Analysis of Interface Crack Branching

R. Ballarini
Case Western Reserve University
Cleveland, Ohio

and

D.J. Mukai and G.R. Miller
University of Washington
Seattle, Washington

March 1989

Prepared for
Lewis Research Center
Under Grant NAG3-856
Analysis of Interface Crack Branching

R. Ballarini
Assistant Professor
Dept. of Civil Engineering
Case Western Reserve University
Cleveland, OH 44106

D. J. Mukai and G.R. Miller
Dept. of Civil Engineering
University of Washington, FX-10
Seattle, WA 98195

Summary

A solution is presented for the problem of a finite-length crack branching off the interface between two bonded dissimilar isotropic materials. Results are presented in terms of the ratio of the energy release rate of a branched interface crack to the energy release rate of a straight interface crack with the same total length. It is found that this ratio reaches a maximum when the interface crack branches into the softer material. Longer branches tend to have smaller maximum energy release rate ratio angles indicating that all else being equal, a branch crack will tend to turn back parallel to the interface as it grows.

1. Introduction

The interface crack problem was addressed in the late 1950's by Williams (1959). Williams used an eigenfunction expansion technique to solve the interface crack problem and discovered complex singularities and rapidly oscillating stresses near the crack tip. Williams also estimated the oscillatory region to be very small.

In the mid 1960's, various workers [England (1965), Erdogan (1965), Rice and Sih (1965)] came up with closed form solutions to the interface problem. These solutions verified Williams' (1959) finding of complex singularities and rapidly oscillating stresses near the crack tip. England (1965) also pointed out that the complex singularities lead to the physical impossibility of the crack faces interpenetrating near the crack tips. Like Williams (1959), these workers found the region where these phenomena occur was very small.

In the mid 1970's Comninou (1977) put forth an alternate solution that addressed the difficulties at the crack tip. Comninou resolved the problems at the crack tip by solving the interface crack problem assuming there is a small contact zone near the crack tips. This zone was found to be extremely small. While calculations were carried out for a limited range of Dundurs' constants (Dundurs 1969), Comninou's work provides a rational explanation of the oddities occurring near the crack tips.

Lately, the interface crack problem has received renewed attention. Gautesen and Dundurs (1987) have solved the problem formulated by Comninou (1977) using quickly convergent series. Unlike Comninou's (Comninou 1977) results which were carried out for only severe material mismatches, Gautesen and Dundurs obtain results covering all material combinations. Symmington (1987) has completed Williams' (Williams 1959) eigenfunction analysis by finding a set of integer eigenvalues left out by Williams. Rice (1988) has proposed that the peculiarities at the crack tip are not too critical. In an argument similar to the concept of small scale yielding, he asserts that the complex stress intensity factors will be indicative of the general state of the crack tip even if they do not correctly represent the state immediately surrounding the crack tip. Rice also provides a framework to interpret the complex intensity factor in terms of the classical form stress intensity factors K_1 and K_2. He also includes an interesting discussion of the interaction of the crack length and load phase angle interaction. Hutchinson, Mear, and Rice (1987) have looked at a crack completely in one body but very near the interface. Their solution,
based on dimensional arguments, energy considerations, and the representation of the crack as a distribution of dislocations, examines criteria for crack growth parallel to the material interface. Park and Eamme (1986) use various integrals to describe the interface crack tip characteristics and include a discussion of the properties of these integrals. Shih and Asaro (1988) have investigated the interface crack with plasticity. They find that the pathological features of the linear elastic analyses are lessened by nonlinear behavior and that the linear elastic solutions are good in regions not immediately around the crack tip. Delale and Erdogan (1988) have looked at the interface crack by modelling the interface as a transition material; they put the crack in a thin third layer between the two half-spaces. They present some results regarding the direction of maximum K_1 of the crack. Generally, K_1 is larger as the crack tends toward the softer material. He and Hutchinson (1988) have performed an analysis very similar to the present one for the case of a branched semi-infinite crack. They have presented extensive results on the initial branching angle, couched in terms of strain energy release rates.

In this paper, the branching of a finite length crack is analyzed. For small branch lengths the asymptotic results of He and Hutchinson are reproduced. Consideration is also given to further branch growth and the associated influence of a more global portion of the stress field. Based on the obtained results, some conjectures are made concerning the fate of branching cracks.

2. Formulation

The problem configuration is depicted in Figure 1, which shows the main crack, the branch crack, the loading at infinity, and the coordinate system. In the upper half-plane (S_1), the shear modulus is μ_1 and Poisson's ratio is ν_1. In the lower half-plane (S_2), the shear modulus is μ_2 and Poisson's ratio is ν_2. The boundary conditions for this problem require that both the main and branch cracks are traction free and that at infinity the stresses approach σ_{yy} and τ_{yx}. Single-valuedness of the displacements at infinity is also required.

Some techniques useful for dealing with interface boundary conditions which are used in the problem formulation are presented first. These results follow directly from the formulation used by Clements (1971) to treat interface cracks in anisotropic materials.

In terms of the Muskhelishvili (1953) potentials, the stresses and displacements in isotropic elastic bodies may be expressed as follows:

$$
\begin{align*}
\sigma_{yy} - i \tau_{yx} &= \Phi_1(z) + \Phi_2(z) + z \Phi_1'(z) + \Psi_1(z) \\
\sigma_{yy} + \sigma_{xx} &= 2 \left[\Phi_1(z) + \Phi_1(z) \right] \\
2 \mu_1 \left(\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x} \right) &= \kappa \left[\Phi_1(z) - \Phi_1(z) + z \Phi_1'(z) + \Psi_1(z) \right]
\end{align*}
$$

in which the subscript i ($i = 1, 2$) denotes "in region i"; Φ_1, Ψ_1 correspond to the potentials for the upper half plane and Φ_2, Ψ_2 correspond to the potentials for the lower half plane. Moreover, z is the complex variable $x + iy$, the prime denotes differentiation with respect to z, an overbar denotes conjugation, $\kappa = 3 - 4\nu$ for plane strain, and $\kappa = \frac{3 - \nu}{1 + \nu}$ for plane stress.
For interface problems, it is convenient to introduce additional potentials as follows. Making use of the fact that if $f(z)$ is analytic for z in region R, then $f(z) = \overline{f(\overline{z})}$ is analytic for \overline{z} in region R, the following analytic jump potentials are constructed:

\[
\Omega_{S} = \begin{cases}
\Phi_{1}(z) - \left[\overline{\Phi_{2}(z)} + z \overline{\Phi_{2}'(z)} + \overline{\Psi_{2}(z)} \right] & z \in S_{1} \\
\Phi_{2}(z) - \left[\overline{\Phi_{1}(z)} + z \overline{\Phi_{1}'(z)} + \overline{\Psi_{1}(z)} \right] & z \in S_{2}
\end{cases}
\]

\[
\Omega_{D} = \begin{cases}
\frac{\kappa_{1}}{2\mu_{1}} \Phi_{1}(z) + \frac{1}{2\mu_{2}} \left[\overline{\Phi_{2}(z)} + z \overline{\Phi_{2}'(z)} + \overline{\Psi_{2}(z)} \right] & z \in S_{1} \\
\frac{\kappa_{2}}{2\mu_{2}} \Phi_{2}(z) + \frac{1}{2\mu_{1}} \left[\overline{\Phi_{1}(z)} + z \overline{\Phi_{1}'(z)} + \overline{\Psi_{1}(z)} \right] & z \in S_{2}
\end{cases}
\]

For interface problems, the interface conditions are usually of the form:

Jump in Stress = $(\sigma_{yy} - i \tau_{yx})_{2} - (\sigma_{yy} - i \tau_{yx})_{1}$ \hspace{1cm} (5a)

Jump in Displacement = $\left(\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x} \right)_{2} - \left(\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x} \right)_{1}$ \hspace{1cm} (5b)

Note that in terms of these jump potentials, the interface conditions can be expressed as:

Jump in Stress = $\Omega_{S} \{ x \} - \Omega_{S1} \{ x \}$ \hspace{1cm} (6a)

Jump in Displacement = $\Omega_{D} \{ x \} - \Omega_{D1} \{ x \}$ \hspace{1cm} (6b)

The inverse relationship between the jump and Muskhelishvili potentials is given by:

\[
\Phi_{1}(Z) = Q_{1} \left[\frac{1}{2\mu_{2}} \Omega_{S1}(Z) + \Omega_{D1}(Z) \right]
\]

\[
\Psi_{1}(Z) = Q_{2} \left[\frac{-\kappa_{2}}{2\mu_{2}} \Omega_{S2}(Z) + \Omega_{D2}(Z) \right] - \Phi_{1}(Z) - z \Phi_{1}'(Z)
\]

\[
\Phi_{2}(Z) = Q_{2} \left[\frac{1}{2\mu_{1}} \Omega_{S2}(Z) + \Omega_{D2}(Z) \right]
\]

\[
\Psi_{2}(Z) = Q_{1} \left[\frac{-\kappa_{1}}{2\mu_{1}} \Omega_{S1}(Z) + \Omega_{D1}(Z) \right] - \Phi_{2}(Z) - z \Phi_{2}'(Z)
\]
This formulation allows for straightforward development of the various interaction potentials derived below.

3. Solution

The solution is obtained by a Green's function technique based on distributing dislocation singularities along the branch. The solution for the interaction between an interface crack and a dislocation is found by superposing the solutions for: (1) a dislocation in S_1 near an interface; (2) two perfectly bonded semi-infinite bodies loaded at infinity with σ_{yy} and τ_{yz}; and (3) an interface crack loaded with the negative of the stresses produced by (1) and (2). This solution for a single dislocation interacting with an interface crack (with the appropriate far-field loading) is then modified to model a distribution of dislocations along the branch, and by requiring zero stress along the branch face a singular integral equation is obtained for the unknown dislocation distribution. The relevant physical quantities can be calculated after numerically solving the integral equation. The next three sections present the solutions to each of the problems described above.

3.1. Dislocation Near an Interface

The solution to this problem is well-known (e.g. Head, 1953, Dundurs and Sendeckyj, 1965), but it is convenient to re-derive it here using the jump potential approach. Consider the problem of a dislocation located at point z_0 in the upper half plane, which is assumed to be perfectly bonded to the lower half plane. The interface boundary conditions are:

\[
\begin{align*}
(\sigma_{yy} - i \tau_{yx})_1 &= (\sigma_{yy} - i \tau_{yx})_2 |x| < \infty, \quad y = 0 \\
\left(\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x} \right)_1 &= \left(\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x} \right)_2
\end{align*}
\]

or

\[
\begin{align*}
\Omega_{S1}^D - \Omega_{S2}^D &= 0 |x| < \infty, \quad y = 0 \\
\Omega_{D1}^D - \Omega_{D2}^D &= 0
\end{align*}
\]

The solution is sought in the form:

\[
\begin{align*}
\Phi_1^D &= \Phi_{1, \text{Singular}}^D + \Phi_{1, \text{Continuation}}^D \\
\Psi_1^D &= \Psi_{1, \text{Singular}}^D + \Psi_{1, \text{Continuation}}^D
\end{align*}
\]
\[\Phi_2^D = \Phi_2^\text{, Continuation} \]
\[\Psi_2^D = \Psi_2^\text{, Continuation} \]

in which \(\Phi^\text{Singular} \) and \(\Psi^\text{Singular} \) are the (known) potentials for a dislocation in a homogeneous full plane, and \(\Phi^\text{Continuation} \) and \(\Psi^\text{Continuation} \) are additional (unknown) potentials needed to satisfy the continuity conditions along the interface. Starting off with the full plane dislocation solution in region 1 and all region 2 potentials equal zero:

\[\Phi_1^D, \text{Singular} = \frac{\Lambda}{z - z_0} \]
\[\Psi_1^D, \text{Singular} = \frac{\Lambda}{z - z_0} + A \frac{z_0 - \bar{z}_0}{(z - z_0)^2} \]
\[\Phi_2^D, \text{Singular} = \Psi_2^D, \text{Singular} = 0 \]

where \(\Lambda = \mu_1 e^{i\theta} \left([u_\perp] + i [v_\perp] \right)/i\pi(\kappa_1 + 1) \), where \([u_\perp]\) and \([v_\perp]\) are the jumps in the tangential and normal displacements accrued upon circling the dislocation.

The corresponding \(\Omega \) potentials are:

\[\Omega_{S1, \text{Singular}}^D = \frac{\Lambda}{z - z_0} \]
\[\Omega_{S2, \text{Singular}}^D = -\left[\frac{\Lambda}{z - z_0} + A \frac{z_0 - \bar{z}_0}{(z - \bar{z}_0)^2} \right] \]
\[\Omega_{D1, \text{Singular}}^D = \frac{\kappa_1}{2 \mu_1} \frac{\Lambda}{z - z_0} \]
\[\Omega_{D2, \text{Singular}}^D = \frac{1}{2 \mu_1} \left[\frac{\Lambda}{z - z_0} + A \frac{z_0 - \bar{z}_0}{(z - \bar{z}_0)^2} \right] \]

Obviously, the boundary conditions given by equation (9b) are not satisfied. To patch up the interface boundary conditions, the following potentials are added, which are analytic in their respective regions:

\[\Omega_{S1, \text{Continuation}}^D = \Omega_{S2, \text{Singular}}^D \]
\[\Omega_{S2, \text{Continuation}}^D = \Omega_{S1, \text{Singular}}^D \]
\[\Omega_{D1, \text{Continuation}}^D = \Omega_{D2, \text{Singular}}^D \]
\[\Omega_{D2, \text{Continuation}}^D = \Omega_{D1, \text{Singular}}^D \]

Using equation (7) to invert these to Muskhelishvili (1953) potentials gives:
\[\Phi_{1, \text{Continuation}} = A \left(\frac{(\alpha - \beta)}{(1 + \beta)(z - z_0)} \right) + \bar{A} \left(\frac{(\alpha - \beta)(z_0 - z_0)}{(1 + \beta)(z - z_0)^2} \right) \]
\[\Psi_{1, \text{Continuation}} = \bar{A} \left(\frac{(\alpha + \beta)}{(1 - \beta)(z - z_0)} \right) - \Phi_{1, \text{Continuation}} - z \Phi_{1, \text{Continuation}} \]
\[\Phi_{2, \text{Continuation}} = A \left(\frac{1 + \alpha}{(1 - \beta)(z - z_0)} \right) \]
\[\Psi_{2, \text{Continuation}} = A \left[\frac{(1 + \alpha)(z_0 - z_0)}{(1 + \beta)(z - z_0)^2} \right] + \bar{A} \left[\frac{1 + \alpha}{(1 + \beta)(z - z_0)} \right] \]
\[\Phi_{2, \text{Continuation}} - z \Phi_{2, \text{Continuation}} \]

where \(\alpha \) and \(\beta \) are Dundurs' (Dundurs 1969) constants defined by:

\[\alpha = \frac{\mu_2 (\kappa_1 + 1) - \mu_1 (\kappa_2 + 1)}{\mu_2 (\kappa_1 + 1) + \mu_1 (\kappa_2 + 1)} \]
\[\beta = \frac{\mu_2 (\kappa_1 - 1) - \mu_1 (\kappa_2 - 1)}{\mu_2 (\kappa_1 + 1) + \mu_1 (\kappa_2 + 1)} \]

3.2. Bonded Semi-infinite Half Planes Under Remote Stress

The boundary conditions for the interface body (no crack) under remote stress are:

\[\Omega_{S1} - \Omega_{S2} = 0 \]
\[\Omega_{D1} - \Omega_{D2} = 0 \]
\[|x| < \infty, \, y = 0 \]

As pointed out earlier, \(\Omega_{S1}, \, \Omega_{D1} \) and \(\Omega_{S2}, \, \Omega_{D2} \) are analytic in their respective regions. Moreover, since these two potentials are equal along the region boundary (as given by the above boundary condition), it can be concluded that \(\Omega_S \) and \(\Omega_D \) are analytic everywhere. By Liouville's theorem, since \(\Omega_S \) and \(\Omega_D \) are analytic everywhere and bounded, they must be constant. Thus, set:

\[\Omega_S^\infty = C_S = R_{CS} + i I_{CS} \]
\[\Omega_D^\infty = C_D = R_{CD} + i I_{CD} \]

in which \(R_{CS}, I_{CS}, R_{CD}, \) and \(I_{CD} \) are real constants.

Inverting relations (17) to Muskhelishvili (1953) potentials gives:
\[
\Phi_1^\infty = Q_1 \left[\frac{1}{2} \mu_2 C_S + C_D \right]
\]

\[
\Psi_1^\infty = Q_2 \left[\frac{-k_2}{2 \mu_2} C_S + C_D \right] - Q_1 \left[\frac{1}{2} \mu_2 C_S + C_D \right]
\]

\[
\Phi_2^\infty = Q_2 \left[\frac{1}{2} \mu_1 C_S + C_D \right]
\]

\[
\Psi_2^\infty = Q_1 \left[\frac{-k_1}{2 \mu_1} C_S + C_D \right] - Q_2 \left[\frac{1}{2} \mu_1 C_S + C_D \right]
\]

The two complex constants \(C_S \) and \(C_D \) are determined from the conditions at infinity:

\[
\sigma_{yy}^\infty - i \tau_{yx}^\infty = \Phi_1^\infty + \Phi_2^\infty + \Psi_1^\infty
\]

\[
\sigma_{yy}^\infty + \sigma_{xx}^\infty = 2 \left(\Phi_1^\infty + \Phi_2^\infty \right)
\]

\[
\sigma_{yy}^\infty + \sigma_{xx}^\infty = 2 \left(\Phi_2^\infty + \Phi_2^\infty \right)
\]

Inverting these leads to the following expressions for the potentials

\[
\Phi_1^\infty = \frac{\sigma_{yy}^\infty + \sigma_{xx}^\infty}{4} + i \left[\frac{(\beta - 1) \tau_{yx}^\infty}{2} + \frac{1 - \alpha}{2} C_S \right]
\]

\[
\Psi_1^\infty = \frac{\sigma_{yy}^\infty - \sigma_{xx}^\infty}{2} + i \tau_{yx}^\infty
\]

\[
\Phi_2^\infty = \frac{\sigma_{yy}^\infty + \sigma_{xx}^\infty}{4} + i \left[\frac{(\beta + 1) \tau_{yx}^\infty}{2} + \frac{1 + \alpha}{2} C_S \right]
\]

\[
\Psi_2^\infty = \frac{\sigma_{yy}^\infty - \sigma_{xx}^\infty}{2} + i \tau_{yx}^\infty
\]

in which the arbitrary constant \(C_S \) does not affect the stresses and is related to a rigid body rotation. For convenience, it is chosen so that the \(\text{Imag}(\Phi_1, \text{Far Field}) = 0 \). This gives \(\text{Imag}(\Phi_2, \text{Far Field}) = \frac{\alpha - \beta}{1 - \alpha} \tau_{yx} \).

In determining the relations (20) it is also found that the \(x \)-direction stresses are related:

\[
\sigma_{xx} = \frac{4 \beta - 2 \alpha}{1 - \alpha} \sigma_{yy}^\infty + \frac{1 + \alpha}{1 - \alpha} \sigma_{xx}^\infty
\]

This result for \(\sigma_{xx} \) and \(\sigma_{xx}^\infty \) is typical of interface problems (see e.g. Dundurs (1969)). Since this analysis will be considering branches which are not strictly parallel to the \(x \)-axis, these \(x \)-direction stresses are important: they cannot be ignored as in the normal interface crack problem. Since it is generally not
possible to have these stresses vanish in both regions simultaneously, some choice must be made for their values. The choice made here is to take $\sigma_{x2} = -\sigma_{x1}$, which implies that the net force on a vertical cut is zero. It was verified using a finite element analysis of bonded interface bodies of finite dimensions that there exists a region at the center of the specimens near the interface where the tensile stress parallel to the interface in one body is equal and opposite to the tensile stress parallel to the interface in the other body. Thus the present choice of x-direction stresses would be appropriate for interface cracks far from free boundaries with no applied x-direction tractions.

3.3. Interaction with the Main Crack

The stresses due to the dislocation near an interface and the far field loading are removed from the crack face by the following potentials:

$$\Phi^C = \Phi^C_{\text{Dislocation}} + \Phi^C_{\text{Far Field}}$$

$$\Psi^C = \Psi^C_{\text{Dislocation}} + \Psi^C_{\text{Far Field}}$$

where $\Phi^C_{\text{Dislocation}}$ removes the stresses on the crack face due to the dislocation and $\Phi^C_{\text{Far Field}}$ removes the stresses due to the far field loading. To obtain these potentials, first consider the interface crack under arbitrary crack face loading. The standard solution has been presented by many investigators, e.g. England (1965), Erdogan (1965), and Rice and Sih (1965), but for convenience will be rederived here via the jump potentials in a manner similar to Clements (1971).

For a crack on an interface, the interface boundary conditions are:

$$\left(\sigma_{yy} - i \tau_{yx}\right)_1 - \left(\sigma_{yy} - i \tau_{yx}\right)_2 = 0 \quad |x| < \infty, \ y = 0$$

$$\left(u' - i v'\right)_1 - \left(u' - i v'\right)_2 = 0 \quad |x| > c$$

$$\sigma_{yy} - i \tau_{yx} = f(x) \quad |x| < c$$

These boundary conditions in terms of the standard Muskelishvili (1953) potentials are somewhat cumbersome. However, as shown by equation (6), in terms of the jump potentials the first boundary condition is simply:

$$\Omega_{S1}(x) - \Omega_{S2}(x) = 0 \quad |x| < \infty$$

Using an argument similar to the one in the Far-Field solution, since Ω_S is analytic everywhere and bounded, by Liouville's theorem it must be a constant. Moreover, for zero stress at infinity, $\Omega_S = 0$.

The second boundary condition in terms of the jump potentials is:

$$\Omega_{D1}(x) - \Omega_{D2}(x) = 0 \quad |x| > c$$

The third boundary condition in terms of the jump potentials is:

$$Q_{1} \Omega_{D1}(x^+) + Q_{2} \Omega_{D2}(x^-) = f(x^+) = f(x)$$
These last two boundary conditions (equations 25 and 27a) define a Hilbert problem, with the well-known solution:

\[\Omega_D(z) = \frac{X(z)}{2 \pi i} \int_{-c}^{+c} \frac{1}{Q_1 X^+(x)(x - z)} \frac{f(x)}{dx} + X(z) P(z) \]

(28)

in which

\[X(z) = (z - c)^{\gamma} (z + c)^{\gamma} \]

\[\gamma = \frac{1}{2} - \frac{i}{2} \log m \]

\[= \frac{1}{2} + i \varepsilon \]

\[\varepsilon = \frac{1}{2 \pi} \log \frac{1}{m} \]

and \(P(z) \) is a polynomial determined by far-field behavior.

After \(\Omega_D \) is obtained, the jump potentials can be inverted back to standard potentials using equation (7). In the following two subsections the general result in eq (28) is specialized for the dislocation interaction and the far-field loading.

3.3.1 Removal of Dislocation Stresses from Crack

To remove the stresses on the crack caused by the dislocation solution, equal and opposite tractions are added. The stresses due to a dislocation near the interface are obtained by substituting \(z = \bar{z} = x \) into (1). These stresses are:

\[\sigma_{yy} - i \tau_{yx} = \frac{A}{1 + \alpha \left(\frac{1}{x - z_0} \right)} + \frac{1 + \alpha \left(\frac{1}{x - \bar{z}_0} \right)}{1 + \beta \left(x - \bar{z}_0 \right)^2} \]

(29)
Substituting (29) with a negative sign into (28) and performing the necessary integrals enables the interaction \(\Omega \) potentials to be determined:

\begin{align}
\Omega^{C}_{S, \text{Dislocation}} &= 0 \\
\Omega^{C}_{D, \text{Dislocation}} &= -\frac{2A}{1 + m} \frac{1}{Q_1} \left[\frac{1 + \alpha}{1 - \beta} \Phi(z, z_0) + \frac{1 + \alpha}{1 + \beta} \Phi(z, \bar{z}_0) \right] \\
&\quad - \frac{2A}{1 + m} \frac{1}{Q_1} (z_0 - \bar{z}_0) \left[\frac{1 + \alpha}{1 + \beta} G(z, z_0) \right] \\
&\quad + X(z) P(z)
\end{align}

where

\begin{align}
F(z, a) &= \frac{1}{2 (z - a)} \left[1 - \frac{X(z)}{X(a)} \right] \\
G(z, a) &= \frac{\partial F(z, a)}{\partial a}
\end{align}

Inverting these to standard potentials gives:

\begin{align}
\Phi^{C}_{1, \text{Dislocation}} &= -\frac{2A}{1 + m} \left[\frac{1 + \alpha}{1 - \beta} \Phi(z, z_0) + \frac{1 + \alpha}{1 + \beta} \Phi(z, \bar{z}_0) \right] \\
\varphi^{C}_{1, \text{Dislocation}} &= -\frac{2mA}{1 + m} (z_0 - \bar{z}_0) \left[\frac{1 + \alpha}{1 + \beta} G(z, z_0) \right] \\
\Phi^{C}_{2, \text{Dislocation}} &= -\frac{2mA}{1 + m} \left[\frac{1 + \alpha}{1 - \beta} \Phi(z, z_0) + \frac{1 + \alpha}{1 + \beta} \Phi(z, \bar{z}_0) \right] \\
\varphi^{C}_{2, \text{Dislocation}} &= -\Phi^{C}_{1, \text{Dislocation}} - z \Phi^{C'}_{1, \text{Dislocation}}
\end{align}
Each of the potentials in (32) contains an $X(z)$ $P(z)$ term following inversion. However, requiring that the stresses vanish at infinity and requiring that there be no net displacement at infinity (no net $1/z$ term) leads to all the $P(z)$'s being zero.

3.3.2. Removal of Far Field Stresses from Crack

This portion of the problem is identical to the classical interface crack problem. Proceeding as usual the crack is loaded with $-(\sigma_{yy}^{\infty} - i \tau_{yx}^{\infty})$ such that the net stress on the crack is zero when this solution is superposed with the remote stress solution. After performing the necessary integrals in equation (28), the Ω potentials are:

$$
\Omega_{C, \text{Far Field}}^C = 0
$$

$$
\Omega_{C, \text{Far Field}}^C = -\frac{\sigma_{yy}^{\infty} - i \tau_{yx}^{\infty}}{(1 + m)Q_1} + \frac{\sigma_{yy}^{\infty} - i \tau_{yx}^{\infty}}{(1 + m)Q_1} \left[z + (2 \gamma - 1) c \right] X(z) + P(z) X(z)
$$

Again, P is determined by far field behavior and turns out to be zero. Inverting to standard potentials gives the following result which is of course identical to the previous solutions described earlier:

$$
\Phi_{1, \text{Far Field}}^C = \frac{\sigma_{yy}^{\infty} - i \tau_{yx}^{\infty}}{(1 + m)} \left[X(z) \left\{ z - (1 - 2 \gamma) c \right\} - 1 \right]
$$

$$
\Psi_{1, \text{Far Field}}^C = \frac{m}{(1 + m)} \left[\sigma_{yy}^{\infty} + i \tau_{yx}^{\infty} \right] \left[X(z) \left\{ z - (1 - 2 \gamma) c \right\} - 1 \right] - \Phi_{1} - z \Phi_{1}^*
$$

$$
\Phi_{2, \text{Far Field}}^C = \frac{m}{(1 + m)} \left[\sigma_{yy}^{\infty} - i \tau_{yx}^{\infty} \right] \left[X(z) \left\{ z - (1 - 2 \gamma) c \right\} - 1 \right]
$$

$$
\Psi_{2, \text{Far Field}}^C = \frac{\sigma_{yy}^{\infty} - i \tau_{yx}^{\infty}}{(1 + m)} \left[X(z) \left\{ z - (1 - 2 \gamma) c \right\} - 1 \right] - \Phi_{2} - z \Phi_{2}^*
$$

At this point a singular solution given by eqs (32) and (34) has been obtained which satisfies the main crack boundary conditions as well as the conditions at infinity. It is now necessary to model the branch.

3.4. Branch Crack Problem

The final potentials that give the solution to the interaction between a discrete dislocation and an interface crack subjected to uniform far-field stresses are:
\[\Phi_1 = \Phi_1^D + \Phi_1^\infty + \Phi_1^C \]
(35a)

\[\Psi_1 = \Psi_1^D + \Psi_1^\infty + \Psi_1^C \]
(35b)

where the Dislocation (D) potentials are given by equation (10), the infinity (\(\infty \)) potentials are given by equation (20), and the Crack (C) potentials are given by equation (22). For the no interface case (\(\alpha = \beta = 0 \)) the present solution reduces analytically to Lo's (Lo 1978) solution.

Replacing the discrete dislocation with a distribution of continuous dislocations and requiring this stress to be zero on the branch crack leads to an integral in terms of the unknown dislocation density. After non-dimensionalizing, separating the kernel into singular and regular parts, and some algebra, the following Cauchy-type integral equation is arrived at:

\[
\int_{-1}^{1} \frac{D(t)}{t - s} \, dt + \frac{L/c}{2} \int_{-1}^{1} \left[\widetilde{K}_1(s, t) D(t) + \widetilde{K}_2(s, t) \overline{D(t)} \right] \, dt = -f(s)
\]
(36)

in which \(D(t) = \mu_1 e^{i\theta} \partial \partial_t [u_t + i \{v_b\}]/\pi(\kappa_1 + 1) \) along the line \(z_0 = 1 + te^{i\theta} \), \([u_t]\) and \([v_b]\) are the jumps in the tangential and normal displacements across the dislocation line, \(\widetilde{K}_1 \) and \(\widetilde{K}_2 \) are the kernels resulting from the potentials derived earlier, and \(f(s) \) is the known traction along the branch line \(z = 1 + se^{i\theta} \) due to the main crack loaded at infinity.

This equation is solved numerically using piecewise continuous polynomials in the manner of Gerasoulis (1982). Once the dislocation densities have been determined numerically, the Stress Intensity Factors are obtained directly from the dislocation density at the tip of the branch crack in the normal fashion, e.g. Bryant, Miller, & Keer (1984). In applying the numerical scheme, the integration point at the base of the branch crack is ignored. Ignoring the integration point at the "knee" of the branched crack is an approximate method of incorporating the fact that the singularity at this end of the crack is less than 1/2.

He and Hutchinson (1988) investigated the effect of neglecting this integration point as opposed to including the actual singularity explicitly and found the effect to be minimal. A finite element analysis was run as part of the present study to check that the crack knee is indeed open under tensile loadings, and this was found to be the case for the crack geometries considered here. Thus, despite the approximate nature of the handling of the junction of the main crack with the branch, the numerical solution provides accurate results for the branching problem.

4. Numerical Results and Conclusions

The integral equation (36) was solved numerically for various crack branch geometries and material property combinations for a pure tensile load at infinity, \(\sigma_{yy}^\infty \). Following He and Hutchinson (1988), the parameter of interest is taken as \(\mathcal{G}/\mathcal{G}_0 \): the ratio of the energy release rate at the tip of the branch to the energy release rate at an equivalent unbranched interface crack. For this analysis, \(\mathcal{G} \) corresponds to the strain energy release rate of a branch crack tip in material 1 and \(\mathcal{G}_0 \) corresponds to the strain energy release rate at the tip of an interface crack of total length \(2c' = 2c + l \). The expressions for \(\mathcal{G} \), \(\mathcal{G}_0 \), and \(\mathcal{G}/\mathcal{G}_0 \) are:

\[
\mathcal{G} = \left[\frac{1 - \nu_1}{2\mu_1} \right] (K_1^T + K_1^N)
\]
(37a)
\[\frac{\dot{G}_0}{G_0} = \left[\frac{1 - \nu_1}{\mu_1} + \frac{1 - \nu_2}{\mu_2} \right] \frac{\left(\sigma_{yy}^2 + \sigma_{yy}^2 \right) \left(1 + 4 \varepsilon^2 \right) \pi \sigma}{4 \cosh^2(\pi \varepsilon)} \]

\[\frac{\dot{G}}{G_0} = \frac{(1 + \alpha) \cosh^2 \pi \varepsilon}{1 + 4 \varepsilon^2} \left(\sigma_{yy}^2 + \frac{\tau_{yy}^2}{\pi \sigma} \right) \left(\frac{K_1}{\sigma \sqrt{\pi \sigma}} \right)^2 + \frac{K_{II}}{\sqrt{\pi \sigma}} \right)^2 \]

(37b)

(37c)

Figures 2 and 3 show the dependence of the strain energy release rate, $\frac{\dot{G}}{G_0}$, on the branch angle, θ, for the cases of growth into the relatively stiff material and into the relatively soft material, respectively, for $\alpha = 0.5$, $\beta = 0$, and $l/c = 0.001$. As the length of the branch becomes very small relative to the main crack, it is expected that the present results should in some sense approach those of the semi-infinite crack. The $\frac{\dot{G}}{G_0}$ results in Figures 2 and 3 indeed agree well with those of He and Hutchinson (1988), although in Figure 2 $\frac{\dot{G}}{G_0}$ goes to 1 near $\theta = 0$ more quickly.

For $\beta \neq 0$, there are some interesting problems regarding the loading parameters. As shown by Rice (1988), the far field loading and crack length are coupled in the expression for the complex intensity factor $K = K_1 + iK_2 = (k_1 + ik_2) \sqrt{\pi \cosh(\pi \varepsilon)}$, where $k_1 + ik_2$ is the complex intensity factor of Sih and Rice (1964). Since He and Hutchinson (1988) used $\gamma = \tan^{-1} K_2/K_1$ as their loading factor, it is not possible to match their loading parameter uniquely for $\beta \neq 0$. Specifically, the loading parameter used here, $\psi = \tan^{-1} \frac{\sigma_{yy}}{\sigma_{yy}}$, is related to He and Hutchinson's parameter, γ, by:

\[\psi = \gamma + \tan^{-1} 2 \varepsilon - \varepsilon \log 2 \sigma \]

(38)

In the present analysis, the salient length parameter is the ratio of the branch crack length to the main crack length, l/c, and the absolute value of c is arbitrary. Since the value of c is arbitrary, ψ and γ cannot be related in a definitive manner. Equation (38) shows that for $\beta = 0$, ψ will be 0 and ψ is equivalent to γ, and thus the results in Figures 2 and 3 can be directly compared to He and Hutchinson's. Conversely for $\beta \neq 0$, $\psi \neq \gamma$; the two loading parameters are different. As noted by Rice (1988), ψ is usually very small. However, because of the $\varepsilon \log 2 \sigma$ term in equation (38), this does not ensure that $\psi \equiv \gamma$. If $\varepsilon \log 2 \sigma \ll 1$, then $\psi \equiv \gamma$.

Comparing Figure 2 and Figure 3 shows that for the case of the crack growing into the softer material, the maximum $\frac{\dot{G}}{G_0}$, $\frac{\dot{G}}{G_{0\text{max}}}$, occurs at an angle somewhat off the interface and in the softer material ($\theta > 0$). Although it is not shown by these figures, the angle at which K_1 is maximized in the softer material corresponds to a nearly zero value for K_{II}. These results are typical for different l/c's and Γ's, and are consistent with the observations of He and Hutchinson concerning the tendency of branching to occur in the softer material provided the material toughnesses are comparable. Subsequent results are presented for θ in the soft material only.

Figure 4 shows $\frac{\dot{G}}{G_0}$ vs. θ for various Γ and $l/c = 0.001$. Notice that as Γ increases, so does $\frac{\dot{G}}{G_{0\text{max}}}$. The angle that maximizes $\frac{\dot{G}}{G_0}$, θ_{max}, also increases as Γ increases. Again, both these trends agree with He and Hutchinson's (1988) results for $\gamma \neq 0$, although for the reasons given above, direct comparison is no longer possible. It should be noted that the in-plane stresses, σ_{xx}, are increased also by increasing material mismatch, although these stresses appear to have only secondary influence on the branch behavior.
Figures 5 and 6 show the influence of finite main crack size by considering \(\frac{g}{g_0} \) vs. \(\theta \) for various \(l/c \) values. Observe that in both Figures 5 and 6 as \(l/c \) increases, \(\frac{g}{g_{\text{max}}} \) decreases towards a value of unity, while the branch angle corresponding to maximum energy release rate decreases. (Note, however, that in calculating \(\frac{g}{g_0} \), \(g_0 \) is adjusted to be the strain energy release rate for a crack of length \(2c + l \). Thus \(g_{\text{max}} \) itself is not necessarily decreasing with increasing branch length, since \(g_0 \) is increasing with \(l \). In fact, \(g_{\text{max}} \) reaches a minimum and then starts to increase again as \(l/c \) is increased.) Using \(\frac{g}{g_{\text{max}}} \) as a crack growth criterion, the decreasing \(\theta_{\text{max}} \) with increasing branch length can be taken as an indication that the branch would tend to turn back parallel to the interface as it grows, although this is a crude way to predict crack trajectories (and can be shown to be incorrect for some cases: see Rubinstein, 1989). Given the further result that the maximum energy release rate at the branch tip approaches that of the interface crack itself as the branch grows, then together this would imply that in a limited sense branching is irrelevant, since the driving force would be similar whether branching occurs or not. The critical issue, however, remains the relative toughnesses of the materials involved.

The primary conclusions to be drawn from the present analysis are that branching from an interface is a viable mode of crack growth, and that such branching is likely to occur initially at an angle somewhere between 10° and 47° in the softer of the two materials, provided the material toughnesses are similar. As the branch extends its growth characteristics will be altered, resulting in a tendency to return to a path parallel to the interface, with a driving force similar to that of an unbranched crack.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. MSM-8657628, and by NASA-Lewis under Grant No. NAG3-856.

References

Figure 1 - A branched interface crack.
Figure 2 - Strain energy release rate ratio, $\frac{G}{G_0}$, versus extension angle, θ, for $l/c = 0.001, \alpha = 0.5, \beta = 0$ (e.g. $\Gamma = 3, \nu_1 = \nu_2 = 0.5$).
Figure 3 - Strain energy release rate, $\frac{G}{G_0}$ versus extension angle, θ, for $l/c=0.001$, $\nu_1=\nu_2=0.3$, $\Gamma=3$ ($\alpha = 0.5$, $\beta = 0.14286$).
Figure 4 - Strain energy release rate, $\frac{G}{G_0}$ versus extension angle, θ, for $l/c=0.001$, $\nu_1=\nu_2=0.3$, $\Gamma=1$, 3, 10, 100 ($\alpha = 0, 0.5, 0.81818, 0.98020; \beta = 0, 0.14286, 0.23377, 0.28006$).
Figure 5: Strain energy release rate, $\frac{G}{G_0}$ versus extension angle, θ, for $v_1 = v_2 = 0.3$, $\Gamma = 3$, $l/c = 0.001, 0.01, 0.1, 0.5, 1.0$ ($\alpha = 0.5$, $\beta = 0.14286$).
Figure 6 - Strain energy release rate, G/G_0 versus extension angle, θ, for $v_1=v_2=0.3$, $\Gamma=10$, $l/c=0.001, 0.01, 0.1, 0.5, 1.0$ ($\alpha = 0.81818$, $\beta = 0.23377$).
A solution is presented for the problem of a finite-length crack branching off the interface between two bonded dissimilar isotropic materials. Results are presented in terms of the ratio of the energy release rate of a branched interface crack to the energy release rate of a straight interface crack with the same total length. It is found that this ratio reaches a maximum when the interface crack branches into the softer material. Longer branches tend to have smaller maximum energy release rate ratio angles indicating that all else being equal, a branch crack will tend to turn back parallel to the interface as it grows.