A VLSI CHIP SET FOR REAL TIME VECTOR QUANTIZATION OF IMAGE SEQUENCES

Richard L. Baker
Integrated Circuits and Systems Laboratory
Department of Electrical Engineering
University of California

ABSTRACT

This paper describes the architecture and implementation of a VLSI chip set that vector quantizes (VQ) image sequences in real time. The chip set forms a programmable Single-Instruction, Multiple-Data (SIMD) machine which can implement various vector quantization encoding structures. Its VQ codebook may contain unlimited number of codevectors, N, having dimension up to \(K = 64 \).

Under a weighted least squared error criterion, the engine locates at video rates the best code vector in full-searched or large tree searched VQ codebooks. The ability to manipulate tree structured codebooks, coupled with parallelism and pipelining, permits searches in as short as \(O(\log N) \) cycles. A full codebook search results in \(O(N) \) performance, compared to \(O(KN) \) for a Single-Instruction, Single-Data (SISD) machine. With this VLSI chip set, an entire video code can be built on a single board that permits realtime experimentation with very large codebooks.
OVERVIEW

- MULTISPECTRAL COMPRESSION PROBLEM
- PHILOSOPHY <--- A NEED
- VX IMPLEMENTATION CHALLENGES
- VQ CHIP SET
COMPRESSION RESEARCH AT UCLA

ALGORITHMS

- LOW RATE VIDEO
- SINGLE FRAME
- MULTISPECTRAL

HARDWARE

- APPLICATION SPECIFIC INTEGRATED CIRCUITS
MULTISPECTRAL COMPRESSION PROJECT (JPL)

\[192 \lambda \cdot s \]

\[768 - 1000 \text{ PIXELS} \]

\[50 \text{ MEGAPIXELS/SEC} \]
\[\frac{3 \times 10^4}{17 \text{ CHANNELS}} \]

\[\text{DESIRE OVER 50:1} \]
\[\longrightarrow \text{ UNDER 1/4 BITS/PIXEL} \]
DESIGNER’S PERCEPTIONS
VS.
USER’S NEEDS

CONFERENCE LEVEL 9TH FLOOR
WHAT IS RELEVANT?

WHAT IS REAL?

DEPENDS ON USER

- MEAN SQUARE ERROR
- HAUSDORFF MEASURE
- HUMAN VISION SYSTEM MODELS
- MISSION SCIENTIST MODELS
Basic VQ

ENCODER

minimize \(d(X, \hat{X}_l) \)

Table Lookup

Channel

DECODER

\(\hat{X} \)

Codebook \(\hat{X}_l, l=1, ..., N_c \)

\(\hat{X}_l \)
Mean-Residual VQ Encoder (MRVQ)

original spectrum

mean

residual

Mean

Scalar Quantizer

MR Preprocessor

Vector Quantizer

MR Postprocessor

reconstructed spectrum
DISTORTION COMPUTATION

Minimize squared error:

\[x = \text{Source vector,} \quad \hat{x}^i = \text{i}th \text{ Code vector,} \]

\[
 i = \min_{i=1, \ldots, N} \left\{ \sum_{k=1}^{K} w_k | x_k - \hat{x}_k^i |^2 \right\},
\]

\[
 = \min_{i=1, \ldots, N} \left\{ \sum_{k=1}^{K} \frac{w_k(x_k)^2}{2} - \sum_{k=1}^{K} w_k \hat{x}_k^i x_k + \frac{\sum_{k=1}^{K} w_k(\hat{x}_k^i)^2}{2} \right\},
\]

\[
 = \min_{i=1, \ldots, N} \left\{ \sum_{k=1}^{K} z_k^i x_k + c^i \right\},
\]

where

\[
 z_k^i \triangleq -w_k \hat{x}_k^i, \quad c^i \triangleq \frac{\sum_{k=1}^{K} w_k(\hat{x}_k^i)^2}{2}.
\]

\[
\begin{array}{c}
 x_1 \\
 z_1^i \\
 c^i
\end{array}
\]

\[
\begin{array}{c}
 x_2 \\
 z_2^i
\end{array}
\]

\[
\begin{array}{c}
 x_3 \\
 z_3^i
\end{array}
\]

\[
\begin{array}{c}
 x_K \\
 z_K^i
\end{array}
\]

\[
\begin{array}{c}
 K-1 \text{ delays} \\
 \overline{i}
\end{array}
\]

\[
\begin{array}{c}
 \min_{i=1, \ldots, N} \rightarrow i
\end{array}
\]

- = Unit delay element
Basic Finite-State Vector Quantization Block Diagram.
PROBLEM: LIMITED SEARCH TIME

- Given:
 - 256x256 resolution image
 - 15 frames per second
 - 4x4 block size.
 \[\rightarrow 983,040 \text{ pixels/sec} \]
 \[\rightarrow 61440 \text{ 4x4 blocks/sec} \]
 or 16.3 microseconds/block

- Assume:
 - Pipeline, 10 MHz clock, 1 distortion/clock
 \[\rightarrow 163 \text{ distortion computations / block} \]
 \[\rightarrow 163 \text{ codevectors searched / block} \]

THESE #'S VARY AT RESOLUTION, BLOCKSIZE, RATE, ETC. - BUT:

- Problem:
 \[\rightarrow \text{Prefer 4000+ codevectors in codebook} \]
 \[\rightarrow \text{Must limit search through codebook} \]
ONE SOLUTION: TREES

N search \quad O(\log N) \text{ search}
N memory \quad O(N) \text{ memory}

- Example

\begin{align*}
N & = 4096 = 2^{12} = 2^5 \times 2^7 \\
\text{Search} & = 2^5 + 2^7 = 160 \\
\text{Memory} & = 2^5 + 2^5 \times 2^7 = 32 + 4096 = 4128
\end{align*}

- Problem: data dependency
 - Minimize pipeline latency
 - Buffer to process several source vectors
OVERALL SYSTEM

![Diagram of OVERALL SYSTEM](image-url)
FEATURES

- SEARCH TREE STRUCTURED CODEBOOKS
 - VECTOR DIMENSION UP TO 64 PIXELS
 - CODEBOOK SIZE LIMITED BY MEMORY
 - ONE DISTORTION COMPUTATION PER CLOCK
 - 6 BITS + SIGN

- ARCHITECTURE
 - SYSTOLIC ARRAY
 - ON CHIP BUFFERING
 --> FULL PROCESSOR UTILIZATION
 - CARRY SAVE ADDER AND DYNAMIC MANCHESTER CARRY CHAIN
 - PIPELINED COMPARATOR

- MMAC IMPLEMENTATION
 - 3 MICRON CMOS (MOSIS)
 - 7900 x 9200
 - ABOUT 30000 TRANSISTORS
 - 10 MHz PROJECTED => 10^7 VECTOR DISTORTIONS PER SECOND
 - 132 PINS

- NAI IMPLEMENTATION
 - 3400 x 4600
 - 1376 TRANSISTORS
 - 28 PIN
 - 12 MHz
SUMMARY

- MULTISPECTRAL COMPRESSION ALGORITHMS UNDER STUDY

- WHAT IS RELEVANT?

- HIGH SPEED VX CHIP SET
 - 10 MEGADISTORTIONS/SEC
 - TREE CODEBOOKS (LARGE)
 - INEXPENSIVE TECHNOLOGY