.03449
60 0.05489 0.05460
0.5350 0.1098 0.0240 0 0.04177 0.04147
30 0.04745 0.04711
60 0.07474 0.07412
0.4950 0.1508 0.007143 0] 0.05853 0.05799
30 0.06636 0.06570
60 0.10300 0.10187
0. 3600 0.5634 0.004161 0 0.2014 0.2032
30 0.2174 0.2180
60 0.2507 0.2477




Here, we assume the Lambertian law of reflection, so that the contri-
bution from ground-reflected photons is azimuth-independent, in contrast to
all other photons, which are assumed to follow the azimuth dependence of the
Rayleigh phase function. Therefore, for a Lambertian surface, one must add

an azimuth-independent term to Egs. (41) and (43) , such that

-T./u
™ "o o
L = H +
w = H /) e [(roe* Tyg) By * T, Py 0] (41")
(H / —TT/uo o
and L={(H /u) e + + + !
o o [(TM TMS) PM TPS PP TA PM(O )-] (43%)
where Ed. (44) and (46) suggest that T is given as
A Tz(TssrUO)
TA = (48)
1 -arT1,(t)
3(SS
- P ) Gl ) e (49
Ty = Fllgg M, Tss'Ho! ¥o © a)
- 49b)
and T, S(TSS) (

Again we have produced a sizeable data base, drawn from the tables of
Ref. 35 and the results of our own code. By obtaining best least squares fits
to the data base, the final expressions (with 3 adjustable parameters) for T,

and T, are

2
T, = 1.3 o u (1.0 + 0.22 (e/u )% (50a)
and T, = 0.9 T._- 0.92‘1'2 + 0.54 13 (50b)
3 SS SS Ss
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Note that we often use the symbol Tl to denote TMS as given by Eq. (44),

so that

1/4

2
= = + .
1'1 = rMS 0.02 Tsg 1.2 Tss/uo

(50c)

Let us now return to Eg. (43'), which we have built up in stages, and
explain its implementation. In general, an atmosphere, or atmospheric model,

will have at least 4 components to its optical thickness: T the molecular

Ml
(Rayleigh) scattering component; TO , the ozone absorption component; T
3

the particulate scattering component; and TPA' the particulate absorption

ps’

component. From T cosine of the solar zenith angle, uo, and ground albedo,

ss’
A (if non-zero), we may calculate both TMS and TA' using Egs. (44), (48), and
(50). The final evaluation of Eq. (43') is then straight-forward for any

azimuth angle, or scattering angle (cf Eg. 31).

(iv) Computation of Almucantar Radiances

Rather than generate several new sets of data with our radiative transfer
code (a rather expensive exercise), we have decided to utilize the data from
existing runs, as this appears to give good coverage of the "parameter space"
we wish to investigate. The existing data obtained with two size distribution
models can be divided into the following two data groups.

The first data group, hereafter referred to as Data Group A, corresponds
to a modified gamma-type aerosol size distribution, such as Deirmendjian's

(Ref. 40) Haze H model:

n(r) = ar e (51)



We chose b = 10 Um-l, a refractive index of m = 1.55 - i(0.0), and a wave-
length of A = 0.55 um. The parameter a, which is related to the total number
of particles, was determined by the value used for Toe The existing data

base generated by the use of our radiative transfer code consisted of twenty-
four data sets, each containing twenty radiance values for the azimuthal angles

¢ = 0°(1°) 190, and obtained by using all possible combinations of the following

values of the parameters 90, Tw Tp and A:

8 = 30°, 45°, 60°
(o]
T, = 0.1, 0.2 L
(52)
T, = 0.1, 0.2
A = 0.0, 0.25

The second data group, hereafter referred to as Data Group B, corresponds

to a log-normal aerosol size distribution, namely,

2
n(r) = N_exp {—% [og(x/x )/g]” Y/rovam (53)

We chose rm = 0.25 um, 0 = 1.0, and used the same value of refractive index

as in the fi;st group, namely, m = 1.55 - i(0.0). Here NO is directly related
to TP. Data Group B, in contrast to Group A, contains data that could be
subdivided into two subgroups, hereafter referred to as Data Groups Bl and

B2, corresponding to Model Atmospheres Bl and B2 defined in Table 2.6 by

values of TM and TO at wavelengths of 0.4, 0.5, and 0.6 um.
3
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TABLE 2.6: Optical Thickness Values for Model Atmospheres Bl and B2 Correspond
to a Log Normal Aerosol Size Distribution .

Model Atmosphere Bl Model Atmosphere B2
A (Hm T T
Hm) M P T03 TP T03
0.4 0.364 0.13984 0.0 0.18015 0.0
0.5 0.145 0.14400 0.01350 0.18480 0.01357
0.6 0.069 0.14778 0.05013 0.18910 0.04774
o]

The Data Group Bl for Model Atmosphere Bl is based on 80 = 45 ,vTP =~ 0.14, and

A = 0.0 and 0.2; and Data Group B2 for Model Atmosphere B2 is based on 80 = 300,
TP ~ 0.18, and A = 0.0, 0.2, 0.4, and 0.6. The exact values of all relevant
parameters for the Model Atmospheres Bl and B2 are given in Table 2.2. 1In all,
we have a total of eighteen data sets; six for Data Group Bl and twelve for
Data Group B2.

Thus, altogether the radiative transfer data base, composed of two data
groups A and B, contain 42 data sets, each containing 20 data points, generated
by our radiative transfer code. It is against this data base, that checks on
the accuracy.of other approximations to the radiative transfer equation must
be made. For this purpose, 42 data sets were obtained by using Eq. (14') for
our MS approximation, and 21 data sets, by using Eq. (1) for the Ss approxima-
tion (which is independent of A); with all relevant parameters being thebsame
as the ones used to generate the radiative transfer data.

Tiay -
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In order to bring out the salient features, instead of presenting the
full data, we decided to present some judiciously selected data using a
combination of tables and graphs. In Tables 2.7 and 2.8, data from Data Groups
A and B, respectively, is presented for all the sets, but for only five of
the twenty azimuth angles. In Figs. 2.14 and 2.15, we have plotted several selected
data sets in full.
In Table 2.7, the computed radiance values for Data Group A are presented
in five columns: the SS results are placed in the middle, flanked on either
side by the true results from our radiative transfer code for the two values
of ground albedo, with our MS approximation results on the outside of these.

Between each pair of adjacent columns is a column giving the percentage errors

involved when one of the approximations (SS or MS) is compared with the true
radiative transfer values. To the left of these columns are five other

columns giving the values of the parameters 90, T TP' ¢, andy for which the

M’
computations were made. Note that @o = T was used for all computations.

Table 2.8 presents similar data for Data Group B, which for convenience,
has been divided into three parts: Table 2.8a gives the results for Model
Atmosphere Bl and A = 0.0 and 0.2; Table 2.8b, results for Model Atmosphere B2

and A = 0.0 and 0.2; and Table 2.8c, results for Model Atmosphere B2 and A = 0.4

and 0.6.

Two points should be made regarding the error considerations. Firstly,
the percentage error was obtained by dividing the larger by the smaller of
the pair of numbers, subtracting unity, and multiplying by 100, so that the
difference is always a positive number. The second point concerns the

accuracy of the radiative transfer code results. Like all such programs,




TABLE 2.7:

Data Group A Containing Radiative Transfer, SS, and Our MS Approximatio

Radiances for the Modified Gamma Distribution, Ty = 0.l and 0.2,
Tp = 0.1 and 0.2, 95 = 30°, 45° and 60°, and & = 0.0 and 0.25.

A =0.0 A= 0.25

¢ ¥ Our MS 1 Radiative L) sS A Radiative \ Our MS
¢S Ty Tp {deq) (deg) Approx.. Error Transfer EXror Approx. Error Transfer EIYor Approx.
30° 0.1 0.1 4] 0.0 0.6480 0.23 0.6495 3.10 0.6300 $.32 0.66135 0.77 0.6686
5 2.5 0.6270 0.24 0.628S 3.19 G.6091 5.48 0.6425 0.79 0.6476

10 5.0 0.5704 0.23 0.5717 3.48 0.5525 6.01 0.5857 0.89 0.5909

15 7.5 0.4932 0.18 0.4941 3.96 0.4753 6.90 0.5081 1.08 0.5136

19 9.5 0.4277 0.19 0.4285 4.51 0.4099 7.90 0.4424 1.27 0.4480

0.1 0.2 o 0.0 1.1280 1.12 1.1406 4.45 1.0920 5.99 1.1574 0.09 1.1564
5 2.5 1.0908 1.13 1.1031 4.59 1.0547 6.17 1.1198 0.07 1.1190

lo 5.0 0.9899 1.16 1.0015 4.98 0.9540 6.73 1.0182 0.01 1.0181

1s 7.5 0.8524 1.22 0.8628 5.66 Q.8166 7.7 0.8796 0.09 0.8804

19 9.5 0.7358 1.26 0.7451 6.41 0.7002 8.80 0.7618 0.25 0.7637

0.2 0.1 (o] 0.0 0.6280 0.05 0.6277 6.03 0.5920 9.92 0.6507 0.86 0.6563
5 2.5 0.6093 0.07 0.6089 6.21 0.5733 10.22 0.6319 0.90 0.637€

10 5.0 0.5587 0.09 0.5582 6.77 0.5228 11.17 0.5812 0.98 0.5869

15 7.5 0.4896 0.14 0.4889 7.71 0.4539 12.78 0.5119 1.13 0.5177

19 9.5 0.4310 0.23 0.4300 8.75 Q.3954 14.57 0.4530 1.32 0.459¢

0.2 0.2 ] 0.0 1.0574 0.74 1.0652 6.49 1.0003 9.01 1.0904 0.15 1.092¢
g’ 5 2.5 1.0241 0.74 1.0317 6.68 0.9671 9.29 1.0569 0.17 1.058
10 5.0 0.9341 0.75 0.9411 7.28 0.8772 10.16 0.9663 0.24 0.968¢

15 7.5 0.8113 0.74 0.8173 8.29 0.7547 11.63 0.8425 0.38 0.845°

19 9.5 0.7072 0.72 0.7123 9.45 0.6508 13.32 0.7375 0.53 0.7414

450 0.1 0.1 o] 0.0 0.7546 0.73 0.7601 3.75 0.7326 5.66 0.7741 0.03 0.774:
5 3.5 0.7071 0.75 0.7124 3.98 0.6851 6.03 0.7264 0.04 0.726

10 7.1 0.5904 0.8} 0.5952 4.68 0.5686 7.14 0.6092 0.13 0.610

15 10.6 0.4566 0.88 0.4606 5.89 0.4350 9.10 0.4746 0.29 0.476l

19 13.4 0.3635 0.88 0.3667 7.22 0.3420 11.32 0.3807 0.50 0.382f

0.1 0.2 o] 0.0 1.2802 2.03 1.3062 5.57 1.2373 6.93 1.3231 1.26 1.306
5 3.5 1.1978 2.1) 1.2231 5.90 1.1550 7.36 1.2400 1.28 1.224

10 7.1 0.9954 2.33 1.0186 6.91 0.9528 8.69 1.0356 1.36 1.02Y1

15 10.6 0.7634 2.66 0.7837 8.67 0.7212 11.01 0.8006 1.41 0.789

19 13.4 0.6019 2.92 0.6195 10.61 0.5601 13.62 0.6364 1.39 0.627

0.2 0.1 ] 0.0 0.7137 0.55 0.7176 6.99 0.6707 10.29 0.7397 0.07 0.740
5 1.5 0.6724 0.55 0.6761 7.40 0.6295 10.91 0.6982 0.09 0.698

10 7.1 0.5707 0.58 0.5740 8.69 0.5281 12.90 0.5962 0.13 0.597

15 10.6 0.4541 0.57 0.4567 10.90 0.4118 16.29 0.4789 0.25 0.480

19 13.4 0.3726 0.56 0.3747 13.31 0.3307 19.99 0.3968 0.30 0.398

0.2 0.2 4] 0.0 1.1706 1.7% 1.1911 7.85 1.1044 10.06 1.2155 1.08 1.202
S 3.5 1.0990C 1.81 1.1189 B8.34 1.0328 10.70 1.1433 1.11 1.130

10 7.1 0.9229 1.97 0.9411 9.80 0.8571 12.65 0.9655 1.14 0.954

15 10.6 0.7210 2.18 0.7367 12.35 0.6557 16,07 0.7611 1.17 0.752

19 13.4 0.5802 2.33 0.5937 15.15 0.5156 19.88 0.6181 1.13 0.611

60o 0.1 0.1 [+} 0.0 0.9517 1.82 0.9690 5.15 0.9215 6.63 0.9826 1.36 0.969
- 4.3 0.8643 1.93 0.8810 5.61 0.8342 7.25 0.8947 1.44 0.882

10 8.7 0.6683 2.27 0.6835 7.06 0.6384 9.21 0.6972 1.65 0.685

15 13.0 0.4757 2.77 0.4889 9.55 0.4463 12.61 0.5026 1.95 0.493

19 16.5 0.3612 3.18 0.3727 12.19 0.3322 16.32 0.3864 2.14 0.378

0.1 0.2 ] 0.0 1.5233 4.12 1.5860 8.05 1.4679 9.18 1.6026 3.64 1.546
5 4.3 1.3804 4.40 1.4411 8.76 1.3250 10.02 1.4577 3.88 1.40)3

10 8.7 1.0597 5.23 1.1151 10.98 1.0048 12.64 1.1318 4.56 1.082

15 13.0 0.7449 6.47 0.7931 14.83 0.6907 17.23 0.8097 5.53 0.767

19 16.5 0.5579 7.55 0.5999 18.93 0.5045 22.22 0.6166 6.31 0.580

0.2 0.1 4] 0.0 0.8513 1.74 0.8661 8.83 0.7958 12.37 0.8863 ° 1.37 0.874
5 4.3 0.7795 1.85 0.7939 9.62 0.7242 12.50 0.8147 1.52 0.802

10 8.7 0.6184 2.13 0.6316 12.09 0.5635 15.67 0.6518 1.65 0.641

15 13.0 0.4598 2.52 0.4714 16.22 0.4056 21.20 0.4916 1.95 0.482

19 16.5 0.3650 2.85 0.3754 20.51 0.3115 27.00 0.3956 2.20 0.387

0.2 0.2 [} 0.0 1.3164 3.94 1.3683 10.73 1.2357 12.53 1.3905 3.53 1.3413
5 4.3 1.1991 4.20 1.2495 11.70 1.1186 13.69 1.2717 3.74 1.225

10 8.7 0.9360 4.94 0.9822 14.73 0.8561 17.32 1.0044 4.35 0.962

15 13.0 0.6773 5.96 0.7177 19.94 0.5984 23.66 0.7399 5.20 0.703

19 16.5 0,.5232 6.82 0.5589 25.45 0.4455 30.44 0.5811 5.87 0.54¢
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FIG. 2.15: Almucantar radiances for model atmosphere B2, and A = 0.5 um.

Here 60 = ¢g = 30°.



our code is numerical, and, thus, can never be exact. Consequently, we are
not able to guarantee our radiative transfer results to better than about 1%
although we believe that they are more accurate than this. Since very few
published results exist, it is virtually impossible to compare our results
with results of known accuracy.

In order to illustrate these results, we have selected a few data sets
for graphical presentation. Originally, it had been our intention to show
both the "best” and "worst" cases for comparison. But, in a great
many cases, it was nearly impossible to distinguish the various curves,
especially in the case of Data Group B. Thus, the graphs presented in Figs. 2.1¢
and 2.15 are, essentially, "worst" cases, which, we feel, adequately illustrate

the relative accuracy of the SS and MS approximations.

In Fig. 2.14, we plot the four data sets for ¢s = 600, which illustrate
the effect of varying TM and Tp. In Fig. 2.15, we plot the results for Model
Atmosphere B2, and A = 0.5 um. Clearly, it was not possible to plot all the
data, so we have plotted the three curves for A = 0.0 (to indicate the relative
accuracy of MS and SS approximations), and the radiative transfer results
for A = 0.6 (to indicate the effect of ground albedo). The location of the
missing lines may be inferred from Table 2.8.

So far, we have only considered results obtained using the one refractive

index, m = 1.55. It is generally accepted that the real part of the refractive

index has little effect on the differences in scattered radiances (obtained by
MS and SS approximation and RT calculations) in the aureole region where
diffraction scattering predominates. We wanted to know how our MS approxima-
tion was effected by the inclusion of aerosol absorption. In order to study
its effects, we have repeated the calculations for Haze H (Eg. (51)) with

TP = TM = 0.2, but using a refractive index of m = 1.55 - i 0.02. (Note that
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TP now has two components, namely, Tpg = 0.16718, and Tpa = 0.03282.) We
have also extended these calculations to include some higher azimuth angles.

These results are presented in Table 2.9.

(v) Discussion of Results

The most significant parameters to be considered in this analysis are

probably TM and TP'

closely followed by;¢s, A, and the shape of the aerosol
phase function Pp(w) at small angles w.! The effects of aerosol refractive
index and ozone absorption are most certainly small for the visible wavelength
region. Even if we restrict our considerations to the aforementioned five
parameters, a complete study of all the possible combinations would be exceed-
ingly costly, and is well beyond the scope of this investigation. Nevertheless,
the data which we have shown here will be sufficient to draw several important
conclusions concerning the accuracy and utility of our MS approximation.

We will start our investigation with a study of the first group of data
sets, which will permit an analysis of the effects of four of the five principal
parameters (eo, Tp, TM, A). Table 2.7 shows that, for Ty = Tp = 0.1, our MS
approximation is highly accurate, and provides a significant improvement over
SS, for both values of A and ail three values of ¢S. The SS and MS approxima-
tion results both decline in accuracy as ¢s increases; for which there are
two reasons. Firstly, as ¢s increases, so does the air mass, and with it the
amount of higher-order scattering. Secondly, as ¢s increases, so does the
scattering angle corresponding to a given azimuth angle. In the region of

the aureole, Eq. (2) may be approximated by

(p ~ ¢ sin ¢S (54)

Thus, as ¢s increases, the data presented in Table 2.7 are seen to extend to
larger values of |y, where the dominance of the single scattering contribution

is decreased.
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When TP is increased from 0.1 to 0.2, a deterioration of both the MS
and SS approximation results is noticed. This is hardly surprising, as both
of these approximations ignore all MS events involving aerosols, which will
increase significantly when TP is doubled. By contrast, when Ty is increased
from 0.1 to 0.2, we notice that, while the SS results continue to deteriorate,
the MS results generally improve in accuracy, for all values of A and ¢s'
Again, this result is hardly surprising, as the MS approximation is designed
specifically to take account of the multiply-scattered molecular contribution.
Thus, in summary, from Table 2.7, one can see that the MS approximation is
quite accurate for small values of Tp, TM' and ¢s’ and that this accuracy tends
to reduce somewhat as either Tp or ¢s is increased. However, in contrast to
the SS approximation, the accuracy of the MS approximation tends to increase
when Ty is increased, thereby leading to the conclusion that the MS approximation
improves in accuracy as the ratio TM/Tp is increased.
Next, with the help of Group B data presented in Table 2.8, we may discuss
the effects of the aerosol phase function--firstly because the phase function
for Group B is quite different from that for Group A, and secondly because
variation of wavelength, A, implies a variation of effective particle size,
which, in turn, affects the phase function.
In order to understand the wavelength dependence of the MS approximation,
we study Tables 2.8a, 2.8b, and 2.8c. As A increases, the ratio of molecular to
particulate scattering decreases by a factor of five, thereby decreasing the
accuracy of the MS approximation, and increasing that of the SS approximation.
This is due to the systematic reduction in the total MS contribution. Nevertheless,
even for A = 0.6 um, our MS approximation is generally twice as accurate as the SS

approximation, while for A = 0.4 um, the former is far more accurate than the latter.



When we compare the results in Tables 2.8a and 2.8b for the two Model Atmospt
Bl and B2, we see that the MS approximation errors are quite similar. This is not
really surprising, as the factor Tp sec ¢s, a good indicator of the amount of
particulate multiple scattering (which our MS approximation ignores) is very
similar for both. On the other hand, the SS approximation errors are significant]

higher for Model Atmosphere B2, due to the higher values of T, sec ¢S.

M
Perhaps the most significant difference between the two data groups A and B
is the particulate phase function. Thus, for example, let us compare the data

(@]

set from Group A for ¢s =307, A = 0.5 um and Tp = 0.1848, with the set from Grour

value. This is entirely due to the phase functions for the log normal and

modified gamma distributions used in this study, which are in the ratio of

200 to 26. In contrast to the behavior in the forward direction, we see that

for large values of ¢ the order has been reversed. This, again, is due to
the fact that the phase function is normalized: more photons scattered in
the near forward direction leaves fewer to be scattered at larger angles.

As the particulate contribution to the solar aureole increases, the
molecular contribution remains constant, and, thus, its relative contribu-
tion is decreased. This observation accounts for the somewhat lower accuracy
of the MS approximation in accounting for the Group B data: the fraction of
the multiple scattering it provides for has been reduced.

With a strongly forward-peaked phase function, such as that for the
Group B data, the contribution of particulate single scattering relative
to all other contributions is significantly increased by comparison with the
situation for a flatter phase function. Thus, we see that the SS approxima-
tion is most accurate for the Group B data in the near forward direction.
However, by the time we reach azimuth angles of 15° to 200, the accuracy of
the SS approximation falls off significantly, as we move out of the aerosol
diffraction peak. The continued accuracy of the MS approximation indicates

that it remains capable of accounting for much of the MS at these angles.
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From Data Group A (Table 2.7) we concluded that the MS approximation
was most useful when the ratio of molecular to particulate scattering was
high. The Data Group B results (Table 2.8) are in agreement with this conclusion.
although we must now appreciate that this ratio depends not only on the ratio
TM/TP, but also on the shape of the particulate phase function.
For two of the three wavelengths included in the Group B studies, ozone
absorption is present. Since we have not made parallel computations with

this factor removed, we cannot make any categorical statements of its effects.

Nevertheless, there is nothing in the data in Table 2.8 to suggest that the
presence of ozone absorption is likely to reduce the utility of our MS
approximation.

So far, we have made only passing remarks concerning the effects of
ground albedo. The results we have presented suggest that, in general,
the contribution from ground-reflected photons is small. The only exception
is likely to occur in those cases where the ratio of molecular to particulate
scattering is excessive. The reason for this is that, in the angular range
from 90o to 1500, the region most responsible for re-scattering ground-
reflected photons back to earth, the molecular phase function dominates the
particulate by as much as an order of magnitude. Thus, we note that an
albedo of 0.25 in Table 2.7 contributes about as much additional intensity as
an albedo of 0.4 in Table 2.8, and considerably more if we consider the fractional
increase.

One of the obvious advantages of our MS approximation, over the SS

approximation, is that it is able to make allowance for a non-zero ground



albedo. It is, therefore, instructive to examine the variation in the per-
centage errors as the albedo is increased. The results of Tables 2.7 and 2.8
show that, not only does our MS approximation retain its accuracy as albedo
increases, but, in general, its accuracy improves. We may even observe
instances where the MS approximation over-estimates the actual radiance.

This can be understood from an examination of the omitted terms in Eq. (9)

over an important angular

for L_. Since, PM is significantly larger than PP

D
region (when ground reflection is present), we see that PD will be negative
under such circumstances. Thus, these two omitted integrals are likely to
be of opposite sign, implying that the correction to LD may be either
positive or negative.

All the results presented in this paper have been obtained with one
value (namely, m' = 1.55) of the real part of the aerosol refractive index,
and, thus, we cannot really comment on the effect of this parameter. However,
it is generally accepted that the real part of the refractive index has
little effect on the differences in scattered radiances (obtained by the MS and
SS approximation and RT calculations), especially in the aureole region
where diffraction scattering predominates. Also, we cannot comment much
on the influence of aerosol absorption, since results of only one value
(m" = 0.02) of the imaginary part of the aerosol refractive index have been
obtained (Table 2.9). However, when the results in Table 2.9 are compared with
those in Table 2.7, we see that the percentage errors (between the three sets
of results) are rather similar, at least up to azimuth angles of 15o to 20o
from the sun. Thus, we feel confident in concluding that the inclusion of

aerosol absorption in no way diminishes the utility of our MS approximation.



When the results for higher azimuth angles are examined, we see that
the accuracy of our MS approximation remains high (errors < 6%) at least
out to 450, and is quite acceptable (< 13%) for azimuth angles of 90°.

By contrast, SS approximation deteriorates much more rapidly for high
azimuth angles.

Finally, there is another way in which our results may be viewed.

It is clear that measured radiances are composed of both SS and higher
order scattering. The general success of the SS approximation in explain-
ing much of the data demonstrates that SS is the most significant component.
The data presented in this paper indicate that, in almost all cases, use

of our MS approximation reduces by half, and often much more, the errors
that occur due to the SS approximation. Thus, we see that the multiply-
scattered molecular component is perhaps the next most important contribu-

tion to the aureole intensity, under relatively clear sky conditions.

(vi) Application of MS Approximation to Size Distribution Retrievals

Box and Deepak (Ref. 26) have discussed in detail a systematic investigation
of errors in the retrieved results for aerosol size distributions obtained from
simulated almucantar radiance data generated by our radiative transfer code.
Results were retrieved by using the SS approximation, our MS approximation
(also referred to as the modified Deirmendjian-Sekera (D-S) approximation)
and the McPeters and Green (M-G) method. (See Tables I and III in Ref. 26

stands for t __..) It was demonstrated that the retrievals

h
where dDS MS



of aerosol size distributions can be considerably improved by using the MS
formulation described here; the largest errors occur for the case of solar
zenith angle (bs= 600, TA = 0.2, TP = 0.2 and A = 0.25, namely, about 2%
error in retrieved results for b, the mode radius parameter in the Haze H
model. We believe that these errors are due largely to the neglect of
particulate multiple scattering. By contrast, the errors in b results
retrieved from the same data by the use of the SS approximation were over

9%. Thus by the use of our MS approximation, the retrieval accuracy can

be improved by a factor of about four.

(vii) Summary and Conclusions

From the results in Tables 2.7, 2.8 and 2.9, and the previous discussions,
we are able to conclude that our MS approximation provides a significant
improvement over SS approximation, with essentially no extra computational
effort. Thus, it is our opinion that such SS calcualtions should be

supplemented with the MS contribution discussed in this section.

Our éesults have shown that, in almost all instances, inclusion of
this molecular MS contribution reduces the errors obtained with SS approxi-
mation by a factor of at least two, and usually more. In particular, our
MS approximation will provide greatest improvement in those cases where
the ratio of Rayleigh to particulate scattering is high, and/or where the
ground albedo contribution is significant.

We may conclude, therefore, that the MS approximation, as outlined in

Egs. (43), (48) and (50), is of considerable value in providing details of
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the aureole radiance pattern in a hazy atmosphere, with relatively high
accuracy, at a fraction of the cost of a full, radiative transfer calculation.
In addition, it can improve the accuracy of retrievals by a factor of at

least four, compared to the SS approximation.



2.3.4 The Finite Sun Effect on the Interpretation of Solar Aureole

Although it is usually assumed that solar radiation falls on the earth’s
atmosphere in the form of plane waves, the finite angular size of the solar
disk contradicts this assumption. For most purposes, this finite sun effect
on computed or measured radiation quantities is negligible. However, in the
region of the solar aureole, which is dominated by aerosol diffraction scatter:
ing, measurable effects may be obtained. In Ref. 45, we have shown that the
finite sun effect is related to derivatives of the scattering phase function
and that a 1 percent effect may be obtained close to the sun if enough
large particles are present in the atmosphere.

In the past, when measurement techniques were not too precise (Ref. '3},
it was feasible to interpret these data using the simplest possible model,
namely, single scattering by molecules and aerosols from a point-source sun.
As measurement accuracy has improved, however, more attention has been devoted
to the removal of as many sources of error as possible from the inversion
process.

Most of these sources of error are associated with the physical process
of radiative transfer: absorption by trace gases such as ozone, and multiple
scattering. Recently, King and Byrne (Ref. 46) have shown how to make a
fairly accurate allowance for the ozone Chappius band, and we have shown
how to make at least a partial accounting for multiple scattering. More
work in this area is undoubtedly needed, especially in regard to multiple
scattering in relatively hazy conditions.

One source of possible error in the analysis of solar aureole data is

concerned not with the problem of the transfer of solar radiation through the



terrestrial atmosphere but with the source of that radiation, the sun itself.
In all analyses that we are aware of, it has been assumed that the sun is a
point source at infinite distance, and that solar radiation falls on the top
of the atmosphere in plane waves. While the small angular size of the sun
ensures that the error involved in using this approximation is quite small,
it is nevertheless important to have a clear understanding of the magnitude
of this error, and more especially of any special circumstances which could
significantly increase it. In Ref. 45, we examine this effect in detail,
both qualitatively and quantitatively. The results are discussed here.

In the single-scattering approximation, photons arriving at a detector
along a given direction may have originated from different points on the
sun's disk and thus been scattered through different scattering angles.

If the scattering phase function is varying slowly with angle in this angular
range, the effect will be negligible. Thus, in a purely Rayleigh scattering
atmosphere, the finite sun effect can be safely ignored.

By contrast, if the phase function is varying rapidly, as is the case in
the forward diffraction peak of typical aerosol phase functions, the
effect may not be insignificant. Thus we have seen that a fairly typical
aerosol size distribution leads to an effect of the order of half a percent
within a degree of the sun and of several tenths of a percent out to a 5°
scattering angle. Beyond this angle, the effect was less than 0.1 percent.
The presence of additional large particles would undoubtedly increase these
nunbers. Thus, we believe that if it is desired to make measurements of
0.1 percent accuracy close to the sun's disk, for the purposes of determining

the aerosol phase function and/or size distribution, then some attempt



ought to be made to account for the finite sun effect, even if only after
the fact.

The effect of multiple scattering is, of course, to smear out the
details of the phase function, and thus we can see no need to include the
finite sun effect in radiative transfer calculations for moderate to thick
atmospheres. In fact, the only time when the finite sun effect is likely to have
any possible significance is in the solar aureole, which is dominated by the
diffraction peak of the aerosol phase function. It was for just such a

situation that the analysis in this paper was developed.



2.4 INVERSION OF SIMULATED SOLAR AUREOLE RADIANCE DATA

2.4.1 Retrieval of Aerosol Size Distributions by Inversion of

Simulated Multiple Scattered Aureole Daza

Inversion of solar almucantar radiance data is a simple and practical
method of obtaining aerosol size distributions. In this section, similar to
Ref. 26, we have inverted a number of sets of simulated data, using the
standard single scattering approximation, to test the errors involved in
ignoring multiple scattering. We have also inverted the data using two
techniques: one, Box and Deepak's modification of the method proposed by
Deirmendjian and Sekera; and the other that of McPeters and Green.

In section 2.3 (and Ref. 28), we compared the relative contributions
of multiple scattering (MS) and single scattering (SS) to the solar aureole
almucantar radiance distribution, as obtained by a radiative transfer (RT)
code.  In this section, we shall determine the effects of multiple scattering
on the retrieval of the aerosol size distribution from the almucantar
radiance data.

The results of section 2.3 indicate that, although the single scattering
approximation is reasonable for most visible wavelengths, multiple scattering
contributions may not be negligible even in clear sky conditions, and may
introduce significant errors in the retrieved size distribution, especially
with regard to its absolute magnitude. 1In this section, first, we invert a
nurber of sets of almucantar radiance data to obtain size distribution,
using the single scattering approximation; and then consider two other
approximations in which multiple scattering due to a molecular atmosphere
alone is taken into account. As will be seen later on, the results obtained
in the first case show significant errors in some cases, whereas in the latter

two cases there are improvements in the retrieved size distribution.
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The symbols adopted in this section follow those recommended by the
International Radiation Commission (Ref. 47), except for the optical depth,
which will be denoted by T.

(i) Single Scattering Radiance in Solar Aurecle Almucantar

We have run the Box and Deepak code (Ref. 28) for a series of molecular
and particulate optical thicknesses, TM and Tp, and a series of solar zenith
angles, ¢S. The aerosol size distribution employed was a modified gamma
distribution (Refs. 37 and 40) of the form

n(r) = ar2 e-br, (0.03 mS<r € 3.0 m) (55)

We chose b = 10 um_l; parameter a was given by a = 4.5 x lODTP. We used

a wavelength (A) of 0.55 um, and a real refractive index (m) of 1.55. As
ozone absorption was ignored, the single scattering albedo (65) throughout the
model atmosphere was 1.0.

Using these inputs, the code generates a considerable amount of radiance
data, at ground level, the top of the atmosphere and at one or two inter-
mediate levels. In this paper, we will be concerned with only the ground
level radiances along the almucantar (i.e., a scan for which observation
zenith angle equals solar zenith angle).

In Ref. 28, we compared these radiative transfer radiances with
radiances given by the very simple formula for the single scattering radi-

ance LSS' In the almucantar, this formula reduces to the form (Ref. 1)

- -T/M
Lgg = (H_ /M) o {rM P () + Ty PL(Y) }/4 (56)



(ii) Inversion in the Single Scattering Approximation

Since the problem of inverting scattered radiance data is simplest in
the single scattering approximation and in the forward angles (less than 200),

we shall treat this case first. Here, the simulated radiative transfer

data, L in the almucantar in the forward direction will be inverted

RT

using the single scattering relation in Eq. {56) to determine the size

distribution.
In order to do this, LRT is substituted for LSS in Eq. (56), which is
rearranged to give
T/Ho
= - P 57
FP(W) LRT4ne (uo/Ho) Ty M(w) (57)

where by definition Fp(w), the column scattering function, is given by the

relation.
(58)

2 . .
F, ) = AT/2em fwfwn(r,y) (i, + i) dr ay
00
where N (r,y) is the aerosol altitude-size distribution function (Ref. 37),

y is the altitude (km), and il and i2 are the Mie intensities (Ref. 32

and 40).

Since Eq. (56) is only the single scattering approximation to the
radiative transfer equation, we refer to FP(W) as obtained from Eq. (57)

as an effective column scattering function. Hence, the size distribution



obtained by inverting Eq. (58) is referred to as an effective size distri-
bution. A question of considerable importance is then: how close is this
effective size distribution to the original distribution which actually
produced the observed (or in the case here, simulated) scattering pattern?

To answer that question, we have inverted a series of sets ofsimu-
lated data using Egs. (57) and (58). We assumed a size distribution of the
form in Eq. (55), with a and b as adjustable parameters, and used a non-
linear least squares inversion code to determine their best fit values.
These values can then be compared with the original values, to provide
us with an indication of the agreement between the retrieved and the
actual size distribution.

It should be pointed out that by assuming the functional form of
Eq. (55) for our unknown size distribution, rather than performing a
point-by-point inversion of Chahine- or Twomey-type (Ref. 48), we are not
biasing the results. The main thrust of this paper is to compare dif-
ferent methods of making allowance for multiple scattering, not different
methods of inverting the integral equation, Eq. (58). In this regard, to
compare the original size distribution with those obtained from a point-
by-point inversion may not lead to any definite conclusions. On the other
hand, we feel that the retrieved values of the two adjustable parameters,
a and b (in the size distribution model, Eq. (55)}), which are related to
the total number of particles, and the mode radius, respectively, pro-

vide a precise quantitative test of the methods we are examining.



Using the single scattering approximation, we have inverted eight
sets of data obtained from the eight combinations of the parameters
TM = 0.1 or 0.2, TP = 0.1 or 0.2 and ¢S= 30o or 600. For each data set,
we obtained simulated radiance data for three cases: (1) single scattering
only; (2) radiative transfer with ground albedo A = 0.0; and (3) radiative
transfer with A = 0.25. Each of the twenty-four sets of radiance data con-
sisted of 20 values, corresponding to azimuth angles from Oo to 190.
Inversion was performed on each set of radiance data. Table 1 gives the
retrieved values of a, b and mode radius rm(rm = 2/b) for each of the 24
sets of data.

As expected, when we inverted the single scattering radiance data,
(shown in Case 1, Table 10), we got back the original values of a and b.

Consideration of the other two cases (namely, 2 and 3) in‘Table 10
shows that, as suggested in Paper I, the retrieved size distribution
parameters a and b obtained from the inversion of the radiative transfer
data agree reasonably well with the input data for b (or rm), but show
large discrepancies for a, which is related to the absolute normalization.
For small values of ¢s ﬁn, TP and A = 0.0, the retrieved size distribution
shows the best agreement, with this agreement deteriorating steadily as
any of the four parameters is increased. These trends are just as would
be expected, since an increase in any of these parameters will clearly

lead to an increase in the multiple scattering contribution relative to

the single scattering contribution.



TABLE 2.10: Retrieved Size Distribution Parameters a and b Using the Single
Scattering Approximation
Single Scattering Approximation
¢s TM Tp CASE a b (um-l) rm = 2/b % Error ii

30o 0.1 0.1 1 44986 10.000 0.2000 0.00
2 51590 10.169 0.1967 1.69

3 57404 10.308 0.1940 3.08

0.2 0.1 1 44983 10.000 0.2000 0.00

2 60083 10.367 0.1929 3.67

3 72418 10.616 0.1884 6.16

0.1 0.2 1 89986 10.000 0.2000 0.00

2 107680 10.219 0.1957 2.19

3 115630 10.312 0.1939 3.12

0.2 0.2 1 89981 10.000 0.2000 0.00

2 119130 10.350 0.1932 3.50

3 133750 10.504 0.1904 5.04

60° 0.1 0.1 1 44986 10.000 0.2000 0.00
2 59451 10.373 0.1928 3.73

3 65161 10.504 0.1904 5.04

0.2 0.1 1 44971 9.999 0.2000 0.01

2 76021 10.725 0.1865 7.25

3 88741 10.955 0.1826 9.55

0.1 0.2 1 89978 10.000 0.2000 0.00

2 132900 10.516 0.1902 5.16

3 141960 10.612 0.1885 6.12

0.2 0.2 1 89996 10.000 0.2000 0.00

2 157270 10.760 0.1859 7.60

3 J 174230 10.912 0.1833 9.12




A. Influence of Optical Thickness

When TM increases from 0.1 to 0.2, we see a marked deterior-
ation in the accuracy of the inversion, with the error in b roughly

doubling. On the other hand, when TP increases from 0.1 to 0.2, we see

very little deterioration, and in some cases, a small improvement in the

value of b. The most obvious explanation is that it is molecular scat-

tering which is most responsible for multiple scattering. Thus, we may

regard the contribution due to Rayleigh scattering (which is small in the
aureole) as noise, which distorts the signal due to particulate scat-

tering. The better the ratio of T_ to T the better the signal to noise

P M’

ratio and the more accurate, in general, is the retrieved parameter b.

B. Influence of Solar Zenith Angle

Increasing ¢s has two effects. First, the optical path’ length

’ or air mass is increased, and we may refer to the earlier discussion of
this effect. Second, the scattering angle, Y, becomes closer to the corre-
sponding azimuth angle, w. Thus, for w =19, Y = 9.5° when‘bs= 300;
Y = 16.4o when ¢S= 60°. The greater the value of Y, the greater is the
contribution from molecular scattering since the Rayleigh phase function
is close to isotropic and the particulate phase function is usually strongly
forward-peaked. This implies a deterioration of the above-mentioned sig-
nal to noise ratio.

The above discussions and the results shown in Table 10 strongly sug-
gest that it is multiple scattering due to atmospheric molecules, rather
than aerosols, which is the main cause of the poor size distribution

retrievals.




In order to improve the accuracy of our retrieved size distribution,
the next best approach to an exact solution of the radiative transfer
equation is to take into account multiple scattering due to molecules,
along with single scattering due to both aerosols and molecules. A
survey of the literature indicates that such a strategy for retrieving
aerosol size distributions from diffuse (i.e., single plus multiple scat-~

tering) radiance data was proposed by Sekera (Ref. 42) and Deirmendjian

(Refs. 38, 39, and 41). Their method is essentially a perturbation approach.

However, so far to the best of our knowledge, it has not been applied to
any inversion problem. McPeters and Green (Ref. 4) take account of the
molecular multiple scattering in deducing the aerosol size distribution
from solar aureole data. Malchow and Whitney (Ref. 49) have also included
the multiple scattering due to molecules in their inversion technique

for application to sunlit horizon radiance profiles as might be measured
from satellites.

In this paper, we shall demonstrate how the retrievals of aerosol
size distributions can be improved when we use a modification of the
Deirmendjian-Sekera Perturbation method (Ref. 41) to invert our simulated
data for solar aureole almucantar radiance. For the sake of comparison,
the size distribution results by the McPeters and Green scheme will also

be obtained. Both these methods are explained next.

(iii) Description of the Approximate Methods

A. Dermendjian-Sekera (D-S) Perturbation Method

The equation of radiative transfer in a plane parallel atmosphere

with scattering but no absorption can be written as




4T, 8 _ .- -T/Mo . AT - - ; “yaE” (59)

where
T) = +
Prop(™ {oM Py * Op pP}/oTOT (60a)
aT,
where g, = - —= >, i=M, P, TOT (60b)
1 oz

Equation {56) can be obtained from Eq. (59) by ignoring the integral on the right

hand side and setting ¢ = ¢s-

Following Sekera (Ref. 42) and Deirmendjian (Refs. 39, 41), we may re-express

Eg. (60) in the form

PTOT(T) =P, + £(T) Py (61) \
- _ (62a)
where PD PP PM
- (62b) |
and £(t) OP /OTOT

is known as the turbidity factor, or turbidity coefficient.

Similarly we may separate the light field into two parts, viz.,

- (63)
L(t, & = LM(T, g + LD(T, &)

where by definition Ly represents -the radiance field produced by Rayleigh
scattering alone, and LD' the departure from this case due to the difference in

scattering patterns between molecules and aerosols, as expressed i Eq. ($2a).



l

If we substitute Egs. (62) and (63) into Eq. (59), and remember that Ly satisfies

Eq.(59) with PT replaced by PM, we find that four terms cancel, leaving the

oT

following integrodifferential equation for LD'

3L (T,5) . . . -
D _,_’___ - - -T/UO .
X = L (T, £) <1>°e £(T) P (T; €, Eo)/mr

i

- fQ Py (&, S’)LD(T, E°YAE” /4T - £(71) IQPD(LM+ L)dE” /4m (64)

This equation is probably best solved by the successive scattering method,
provided that Rayleigh radiation field, LM' is known throughout the atmosphere.
As yet we know of no serious attempt to actually pursue this line to its logical

conclusion.

In the region of the solar aureole, Deirmendjian (Ref. 41) employed
a single scattering approach to Eq. (64), by neglecting both the integral
terms. Solution of Eq. (64) is then quite straightforward. Along the

almucantar, the single scattering solution, LSs

D’ is particularly simple,

and takes the form

o
|

S5 _ (H_/u ) e /M, B [ £(T)dT/4T
o O D

SS -T/]J t
1 I = H e (o] )/4 (6-
l.e., D ( O/Llo) lP (FP - FM J

B. McPeters and Green (M-G) Method

From a study of the tabulated results of Coulson, et al.
(Ref. 35) for molecular atmospheres, McPeters and Green observed that the

shape of the radiative transfer radiance was very similar to that of the




single scattering pattern (at least in the aureole region), but dif-

fered from it in absolute value. Similar conclusions were drawn by us for
an aerosol plus molecular atmosphere in Paper I and discussed in the
following sections. Therefore, McPeters and Green proposed to introduce
a correction factor, CMG’ to the Rayleigh optical depth‘l'M that would
increase the single scattering radiance values to match the radiative

transfer radiance values. We may express their results as follows:

~T/u
o T (66)
Ly = (Hy/u) lac?e+ P } /4m

where dMG (= CMG f ) is the effective Rayleigh optical depth, and CMG is
M

adjusted to give a suitable fit to Lbldata for a molecular atmosphere (i.e.,

for TP = 0).
C. Box and Deepak Modification to the D-S Method

To obtain the Rayleigh field contribution to the almucantar
radiance in the D-S method, it is necessary to solve the radiative trans-
fer equation for LM in terms of PM--a relatively straightforward task.
However, instead of following this procedure, we model the LM part of the
radiance field after Eq.i{66), such that

_T/uo ;
Ly =,(Ho/uc) e a_ . P,/4m (67)

bS
where dDS is referred to as the effective Rayleigh optical thickness. Here
dDS can be adjusted to give an exact fit to the true molecular radiance data,
either at some scattering angle, Yy, (e.g., ¥ = Oo), or to give the best fit
(in a least squares sense) over a range of angles. In our studies so far, we

have found these two approaches to yield dDS values that agree within 1%, for



azimuth angles out to 200, optical thicknesses as high as 0.6, zenith
angles as large as 700, and ground albedos as high as 0.8. This implies

that in the solar aureole region, the shape of the molecular-scattered

almucantar radiance pattern, LM follows the functional form of the molecular
phase function, PM, very closely. Thus, the approximation involved in
Eq. (67) is highly accurate, at least for the data we have examined.
This modification of the original D-S approach represents a considerable
simplification with no loss of accuracy.

st is a function T, ¢s and ground albedo, A. Note that in the single

seattering approximation, 4 = T, not T,. It can be obtained from tables

DS M

(Ref. 18) or the results of separate computations. We feel that a
phenomenological formula for these effective optical thicknesses, 4, as

a function of T, ¢s and A would be of considerable value and is currently
being investigated. These results will be discussed in a subsequent
publication.

We may now combine Egs. (63), (65), and (67) to get the total radiance

LDS in the Deirmendjian-Sekera approximation:

- =T -
Log = (H/m ) e T/, {ap Py +7, (B )} /4T

- 68
= (H_/u) e TT/H, qu -Tp) By *Tp PP} /4m (68)

We see now that Eg.(68) 1is structurally identical to Eq.(56) (and also
Eq. (66)), and in particular, can be inverted after the manner of Eq. (57) to

obtain the scattering function, FP(W) and, thence, the aerosol size distributic

Equations (56) and (68) differ in only one point: the multiple scattering



contribution due to molecules. Since dDS is larger than T, (dDS - TP)

is larger than IM' and so Eq. (68) provides for more molecular scattering

than Eg. (56), although each contains the same amount of particulate scat-
tering. This is precisely what we require.

Strictly speaking, L as given by Eg. (68), 1is not exactly the same

DS’
as would be given in the original Deirmendjian-Sekera formulation. We
should, of course, have replaced the Rayleigh phase function in Eq. (67)
by a different function, to give the correct angular distribution fpr the
Rayleigh radiance, LM. However, as has been suggested by the discussion
in the paragraph immediately following Eq. (67), this function differs
very little from PM' at least within the range of parameters we have
examined. As an illustration of the basic veracity of Eq. (68), Fig. 2.16

shows the single scattering radiance, L as well as the full radiative

ss’

transfer radiance, L for two values of the ground albedo, A. Also

RT’
shown on the same graph are the corresponding column scattering functions,
FP, obtained from the radiances using Eqg. (57). It is clear that all

six curves are essentially identical, differing only in vertical displace-
ment. (Within the angular range shown, PM is essentially constant.)

Thus, we conclude that, within the aureole region, we can make allowance
for molecular multiple scattering simply by using an effective Rayleigh
optical thickness. The errors involved in this approximation are, in

general, considerably less than the errors involved in ignoring all multiple

scattering events involving aerosols.

(iv) Retrievals by M-G and Modified D-S Methods

In their studies, McPeters and Green (Ref. 4) employed a phenomenological
formula for dMG as a function of uo and A (and, hence, TM) based on the pub-
lished results of Coulson, et al. (Ref. 35), with ground albedo ignored.
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In this paper, we have obtained all the required 4 values from a separate
series of runs of our radiative transfer code for a purely molecular

atmosphere. These values are listed in Table 2.11l.

In the modified D-S method, the effective Rayleigh optical thickness,
dDS’ is obtained by considering a Rayleigh atmosphere with the optical thick-

ness equal to the total optical thickness T (i.e., molecular plus particulate).

In the M-G method, the effective Rayleigh optical thickness, 4 is obtained

MG’
by considering a Rayleigh atmosphere with just the Rayleigh optical thickness.
Since the effective Rayleigh optical thickness d, for both methods is always

larger than T, and in fact the ratio d/7T increases with increasing t, we can

conclude that (st - TP) > dM and thus the modified D-S method provides for

GI
more molecular scattering than that of McPeters-Green. This difference will
be most pronounced for larger values of TP (as well as larger values of TM) so

that the inversion of these data sets will provide the most critical compara-

tive test of these two methods.

We have re-inverted our 16 data sets, using both Egs. (12) and (14)

plus the data from Table 2.10. (There was obviously no need to repeat the
inversion of the single scattering data sets.) These results are presented

in Table 2.12.

The results of these new inversions are, in all cases, more accurate than
the results presented in Table 2.10. Also, one notices that whereas the M-G
method yields somewhat more accurate results than the single scattering approxi-
mation (c.f. Table 2.10 and Table 2.12), the modified D-S method turns out to be
much more accurate. The McPeters-Green method does not seem to provide for

sufficient molecular scattering.

When the modified D-S results are examined, we see that the largest




TABLE 2.11:

Sekera, and McPeters-Green Inversions

Effective Optical Thicknesses Used in the Modified Deirmendjian-

Ty T T L .5 dne dpg - Tp duc

0.1 0.1 0.2 30° 0.0 0.255 0.155 0.114

0.25 0.315 0.215 0.144

60° 0.0 0.262 0.162 0.116

0.25 0.298 0.198 0.133

0.2 0.1 0.3 30° 0.0 0.420 0.320 0.255

‘ 0.25 0.512 0.412 0.315
| 60° 0.0 0.437 0.337 0.262
| 0.25 0.493 0.393 0.298
0.1 0.2 0.3 30° 0.0 0.420 0.220 0.114

0.25 0.512 0.312 0.144

60° 0.0 0.437 0.237 0.116

| 0.25 0.493 0.293 0.133
| 0.2 0.2 0.4 30° 0.0 0.609 0.409 0.255
| 0.25 0.736 0.536 0.315
60° 0.0 0.642 0.442 0.262

| 0.25 0.721 0.521 0.298

DS - Modified Deirmendjian-Sekera method

MG ~ McPeters-Green method




TABLE 2.12: Retrieved Size Distribution Parameters a and b Using Modified
Deirmendjian-Sekera and McPeters-Green Approximation
a b (um-l) rn, = 2/b % Error in b
Modified Modified Modified Modified

@O W | T A D-s M-G D-S M-G D-S M-G D-S M-G
30°| 0.1 ]0.1 {0.0 44613 49693 9.985 10.121 0.2003 0.1976} ~-0.15 1.21
0.25 42489 51349 9.925 10.164 0.2015 0.1968| ~-0.75 1.64
0.2 0.1 }0.0 44086 52289 9.970 10.187 0.2006 0.1963} ~0.30 1.87
0.25 42297 54686 9.920 10.247 0.2016 0.1952 | ~-0.80 2.47
0.1 j0.2 |0.0 92147 105720{ 10.020 10.195 0.1996 0.1962 0.20 1.95
0.25 87803 10945 9.960 10.241 0.2008 0.1953) ~0.40 2.41
0.2 ]0.2]0.0 91100 111220 10.006 10.261 0.1999 0.1949 0.06 2.61
0.25 87257 116240 9.953 10.319 0.2009 0.1938 | ~0.47 3.19
60°] 0.1 |0.1 0.0 48242 56373 10.083 10.298 0.1984 0.1942 0.83 2.98
0.25 47123 58534 10.052 10.352 0.1990 0.1932 0.52 3.52
0.2 0.1} 0.0 48730 62486 10.098 10.444 0.1981 0.1915 0.98 4.44
0.25 47946 65791 10.078 10.519 0.1985 0.1901 0.78 5.19
0.1]0.2] 0.0 106460 129550| 10.205 10.480 0.1960 0.1908 2.05 4.80
0.25 104040 134800} 10.174 10.538 0.1966 0.1898 1.74 5.38
0.210.2| 0.0 107170 142980} 10.215 10.622 0.1958 0.1883 2.15 6.22
0.25 105360 150520 10.193 10.698 0.1962 0.1870 1.93 6.98




errors 6ccur for¢sr= 60o and TP = 0.2, namely, about 2% error in b. We
believe that these discrepancies are due largely to the neglect of particu-
late multiple scattering, which will clearly be largest under such circum-
stances. For all other data sets, the errors in the retrieved value of b
are all under 1%. Thus, we feel that use of the modified D-S method will
lead to a more accurate determination of the mode radius of the aerosol size
distribution. Similarly, although the errors in the retrieved values of a
are larger than the errors in b, they nevertheless represent a significant
improvement over the large errors in the original retrieval (Table 2.10). We

therefore feel confident in recommending this method for more accurate

retrievals of aerosol size distribution from solar aureole data.

(v) Concluding Remarks

So far, the simulated almucantar radiance data that we have studied
have been generated by only one set of aerosol parameters for refractive
index and size distribution. Also, ozone absorption and experimental
errors have been ignored. Until a larger data base has been examined, we
are unable to draw any absolute conclusions. However, the results pre-~
sented so far give us considerable confidence in stating that use of the
modified Deirmendjian-Sekera technique leads to more accurate inversion of
aureole data than performed by using the single scattering approximation
or the M-G approximation. This holds true especially for larger optical
thicknesses. Further study needs to be performed in extending the modified

D-S method for larger optical depths and more realistic experimental situ-

ations.



2.5 EXPERIMENTAL VALIDATION OF THE SOLAR AUREOLE TECHNIQUE

In this section, we intercompare the retrieved results for the columnar
size distribution of aerosols obtained by inverting the multispectral
(400, 500, and 600 nm), multiangle (3° to 15°) measurements of almucantar
radiance made on May 6, 1977, at Tucson, Arizona, and the ground truth
measurements (Ref. 50,51) obtained by two optical sizing counters. In the
following sections, we shall briefly recapitulate the inversion formulations
for the SS and MS approximations, and discuss the results of retrievals in
the two approximations using different size distribution models. It is shown
that size distributions retrieved by using our MS approximation are more
accurate than those obtained by the SS approximation by comparing them with
ground truth measurements of size distributions, in order to wvalidate that
the solar technique is a viable, simple and accurate method for determining the
columnar aerosol size distribution.

In Section 2.3, we compared the relative contributions of MS and SS
to the solar aureole almucantar radiance (SAAR) distribution~-~MS values having
been generated by a computer code based on our Gauss-Seidel iterative
approach to the solution of the radiative transfer equation. One important
result that emerged was that for scattering angles Y within 10° from the sun,
the MS plus the SS contributions to almucantar radiance exceed the SS
contributions by a small constant factor. It was also shown that under
ordinary sky conditions, the MS contribution due to molecules is much greater
than that due to aerosols, so that one can use an MS approximation to the
radiative transfer by including contributions due to SS by aerosols and
molecules and MS by molecules alone; while ignoring MS events in which

aerosols are involved.

2.5.1 SS and MS Approximations

, . , . s | . .
(i) In the SS Approximation. The SS radiance Li in the almucantar is given

by:

Leg = (Ho/uo) exp(—T/uo)[FMC(W) + ch(w,K)] (69)



where

2
1 .
Focb) = ——2r J n(r,y) (i; +1i,) dr dy
2K 0 r
1
L (2
= T N (I.') (1 + i ) dr ~(70)
2k2 Jr C 1 2
1
and
Fuc W) = TPy W) (71)

l);

where n(r,y) is the aerosol altitude - size distribution (cm.-3 um-
y is the altitude (km); NC is the columnar size distribution
-2 -1
(em = um ),
Thus, we can obtain the data for the columnar particulate scattering
function FPC(w) in the SS approximation by replacing LSS in Eq. (1)

by the actual radiance measurements, L(y,)A), rearranging:

Fss(w) =L exp(T/uo) uo/¢o - F

pC (W) (72)

MC

(ii) In the MS Approximation. 1In our MS approximation, the MS effect

for a nonzero ground albedo A is taken into account in the total almucantar
radiance field by replacing (FMC + FPC) in Eq. (69) by an effective

columnar total scattering function F (), such that

ECT
LMS = (Ho/uo) exp(-T/uo) FECT(w) (73)
where
— o}
FECT(QJ) = [(TMS + TM) PM(w) + TPSPP(Lp) + TAPM(O ):[ (74)



In our MS approximation, particulate scattering is treated as a

small perturbation over the molecular scattering. Here, TMS and TA

are the correction (optical depth) terms due to MS and surface albedo

A, respectively; T is the optical depth due to particulate scattering,

PS

as opposed to particulate absorption; TPSPP = FPC; @, the SS albedo

(averaged); and u = cos ¢.

The expressions for T and TA are given as follows (Ref. 27)

MS

_ 2 1/4

= = 0. + 1.
TMS( Tl) 0.02 TSS 1.2 rss/u (77)

- - 78
T, <A TZ(TSS'UO)/{l A T3(TSS)} (78)
TSS wT TM + TPS (79)

2

= ; . 80
T, = 1.34 1 uo{l 0+ 0.22(T /1) } (80)
T.=0.9T._ -0.92 T + 0.54 1> (81)
3 Ss Ss SS

Equations (69) and (73)differ in only one point: the MS contributions
due to molecules. Note that Eq. (5) is structurally identical to
Eq. (69), and can therefore be rearranged to obtain the columnar aerosol
size distributionNc(r)[cm-2 um_ll, in the same manner as in the SS
approximation, -

In the MS approximation, we can obtain the experimental data
for the columnar scattering function by replacing LMS in

Eq. (73) by the experimental L data and rearranging to get
+ ) e () + P (00} (82)
M M AN

MS
Fpc (W) = L exp(T/u ) (U /H) - {« MS

It is from the experimental data for Fii or F:g, obtained as

a function of scattering angle ¥ and wavelength A, that we retrieve
the columnar size distributions Nc(r) in the $S and MS approximations.
The coefficients il and 12 were calculated using J. V. Dave's (Ref. 52)
computer code. The retrievals are performed using the nonlinear

least squares (NLLS) method. (The theory of NLLS inversion method is

described in Refs. 53 and 54.)



In view of the fact that the parameteré T and TA both involve

Ms

the particulate optical depth, T_ ., which is usually not known with

PS
sufficient accuracy, Eq. (12) cannot, in general, be used as it stands.

Instead, we may define a new function G(y) by

G(Y) =L exp(T/U ). M /H) - P () : (83)

In the SS approximation, of course,

ss _
FPC W =6 W (84)

whereas in the MS approximation

MS o, _
Foc )y + Tus Pm Yy + Ta Py (07) =G W) (85)

Thus, in this approximation, the integral equation we must solve is 1

1 . . o i
G(p) = e 3 (1l + 12) Nc(r)dr + TMSPM(w) + TAPM(O ) (86)
|

As well as NC both TMS and TA must now be considered (at least partially)

as unknowns, via their dependence on TPS'
The NLLS inversion procedure involves assuming an analytical model for

NC {(see below), with a number of adjustable parameters, which are iterated unti:

a "best fit" to the data is obtained. One consequence of the structure of

Eq. (86) is that the "scaling parameter" is no longer an overall multiplica-

tive constant.

2.5.2 Size Distribution Models for Nc(r)

A number of different analytic size distribution models were used during
the course of this analysis. 1In this paper, however, we will report results
for only one of these. This model has two terms (to allow for bimodality),

both of which are modified gamma distributions (refs. 45, 40) of haze M type:
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N (xr) =p p.r {exp (-p, Vr ) + Py exp (=P, Yr )} (87)

1°5

A word needs to be said about the apparently superfluous parameter PS.
As indicated above, data were obtained at three different wavelengths, 400,
500 and 600 nm. Unfortunately, due to a problem with the neutral density
filter at 400 nm, the calibration of this data éet was somewhat uncertain.
The parameter ps was defined to be 1.0 for the 500 and 600 nm data, but
permitted to vary for the 400 nm data.

2.5.3 Retrievals in the SS Approximation

A total of five sets of results will be presented in this paper: test
runs S3 (data for all three wavelengths inverted using the SS approximation),
M3 (data for all three wavelengths inverted using our MS approximation,)

M3A (as for M3, but with the ground albedo treated as a free parameter - p6),
S2 (data for 500 and 600 nm only, inverted using the SS approximation) and

M2 (data for 500 and 600 nm, inverted using our MS approximation). The S2 and
M2 runs were an attempt to circumvent the calibration problem at 400 nm;
however, they also served the purpose of checking to see how the results
obtained by use of the 2 wavelength data compared with those obtained by the
use of the 3 wavelength data.

In the retrievals presented here, the multiplicative factor for 400 nm
(ps) was held fixed. Attempts to vary this parameter along with the others
were not successful. A better approach proved to be to use the best estimate
available for this parameter, update the parameter in the light of inversion
results, and rerun the inversion program. Generally it was found that the
FPC data for 400 nm was consistently too high or tooc low by some factor so
that the 400 nm scaling factor was updated by this multiplicative factor.

Because of the slight changes in the model which were necessary to
account for the differences in scale between the 400 nm, 500 nm and 600 nm data,
inversions were performed using both the SS and MS approximations. This ensured
the validity of comparisons between SS and MS retrievals. The retrieved
parameters and the statistics of the retrievals for the various test runs are

summarized in Tables 2.13 and 2,14, respectively.
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(1) Test Runs (S3, M3 and M34) Using Three-wWavelength Data:

The fits to the FPC data for 400 nm and 500 nm using the SS
approximation (Run S3) were good (Fig. 2.17). The fits for 600 nm
(Fig. 2.17) were not good, although the final estimate is a definite
improvement on the initial estimate. The final estimate is far too
high at large scattering angles.

The first of the MS runs to be discussed is the one with
albedo fixed at 0.25 (Run M3). The shape of the 400 nm (Fig. 2.18)
scattering function is good, although the actual values are consistently
too high. The multiplicative factor used for this data was 0.452 and
the results obtained here suggest that 0.40 would have been a better
value.

The fit to the ng

C
as in the SS case (Fig. 2.17), the calculated FPC values being too low

nm data (Fig. 2.18) was not as good

for most scattering angles. The fit to the 600 nm data (Fig. 2.18),
on the other hand, is very good and is a marked improvement over
the SS approximation (Fig. 2.17).

In the test run M3A, the albedo parameter (p6) was allowed to
vary, and the multiplicative factor (ps) for the 400 nm data was
set at 0.4 on the basis of the results of the M3. The fit to the
ng 400 nm data (Fig. 2.19) was very good. For 500 nm (Fig. 2.19),
there was a slight improvement over the run M3 although the calculated
values at large scattering angles are still too low. For 600 nm
(Fig. 2.19), there was a definite improvement over the SS case, but
the fit was not as good as for the case (M3) when the albedo was held
fixed. When the albedo was allowed to vary the calculated values at
large scattering angles were much lower than measurements. The parameters
retrieved for the above inversions are given in Table 2.13), and the
corresponding statistics of the fits to the data, in Table 14. The
parameters for the two MS approximation runs are very similar, but differ

a little from those for the SS approximation, especially for the first

mode of the size distribution.
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FIGURE 2.18.
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The significance of the negative albedo retrieval is not
clear but the results from other runs in which the albedo was
allowed to vary suggest that it may not always be possible to retrieve
the albedo from the solar aurecle measurements. Instead, it is
suggested that for inversion work, the albedo be held fixed, and several
different values tried to determine which gives the best results. With
the data considered here it was found that the same results were obtained
when albedos of 0.20 and 0.25 were used.

Comparison of the size distributions for the SS and MS

approximations (Fig. 2.20) shows that they are identical, except
for the radii range r < 0.2 um, for which it shows that Nc(r)
has higher values for the SS case then for the MS case. These
differences for low radii are due to the MS corrections and are
reflected in the differences between the parameters for the two
approximations for the first mode. The retrieved size distributions
agree very well with the ground truth measurements for May 7, 1977,
obtained by Whitby and Royco counters, as shown in Fig. 2.20.

As shown in Table 2.13, the mode radii for the two modes are
very similar for the three inversion runs discussed above. From
Table 2.14 it can be seen that the standard deviations for the fits

to the FPC data for the SS case (S3) tend to be slightly lower
than for the MS case, but the only case in which this is statistically
significant at the 90% level of confidence is when the overall fit for

the MS case (M3) , with the albedo fixed, is compared with the SS case.

In general, it seems that applying the MS corrections

does result in an overall improvement in the fit to the F c data.

P
It is sometimes a compromise in that a marked improvement for
one wavelength over the SS results may be accompanied by a poorer

fit at another wavelength.

2-108



07 g
|08§—
107;—
108 =
T o5k
107
o E \
‘ =
5 o4l
03
3 KEY
o RETRIEVED RESULTS
O = —+-M3
= ~-x--53
- O M2
o'll- & s2
E~  @© WHITBY COUNTER
~ @ ROYCO COUNTER
ol 1 vl vl il
102 o 100 10}
RADIUS I, um

FIGURE 2.20. Measured N.(r) and retrieved Nc(r) for runs M3,
S3, M2, and 52.

2-109



(ii) Test Runs S2 and M2 using Two-Wavelength Data:

Here, data for only 500 nm and 600 nm wavelengths were inverted.
These inversions were done to determine whether or not the inclusion
of the 400 nm data, with its calibration problem, was having any effect
on the inversions. Using the SS approximation in Run S2, good fits
to the FPC data at 500 nm (Fig. 2.21) were obtained, but the calculated
values for 600 nm (Fig. 2.21) were too high at large scattering angles.
Using the MS approximation ‘in Run M2, in which an albedo of 0.20

was used, the fit to the F c data at 500 nm (Fig. 2.22) obtained was

P
good, whereas for 600 nm (Fig. 2.22), the calculated values were still
too high but were better than those for the SS approximation.

Table 2.13 shows that the parameters for the test runs S2 and
M2 are essentially the same but the errors are high, especially for
P, and P3 which are multiplicative scaling factors. Comparison with
S3, M3, and M3A results shows that the percentage errors are much
higher when data for only two, instead of three, wavelengths were
inverted simultaneously.

It should be noted that neither of the inversions discussed
above had reached convergence even after 20 iterations. However,
differences between the variances for successive iterations were
constant after the 10th or 12th iteration, and the percentage errors
in the parameters did not change after this stage either, so it is
unlikely that convergence would be obtained with more iterations.
Probably, the convergence criteria were too stringent. This problem
has been encountered on other occasions and suggests that some improved
convergence criteria might be required; work on the solution of this
problem is in progress.

The statistics for the S2 and M2 retrievals are given in Table
2.14. As in the three wavelength case, there is no significant
difference between the standard deviation of the residuals for the
SS approximation and that for the MS approximation.

The two size distributions retrieved by the SS and MS approxima-

tions (Fig. 2.20) are almost identical. There is no difference
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between the two size distributions at small radii.

The size distributions obtained by using only the two wavelength
data simultaneously are very similar to those obtained using three
wavelength data, and agree with the ground truth data for May 7, 1977.
Comparison of the results obtained in the two cases suggests that
although good results can be obtained by using only two wavelength data,
the addition of data for another wavelength should result in faster

convergence and smaller uncertainties in the retrieved parameters.

2.5.3 Concluding Remarks

(i) Improvement in retrievals by using simultaneous inversion of
3-)\ instead of 2-\ data.

The work done using the SS approximation showed that even though
better fits to the columnar scattering function data were obtained
by inverting the data for each wavelength individually, as in Ref. 28,

than by inverting data for the three- or two-wavelengths simultaneously,

they usually yield slightly different size distributions, one for each
data set. On the other hand, simultaneous inversion of data for all
the wavelengths, results in a single size distribution, that which

gives the best fit to all the data in the least squares sense.

The use of MS corrections did result in an overall improvement
in agreement between measurements and final estimates of FPC(w,A).
In some instances, a marked improvement in the agreement between
measurements and calculations for one wavelength in the
MS case over that in the SS case was accompanied by a poorer
fit at another wavelength. This is probably because of the
different size distributions for each of the wavelengths. The
compromise obtained in the MS case gives a reasonably good fit to
FPC data for all wavelengths rather than good fits for two
wavelengths and a bad fit for the third as obtained often in the
SS case. .

The uncertainties in the parameter estimates were not improved

by the use of MS corrections. The percentage errors in the retrieved
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parameters were much the same for all the results presented here,
except when data for only two wavelengths was considered, in which
case they were slightly increased.

Comparison of the results obtained for haoth the two-~ and
three-wavelength data sets, suggests that the extra wavelength
in the latter case does lead to more rapid convergence and lower
uncertainty in the parameters. Further work, however, is needed

to confirm this result.

(ii) Suitability of the two-term bimodal model for NC(E).

The results presented here suggest that Model for NC(r) is a suitable mo
for representing aerosol size distributions. The model gave good fits to
the FPC data and the retrieved size distributions agree rather well with
the ground truth data. It should be pointed out that the ground truth
measurements were for May 7, whereas the retrieved results were for
May 6. Here the assumption that there was no significant change in the
aerosol size distribution between May 6 and May 7, appears to be consis-

tent with conditions of clear sky prevailing during those two days.

(iii) Difficulty in retrieving surface albedo from solar aurecle data.

The poor results obtained for the albedo, when it was treated as
an adjustable variable, suggest that it may not always be possible to
get good estimates for the albedo by inversion of the solar aureole
data. However, it does appear that a reasonable fix on the albedo
could be obtained by trying several different estimates of A, and

selecting the final retrieved A value which gives the best fit to the

F data.
PC

(iv) Validation of the solar aureole method.
Thus, in spite of the fact that work still needs to be done in

further improving the accuracy of retrievals, we have been able to
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show that the solar aureole technique is a simple, practical, and
accurate method for determining atmospheric aerosol size distributions.
One concludes, therefore, that measurements of angular distribution of
forward scattered (aureole) radiation - at one or more wavelengths -
provide an accurate means of obtaining the columnar size distributions
of atmospheric aerosols. Since the solar aureole measurements were
ground-based, the columnar size distributions obtained were essentially
those of tropospheric aerosols, as they constitute the bulk of

atmospheric aerosols.

(v) Recommendation for using satellite-based solar aureole technique.

(2

Inasmuch as the objective of this work was to develop a viable
simple and accurate technique for measuring the average size distri-
bution of atmospheric aerosols from solar aureole measurements, this
effort was part of a research program, under NASA support, to develop
a satellite-based technique for measuring aerosol size distributions
and concentrations from multispectral measurements of scattered radiance
of the sunlit atmosphere in both the horizon-viewing or downward-viewing
modes, with the sun in any known position with respect to the satellite.
An obvious question, therefore, arises, namely, can we use the forward
scattering technique for satellite-based measurements of size distri-
bution of atmospheric aerosols -- especially stratospheric — on a global

basis? The answer is decidedly yes. Forward scattered limb radiance

would then be those that are made close to the sun during the satellite
sunrise or sunset events. It should be pointed out that retrievals of
aerosol size distribution from scattered radiance can be achieved with
the sun in any angular position with respect to the satellite but the
forward scattered radiance measurements provide the most accurate size

distribution retrievals.

(a) Advantages of satellite-based scattered radiance technique.

Following are some of the advantages of the scattered radiance technique:
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(1) No restrictions are placed on the sun's location, so that
continuous or intermittent measurements can be made of the aerosol
size distribution during the entire sunlit portion of the orbit,
which will shed information on the temporal behavior of stratospheric
aerosols and their sources and sinks. However, the most acc;rate informatic
about aerosol size distributions, we believe would be obtained from forward
scattered (aureole) limb radiance measurements when the sun's disk is close
to the horizon.

(2} Because of the measurements of angular distribution of the
scattered radiance, it will be possible to make accurate retrievals of
aerosol size distribution, which are presently not available on a global

basis.

(3) 1In addition, by making polarization measurements of
scattered radiance, it should be possible to retrieve the aerosol

refractive index, which is sensitive to polarization.

(b) Inversion codes for satellite-~based radiance measurements.
The computer codes needed for inverting the scattered radiance measure-
ments have been developed over the last six years under NASA
support (Refs. 20 and 21) for retrieving profiles of the size
distribution, concentration, and total loading of aerosols from
simulated satellite-based multi-spectral scattered radiance
measurements. Also, the technology for making scattered radiance
measurements exists, as evidenced by the highly successful measure-
ments of the direct solar radiation made by the SaM, SAM II, and
SAGE radiometers during satellite sunset/sunrise events (Ref. 22).
The one thing that is lacking is a set of well-defined, calibrated,
multispectral, satellite measurements of scattered radiance.

It is, therefore, strongly recommended that forward scattered
(solar aureole) multispectral measurements be performed with the
help of satellite-based radiometers and photoggaphic cameras to
obtain vertical profiles of the size distribution, in addition to

the concentration, of atmospheric aerosols.
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SECTION 3

MULTISPECTRAL SOLAR EXTINCTION MEASUREMENTS TO
DETERMINE AEROSOL CHARACTERISTICS

In a recent paper, Box and Lo (Ref. 57) first proposed the use of
an approximate method for the fast retrieval of aerosol size distribu-
tions from multispectral optical depth measurements. The method has
subsequently been used by Russell et al. (Ref. 58) for on-line data
analysis. The motivation behind the work reported in this paper was
twofold--one to determine the sensitivity of the approximate method to
the differences in the two sets of wavelengths (one used for measure-
ments, and the other for computing the data base of optical depth
values); and two, to determine the accuracy of size distribution
results obtained by the use of the approximate method by comparing
the retrievals with those obtained by a numerical nonlinear least
squares (NLLS) method. The development of fast retrieval algorithms
is of great importance to the efficient handling of large quantities
of optical depth data. In this paper, we discuss the results of
applying the two retrieval methods--the approximate and the NLLS--to
multispectral aerosol optical depth data to retrieve the aerosol

columnar size distribution.

(1) Multispectral solar extinction mzasurements

The solar extinction measurements were made with the help of a
multispectral solar radiometer during the University of Arizona's
Aerosol and Radiation Experiment (UA-ARE), May 6-19, 1977 (Ref. 51)

The total optical depths T.,()\) were obtained for seven wavelengths

T

given in Set No. 3 in Table 3.1, by the Langley plot method for 8 days
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TABLE 3.1. Wavelength Filter Sets (Nos. 1, 2, and 3)

Wavelength Wavelengths
set no. A (um)
1 0.3 (0.05) 0.8
2 0.387, 0.501, 0.590, 0.677, 0.849, 1.060, 1.228
3 0.44, 0.5217, 0.5556, 0.6120, 0.6708, 0.7797, 0.8717

during May 6-19, 1977. The scattering optical depth TM(A) for the
molecular atmosphere was obtained with the help of tables and surface
pressure measurements; and TOB(A), that for ozone absorption was
computed by the King and Byrne (Ref. 49) method. Then the particulate
optical depth TP(K) can be obtained from the relation
= - +

T, () TTO\) [TM()\) 1030\)] (1)
Eight sets of data for TP(A), shown in Table 3.2 wereprovided to us
by Professor John Reagan, University of Arizona. The aerosol optical

_.l]

-3
depth TP(X) is related to the altitude-size distribution n(r,z) [cm um
. . , =2 -1 .
and the columnar size distribution Nc(r) [ecm © um 7] by the following

relations

~
>
I

g_(A,z) dz

J, o

= Jm Jm nrz 0 (x,m) n(r,z) dr dz
o ‘o EXT

® 2
= JO Tr QEXT(x'm) Nc(r) dr (2)
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!

where Q is the extinction efficiency factor, x = 2mTr/A is the size

EXT
parameter, A is the radiation wavelength, r is the particle radius

(um) , z is the altitude (km), G_ is the particulate volume extinction

P

.. -1 .
coefficient (km ) at altitude z, and m is the complex aerosol refractive

index.
Next we shall discuss the retrieval of the columnar aerosol size
distribution Nc(r) from the seven channel TP(X) data, by the use of

the approximate and NLLS nethods.

{ii) Retrieval of the size distribution- from TP(A) data

In both the retrieval techniques--the approximate and the NLLS--
one assumes that the general characteristics of the atmospheric aerosol
size distribution can be represented by an analytic model. Eight such
analytic models, that have often appeared in literature, have been
discussed in Ref. 46. The analytic model selected for this work is
the popular Deirmendjian modified gamma (Haze H) distribution, which

is written as
N _ (r) = L r e (cm m ) (3)
o 2 P1 P H

with P, and p, as the two adijustable parameters. The mode radius of the
size distribution is r, = 2/p2 and concentration of particles

is equal to P, - Nc(r) is related to TP(A) by Eg. (2). It is assumed
that the aerosol refractive index is m = 1.5 - i(0) and remains

esentially constant for the near UV, visible and near IR wavelengths being

considered in this paper.

The two retrieval methods and their results are briefly described

as follows.



A. Approximate Method. The approximate method of Box and Lo is

essentially a table look-up method, with a difference. The table is
constructed by calculating TP at each selected wavelength, and then

approximating this data set with a power fit, i.e.,

- -a
T(A) = B(A/Ao) / Ao =1 um (4)

p, 1s merely a scaling parameter, which we set to unity, and then allow

1

p. to vary over a suitable range of values. Thus o = a(pz), B = B(pz).

2

A different table is produced for each refractive index of interest.
(Note that we could also have used an exponential function in place of
the power law of Eg. (4), but have chosen the power law form because
of its universal acceptance.) Note that, since we only extract two
parameters from the data, we are only able to infer two parameters of
the size distribution. Thus, we have selected a two-parameter model--
Haze H (Ref. 57).

When a set of experimental data is obtained, it is approximated
by the power law form, Eg. (4), and the experimental o and 8 values
obtained. From the tabulated values of o, the optimum value of P, is
extracted. Next the value of B for that value of P, is obtained from

its table. Finally, the value of Py is obtained from the relation

(Ref. 57).

p, = B(experiment) / B(pz) (5)

1
In Fig. 3.1, we plot & vs p, for the three wavelength sets of

Table 3.1, and for a refractive index of m = 1.5 - i0.0. Such graphs
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FIG. 3.1. Plots of o as a function of p, for the three wavelength sets.

are suitable for hand analysis: for automatic analysis (e.g., Ref. 58),
a tabular form is required. 1In this plot, set no. 1 corresponds to

Box and Lo's original wavelength set, set no. 2 corresponds to the

wavelengths used in the work of Russell et al (Ref. 58) and set no. 3

corresponds to the wavelengths used in UA-ARE experiment (see Table 3.1).

B. Nonlinear Least Squares (NLLS) Method. The nonlinear least squares

(NLLS) method assumes a suitable analytic form for Nc(r), with a number
of undetermined parameters, p, and attempts to find that set of parameters
which minimizes the sum of squares of the differences between the observed

and calculated Tp values. In order to compare these results with those




from the approximate method, we have assumed the functional form of
Eq. (3), with pl and p2 as the parameters to be determined. Because T
is linear in Pyr leaving P, the only nonlinear parameter, it is always

possible to find a global minimum.

Since the NLLS method is iterative, it is necessary to start with
an initial guess for the unknown parameters: the NLLS code then provides
successively better estimates of the optimum parameter set, along with
their uncertainties and correlation coefficient (see Ref. 54). One
suitable source of the initial guess is, of course, the approximate
method of Box and Lo. However, with the simple functional form of
Eg. (3) virtually any set of initial parameters will suffice: for a

more complicated function, this may not be the case.

{1ii) Results

In this paper, we analyze B8 data sets taken in Tucson, Arizona in
May of 1977. These data sets are presented in Table 3.2, along with the
resulting & and B values, and the correlation coefficient, C, (Table 3.3)
which indicates the accuracy of the power-law fit. These data sets were
analyzed using the tables generated by using the 3 wavelength sets
of Table 3.1 (see Fig. 3.1), as well as using our NLLS code. The results
are presented in Table 3.4.

If we assume that the answers corresponding to wavelength set 3
are "correct", then we see that the answers obtained from the other
two wavelength sets show systematic errors. This, of course, is Jjust
what would be expected from an examination of Fig. 3.1, and confirms our

suggestion that the approximate method can only return reliable results
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if the analysis table is constructed using essentially the same wave-
lengths as the ones used for measurements.

We now compare the results of the approximate method, using
wavelength set 3, with the results from the NLLS method. For data
sets I, II, VI, VII and VIII the agreement is good to very good. (Note
that we have decided not to quote the uncertainties in P, as given by
the approximate method, as these uncertainties compound rapidly, as
discussed in Ref. 57.) For data sets III and IV the agreement is
reasonable, while for data set V the agreement is only fair.

In order to understand the reason for the discrepancies we return
to Table 3.3, and take note of the correlation coefficient C for the fits.
For data sets III and V, these values are quite low, indicating that a
power law fit to the data was not very satisfactory. For data set IV,
although the correlation cocefficient C is quite high, the uncertainty
in the value of 0 is somewhat larger than usual. This is reflected in

the large uncertainty in p, as produced by both methods.

It should be noted that in Ref. 59 plots are shown of columnar
size distributions (i.e., ch/d log r) retrievals for 3 of the 8 sets,
namely, sets I, V, and VIII for May 6, 15 and 18, 1977, respectively.
The plots appear to be bimodal, with the first mode for sets I and V
having P, values of about 8.0 and 2.5, respectively. The set VIII plot
is practically a straight line with a slight curvature and an inflexion
point, indicating the presence of a mode. Comparison between our results
and those of King, et al.shows that for set I the P, values agree reasonably

well. For set II, the p. values differ by a factor of 4, our value being
2



the higher one. For set III, simular comparison of the P, values is not
possible. One explanation for these discrepancies is that the approximate
and the NLLS methods depend on the choice of an analytical model, such as
Haze H, whereas King et al.(Ref. 59) employ a form of the constrained linear
inversion approach proposed by Phillips (Ref. 60) and Twomey (Ref. 61).
Discrepancies arising due to the use of different inversion approaches

do not detract from the intent and the conclusions of this paper.
Information about the Ref. 59 results are included here for the sake of

completeness.

(iv) Conclusions

The results of this analysis make it clear that the results of
the approximate method can only be considered reliable if the wavelengths
used to construct the analysis table are the same as (or at least close to)
the wavelengths at which the measurements are made. As the computational
effort to construct such a table is quite small using a modern computer,
this should not prove an impediment to the use of the approximate method.

When we compare the results of the approximate method, using wave-
length set 3 (the "correct" set) with those from the NLLS method, we
find that, in general, the two show good agreement. However, when the
correlation coefficient of the power-law fit to the data drops, or the
uncertainty in the computed value of & rises, we usually note a
discrepancy between these two results. This is not altogether surprising,
as it indicates that the Haze H model is almost certainly not an accurate

description of the true aerosol size distribution.



Overall then, we may conclude that if an appropriate wavelength set
is used to generate the analysis table, the approximate method is
capable of producing reasonably accurate size distribution retrievals
(mode radius to within 10% to 15%, for example), at least in those
cases where the actual distribution is approximately of the Haze H
form. An abnormally low value for the correlation coefficient of the
power law fit to the data, or an abnormally large uncertainty in the
experimental value of o (or B), are probably good indicators of cases

where this model is not suitable.



SECTION 4

FORWARD SCATTERING CORRECTIONS TO AEROSOL EXTINCTION MEASUREMENTS

4.1 FORWARD SCATTERING CORRECTIONS TO TRANSMISSOMETRY MEASUREMENTS
OF EXTINCTION IN POLYDISPERSE AEROSOLS

In Ref. 62 results were presented of a parametric study of the
forwardscattering correction factor R and the complementary error factor
E for monodispersions. In this section the results of a similar study
carried out for spherical polydispersions of size distribution
n(x) [cm—Bum_l] r being the radius in Um, will be presented. For the

P

sake of clarity, only the results obtained with the use of simple unimodal
size distributions of the modified Gamma type, such as Deirmendjian
models (Ref. 40) Haze M, Haze H and Cloud C3 (referred to as Haze C in
this section), are presented here. Results for other real size distributions
can easily be obtained in a similar manner. The behavior of both correction
and error factors, i.e., R and E, averaged over each of the three size
distributions, will be discussed here as functions of each of the following
parameters: the mode radius ro the polydispersity or the spread of the
size distribution, and the real (m') and imaginary (m") parts of the complex
refractive index m = m' - im". The computations have been carried out
with both the exact Mie theory solutions in explicity closed form and the
Rayleigh diffraction theory approximation, as explained in Ref. 62. The
results of such a study are extremely useful in obtaining the optimum
experimental design parameters for the measurement of extinction

coefficients in particulate media (Ref. 63).

(i) The Transmission Law (Bouguer's Law)

The transmission law for an electromagnetic plane wave passing

through a homogeneous polydisperse aerosol medium (Fig. 4.1) is given
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FIG. 4.1. Plots of the three Deirmendjian size-distribution
models, Hazes M, H and C, for a mode radius of 1 um.



by Bouguer's Law, namely

T =1 T (1)
where

T(A) = Bext(k) L (2)
and

Bext(x) - Bscat(l) * Babs(l) (3)

As in Ref.58, for the sake of clarity, the molecular contributions to
Bext will be ignored here. Then for polydisperse aerosols of size

distribution n(r), cm—3um—l, the coefficients are defined by

r
2
Bj(A) = f ﬂrZQj(x,nn n(r) dr, j = ext, scat and abs (4)
r
1
All the quantities in Eg. (4) are the same as defined in Ref. 62, except

that the factor Np(r) for monodisperse particles has been replaced here
2

by the operator f n(r)dr, where r. and r. are lower and upper limits
r

1 2
1

of radii. Aerosol size distributions are discussed in a later section.

(ii) Forward Scattering Corrections

A, Exact Mie Theory Formulation

Because of the fact that forwardscattered light invariably
enters the detector view cone, Bouguer's law, as defined in Eq. (1),
cannot be used to obtain the true optical depth T in a transmission
experiment. But instead, one obtains the apparent optical depth T'
related to the apparent volume extinction (B’ext) and scattering

(B'scat) coefficients, which are distinguished from the true quantities

B and Blsc is clearly not affected by the

ext respectively; here, R

at abs



forwardscattering. Thus,

Béxt - B;cat * Babs (apparent) (5)

The Mie efficiency factor Qscat is based on the total amount

of light lost from the beam by scattering by a particle in all directions:
and Qécat' on the amount of light lost by scattering in all directions

except within a cone of half-angle 8 in the forward direction, so that their

difference is given by

6
VL TR T S
Qext ~ %ext = Qscat ~ Zscat = x2 j (i, + i,)sin 6'ad
0
__I (x,m,9) (6)
2
X

where I(x,m,8) is defined in Egs. (28) and (29) in Ref. 62.

From Egs. (3) and (5), one obtains

Bext - Bext = 8scat - 8scat
T
=T [ r n(r) (Q wt Qext ) dr
r
1
r
o Ll r2n(r)QEdr
1
i r2
= — [ n(r) I(x,m,8)dr (7}
k2
r

1
where E (and R) are defined in Egs. (10) and (9) of Ref. 62,
Then a correction factor R and an error factor E, averaged over the
particle size distribution between the limits rl and r,, may be defined
by



R = 8 ,B =1-F (8)

ext ext
where
- ™ o)
E = ——————5— f n(r) I(x,m,0)dr (9)
Bextk rl

Note that R = R (n(r),m,0).

B. The Approximate Rayleigh Diffraction Formulation

From Eq. (12) inRef. 62 and Egs. (6) and (8), the Rayleigh
diffraction approximation to the forwardscattering correction for a

polydispersion is given by

R=g3 T erzn(r)Q(x,m)%-{l + Jz(xe> + Ji(xe)} dr (10)
ext 0

where Jo and J, are Bessel functions of the first kind and of orders zero

1

and one, respectively.

(iii) Corrected Transmission Law

By inserting the correction factor R into the transmission
equation, one can account for both the direct and forwardscattered radiation.
Thus

T = IO(X)e-T'(A) (11)



where

(L

T'(A) daL B!
ex

Jo t

rL, _

= ) da Bext R (n{r),0)

rL r2 2

= dak I dr Tr Q(x,m) n(r)R(x,0) (12)

0 r,

From the discussion in Ref. 62, it is clear that for parallel beam trans-

mission systems with an open-detector, the half-cone angle 68 = 8(%), so that

2 2 ~
T'(A) = TL I dr r Q(x,m)n{(r)R(x,L) (13)
r
l
where
ﬁ(x,L) = -E JL df R{x,0()) (14)
0

and for a lens-pinhole system 86 = constant, so that R = R(x,0), independent
of 2. For the discussion of the experimental design considerations of the

two detector systems, see Ref. 62.

(iv) Aerosol Size Distributions

Several analytic representations of aerosol size distributions appear
in the literature. In this paper, the behavior of R and E is investigated
as a function of the mode radius ro the spread of the size distribution
and the complex refractive index m( = m' - im"), the upper and lower limits
of radii being lO—2 and 20 um. For the sake of simplicity, three of the
Deirmendjian models (Ref. 46), namely, Haze M, Haze H and Cloud C3 (referred

to here as Haze C), were selected for representing different polydis-

persities of aerosol size distribution n(r). Since ro is varied between



the radii limits 10”l and 10 um, the three models are used here in a
more general way than was their original intent. It is in that sense that
model Cloud C3 is referred to as Haze C. The limits of integration over

r are 10-2 and 20 um.

The expressions for the n(r) models and their corresponding mode

radii rm are given as follows:

(a) Haze M: n(r) = r e_/E;, r = 4/b (15)

(b) Haze H: n(r) = rze—br, rm = 2/b (16)
_ 3 1/3

(c) Haze C: n(r) = r8e (br) px = [ g—] b—l (17)

Note that any normalization or scale factor in the size distribution will
cancel when E and R are evaluated. Thus, although E and R do depend on the

shape of the size distribution, they do not depend on the total number of

particles.

The difference in the shape of these three models is illustrated in
Fig. 4.1, where each has rm = 1.0 um and n(rm) = 1.0 cm-3Um-l. For want
of a better terminology, the "spread" of a size distribution will also
be referred to as "polydispersity" of the size distribution in this
paper. For example, Haze H will be referred to as more "polydisperse”
than Haze C, and in the same vein it will be stated that Haze M has a
higher "polydispersity" than Haze H. It should be noted here that there
exist other terms in the theory of distribution functions to express the

same quantity.



Perhaps the major disadvantage of the Deirmendjian models is that
their fall-off behavior for large radii is too sharp: many experimentally
measured distributions show a power law behavior, at least in the optically
active region. For this reason, we have also considered a power law dis-

tribution, given by

n(r) = r”, 10°Am< r € 15 um

and allowed Vv to vary between 2 and 4. Note that one cannot talk about

either mode radius or polydispersity for a power law haze, only slope, V.

(v) Computaticnal Considerations

A parametric study of the correction factor R and the corresponding
error factor E was carried out as functions of different combinations
of rm, 8, m' and m", whose values occur within the ranges 0.1 < rm
< 10um, 0° < 6 < 10°% 1.33 <m' < 1.65 and 0.0 < m" < 0.1.

The computations of R (and E) in EQ. (8)_(and Egq. (%)) are made by

using the closed form relations given in Ref. 58 for I(x,m,9). The

computations of R for the approximate method are made by using Eq. (10).

(vi) Discussions and Conclusions

The parametric study of R was carried out as a function of many
different combinations of rm, B8, m' and m", but for the sake of clarity
the results of only a few judiciously selected combinations are presented
in the following sub-sections. As the Deirmendjian models are so different
from the power law model, we shall treat each separately, starting with

the Deirmendjian models.



A. Results for R and E as functions of rm and m

Figures 4.2 (a, b, and c¢) and 4.3 (a, b, and c) illustrate the
behavior of R and E respectively, as functions of r in the range 0.1

O, and lOo) and

to 10.0 um, for three different half-cone angles (1°, 4
five different refractive indices (1.33, 1.65, 1.55 - i(.05), 1.55 -

1(0.1)), for each of the three models: (a) Haze M, (b) Haze H, and

it

(c) Haze C, respectively. The computations were made for A 0.55 um.

For Haze M (Fig. 4.2a), the values of R rapidly decrease as T
increases from 0.1 um to about 1 um and then tend to level off to a
nearly constant value. The percentage error (Fig. 4.3a) for Haze M shows
that for small . the error E increases fairly rapidly and then quickly
levels off to a constant value which is different for each set of © and
m values. The smaller the 8 the higher is the value of r beyond which
the leveling of the values for E takes place.

For Haze H and Haze C, the plots of R make an inverted integral
sign (1) within the rm range of 0.1 um to 10.0 um, their steepness
increasing with the decrease in polydispersity of the size distribution.
From Figs. 4.2 and 4.3, we see that for 8 = lo, therevis virtually no m=-
dependence for any of the hazes. For this reason, very few symbols have
been drawn on these lines. For 6 = 40, we see that a small m-dependence
has started to appear, being most clearly visible in Fig. 4.3, due to the
logarithmic scale for E. However, for 6 = lOo, a clear m-dependence can
be distinguished, especially in Fig. 4.2. We see, in general, that R is

lowest for m = 1.33, and that there is little difference between the
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FIG. 4.2a. Plots of the correction factor R versus mode radius
for three values of 8 and five refractive indices: Haze M
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FIG. 4.2b. Plots of the correction factor R versus mode radius
for three values of 8§ and five refractive indices: Haze H
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FIG. 4.2c. Plots of the correction factor R versus mode radius
for three values of 8§ and five refractive indices: Haze C
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curves for m = 1.55 and 1.65. However, the presence of a small amount of
absorption immediately raises R, although the actual value of this

absorption appears to have little effect.

Effect of Polydispersity: Comparing the R (and E) vs rm plots
for the three models, one can reach the following conclusions:

It can be seen from the plots presented here that, in general,
for given values of 6 and rm, the higher the polydispersity the higher
the error, E. This is due to the predominant forward scattering of the
large particle component, implied by the increased polydispersity. We
should note, however, that the saturation values of E and R (both = 0.5)
are not affected by polydispersity, but that these values are reached
"sooner" for a more polydisperse haze than for a less polydisperse haze.
A saturation value of E = 0.5 implies a Qéxt value of 1.0. An
explanation for this is as follows. For the same value of 6, the
amount of scattered radiation collected at the detector increases as
the large particle component increases which, in effect, reduces Q'from
a value of about 2.0 (assumed for large particles) to a minimum value
of 1.0. The saturation value for E tends to be about 50% for 0 = 10°
and 45% for 6 = 4o for Haze M, a difference of about 5%. This difference
however, tends to decrease as aerosol size distributions become less

polydisperse, implying smaller number of large particles, so that the

saturation value of E approaches 50%.



B. Results for R and E as a function of 8

Figures 4.4 (a, b, and c¢) show the behavior of E as a function
of 6 for six values of mode radius (0.1, 0.15, 0.50, 1.0, 2.5, and 10.0 um)
and m = 1.55 for each of the three size distribution models, respectively.
Again, the effects of polydispersity are quite apparent in the increasing
spread of the E vs 6 plots for lower rm values (below 1.0 ﬁm) as the
polydispersity decreases.

Figure 4.5 (a, b, and ¢) illustrate the behavior of R as a
function of 8 for five values of r (0.1, 0.4, 1.0, 4.0, and 1.0 um).
Symbols without a cross éepresent the Mie theory results and those with a
cross represent the approximate results. The discussion of their com-
parison will be presented in the next section. Only the Mie theory
results will be discussed here. The choice of different ro values for
the cases shown in Figs. 4.4 and 4.5 was merely for the sake of the clarity
of the graphical display. The plots in Figs. 4.5 (a, b, and c) also show
that the correction factor R falls rapidly with increasing 0 for large
rm values and then levels off quickly to a value close to 0.5. For large
particles, the plots are practically identical for all the three models.
However, for small values of rm, there is a considerable spread in the

values of ﬁ.

C. Comparison between the Mie Theory and Diffraction Formulation

Consider Figs. 4.5 (a, b, and ¢) and 6(a, b, and c) representing
the R vs B results for nonabsorbing (m - 1.55) and absorbing (m = 1.55 -

i 0.05) aerosols, respectively. Symbols with cross represent the
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results due to Rayleigh formulation and those without cross the results
due to Mie theory. Figures (a), (b) and (c) represent the models:
Haze M, Haze H, and Haze C, respectively.

Figures4-5 (a, b, and ¢) show that, for nonabsorbing aerosols,
the agreement between the Mie and the Rayleigh approximation is not as
good for small r as it is for large X for all three models. This is
to be expected since the Rayleigh diffraction formula Eq. (13) is only
valid for large particles. On the other hand, the agreement for both
large and small rm appears to be better for Haze M (more polydisperse
aerosol) than for Haze C, indicating that for more polydisperse size dis-
persions the agreement between the Rayleigh formulation and the exact
formulation tends to improve. Comparison of these results with those for
monodispersions in Ref. 62 also substantiates the trend. The remarks for
the case of nonabsorbing aerosols apply to the case of absorbing aerosols
(m = 1.55 — 10.05) as well, except for the additional conclusion that the
agreements between the Rayleigh and Mie results for all models are con-
siderably better for the absorbing aerosols than for the nonabsorbing

(see Figs. 4.6 (a, b, and c¢)). The latter conclusion is again in line

with the one made for monodispersions in Ref. 62.

D.  The Error Contours Diagram in r - 6 plane
m

Figure 4.7 shows theerror contours for 10% (dashed line) and
5% error (solid line) for m = 1.55 and the models M, H and C. The
curves indicate an inflection point in Haze M (10%) curve and- Haze H
(5%) at about 6 = 1.5° and 8 = 60, respectively, in the range

rm ~ 0.1 um.
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E. Experimental Design Considerations

Equation (l4a) shows how the forwardscattering correction fac-
tor is included in the transmission law to obtain the measured (or
apparent) optical depth T'. Comments about the two aforementioned
experimental geometries, discussed in Ref. 62, also apply to the case
of polydisperse aerosols, in additicn to the following comments
regarding the effects of the polydispersity on the experimental
design.

In Ref. 62 (Fig. 4.6), results were plotted for R as a function
of x8 for the two aforementioned experimental geometries. For the
polydisperse case, however, ﬁ(xe) has to be further averaged over the
volume extinction coefficient, to yield ﬁ, the "path-averaged cor-

rection factor" for polydisperse aerosols, defined by the equation

2 2 - 2. 2
= f dr ¢ n(r/rm)Q(kr)R(kre) f dr r n(r/rm)Q(kr) (18)

rl rl

D>

The symbols cap(”) and bar(-) denote averaging over the path length

and particle size distribution, respectively.

As expressed by Eg. (18), it is not possible to express R as a
function xme = krme, which would enable one to make some sort of com~
parison with the results for the monodisperse case. However, such a
comparison becomes possible if we make the further assumption that

Q@ = 2, which is a reasonable one for the case of large particles for

which the Rayleigh formulation is valid. Then, Eq. (18) reduces to



_ s 2 2 a
R = R(krme) = [ dz z n(z)R(krhlez) f 2 dz 22 n(z)dz (19)

Zl zl

where
z = r/rm, zl = rl/rm, z, = r2/rm (20)

~

R, obtained by using Eq. (19), can easily be plotted as a function of

y(= krme), for the three size distributions for each of two detector

systems, as shown in Fig. 4.8. The resulting plots are similar in shape
to those for the monodisperse aerosols in Paper I, with the values
of R converging to 1 and 0.5 for y » O and «, respectively. However,
a comparison between the two sets of plots easily shows that increasing
the polydispersity results in a translation of the curves toward the
lower y values, or, in other words, maximum gradients for R occur at
lower values of y.

In order to make accurate transmission measurements, it is impor-
tant that the experimental design be based on those values of y for
which either R+ 1 or R > 0.5. But to be able to do so, some reason-

able prior knowledge of both the mode radius ro and the polydispersity
is required.

F. A-Dependence of R and E

All the results shown in the various plots were computed
for X = 0.55 um. For any other value )A', these same results are valid
for the three models, Haze M, Haze H, and Haze C, provided rm is replaced

by r& such that

ré/l' = rm/A (21)
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A more detailed parametric study of the behavior of the
forwardscattering effects involved in different transmission measurement
experiments designed to measure optical extinction and visibility in the
atmosphere will be presented in a separate publication.

G. Results for Power Law Size Distributions

In Fig. 4.9 (a, b, and c), we present a few selected results
for the case of a power law size distribution. Figures 4.9a and 4.9b
show a series of error contours in 8 - v plane, for refractive indices of
1.33 - i0.0 and 1.55 - 10.05, respectively. These two refractive indices
usually produced the largest and smallest errors (respectively) for a
given 8 - v combination. Since an increase in Vv leads to a reduction
in large particle content, the shape of these plots is inverted compared
to those in Fig. 4.7.

Figure 4.9c shows plots of E vs O for a refractive index of
1.55 - 10.05, and for five selected values of v. The Rayleigh approxi-
mation results are included for comparison. (Again, symbols without a
cross represent Mie results; those with a cross represent Rayleigh results.
The shape of these curves is simular to those in Figs. 4.5 and 4.6. We
see from Fig. 4.9c that the Rayleigh approximation is good for this
complex refractive index over the full range of V values considered.
As in the case of the Deirmendjian models, the Rayleigh approximation is

not as good for a real refractive index.

(vi) Summary Remarks

From the foregoing discussion, it is obvious that the transmission

law as expressed by Eg. (1) cannot be used except in the case of small
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particles, for which it is merely a good approximation. The effect of
not only the particle size distribution, refractive index and shape
but also the geometry of the optical system on the apparent volume
scattering and extinction coefficients must be considered.

This study shows that the R (E) decreases (increases) as the
size distribution becomes more polydisperse. This result can be
explained by the fact that as the polydispersity becomes greater, the
relative proportion of larger particles increases, resulting in an
increase in forwardscattered radiation within narrower angles. The
results are valid for conditions in which multiple scattering effects
can be neglected, and only single scattering predominates.

The lens-pinhole detector geometry yields the most accurate trans-
mission/extinction results, provided the design conforms to the pre-
scription that the value of y in Fig. 4.8 should be such that R is close

to either 1.0 or 0.5.
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4.2 FORWARD SCATTERING CORRECTIONS TO SOLAR RADIOMETRY

Following the extensive discussions of Angstrom (Refs. 64 and 65 and)
others (Ref. 66), it is well known that measurements of attenuated direct
solar radiation by pyrheliometers and sun photometers are subject to
errors due to the presence of diffuse sky radiation within the detec-
tor's field of view (FOV). Diffuse radiation consists of both singly-
and multiply-scattered radiation. The amount of diffuse radiation
depends on the instrument aperture and the characteristics (amount and
kind) of the scatterers in the atmosphere. The results discussed by
Angstrom (Refs. 64 and 65) were based on a summary of a great number of
measurements of circumsolar radiation; and those by Shaw (Ref. 66), were
based on computations of diffuse sky intensity using the Deirmendjian-
Sekera perturbation approach (Ref. 41l). 1In this section, we show how,
for relatively clear atmospheres, these results can be understood in
terms of the so-called forward scattering corrections to optical extinc-
tion measurements discussed in two earlier papers (Refs. 62 and 67), and
the multiple scattering contributions due to molecules alone. Under
moderately clear sky conditions, the major contribution to the diffuse
sky radiation entering the FOV of the detector at the ground-level is
single scattering (SS) by aerosol particles and molecules and multiple
scattering (MS) by molecules. Following the perturbation approach, we
shall assume here that the MS contributions due to aerosols are negligible.
Discussions of these SS and MS contributions will be presented for several
typical aerosol size distributions. It will be shown that for clear sky
conditions, errors due to molecular scattering may be neglected for many

practical purposes.



(1) Scattering Contributions

Consider a radiometer with a circular aperture having a view cone
of solid angle QD, and its axis centered on the solar disk. Figure 4.10
shows (schematically) the geometry involved. The detector FOV is assumed
to be circular, with a half-angle wD. Angstrom and Rodhe (Ref. 64) have
shown how to obtain an effective aperture half-angle in the case of a
rectangular field-of-view, and it will be assumed that such a procedure
has been performed in the case of such a non-circular field-of-view.

The total spectral irradiance I()) at wavelength A, measured by the
receiver, is composed of contributions IDIR(X), due to attenuated, direct

solar radiation, and IDIF(A), due to diffuse sky radiance entering the

FOV, so that

I(A) = (\) (22)

oM * Inrp

where IDIR(A) is given by Bouguer's law, namely

—T(yo) sec GS

= 2
IDIR(A) IO(A) e (23)
and IDIF(X), by the integral of sky radiance over the FOV,
IDIF(A) = IQD B(X) dQD (24)

Here, IO(X) is the unattenuated solar spectral irradiance incident on top
of the atmosphere; Ss is the solar zenith angle; T(yo) is the total optical
thickness above the point of observation (at altitude yO km), and B(A) is
the diffuse sky radiance within the elemental solid angle dQD.

In this paper, we restrict our discussions to the case of clear to

low turbidity sky conditlons, so that the major contributions to diffuse



sky radiation entering the FOV can, for all practical purposes, be assumed
to be due to single scattering by particulates and molecules (ISS) and

. . M
multiple scattering by molecules (IMS) alone. Thus,

M

IDIF(A) = ISS(A) + IMS(A) (25)

A. Single Scattering Contribution

Fig. 4.10 illustrates the SS geometry. Focllowing Green et al
(Ref. i), the SS contribution to the sky radiation is given by the expression

(with the A-dependence suppressed):

wD 27 -T(y) sec es
ISs = Io J:o dy Jo sin Y dy Jo d¢ e sec 6

[ -(T(yo) - T(y))sec?H
* \ Fp(wlY) + FM(UJ,Y)} e (26)

where the volume scattering functions for molecules and particulates

(subscripts M and P) are defined by

3
16T

1 -1

FyWry) = BM(y) (1 + coszw), [km = sr ] (27a)

- : . 2
Fo(b,y) = Jo dx n(xy) i, ke, m + i, (Y, kr, m} /2k%,
-1 -1
[km sxr ] (27b)
the volume scattering coefficients, by
gn’ (m2 - 1)° .
B (y) = N_(y) [ km ]
M 3X4 Nz(o) S (28a)
S
2 -
Bp(y) = f: dr 7r n(r,y) Q_ ., (kr, m [ km T ] (28b)
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and the optical depths by

o0

- : 3} av (29)
T(y) Jy {BM(y ) + Bp(y )} ay

In the above equations, k = 27/A is the wavenumber; il and 12 are the Mie
intensities (Ref. 32); m, is the refractive index of air at 15°C and 1013 mb
pressure (Ref. 68); Ns(y) is the molecular number density at altitude y; m is

the aerosol refractive index; 8 is the zenith angle of an element of solid

angle, and is given by the relation

cos¢_ = cos ¢S cos P - sind_ sin ¥ cos w (30)

Finally, n(r,y) is the aerosol number density per unit radius at radius r

and altitude y (cm-3 um-l). It will prove useful to define the over-altitude

distribution, N(r,y), by
[o0)
N(r,y) = Jy nir,y') dy' (31)

Hence, for example, we have

® 2
TP(y) = L T Qext(kr, m) N(r,y) dr (32)

B. Approximate Analytical Solution

Equation (26) involves a triple integral, and in general would require
numerical computation. However, since most modern sun radiometers are
designed to have small fields of view (wD < g° ), it seemed worth exploring

the possibility of making some reasonable approximations, and performing



analytically as many of the integrals as possible. Although this leads

to a small loss of accuracy, we feel this loss is more than outweighed.

by the insight that may be gained into the dependence of ISS on the

different parameters and variables. The details of these manipulations,

along with a discussion of their accuracy, have been relegated to

Appendix 4A, leaving a discussion of the results to be presented here.
Provided that wD is reasonably small and ¢S not too large

(¢s S 600), we may perform the integrations over w and y to arrive at

the following expression:

= I sec ¢_e sin V¥ dw{f‘l',(‘b,yo) + Fw,yO)}

-T(y )sec ¢ ¥p
o s
Ioo 2m J

o]

where the columnar scattering functions are defined by

F'l,y) = r F(y,y) dy
YO

The integral over Fé(w,yo) depends on the particulate phase function

and, hence, on the particulate size distribution which, in general, may be

altitude dependent, i.e., N(r,y). However, in Refs. 62 and 67, we have

shown how to perform such integrations, at least formally, by introducing

(33)

(3

an error factor, E, or correction factor, R, which will be denoted here by

E_ and RP' and defined as:

P
o0 ‘l)D
. T W osin Y i+ i
EP = - kz J dr L a&y sin U N(r,yo) (ll 12)
p 0
Y
= . 2T ) [ D sin ¥ pl;(zy,yo) ay
P(yo 0

(35a



and R =1-E (35b)

An explanation of Egq. (35a), defining the error factor, is briefly des-
cribed in Appendix 4B. In Refs. 62 and 67 (and Appendix 4B), a bar (-) and a
tilde (~) over E and R, are used to denote the respective averaging with
respect to size distribution (i.e., integration over r)} and path length
(i.e., integration over y). For notational convenience, we omit both
these symbols from EP and RP in the main body of this paper; though it
must be kept in mind that both integrations are clearly implied here.

Thus, in Egq. (33),

v
27 J D sin Y ay F! (w,yo) TP(YO) EP (36)
0

In the molecular case, the integral over F&(W,yo) can be performed

exactly to yield

L , by 3 2 ®
2m 51ndJFM(¢,YO Yy Ay = 2m sin ¢ dy IEF.(I + cos P) BM(Y)dY
0 0 o
= TM(yO) Ey (37a)
where
1 3 1 3
EM =5 - g cos WD - § cos wD (37b)

where TM(yO) is the molecular optical depth and E\4 is the error factor
L

for extinction measurements due to forward scattering in a pure molecular

atmosphere. For

by < 10°,  E, = 3wD2/s (37¢)



Using Egs. (36) and (37a) in Eq. (38), one obtains

—T(yo)sec ¢S

ISS = Iosec 9, e (TP(yO)EP + TM(YO)EM) (38)

C. Molecular MS Contribution

In his paper, Shaw (Ref. 66) made use of the perturbation method
of Deirmendjian | (Ref. 41) to include multiply—-scattered light due to
molecules alone. Recently, we have examined (and slightly modified) this
method (Refs. 26, 27, and 50), and shown that most of the multiply-
scattered light in the aureole region can be accounted for by this approach,
at least for aerosol optical depths T £ 0.2. (For TP > 0.2, the neglect

P

of particulate MS may lead to errors, which may require a much more complete
and complicated analysis).

In Ref. 26, we showed that, at least within the aureole region,
we may use the perturbation method by simply replacing the molecular

optical depth, T by an effective molecular optical depth tM(yo) which

MI

depends on T(yo), es and on ground albedo, A. (This dependence is dis-
cussed in detail in Ref. 27.) Alternatively, we may include molecular

multiple scattering by adding a second molecular term of the form tMSEM'
Implicit here is the assumption that the shape of the angular distri-
bution of the multiply scattered light in the region of the solar aureole
(i.e., scattering angles < lOO) is similar to that of the singly scattered
Rayleigh contribution, only the magnitude differs by a factor f. For

moderately clear skies, this is a reasonably accurate approximation. Thus,

we may write

-1 sec e‘T(YO)SeC ?
MS o ¢

tMS(yo)EM (38")



and, hence, we get for the total diffuse radiation

—T(yo)sec¢S
I = I, + I, =TI seco_e {TP(YO)EP + (T, ly)) + tMS(yO))EM} (39)

t is related to the effective molecular optical depth tM introduced in
Ref. 26 by tM = TM + tMS' tMS' tM and the ratio, £ = tM/TM, are given in

Table 4.1 for a series of values of T, (covering the full visible sreactrum)

M
and TP up to 0.2. A solar zenith angle of 45° was chosen, and ground albedo
was assumed to be zero. In general, these results are not sensitive to

¢s’ unless the sun is quite low (¢S > 70°%) in the sky, in which case
spherical earth corrections have to be taken into account and most of our
approximations break down. It is possible to make allowance for ground
reflection by multiplying tM {(or £) by a factor of (1 + A). Also shown in

Table 4.1 is the ratio F = tM/TP, which will prove useful in the following

discussion.

(1i) Total Measured Intensity
From the above discussion, we see that the total irradiance recorded
by the detector is then simply the sum of Eg.(23) and Eq. (39) (c.f.,
Eq. (22)), i.e.,
—T(yo)sec 0

I =1 e {1 + sec Bs(Tp(yo)EP + tM(yo)EM)} (40)

o)
F 0.2, ~v 0.5, i . .£. .
or TP(yO) 0.2 tM(yo) 0.5, and wD N9, EM is about 0.01 (c.f., Eq. (37)),
and for typical aerosols, EP is about 0.1 (see below). So, for GS < 600,
the second term in Eq. (40) is S 0.05--i.e., the diffuse light contributes

roughly 5% to the total. For a solar radiometer with wD < 40, the diffuse

contribution is roughly 1%. Since the values of TP’ tM and 6 used in
s




TABLE 4.1: Effective Molecular Optical Depths and Related Multiple

Scattering Factors, for es and 450 and & = 0.0

TM TP tMS tM £ = tM/TM F = tM/TP
0.02 0.02 0.002 0.022 1.110 1.110
0.05 0.007 0.027 1.338 0.535
0.10 0.020 0.040 1.993 0.349
0.20 0.067 0.087 4.338 0.434
0.05 0.02 0.007 0.057 1.135 2.838
0.05 0.014 0.064 1.276 1.276
0.10 0.031 0.081 l.621 0.810
0.20 0.086 0.136 2.724 0.681
0.10 0.02 0.020 0.120 1.199 5.993
0.05 0.031 0.131 1.310 2.621
0.10 0.055 0.155 1.552 1.552
0.20 0.124 0.224 2.242 l1.121
0.20 0.02 0.067 0.267 1.334 13.338
0.05 0.086 0.286 1.431 5.724
0.10 0.124 0.324 1.621 3.242
0.20 0.221 0.421 2.104 2.104
0.40 0.02 0.243 0.643 ‘ 1.608 32.167
0.05 0.279 0.679 1.698 13.587
0.10 0.345 0.745 1.862 7.44°
0.20 0.497 0.897 2.242 4.483




these examples are probably a little bit on the high side, and since most
solar radiometers have view-cone half-angles of less than So, it is clearly
reasonable to conclude that, in general, the diffuse contribution to the
total measured irradiance will be less than, or of the order of, 1%.

With these results in mind, we may now re-write Eg. (40) as
follows:

-sec ¢ _{t(y ) -~ (T_(y)E_ + ¢ (y JE)}
T =1 o S [e] P ‘o P M“‘0o" M (41)

(iii) Corrected Optical Thickness and Sensitivity Analysis

Much of the spectral solar radiometry is performed to determine the
total atmospheric optical thickness, and therefrom, for example, the
aerosol optical thickness. Although we have just seen that the diffuse
contribution to the total measured intensity is only about 1%, we now
show that the error in the aerosol optical thickness obtained from such
measurements may suffer somewhat greater error.

(a) Corrected Optical Thickness

The apparent, or measured, optical thickness T'(yo) is defined
according to Bouguer's law, viz.,

- -T'(y )sec ¢
I=1 e °© S (42)

Then, by comparing Egs. (41) and (42), one can obtain the following
relation between the measured optical thickness and the true optical

thickness:

Ty) = Tly,) - {Tp(yo) E, + t,(v) EM} (43)

P



Omitting the y dependence, one can rewrite Eg. (43) as

T' =T ~T_E_ -
p Tp ~ ty En (44)

As will be shown below, EP is generally larger than EM by a factor of
10 or so. Thus, under circumstances in which the ratio F = tM/'rP is no
larger than, say, 2, we may neglect the molecular term in Eq. (44). (This
will clearly depend on both the radiation wavelength, and the atmospheric
haziness.) In this case, we may write Eq. (44) as

| P -
=T -1 By (45)

And further if T = TM + TP + TO , then from Eq. (45) one obtains:
T'=TM+T + T_ R (46)

Assuming that TM and TO are known, then the experimental value for the

3
particulate optical depth, Té, which may be obtained by subtraction from
T' (i.e., T' = T._+ T'!' + T. ), will be in error by a factor of R_, i.e.,
M P O3 P
LR
Tp TP RP (47)

~

Thus, we see that the correction factor, R represented by R in our

p’
earlier papers (Refs. 62 and 67), is precisely the factor we need to correct
experimentally-determined values of aerosol optical depth, in many cases.

In the cases where molecular contribution cannot be ignored, the following

relation should be used

T, = T, Ry~ t, E (48)

Tp = (Tp + HEW/R, (48')



(b) Sensitivity Analysis

In this section, we shall try to obtain some idea of the
behavior of EP or RP for different size distributions and aperture half-
angles, and compare our results (Eq. (48)) with those of Angstrom and
Shaw. Although the integrals in Eg. (35) cannot be performed analytically
for any real case, it is possible to gain considerable insight by a brief

consideration of the Henyey~Greenstein phase function, which is usually

written as

2
l -
P(1,q) = 7 (49)
4m(l - 2g W + g7)
where g is the asymmetry factor, and U = cos /R In this case, we obtain
for EP
2,1/2

-1+ g}

2.1/2
2g (1 - 29 UD + g7) /

(1 + g) {(l-ZguD+g)

E, (M, 9) (50)

Note that EP(l,g) = 0 and EP(—l,g) = 1, as required.

For small values of wD (say wD < 10°), and g not too close to unity,

we may expand Eq. (50) to give

\b2
- 1l +g D
Ep(wn'g)’ Q-4g9)2 4 (51)

2
c.f., Eq. (37c) for EM. Note that for g = 2/3, Eq. (51) gives EP = 3.75 wD

which is just 10 times EM.

’

In. Fig. 4.11, we plot EP against WD , for a number of values of g. Also

plotted on Fig. 4.11 is EM multiplied by 10. As can be seen, this curve lies
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approximately where the curve for g = 0.67 might be expected to lie.

Since most tropospheric aerosols, and virtually all fogs and clouds, have

asymmetry factors of around 0.7 or higher (Refs. 69, 70), our earlier state-

ment that EP should nofmally exceed EM by an order of magnitude is seen to

be correct for a wide range of view-cone half-angles, wD.
In Ref. 67, presented a number of graphs depicting the behavior of

EP and RP as functions of both view-cone angle and size distribution

parameters, for a number of modified-gamma-type size distributions, and

also for a power law size distribution. Here, in Figs. 4.12 and 4.13, we give

some further examples of RP to illustrate the magnitude of the effect.

In Figs. 4.12 a) and b), we consider the size distribution n(r) = C r—v
for 0.01 S r £ 15 Hm, and plot:RPagainst vV for a number of view-cone half
angles andf%)against wD for a number of v values. (Being ratios, RP and EP are
independent of scaling parameters such as C.) We see that, even for small
view cone angles, RPdeviates from unity quite significantly, if v is suffi-

ciently small. (Small values of Vv imply a higher percentage of large

particles.) For larger view-cone angles, even V = 3 implies a significant

effect.
. . . . . . 2 -br
In Fig. 4.13, we consider the size distribution n(r) = ar e , and
plot RP against view-cone angle, for several values of b. Again, we see

that for small values of b, a significant correction is required even for
small view-cone angles. (Small b, again, implies more large particles, as
the mode radius of this size distribution is given by rm = 2/b um.) With
larger view-cone angles, even moderate b-values imply a significant

correction.
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(1v) Retrieval Algorithms for Aerosol Size Distribution

The gquestion arises: Can we use the results presented in this paper
to determine the true optical thickness or extinction coefficient without
an a priori knowledge of the aerosol size distribution (often the object
of the extinction measurements in the first place)? The answer is in the
affirmative; we shall explain, in this section, the strategies and the
algorithms adopted for the retrieval of aercsol size distributions from
the measuréd optical quantities.

Many tropospheric aerosols follow power-law size distributions (Ref. 7lj,

and thus the results presented in Fig. 4.12 are applicable. To this end, we
note that for a power-law distribution, E_ and RP are independent of wave-

length, and EP is given by

Jw JWD
-V, . .
0 log X sin 1] (11 + 12) day dx (52)

-xz—v Q(x) dx

SER:

where the size parameter, x = Kkr.

Thus, if the underlying size distribution is of power-law form,
which leads, as is well known (Refs. 71, 72), to power-law behavior for Tp
as a function of A, then the measured Tﬁ values will still exhibit power-

law behavior, with the same power. Hence a simple procedure is available

in such cases: to the measured Tﬁ values, fit the power-law curve

! ~ 1 -Q
Tp (M) = BL A (54)




Then, since V = 0 + 3, go to Fig. 4.12 and read off the value of R, for this
V and view-cone half angle wD' Finally, correct all values of Té by

multiplying by R;l (or alternatively, multiply 8; by R;l).

For other size distributions, RP is not independent of wavelength,
and this simple procedure is not available. However, it is easy to modify
inversion algorithms to include the forward scattering correction, as follows.
Standard algorithms to obtain N(r,yo) from a series of multispectral extinction
measurements are based on the numerical inversion of the integral equation

(Refs. 73, 74, 57).
TP(A) = Jw m r2 N(r,y ) Q (kr) dr (54)
0 (o]

However, we now know that it is not TP' but Té that we measure, and thus

the integral equation to be inverted should be

j 1Tr2 N(r,yo) Q' (kr) dr

T (N)
P 0

J J TN(r,y ) (i1 + iz) sin ¥ ¥ dr/k (55)
0 Ty °

(c.f. Egqs. (Bl), (B3) and (B4))

Although it is true that

m 2
Q' = J (i, + 12) sin Y Ay / x (56)



is more difficult to compute than Q, we have shown in Ref. 5% that the
recent formulation by Wiscombe and Chylek (Ref. 75) makes the computation
of Q' considerably easier than it might at first appear. We also note that,
since for a given instrument the value of wD is fixed, there is no increase

in the number of kernal values that must be computed and stored, so that

storage on disk is still practical. Finally, we note that inversion of
Eq. (55) should prove no more difficult than inversion of Eq. (54), so
that the same algorithms may be used; only the kernal functions will be
slightly modified.

In those cases where it is not possible to ignore the molecular con-

tribution to ID then the integral equation to be inverted will become

IF’

1 _ i 2 .
TP(A) + tM(A) EM-L) mTr Q'(kr) N(r,yo) dar (57)

Again, the inversion of this equation is no more difficult than inversion

of Eq. (54).

(v) Discussion of Assumptions

The result presented in Eq. (47) is particularly simple and elegant,
and it is worth considering carefully, the conditions under which it is
valid. A discussion of the simplifying approximations made in its deri-
vation is given as follows.

The first approximation which was needed to analytically perform the
integration over the equatorial angle, ¢, is considered in Appendix 4A.

This made the integration over altitude fall out; thus, leaving only the

C- )
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integration over scattering angle, Y, which was performed by introducing

the error factor E. The accuracy of this approximation is shown in
Table 4.2. Essentially, one may conclude that this approximation will be

accurate for most modern radiometers, except for the case of large zenith
angles (> 700), in which case one must take account of spherical earth

corrections.

The second approximation involved the neglect of the scattering contri-
bution of molecules relative to that of aerosols. As the particulates are
much larger than air molecules, they scatter most of the photons in the near

forward direction. For this reason, E_ is, in general, larger than

P

2 .
EM =3 wD / 8, by an order of magnitude or more. Thus, neglect of the
molecular contribution would seem to be reasonable, unless the aerosol

optical depth happens to be exceptionally low, in which case Eq. (47) should

be replaced by Egq. (48).

The third approximation involves the use of the Deirmendjian pertur-
bation technique to account for the MS light. This technique, which we
have examined via numerical experiments in Refs. 47 and 48, and applied

successfully to the analysis of experimental aureole data (Ref. 71},

appears to account for most of the details of the radiance distribution
in the solar aureole region. Under this approximation, all the MS radia-
tion results from the molecules alone, and can be accounted for by replacing

Ty by an effective optical depth, t Since the effect of this procedure is

e
to roughly double the molecular contribution to IDIF' the arquments for

ignoring this contribution should remain valid. If necessary however, we

may employ Eq. (48) to include this contribution.



TABLE 4.2: Percentage Errors Involved in Using Eq. (A5)
Solar Zenith Angle

v 30° 40° 50° 60° 70°
o]

1 0.0 0.0 0.0 0.1 0.1
o

2 0.1 0.1 0.1 0.2 0.5
o

3 0.2 0.2 0.3 0.6 1.2
o

4 0.3 0.4 0.6 1.0 2.1
o)

5 0.5 0.7 0.9 1.6 3.4
o)

6 0.7 0.9 1.3 2.3 5.0
o}

7 1.0 1.3 1.8 3.1 7.0
o

8 1.3 1.7 2.4 4.1 9.5
[o]

9 1.7 2.2 3.1 5.3 12.5
o

10 2.1 2.7 3.9 6.6 16.1
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Tihie main approximation in using the perturbation technique, however,
is that we have ignored all MS events which involve aerosols. The results
of our previous investigations {Refs. 26, 27, 30) suggest that this assumptior
is highly accurate for aerosol optical depths of about 0.1, and still quite
accurate upto TP = 0.2, Furthermore, the experimental results compiled by
Angstrom and Rodhe (Ref. 64) indicate that the diffuse radiation contribution
is directly proportional to TP' which is in complete agreement with our
results.

The fourth approximation was outlined between Egs. (40) and (41), and

can be expressed as
sec 8 (T E_ + ¢t E)
s PP MM
+ =
1 sec SS(TPEP + tMEM) e (58)
This is a valid approximation (i.e., é 2% error), provided sec GS(TPEP +

tMEM) is small (§ 0.2), and clearly depends on solar zenigh angle,

, . 2 . .
haziness, and wD: EP and E, increase roughly as wD . Again, as discussed

earlier, an instrument with a small view-cone half-angle, y_, may be used

D
at larger solar zenith angles, and also under more turbid conditions,

before the approximation (Eq. (58)) breaks down. It is worth commenting

that the terms neglected in Appendix 4A are of similar form to the

next term in the above series expansion, and so these two errors will

tend to compensate. The results of Shaw's numerical study (Ref. 66), which
employs only our third approximation, shows that T, - T, is independent of es
until Gs reaches a large value (~ 750), whereupon this independence breaks
down rapidly. (The higher the value of TP, the sooner the breakdown occurs,

as would be expected, although the range of zenith angles involved is quite



narrow.) Again we must add that for such large solar zenith angles, spherical-

earth corrections are required, adding further complications.

And, finally, it has been assumed here that the sun is a point
source at infinite distance, and that, as a result, solar radiation falls
on the atmosphere as parallel rays. In reality, the sun has an angular
diameter of 1/2 degree, so that all scattering angles, Yy (see Fig.4.10)
should be blurred a little, i.e., averaged over * 1/4 degree. This
so-called blurring effect is complicated, due to the three-dimensional
geometry, solar limb-darkening (see Ref. 76) and the wavelength-dependence
of the latter. We shall refer to this as the "finite-sun effect." One
result of this effect is that even for a radiometer with a minute field
of view, such as is used in the SAM-II and SAGE satellite missions
(Ref. 76), the effective value of wD will still be 1/4 degree. However,
this situation is quite complex and will not be discussed here. This and
other effects of the finite angular size of the sun (such as in aureole
measurements close to the sun), are being given careful examination an§

will be discussed in a separate paper.

(vi) Discussion of Results and Concluding Remarks

In his 1976 paper, Shaw (Ref. 66) considered just one size distribution

and plotted 8T_ = T_ - T' against U (= cos 8 ) for three values of T . His
P P P s s P
results show that 6TP is essentially independent of U , unless U < 0.2 i.e.,
s s
o .

sec Gs <5 or 95 <€ 75°. It is just for these large zenith angles that the
exponential approximation involved in going from Eq. (41) to Eq. (42) is

liable to prove invalid, and so this aspect of Shaw's results is in complete

agreement with our own conclusions.



The second observation to be made from Fig, 4.10 in Ref. 66 is that &8t
directly proportional to TP - in complete agreement with our Eq. (47)~--
except for a small offset (i.e., GTP # 0 when TP = 0). This offset can easily
be understood in terms of the molecular contribution which we have chosen

to ignore for moderately turbid skies, but which should be included in cases

of extremely low TP.

Shaw also plotted I / I

against us for the same values of TP.

DIF DIR

His results suggest that this ratio is inversely proportional to us - i.e.,
directly proportional to sec ¢s - which is clearly in agreement with our
equations.

The results presented by Angstrom (Refs. 64 and 65) for pyroheliometer
measurements are actually experimental, based on a synthesis of a great
many measurements. He shows plots of the ratio of diffuse to direct, as
a function of wD, for four different values of the "turbidity parameter”

TP sec ¢S, and their shape as a function of wD is consistent with our plots
of E against view-cone angle in Ref. 67. Both of these conclusions are
consistent with our results.

We may conclude from these studies, that under most relative clear sky
conditions, the diffuse contribution to the total intensity will be small--
say 1% or less. A larger effect will result if the optical thickness, the
radiometer half-cone angle, or the solar zenith angle, is particularly
large, and especially if several of the factors pertain simultaneocusly.

This conclusion will remain essentially unchanged, regardless of whether

the instrument is operating in a broad band or a narrow band mode.
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However, if multispectral extinction measurements are made, with
the object of studying the wavelength variation of the aerosol optical
thickness, then such results may well contain significant errors.
Programs designed for this purpose, clearly should make allowance for
this effect.

Often, the object of such multispectral extinction programs, is the
determination, using varying levels of approximation, of the aerosol
size distribution. The simplest such approximation, that of extracting
only the Junge power, V, requires essentially no modification at all.
Even more complicated algorithms may be corrected using the relatively
simple modifications discussed above. In view of the importance of the
effects discussed in this paper, it is our opinion that all retrieval

algorithms should be so modified, in order to minimize such errors.



APPENDIX 4A

Here, an outline is given of the steps taken, and the approximations
employed, in going from Eg. (26) to Eg. (33).
First consider the integration over the equatorial angle, w.

Collecting all terms which involve ¢ (see Eq. (9)) we come to the following

integral:
2m "(T(Yo) ‘T(Y)) f(¢lwl¢s)
I, = J’ dp e £(¢,0,6) (ala)
0
where
f(wP,8.) = (cos ¢_ cos ¢ - sin ¢ sin § cos w ™t (Alb)

Now if ¥ is small, which it should be for a good photometer, and ¢s is not
too large (< 750), then we may expand f to second order in Y- (note that

the first order term will integrate to zero when I¢ is evaluated)-giving

f = sec ¢s (1 + ¢ tan ¢s cos ¢ + wz tan2 ¢s cos2 W + %'wz) (a2)

After tedious, but straightforward manipulations, I(umay now also be evaluated

to second order in Y, yielding

-t sec ¢

~ S 2
I, = 2T sec dg e (1 +97 gtt,0 0} (A3)



where

2 2 2
t tan ¢S sec ¢s (A4)

N+
-
+

e

1 2 2
g(t,¢s) = 5 sec ¢s - t sec ¢s (tan ¢S +

and
t = T(yo) - T(y)

The approximation we now wish to make is to ignore wzg, and all higher terms.
Provided that neither ¢b nor es is too large, this would appear to be a
perfectlyvreasonable step. Note that an instrument with a small view-cone
angle may be used at larger zenith angles than one with a larger view-cone
angle, before the approximation breaks down. The approximation we thus intend
to make is to write

-(T(y ) - t(y)) sec ¢ (Aa5)
I, = 2T sec ¢s e ° S

¢

To test the accuracy of this approximation, we have evaluated Eqg. (Al)

numerically, and compared the results with those from Egs. (A3) and (A5),

(o] (o]

1° (1°) 10°, and £ = 0 (0.2) 1.0. For the

for ¢_ = 30° (10°) 70°, ¥
smaller values of 95 and Y, Eq. (A5) proved to be a highly accurate approximation
to Eq. (Al), and Egq. (A3) proved to be extremely accurate. As either ¢s or ¥
aporoached the limits of their allotted ranges, the accuracies of both Eq. (A3)

and Eq. (A5) started to fall off, and especially (as expected) when both limits

were being approached.

As an indication of the accuracy of Eq. (AS), Table A2 contairs the percentage

errors it entails, for a variety of ¢ _-y combinations. In each case, we



have listed the error corresponding to t = 0, which is invariably the
largest. (Remember that we still have an integration over y (i.e., t) to
perform. This will reduce the actual errors involved, by an amount which
will depend on T(yé).) The errors involved in using Eq. (A3) are not tabulated,
but in most cases they are lower by a decade or more.

When Eg. (A5) is used instead of Eg. (Al) in Eq. (5), the latter
reduces to
e

ISS = Io sec ¢s 27 J

wD fw -T(y) sec ¢S -(T(yo)-T(y)) sec ¢s
dy e
o Jy,

{FP + FM} sin ¢ ay (A6)

which leads immediately to Eq. (12).

If the wzg term is retained, it is still possible, at least in principle,
to perform the integration over altitude. However, the integration over ¥
becomes much more complex, and nothing seems to be gained by the inclusion of
these terms. We point out though, that there is some slight resemblance
between these terms, and the next couple of terms in the expansion of the
exponential in Eq. (42). Thus the approximation of ignoring wzg, and the
approximation in going from Egq. (41) to Eq. (42), should tend to cancel,

rather than reinforce, one another.



APPENDIX 4B

Described here is an alternate derivation of the scattering correction
factor R to optical extinction measurements, that follows the approach
described in Refs. 62 and 67.

First, consider extinction measurements in monodisperse aerosols.

Due to the finite size of the detector, some of the light scattered by the
particles will be intercepted by the view cone, so that the measured extinc-
tion coefficient (B') will differ from the true extinction coefficient, B.

Then one may define a correction factor, R, for monodispersions as

, . T 2 2
B 2 . (i. +i) sindp dy/ Qk
P 1 2
D

(Bla)

where wD is the acceptance angle of the detector and r is the particle radius;
and the corresponding error factor, E, as

b

' D
E = 1-R = Q-9 _ J (il + i2) sin ¢y dy / Q kz r2
o)

(Blb)

Although these definitions apply strictly only to aerosols with real refractive
indices, they may easily be extended to absorbing aeroscls, as shown in Ref. 62.

For polydisperse aerosols, these two factors should be averaged over the
size distribution as well as the path length. Thus the size distribution

averaged correction factor R is

J (i, + i) n(r) dr sin ¢ dY
1 2
D0




and the corresponding error factor is

E = 1-R (B2)

A further averaging over the path length needs to be performed, to
yield ﬁ and %. In Ref. 67, we assumed that aerosol was uniformly distributed
along the beam path, whereas in the case of sun radiometry, for a constant
acceptance half angle wD' the aerosol number density varies with altitude.

Then, we may define the altitude-averaged correction factor, R, as

Loo]
J o(y) nix) (i) +1i,) dy dr sin ¥ dp / K2 (B3)
y

Q

N

LT
T T

S——s
< =
w]

0 é

1 - R.

IR
]

with
Although Eg. (B3) has been written on the assumption that the total

aerosol altitude-size distribution is separable (i.e., Nn(r,y) = n(x) p(y)),

this assumption is really unnecessary in our treatment, as we are concerned

with altitude averaged results. We may define E, for example, by

- - wa ®
E=— FJ n(r,y) (i, + i) dy dr sin ¢y Q¢
J 1 2
Tk o o’y
o
(% r (
= — N(r,y ) (i, + i) dr sin ¢ Ay
Tk2 10 o © 1 2 (B4)

which is nothing but Eq. (36a). Here,use has been made of Eq. (32).



For notational convenience, the bar (-} and tilde (~) have both been
omitted throughout the main body of this paper. However, no confusion
should arise, as we shall always be concerned only with the altitude-

averaged polydisperse correction and error factors.



SECTION 5

REPRESENTATION OF AEROSOL SIZE DISTRIBUTION DATA BY ANALYTIC MODELS

Even though atmospheric aerosols are known to possess a variety of
shapes, the description of their physical structure is immensely simplified
if they are assumed to be spherical. The size spectrum of atmospheric
aerosols is, in general, continuous and may cover over four decades in radii,
namely, lO—3 to 20 um (Ref. 71). Of the basically four ways in which the
empirical size distribution (SD) data can be represented, namely, tabular,
histogram, graphical and analytical (Ref. 77), the last one is usually
employed due to the fact that there exist regularities in the gross structure
of atmospheric aerosols which exhibit behavior similar to that of a variety
of mathematical functions. An analytic functiongenerally encompasses in a
smooth way the main features of the aerosol structure. While admittedly
unrealistic in its smoothness, the analytical representation has the following
advantages, namely those of convenient adjustability to obtain a best fit to
the experimental data; compact representation of the dependent variable (the
SD) in the form of estimated parameters of the fitted distribution; construc-
tion of reasonable and convenient models; and, carrying out parametric
modeling studies of aeroscl optical properties in a systematic manner.

The success of the analytic representation approach depends upon the
selection of an appropriate mathematical function to approximate the actual
size distribution data. This may not always be possible (Ref. 78); often a
linear sum of mathematical functions may provide a good representation.

Thus, there seems to be no "special" analytic function that can be said to
be unique in representing aerosols SD's. The choice of the function is to

some extent dictated by the modeler's taste. However, ultimately, it is




only when the fitted analytic function leads to results that closely fit the
experimental optical (scattering/extinction) data and at the same time falls
within the typical physical domain of atmospheric aerosols, that the analytic
function may be assumed to represent the aerosol SD.

This paper summarizes the main results of a parametric study of eight
mathematical functions, with up to four parameters, that are commonly used
as models for representing aerosol size distributions; and describes, as
an example, the method of obtaining best-fit parameter estimates of one of
these models. Others are discussed in detail in Ref. 37. 1In this connection
this paper presents a set of graphical plots depicting the parametric
behavior of the model. These plots are a subset of the catalog of plots (for
eight SD models) described in Ref. 37.
(i) Terminology for Aerosol Size Distributions

The physical structure of aerosols (atmospheric or artificial) can be
represented, in general, in terms of the number, area, volume or mass of
aerosol particles per unit volume per unit radius at radius r. However, in
this paper the discussion will be restricted to the SD representation in
terms of the particle number and radius, so that only the raéius—number
distribution, log radius-number distribution and cumulative size distribution
will be considered. Their definitions follow those given in Ref. 37. (The
dependence of the SD on factors such as, altitude, and composition, etc.,
will be considered here.)

The radius-number distribution n(r), (cm_3um—l) is defined as the
number of particles per unit volume (cm3) within a unit radius range at r
measured in uym. Thus,

n(r) = -aN(r) / dr = an_(r) / ar, (em 2um L) (1)



where N(r) [Nu(r)] is the cumulative oversize [undersize] distribution
function (Ref. 1).

The log radius-number distribution nL(r), (cm_3), is defined by
nL(r) = -dN(x) / d(loglor) = 2.3026 r n(r), (cm-3). (2)

Junge found it conventient to handle the wide range of atmospheric aerosol
size distribution data by plotting nL(r) as a function of r, on a log-log
scale. This method of plotting has the advantage that it represents the
particle concentration as well as the size distribution.

The cumulative size distribution represents the total number of particles
per cm3 that have radii greater [less] than r, is represented by N(r)
[Nu(r)] and is called the cumulative oversize [undersize] distribution

function (Ref. 79). 1In essence

r” * -3
= " " o= n_(r') 4 log, (r'), (cm 7) (3a)
N(r) . n(r")dr Jloqlo(r) L 10

r

-3

Jloglo(r)
nL(r') d loglo(r ), (cm 7) (3b)

Nu(r) = JO n({r")dr" =

In this paper, only the cumulative oversize distribution (COSD) will be
discussed. Note that N(0) would then be the total number density (cm™>)
of the particles.
(ii) Distribution Functions and Selection Criteria

Given some empirical aerosol size distribution data, the problem is
to find an analytic function that will most closely represent this data.
Examples of mathematical functions of up to two parameters are the normal,
gamma, binomial and exponential distribution functions; and of those with
more than two parameters are: The Weibull, Johnson and Pearson distribution

families. These distributions are discussed in detail in many books on



probability (see Ref. 77). These functions admit almost every type of
probability distribution, except composite distributions made up of several
distinct populations, such as multi-modal distributions. 1In addition, there
is another versatile distribution, referred to as the generalized distributior
function (GDF) (Refs. 80 and 8l) which is derived from the Wood-Saxon
function.

In the selection of an analytic function to represent the size distribu-
_tion n(r), the following criteria must be taken into account:

1. The function is not singular for 0 € r € ®;

2. It is easily integrable over r;

3. It can represent the main features of the gross structure

of the aerosols by a minimum number of adjustable parameters.

(iii) Size Distribution Models and Their Mathematical Properties

Analytic models suitable for representing aerosol size distributions
include the following mathematical functions:

1. Power Law Distribution (PLD)

2. Regularized Power Law Distribution (RPLD)

3. Modified Gamma Distribution (MGD)

4. 1Inverse Modified Gamma Distribution (IMGD)

5. Log-normal Distribution (LND)

6. Normal Distribution (ND)

7. Generalized Distribution (GD)

8. Power Law Generalized Distribution (PLGD)

The expressions and the mathematical properties of the functions
will be described in this section. Here the model distributions represent
the radius-number distribution n(r), from which the corresponding expressions

for nL(r) and N(r) are derived. The properties of interest are: the mode



radii for n(r) and nL(r); lower limit, asymptotic, and parametric behavior of
the functions; and the kth moment of the models. The mode radius rm for
n(r) is given by the solution of

d n(r) _
dr -

and that for nL(r), by the solution of
4 nL(r)_ .
dr

the kth moment is given by:
® x
M =J r n(r)dr
o

The moments are useful for calculating properties of the distribution such
as number density (N(0)), average radius (r), average area (A) and average

volume (V) of aerosol particles in a unit volume, as shown here:

N{0) = M

0
r = M, /M
A= ™, /M
vV = %—n M, /M,

In all SD models, adjustable parameters are represented by pl, p2, p3,
., where Py is the scaling parameter and is chosen so that the maximum
value of the function is unity.
A. Model 1: The Power Law (PL) Model. This model, known as Junge power
law, was proposed by Junge to represent his continental aerosol SD data and

is given by

_p2
= £r € (4a)
n(r) P, T P Xy r<r,
or, alternat:ly, by
(1-p,) .
n (r) 2.3 pr P Xy r r, {4b)




It has a COSD of the form
p l-p l-p
= —= ( 2 2) r. §r
N(r) = g7 b 1 2 (4c)

Junge used 0.01 Um for r, and 1.0 um for r,; but other values could
be used. |

The kth moment for the distribution is given by

l+k--p2 1+k-p2
= - - k-1) (4d)
This model becomes singular at r = 0, if r, = 0; has all its moments
{
{
infinite if r, = 0 and r, = ®. and has no mode radius (rm). Even though this ‘

model may not always represent a real situation, and does not meet the selectioco
criteria, it is popularly used as it readily gives analytically tractable
results. The model is graphically presented in Ref. 37.

B. Model 2. The Regularized Power Law (RPL) Model. In order to eliminate

the singularity at r = O that occurs in Model 1, without losing its power

law behavior at large r, one may use a regularized form of the power law,

p,-1

p (r/p,)
a(r) = [—l 2 (5a)

Pz P3 P4

1+ (r/pz) |
The mode radius is given by
p3-1 l/p3
r =P, |T7 TSy (5b)
m P3iPy
and the maximum value is
1
1- — 1+p, (p,-1)
374
(p.-1) T3 (1+p, (p,-1))
P 3 3 4 o
1 3
nl(r ) = — (5¢)
m o} P
2 (p.p.) 4
P3Py

The limiting kehavior of the function is as follows
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p py-1

1
As r + 0, n(r) = — (r/pz) (5d)
o
2
-(l+p,(p,~-1))
Py P3Py (Se)
and, as r—>, n(r) ~ — (r/pz)
Py
The log radius number distribution is
23
2.3 Pl(r/pz)
n_(r) =
L P, P
=3, %4 5f
(1+(r/pz) ) (5£)
Its maximum value occurs at
= Pz (94-1) (59)
P4-l
(p4-l)
so that nL(rlm) = 2.3 Py p4
(94)
The limiting behavior for this form of the distribution
is as follows
Py
As r >0, n(r) = 2.3 Py (r/pz) (5h)
—p3(p4-l)
and, as r * %, n(r) ~ 2.3 pl (r/p2) (51)
The COSD is given by (Ref. 81, No. 3.194/2 and 9.121/1).
P1 1
N = .
(x) Py(p,-1) Py Py1 (53)
(1 + (r/PZ) )
The limiting behavior for this function is as follows,
Py Py
As r+ 0, N(r) = (1 - (p4-l) (r/pz) ) (5k)
-1
p3(p4 )
Py /o) ~Py(p -l (51)
and as r > @, N(r) —_—_ r/p2
P3(P4-l)



The moments M for the RPL are given by (Ref. 82, No. 3.194/3 and
Ref. 83, p. 103):

. —_—
P) Py [“ };—] [P4'l - ;_J
= = 3 < -
M P, _L 3), k < py(p,-1) (5m)

T(p4)

where I' is the gamma function.

The parameter P, has the main effect on mode radius, being a multiplica-
tive factor, while P, and P, control the positive and negative gradients, and
hence polydispersity. The parameter P, contrels the positive gradient while
both Py and P, influence the negative gradient. The model is graphically

presented in Figs. 5A.1 - 5A.3. A more complete set of graphs is given in

Ref. 37.

C. Model 3: Modified Gamma Distribution (MGD) Model. Model 3 is the
modified gamma distribution function. Deirmendjian (Ref. 40) has shown that
this function can be used to describe various types of realistic aerosol
distributions. For instance, by assigning different values to the parameters

p2 and p4 one obtains models such as Haze H, Haze M, Haze L, Cloud C3, etc.

P

n(r) = Pl r 2 exp (-p3rp4) (6a)
Its mode radius is

r = (6b)

m F3P4

and its maximum value 1is

/2,

"2 |
P3P, )

n(rm) =P exp (—p2/94) (6¢)

The limiting behavior of the distribution is as follows
As r >0, n(lr) =p r 2 (64)
1 P

and as r -2, n(r) = 0 as pl exp (-p3r ) (6e)
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The log radius-number distribution is given by

p,+1l P4
nL(r) = 2.3 Plr exp (-p3r ) (6f)

It has a maximum value at
1l/p

r = ( /p.) 4 where '
m . ‘Pag/P; Pyg = (p,*+1)/p, (69)
so that
n(r) =2.3p (p. /o) 24 ex (-p..) (6h)
L' m -3 Py Pyy/Py exp {"P,4

The limiting behavior of the function is as follows,
p,+1
As r >+ 0, nL(r) = 2.3 p1 r (61)

p
and as r - «, nL(r) -+ 0 as 2.3 P, exp(-p3r 4) (63)

The COSD is given by (Ref. 82, No. 3.381/3),

N(r) = p, I( rp4) / P24 > 0
1 - 'Payr Py P4P3 P3 (6k)

The limiting behavior for the COSD is as follows (Ref. 84, 6.5.3
6.5.12, 6.5.32),

14

p p,+1 P
24 2 24
As r > 0, N(r) = Py (T (pyy) — Py r /p24)/P4P3 (6;)
p PZ'P +1 P4
and, as r * @, N(r)~ r exp (-p,r ) (6m)
P3Py 3
th . . . . .
The k moment for the distribution is given by (Ref. 82 No.
3.381/4),
-(924-k/p4)
Me = (Py/Py) Py TPy y*¥/p,) s py+k+l > 0 (6n)




The parameter P, controls the mode radius and the parameters P, and Py

control the polydispersity.

The parameter P, determines the limiting behavior

as r > 0 while the parameter P, determines the limiting behavior as r - .

The model is graphically presented in Ref. 37.
D. Model 4. Inverse Modified Gamma Distribution.

the same form as Model 3 except that the inverse radius is used.

This distribution has

This

results in an exponential fall-off at the small size and the power law

behavior at the large-radius end.

modified gamma distribution for dry aerosols.

The radius number distribution is given by
P P

Twomey (Ref. 85) suggests this form of the

2
n(r) = 12 exp(-p3/r 4) / r (7a)
Its mode radius is given by
1/p
P3Py 4
= (7b)
rm p2
and the maximum value is
92/94
% (7¢)
= - c
n(rm) P b5, exp ( 92/94)

The limiting behavior of the distribution is as follows,

P
As r - 0, n{(r) - 0 as P, exp(-p3/r 4) (7d)
-p,
and, as r *» ®©, n{r) ~ p,r (7e)
The log-radius number distribution is given by '
P, (pz-l)
= - (7£)
nL(r) 2.3 Py exp ( p3/r ) / r
Its mode radius is given by
1/94
= = -1
Tim = (P3/Pg)) ¢ Pyy = ()R (79)



and the maximum value is
P

nL(rlm) = 2.3 Py (p42/P3) exp( p42) (7h)

The limiting behavior of the distribution is as follows,

P
as r >+ 0, nL(r) - 0 as 2.3 pl exp(-p3/r 4) (71)

—(pz—l)
and, as r * ®©, nL(r) ~ 2.3 P, ¥ (73)

The COSD is given by (Ref. 82, No. 3.381/1)

N(x) = == (p,) 2y (By,r Py T

>0 (7k)
Py

Ps2

where Y is the incomplete gamma function.

The limiting behavior of this distribution is as follows (Ref. 84,

No. 6.1.1, 6.5.2, 6.5.12).

P T4 Py
As r + 0, N(r) = 5;-[P3 F(pyy) - exp(-~p,/T /Py
PalPgr™l), (72)
—(Pz-l)
and, as r =+ ®, N(r) -~ p, T / (pz-l) (7m)

The moments of the distribution are given by (Ref. 82, No. 3.381/4)

P -(p,,-k/pP,)
M = 55 B, 2 YT e,k 4 k< Byl (7n)
4

The parameters P, and Py control the rate of fall-off at large and small
radii, respectively, and hence control the polydispersity. The parameter Py
controls the mode radius. This model is graphically presented in Ref. 37.

E. Model 5. The Log Normal Distribution (LND) Model. The log normal
distribution generally provides a better description of particle size

distribution (discussed later on) because particle sizes, like many naturally



occurring populations, are often asymmetric. In this distribution it is lnr
rather than r which is normally distributed. An excellent discussion of this

distribution is given by Kerker (Ref. 78).

The radius number distribution is given by

o) lnr - 1ln p 2
n(r) = ———l—————-exp {- %_[__________3] } (8a)
vam Pyr ( Py
The mode radius is
_ 2
r, =P, exp(—p3 ) (8b)
and its maximum value is
P 2
n(rm) - 1 exp(p3 /2) (8c)
vam p2p3

The parameter P, is the geometric mean of r and lnp2 is the mean of
nr. No series expansion could be found for the limiting behavior of this

distribution which tends rapidly to zero at both extremities.

The log radius-number distribution is

2.3 pl 1 lInr - lnp2 2
nL(r) =T exp |- 3| —/——- (84)
Y2m p3 P3
It has a maximum at
Flm = Py (8e)
so that
nL(rlm) = 2.3 pl/(VZﬂ p3) (8£)

No series expansion could be found for the limiting behavior of this
distribution which tends rapidly to zero at both extremities.
The COSD is given by (Ref. 82, p. 183)

Inr - lnp2
V2
p3

p
N(r) = El erfc (89)



where erfc is the complementary error function.
The limiting behavior of this function is as follows
As r > 0, N(r) ~ Py (8h)
and, as r + ®, N(r) ~ 0 (81)
The parameter P, is the median for the COSD, i.e.,
N(pz)/N(O) = 0.5

The moments for the distribution are given by (Ref. 82, No. 3.323/2)

k 2 2 .
M_=pp, exp (py" k°/2) (83)
The parameter Py controls the polydispersity of the model and the parame

P, has a multiplicative effect on mode radius. This model is graphically
presented in Ref. 37.

F. Model 6. The Normal Distribution (ND). The normal distribution is a
symmetric distribution which is finite at r = 0 and, thus, strictly speaking
cannot be used to represent aerosol SDs at small r. It can be used to
represent SDs at other ranges of r, and since it is a Gaussian distribution,
which has well known properties, such a model can be very useful in certain
applications. It is given by

p 2

n{r) = ~———i——-exp {- % (r-p%} } (9a)
vam P3 L P3
Its mode radius is given by
= 9b)
rm p2 (
and the maximum value is
P1 (9¢)

n(r ) =

v2m p3
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~

p p, 2 2
As r * 0, n(r) = S — exp { 1 —2) } (1 + rpz/p3) (9d)

-
2
vamw Py P3

No series expansion could be found for the asymptotic behavior of this function

which tends rapidly to zero.

The log radius-number distribution is given by

2.3 P, r r-p 2

1 2
nL(r) = —— exp |- 5 |5 {9e)

V2T B, P;

Its mode radius is given by
P, + /p +40p (9£)
r. = 2 2 3
im

2

and the maximum value is

/7 32 2 2
2.3 p) |P,*Vp,*+dp, 1 [Py * 4Py~

= -z | — (99)

nL(rlm) > exp{ 5 [ > l g
p3 -

v2m P4

The limiting behavior of the distribution is as follows

2.3 plr
As r + 0, nL(r) 2 — (9h)
vam p3
and, as r - o, nL(r) -0 (91)
The COSD is given by (Ref. 86, p. 183)
p r-p
N(r) = El-erfc 2 (93)
/Ep3

The limiting behavior of the distribution is as follows (Ref. 86,

p. 183),



A N /2 TP
s r 0, N(r) -(91/2 1 - = ( 5 ) ] (9k)
3
p. P. r-p
and, as r * @, N(r) - L (r-3 ) exp —Z (9%)
2 Py Y2 p 3

The moments of the distribution are given by (Ref. 82, No. 3.462/1).

p
1 k 2 2
= —p, (k!)exp (-p, /4p, ) D (-p,/2) (9m)
I%( VT 3 2 3 -k-1 2
where D is a parabolic cylinder function.

-k-1

In the normal distribution, the parameter Py controls the mode radius
and the parameter Ps controls the polydispersity. The model is graphically
presented in Ref. 37.

G. Model 7. The Generalized Distribution Function (GDF). This distribution
is finite at r = 0 and, thus does not, strictly speaking, represent particle
size distributions at small r. However, it is a versatile function with a
wide variety of applications, including altitude distributions (Refs. 1 and
80), and is therefore included here as a potential representation of aerosol
SDs.

The radius-number distribution is given by
p (l’rp2)2 exp (r/p3)

n(r) = 1 (10a)

{pz+ exp (r/p,) 32

Its mode radius is given by

£ = Py 1n P, (10b)

and the maximum is

2
1
Py (1+p,) (10¢)

n(rm) =
4 p2

5-18



The limiting behavior of the distribution is as follows

p_-1
As r + 0, n(r) = Pl(1+ r/p3 (p2+l)) (1048)
and, as r > <, n{(r) +- 0 as Pl(l+pz)2 exp (- r/p3) (1Ce)

The log radius-number distribution is given by
2 ' 2
nL(r) - 2.3 P, (l+p2) r exp(r/p3) / (p2 + exp(r/p3)) (10f)
Its mode radius im is given by the solution of the equation
p = p - P
92(1 + rlm/ 3) (rlm/ 4 1) exp (rlm/ 3) (109)

and the maximum is given by

2
n () ) = 2.3 p; (1+p,)° (r) =p3) (ry +p3) / (4 p,ry ) (10h)

The limiting behavior of the distribution is as follows
As r > 0, n(r) = 2.3 Py (l+p2)2 r (101i)
and, as r >+, n(r) - 0 as 2.3 p1 (l+p2)2 exp(-r/p3) (103)
The COSD is given by
p (l+p2)2 P

N(r) = -= 3 (10k)

xr/
p2 + exp( ,p3)

The limiting behavior of the distribution is as follows

As r > 0, N(r) = Py (l+pz) Py (l-r/p3(pz+l)) -(104)

and, as r > ®, N(r) > 0 as 9193 (1+p2)2 exp(—r/p3) (10m)

The analytic expression for the moments of the distribution could not be
evaluated.

The parameter p; can be considered as a scale radius and the parameter
Py determines the type of function. For P, = 0 the distribution becomes an
exponential, and for small p2 the function initially falls off more slowly
than the exponential. As the parameter P, increases, the spread or poly-

dispersity of the function increases. The model is graphically presented in

Ref. 37.
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H. Model 8. Power Law Generalized Distribution Function (PLGDF). This model
is a versatile function which is most useful when the data to be fitted have

broad peaks. The radius-number distribution is given by

Py
P, exp (pz/r )
n(r) (11la)
pytt Py 2
r [l+p3{ exp (p2/r )y - 11
There is no analytic expression for the mode radius.
The limiting behavior of the distribution is as follows
)
As r+ 0, n(r) + 0 as p, exp (——) (11b)
1 p
4
r
—(p4+l)
and, as r > ©, n(r) ~ P, ¥ (1lc)
The log radius-number SD is given by
Py
2.3 p, exp (pz/r )
n_(r) = (114)
L Pg P4 2
r ~ (l+p, {exp(p,/r ) -1}]
There is no analytic expression for the mode radius.
The limiting behavior of the distribution is as follows
P4
As r > 0O, nL(r) -0 as 2.3 P, exp (-p2/r ) (lle)
P,
and, as r * %, nL(r) ~ 2.3 P, L (11£)
The COSD is given by
Py
P, {exp (pz/r ) - 1}
(11lqg)

N(r) =
Py
P,P, [1+p3 {exp(pz/r ) -1}]

The limiting behavior of the distribution is as follows
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py/r
= - 1lh
As r > 0, N(r) pl/pzp3p4{l+l/p3(e 1)} ( )
Py

Py exp(pz/r ) -1 .
and, as r -, N(r) -0 as (111)

PPy Py

l+p3{exp(p2/r )-1}

The moments, other than the zeroth moment (N(0)), cannot be calculated
for this distribution. However, there is a special form of the function,
referred to as Model 8B, for which higher moments can be calculated, but it
has no analytic form for the COSD. The radius-number SD for this function

is given by

p1 exp (pz/rz)
n(r) = 5 (12a)
r 4(l+p3 (exp(pz/rz)-l))2

Its mode radius is obtained from the solution of the equation. There is
no analytic expression for the mode radius.
The limiting behavior of this distribution is as follows

P
AS r >0, n{(r) -0 as P, exp(—p2/r 4) (12b)

-p,
and, as r > «, n(r) ~ P, ¥ (12¢)

The log radius-number distribution is given by

2
2.3 p, exp (p2/r )

124
nL(r) 4_1 ; 5 ( )
r (l+p3 (eXp(pz/r ) - 1))
There is no analytic expression for the mode radius.

The limiting behavior of the distribution is as follows

As r>0,n(r) >0 as 2.3 p; exp(-pz/rz) (12e)
-(p4—l)

and, as r > », nL(r) ~ 2.3 P, T (12f£)
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The moments for this distribution are given by (Ref. 86)

P «© i -(P _l)
o= ___E_l____ I Py L [1 - ;L} (1+1) X (129

2p, p294k i=0

p4-(k+1)

where Pax = >

>
+ Py k + 1.

The parameter behavior for both functions (Egs. (lla) and (l2a)) is
similar. The parameter P, controls the rate of fall-off at small radii
where the parameter P, controls the rate of fall-off at large radii. The
parameter P, controls the spread of the distribution, the breadth of the
peaks increasing with large values of Py The model is graphically presented
in Ref. 37.
(iii) Graphical Representation of Size Distribution Models

The parametric behavior of a size distribution model can be illustrated
graphically by plotting the size distributions corresponding to several values
of one of the parameters on the same graph, while other parameters remain
constant. An example of the parametric variation of n(r) in the case of Model
is given in Figs. 5A.1 through 5A.3. A complete catalog of plots illustrating
the parametric behavior of n(r), np(r), and N(r) for all of the eight models
is given in Ref. 37.

For each set of plots in Figs. 5A.1 through 5A.3, the values of the
four parameters (py, ..., pg) are given for the first plot, along with the mod
radius rp. For subsequent distributions only the parameter being varied, the
scaling parameter p] and the mode radius are given. The scaling parameter is

chosen here such that the distribution maximum is equal to one.
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(iv) Determination of Model Parameters from Plots

The graphical catalog of plots can be easily used to estimate the values
of the different parameters for size distribution measurement data. This is
done by first plotting the data on the transparency of a blank log-log
graph which has the same x-y scale as the graphs in the catalog; then after
selecting a suitable model, overlaying the data transparency on the parametric
plots, one at a time, to destermine which value of the plots gives the best fit
to the data.

Vertical translation of the transparency relative to the parametric
plot will generally be necessary because the range of values covered
by the experimental data will differ from that of the parametric plot.
Horizontal translation may also be necessary if the parameter being
determined controls the fall-off as r - 0 or r > ® or the curvature near
the peak. Horizontal translation cannot be used if the parameter controls
the location of the mode radius.

Graphical determination of model parameters can be illustrated using
Mdoel 2 to represent Junge's data (Fig. 5.2). Model 2 was chosen because,
similar to the data, it has a power law fall-off as r »> «,

The Junge data was plotted on a transparency which was overlayed on
Fig. 5A.3 and then translat.:d vertically until the data points as large r
(r >> mode radius rp) coincided with one of the catalog plots, in this
case that corresponding to pgq = 2.0, thus the combination p3 = 3.0,

P4 = 2.0, thus the combination p3 = 3.0, pg = 2.0 fits the slope of the

curve as r > «©,
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Since there are only a few data for small r (r << rp), concentrate
on the region around the peak in determining p3. The transparency was
overlayed on Fig. 5A.2 and translated vertically and horizontally until
the curve which best matched the data in the region of the peak was
found. In this case it turned out to correspond to p3 = 2.0, which falls
off too steeply as r > ®, Remembering that the initial estimates for pj
and py were 3.0 and 2.0, respectively, which gives a slope of -4 when
substituted in -[1 + p3(pg - 1)] (see Eq. 5e) we see that for p; = 3.0,

a value of 2.5 is needed for pg4.

The final parameter to be determined from the plots is pp, which
controls the mode radius rj. This is done by overlaying the transparency
on Fig. 5A.1 and translating vertically until the data maximum coincided
with 1.0 on the vertical plot scale. This showed that p, < 0.05.
Substitution of the mode radius, 6.5 X 10"3, and the estimates for <)
and pgq in Eq. (5b) gives p, = 0.013.

Once the estimates for p,, Py, p, were found, p; was obtained from

the relation

[ 3 A
<
<

[
[
. 0
w0

o

—

i
t 1=z
<

.
(o
J

o . . . . . .
where yj is the observed size distribution at rj, y? is the calculated
distribution value and N is the total number of data points.
These estimates of parameters were used to initial estimates of p

in a nonlinear least squares program to obtain the best fit. The results



are given in Fig. 5.2. The initial estimate had the right shape but
was too far to the left of the data points because the initial estimate for
py was too low. The initial estimates for p3 and p4 agree quite well with
the final estimate and a better initial estimate of p; could have been
obtained by taking the midpoint of the peak region as the mode radius
rather than the actual maximum.

The description and use of the graphical catalog were confined to the
radius number distribution n(r) alone. For similar details regarding
nL(r) and N(r), see Ref. 37. These plots can be used to estimate the
parameters for multimodal distributions (Ref. 37) by visually sketching
in the most probable behavior for each mode and then determining the
parameters for each mode separately.
(v) Concluding Remarks

The uses of the graphical catalog are twofold. First, it provides a
catalog of the shapes of the different distributions, illustrating such
properties as the locations of mode radii, rates of fall-off and polydispers:
By providing a means for comparing distributions, it aids in selecting
the model(s) most likely to give a good description of the experimental
data to be fitted. Second, the catalog provides a means of estimating the
likely values of the model parameters. Parameter estimates thus obtained
can then be used as initial guess parameters in nonlinear least squares
or other optimization codes to obtain the best-fit values of the parameters.

It is important that the model chosen to fit the size distribution
data be an appropriate one if useful results are to be obtained. A model
is considered appropriate, if properties such as the mode radius, rates

of fall-off and polydispersity of the model are similar tc that of the



experimental size distribution data. A summary table for the different
analytical models and their properties is given in Appendix 5A.
It is worth mentioning that in the literature on this subject one
often finds experimental size distributions being represented by other
analytic functions or their sums, such as, exponential function,
"truncated" power law, and Chebyshev coefficients. But they do not
qualify for inclusion in our scheme on the basis of the selection criteria
in Section (ii). It is quite likely that some other analytic representations

may have been inadvertently overlooked.
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SECTION 6
RETRIEVAL OF AEROSOL CHARACTERISTICS FROM SATELLITE BORNE SCATTERING AND
EXTINCTION MEASUREMENTS
A versatile inversion code has been developed which is capable of

retrieving profiles of aerosol size distribution and concentration from multi-
wavelength satellite measurements of either the scattered radiance from the
Earth's sunlit atmosphere in both the limb-viewing mode and downware-viewing
mode, or the extinction of direct solar radiation by the earth's atmosphere.
The inversion code in its present form is a composite of three sub-codes
corresponding to the aforementioned three measurement modes. A description
of these codes will be given. The inversion code is composed of several
module algorithms (or subroutines) for treating the inverse problem in
radiative transfer through a scattering and absorbing aerosol atmosphere,
which is vertically inhomogeneous, spherical, and which takes into account
multiple scattering and surface albedo effects. The appropriate module
algorithms can be interchangeably brought into operation, as needed for any
of the three different modes of measurement. The inversion code was initially
developed for the problem of retrieving profiles of aerosol size distribution

(s.D.) and density, ozone and NO, density from 8-channel measurements of

2

scattered radiance in the limb viewing mode (Ref. 49). Work on development
of various aspects of these codes, under NASA support, has been continuing
since early 1970s. The inversion code has been adapted, applied, and tested
using synthetic, and some real, measurements for the remote sensing techniques

shown in Table 6.1 (Ref. 55).




TABLE 6.1: Remote Sensing Techniques and Observing Modes

Observation Modes Wavelengths Quantity Retrieved Altitude Range
Solar extinction vis/near IR Aerosol, O3 10-50 km
-~limb
Scattered radiance vis/near IR Aerosol S.D. 15-40 km
-~1limb Rayleigh 10-50 km
o) 15-40 km
N82 25-50 km
Solar aureole vis/near IR Aerosol S.D. Middle
--limb Atmosphere
Scattered radiance vis/near IR Aerosol loading Troposphere
‘=~downviewing
SBUV~--downviewing uv Ozone profile 25-50 km
SBUV--1limb uv Ozone profile 35-50 km

Examples are given showing the retrieval results for the vertical profiles

of aerosol size distribution, concentration, and real and imaginary parts

of the refractive index (assuming spherical particles) from simulated measure-
ments of the profiles of limb scattered radiance and atmospheric extinction
(e.g., SAM II and SAGE), and for the total aerosol loading from measurements
of upwelling radiance (e.g., Landsat and GOES series). 1In addition, we
discuss the sensitivity of retrieved results to different parameters, such

as, percentage random error, initial guess, surface albedo, etc.

(1) Inversion Code

The inversion code, originally referred to as SLIC (Sunlit Limb Inversion
Code), is in its present form a composite of three codes corresponding to the
different observation modes, i.e., SLIC, SEIC (Solar Extinction Inversion
Code), and SURIC (Sunlit Upwelling Radiance Inversion Code), each applicable
to the appropriate aforementioned problem. The physical and mathematical
bases of these codes are briefly summarized.

Solutions to the remote sensing problem generally involve two elements.



An equation or modeling process is required to enable the mapping of observa-
tions onto the space of sought variables and a regularization process is
required to condition the solutions so that they meet acceptable physical
and mathematical criteria. SLIC and SURIC carry out the variable-observation
mapping by means of a radiative transfer model named DART (Ref. 49); and SEIC
carries it out by the use of Beer-Bouguer Law. It achieves regularization by
application of optimal estimation theory.

Let g(g) represent an observation vector, and x an observable vector of

variables mapped on M(x) by M(x) = Hx. Consider the quadratic cost functional

T _ -1 -1
T(x) = (x - x)" Py ox-x )+ M - fil(l‘p)} R~ (M- 111(>_<p)} (1)

where Ep is any prior estimate of x. Minimizing J yields a minimum variance

or optimal solution
£ =x_ + K((P_, H, R {M-Mx)} (2)
=~ ~p p p - i %

where P and R are the state and measurement error covariances. In the inver-
sion codes, this estimator is iterated by inserting x for 5p until the M
residuals are less than the observational uncertainty. Some of the important
attributes of these codes are: (a) iteration to treat nonlinear problems;

(b) calculation of multiple scattering in a curved atmosphere; (c) a pseudo-
partial technique for speeding convergence; and, (d) a procedure for rapidly

mapping aerosol physical parameters onto observation space.

(ii) Sample Applications
Sample application results are shown in Figs. 6.1 to 6.4 for retrieved

profiles of aerosol characteristics (and ozone and NO2 density) and retrieved



aerosol loading obtained from multispectral measurements.

Case 1: Retrieval of Profiles of Aerosol Characteristics (and ozone

and NO» density) from Simulated Measurements of Scattered

Radiance in Limb Viewing Mode.
Figure 6.1 a) shows the viewing geometry for measuring scattered radiance of
the sunlit limb (i.e., in the limb viewing mode). Simulated measurements of
vertical profiles of scattered radiance of the sunlit horizon in seven channels
( A = 350, 400, 490, 600, 675, 777, and 863 nm) were used to retrieve vertical
profiles of the following quantities: (a) aerosol size distribution represented
by Junge power law exponent v (see Fig. 6.1 b)); (b) aerosol density, particles
cm - (see Fig. 6.1 c)); (c) real part of aerosol refractive index (see Fig. 6.1
(d) imaginary part of aerosol refractive index (see Fig. 6.1 e)); molecular
density {(not included here); (f) ozone density (see Fig. 6.1 f)); and (qg) N02A
density (see Fig. 6.1 g)). The retrieved results show good agreement with true
values (circles). The agreement for the cases of NO2 and aerosol refractive
index at lower altitudes could be improved by increasing the upper limit of the

number of iterations to, say, 20. Work is in progress on determining the

sensitivity of retrievals to the initial quesses for the different parameters.

Case 2: Retrieval of Tropospheric Aerosol Content (or Optical Depth
or Extinction Coefficient) from Measurements of Upwelling
Radiance.
As an example, retrievals of tropospheric aerosol extinction (or aerosol
content) were made from simulated upwelling radiance measurements at wavelength
A = 1.0 Uum. The agreement between the retrieved value and the true value is

extremely good as shown in Fig. 6.2. The viewing geometry is shown in

Fig. 6.2 a).



SPACECRAFT _

FIG. 6.1 a): Viewing Geometry for the Sunlit Limb Viewing Mode
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Case 3: The Retrieval of Aerosol and Ozone Density Profiles from

Real Measurements of Direct Attenuated Solar Irradiance

(Solar Extinction Mode).
The viewing geometry for the solar extinction mode during satellite sunrise/
sunset is shown in Fig. 6.3. This is similar to the case of SAM I, SAM II,
SAGE I, and SAGE II experiments. Figs. 6.3 b) and 6.3 c¢) show the retrieved
results for aerosol and O3 density profiles obtained from typical 4-channel
SAGE I measurements (A = 1.0, 0.6, 0.45, and 0.385 m). These retrievals

agree with retrievals obtained by william Chu, NASA-Langley Research Center

(not shown in Figs. 6.3 b) and 6.3 c)) using other inversion techniques.

Case 4: Solar Aureole~Limb Viewing
Preliminary results of retrievals from multispectral solar aureole measurements
indicate that it is an accurate method for determining aerosol size distribu-
tions, and its use in future satellite aerosol sounding work is strongly
recommended. A successful experimental validation of the solar aureole
method using ground based observations has been performed. Forward-scattering
limb radiance measurements would then be those that are made close to the sun
during the satellite sunrise or sunset events. The advantages of the fofward—
scattering technique are that it is most sensitive to the aerosol size distri-

bution and relatively less sensitive to refractive index and the shape.

(iii) wvalidation of the Accuracy of the Inversion Codes

In order to show that inversion codes we have developed produce accurate
retrievals, we performed a retrieval of the ozone density profile from the
upwelling radiance measurements in the SBUV experiment because ground truth

measurements were available for this experiment. The viewing geometry of
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FIG. 6.3 a): Viewing Geometry for the Solar Occultation Mode
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radiance measurements in the downviewing mode is shown in Fig. 6.2 a).
Retrievals of ozone density profile were obtained from real 7-channel SBUV
measurements at Point Mugu, CA, and were compared with rocket measurements
of ozone profile (shown by solid line) (Ref. 55). The agreement between the

two results is excellent as shown in Fig. 6.4.

(iv) Sensitivity Studies

Systematic error analysis studies are currently being performed to
understand how the errors in the selection of initial guess values affect the
retrieved aerosol extinction Baer results for various percentage rms random
error values (0., 2.0, 5.0, and 10%) in the measurements at different values
of the surface albedo (A = 0.05, 0.1, 0.2, and 0.3; see Table 6.2) and
tangent altitude (16 and 24 km; see Table 6.3). As expected, the accuracy of
the retrieved Baer improves when the rms error is decreased and the initial

guess 1is brought closer to the true value.

(v) Advantages of Satellite-Based Scattered Radiance Technique

The following are some of the advantages of the scattered radiance
technique:

{a) No restrictions are placed on the sun's location, so that continuous
or intermittent measurements can be made of the aerosol size distribution
during the entire sunlit portion of the orbit, which will shed information on
the temporal behavior of stratospheric aerosols and their sources and sinks.
However, the most accurate information about aerosol size distributions, we
believe, would be obtained from forward-scattered (aureole) limb radiance

measurements when the sun's disk is close to the horizon.
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TABLE 6.2: Retrieval Accuracy for Baer at A = 1.0 um for Various

Values of Random Error and Initial Guess. True Value of

8 (at 0 km) = 7.96 x 10~ km™?L.
aer

zigggm Initial Guess (% True Value)
Albedo  («"signal)  10.0 30.0 50.0 70.0 90.0
0.05 0. 7.93(-3) 7.94(-3) 7.95(-3) 7.95(-3) 7.96(-3)
.02 6.89(-3) 6.93(-3) 6.94(-3) 6.94(-3) 6.94(-3)
.05 5.39(-3) 5.43(-3) 5.43(-3) 5.44(-3) 5.44(-3)
.10 0. 7.94(-3) 7.95(-3) 7.95(-3) 7.95(-3) 7.96(-3)
©.02 7.25(-3)  7.25(-3) 7.26(-3) 7.27(-3) 7.27(-3)
.05 6.22(-3)  6.23(-3) 6.24(-3) 6.24(-3) 6.24(-3)
.20 0. 7.94(-3)  7.95(-3) 7.95(-3) 7.95(-3) 7.95(-3)
.02 7.36(-3)  7.37(-3) 7.37(-3) 7.37(-3) 7.38(-3)
.05 6.50(-3) 6.50(-3) 6.51(-3) 6.51(-3) 6.51(-3)
.30 0. 7.94(-3)  7.95(-3) 7.95(-3) 7.95(-3) 7.96(-3)
.02 7.40(-3)  7.40(-3) 7.40(-3) 7.41(-3) 7.41(-3)
.05 6.50(-3) 6.58{-3) 6.59(-3) 6.59(-3) 6.59(-3)
.10 5.24(-3)  5.24(-3) 5.24(-3) 5.24(-3) 5.24(-3)
.15 3.92(-3) 3.92(-3) 3.91(-3) 3.91(-3) 3.90(-3)
.20 2.62(-3)  2.61(-3) 2.60(-3) 2.59(-3) 2.59(-3)




TABLE 6.3: Retrieval Accuracy for Baer at A = 1.0 um for Various
Values of Random Error and Initial Guess. (Detector

Altitude = 600 km)

altitude 16 km (True B___ = 2.800(~4) K1)

Pandom Error

Initial Guess (% True value)

(% Signal) 10. 30. 50. 70. 90.
0.0 2.81(-4) 2.80(~-4) 2.80(-4) 2.80(-4) 2.80(~-4)
2.0 2.84(-4) 2.82(~-4) 2.78(-4) 2.80(-4) 2.78(-4)
5.0 2.83(-4) 2.78(-4) 2.88(-4) 2.77(-4) 2.79(-4)

10.0 2.97(-4) 2.87(-4) 2.74(-4) 2.92(-4) 2.74(-4)

Altitude 24 knm (True 8___ = 7.000(-5) km™ %)

Random Error

Initial Guess (% True value)

(% Signal) 10. 30. S0. 70. 9Q.
0.0 7.01(-5)  7.01(-S)  7.00(-5)  7.00(-5)  7.00(=5)
2.0 7.16(-5)  6.87(-5)  6.30(-5)  7.12(-5)  6.56(=5)
5.0 ) 7.89(-5)  7.39(-5) 6.89 (~5) 6.41(-5) 5.95 (=5)

10.0 6.72(~5) +  6.34(-5)  7.54(-5)  7.02(-5)  6.51(-5)




(b) Because of the measurements of angular distribution of the scattered
radiance, it will be possible to make accurate retrievals of aerosol size
distribution which are presently not available on a global basis.

(c) In addition, by making polarization measurements of scattered
radiance it should be possible to retrieve the aerosol refractive index, which

is sensitive to polarization.

(vi) Conclusions

These results show the sophistication and accuracy of our inversion codes.
However, their capabilities can be enhanced by performing: (a) sensitivity
studies such as errors in retrieved results due to bandwidth or radiometer
channels and surface albedo, and (b) channel optimization studies for designing
of radiometer channels to provide optimized retrievals of certain species of

tropospheric aerosols that may be of special interest.
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SECTION 7

SIMULATION OF LIMB SOLAR AUREOLE RADIANCE

7.1 INTRODUCTION

In Section 2, we have discussed the theory and application
of solar aureole almucantar radiance. The solar aureole is the

o
region of enhanced sky radiance close to (- within 20 of) the

solar disk; and the almucantar is the observation scan for which
the zenith angle equals the solar zenith angle with the axis of
rotation along the local zenith. 1In Section 2, it was shown that
columnar size distributions of atmospheric aerosols can be
effectively retrieved from the almucantar radiance measurements
made either from ground-based or airborne platforms. In either
case, the results are regional in nature. Since the information
of aerosol size distributions with a global scale coverage is
highly desired for many purposes, such as for studying the
potential impact of aerosols on the climate, we investigate, in
this Section, extending this technique to satellite-based
measurements of forward scattered solar aureole radiance at
appropriate range of scattering angles for either a single
wavelength or multiwavelengths. In this Section we present the
results of numerical simulation of the 1limb solar aureole
radiance and discuss if the weighting functions would permit
retrieving aerosol size distributions with high vertical

resolution. The results of retrievals will be discussed in a



subsequent publication.

7.2 SINGLE SCATTERING THEORY OF THE LIMB SOLAR AUREQLE RADIANCE

In this section, we consider the single scattering theory of
the 1imb solar aurecle radiance as viewed from a satellite-borne

sensor. The following simplifying assumptions used in the theory

are:

1. Particles are spherical so that results of the Mie theory

can be applied.

2. The atmosphere is spherically symmetric, horizontally

homogeneous, and vertically inhomogeneous.

3. Absorption effects are ignored by selecting to work in

spectral regions for which atmospheric absorption is nil.

4. The polarization effects are small for forward-scattered

light and can be ignored.

5. The multiple-scattering effects at the forward-scattering
angle are small compared with the single scattering and can be

ignored.

Figure 7.1 shows schematically the sensing geometry of a

satellite-borne instrument measuring the 1limb solar aureole

radiance. Point A represents the location of the satellite
—>
instrument and O is the center of the -earth. The line ABC’

—
denotes the viewing path of the detector with the portion BC’



passing through the atmosphere. The sunlight is in the direction
E?E'. The line 6% represents a typical incoming ray of the solar
radiation which reaches the detector (at A) after being scattered
by the volume elemant at point F at a scattering angle V. The
circle given by B'E'B"E"B” (at the outer edge of the atmosphere)
defines the scanning plane of the instrument scanning across the
sun disk. The 1line 55767%" corresponds to the viewing path in
the case of solar occultation measurement of the attenuated solar
intensity (Section 6, Fig. 6.3). From Fig. 7.1, one may notice
that all the incoming rays, which are encountered by the
atmosphere along the arc ETEE“, will be scattered at different
locations along the viewing path BC with the same scattering
angle V¥ , and be able to reach the detector at A. The normal view
of the scanning plane B’E'B"E"B’ is illustrated in Fig. 7.2, and
that of the plane O0O°F is shown in Fig. 7.3. It is important to
keep in mind that, in reality, measurement of the 1limb solar
aureole almucantar radiance can be made whenever the spacecraft
sunrise or sunset occurs. This sampling opportunity is exactly
the same as that of the SAM II, SAGE 1 and SAGE II instruments.
Furthermore, because this scheme takes the limb viewing geometry,
the measurements of scattered radiance can be carried out at

different sun-tangent heights (defined by the distance h = 007,
o

Fig. 7.3). Thus, higher vertical resolution can be achieved by
this technique. This is in contrast to the ground-based solar

aureole almucantar radiance approach (Section 2), in which case
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one obtains mainly the path integrated (or columnar) infermation

about the aerosol size distribution.

The governing equation of the total near-forward,
singly-scattered, limb solar radiance, along the viewpath BC’ at
wavelength )\ with a scattering angle y and a sun-tangent altitude

h (=00" in Fig. 7.1), is given by
T

. C'
By (¥, hq) - Iomj T, (BP) {BM(A)PM(WOM(P)
(7.1)

+ o (P) —3

1
J (il+iz)n(r)dr» TX(PC)ds
2k r g

2
Most of the notations in Eq. (7.1) have their conventional

meanings as defined in Section 2, except that they are applied to

paths with different geometry. 1In Eg. 7.1, we have

n(r,P)dr = p, (P)n(r)dr (7.2)

which is the number of aerosol particles with radius between r
and r + dr. In introducing Egq. 7.2, we have assumed that the
form of the particle size distribution n{r) does not itself
change with altitude z, but only the aerosol number density
varies. There are two reasons for this assumption. First, it
simplifies the simulation computation. Secondly, the detailed
vertical variation of n{r,P) is still uncertain. In Eq.(7.1), P
is referred as an abitrary point along the viewing path, at which
an incoming ray is scattered. T(BP) 1is the transmission of the
path from B to P, and T(PC) is the that of the path from C to P.

In order to determine the values of T(BP), T(PC), and to perform

74



the integration along the viewing path BC®, the atmosphere is
divided into appropriate concentric shells with equal thickness
(= 1 km, Fig. 7.1). The input data for this simulation include a
background (molecular) atmosphere of the U.S. Standard Atmosphere
1976, and an aerosol particle profile based on the lognormal size
distribution (Russell, et al., 1981), with the number
concentration given by McClatchey et al. (1971). The values of

the parameters which specify the size distribution are r =
g

0.0725 pm, ¢ = 1.86 corresponding to the background aerosol model

(where r is the mode radius, o0 is the spread of the lognormal
g

curve). Figure 7.4 illustrates this lognormal size
distribution. The vertical profile of aerosol density used in
the analysis is displayed in Fig. 7.5. As to the refractive
index, we have used the value of 1.43 corresponding to aerosol

composition of 75% H SO and 25% H O.
2 4 2

7.3 RESULTS

Table 7.1 presents the numerical simulation data for the
forward scattered radiance at 18 different scattering angles
along the almucantar when the tangent height of the center of
solar disk is at 10 km. The scattering angles are at 1 degree

o o
interval from 1 to 18 . The computed signal radiance data is

given in the third column of this table. The last column gives

the corresponding tangent height of the viewing path at various
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scattering angles. As one may notice, the tangent height of the
viewing path increases with the scattering angle Y . This
situation 1is illustrated in Fig. 7.3. Furthermore, Table 7.1
shows that the scatterea radiance decreases monotonically with
the scattering angle ¥, with the largest contribution occurring
at V= 1 degree. The fourth column in Table 7.1 is the tangent

altitude of the viewing path.

Equation 7.1 can be written

Cl
By (¥,hy) = I_(}) Je d W; (y, P)

where the subscripts M and A are the volume scattering
coefficients of the molecules and aerosol, respectively, and W is
the weighting function with an infinitesimal field of view. This
weighting function tells how much the level 2z, where P is
located, contributes to the radiation observed along a particular
viewing path with a scattering angle ¢ and the sun-tangent

altitude h (Fig. 7.1). The weighting functions corresponding to
T

the sun-tangent height (h ) at 10 km is displayed in Fig. 7.6. As
T

shown in Table 7.1, there are 18 scattering angles in this case.
Only the weighting functions of every other scattering angle are
shown in Fig. 7.6, which exhibits many interesting features;
First, the weighting function shows a peak at the tangent of the
viewing path. Secondly, the envelope of the peak of all the

weighting functions of this particular scan exhibits closely the
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vertical profile of aerosol number concentration (Fig. 7.5). This
suggests that the signal radiance (column thrée in Table 7.1) is
mainly due to aerosol scattering contribution coming from regions
near the tangent point of the corresponding viewing path. It is
interesting to note that the weighting function shows a slight
asymmetry in the two parts of the viewing path separated by the
tangent, especially the lower several curves corresponding to
small scattering angles (see for example the curve with a

scattering angle of 9 degrees).

To explain this, one refers to Fig. 7.7. In this figure, P
and P’ are the locations of two volume elements along the viewing
path BC’°. They are at equal distance from the tangent F. The

weighting function contributions of these two elements are

T (C,P) { B—M(P) + B,(P) } T(PB)ds

and
T(C;P") {By(P') + By(P)} T(P'B)ds
at point P and P°, respectively. Note, since the atmosphere is

assumed spherically symmetric, we have
By (P) = (P') and Bp(P) = Bp(P")

However, in general

T(C,P)T(PB) # T(C,P') T(P'B)

As a result, the contribution to the weighting function from the

two parts of the viewing path are not the same. As one may
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anticipate, this difference gradually vanishes as the tangent

altitude of the viewing path increases.

Similar calculations have also been carried out for every
other 1-km altitude from 12 km to 26 km. The results of the
calculated signal radiance are given in Table 7.2, and also shown
in Fig. 7.8. From Fig. 7.8, one can see that the aureole radiance
decreases rapidly as the sun-tangent altitude increases. 1In
order to see the sensitivity of the calculated limb solar aureocle

almucantar radiance with respect to mode radius (r ) which is
g

used in the 1lognormal size distribution, calculations have been

made with r = 0.0800 pm and r = 0.0653 pm. These two values
g g

are chosen by increasing and decreasing the value 0.0725 pm by
10%, which is used in obtaining the results shown in Fig. 7.8.

The results of these calculations for r = 0.800 pm and 0.0653 um
g

are displayed in Figs. 7.8 and 7.9, respectively. By an
examination of Figs. 7.8 through 7.10, it is found that the limb

solar aureole almucantar radiance is sensitive to the aerosol

size distribution.

In conclusion, we have successfully simulated the near
forward scattering of the 1limb solar radiation based on a
numerical model and examined the sensitivity of the solar aureole
almucantar radiance with respect to the aerosol size parameter

(r ). This is a first step toward an attempt to examine the
9
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possibility of measuring the stratospheric aerosol size
distribution with global scale coverage and with high vertical
resolution by using a satellite-borne instrument. The next step
is to perform numerical simulations of retrieving the aerosol
size distribution from the simulated radiance. This requires a

development of an appropriate inversion scheme.

It is suggested that as a first step, the limb solar aureole
radiance be determined by taking limb solar aureole photographs
by using the camera(s) already aboard the space shuttle, and then
deriving the aureole radiance by using the well-known
photographic-photometry-microdensitometer techniques. Such
procedures have been successfully tested and used in determining
the almucantar radiance from ground platforms, and have been

described in Section 2 in detail.
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Table 7.1. Limb Solar Aureole Radiance at A = 1 um
When the Sun-Tangent Height is at 10 km.
Solar Irradiance = 0.0746 (W/cm2 - p)

Scattering Angle Aureole View-Path
Y Radiance Tangent-Height
(deg) (W/cm2-sr-p) (km)
1 1.000 0.89426E-02 10.155
2 2.000 0.87774E-02 10.620
3 3.000 0.84725E-02 11.394
4 4.000 0.79633E-02 12.475
5 5.000 ©.72371E-02 13.864
6 6.000 0.62734E-02 15.557
7 7.000 0.49738E-02 17.553
8 8.000 0.29610E-02 19.848
9 9.000 0.15995E-02 22.440
10 10.000 0.86747E-03. 25.324
11 11.000 0.41891F-03 28.498
12 12.000 0.18361E-03 31.957
13 13.000 0.77006E-04 35.696
14 14.000 0.32260E-04 39.710
15 15.000 0.13934E-04 43.994
16 16.000 0.64139E-05 48.541
17 17.000 0.31276E-05 53.347
18 18.000 0.15211E-05 58.404
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Figure 7.3. The normal view of the plane OO'F shown in Fig. 7.1.
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SECTION 8

VARIABILITY OF OZONE AT HIGH ALTITUDES DURING SATELLITE SUNSET/SUNRISE
EVENTS

The solar occultation techn;que has been used for measuring the concen-
tration of atmospheric minor constituents in the upper atmosphere. This
technique determines the attenuation profile of solar intensity during sun-
rise and sunset encountered by the instruments mounted on the orbiting
satellites. The SAGE I (McCormick et al., (Ref. 56)) is a good example of using
this solar occultation technique. Due to the fact that concentrations of
atmospheric species with a photochemical relaxation time scale of the order
of a day or less undergo significant diurnal variations, the interpretation
of the measured results using solar occultation technique require detailed
knowledge of the diurnal variation of the interested species. Since ozone
is one of the most important atmospheric constituents, and since it has
been measured using solar occultation technique, it is significant to
investigate its diurnal variation. Modeling studies on this variation have
been conducted by many investigators. However, in the existing modelsl the
complete diurnal integrations are carried out by assuming implicitly or
explicitly that the time dependence of the overhead ozone column has a small
effect on diurnal variations of photodissociation rates at the level in question.
In other words, a background ozone distribution, in general, assumed to be a func-
tion of altitude but not time, is used for the complete diurnal integration. As

a result, the time variation of local photodissociation rate is determined

1 _ . .
Prather (1981) has taken the sphericity and the change in local solar time
along the ray path into consideration in his diurnal calculation. However,
he did not describe the method of his calculation.




solely by the variation of local zenith angle. Since ozone absorbs
significant amounts of solar radiation, and since its diurnal variation is
important, the effect of change in local solar time along the ray path may
be important in modeling of ozone diurnal variation. The purpose of this
section is to describe the diurnal variation of ozone in the mesosphere
(50-80 km) by using a diurnal integration with both sphericity and changes

in the local solar time along the ray path taken into account. The

results will be compared with that without including the change in local
solar time along the path. Both, an oxygen-only atmosphere and an oxygen-
hydrogen-nitrogen-carbon (O-H-N-C) atmosphere are used in this investigation.
Comparison will also be made between the model results and the available
measurements. It should be mentioned that most of the results in this
section have been presented in the Quadrennial International Ozone Symposium,

August 4-8, 1980, Boulder, Colorado, U.S.A. (Ref. 95)

8.1 PHOTOCHEMICAL MODEL
Since the calculation for the oxygen-only atmosphere is similar to that
for the 0-H-N-C atmosphere, we shall discuss only the latter in detail.

This model includes a total of 69 reactions (Table 8.1) and 24 atmospheric

species (Table 8.2 ). Among these 24 gases, 18 of them are expected to show
diurnal variation. They are O; 0(1D); 03; H; Hz; OH; HyO; Hoz; H202; N20;
NO; N02; NO3 CH3; CH20; CHO; CH3O; and CH302 (Table 8.2 ). Accordingly, the

model can be described by a system of 18 simultaneous nonlinear differential
equations:

dn.
—1 = .-L, ,3j=1,2, .. ., 18
dt Pj L] J 1 ' 1 (1)

where P and L represent the production and loss terms, respectively. Since



TABLE 8.1.

Reaction Rate Constants* and Referencest.

The units of rate

constants are cm3sec~l and cmbsec~l for the two- and three-body reactions

respectively. All reaction rates and absorption cross-section data are
from NASA RP 1049 unless otherwise noted.
Reaction Rate Reference
1. 0(1D) + N, >0 + N, 2.0 (-11) exp(—lO7{?is
2. 0(1D) + N2 + M > NZO + M 3.5 (-37) (T/300)
3. O0(1D) + O2 > 0 + O2 2.9 (-11) exp(-67/T)
4. 0(1D) + 0, > 20, 1.2 (-10)
5. 0(1D) + 05 + 20 + O, i.2 (-10)
6. O(1D) + NO, + NO + O 1.0 (-10)
7. O(1D) + N,0 >~ O, + N 4.8 (-11)
8. 0(1D) + N,0 + 2NO 6.2 (-11)
9. O(1D) + H, > H + OH 9.9 (-11)
10. 0(1D) + HZO -+ 20H 2.3 (-10)
11. o(1D) + H202 > OH + HO, 5.2 (-10) NBS 513
12. OH+O->H+O2 4.0 (-11)
13. H + O3 -+ OH + O2 1.4 (-10) exp(-470/T)
l4. OH + H2 -+ H + H20 1.2 (-11) exp(-2200/T)
15. H + HO2 - H2 + O2 4.2 (-11) exp(-350/T) NBS 513
16. H + H02 - HZO + O 8.3 (-11) exp(-500/T) NBS 513
17. H + H202 g H02 + H2 2.3 (-12) exp(-1400/T) NBS 513
18. H + H202 -+ OH + H2O 2.9 (-12) exp(-1400/T) NBS 513
19. H +.OH + M > H)0 + M 4.3 (-25) T 2°° NBS 513
20. O(1D) + CH4 - CHZO + H2 1.4 (-11)
21. CH + CH4 - CH3 + H20 2.4 (-12) exp(-1710/T)
22. CH3 + O2 + M- CH3O2 c1=2.2 (-11) EX1=2.2
02=2.O (-12) EX2=1.7
23. OH + CH,0 = CHO + H,0 1.1 (-11)
24. O + CH20 -+ OH + CHO 3.2 (-11) exp(-1550/T)
25. H + 0, + M > HO, + M 5.5 (-32) (T/300) '"*
26. H + HO2 -+ 20H 4.2 (-10) exp(-950/T) NBS 513
27. OH + CO - H + Co2 1.35 (-13) (1 + Patm)
28. CHO + O, > HO, + CO 5.0 (-12)
29. 0O(1D) + CH4 > CH3 + OH 1.3 (-10)
30. 0O+ HO, > OH + O 3.5 (-11)

2 2




TABLE 8.1 (Continued)
Reaction Rate Reference

31. O + H,0, >~ OH + HO, 2.8 (-12) exp(-2125/T)
32. OH + O3 - H02 + O2 1.6 (-12) exp(-940/T)
33. HO, + O, > OH + 20, 1.1 (-14) exp(-580/T)
34. OH + H02 - HZO + o2 4.0 (-11)
35. OH + OH + H,0 + O 1.0 (-11) exp(-500/T)
36. OH + H,0, > HO, + H,0 1.0 (-11) exp(-750/T)
37. HO2 + H02 - H202 + o2 2.5 (-12)
38. 0 + No2 + M > No3 + M 1.0 (-31) NBS 513
39. 0 + NO, > NO, + o, 1.0 (-11)
40. No2 + o3 d No3 + o2 1.2 (-13) exp(-2450/T)
41. NO, + NO - 2NO, 1.9 (-11) NBS 513
42. HO2 + NO - OH + NO2 4.3 (-12) exp(-200/T)
43. OH + OH + M ~» H202 c1=2'5 (-31), EX1=0.8

c,=3.0 (-11), EX2=1.0
44. HO, + CH,0, > O, + CHO, 6.0 (-12)
45. CH,0 + 0O, > HO, + CH,0 5.0 (-13) exp(-2000/T)
46. OH + CH, O, » HZO + CH302 1.0 (-10) exp(-750/T)
47. O + NO + M ~» N02 + M 1.55 (~32) exp(584/T) NBS 513
48. N02 + 0> NO + O, 9.3 (-12)
49. NO + O, > NO, + O, 2.3 (-12) exp(-1450/T)
50. CH,0, + NO > NO, + CH,0 7.0 (-12)
51. 0+ 0, +M >0, +M 6.2 (-34) (T/300) 2
52. O+O+M+O2+M 4.8 (-33) NBS 513
53. 0 + 0, - 20, 1.5 (-11) exp(-2218/T)
54. 0, + hv >~ O + 0(1D) X < 1750 R Ref. 96
55. 0, + hv > 0 + 0 XA < 2423 R Ref. 97
56. 0, + hv » 0(1D) + O, X < 3125 &
57. 0y + hv >0 + 0, X < 11800 X Ref. 95
58. H,0 + hv > H + OH X < 2100 R Ref. 98
59. H)0, + hv > OH + OH A < 3500 R Ref. Q9
60. HO, + hv ~ O + OH A < 4560 R
61. CH,O + hv > H + CHO X < 3600 X Ref. 98
62. CH,O0 + hv + H, + CO XA < 3600 R

2




TABLE 8.1. (Continued)

Reaction Rate Reference
63. CH,0, + hv > CH,0 + OH X < 3500 A Ref. 99
64. CH, + hv > CH, + H A < 2800 A Ref. 98
65.N02+h\)+o+No A < 3980 X
66. NO3+h\)+O+N02 A < 6980 A
67. NO3+h\)+02+NO A < 6980 A
68. CO, + hv > O(1D) + CO A < 1660 A Ref. 98
69. CO, + hv > 0 + CO A < 2260 A Ref. 98

* The rate constant 1.2(-10) = 1.2 x lO—ll.

+ The reference indicated by NASA RP 1049 and NBS 513 refer to Refs. 100 and
101, respectively.

TABLE 8.2. Model Atmosphere

Major Species 02, N2
Long Relaxation
Time Scale Species co, CH402, CHy, CO,
Minor Species )
Short Relaxation o(lp), O, 03, H, H2, HZO' OH,
Time Scale Species
p H02, H202, NZO' NO, NOZ' NO3,
CH3, CH3O2, CH3O, CHZO' CHO.




in the region of interest, the atmospheric dynamic processes are of secondary
importance, we may replace the total derivative by the local time derivative.
Because of the large variation of relaxation time scales implicit in the
chemical reaction set, it is convenient to group the minor species into 3

categories:

(1) The relaxation time scale is always smaller than the order of 101

sec through the whole day;
(ii) The relaxation time scale can be either smaller than or greater

than the order of lO1 sec depending on the local time and altitude;
(iii) The relaxation time scale is always greater than the order of lOl

sec through the whole day.

It should be mentioned here, that this distinction is made just for the
convenience of performing the numerical integration. It was found that O(1D),

and CH,O

NO3, 3

H, CH and CHO belong to the first category; OH, H02, NO

3! 27

belong to the second category, while the third category includes O, O H

3" 2

H20, HZOZ' NO, N20, CH302, and CH20.
As a result, the governing equation of species under photochemical equili-

. . . . 1 .
brium, i.e., relaxation time scale of less than 10 sec, can be written

0O=P, -L. , j=1,2, . . ., N. (2)

8.2. PHOTODISSOCIATION RATES

The photodissociation rates (J.) for the jth species can be written as

I (ht) = [ o, (A1) I” (A') T(A',h,t,) d\', (3)
o0}
where I is the photon flux intensity at the top of the atmosphere;
Oj is the absorption cross section of the jth gases species;

T(X',h,t) is the atmospheric transmittance of wavelength A' at

altitude h at local time t.
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The finite resolution analog of Eg. 3 is:

J.(h,t) =Y o.. I, 1T, (h,t) AA,, (4)
3 jop Ji id i

where the subscript i indicates the ith spectral interval. If we consider
the atmospheric attenuation of the solar radiation due to the absorption of

atmospheric molecular oxygen and ozone only, we have

T, (h,t) = exp -{lo, (0,) N(O,) + 0, (0;) N(O4, )1}, (5)
where
N(Oz) = J Ny (h) ds ; molecular oxygen column density,
2
S

N(O3,t) = J no (h,t) ds ; ozone column density.
3
S

It should be emphasized here that the dependence of photodissociation rates
Jj on the time variations of ozone concentrations has been indicated
explicitly in Egs. (3), (4), and (5).

Photodissociation rates of the interested species in the mesosphere have
been discussed in detail by Turco (Ref. 98). We have adopted his results with
some modification. Table 8.3 indicates the wavelength interval used for
photodissociation rate calculations. Simon (Ref. 102) has reviewed and discussed
the current knowledge of solar irradiation between 1200 A and 4000 A. The
sources of the solar irradiance in this study are given in Table 8.4. As
regards the important atmospheric absorption of Schumann-Runge bands of
molecular oxygen, we have used Blake's (Ref. 97) model for the photodissociation
rate calculations. The description of the ozone column density N(OB) by

using Eg. (5) will be discussed in detail in the next section.



TABLE 8.3 Wavelength Intervals Used for Calculation

Wavelength Ranae {nm) ¥avelenath Interval {(nm)
121.6 0.1
125.0 - 175.0 5.0
275.0 - 205.0 1.0
205.0 - 400.0 5.0
400.0 - 740.0 20.0

TABLE 8.4 Source of Solar Irradiance

wavelenoth Intervals (nm)

121.6 (Lyman - 1 )

Ref. 100
125.0 - 175.0 Ref. 104
175.0 - 205.0 Ref. 105
Ref. 103
205.0 - 230.0 Ref. 106
230.0 - 320.0 Ref. 96

320.0 - 740.0




8.3. DIURNAL INTEGRATION

A. Numerical Scheme

As implied in Section 8.1, we have to solve a set of time dependent
simultaneous equations for non-equilibrium species and a set of quasi-steady
state equations for the equilibrium species. To solve the system of time
dependent equations, it was assumed that the densities of equilibrium species

were Known and an implicitly numerical scheme was used, i.e.,

dn, An, n? - nt n? + n%
J _ J_ 3 3 and n. = -3 (6)
dat t At ! j 2 :

Furthermore, the system was linearized by introducing the following approxi-

mations:
£f i i f i i
. = . . + 1. . + .
ank 1/4 (1.5 nj nk 1.5 nJ nk nJ nk ) (7)
where j/k = 1,2, . . . , N, and f and i indicate the final and the initial

values of gas j/k, respectively. Using the approach just described, the
system of time dependent equations (1) can be transferred to a set of non-
homogeneous simultaneous algebraic equations for solution. In order to

avoid any human error, an automated system was developed to carry out the
transformation according to the above description. To obtain the solution
for species under equilibrium, it was assumed that the densities of all other

were known and the equations were linearized.

B. Grid and Time Stop
In order to take the change of solar local time along the ray path into
account in the determination of the photodissociation rates, a special grid

is designed and is presented schematically in Figure 8.1. It corresponds to



equinox condition at the equator. In the region from 50 to 80 km, the
atmosphere is divided into 30 layers with 1 km of thickness. This also
determines the path of solar radiation in the atmosphere along which the
computation will be made (Fig. 8.1. Above 80 km, a model atmosphere is
introduced in which a steady distribution of ozone as function of altitude
only is assumed. Thus, ozone diurnal variation is not considered in the
region above 80 km and only the variation of the local zenith angle in a
spherical atmosphere is included. This additional layer of atmosphere
provides us with the O2 and O3 column number densities which are required
for the calculation of the photodissociation rates at 80 km. This may not
be a good assumption. However, the error introduced as a result of the

assumption will decrease as the altitude decreases and will exist only in

the uppermost part of the region of interest. WNote that the local time of

sunrise (sunset) is allowed to begin (end) earlier (later) than 6:00 (18:00).

The exact time of sunrise and sunset depends on the altitude of the air mass.

In this study, solar radiation with a path tangent height above 25 km is
included (Fig.8.1l). The exact distance at the tangent points of two closest
ray paths is set to be 1 km (Fig.8.l1)in the region from 25 to 50 km. 1In
the rest of sunlit region, the positions of ray path are determined accord-
ing to the expression

S. = (R + 25) cos (8.),
i i

where ei =TI,and I =1, 27, . . ., 1800, and R = 6372 km. A similar
approach is applied to the night-time region. It is obvious that the
time step associated with the grid just described is not constant. In

general, small steps appear in the sunrise and sunset from about 20 seconds
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INNL g LHOIN

-(-n‘.

Figure 8.1. A schematic diagram shows the grid used in the model study.
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to 1 minute. The longest step, which occurs at noon, is about 4 minutes.
It should be emphasized here that the method of computation used in

this study enables us to carry out the time integration and to update the

ozone concentration for the calculation of the local photodissociation

rates at each time step.

8.4 RESULTS

The diurnal variations of ozone and atomic oxygen in the oxygen-only
atmosphere are shown in Figs. 8.2 and 8.3, respectively. The solid lines
denote results obtained with the consideration of the change in local
solar time along the ray path and the dashed lines, without their inclusion.
Both figures indicate rapid changes of ozone and atomic oxygen densities
above 55 km during sunrise and sunset. The changes are more rapid when
the change in local solar time along the ray path is considered in the
calculation than when it is not. The results also indicate greater ozone
concentrations and lower atomic oxygen concentrations in the latter case.
In general, this difference in the concentration of atomic oxygen and ozone
appears to be the maximum during sunrise and sunset.

The calculated diurnal variations of ozone for the O-H-N-C atmosphere
are presented in Fig. 8.4, Again, the solid lines are the results with the
consideration of the change of local solar time along the ray path and the
dashed lines are those without. In general, it indicates the same charac-
teristics as in Fig. 8.2. Again, differences are found in the ozone
concentration between the two cases, especially during sunrise and sunset.

In these cases, the neglect of temporal variation in the overhead column
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amount of ozone leads to ozone concentrations which are too large. This
error can be as large as a factor of 3 at 70 km. The difference in the
diurnally averaged ozone concentration is found to be 15 percent at 50 km.

A comparison of the ozone distribution at noon of this model study with

results of other theoretical calculations as well as the distribution of U.S.
Standard Atmosphere (1976) (Ref. 107) are given in Fig. 7.5. The results of this
agree very well with U.S. Standard Atmosphere (1976) and also with Logan, et al.
(Ref. 92) and Prather (Ref. 94) exeept between 50 and 55 km, where the present re
are 35-50 percent larger. Fig. 7.5 also indicates significant differences in

the ozone profile between this model and earlier studies of Hesstvedt (Ref. 88),
Shimazaki and Laird (Ref. 89), and Park and London (Ref. 91). These differences
could be due to the fact that their studies were conducted at different

latitudes, different seasons, and with different reaction rates.

Since the information of ozone nature diurnal behavior is very useful
for interpretation of ozone solar occultation measurements and for testing
the current knowledge of atmospheric photochemistry, effort has been increas-
ingly toward the direct determination on the diurnal variation of mesospheric
ozone (Refs. 108-112). The ozone IR satellite data also have been used to
deduce the ozone diurnal variation (Anderson et al., Ref. 113). Although the
difference in the detailed ozone diurnal behavior observed from different
methods still exists, the measured results tend to agree generally with thé
nighttime enhancement of the ozone concentration in the mesosphere (Ref. 112).
A comparison of the change in the daytime ozone concentration with respect to

the nighttime concentration predicted by the present model and that from variot
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measurements is given in Table 8.5 . This table provides the general
trends of the diurnal changes in the mesospheric ozone rather than a
detailed comparison of the measured results from different sources.

In conclusion, this section has shown that the effect of change in the
local solar time along the ray path is to increase the local photodissocia-
tion rates. As a result of this effect, there is an enhancement of ozone
diurnal variation, particularly during sunrise and sunset. Since the solar
occultation techﬁique measures the ozone at the local time 6:00/18:00, the
results given in Fig. 8.4 suggest that, in most altitude ranges in the meso-
sphere, the ozone solar occultation measurements can provide good representation

of day-time ozone concentration profile.

TABLE 8.5 A Comparison of the Percentage Change in Day-Time Ozone Concentration
with the Night-Time Concentration of This Model Predication with That of Direct
Measurements

» DIRECT MEASUREMENTS
,  This Model it .
AltL;ude predication Hll??85?§h' Penfleld* Wilson Vauchan Lean®

(1976)  (1981) (1982} (1982)
o {Ref. 113}  .(Ref. 108) (Ref. 110) (Ref. 111) (Ref. 112)
) ‘50 -21% -19% -82 -12%
55 -33% -22% -15%
60 -50% -23% -38% ~45%
65 -71% -51% -407  ~ -90% -552  -56%
70 -90% -53% -347
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APPENDIX 1

DENSITOMETRY OF SOLAR AURECLE PHOTOGRAPHS
BY SPOT AND SCANNING DENSITOMETERS:
AN INTERCOMPARISON OF RESULTS

This paper describes methods of making optical density measurements
along the film projection of the almucantar, which is a conic, by means

of scanning and spot densitometers and intercompares their results.

INTRODUCTION

The photographic measurements of the solar aureole almucantar
radiance require that densitometry be performed on the photograph to
determine the optical density along the film projection of the almucantar,
which is a conic in the film plane (Ref. 1). The equations for the almucan-
tar conic are given in Refs. 1 and 2, dealing with photogrammetry of the
solar aureole. As explained in Refs. 3-6, these almucantar radiance
measurements are used for the retrieval of aerosol size distribution.
There are several types of densitometers in existence, and in order to
explore ways in which the data reduction of aureole photographs could be
reduced in the cost of the equipment, we decided to perform densitometry
with a relatively inexpensive model of a typical transmissometer-type of
spot densitometer (in which measurements along the conic must be per-
formed by a manual positioning of the photograph--a task somewhat cumber-

some and prone to error--and compare these results against those obtained

lAssistance of R. R. Adams of NASA-Langley Research Center 1s
gratefully acknowledged.
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for the same photograph by an automatic scanning microdensitometer (Joyce-
Loebl). The latter can measure and digitize on an output tape the

optical density of the photographic frame at a prescribed number of

picture elements called pixels. 1In the latter case, one can simply read
off th? tape the densities for only those pixels whose x-~ and y-coordinates
are prescribed by the conic equation, a procedure which seems less prone

to error. This paper describes simple techniques for making accurate
optical density measurements along such conics with the help of a spot

densitometer.

Optical Density

In the field of photographic densitometry, the concept of optical
density, as a measure of the attenuation of radiant flux, is of funda-
mental importance. When the attenuation relates to the flux transmitted
(reflected) by the developed image, the term transmission (reflection)
density is used. For an excellent discussion of what follows in this
section, see Ref. 7. Only the transmission density will be dealt with in
this paper.

The transmission density is defined, in general, as the logarithm
of the opacity (Q) or reciprocal transmittance (T) of the developed
image, which is just the ratio of the radiant flux Po incident on the

developed image to the radiant flux P_ transmitted by the image.

t
P

D = log (@) - log,, (%) = log 32 (1)
t

The design of the photometer used in the measurement of density

strongly influences the values of density obtained. All attenuators
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scatter some energy and thereby degrade the image quality. Whenever
optical energy measurements relating to T are made by collecting light
over a large solid angle (normally 1800), the measurements are termed
diffuse. Conversely, specular measurements are those taken on axis or
over a small cone angle only. Values for diffuse measurements are
normally the sum of the specular value plus the amount of scattered
energy. The conditions of illumination and light collection used in
measurement of specular and totally diffuse density are shown in Figs.l(a)
and 1(b) which are adapted from Ref. 7. The ratio of specular to diffuse
density, known as the Callier coefficient or Callier Q factor, increases with
emulsion grain size. In both cases illumination angle o is small, but the

. o ) .
view cone angle 8§ varies from 0  to 90 . The Q factor is not constant for all

values of density but increases rapidly at the lower values of density,
reaches a maximum and then gradually decreases. Also, the development

of film to different values of gamma, the H-D coefficient, have profound
effect on the Q factor, Q increases for higher Y. Photoelectric trans-
mission densitometers are classified into two types: deflection and null
densitometers. In the former type of densitometer, the sample is placed
in the path of a narrow collimated beam traversing to the photoelectric
cell, and density is read from the relative meter readings; in the latter
type, the cell current produced by light from the test-sample beam is
balanced by an equivalent current which may be derived from another cell
and light beam through a controlled calibrated stepwedge. The Joyce-Loebl

microdensitometer is a null-type of instrument which measures specular

density.
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Measurement of Density with
a Spot Densitometer

An available transmission-type spot densitometer (McBeth TD-102)
was used to make the density measurements along the conic projection of
the almucantar. The coordinates (XP, Yp) of the points that lie on the
conic can be obtained by either substitution in Eg. (10) Ref. 2, or by
multiplying the x-y values from Table 1 in Ref. 2 for the approximate
almucantar conic by the lens focal length £, namely, 55 mm. Another way of
positioning the photograph to read the densities are at various x-y positions

along the conic is by using the graphs of conics, such as shown in Fig. 2.

in Ref. 2. (xp, Yp) values for £ = 1 mm are given in Table 1, in
Ref. 2, so that (Xp, Yp) values for another lens focal length f can be
obtained by multiplication by f.

Procedures for making the optical density measurements with the spot
densitometer are described as follows.

The use of this method assumes that the aureole photograph was taken
with the lens axis coincident with the sun line (sun centered in frame)
with one edge of the frame horizontal and that the lens focal length (f)
and the solar elevation angle (¢s) at the time of photography are known.

The example presented in this paper serves to demonstrate the tech-
nique for the case of an 80 mm focal length lens on a 70 mm Hasselblad
camera. An available McBeth TD-102 spot densitometer was used for den-
sity readings.

Figure 2 is a full-size reproduction of the spot densitometer align-

ment guide. The distance between circles marked (a) and (b) was chosen
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such that (a) was clearly visible and on the Densitometer table when (b)
was centered in the light beam.

Figure 3 is a 1:1 reproduction of the transparency upon which the
negative to be analyzed is precisely positioned and taped. The curves
shown within the x-y mm grid were computed from Eq.(}o) in Ref. 2 for an 80 mm
focal lengtﬁ lens for values of ¢s from 10° to 70°. The sun line (x =
0 mm) is extended outside the grid area for proper negative alignment. The
dotted or dashed rectangles are cut from the transparency for 35 mm or
70 mm negatives, respectively. The area outside the dot-dash line is
removed from the transparency.

Following is a step-by-step procedure for taking density readings:

(1) Remove Figqures 2 and 3 from body of paper.

(2) Make a l:1 transparency of Figure 3. A contact-type view-
graph may be used.

(3) Remove the dashed rectangle from the transparency, using
a straight edge and sharp blade. Cut also along dot-dash line.

(4) Place Figure 2 face up on a flat surface with circle (a)
to the left.

(5) Align Figure 3 transparency over Figure 2 such that the
x-y grid is to the left and the sun line (x = 0 mm) is coincident with
the line connecting circles (a) and (b). Then, slide the sun line of
Figure 3 along the line (a) (b) of Figure 2 until the proper ¢S curve
of the negative to be read is exactly centered above circle (a) and

temporarily tape Figure 3 to Figure 2.
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(6) Place the photograph negative, emulsion side down, within the
cut portion of Figure 3 such that the central sun image is exactly centered
above circle (b) and rotate it until the bottom exposed portion of the
negative (nearest horizon in scene) is parallel to y, mm = 0, using the
grid to the right of (b) as a guide. Carefully tape in place on Figure 3
outside of the exposure area.

(7) Remove Figure 3 from Figure 2 and place Figure 2 on
Densitometer table such that circle (a) is clearly visible and on the
table while circle (b) is directly centered in the measurement beam. Mark
this location of Figure 2 on the table so that it can be replaced without
reference to circle (b), remove Figure 3 and cut out dashed rectangle
enclosing circle (b). Reposition on Densitometer table and fasten down
securely with tape.

Readout technigue. For periodic values of x, we proceed to carefully

position Figure (and, thus, the negative) over the alignment guide in
such a manner that the desired ¢s curve remains centered over circle (a)
and that line (a) (b) and the sun-line élways remain parallel as evidenced
by equal values of x at both ends of the x-y grid located directly over
line (a) (b). Note that as this happens, the line perpendicular to (a) (b)
through circle (a) reads corresponding values of y, mm. Thus, tabular
values of y, mm vs. x, mm as computed from Eq.(10), in Ref. 2, may be used to
properly position the negative instead of the curve drawn for ¢S within
the grid.
A density reading is recorded each time the negative is properly

positioned within the measurement beam at the desired increments of x.
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APPENDIX 2

PHOTOGRAMMETRIC INTERPRETATION OF SOLAR ALMUCANTAR SCAN

The almucantar, which is a conical scan of solar zenith angle with
local zenith axis as the axis of rotation, projects on the film plane as
a conic.

In order to photographically measure almucantar radiance, optical
density measurements must be made along the conic. If a spot densitometer is
used for this purpose, the problem of positioning the densitometer spot at
any point along the almucantar conic requires the knowledge of its rectangular
coordinates (x,y). A standard table for computing the x-y coordinates for
almucantar conics corresponding to the solar zenith angles 100(29) 44°, 45°,
46°(29) 709 and for any lens focal length is given. The table is based on

formulae for the almucantar conic which are derived in this section.l

INTRODUCTION
An earlier paper (Ref. 1) presented the photogrammetry of the solar
aureole, giving de;ivation of the important relations involved. In order to
photographically measure radiance along the almucantar, which projects on
the film plane as a conic, for any solar zenith angle, the optical density at

points along the conic needs to be measured. Almucantar is defined as the

lAssistance of Dr. M. A. Box, Staff Scientist, IFAORS (1977-1979) and
presently at the University of New South Wales, is gratefully acknowledged.
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conical scan of solar zenith angle, with the local zenith as the axis of
rotation. If a scanning microdensitometer, with a digital tape output is used,
the task of making the optical density measurements along the conic is simple,
since one can select the data for the points falling along the conic by the
use of the appropriate equations. However, in the case of a manuai spot
densitometer, the problem of positioning the spot at positions (x,y) along
the conic is tedious; it requires a set of (x,y) values for the almucantar
conic corresponding to the particular solar zenith angle. In order to simplify
the task of computing the x-y values along the conic, we have constructed a
standard table of (x,y) values for several solar zenith angles (namely,
10°9(20) 440, 450, 469(2°)70°), and camera lens focal length f = 1 mm.

In order to obtain the (xp,yp) coordinates of image points defined by
locii of various types of measurement scans made in the sky, a brief
deviation of the equations which differs from that given in Ref. 1, is

presented as follows.

PHOTOGRAMMETRIC RELATIONS FOR ALMUCANTAR SCAN
Let (X,Y,2) and (x,vy,z) be the coordinate systems with their respective
origins at the optical center 0 of the camera lens and the center C of
the film frame (Fig. 1). 1In addition, 2 and =z represent the local
zenith and the optical axis, respectively. X 1is horizontal and perpendicular
to the page; £ 1is the lens focal length. These two coordinate systems are

related by the equations,
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FIG. 1: Schematic illustrations of the film projection of the scans of
constant zenith angle ¢_, the almucantar, constant azimuth angle

wps,
and the sun-vertical.

X =x, Y=y cos ¢c - (z - £) sin ¢c’

N
I

y sin ¢c + (z - £f) cos ¢c

The equation of the film plane is z = O.

The purpose of photogrammetry is to reconstruct the positions in
the object space corresponding to the points in the image space. Let
(¢p, wp) be the angular coordinates of a point P in the (X, Y, 2)
system. The zero azimuth position is defined by setting wc, the
optical axis azimuth, equal to zero. Then the equation of a ray of
light having angular coordinates (¢p, w_) and passing through the

optical center O, is given in terms of (XY) ccordinates by

X =2 tan ¢_ sin w
p p p
(2)
Y = -2 tan ¢_ cos w
P p p
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or, in terms of x,y coordinates by

X

ta in w i -
o n ¢p31n p(yp51n ¢c f cos ¢c)

2

¥y _cos ¢c + f sin ¢c

& _ .
B an ¢p cos wp(f cos ¢c yp51n ¢c)

(3)

t w - i
an ¢p cos b cos ¢c sin ¢c

i.e., y =f¢£ -
tan ) +
p ¢p cos o sin ¢c cos ¢c

However, in photographic interpretation work, one usually needs
to know the angular coordinates (¢p, wp) of the line-of-sight in the
object space corresponding to a given location (xp, yp) in the photo-
graphic frame. Then from Eq. (3), one obtains

tan ¢p cos wp(f cos ¢C - yp51n ¢c) = y_cos ¢c + f sin ¢c

p
(4)
tan ¢p sin wp(f cos ¢c - ypsin ¢c) = - xp
so that,
tan wp = - xp/(ypc0s ¢c + £ sin ¢c) (5)
Thus, using Eq. (3), one can determine ¢p from xp and wp

The projection of the constant zenith angle scan in (X,Y) and
(x,y) planes is obtained by eliminating wp from Egqs. (2) and (3),

which yields
X2 + y2 = 22 tan2 ¢ (6)
p P P
or
2 2 . 2 2 2
x" + (1 - sin™: sec p ) + f sin 2 sec
ot v, b seCTD) v, b, sec o

+ fz(l - cosz¢c sec2¢p) =0 (7)
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Then the film projection of the almucantar scan is obtained from
Eq. (7) by setting ¢p = ¢c, so that
x; + y; (1 - tanztbc) +2y £ tan $_ =0 (8)
If ¢C = 450, Eq. (8) reduces to the following relation
x2 +2fy =0 (9)
p p

From Eq. (8), one obtains

-2 tan ¢c + J/Z tan2¢c - 4(xp/f)2(l - tan2¢c)

y
2 _ 10
r (10}

2(1 - tan2¢c)

DESCRIPTION AND USE OF STANDARD TABLE
One can obtain a standard tabulation (Table 1) of (xp, yp) values of
. . : 0,,0 o o
the almucantar projection for any solar zenith angle ¢S = 10(27)44, 457,
460(20)700, and for £ = 1 mm. It is assumed here that ¢C = ¢S. The (xp, yp)
values of conic sections can be obtained for a lens of any other focal
length £ (mm) by multiplying the values of xp, yp in Table 1 by the factor
f. Figure 2 illustrates the conic sections for four focal lengths, namely,
35, 50, 55, and 80 mm for almucantar corresponding to a few solar zenith
. o o

angles in the range 10~ - 70

In passing, it may be mentioned that in case the projection of the

sun vertical scan (¢P = 0) is required, it can be obtained by eliminating

wp from Egs. (2) and (3). For further details, see Ref. 1.
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