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Abstract

The land-water interface of coastal marshes may influence the production of estuarine-
dependent fisheries more than the area of these marshes. To test this hypothesis, we created a
spatial model to explore the dynamic relationship between marshland-water interface and level
of disintegration in the decaying coastal marshes of Louisiana’s Barataria, Terrebonne, and
Timbalier basins. Calibrating our model with Landsat Thematic Mapper satellite imagery, we
found a parabolic relationship between land-water interface and marsh disintegration.
Aggregated simulation data suggest that interface in the study area will soon reach its maximum
and then decline. We found a statistically significant positive linear relationship between brown
shrimp catch and total interface length over the past 28 yr. This relationship suggests that
shrimp yields will decline when interface declines, possibly beginning about 1995.
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Introduction

The loss of Louisiana’s coastal wetlands at the average rate of about 100 km?/yr (Gagliano et al.
1981) is a problem of national concern because of their importance to wildlife and fisheries.
Louisiana’s seafood production, the highest in the nation, is based on species dependent on
estuaries and their associated wetlands, which provide food and shelter for young organisms
(Boesch and Turner 1984).

Both natural processes and human interference with these processes are responsible for
the rapid wetland loss in Louisiana (Baumann et al. 1984). The leveeing of the Mississippi
River has prevented the deposition of marsh-building sediment that could offset subsidence and
sea-level rise (Kesel 1988). Drainage and navigation channels have altered the natural
hydrologic processes that build coastal and interior marshes and stimulate marsh vegetation
growth (Turner and Cahoon 1987).

Despite the loss of wetlands and the known dependence of fishery species on wetlands,
statistics indicate that Louisiana’s fishery landings have been increasing. The increase in
landings, not fully explained by an increase in effort (Nichols 1984), has created a sense of false
security that has delayed action to curb wetland loss.

The production of fishery species may be more dependent on the land-water interface than
on wetland acreage. Faller (1979), Dow (1982), and Gosselink (1984) found statistically
significant relationships between fishery production and land-water interface in neighboring
areas. Zimmerman et al. (1984) noted that brown shrimp densities were highest in areas of
high shoreline "reticulation.”

Using a stochastic computer model, Browder et al. (1984) provided a theoretical description
of how the length of the land-water interface changes during marsh disintegration. They found
that interface length increased in early stages of simulated marsh disintegration, reached a
maximum when the marsh was roughly 50% water, and decreased thereafter. They further
noted that the magnitude of maximum interface was variable and was affected by the spatial
pattern of land and water--specifically the degree of clumping of water pixels to form water
bodies.

In the study reported here, we refined and expanded the Browder et al. (1984) model and
calibrated it with Thematic Mapper (TM) imagery covering 70 marsh sites in coastal Louisiana

(Appendix A). Then we used our model to simulate the complete cycle of marsh disintegration




at each site and collected data on interface length. We used independent data to roughly
convert interface length versus disintegration level to interface length loss versus time at each
site. Then we tested total interface length from the 70 simulations for its ability to explain
annual brown shrimp catch in estuaries adjacent to the study area. Finding a statistically
significant relationship, we used it to estimate future shrimp production. We compared data
from the TM imagery to simulated data from our model in order to evaluate Browder et al.’s
general observations concerning the relationship of interface length to land loss and the spatial

pattern of land and water.

Methods

The study can be viewed as consisting of four steps: model development, model calibration,
model evaluation, and model extension. Model development consisted of refining the Browder
et al. (1984) model for use with TM data. The model contains three adjustable parameters that
were calibrated to the spatial patterns of land and water in 70 marsh sites in Louisiana, as
indicated in TM imagery. The TM scenes were classified into land and water pixels, and several
measures, or indices, of spatial pattern were obtained from each scene. We developed an
expert system that used these spatial-pattern indices to select the model-parameter values to
simulate the history of marsh disintegration at each site. Then we made 70 "best fit"
simulations of marsh disintegration--one for each scene--and recorded the history of interface
length as a function of disintegration level (DL, water area as percentage total area) throughout
each simulation.

We evaluated our simulations by several methods. We used regression analysis to compare
the spatial-pattern indices of the 70 simulations to those of the TM scenes. We compared the
number of water-body groups in the simulation to those in the TM scene, by lobe and marsh
type. We visually compared the TM scenes with our simulated scenes at the same stages of
disintegration. Finally, we examined the model-parameter values selected by the expert system,
comparing them by marsh type and lobe.

We extended our model results to fishery production. First we determined the relationship
between brown shrimp catch and simulated interface length in the study area for the past 28 yr.
Finding a statistically significant relationship, we used it to estimate future shrimp catches based

on simulated future interface length.
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Description of the New Model

Our new model simulates marsh disintegration by successively changing land pixels to water
pixels. The relative probability that a land pixel will be converted to water at each iteration is
governed by a function weighted by three adjustable parameters: interior disintegration (W),
shoreline erosion (G), and border-condition (BC). The weighting parameters were based on
Sasser et al.’s (1986) observation that two patterns of marsh disintegration occur in Louisiana.
In one pattern, small, randomly spaced, gradually expanding water bodies develop in solid
marshes. In the other, land disappears along the margins of major water bodies, as if lost to
waves or other erosive forces. The model simulates the entire disintegration process, starting
with solid land and ending with only open water. Each iteration represents passage of time,
although time units are unspecified.

The pixel to be disintegrated at each iteration is selected from a numbered list by a pair of
randomly generated numbers (RN). The first makes a tentative selection by matching a number
on the list; the second random number determines whether the tentative selection is eligible.
The pixel is eligible if its total weight at that iteration (F;) is greater than RNy - max-F;; for
that k (i and j = pixel coordinates and k = iteration). The relative probability that a specific
pixel will be selected at iteration k (RP;;) is the ratio of the total weight of that pixel to the
sum of the total weights of all the land pixels:

r ¢
RPx = Fiu /T E (Fjjp), )
i=1j3=1

where r = number of rows, ¢ = number of columns,

4
Fi,j,k =1+ W'Si,j,k + X [BCm'Gm'Bm,i,j,k]° 2)
m=1

W = weighting coefficient for each side of the pixel adjacent to water. S;;; = number of pixel
sides adjacent to water. G = weighting coefficient for pixels bordering a major water body, by
border. B = a Boolean value (1 or 0) indicating whether the pixel is on a major water body, by
marsh border. Border condition is the vector BC. BC,, indicates which marsh borders (n, s, €,

or w) are on major water bodies. (Note that throughout this paper, "side" refers to pixel



boundary and "border" refers to marsh boundary.) Once a pixel is converted to water, it is
removed from the selection list, shortening it by one. Figure 1 gives a snapshot view of the
progress of marsh disintegration in one simulation. The marsh is initially solid. By the time it
is 25% disintegrated (DL = 25%), we see many small water bodies. Water areas are larger and
are beginning to coalesce at 50% disintegration. Most water bodies are connected by the time
the marsh is 75% disintegrated.

At each iteration of the model, counters keep track of the percentage of the total area that
is water and the length of the land-water interface. Percentage water area is referred to
throughout this discussion as the level of disintegration (DL). Land-water interface is measured
in pixel-lengths--the length of one side of the square pixel. As measured, interface is
homologous to the "join" statistic of Moran (1948) and is related to other spatial autocorrelation
statistics indicating degree of clumping of the same pixel types (Upton and Fingleton 1985). By
affecting the order of pixel disintegration, our model’s weighting coefficients determine the
degree of clumping of water pixels in simulated marshes. Figure 2 shows two marshes at similar
stages of decay simulated by different interior-marsh-decay weighting coefficients. Note that
water bodies are larger when W = 3,184 (bottom) than when W = 248 (top). (The erosion
weighting coefficient was zero for both.)

The new model differs from the Browder et al. (1984) model in several important details.
In the original model, only pixels initially on a major water body had the G-weighting (B = 1).
The G-effect was inconsequential in sensitivity tests, particularly as the size of the simulated
marsh increased. In the new model, any pixel can eventually be assigned B = 1, if it is
connected to a designated water border by a continuous water path. The G-parameter now has
a much greater effect. The new model allows flexibility in the initial identification of water
borders, and up to four water borders can be set. The pixel-selection procedure of the new
model is an improvement that made it practical to simulate marshes having as many pixels as
the TM images of our study sites, 192 x 192. Appendix B presents the spatial-pattern statistics
of simulations using all combinations of W, G, and BC. The new model and all ancillary
programs were written in C and executed on an AT&T PC-7300, a 16-bit, 10-MHz computer
with a Unix-V operating system.



Figure 1.

ORIGINAL PAGE g
OF POOR QUALITY

e A

we404 G0 BC+ 0000 oL+ 20%

vﬂmﬂmnwmmuwuumn mnmmuuuquuwmnw
. N v ot :

| B " e il H - B
b R . . N

| S s ggg mqh -'"'. v a i

e e ety i O e e P, O R et

We 404 G0 8C+0000 DL 75%

Snapshot view of simulated marsh disintegration at the 25%, 50%, and 75%
disintcgration levels (percentage open water arca).



el e R SR A e
GRS HIRALEE R T T L

. G=0 .. 8G=0000 DL=2944%:

A, T
ORI

o |
1t " il il
O TR {1 BLORLGHIT YN

BG+000C. . .~ 0DL*2T66%

irtes b
[t T TN SRR T

w384 . GsQ

Figure 2. Two simulated mz}rshe.s at similar levels of disintegration, produced by dillcrent
values of W, the interior-marsh-decay weighting factor.

ORIGINAL PAGE IS
OF POOR QUA.'TY

-



e ) G BN g T gF TN TGN AR G BN pgm -

Model Calibration

TM image processing. We analyzed the TM scenes on the Fisheries Image Processing System
(FIPS) of the National Marine Fisheries Service (NMFS) in Slidell, Louisiana, and a system
operated by the Florida Department of Natural Resources in St. Petersburg. Both systems
consisted of a minicomputer, color-image display device, and other hardware for processing
remotely sensed digital data. The software was a modified version of the Earth Resources
Laboratory Applications Software (ELAS) (Graham et al. 1984).

The TM image we used was from a 2 December 1984 Landsat-5 overflight (Scene ID:
50276016022). Covering most of the Mississippi deltaic plain, it was one of the few relatively
cloud-free images of our study area (quads 1 and 2 in path 22 and row 40 of the World-Wide
Reference System).

ELAS modules PMGC (Georef constants-EROS format) and PMGE (Georef-EROS
format) (Graham et al. 1984) were used to digitally rotate the images to fit a Universal
Transverse Mercator projection with a north-south orientation. We used these modules to
accumulate ground-control points, generate polynomial least-squares mapping equations, and
resample the image with bilinear interpolation. Registration accuracies averaged 22-56 m.
Resolution was the length of a TM pixel side, 30 m. Land and water pixels were classified by
multiplying bands 4 and 5 (0.76-0.90 um and 1.55-1.75 pm, respectively), rescaling to 0-255, and
applying Pun’s (1981) global thresholding technique.

Study-site selection. The study sites are located on two abandoned delta lobes of different ages.
The early Lafourche lobe was an actively prograding delta within the last 1,800 yr. The late
Lafourche lobe was an active distributary of the river within the last 600 yr. Chabreck (1972)
distinguished four major types of Louisiana coastal marsh on the basis of vegetation: salt,
brackish, intermediate, and fresh. Salt and brackish marshes are the most important marshes to
estuarine-dependent fishery species and show a wide range of decay stages. For these reasons,
we limited our study to these two more seaward marsh types.

Site locations are within the areas represented by 21 U.S. Geological Survey 7.5-min
topographic maps. We used these maps and a coastal habitat map (Chabreck and Linscombe
1978), coupled with our extensive field experience, to distinguish brackish and salt marsh. We

defined potential boundaries of study sites by dividing the area of the TM image corresponding



to each topographic map into four contiguous quarters measuring 192 x 192 pixels (5,760 x
5,760 m, roughly 33.18 km?). The intersection of the quarters corresponded to the center of
the map. We selected 70 marsh sites: 38 salt (20 on one lobe, 18 on the other) and 32
brackish (19 and 13 per lobe) (Fig. 3).

Measurement of spatial-pattern indices. We generated 70 binary land-water images from the band-
4-x-band-5 images. To measure our spatial-pattern indices, we tabulated the following using
ELAS command strings: (1) number of land and water pixels (to determine percentage water
area = disintegration level [DL]); (2) number of water pixels by scan line and element column
(to determine border condition); (3) number of land-water pixel-side contacts (interface length);
(4) number of water pixels, excluding border pixels, with sides adjacent to zero, one, two, three,
or four other water pixels (which we will refer to hereafter as the "side-adjacency” statistics);
and (5) number of pixels in each water body (water-body size). Diagonal, or corner, contacts by
water pixels were considered to connect two parts of the same water body.

We tabulated interface length in a three-step process. First, we generated an intermediate
image using the ELAS shoreline-length (SLIN) module (Graham et al. 1984). SLIN uses a 3-x-
3-pixel moving-window technique to classify each land pixel adjacent to water into 1 of 69
shoreline categories (Dow, 1982; Dow and Pearson, 1982). Second, we used a look-up table to
convert the SLIN image to an image file of six classes: land and water pixels and land shoreline
pixels having one, two, three, or four sides adjacent to water. Our principal spatial-pattern
index, interface, was determined by counting the land-pixel sides adjacent to water pixels. We
determined the number of water-pixel sides adjacent to other water pixels with a similar
technique to obtain the side-adjacency statistics, which were our other major indices of spatial
pattern. Two processing changes were required: water pixels adjacent to land were defined as
water shoreline pixels in SLIN-module processing; and a new look-up table was used to classify
water pixels with zero, one, two, three, or four sides adjacent to other water pixels. The water-
body classifier (WBOD) of ELAS was used to determine water-body size.

The length of an irregular shoreline is a function of measurement unit (Mandelbrot 1967).

Our measurements of land-water interface and, possibly, other spatial-pattern indices are valid




"ea1e 3y 3urrdnod sdew siydesgodor Kaaing [#2130]03D) *§' ) Juipuodsauod pue vare pnis Juimoys rurisino jo depy ¢ amiyy
wy
sSSed epeujwe) g sasslusaq s9|s| |BNUBD G
a|ea p assieJn e ayeq ‘¢
ssed ueslad ‘g 21poo0n g i
noque) Aeg ‘g ajeq bog ¢
noAeg yuiy | Q abse np nofeg pueip 1 “
- seus yssew yes [] R .
Aeg nokeg aa1y) g , . 3 inbajuopy 9
SONS YSIeW ysnhjoeig B oBINg ‘g
sinQ,17 Aeg v 3
uewiIND axeq ‘p
> uapjoy -

SUutEd Mopealy uapion g inaaneg noAeg ‘¢
mopealy uspjon g VNVISINO' uBYOB| oxe ‘Z
dwe9 Ajjng aym O aye jsoq i <

ayoinoje] ajen ayounoje Ajieg




only at TM resolution, 30 m. Appendix C presents the spatial-pattern statistics of the TM

scenes.

Calibrating the model. An expert system, consisting of a knowledge base and decision process,
selected the model parameters W, G, and BC to best approximate the spatial patterns of each
study site. Selections were made by matching certain spatial-pattern indices of the imagery to
those in a knowledge base built from simulations. Interface length, the five side-adjacency
statistics, and a "target" border condition were the indices to be matched. The knowledge base
showed how these variables changed in model executions as functions of W, G, and BC. The
decision process consisted of rules for selecting the best W-G-BC combination.

The knowledge base was built by running simulations with all possible W and G
combinations from the set [0, 4, 20, 60, 180, and 540] for the six types of BC. (Throughout this
report, BC is given six possible Boolean values: 0000, 0001, 0011, 0101, 0111, and 1111, which
show the specific spatial relationships of the borders, 0 indicating land and 1, water.) For BC =
0000, the set was extended to include W = 1,620 and 9,720. (In addition, power functions
extrapolated to larger W’s.) Target BC is determined by comparing DL to the percentage water
pixels (P,,) in each row or column forming the outer border of the marsh, as follows:

Target BC,, = 1 if P,, > DL. (2)

The spatial-pattern indices of simulated marshes at the same DL as the study site were used
to obtain one or more weighted mean W for every G-BC combination. For e¢ach G-BC, there
could be one or more W based on each spatial-pattern index. To calculate the mean, W’s were
weighted by the number of water pixels of the index. For instance, if Adj-4 = 1,940, the weight
given to the W obtained by matching this index was 1,940. The weight given to the W obtained
by matching interface length was the sum of all water pixels. The weights used to calculate
mean W were summed to calculate a "decision number" (DE) for each weighted mean W. DE
was used to select the best W-G-BC from the many alternatives calculated for each site.

Another criterion used to select the best W-G-BC was coefficient of variation of the
weighted mean W (CV). CV was a useful criterion because low CV indicated a high degree of
convergence of W’s estimated from all contributing spatial-pattern indices.

BC was the main criterion used to select the best W-G-BC combination. If the target BC

was not matched by a solution meeting other criteria, the solution having BC most similar to the
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target was selected. In our 70 cases, BC usually matched target BC or differed by only one
border. The decision algorithm selected the W-G-BC combination having, first, BC most similar
to target BC; second, high DE (within at least 75% of the highest DE among all alternative W-
G-BC combinations); and third, lowest CV (see Appendix D, F).

Simulation of study-site spatial patterns. Once selected, model parameters were used to simulate
the spatial pattern of each study site and the change in land-water interface with land loss. The
land-water maps and spatial-pattern indices of the 70 simulated marshes were captured at the
same levels of disintegration as corresponding study sites. In addition, interface length was
recorded at each 5% level of disintegration as the simulation proceeded from solid land to open

water.

Analysis of brown shrimp catch data. To relate marsh-water interface to annual fishery catch
data, we needed to estimate interface length as a function of time. Interface length in our
model output was expressed as a function of DL, not time. Therefore, we needed an estimate
of the time trend in DL. We used data from Wicker’s 1956 and 1978 maps (1980) to estimate
this trend. The data were compiled by Liebowitz (Louisiana State University, private
communication, 1988), who provided us with water area for each topographic-map area
corresponding to our study sites. We estimated average annual change in DL per topographic-
map area by expressing water area in 1956 and 1978 as percentage total area and calculating the
annual average of the difference. This assumed a linear trend in water area from 1956 to 1978,
which we projected into the future. We aggregated the data for each site to obtain, for each
lobe, an estimate of interface, by year, from 1956 until the future total loss of marsh and
interface. (An in-depth comparison of 1956 and 1978 data from the Wicker maps is presented
in Liebowitz and Hill [1988].)

Using regression analysis, we compared 1960-1987 of the simulated interface time-series
with unpublished brown shrimp catch data for Barataria, Timbalier, and Terrebonne bays for the
same period (G. Davenport, NMFS, Miami, personal communication, 1988) to estimate a
relationéhip between catch and interface. (Barataria Bay is associated with the late Lafourche
lobe, and Timbalier and Terrebonne bays are associated with the early Lafourche lobe.) We

predicted future shrimp catches from this relationship. Included as independent variables in the
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analysis were local rainfall (R. Muller, Louisiana State University, personal communication,
1988) and number of hours from April 9 through 30 in which temperatures were below 20°C
(Barrett and Gillespie 1975; B. Barrett, Louisiana Department of Wildlife and Fisheries,
personal communication, 1988). Barrett and Gillespie (1975) suggested that salinity and the
temperature variable affected brown shrimp catches. We used rainfall as an inverse surrogate

for salinity. Lack of reliable effort data precluded inclusion of this variable in our analysis.

Results

Results are organized as (1) interface length versus disintegration level of study sites, (2)
evaluation of simulations, (3) simulated site-specific interface length versus DL, (4) aggregated

interface length versus year, and (5) possible impacts on fisheries.

Interface Length versus Disintegration Level of Study Sites

A plot of interface length versus DL measured in the classified imagery of the study sites (Fig.
4) suggests that interface increased in the early stages of disintegration, reached a maximum
when marshes were 30%-50% disintegrated, and decreased thereafter. Statistically significant (p
< .1) parabolas were fit to separate data for salt and brackish sites. Most salt marsh sites were
more than 50% disintegrated, whereas the DL of brackish sites ranged from low to high. DL
and interface length did not differ significantly between early and late lobes, possibly because we

excluded open-water areas of both lobes from our analysis.

Evaluation of Simulations

Following are the results of our evaluations of how well the simulations represented the spatial
patterns of the study sites. Appendices E and G provide further specific comparisons in tabluar

and graphic formats.

Agreement of simulation and study-site interface. Interface length in each simulation was obtained
at the same DL as the TM scene it represented. Then the 70 simulation interfaces were
regressed on the corresponding TM-scene interfaces. TM-scene interface explained 94% of the

variation in simulation interface. The slope of the relationship was 1.06. The greatest

12




"(eare 191em uado aBe1usarad) (aas UOnRIBANUISIP SusIIA 18us] oy “p amsy

(so1em vedo %) q
001 06 08 . 0L 09 0S ov oe 02 ol 0

r0S

004

13

r0S 1

002

062

(wy) yiBuey soepaY|

r00€

"0S€
ysiew yesn yssew ysppeigo




departures of simulation from TM-scene interfaces were in the highest values. In most
departures, the simulation value was higher than the TM-scene value. Half the simulation
interface lengths differed from corresponding TM-scene values by no more than 10%, and 86%
differed by no more than 30%. The average absolute difference was 11.7%.

Regression of simulation side-adjacency statistics on their TM-scene corollaries indicated
highly significant relationships (F-stat. p < .001) for all but Adj-0, with 56%-99% of the
variation in the simulation values explained by TM-scene values. R?’s were 0.56 for Adj-1, 0.91
for Adj-2, 0.80 for Adj-3, and 0.99 for Adj-4. Their slope coefficients varied from 0.97 to 1.21.
The poor fit of simulation Adj-0 to TM-scene Adj-0 probably was largely due to the usually low
value and resultant extremely small influence of this spatial-pattern index in the decision

process.

Variation in simulation indices. Three replicate simulations with three sets of model-parameter
values revealed the variation in simulation spatial-pattern indices caused by the random aspect
of the model. CV averaged across all the spatial-pattern indices ranged from 4.9% to 19.3%.

It was highest in the three replicate simulations where G = 540 and lowest in those where G =
0. The CV of Adj-0 was extremely high in the sets of replicate simulations in which G = 180
(CV = 53%) and G = 540 )CV = 71%), probably because of the low value of Adj-0 (less than
20 pixels in all cases). Average CV’s for the other side-adjacency statistics ranged from 2.17%
for Adj-4 to 7.34% for Adj-2. The CV of interface length averaged 6.28%.

Water-body size groups. Water-body size data for sites and simulations were difficult to compare
because water bodies were few and their size range enormous. Rather than grouping them by
even intervals, we defined breaks between size groups with the following consistently applied
algorithm. In a list of water bodies sorted by size, a break was defined if the larger of two
adjacent water bodies was more than twice the size of the smaller. Upper and lower boundaries
were placed on water-body size groups for each marsh unit. Figure 5 summarizes the
differences between number of water-body size groups in each case. The study sites and their
simulations had the same number of water-body groups in 23 of 70 cases. In 59 cases, study
sites and simulations differed by no more than one group. This was good agreement

considering that the status of one pixel in a strategic location could determine whether two
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clumps of pixels formed one water body or two. Usually, the study site had more groups than
the simulated marsh. The average number per study site was 2.7, whereas the average number
per simulated marsh was 2.3. Two groups were distinguished for most marshes. Typically, a
small percentage of water pixels were distributed among many small water bodies, and the rest
were in one large water body. For example, in one study site, 4.3% of the water pixels were in
water bodies that included 0.003%-0.752% of the total water pixels, whereas 95.5% were in one
water body. Water-body groups in the corresponding simulation were similar. Generally, when
more than two water-body groups occurred, the additional ones were at the lower end of the

size range.

Visual evaluation. Visual comparisons suggested that the model often succeeded in simulating
spatial patterns of the TM scenes, except when high G-values were used to simulate brackish
marshes. The simulations did not appear to accurately represent those patterns of land and
water heavily influenced by underlying geologic features, such as ridge/swale topography or large
lakes, nor man-made features such as canals and diked areas. Despite limitations, the model
simulated the general patterns of most marshes well, and matched a few remarkably well. The
marsh map in Figure 6 (bottom) was simulated with an interior-marsh-decay coefficient of 311, a
shoreline-erosion coefficient of 540, and a BC of 0001. At a DL of 68.89%, it displays a spatial
pattern of land and water very similar to that of the classified TM scene at the same decay
stage (Fig. 6, top). Interface length in the simulation map differed from that in the TM scene
by 10.2%.

Model-parameter values. Some generalizations can be made about the appropriate model-
parameter values for simulating marsh disintegration. Lobe age did not appear to influence
parameter values, whereas marsh type seemed to be an influencing factor. Based on the
knowledge base and our criteria, the expert system gave salt marshes higher shoreline-erosion
coefficients, more water borders, and lower interior-decay coefficients than it gave to brackish
marshes (Fig. 7). W and G were inversely related in the expert system’s selections (Fig. 8A).
Our visual comparisons suggested that low-to-medium values of G (0-180) and moderately high
values of W (about 200-400) matched the spatial patterns of brackish TM scenes best.
Conversely, high G-values (180 and 540) gave the best match to salt marsh scenes. Because salt
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Figure 6.
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(A) Average G weighting factor (shoreline erosion) and (B) average W weighting
factor (interior-marsh-decay) selected by the expert system, by marsh type, lobe
(early or late Lafourche), and border condition (BC). (Two extremely high
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marshes have more borders on major water bodies, shoreline erosion is more prevalent in them
than is interior decay (Fig. 8B). Interior decay weighting coefficients selected by the expert
system were highest for simulated marshes having the fewest water borders (Fig. 7B), which

were primarily the brackish marshes (Fig. 8B).

Simulated Site-Specific Interface Length versus DL

We followed interface from 100% land to 100% water in each of the 70 simulations. Many

simulations were similar to those of Lost Lake NW, Mink Bayou SW, and Mink Bayou SE (Fig.

9). Interface reached a maximum approaching 10,000 pixel-lengths (300 km) when the marsh
was roughly 50% disintegrated. Interface in Pelican Pass SW (Fig. 9) followed a strikingly
different path, reaching its unusually low maximum of 2,417 at a DL of only 11%. This is one
of two simulations that differed markedly from the rest in reaching maximum interface at a low
DL. Both were simulated with G = 540 and BC = 1111. The distribution of maximum

interface in the 70 simulations was bimodal, with a lower peak around 2,000-4,000 pixel-lengths
and a higher one at 9,000 (Fig. 10A). DL at maximum interface was between 45% and 60% in

most simulated marshes (Fig. 10B). Based on the simulations, 37 sites had not yet reached the
DL of maximum interface in 1985, whereas two were at maximum-interface DL, and 31 were

beyond it (Fig. 10C).

Aggregated Interface Length versus Year

Aggregated 1985 simulation interface was 406,051 pixel-lengths (12,182 km)--82% of the
aggregated maximum interface of 496,969 pixel-lengths (14,909 km). According to our estimates
from Wicker’s (1980) map data, the average annual change in DL in the USGS-topographic-
map areas of our study sites varied from 0.125% to 1.145% per year (Appendix H). Using
these trends and the year of our TM image to relate DL to time, we transformed our
individual-site plots of interface versus DL to the lobe-aggregated plots of interface versus time
in Figure 11. Our hindcasts (1956-1985) and predictions (1985+) of interface are plotted as
fractions of total maximum interface. The interface curves do not reach 1.0 because all the
simulated marshes will not reach their interface maxima concurrently. The 1935 points are near
the two maxima on the ascending side. These results suggest that total land-water interface in

both deltaic areas has been increasing, but will soon begin decreasing. If the estimated linear
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trends in DL are accurate, the decline will begin about 1995. Sasser et al. (1986) reported an
exponential rate of loss in our study area. On the other hand, recent observations by Liebowitz
(personal communication) suggest that some large water areas that appeared between 1956 and

1978 may not be growing.

Possible Impacts on Fisheries

We found a statistically significant (p < .0001) relationship between brown shrimp catch and
interface. The equation is as follows:

Y, = -61.046 + 277.55-X; - 039198+ X; - 0.12948- X3 3)
where Y, = catch per unit area, X; = interface length in pixel sides, X, = rainfall in
centimeters, and X3 = hours from April 9 through 30 in which temperatures were below 20°C.
The equation explained 49% of the variation in catch for 1960-1987 (Appendix I). Interface
length alone explained 32%. The percentage variation in annual catch explained by the
equation was high, considering that effort, usually a major factor influencing catch, was not
included as an independent variable. Using our interface projections and assuming average
conditions of the other independent variables, the equation predicts that brown shrimp catches
dependent upon Barataria, Timbalier, and Terrebonne bays may fall to zero within 75 yr
(equation confidence limits 52 and 105 yr). Confidence limits do not include the error

associated with predicted interface.

Discussion

Our model and expert system appear to have been successful in simulating general features of
the spatial patterns of most study sites. The model was not designed to reproduce the exact
locations of land and water in each study site but, rather, the general characteristics of the land-
water pattern. Since the model is probabilistic, it produced a different pattern in every
execution with the same W-G-BC combination. Necessary built-in restrictions such as having
only six possible values of G and the same G for all water borders limited our versatility in
matching spatial patterns. We could have matched the interface length of the TM scenes more
closely had we not also matched the side-adjacency statistics. But selecting W-G-BC on the

basis of both interface length and the side-adjacency statistics increased the probability that the

24




trajectory of interface change with land loss during each simulation of marsh disintegration was
realistic for the site.

The statistically significant fit of a parabola to the plot of interface-length versus DL of our
70 TM scenes (Fig. 4) supports Browder et al.’s (1984) first conclusion: In the progress of
marsh decay, interface length increases initially, reaches a maximum, and then decreases. The
scatter of points about the parabola (Fig. 4) supports their second conclusion: The magnitude
of maximum interface (and, consequently, the trajectory of interface change with land loss)
differs from marsh to marsh. Our expert system selected model-parameter values to simulate
marsh disintegration at each site on the basis of spatial-pattern indices measured in the site’s
TM scene. The site-specific parameters produced considerably different trajectories of interface
change with land loss. Maximum interface varied from about 2,000 pixel-lengths (60 km) to
over 13,000 (390 km) (Fig. 10A), and DL at maximum interface varied from about 10% to 70%
(Fig. 10B) in the 70 simulations. Simulations with the Browder et al. (1984) model consistently
reached maximum interface at a DL of about 50%. Apparently, the greater power of the G-
weighting coefficient in our model gave it more flexibility in simulating interface trajectories.
Nevertheless, our 70 simulation results were centered around a mean DL at maximum interface
of 52.7% (S.D. = 9.95).

In the plot of interface length versus DL with TM-scene data, DL at maximum interface
was between 30% and 50%. This might appear to conflict with the site-specific simulation
results, summarized in Figure 10B, which suggest that interfaces reach their maxima in most of
the sites when they are 45%-60% disintegrated. But, when we plotted the simulated 1985
interface lengths against DL, we found that these data, too, reached maximum interface at 30%-
50% DL. Apparently, a plot of interface length versus DL at many sites in different stages of
disintegration does not precisely reflect the generalized shape of the curve of interface versus
DL at the individual sites.

The resolution of TM imagery seemed adequate for this analysis. Many water features
were recognizable that would not have been noticeable in MSS imagery. Our model might be
useful for roughly estimating the history of interface length with disintegration in other marshes,
even in the absence of the detailed spatial data we acquired for our 70 sites. On the basis of

our results, model coefficients could be set as follows: BC = observed water borders, G = our



mean or modal value for salt or brackish marsh (Fig. 7A), and W = our mean or modal value
for that border class (Fig. 7B).

Summary

We demonstrated with TM imagery the general relationship of land-water interface length to
stage of disintegration. We then simulated the disintegration of 70 specific marshes from
hypothetical starting points of solid land, through their present states of disintegration, to total
conversion to water. We used unpublished data from digitized maps (Wicker 1980) to quantify
site-specific disintegration rates, and we hindcasted and forecasted land-water interface as a
function of time. We then aggregated the site-specific data to produce an estimate of interface
length, by year, on each lobe. The relationship with time may be tenuous because we assumed
a linear trend based on only two points in time. Nevertheless, relating our results to time, even
if only roughly, helps the reader comprehend the immediacy of the problem.

We found a statistically significant relationship between a time series of fishery catch data
and the length of the land-water interface. Others have found relationships between spatial
data on fishery catch and interface. Our analysis may overestimate the importance of interface
to brown shrimp production because the conversion of freshwater marsh to brackish marsh (or
some other factor not included in our equation) might ameliorate the effect of interface loss in
salt and brackish marsh. Nevertheless, the shape of our curve of interface over time, today’s
location on that curve, and our contribution to the mounting evidence relating fishery catches to

interface length should be seriously regarded.
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Appendix A

Background and Methods

Louisiana’s Coastal Wetlands: Geological Background and Previous Remote Sensing Studies

Methods
Overview
Model Specification
Model Expansion, Refinement, and Sensitivity Testing
Study Site Selection
Image Processing and Analysis
Measurement of Spatial-Pattern Statistics
Description of the Expert System

References
Table Al. Look-up table used to classify water and land identified by the ELAS shoreline
length module into water pixels and land pixels with zero, one, two, three, or

four sides adjacent to water.

Table A2. Calculation of weighted mean W, DE, and CV from a G-BC look-up table in
which G = 0, BC = 0000, and DL = 10.90%.

Figure Al. The maximum extent of the influence of deltaic lobes of the Mississippi
River on the present geomorphology of Louisiana’s coastal wetlands.
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Louisiana’s Coastal Wetlands

Geological Background and Previous

Remote-Sensing Studies

The continuing disintegration of the coastal marshes of Louisiana is one of the major
environmental problems of the nation. The average rate of loss for the last 20 yr has been
approximately 104 km?/yr (Gagliano et al. 1981). At this rate, Louisiana’s coastal marshes will
be gone in 145 yr. Prevailing evidence suggests that the marsh disintegration results from local
imbalances between building processes, such as sedimentation and the growth and accumulation
of dead vegetative matter, and destructive processes, such as sea level rise, crustal subsidence,
erosion, and compaction (Gosselink 1984). Local elevation gradients within the marsh are so
low that small changes in water level or land elevation can cause large changes in land and
water area (Sasser 1977; Baumann 1980). Water management structures, navigation cuts and
channels, and other alterations by man appear to accelerate the disintegration rate (Johnson and
Gosselink 1982; Dozier 1983; Gosselink 1984; Turner et al. 1984).

The problem of marsh loss in Louisiana is relevant to fishery management because Louisiana
leads the nation in landings of fishery products, and most of the landed species are dependent
upon estuaries and their associated tidal marshes. Coastal marshes contribute to estuarine food
chains through the export of organic detritus, and the shallow, protected water of marshes
serves as fish and shellfish nursery grounds, promoting survival and growth of the young.

Remote-sensing studies by Faller (1979), Dow (1982), and Gosselink (1984) suggest that the
abundance of fishery species is more strongly correlated with the length of the interface
between land and water in the marsh (shoreline) than with actual area of marshland.
Observations from a field study by Zimmerman et al. (1984) support this conclusion.
Simulations from a theoretical computer model by Browder et al. (1984) suggested that land-
water interface initially increases with marsh disintegration but reaches a maximum when the
marsh is 50% water and decreases thereafter. The degree of change in interface with each
incremental loss of marsh land and the maximum length of interface attained are a function of

the order in which segments of land are converted to water and the resultant pattern of
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distribution of land and water. The more clustered the segments of land converted to water,
the lower the rate of change and less the maximum interface.

In evaluating the potential effect of marshland loss on fisheries, the first two critical factors
to consider are (1) whether land-water interface in actual disintegrating marshes is currently
increasing or decreasing, and (2) the magnitude of the change.

This study used Landsat Thematic Mapper (TM) data covering specific sample marshes in
coastal Louisiana to (1) test conclusions from the Browder et al. (1984) model with regard to
the stage in disintegration at which maximum interface occurs; (2) further explore the
relationship between maximum interface and the pattern of destruction of land and water
suggested by the model; and (3) determine the direction and degree of change in land-water
interface in relation to land loss in actual marshes.

Louisiana’s coastal marshes were ideally suited for this examination for several reasons.
First, the large, contiguous expanses of marsh enabled us to sample large areas containing only
wetlands. Second, this region has been the subject of many scientific investigations concerning
ecological principles, geologic processes, and experimental use of remote-sensing techniques.
Third, geologic changes are occurring very rapidly here, and fourth, Louisiana’s coastal marshes
are the most extensive in the United States and support a high proportion of the total U.S.
production of estuarine-dependent fish and shellfish.

The coastal wetlands of Louisiana were formed as deltas of the Mississippi River and its
tributaries. The large, heterogeneous expanse of deltaic wetlands along the Louisiana coast is
very young geologically. This area was formed within the last 3,000-5,000 yr as a series of
overlapping deltaic lobes of differing ages (Fig. A1). Instability is a characteristic of youthful
geologic environments. Subsidence, a complex set of processes, has pronounced effects on
wetlands near sea level. Isostatic adjustments in the form of crustal downwarping from
sedimentary loading; tectonic processes that occur contemporaneously, such as folding,
fracturing, flowing, and growth faulting; consolidation of underlying sediments due to the weight
of natural features (e.g., natural levees); and differential compaction related to textural
variability are among those natural processes involved in submerging this coastline. Human
activities in the form of fluid withdrawals (hydrocarbons and water), marsh dewatering through
reclamation processes, and sediment consolidation resulting from building structures on wetlands

all exacerbate coastal submergence. The above subsidence factors, combined with eustatic sea
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level rise, have given coastal Louisiana the fastest-submerging coastline in the United States
(Hicks 1981).

Submergence results in the "drowning” of marshes and their conversion to bay and lake
environments. Sedimentation can balance the effects of submergence and, via the Mississippi
River and its tributaries, has resulted in development of the Mississippi delta lobe. The
geologic record indicates that, on the average, a major delta lobe complex will build and enlarge
over approximately 1,000 yr. This period is followed by one of abandonment characterized by
wetland loss, which also lasts approximately 1,000 yr. As one delta complex is being abandoned,
another one is simultaneously building. Throughout at least the Holocene, the Mississippi
deltaic plain has always concurrently had areas of development and abandonment. Presently,
however, the leveeing of the Mississippi River and maintenance of its present course, combined
with reductions in sediment loads (Tuttle and Combe 1981) and debouchment of sediment at
the edge of the continental shelf, have resulted in widespread wetland loss. The construction of
ship channels, pipeline canals, and access canals for hydrocarbon exploration and production has
both contributed to and accelerated these losses. Acceleration occurs through the effect of
these structures on salinity distributions and sediment deposition. For instance, canals promote
saltwater intrusion, which results in the death of brackish-water marsh vegetation and thus
retards the accumulation of organic soils. Spoil banks associated with canals prevent deposition
of sediment on the marsh surface and reduce exchanges of water and materials between the
marsh and open water. The natural geological process of wetland deterioration, which would
otherwise take place over several centuries, appears now to have been compressed into several
decades.

Chabreck (1972) distinguished four major types of Louisiana coastal marshes on the basis of
vegetation: fresh, intermediate, brackish, and saline. Several investigators have found significant
differences between these marsh types in various soil, water quality, and other parameters,
thereby supporting Chabreck’s classification. Gosselink et al. (1979) found considerable
differences in the length of land-water interface per unit area among the four marsh types in
the neighboring Chenier Plain (marginal Mississippi deltaic plain) of southeast Texas and
southwest Louisiana.

Sasser et al. (1986) used photo interpretation of aerial photographs in combination with a

computer-based geographic information system (GIS) to detect changes in the percentage water
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within wetlands on the late Lafourche delta lobe. They found a pattern of general degradation
in wetland area: marshes were degrading into various densities of shallow water bodies. Of the
marsh and natural levee area, 91% was solid or less than 10% water in 1945. By 1956, only
77% of the marsh was less than 10% water; by 1969, only 46% was; and by 1980, only 28%.
They noted two patterns of disintegration. In one, small, randomly spaced water bodies
developed within solid marshes and gradually grew into larger water bodies. In the other, land
was lost along the margins of major water masses, as if by mechanical wave attack or erosion.
The first pattern seemed to be the more important.

Rosen (1980), in his study of Chesapeake Bay, concluded that shorelines with low tidal
ranges have higher rates of erosion than areas with higher tidal ranges, possibly because higher
tidal ranges form beaches of higher elevation. On these beaches, storm surges are less likely to
reach the elevation of fastland (bluff or dune) material to augment erosion, and wave energy is
distributed over a greater distance in the course of a tidal cycle. The tidal range in Chesapeake
Bay varies from 0.36 to 1 m over a distance of 120 km. The tidal range in the north-central
Gulf of Mexico is approximately 0.6 m.

Leibowitz and Hill (1988) used digital habitat maps for 1956 and 1978 from the U.S. Fish
and Wildlife Service (Wicker 1980) to quantify change in coastal marshes during the 22-yr
period and to evaluate various possible causes of the change. Their study covered our two
study areas--the late Lafourche lobe and the early Lafourche lobe (referred to as Terrebonne in
their study). Water, wetland, and upland could be distinguished in the data, which were
classified according to the Cowardin et al. (1979) system. Boundaries between saline and
freshwater zones were also defined on the basis of vegetation. Liebowitz and Hill classified
each map cell on the basis of a comparison of 1956 and 1978 habitat maps as follows: areas
that were fresh in 1956, but saline in 1978; areas that changed from saline to fresh between
1956 and 1978; and areas that remained saline during the 22 yr. They also identified the cells
in each habitat category that changed from land to water during the 22 yr. Their results
revealed a 37% net area change from salt to fresh on the late Lafourche lobe and a 16% net
area change from fresh to salt on the early Lafourche lobe. The highest rate of land loss on
the late Lafourche lobe was 27% and occurred in the fresh-to-salt area. The highest rate of
land loss on the early Lafourche lobe was 16% and occurred in the fresh-to-fresh area. By

statistical comparisons, they ruled out saltwater intrusion as a reason for land loss on the early
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Lafourche lobe, but concluded that it could be a cause of land loss on the late Lafourche lobe.
The highest rates--47%-55%--occurred in the mud flat and beach/dune/reef habitats. Loss rates
in fresh and saline marsh averaged approximately 18%. Loss from shoreline erosion accounted
for only 2.1% (early Lafourche) and 3.2% (late Lafourche) of all land loss. Thus, the major
form of land loss for all three regions was the conversion of land to inland open water (lakes,
ponds, or bays).

Several studies have used TM and Landsat MSS imagery with collateral data, such as fish
abundance and vegetative biomass, to examine the role of coastal wetlands in estuarine food
chains and the production of estuarine-dependent fish and shellfish. These studies were
supported by the development of software routines used to determine shoreline density (Faller
1977) and shoreline length (Faller 1977; Dow and Pearson 1982), to identify water bodies
(Butera 1982a), and to measure the distance between land-cover classes (Butera 1982b). Faller
(1979) found a strong correlation between shrimp yields and shoreline density in subareas of the
Louisiana coastal zone. Dow (1982) expanded Faller’s (1979) approach and developed
predictive equations that related the abundances of selected species of fish and shellfish to
shoreline-length estimates for subareas of Apalachicola Bay, Florida. The findings of both
authors suggest that abundances of some fish and shellfish could be influenced by the density
and length of the marshland-water interface. Butera and Seyfarth (1981) and Butera et al.
(1984) used water-body identification, distance measures, shoreline density, and vegetative

biomass estimates to quantify organic carbon export into nearby water bodies.
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Methods

Overview

We expanded an existing model (Browder et al. 1984) so that it could simulate marshes of
substantial size, used actual marshes to calibrate the weighting factors of the models, and then
used the model to simulate the disintegration over time of each sample marsh. Model
calibration was accomplished by quantifying the spatial-pattern statistics of the sample marshes
and matching them to the spatial-pattern statistics expected from simulated marshes, based on a
series of simulations in which W, G, and the number of water borders (BC) were varied.

The process consisted of nine steps: (1) expansion, refinement, and sensitivity testing of the
model; (2) selection of sample sites; (3) analysis of imagery; (4) measurement of spatial-pattern
statistics; (5) development of a knowledge base and an expert system; (6) calibration of the
model to the sample marshes; (7) simulation of the disintegration patterns of the sample

marshes; (8) evaluation of simulation results; and (9) interpretation.

Model specification. The model used in this study is the second generation of a stochastic spatial
computer model introduced by Browder et al. (1984). In the initialization of the model, marsh
dimensions are defined in terms of the numbers of rows and columns of pixels. Each pixel can
exist in one of two states, land (emergent vegetation) or water. Initially, all the pixels are land
and the marsh is solid. One land pixel is converted to water at each iteration. The actual pixel
converted is determined by a random number generator linked to a probability function that
incorporates two weighting factors that approximate the natural processes of interior marsh

decay (the W factor) and shoreline erosion (the G factor). The W factor determines

disintegration probability on the basis of the number of sides that the pixel is bordered by water.

The G factor governs the probability that the pixel will disintegrate if it borders the main water
body. The probability weight of each pixel is calculated by the equation:

Fijx = 1 + W S§;;x + G; By;j + G2 Bpajj + G3 By + Gy By (1)
where W = weight coefficient for each side adjacent to water; S = number of sides adjacent to
water; G = weight coefficient for pixels adjacent to a major outside water body; and B = a

Boolean value (1 or 0) indicating whether the pixel is adjacent to a major outside water body.
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The probability weight of a given pixel changes throughout the simulation, depending on what
happens to other pixels, particularly those adjacent to it.

In having the weighted probability function approximate natural processes of interior marsh
decay (W) and erosion due to tidal action or wind-induced turbulence along the edge of major
water bodies (G), we did not assume that marsh loss is a random process, but merely that it
could be simulated by a weighted, randomly driven function.

The model simulates the entire process of disintegration, starting with solid land and ending
with solid water. Each iteration represents the passage of time, although the units of time are
not specified.

At each iteration of the simulation, a counter keeps track of the percentage area
represented as water, referred to throughout this discussion as the "level of disintegration,” and
the length of the land-water interface. The latter is expressed in terms of pixel-lengths, the
length of one side of the square pixel; therefore, measuring interface length consisted of
counting the number of "joins" between land pixels and water pixels. Thus, interface, as we
measured it, is exactly homologous to the "black-white join" (J), the spatial autocorrelation
parameter that Moran (1948) introduced into the literature of quantitative geography. Upton
and Fingleton (1985) described the common relationship between the join statistic and other
spatial-pattern parameters, such as that of Cliff and Ord (1973), and defined the cross-product
statistic, R, which is equal to 2 x J.

Upton and Fingleton (1986) provide an intricate set of equations for calculating R, the
expected value of R (E[R]), and the variance of the expected value. E(R) assumes a random
distribution of black and white (or land and water) cells. R departs from E(R) to the extent
that like cells are clumped (R < E[R]) or uniformly distributed (R > E[R]). They provide
simpler equations for calculating J, E(J), and var E(J) for cases in which the area is regular-
sided and square in configuration (their equations for the R statistics are more general). In our
simulations, we were able to determine J simply by keeping a running total of the number of
land-water joins created at each conversion of a land pixel to a water pixel. A method related
to counting was used to determine the number of land-water joins in satellite images classified
as land and water. Our observations indicate that, for a square area with regular sides, E(J) is

approximately equal to one-half the number of land-water joins of an area of the same
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dimensions having a checkerboard pattern of distribution of land and water. This can be
calculated as follows:

EJ)=2N2-4N 2)
where N = the number of rows = the number of columns.

The weighting factors affect the order of disintegration of marsh land pixels and the
resultant distribution of land and water in the simulated marsh. The higher the values of the
weighting factors, the more clumped the water pixels. By affecting the spatial distribution of
water pixels, the weighting factors determine interface length in simulated marshes. Taking
advantage of this relationship, the approach we took to simulating the disintegration of actual
marshes was to use spatial pattern, as expressed by level of disintegration, interface length, and
other spatial pattern statistics of the actual marshes, compared to those from simulated marshes,
to select W and G weighting factors for the model. The other spatial-patterns statistics that
were used were numbers of water pixels with zero, one, two, three, or four sides adjacent to
other water pixels, and numbers of water pixels on each of the marsh’s four borders. The
distribution of water pixels by size of water clusters at the current (i.e.,, December 1984) level of
disintegration was used to test the fit of the simulated marsh to the actual marsh. Comparison
of simulated marshes to actual marshes in general suggests that the function will work well for
simulating reticulated marshes, such as those on the Gulf coast, although it might not work well
for marshes with a more dendritic pattern of land and water, such as those along the U.S.

Atlantic coast.

Model Expansion, Refinement, and Sensitivity Testing

The first phase in the study was improving the model. Our improvements were guided by a
series of sensitivity tests: (1) tests of the effects of the W and G weighting factors, varied
separately; (2) tests of the effect of marsh geometry (i.e., length, relative to width); and (3) tests
of the effect of marsh size, in terms of number of pixels.

In the original version of the model, only the pixels initially on the major outside water body
had the G weighting (B = 1). The G effect was inconsequential in sensitivity tests with the
original model, particularly as the size of the marsh simulated was increased. On the basis of

this observation, the model was revised so that any pixel, regardless of original location, could




eventually be assigned B = 1. The G factor in the present version of the model has a much
greater effect than that in the earlier version.

Other sensitivity tests indicated that the geometry of the marsh (i.e., ratio of length to
width) affected the trajectory of change in interface relative to W and G and greatly
complicated the process of examining interface as a function of W and G and the number of
water borders to the marsh (i.e., simulation results differed depending upon whether a water
border was the long or the short border). We decided to work with square marshes, both
simulated and actual, in order to avoid this complication.

To eliminate another complicating variable--scaling--we decided to simulate marshes of the
same size (same number of pixels) as our sample sites. We determined that it would be
practical to simulate marshes up to 192 x 192 pixels, although not with replication. A site
represented by 192 x 192 pixels covers 33.18 km? and is approximately one quarter of the area
covered by a 7.5-minute U.S. Geological Survey topographic map.

Increasing the size of the simulated marsh necessitated streamlining the algorithm for
weighting disintegration probability and converting land pixels to water pixels. In the original
algorithm, each pixel, identified by its x,y coordinate, was repeated on the list the same number
of times as its probability factor (F in equation 1). Each item on the list had a unique number,
and the pixel selected was the one that corresponded to the random number at that iteration,
providing that it had not already been converted to water at a previous iteration. All
occurrences of pixels that had been newly converted to water were cleared from the list at five
periodic intervals throughout the simulation. The process got slower and slower as the need for
purging the list approached. This algorithm was too slow and awkward to be scaled up in the
same form. In our revision, each pixel appears on the numbered list only once, but its
probability factor is listed with it. Two random numbers are associated with each selection.
The first random number makes a tentative selection, and the second determines whether the
pixel is eligible. Eligibility depends on whether the pixels’s probability factor is larger than the
random number. The selection process continues, with two new random numbers generated
each time, until the selection of an eligible pixel is made. Of course, the first random number--
the one that makes the tentative selection--is a uniform random number from 0 to 1 that is

multiplied by the largest probability factor on the list. A pointer system keeps track of the
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pixels on the list and eliminates from the list the pixel that has been converted to water at each
iteration.
The model and all ancillary programs were written in C and were executed on an AT&T

PC-7300, a 16-bit computer that has a Unix-V operating system.

Study Site Selection

The study sites are located in salt and brackish marsh areas on two abandoned delta lobes of

the Mississippi River, the early lafourche and the late Lafourche. The early Lafourche lobe was

an actively prograding lobe within the last 1,800 yr; the late Lafourche lobe was active as a main

distributary of the river within the last 600 yr. On each lobe we selected sites that
corresponded to the boundaries of five contiguous U.S. Geological Survey 7.5-minute
topographic maps. Areas defined by each topographic map were divided into four contiguous
quarters, each encompassing an area 192 elements wide and 192 scan lines long on the TM
image. The intersection of the four quarters was aligned to correspond to the center point of
each topographic map. Each area corresponding to a quarter area of the 10 topographic maps
was a potential sample site. After excluding sites with upland vegetation and sites for which no
cloud-free TM images were available, we had 72 samples to use in the study: 40 salt marsh
sites (20 on each lobe) and 32 brackish marsh sites (19 on the early Lafourche lobe and 13 on
the late Lafourche lobe). Salt and brackish marshes were distinguished by means of the U.S.
Fish and Wildlife Service habitat maps (Cowardin et al. 1979).

Because of small errors in TM imagery, pixels are neither exactly square nor exactly the
same size; therefore, it was necessary to eliminate several pixels on the outer boundaries of
imagery corresponding to each topographic map in order to have a 192 x 192 image. Our
sample images therefore do not provide complete coverage of the area--small strips at the
boundaries of the topographic maps are missing. Selecting square samples (samples having the
same number of rows and columns of pixels) greatly simplified the analyses of this study in
several ways. First, we had fewer alternatives to consider in sensitivity analysis and constructing
look-up tables. Second, we could use simpler and less time-consuming equations for estimating
spatial autocorrelation statistics. The quarter was the largest square unit into which a
topographic map could be evenly divided that could be simulated with practicality in the same

dimensions by our computer model on available dedicated hardware.
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Image Processing and Analysis

TM scenes were analyzed on the Fisheries Image Processing System (FIPS) maintained by
NMEFS in Slidell, Louisiana. FIPS uses a Sperry-Univac V77/600 mini-computer, color image
display device, and other hardware to process remotely sensed digital imagery. The software is a
modified version of the Earth Resources Laboratory Applications Software (ELAS) (Graham et
al. 1984).

The TM image acquired for the project represented one of the few relatively cloud-free
images covering southern Louisiana (quads 1 and 2 in path 22 and row 40 of the World-Wide
Reference System). The Landsat overflight occurred on 2 December 1984 (Scene ID: 50276-
16022) and covers most of the Mississippi deltaic plain.

TM images of the sites were georeferenced to fit a Universal Transverse Mercator
projection with a north-south orientation. The ELAS modules PMGC and PMGE (Graham et
al. 1984) were used to accumulate ground control points, generate polynomial least-squares
mapping equations, and resample the image using the bilinear interpolation technique. The
average registration accuracies ranged from 22 to 56 m.

Land and water were distinguished in the TM images by first generating a product image
from bands 4 and 5 and then applying the global thresholding technique developed by Pun
(1981).

Measurement of Spatial-Pattern Statistics

We generated 72 binary land-water images from the product images of the salt and brackish
marsh sites. Sequential ELAS commands set up for batch processing were used to measure the
following spatial-pattern parameters in each image: (1) total numbers of land and water pixels;
(2) total numbers of water pixels by scan line and by element column; (3) the length of the
land-water interface, expressed as the total number of land-water joins; (4) total numbers of
water pixels with sides adjacent to zero, one, two, three, and four other water pixels; and (5)
water-body size frequencies. In determining the total number of water pixels with sides adjacent
to other water pixels, we excluded the pixels at the boundary of the sample to avoid biasing the
distribution of pixels toward those having less than four sides adjacent to water.

The total number of land-water joins in each image was tabulated using a three-step process.

First, an intermediate image was generated using the ELAS shoreline-length (SLIN) module
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(Graham et al. 1984). SLIN uses a 3-x-3 moving window technique to classify each land pixel
adjacent to water into one of 69 shoreline categories (Dow 1982; Dow and Pearson 1982).
Second, we used a look-up table (Table Al) to convert the SLIN image into an image file
comprising six classes: (1) land; (2) water; and (3) shoreline pixels with one, two, three, or four
sides adjacent to water. Finally, we determined the total number of land-water joins in each
sample site by enumerating the number of land pixels sides bordering water pixel sides.

The total number of water pixel sides adjacent to other water pixels was tabulated using a
modification of the technique used to count land-water joins. Two changes in the processing
sequence were required: (1) water pixels adjacent to land were defined as shoreline pixels
during processing with the SLIN module and (2) an additional processing step with a new look-
up table was required to correctly classify water pixels with zero, one, two, three, or four sides
adjacent to other water pixels.

As Hutchinson (1957) originally pointed out and first Richardson (1961) and then
Mandelbrot (1967) elaborated upon, the length of an irregular shoreline is, to some extent, a
function of measurement unit. Our measurements of land-water joins and, possibly, the other
spatial-pattern statistics, are valid only at the resolution of the TM imagery, the 30-x-30-m pixel.

Future measurements cannot be compared to ours unless the same measurement unit is used.

Description of the Expert System

An expert system was developed to select the model parameters--W, G, and BC--that would best
approximate the spatial patterns of each study site. The expert system consisted of a knowledge
base and a decision process. The knowledge base indicated how each of the spatial pattern
indices--interface length and the four side-adjacency statistics--varied as functions of W, G, and
BC (border condition). The decision process consisted of the rules for selecting the best W-G-
BC combination.

To build the knowledge base for the expert system, we ran simulations with all possible W
and G combinations from the set [0, 4, 20, 60, 180, and 540] for six types of study-site border
conditions: 0 = no water border, 1 = 1 water border, 2 = 2 adjacent water borders, 3 = 2
opposite water borders, 4 = 3 water borders, and 5 = 4 water borders. For border condition 0,
the set was extended to include W = 1620 and 9720. Each simulation contributed information

to 21 tables. Each table contained interface length and side-adjacency information collected at
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a 5% increment of DL (level of disintegration, or water area as percentage total area). We
compiled 21 tables (one for each increment of DL) for each value of G and for each border
condition (a total of 6 x S = 30 sets of 21 tables). For border condition 0 (no water border),
only one set of 21 tables was compiled, since G must equal zero. For each of the other data
sets, there were 21 tables for each G value.

The following statistics from each study site were used in the decision process: DL;
interface length; and Adj-0, Adj-1, Adj-2, Adj-3, and Adj-4 (number of water pixels having 0, 1,
2, 3, or 4 sides adjacent to water). Target BC was an additional factor in the decision process.

The DL of the study site was used to determine which tables were accessed. The tables of
the nearest DL’s on either side of the study-site DL were accessed. For instance, if the DL of
the image was 32%, then the tables for DL’s 30% and 35% were accessed. Interpolation
between levels was then used to produce, for every G value and border condition, a table of
values of spatial-pattern indices for each of the six values of W for the specific DL of the study
site.

Then, for each G value and border condition, the study-site interface and side-adjacency
values were compared with values for the spatial-pattern index in the tables prepared for the
specific disintegration level. If the study-site value for a spatial-pattern index was within the
range of values for that index on a particular table, exact matching or interpolation between
values was used to estimate W on the basis of that index, given the G value and border
condition of that table. If the value of a given index from the study site was not within the
range of values for that index in a table, then W could not be estimated from that particular
index and table.

We usually obtained several estimates of W from a given G-BC table. A weighted mean W
for the specific G-value and border condition was obtained from these. In cases where a
parabolic relationship between the parameter and W occurred, more than one estimate of W
was sometimes obtained for the same index and table. In such cases, each estimate was used
alternatively in calculating a weighted mean until we had calculated all possible weighted means
from the indices. For instance, interface might yield W = 2, 4; Adj-0, W = 180, 193; and Adj-3,
W = 300. Then 2 x 2 x 1 weighted mean W’s were calculated. One would involve 2, 180, and
300; another 2, 193, 300; another 4, 180, 300; and another 4, 193, 300. Weighting was a

function of the number of water pixels involved in each parameter estimate of W. The value of

45



the parameter was the estimate of the number of pixels involved in the estimate of W from that

spatial-pattern index. Weighted mean W’s were calculated as follows:
Weighted Mean W = Sum (W; V;) / Sum (V;) 3)

where W; = the estimate of W from statistic i, and V; = the number of pixels involved (index
value), statistic i. Only the water pixels of the spatial-pattern indices involved in the specific
calculation of the weighted mean W were summed. As mentioned above, if the index value
from the sample was not within the range of values for that index in a particular table, an
estimate of W based on that index could not be obtained.

The coefficient of variation (CV) of each weighted mean W also was calculated, as follows:
CV = (Variance)!/?2 / Weighted Mean W 4)

In addition, the sum of the water pixels used in calculating the weighted mean W was retained
as a "decision number" (DE) for later use in the selection process. Table A2 lists the weights,
the W’s, and the calculations of weighted mean W, DE, and CV.

By the above procedure, the expert system estimated many W-G-BC combinations for each
study site. Weighted mean W’s, CV’s, DE’s, and their corresponding G’s and BC’s were stored
in solution files specific to each study site. The file was sorted by DE and CV.

The first step in selecting the best model parameters to simulate the spatial patterns of a
study site was to define a "target” BC. Target BC was the estimated BC of the study site. To
make this estimate, the expert system compared the proportion of water pixels on each border
to the proportion of water pixels in the marsh as a whole. Those borders having a higher
proportion of water pixels than the entire site were assumed to be influenced by a major water
body at the border. The BC estimates were confirmed by visual examination of black-and-white
photographs of binary land-water images of the sites. In a few cases, estimates were changed
on the basis of the visual examination.

Once a target BC was selected, the solution file specific to the spatial pattern indices of
that study site was searched for the "best” weighted mean W, specific to calculated G, for that
BC. If a solution having the target BC was found in the group of solutions with the highest
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DE, it was selected as the best solution. If more than one solution in the group of solutions
with the highest DE had the target BC, then the one with the lowest CV was selected. If a
solution having the target BC could not be found within the group having the highest DE, then
the expert system sought a solution with the target BC among all solutions having DE within
75% of the highest DN. The solution having the target BC, the largest DE, and the lowest
coefficient of variation was selected. If a solution having the target BC was not found in either
of the above groups, then solutions having alternative BC were considered. First, solutions with
BC having no more than one border different from that of the target BC were considered.
Then, solutions having no more than two borders different from that of the target BC were
considered. We usually found a solution having the target BC or no more than one border

different from that of the target BC.
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Table Al. Look-up table used to classify water and land identified by the ELAS
shoreline length (SLIN) module into water pixels and land pixels with zero,
one, two, three, and four sides adjacent to water.

SLIN Class SLIN Class SLIN Class
output code output code output code
0 5 24 2 48 3
1 0 25 1 49 3
2 0 26 1 50 2
3 1 27 2 51 2
4 0 28 2 2 2
5 0 29 2 3 3
6 1 30 2 54 3
7 1 31 2 55 3
8 0 32 2 56 3
9 1 33 2 57 3
10 1 34 2 58 3
11 0 35 1 59 3
12 2 36 2 60 3
13 1 37 2 61 3
14 1 38 2 62 3
15 1 39 2 63 3
16 1 40 2 64 3
17 1 41 2 65 4
18 1 42 2 66 4
19 2 43 2 67 4
20 2 44 2 68 4
21 1 45 2 69 4
22 1 46 3 70 ND
23 2 47 3 71 ND
Key to Class Codes: 0 = land pixel with zero sides adjacent to water.
1 = land pixel with one sides adjacent to water.
2 = land pixel with two sides adjacent to water.
3 = land pixel with three sides adjacent to water.
4 = land pixel with four sides adjacent to water.
S5 = water pixel.
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Table A2. Calculation of weighted mean W, DE, and CV from a G-BC
look-up table in which G = 0, BC = 0000, and DL = 10.90%.

Index
Name Weight W W + Weight
Interface 4,011 60 240,660
Adj-o0 108 53 5,724
Adj-1 805 256 206,080
Adj-2 1,257 121 152,097
Adj-3 1,109 53 58,777
Adj-4 - 680 156 106,080

7,970 769,418

Weighted mean W = 97
Decision Number (DE) = 7,970
CV = 64.91%

(Number of border pixels = 52)
(Z Adj weights = 3,959)
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4 Lafourche 8C-3.500 Years Before Present

3,900- 5.700 Yoars Sefore Present

S Plaquemines  200-1,000 Years Before Present
6 Modern 0-200 Years Before Present
7 Atchafsiaya 0-15 Years Before Present

.
Seeeeraa

3 St. Sernerd 1.700- 4,700 Yoars Betore Present

COMPOSITE

Figure Al. The maximum extent of the influence of deltaic lobes of the Mississippi River on the
present geomorphology of Louisiana’s coastal wetlands (modified from Adams and

Baumann 1980).
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