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ABSTRACT 
A uniform approach to construct absorbing artificial boundary conditions for second- 

order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by 
a pseudodifferential operator that annihilates travelling waves. It is obtained through the 
dispersion relation of the differential equation by requiring that the initial-boundary value 
problem admits the wave solutions travelling in one direction only. Local approximation 
of this global boundary condition yields an nth-order differential operator. It is shown 
that the best approximations must be in the canonical forms which can be factorized into 
first-order operators. These boundary conditions are perfectly absorbing for wave packets 
propagating at certain group velocities. 

A hierarchy of absorbing boundary conditions is derived for transonic small pertur- 
bation equations of unsteady flows. These examples illustrate that the absorbing boundary 
conditions are easy to derive, and the effectiveness is demonstrated by the numerical ex- 
periment s. 
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1. INTRODUCTION 

Numerical simulations of many physical processes often require calculations of so- 

lutions to partial differential equations on some infinite region. In such problems, it is 

essential to introduce some techniques to restrict calculations to a finite computational 

region. (See [l], [16] and [20].) A traditional method is the coordinates transformation, 

1)y which an infinite physical region is mapped into a finite computational domain. While 

this technique is effective for some steady state problems, it is inadequate for unstcady 

calculations arising from such applications as seismology, meteorology and transonic fluid 

dynamics. (See [7],  [9]). An alternative is to introduce some artificial boundaries to 

obtain a finite region. At these artificial boundaries, some boundary conditions have to 

be prescribed to ensure a unique and well-posed solution. Over the years, there has been 

substantial interest in developing absorbing artificial boundary conditions that eliminate 

the nonphysical reflections, cf. [3], [4], [5 ] ,  [6], [7], [8], [lo], [12], [22], [24] and [25]. 

Using the wave equation as their model, Engquist and Majda [6, 71 proposed a 

pseudo-differential operator as a perfectly absorbing boundary condition. Since the dis- 

persion relation of the wave equation admits two modes, the right-going and the left-going, 

which correspond to the two branches of the square root function 3zJm, an equation 

which admits only one of these modes is obtained by choosing a particular branch of the 

square root. This equation is then considered as the dispersion relation of an equation 

containing a pseudodifferential operator. Since a pseudodifferential operator is nonlocal in 

both time and space, this boundary condition is not numerically useful in practice. En- 

gquist and Majda then used PadC-approximation of the square root d= to arrive at 

a hierarchy of local boundary conditions given by differential operators. These boundary 

conditions are perfectly absorbing at normal incidence. 

Higdon [13] proposed a process by which Engquist-Majda boundary conditions can 

be generalized to be perfectly absorbing at some arbitrary angles of incidence. In this 

process, he was able to show that for certain approximations, a differential operator in 
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Engquist-Majda boundary conditions can be put into a canonical fmm. It can be factorized 

into differential operators of first-order, with each factor annihilating waves at a specific 

anglc of incidence. This canonical form has theoretical and practical advantages: i t  does 

a great deal to simplify stability analysis and numerical implementation [13]. Also this 

characterization of absorbing boundary condition highlights the relation between Engqiiist- 

Majda boundary conditions and Bayliss-Turkel boundary conditions [5 ] .  

The purpose of this paper is threefold: 

1) We propose another approach, which is related to that of Engquist and Majda in 

[6] and [7], to construct local absorbing boundary conditions. In their process of rational 

approximation of the square root function, Engquist and Majda have used different strate- 

gies for different equations, namely, the wave equation in [6] and [7] and the transonic 

small disturbance equation in [8]. In our approach, a fairly uniform strategy of rational 

approximation is applied, and the absorbing boundary conditions can be automatically 

generated as long as the dispersion relation is known. 

2) As was pointed out in [13], the factorization theorem of Higdon applies only to 

certain rational approximations for wave equations. We will generalize this factorization 

theorem to show that a larger class of absorbing boundary conditions can be in fact put into 

Higdon’s canonical form. The use of this form will have the advankages both in analysis and 

implementation, especially when higher-order conditions are concerned. When applied to 

such equations as the wave equation and the dispersive Klein-Gordon equation, our method 

yields the same results as established in [13]. 

3) High-order absorbing boundary conditions often involve some optimization pa- 

rameters. Our approach of constructing absorbing boundary conditions provides a natural 

link between these parameters and the group velocities of wave solutions. We will show 

that the optimal absorbing boundary conditions are those which are perfectly absorbing 

at certain group velocities, with each factor annihilating the wave packets propagating 

at  a. specific: group volocity. This physical interpretation is helpful in deterniiniiig t l i v  
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optimization paramet ers . 

In section 2, we will derive perfectly absorbing boundary conditions for the travelling 

wave solutions. Its local approximation will be considered in section 3. Also in section 

3, we will describe the general characterization of the absorbing boundary conditions. As 

applications, we will derive a hierarchy of absorbing boundary conditions for the transonic 

small disturbance equations in section 4. Finally, in section 5 ,  we will compare by numerical 

experiments our boundary conditions with Engquist-Majda boundary conditions of [SI. 

2. PERFECTLY ABSORBING BOUNDARY CONDITION 

In this section, we derive a global boundary condition which annihilates travelling 

waves of a general second-order hyperbolic equation. In fact, our global absorbing bound- 

ary condition applies to any linear hyperbolic equations with constant coefficients for which 

a dispersion relation is known. 

We consider the initial-boundary value problem (IBVP): 

a 
dt P(- ;D)u  = 0, t > 0, 51 2 0, 

u( t ;O,z- )  = g ( t ; z - ) ,  t > 0, 5- E IRn-l, 

u - 0 ,  tso,  

where D = (=, a . . . , =) a and X- = ( ~ 2 ,  . . . , x n ) .  P is a homogeneous polynomial of 

degree two of n + 1 variables with constant coefficients. Furthermore, we assume P is 

hyperbolic in the direction of t (see [19]) and that g has a compact support. Problem 

(2.1) must be solved over a region which is bounded in 5 1 ,  e.g., fl = { ( X I , .  . . , X n ) [ 5 1  I a } .  

By an absorbing boundary condition Bu = 0 at 5 1  = a, it is meant that the solution 
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of (2.1) can be well approximated by the solution of the following problem. 

(2.2) 

d 
at P ( - ; D ) u  = 0) t > 0, 0 I 51 I a, 

u(t;  O,z-) = g ( t ;  z-)) t > 0) 2- E I R y  

5 1  = a, t > 0, BU = 0, X- E :[R"-l, 

U G O )  tso. 
Let ( r , t )  E be the dual of ( t , z )  and 6- E Et"-' be the dual of x-. Equation 

(2.1) admits plane wave solutions of the form 

i (r t+<.z)  ~ ( t ;  z) = e ? 

for ( r ,  t) E , provided the dispersion relation 

a(r;  e )  P(i7; it) = 0) (2.4) 

is satisfied, where it = (itl,. . . , itn). The group velocity of (2.3) with which the energy of 

the wave packet is propagated is equal to (see [26]) 

For a given frequency r E IR and a wavenumber t- E we assume that the 

equation in (2.1) admits the plane wave solutions (2.3) which propa,gate in both the positive 

and the negative directions of the zl-axis. Thus for some (7, e-) E IR", (2.4) has two roots 

t:, tc E IR such that the zl-components of group velocities V,, axe positive and negative 

respectively, i.e., 

The travelling waves which propagate in the positive 21-direction has the form 



It follows that a boundary condition that annihilates the right-going wave solutions 

(2.5) can be written as 

From (2.4), the implicit function theorem leads to 

So the perfect ly  absorbing boundary condition at z1 = a in the absence of evanescent waves 

is given by 
Q€l Q€l -(.;t) = l - ( T ; t ) l ,  
QT QT 

or 

(2.6) S(7; 5) - I -(Ti Q€l ()I = 0. 
o r  OT 

The left hand side of (2.6) can be regarded as the symbol of a pseudo-differential 

operator which can be expressed in terms of a Fourier integral. This operator requires the 

information of the solution away from the boundary 5 1  = a. An alternate definition of the 

boundary condition corresponding to (2.6) can be formulated as follows. 

For u ( t ; x )  = e i ( r f + € * 2 ) ,  define B* by 

For more general solution, the Fourier transform G ( T ;  51, I-) of u with respect to t 

and z- can be decomposed into a sum of two terms 

Then the action of B* on u is 
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We can show that if the IBVP (2.1) generates travelling waves only, i.e., the Fourier 

transform 6 of g satisfies 

SUPP 6 C S E { (7, e- )  E IR" I (2.4) has only real roots [r , [F}, (2.9) 

then B* defined in (2.8) annihilates the exact solution of (2.1). 

By using the Fourier-Laplace transform, the solution of (2.1) is given by 

In the above integral, e;' = [ + ( T ; [ - )  is the root of (2.4) which satisfies Im[r > 0 for each 

( ~ ; t - )  E C x Et"-' with ImT < 0. For T E IR, [ F ( T ; [ - )  is tdken as the limit in the 

lower-half plane ImT < 0. It was shown in [14] that if [: E IR, then V,,(~:) 2 0, i.e., the 

positive group velocity in the zl-direction. 

Decompose this solution into (2.7), the result is f+ = and f- = 0. Then sub- 

stitute it into (2.8). The first integral in (2.8) vanishes by the relation %(T; [ : , [ - )  = 

I ~ ( T ;  [;', [-)I and so does the second integral because f- = 0. This leads to B*u = 0. 

Thus the solution of (2.1) is a solution of (2.2) if B = B*. 

The solution of (2.2) is also unique when B = B*. The boundlary condition B*u = 0 

implies f - ( ~ ; ( - )  = 0, because %(T;(; , [ - )  # I % ( T ; [ ; , ( - ) ~  .for each ( T ; ( - ) .  This 

shows that u is a solution of (2.1) if and only if it is a solution of (2.2). 

Therefore the boundary condition B* = 0, or equivalently (2.6), is a perfectly ab- 

sorbing boundary condition. This boundary condition, however, is nonlocal in both time 

and space due to the presence of the absolute value function in (:2.6), hence not useful 

in practice. In order to implement this condition numerically, it, must be replaced by 

some local boundary conditions resulting from the rational approximations of the absolute 

valiie function. Such approximations will be discussed in section 3, but here it is probably 

worthwhile to mention a connection between (2.6) and the perfect:ly absorbing boundary 

condition derived by Engquist and Majda in [6]. The global boundary condition of [6] 
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involves the square root function which also has to be approximated by some rational 

functions. According to Newman [18], the best rational approximations of the absolute 

value function 1x1 and the square root ,/Z have the same order of accuracy. In this sense, 

if (2.6) is approximated by a good rational function, the localized boundary conditions 

resulting from (2.6) are as accurate as those of [6] and [7]. 

3. CHARACTERIZATION OF HIGH-ORDER ABSORBING BOUNDARY 

CONDITIONS 

We now consider the local approximations of the perfectly absorbing boundary con- 

dition (2.6). In designing an absorbing boundary condition two properties must be consid- 

ered: it should minimize the amplitudes of the waves reflected from the artificial boundary 

so that the solution of (2.2) closely approximates the free-space solution of (2.1), and it 

must also be a well-posed condition to guarantee a unique and well-posed solution to the 

differential equation. To study the absorption property of a boundary condition Bu = 0 

with its dispersion relation B(T,  5) = 0, we consider the wave solutions of the form 

Substitution of u into the boundary condition Bu = 0 at z1 = a yields 

Solving for r from the above equation, the result is 

Then the reflection coefficient of the boundary condition Bu = 0 is defined by 
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The reflection coefficient is the amplitude of the reflected wave. Therefore a per- 

fectly absorbing boundary condition must yield a reflection coefficient equal to 0 for all 

frequencies, e.g., the boundary condition (2.8). This is, in general, impossible to achieve 

for a local boundary condition. Hence, we hope to build a local boundary condition for 

which Rg is as small as possible. 

A theory to determine the well-posedness of an IBVP has been developed by Kreiss 

[17] and by Sakamoto [21]. The following criterion of well-posedness can be found in [7] 

and [24]. 

WELL-POSEDNESS CRITERION. 

The IBVP (2.2) is well-posed if and only if 

4 . r ;  (1 , 5-1 = 0, 

B(.r; (1' 6-1 = 0, 
has no eigenvalues and generalized eigenvalues. 

An eigenvalue of (3.1) is defined as (7; & , E - )  E C x 6' x Etn-.', which satisfies (3.1) 

and 1m.r 5 0 and Imt1 < 0. 

A generalized eigenvalue of (3.1) is defined as (7; (1,  (-) E with ( 7 ;  51 , [- ) # 
( O , O ,  0), which satisfies (3.1) and 

Discussions and interpretations of this criterion can be found in [14] and [24], and 

in [23] for the analogue of difference equations. 

In order to obtain a local boundary condition approximatkng (2.6), the absolute 

value function in (2.6) must be approximated by a rational function.. By making a rational 

transform if necessary, we may assume that V,, E [-1, 11. 

Let ~ ( 5 )  = of order (m, n)  be a rational approximation to Izl on interval [-1, 11, 
Qn (2) 

then (2.6) can be approximated by 
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or 

Tlie left hand side of (3.3) is a homogeneous polynomial of degree d in (T,(), hence (3.3) 

is the dispersion relation of a differential equation. 

An obvious choice of r ( z )  seems to be the one, T * ( z ) ,  obtained by Newman in [18], 

which has an accuracy of order e-‘&. This approximation, however, results in a boundary 

condition that is ill-posed, because r*(O) = 0; hence, (3.3) admits a generalized eigenvalue. 

Although adding a small positive constant to r* would rule out all generalized eigenvalues 

while still maintaining roughly the same accuracy, it is not clear whether the resulting 

boundary condition admits other eigenvalues. Rather than looking for a function approxi- 

mating 1x1, we will instead take another approach due to Higdon [13], in which we study the 

necessary €orm of a well-posed boundary condition with the smallest reflection coefficient. 

Equation (3.2) can be expressed as 

Q(%) = 0, 
QT 

where Q is a polynomial of degree d = max{m, n + 1) with real coefficients, which can be 

factorized as 

A. d+dl 

with v j , w j , G j  E Et. For any polynomial (3.4), there exists a corresponding boundary 

condition whose dispersion relation is given by 

o ; Q ( S )  Qr = 0. (3.5) 

The boundary condition corresponding to (3.5) will also be referred as boundary 

condition Q of order d. 
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The reflection coefficient of (3.5) is given by 

wi tli obvious independent variables omitted. 

Now, we assume V,, = %(T, { )  E [a,p] for all ( ~ , t - )  E 5 and t E IR such that 

.(.,e) = 0, and -00 < a < 0 < p < +oo; that is, the z1-component of group velocity has 

the lower bound a and the upper bound p. 

4 7  

DEFINITION 3.1. Given E : 0 c E < p, let 

$d = { Q : red polynom'ds of degree d } ,  

A boundary condition Q* E $d is said to be LC,"-best boun'daxy condition of order 

if 

wliere RQ is the reflection coefficient of the boundary condition 19. 

Lr-best  boundary conditions are the optimal boundary conditions of a fixed degree, 

in the sense that they minimize the reflection coefficient over all travelling waves of prop- 

agating speed in the range [ E , @ ] .  In applications, during the time interval of interest, the 

waves with the slow speed (Vzl E [0, E ) )  will not travel far enough to reach the boundary. 

The following definition, due to Wagatha [25], takes into consideration the wave 

modes of every speed in (0, @ I .  

DEFINITION 3.2. Let p E L/o,pl with p 2 0 and 

l B p ( v ) d v  = 1. 
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An absorbing boundary condition Q* is said to be C'-best boundary condition of 
I order d i f  

1p p(vz1 )RQ* (vzl )dVz1 = min JP p( vz1 )RQ (vz1 )dVz, - 
~ 

Q E Q  0 

The L2-best boundary condition is similarly defined by replacing RQ by R; in the above 

integral. 

The following theorems characterize the best boundary conditions. 

THEOREM 3.3. Let E > 0. I f  Q* is a well-posed ,CC,"-best boundary condition, then 

d 

= - V j ) .  

j =  1 

Furthermore, vj E [ E , / ? ] .  

THEOREM 3.4. 

holds and ~j E (0, PI. 
Let Q* be a well-posed C1 (or C2)-best boundary condition. Then (3.6) 

The proofs of the theorems 3.3 and 3.4 are identical; we prove Theorem 3.3 only. 

PROOF OF THEOREM 3.3: 

Since Q* is a polynomial of degree d, it can be factorized as 

(a) We first show that if Q* gives rise to an CC,"-best boundary condition, then the 

quadratic factors must disappear in (3.7)' i.e., dl = d. This part of the proof was provided 

by one of the referees. 

We consider a quadratic factor (5 - ~ j ) ~  + t i j j  and its corresponding reflection coef- 

ficient 

2 2  + I  
+ 2  (ati(t:) - wjar ( t i  >> + Gjar(t1 ) 

R j = I (  ( - 
e 1  ) - wjar(t,))2 + 6,2a?(t,) ' 

- 2  = R j c  , 
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where 

l -  

C =  and x* = s( t : ) .  61 By assumption, 
o r ( € ; )  

a 5 x- 5 0 < e  5 x+ 5 p. 

It is easy to verify, by expanding the both sides, that 

(x+ - 4-y 5 (x+ - W j ) 2  + 6;) 
and 

2 (x- - + 6;) 2 (x- - wj)2 + 6;. 

This implies 
(x' - 4-y 
(x- - 4-y R j  2 for d l  x-, x+. 

The equality in the above holds only if 6 j  = 0. But because Q* is optimal, the value of 

Ri can not be reduced, hence one concludes 6 j  = 0. In that case, this quadratic factor is 

in fact a product of two linear factors. This shows that (3.6) holds. 

(b) We now consider a linear factor (x - v i )  of (3.6) arid show that if vj 4 [e, PI, 
then either the condition (3.6) fails the well-posedness criterion, or it is not optimal. 

If vj E [a, 01, then the condition (3.6) is not well-posed because there exists a gener- 

alized eigenvalue. Now we consider the reflection coefficient corresponding to this factor. 

where x* and c are defined in part (a). 

It is easy to verify that if vj E (-00, a )  U (p,  +m), then 

x + - v .  x + - p  I x -  > / z - - p I  , for all x-, x+. 

Also, if vj E (0, e ) ,  then 

x+ - v .  X + - E  > -  , for all x-, x+. 
Ix--v;l Ix---EI 

Thcrefore vj  E [ E , @ ]  for Q* to be optimal. This complete the proof. 
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~ I TIIEOREM 3.5. Let Q: be a well-posed LC,"-lest boundary condition. If 

I for all (7; (-) E S,, then RQ; < 1 for all (7; (-) E S, and 

lim RQ; = 0, for all (7; I-) E S,. 
d + + m  

PROOF: Let 
d 

j=l 

tllcn RQ, < 1 and lim I?qd = 0. The theorem follows from RQ; 5 RQ,. 0 
d + + m  

From Theorem 3.3, the dth order L,oO (IC' or IC2)-best condition for the problem (2.1) 

whose dispersion relation is a(7; () = 0 must have the form 

where D = (& . . . , e), vj E [e, p] (or (0, p)). In particular, the C1 (or L2)-best bound- 

ary conditions can be generated automatically with the help of a symbolic manipulation 

program in the following manner. First, the derivatives utl, u, are calculated from the 

dispersion relation a(~;() = 0. Then the parameters vj can be approximated through a 

nunicrical process to minimize the integral in Definition 3.2. Finally, analysis for well- 

posedness can be carried out for each factor of (3.8), which is simple as shown in the next 

sect ion. 

4. ABSORBING BOUNDARY CONDITIONS FOR A CLASS OF TRAN- 

SONIC SMALL DISTURBANCE EQUATIONS OF UNSTEADY FLOWS 

In their paper [8], Engquist and Majda derived absorbing boundary conditions up 

I to the second-order for the unsteady transonic small disturbance equation of low reduced 
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frequencies. Their derivation, based on the framework of their earlier work [7], did not, 

however, provide a uniform approach in constructing the local boundary conditions. Dif- 

ferent strategies had to be used to approximate the square root while handling the sidewall 

conditions. Furthermore, if a higher-order approximation is required, their method leads 

to two unpleasant difficulties: the determination of well-posedneos and the selection of the 

parameters. Although general guidelines for selecting the parameters were given, these 

guidelines do not have a direct physical interpretation. 

In this section, we will recreate the artificial boundary conditions for the transonic 

small disturbance equation of low reduced frequencies treated in [8]. n o m  our approach, 

a connection between absorption properties and group velociti'es of the interior distur- 

bance is revealed. Boundary conditions for the transonic small disturbance equation of full 

frequencies will also be considered. 

4.1 Equation of Low Reduced Frequencies 

By a standard frozen coefficient theory, we may assume that the equation is linear 

with constant coefficients and the flow is subsonic, which is the case in farfield. Thus we 

consider 

Let (T ,  t ,  q )  be the dual of ( t ,  5, y), then the dispersion relation of (4.1) becomes 

We first consider the sidewalls. 

Sidewall condition 

The y-component of the group velocity of the plane wave e i ( r t + t z + q y )  is equal to 
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Dividing through (4.2) by t2, we have 

7 
(:)2 = 2 2  - K*.  (4.3) 

From this relation, we are able to determine the range of group velocity. Since the right- 

hand side can be made arbitrarily large, the group velocity is unbounded, i.e., 

v y  E (-..,+..). 

Even though the propagating speed in the y-direction may be infinity, it can be 

justified to consider only the group velocities in a bounded interval, for the following 

reasons. 

The propagating speed of a plane wave in the y-direction becomes infinity only if 

the wave is parallel to z-axis, i.e., ,$ = 0. In this case, as is easy to verify, the propagating 

speed downstream is also infinite and is much faster than the y-component because 

- - t o  V Y  as ,$--+o. 
vz 

This implies that the disturbance with infinite y-direction speed will actually strike the 

downstream boundary first. So in designing a sidewall boundary condition, we need only 

to consider those waves with finite propagating speed in the y-direction. Thus, we may 

assume there is a p > 0 such that 

v y  E [-P,P1* 

For a given ( T , ( )  E Et2, equation (4.2) has two roots q+ = -v-, corresponding to 

the two travelling wave modes, with 

Thus as a direct consequence of Theorem 3.3, an Lp-best boundary condition of order d 

at sidewall 1~ = b (resp., y = -b )  must have the form 
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with v j  E [ E ,  p] (resp., vj E [-p, - E ] ) ,  E > 0. If the reflection coefficient of (4.4) is denoted 

by RQ, then it follows from Theorem 3.5 that 

where S, is defined in the Definition 3.1. 

The theory of section 3 does not assure that the boundary condition given by (4.4) 

is well-posed; it has to be determined by the criterion given at the beginning of section 3. 

In order to prove the well-posedness, we need only to show that each factor in (4.4) yields 

a well-posed boundary condition. Thus, let us consider the factor (x - v j ) .  The dispersion 

relation of the corresponding boundary condition is 

or 

rl+ v j t  = 0. (4.5) 

Let us consider the mutual solutions of (4.2) and (4.5). For. any t E IR, the solution 

7 of (4.5) is always real, thus an eigenvalue does not exist. Also, for any < E IR, ( ( , q + )  

will never satisfy (4.5) since vi < 0. This implies there is also no generalized eigenvalues, 

so the boundary condition is well-posed. 

n o m  this, the best boundary condition at the sidewalls should have the form 

with v j  < 0 for y = - b  and vj 

the reflection coefficient small. 

> 0 for y = b. The parameters vj’s must be tuned to make 

Details in the determination of parameters will be given in 

section 5.  In general, if we know a priori the main interior disturbances propagate with 

certain speeds in the y-direction, these disturbances can be exactly annihilated by tuning 

vj to those speeds. 
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111 [SI, u1 = -m was chosen for the fist-order condition, which annihilates exactly 

the waves travelling in the y-direction only, i.e., with zero speed in the 2-direction. 

Ups t ream condition 

The z-direction of group velocity is given by 

By employing the previous techniques, we find that 

K* v2 E [-,,+..). 

I It follows from Theorem 3.3 that the LC,"-best boundary condition of order d at 

z = --a has the form (which is well-posed): 

j= 1 
(4.7) 

where vj E [- 2, K* -e ] .  Its reflection coefficient is smaller than 1 by Theorem 3.5. For the 

first-order condition, v1 = -y was chosen in [8], the corresponding boundary condition 

annihilating waves travelling at the fastest speed upstream. 

The second-order condition of [8] is given by 

2 1 
4zt - K ' 4 t t  + s4yy = 0, 

I which is also a special case of (4.7). In fact, if one solves for 4yy from (4.1) and substitutes 

i it into the above equation, the result is 

K* This reduces to (4.7) with 01 = 02 = -2. 
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Downstream condition 

At the downstream 5 = a, the L,“-best boundary condition also has the form (4.7) 

Condition (4.7) is well-posed at x = a if v j  > 0, and its reflection but with vj  > 0. 

coefficient is equal to 

~j - (K* + 
v j  + (K* + ~ j ) J m  j= 1 

It is clear that R(r,  7 )  < 1 if ,/- # 0, i.e., Vz(e) # 0. 

Since the interior disturbance might contain certain modes which have infinite down- 

stream speed, one of the parameters can be tuned to annihilate these wave modes, e.g., 

01 = +co in the first-order condition. In this case, the reflection coefficient becomes 

and the corresponding boundary condition is obtained by taking the limit + +oo: 

d 
-4 = 0, 
d X  

at z =a. 

This is exactly the boundary condition given in [8]. For higher order, we propose 

4.2 Equation of Full Frequencies 

We now consider the full frequency transonic small disturbance equation 

Its dispersion relation is 

o(7, g, 7 )  = r 2  + 257 - K*g2 - q2 = 0. (4.9) 

Side wall condition 



~ 

The y-component of group velocity is equal to 

It can be shown that 

v y  E [-1) 11, 

I 

l and the two travelling wave modes satisfy 

Applying Theorem 3.3 and Theorem 3.5, the C,"-best condition has the form 

d 

j = l  

vj E [-1) -e] for y = -b  and vj  E [ E ,  11 for y = b. Furthermore RQ. < 1. Therefore, the 

sidewall conditions may be chosen as 

The condition is well-posed. 

Upstream and downstream conditions 

From the dispersion relation (4.9), we find 

t v, = 1 - (K*  + 1)- 
T + t '  

and 

It follows from Theorem 3.3 that the absorbing boundary conditions can be taken as 

a a 
d X  

d 

- - (K*  + . j)-)4 = 0) n ((1 - V j )  at (4.10) 
j =  1 
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wlicrc u j  E [l - d m ,  -E] for upstream condition and v j  E [ E : ,  1 + d-] for down- 

stream condition. 

It can be verified directly that the reflection coefficients alssociated with (4.10) for 

both upstream and downstream are strictly less than 1, except, for the mode with zero 

x-component group velocity. 

5. NUMERICAL COMPUTATIONS 

In this section, we discuss the numerical implementation and present some compu- 

tational results involving the absorbing boundary conditions derived in the last section. 

For the purpose of illustrating the efficiency of these conditions, we compare the com- 

putational results obtained by using the boundary conditions of this paper with those 

developed by Engquist and Majda in [SI., both applied to the linear equation (4.1) in the 

region 52 = [-1,1] x [-1,1]. We note that the first-order conditions derived from the last 

section are the same as those derived in [SI. 

Specifically, we compare the following sets of conditions: 

Upstream: 

First-order: 

4t + v 4 z  = 0. 

Second-order: 

2 1 
2 d z t  - T d t t  + - 4 9 9  = 0, 

(- d - (K* +VI)-) a a  (at - ( K *  + v+)d a = 0. at d X  d X  

Downst ream: 

Firs t,-ortlt:r: 

dZ = 0. 
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Second-order : 

422 = 0, 

Sidewall (y = 1): 

i Firs t-order: 

I Second-order : 

a d a  a 
(- OY + VI%) (- aY + v2-)d d X  

= 0. 

(E & M) 

(5.2) 

5.1 Parameters 

Theoretically, the parameters in the above boundary conditions should be determined 

by the minimization properties stated in the definitions 3.1 and 3.2. Such process, however, 

is hardly necessary in practice, nor will it always yield the best result for all problems, 

because the definition of the CF- or C2-best conditions itself depends on the arbitrary 

choice of E or the weight p. In the present study, we use the following procedure in which 

the parameters can be easily determined. 

For the upstream conditions, the parameters must satisfy v E [-F,O). The first- 

order condition is tuned to the waves travelling most rapidly upstream by letting v = -%. 
In the second-order condition (5.1), the two parameters are chosen as V I  = -= 2 and 

v2 = -7, K' the mid-point of [ - T , O ) .  K* 

The parameters in the downstream conditions must be in (O,+oo), which is un- 

bouiided. Howcver, a transformation exists to map (0, +m) to the bounded interval (0, l), 
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hence the similar method as above can be used. Recall from 

reflection coefficient of the downstream condition is 

section 4 that a factor of 

Thus the first-order downstream condition is obtained by letting = 1, i.e., 

TJ = +m. The remaining parameter TJ in the second-order condition (5.2) is determined by 

requiring + - +u - 2, 
. .  therefore, TJ = K* . 

In the case of sidewall, we have to deal with the genuine unbounded interval. For 

the reasons mentioned in section 4, TJ = @ in the first-order sidewall (y = 1) condition. 

Parameters 211, 212 in (5.3) are determined by minimizing the integral 

Jo 

where, by section 4, R2 = (=)(=). 

By a cha.nge of variables, the above integral becomes 

where a = $&=, & = oK* and 6, = -&. 51 and 62 can be computed by a numerical 

integration and optimization algorithm. For = 10. and & = 0.1, we found, correct to 

the first digit, 61 = 3.0 and 62  = 0.4, hence v1 = 3 . 0 m  and TJ;! = 0.4@ in (5.3).This 

particular choice of parameters yields a reflection coefficient R2 :; 0.05 for all wave modes 

with the group velocities in the range [0.25, 5.01 (see [15]). 

Finally, in this study, rl = 6 . 4 6 4 1 m  and r2 = 5.4641K* in (E & M) second-order 

condition, according to one of the guidelines of [8]. 
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5.2 Discretization 

Equation (4.1) is discretized by a semi-implicit scheme described in [2], where the 

s-direction is treated explicitly and the y-direction is kept implicit. The resulting differ- 

ence equation are solved by marching both in the x- and t-direction. At a given time 

level, tridiagonal equations are solved along the y-directions, successively marching in the 

downstream direction. For stability, the C.F.L. condition K * E  5 2 must be satisfied. 

The scheme is nondissipative when K*% = 2. 

For the first-order boundary conditions and the second-order Engquist-Majda (E & 

M) boundary conditions, we use exactly the discretization suggested in [8]. Since each 

factor in (5.1), and (5.3) is in the form of the first-order operator of the corresponding 

first-order boundary condition, the discretizations of (5.1) and (5.3) are obtained by a.pply- 

ing twice the difference operators which discretize the corresponding first-order boundary 

conditions of Engquist and Majda. For example, in [8], the boundary condition 

is discretized by 

I- J-' 
(I + J- ' )  + o Ax (I + K-l)}d;& = 0, 

where J ,  K are shift operators in x and y respectively, Jq5Zk = d?+',&, K+Za = 4n 

By applying this twice, the difference equation for (5.3) becomes 

J , k + l '  

, 

( I  + K- ' )}  
I- J-' (I+ J - ' )  + vi Ax 

I- J-' 
x { I-:-' (I + J - ' )  + 0 2  Az (I + K-')}4y,::' = 0. (5.4) 

Condition (5.2) is discretized by an explicit scheme, backward in x. 

The stability of these difference schemes can be determined by the GKS theory [Il l ,  

or by numerical experiments. Because of the factorization form, the difference schemes 
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for the higer-order boundary conditions are stable if and only if, by the GKS theory, the 

schemes for the corresponding first-order conditions are stable. The discretization of the 

first-order boundary conditions is discussed in detail in [8], and although no analysis has 

been attempted, these schemes are found to be stable by numerical experiments, even for 

the nonlinear problem. 

Since the interior equation is solved line by line marching in the downstream direction, 

the boundary condition (5.4) which requires values of 4 at j - 1, ;i - 2 cannot be applied to 

the immediate neighboring point of the corner of the upstream and the sidewall boundaries. 

This difficulty is overcome by using the following condition at the upstream corner: 

where 0 5 cr 5 1. Q decreases smoothly from cy = 1 at the upstream boundary to 0. In 

our study, the transition region of cr from 1 to 0 extends to 2 grid points. 

There is no difficulty at the downstream comers, since these corner points are not 

involved in the computation. 

5.3 Energy 

In the following computations, we will use the energy of solutions as a means of 

measurement. The energy 

is the discrete version of 

It is casy to verify that if 6 satisfies (4.1) in 1x1 < 1 and Iyl < 1, and the perfectly reflecting 

boundary conditions 

d = O ,  at x = f l a n d y = f l ,  
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then the energy of solutions is conserved, that is, 

d --E(t) 0, for all t. 
dt (5.7) 

In order to examine the effects of each absorbing boundary condition, withoiit l x -  

ixig influenced by the presence of the other boundary conditions, we will use a strategy 

where the absorbing boundary condition will be prescribed at one boundary only in eacli 

experiment, and the perfectly reflecting boundary condition (5.6) will be imposed on the 

remaining boundaries. In the first group of calculations, the energy (5.5) of solutions in 

the domain i-2 = [-1,1] x [-1,1] will be computed. Therefore, the rate of decrease of the 

energy will demonstrate the ability of the test boundary condition to radiate the energy 

away from the computational domain, because by (5.7), energy of the solution will be 

totally reflected back from the other three perfectly reflecting boundaries. 

In all computations, K* = 1 is used in the equation (4.1), and the region R = 

[-1,1] x [--1,1] is covered by a 60 x 40 uniform mesh, with a C F L  condition of 1.997. 

For an initial value, we use a pulse of compact support, a piece of radially symmetrical 

sine function. Energy of solutions is calculated after every 10 time steps, with a total 

computation of 230 time steps. The initial pulse will soon spread out in a parabolic 

wavefront [SI, and total reflections will occur at the three perfectly reflecting boundaries, 

so after some time, the disturbance that strikes the test boundary will consist of wave 

packets with a fairly large spectrum of frequencies and wave numbers. I 

I Figure 1 shows the energy Eo(n),  given by (5.5), of the solution of (4.1) with the 

perfectly reflecting boundary conditions (5.6) at different time steps. The decrease in the 

energy is due to the dissipation of the difference scheme. In order to eliminate the effect 

of this dissipation in our study, the energy of the solutions for other calculations will all 

bc scaled by Eo(n) ,  i.e., the energy 

I 
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will be used for other calculations. Therefore e ( n )  E 100 if the perfectly reflecting boundary 

condition 4 = 0 is prescribed on all boundaries. 

The results of calculations involving boundary conditions on the upstream, down- 

stream and sidewall (y = 1) boundaries are presented by graphs in Fig. 2, Fig. 3 and Fig. 4,  

respectively. The curves of the energy e ( n )  all follow one pattern: during the short period 

of the initial time (about 30 time steps), the three (one first-order and two second-order) 

boundary conditions produce roughly the same results, but they differ significantly after 

a long time period (after about 130 time steps). 

In the second group of calculations, we measure the energy of the reflected waves 

of diffcrcnt absorbing boundary conditions. The reflected wave j s obtained by comparing 

the solution of an absorbing boundary condition with the free-space solution which is 

calculated in a larger computational area. For example, in the computations involving 

upstream boundary conditions, the free-space solution is calculated in the region R U 0 

as illustrated in Fig. 5. Then an absorbing boundary condition is used on the boundary 

z = -1, and the corresponding solution is computed in the region 0. The difference of these 

two solutions in R can be considered as the reflection caused by the absorbing boundary 

condition. Similar methods are used for the downstream and the sidewall boundaries. 

The results for the energy of reflected waves are shown in IFig. 6, Fig. 7 and Fig. 8. 

As before, the energy is calculated at every 10 time steps. In each graph, the curves arc 

scaled so that the maximum energy in the first-order boundary condition is 100. 

These numerical results clearly show the improved perforniance of the second-order 

absorbing boundary conditions over the first-order conditions. In long time computations, 

the second-order conditions (5.1), (5.2) and (5.3) produce less reflections than the corre- 

sponding (E & M) conditions. However, the second-order (E 8; M) conditions generate 

smaller reflections during the very short period of the initial time because they are tuned 

to the waves travelling most rapidly. These observations agree with the analysis of the 

reflection coefficients given in the section 4. 
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Fig. 1: Energy of the solution, with the perfectly reflecting condition on all four sides. 
The decrease in the energy is due to the dissipation of the scheme. 

IC IC Fig. 2: Energy of the solutions: Upstream boundary. u1 = - 2, u2 = - 7 in condi- 
tion (5.1). 

Fig. 3: Energy of the solutions: Downstream boundary. u = I<* in condition (5.2). 

Fig. 4: Energy of the solutions: Sidewall (y = 1) boundary. tl = 6.4641Jj?*, r 2  
5.4641K* in (E & M), and ul = 3 . 0 m ,  u2 = 0 . 4 m  in condition (5 .3) .  
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Fig. 5: Large computational area for free-space solution calculation: Upstream bound- 
ary. 

Fig. 6: Energy of the reflected waves: Upstream boundary. 

Fig. 7: Energy of the reflected waves: Downstream boundary. 

Fig. 8: Energy of the reflected waves: Sidewall (y = 1) boundary. 
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