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Summary 
Lift dominated pointed aircraft configurations are considered in the transonic range. 

These are treated as lifting wings of zero thickness with aspect ratio of order one. An inner 
expansion which starts as Jones’ theory is matched to a nonlinear outer transonic theory 
as in Barnwell’s earlier work. New expressions for the wave drag due to the equivalent 
body are derived. Some examples of numerical calculations for different configurations are 
presented. 

1. Introduction 
In 1946, R. T. Jones (ref. 1) published a paper giving a formula for the lift and 

induced drag of ”low aspect ratio pointed wings below and above the speed of sound”. 
The work presented here, and earlier in the references cited below, represents an extension 
of Jones’ ideas to the transonic range. It is reassuring that, under suitable circumstances, 
Jones’ formula for the lift and induced drag not only continues to hold but is even valid 
for wings whose aspect ratio is order one. Under these circumstances, also shock waves 
and wave drag generally appear. 

The basic ideas of how this type of flow behaves are set out in the report of Barnwell 
(ref. 2). The principal result is that the lift produces a flow that looks, in the outer region, 
like the flow past an equivalent axisymmetric body. This physical effect shows up in the 
inner and outer expansions used by Barnwell. Cheng and Hafez used similar ideas to define 
the apparent body and general equivalence rule in a series of papers (ref. 3, 4). Cramer 
(ref. 5) also studied the problem (with zero thickness as is done here) and essentially 
verified the results of Cheng and Hafez. 

In this paper and ref. 6, we have also considered wing-like configurations with zero 
thickness and aspect ratio O(1) as in fig. 1. Thickness effects can be incorporated relatively 
easily. Inner and outer expansions are defined in essentially the same manner as Barnwell 
although the asymptotic matching is carried out in a different way using an intermediate 
limit. Then wave drag associated with the outer expansion is considered. Several compu- 
tations and an optimization are carried out to show the effect of planform and longitudinal 
distribution of lift on the transonic wave drag. 

* This work was partially supported by the Air Force Office of Scientific Research under 
grant AFOSR 88-0037, and Rockwell North American Aircraft. 
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2. Basic Equations and Boundary Conditions 
The problem is studied in the framework of inviscid aerodynamics. Since entropy 

increases across the shock waves are of third order in the flow perturbation,the full potential 
equation can be used as a starting point. The flow is thus, to this approximation, isentropic 

-=(-L)7 P 
P ,  

I The potential equation is an expression of the continuity equation 
, 

V - p a =  0, p = density, a= velocity 

@ is the velocity potential such that a= V@, 

(2.2) 

and a is the local speed of sound d%. The total enthalpy integral can be written 

U = free stream speed, M ,  = Mach number at infinity. 
The boundary condition of flow tangent to the surface can be written 

V @ -  V B  = 0 (2 .5 )  

on B(z ,  y, z )  = 0, which defines the surface. 
We consider here an untwisted wing of zero thickness specified by an angle of attack Q 

and a camber function m(z) .  The chord of the wing c = 1 and the span 2b is O(1). Thus 

where f(z) = rn(z)-z and m(1) = 1. For a straight trailing edge at y = 0, the trailing vor- 
tex sheet lies in the plane y = 0, J: > 1. The planform is specified by ( & Z L E ( X ) ) ,  z L E (  1) = b. 

Another boundary condition that must be satisfied is the Wut ta  condition” at a 
trailing edge where the flow is locally subsonic. This condition implies that the pressure 
loading at  a trailing edge is zero. In approximations, such as the inner expansion which 
follows, each term satisfies this condition. Another interpretation of this condition is that 
unphysical pressure jumps are not allowed in the inner solutions. 

3. Inner Expansion and Far Field (r* --t co) 
The approximation in general is based on Q -t 0, M ,  --f 1 and in the usual transonic 

way ( K  = elTh) = transonic similarity parameter, fixed). E ~ ( Q )  = parameter of outer 
expansion, defined later. In the inner expansion, the observer remains a fixed distance 
O(1) from the wing, and distances are measured from the wing surface. 

1-M2 
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The inner limit process thus has 

a + 0 (3, y*, z ;  Kfixed) 

where 

y* = y - a f ( x )  0 < 5 < 1 

= Y  x > l  

The form of the inner expansion for the potential is thus 

q x ,  Y, 2 ;  a; M,) = U{X + acp1(x, y*, z )  + a 2 p 2 ( x ,  y*, 2) + O(a"} (3.2) 

The presence of the overbar denotes the possibility of logarithmic switchback terms 
introduced into the inner expansion for purposes of matching with the outer expansion. 
Anticipating the result, we note here 

(3.3) 
1 1 

3 2 ( t ,  Y * ,  z )  = log2 - ( P 2 2 ( 4  + 1% --'p21(X) + c p 2 ( 5 ,  Y*, z >  6 
Note also that the velocity components of the inner expansion are 

Substituting the assumed expansion into the full potential equation we obtain the equa- 
tions for the first two approximations (in divergence forms, as follows from (2.2)) and the 
corresponding conditions of tangent flow 

where 

d d  
V* = (- -) = inner transverse gradient 

ay* ' dz 

V*yl = inner transverse velocity perturbation 

d2 a2 
d,*2 8.22 

+ - = inner transverse Laplacian y7 =-  *2 
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The f i s t  equation (3.4) can be thought of as the Prandtl-Glauert equation of linearized 
theory but with M ,  close to one. The second equation (3.5) shows how, in the inner 
representation, either compression (plz < 0 or expansion plz > 0, provides an effective 
volume source and can cause stream tube divergence. We note the expression for the 
x-component of the mass flux vector. 

1 -- pqz - 1 - Q2 ((Ti l)& + z(v*vl)2) + O ( Q 3 )  
POOU 

The quadratic form in (3.6) is almost the RHS of (3.5); the additional term comes from 

The inner expansion is the driver of the entire procedure. But as is now shown it 
is not valid as r* = d m  tends to infinity. On physical grounds, we would expect 
the transonic flow far away, which in general contains shock waves, to be described by 
an equation of mixed elliptic-hyperbolic type. The Laplace eqn. (3.4) is of course always 
elliptic. 

Further, we show that the second term a292 becomes much greater than the first a'pl 
as T* + 00. The general symmetry of the solution 91,972 is 

'pl(z; y*, z )  = -(PI("; -y*, z )  

92(z; y*, Z) = 92(z; -y*z) even Non-lifting, source 
We study now the behavior of these solutions near infinity in r*.  The solution for 

91 can be represented by a dipole sheet (or vortices) or, most directly, by the use of the 
complex variable 

v* * (91z V'cpl). 

odd Lifting, vortex sheet 

(3.7) * i ( F - 0 . )  t = z + i y * = r  e 
The complex potential for the wing, which is flat in a cross-plane z = const., and for the 
trailing vortex sheet is 

91 + idl = -if'(.) 
(3.8) 

= -if'(l> { - d m }  z > 1 

The transverse components of velocity perturbation V*cpl = ( vl ,  w l )  are found from 

The first approximation to the pressure distribution and the lift can be found from 

- 1 M& (1 - $) = 1 - a( y - 1)'pl + - - * 

2 (3.10) 
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The dominant term is a dipole potential where the dipole strength D l ( x )  is equal to the 
lift Zl(x) up to the station x. (cf 3.15) 

11 (x) cos o* 1 
q l ( r * , 8 * ; x )  = -- + O( i " )  27r r* (3 .20)  

An unyawed symmetric planform has been assumed. For more general planforms we can 
use 

Dl(X) = [Vl]y=O dz. 
-2LE 

The potential problem for q 2  can be thought of as describing the flow past a thin wing 
with thickness and a volume distribution of sources. Thus, the far field contains a source 
term like logr* and a particular solution due to the RHS. From (3 .20)  the RHS, has a 
term 

Thus 

Taking account of the particular solution, the far field of 9 2  is 

Thus, there is a non-uniformity as r* + 00 (since a 2 9 2  - a2 log2 r * )  
roughly when r*Zog2r* - 5. This shows the need for an outer expansion. An expression 
for the source strength &(z) can be found from the boundary value problem for v2 ,  but 
g2(x)  is undetermined from an inner problem. g2(x)  must be found by matching with the 
outer nonlinear boundary value problem. The presence of shock waves in the outer flow is 
reflected in 9 2 .  

4. Outer Expansion and Near Field (F ---f 0). 
The first few terms of the outer expansion necessary to match with 9 1 , 3 2  are consid- 

ered. The limit process associated with this expansion is the typical transonic expansion 
necessary to give the small disturbance equation (ref. 7). The representative point runs 
to infinity as a + O,M, + 1. The limit process associated with this expansion has 
(x,c, t, IC) fixed as a + 0 where (ij,t) = &-(TJ, z ) .  

crvl - T * ,  

The general form of the expansion for the potential is 
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q " , Y , ~ ; K o , a )  = ~ { x + + l ( a ) 4 l ( x , 5 , ~ ; K ) + E 2 ( a ) 4 2 ( x ,  5, ~ ; I ~ ) + e 3 ( Q ! ) 4 3 ( x , ~ , ~ ; K ) . . . )  
(4.1) 

where e l ,  €2, €3 are found from matching. In order to match, it is necessary to obtain an RHS 
term similar to that in (3.5), q($:)z. $2 can be made to match with the dominant dipole 
of inner cpl and this forcing term then appears in the RHS of the equation for $3. 41 is a 
switchback type of function necessary for matching and turns out to be the axisymmetric 
flow produced by an equivalent body of revolution. Some details are now shown. 

Thus, choosing € 1 ~ 3  = E ;  we have 

$1 satisfies the usual nonlinear transonic small-disturbance (I<-G) equation. $2 satisfies 
its linear variational equation and $3 a forced variational equation. All the equations are 
of conservation type and can be written 
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The near field behavior ? + 0 of these solutions, obtained from V24 = RHS,  is given by 

D2(5) COS 0 1 1 r 
4 4 4 

(s!D2 cos@{ -?log2 i: - -flog ? + :} 42(51?,@) = 7- r " + ( Y + 1 )  
(4.10) 27r 

27r 27r 

where i: = Jw, 0 = tan-' f = tan-' I 
The source strength S3 and doublet strength D2 are found by matching with the inner 
solution. The source strength S1 is found in a special way in the matching. The functions 
Gl(s),  G3(2) are found when the boundary value problems defined by the singular behavior 
as ? + 0 in (4.9,10,11) are solved (numerically). 

Y Y 

5. Asymptotic Matching 

functions ~ ( a )  such that & << ~ ( a )  << 1. A coordinate 
A matching limit, intermediate to the inner and outer limits, is defined by a class of 

is held fixed in this limit. Thus 

In the intermediate limit the representive physical radius again runs to infinity as (Y + 0, 
M ,  + 1 but not as fast as in the outer limit. For matching, the inner and outer limit 
expansions must read the same in the intermediate coordinate. Thus 

(H denotes "matches to") 
Note that in the matching 
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d e 1  f 9  r9 1 
log? = log - = log - - log - 

'I 'I 6 l  

and 

f 1 1 2 log i: = log2 ftl - 2 log 2 log - + log2 - 
'I ' I &  & 

Note also that 

(5 .2~)  

(5.2b) 

Writing these out using the near field expansions of this section and the far field expansion 
of the previous section we have 

Comparison of these two expansions shows that they match in an intermediate region 
with the choices 

(y + 1) -- DkDY - (y + 1) ZiZy 
= 2 (242  2 (2742 

In summary 
2 €3 = Q 

1 
€2 = Q2 - &7 

1 
€1 = Q2 log - 1 69 

( 5 . 5 )  

~ ( a )  is defined implicitly by the relationship above. S ~ ( S )  is chosen by an internal switch- 
back in the outer expansion. The switchback functions in the inner expansion are 
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1 ( r+ l )  l i l y  
2 4 (2742 

(p22(2)  = - -S1(Z)  = - 

(p21(5)  = G l ( 4  - S 3 ( 4  = Gl(5) - S2(4  (5.7) 

The principal physical result of the matching is the source distribution for the apparent 
body that generates the first axisymmetric outer potential g51(z, i;) 

This body depends only on the longitudinal distribution of lift Z1(x) . A correction axi- 
symmetric flow is provided by the source S3 

S3(4 = S2(4 (5.9) 
which generates the axisymmetric part of 4 3 ( 2 ,  i;, 6).43(2, i;, e )  can be decomposed into 

(5.10) 

(5.11) 

By considering the omitted terms, an overlap domain can be shown to exist for match- 
ing to this order. Also consideration of higher order terms in both expansions shows that 
the matching can be continued. Thus, the outer expansion reads 

1 
@ = u{, + a2 log --&, i;, e )  + O ( d  j} 6 

where 

(5.13) 

It can thus be noted that the collection of terms 4 l 7 q 5 2 ) 4 3  which can be computed 
individually satisfy together the small-disturbance (K-G) equation 

(5.14) 
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6. Wave Drag 
There is of course induced drag associated with the trailing vortex system; the drag 

in dominant order, associated with 9 1 ,  is just that of Jones' theory. From the point of 
view of induced drag. the wing considered here'which is flat spanwise, 1s an optimum. The 
spanwise circulation distribution (cf 3.14) is elliptical. The wave drag is connected to the 
shock wave system in the outer flow field. It could be calculated from the entropy increase 
in the wave system. 

For small disturbances to a free stream we have the result for the wave drag D, 
00 

D, = po0T,c2 / [ _ [ S ] , d y d z  + (6.1) 

where [SI, = jump in specific entropy across a shock. The integral is taken over all 
the shocks in the system. Using the expression for the entropy jump in transonic small 
disturbance theory (cf. ref. 7, cf. p 165 ff. for a discussion of wave drag) 

' Consider the differential conservation form associated with (5.14) 

I 

Integrating this divergence form over all space outside a small cylinder 

(-03 < x < 00) Pc --f 0 

I 
around the z-axis enables the entropy jump of (6.2) to be related to radial momentum 
flow. (6.3) is not conserved across shocks so that shock jumps appear such as 

If we consider the dominant term in (6.4) 

r 1  r2x 

From (4.9), = S\(z) log i: + G\(x), 41.. r = slo i. and using 
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in which Sl(1) = Sl(0) = 0, we have 

1 
Bw1 = -27r 1 Sl(z)Gi(z)dz = 27; I’ Si(z)Gl(z)dz (6.6) 

This drag formula is exactly that of a slender body in transonic flow (cf ref. 7, p161). 
Higher order terms in the drag formula can be found. 

7. Applications and Remarks 
Several applications have been made of the theory in its present form. For flat wings 

ZI(z) is given by (3.15). The effective source strength for the equivalent body f‘ = -1. 
Sl(z) = F & + - ( c f  eqn. 5.5). Equation (4.3) (y+l) 1 ’ ” ’  

is solved numerically with a small-disturbance code using (4.9) as the boundary condition 
for various IT. The dominant term of the wave drag coefficient Cow is calculated from eqn 
(6.6). The results are plotted as Cow vs M ,  for two different angles of attack in fig. 2. 
Substantial drag due to lift is evident. The planform shape and the distribution of Zl(z) 
which is typical a.ppears in fig. 3. 

Another set of calculations incorporates a parabolic body of revolution (thickness 
ratio .057) and adds the source strength of this body to Sl(z). A series of planforms with 
semi-span z ~ , y ( z )  given by 

and shown in fig. 4 was considered for various p,  M ,  = .995, cx = .2 rad. The idea is to 
optimize the LID figure of merit CD, / (AR = aspect ratio) by a choice of planform. A 
minimum drag occurs for p = 2.5. The planform shape and curve of Cow vs. p appears in 
fig. 5. Also shown in figs. (Sa - 6c) for p = 1.2,2,10 are isobars which make evident the 
shock wave which occurs. The wave drag for small p is large because of the small sweep 
and for large p because of rapid changes of I1 near the wing tip. These preliminary studies 
are meant to show the relative effectiveness of various planforms. 

It would be very useful to extend this work to give efficient ways of calculating the 
higher order terms in the wave drag. It is also possible to incorporate the effects of wing 
thickness 6 - (a2 log ) into the formulation in a more systematic way. A first step in 

this direction is given in ref. 6. 
& 
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POINTED TRANSONIC WING 
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Figure 1 
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Pointed Transonic Wing 

DRAG RISE DUE TO LIFT CHARACTERISTICS OF 
MODEL FIGHTER PLANFORM 
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Figure 2 Drag Rise Due to Lift Characteristics of Model Fighter Planform 
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LIFT LOADING OF MODEL WING WITH 
SINE TIP FAIRING 

EQUIVALENT LIFT LOADlh 
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Figure 3 Lift Loading of Model Wing with Sine Tip Fairing 
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DRAG/ASPECT RATIO FOR p W+B FAMILY 
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Figure 5 IVave Drag/Aspect Ratio, L, /D Figure of Merit for p Wing-Body Family,iM, = 
. 995 ,a  = .2 rad. 

ISOMACHS OF = 1.2 WING-BODY 
Moo = 0.995, cy = 0.2 RAD., AM = 0.1 
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Figure 6a Isomachs of p = 1.2 Wing-Body, illm = .995, Q = .2 rad. 
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ISOMACHS OF ~c = 2 WING-BODY 
Moo = 0.995, a = 0.2 RAD., AM = 0.1 
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Figure 6b Isomachs of p = 2.0 Wing-Body, -&Im = .995, a = .2 rad. 

ISOMACHS OF ~c = 10 WING-BODY 
Moo = 0.995, cy = 0.2 RAD., AM = 0.1 
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Figure 6c Isomachs of p = 10.0 Wing-Body, Mm = .995, a = .2 rad. 
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