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The recent studies of the dynamic stiffness properties of fluid lubricated bearings
and seals by the authors [Refs. 1-7] have yielded most of the generalized charac-
teristics discussed and used in this paper. They include bearing and seal nonlinear
fluid film properties associated with stiffness, damping, and fluid average circum-
ferential velocity ratio. Analytical relationships yield the rotor system's
dynamic stiffness characteristics. This paper shows the combination of these data
to provide the fluid-induced rotor stability equations.

NOMENCLATURE

c Bearing or seal radial clearance

D Fluid film radial damping

DS Shaft modal damping coefficient

e Shaft eccentricity ratio
?pert , Circular perturbation force vector

; I

K,Ki,K2 Rotor modal stiffnesses

KB Fluid film direct (radial) stiffness

KBo Fluid film direct (radial) stiffness for concentric shaft
KD’KQ Rotor system direct and quadrature dynamic stiffnesses respectively
M Rotor modal mass

Mf] Fluidic inertia effect

=x+jy Rotor lateral displacement (x--horizontal, y--vertical)

o Force/response phase angle for periodic perturbation

n Fluid viscosity
A Fluid circumferential average velocity ratio
Ao Fluid circumferential average velocity ratio for concentric shaft
w Precession frequency
Wacy Asymptotic value at whip precession frequency
Wy Precession frequency at threshold of stability

Q Rotative speed
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RESULTS OF PERTURBATION TESTING OF ROTORS IN BEARINGS AND SEALS

Dynamic stiffness properties of rotor systems are studied by applying a perturbation
force of sinusoidal nature to a rotor. The best results are obtained when the force
is circular (sinusoidal in two orthogonal lateral directions) and applied in a plane
perpendicular to the shaft axis. The rotor is held at a constant speed while the
perturbation force frequency is varied from zero to frequencies well above the
rotative speed, in either forward (the same direction as shaft rotation) or reverse
direction (opposing rotation). The frequency, amplitude, and phase of the perturba-
tion force is accurately documented. The amplitude and phase of the displacement
response of the rotor at each perturbation force frequency is then carefully mea-
sured. Dividing the perturbation force vectors by the corresponding response
vectors yields the dynamic stiffness vectors. Plotting these dynamic stiffness
vectors in terms of their direct and quadrature components across wide perturbation
frequency ranges allows dissection and evaluation of the dynamic stiffness compo-
nents [Refs. 1,2,4,5].

In classical rotor dynamics for laterally isotropic systems, the bearing or seal
fluid film direct dynamic stiffness terms are referred to as combination of direct
(radial) spring, cross damping, and direct mass. The quadrature dynamic stiffness
contains cross spring, direct (radial) damping, and cross mass. (Laboratory obser-
vations up to this time, however, reveal no cross mass term.)

The authors use the same definitions, but there are the following adjustments: (a)
direct spring is shown to be a sum of the fluid film hydrodynamic stiffness plus the
hydrostatic (externally pressurized) stiffness minus a component associated with the
fluidic inertia effect; (b) cross damping is shown to be a component of the fluidic
inertia effect; (c) the direct mass term is a component of the fluidic inertia
effect; and (d) cross spring is a product of the direct damping, circumferential
average velocity ratio, and rotative speed.

For a particular seal or bearing operated at low eccentricity at a particular
rotative speed, with a specific fluid at a known temperature (for knowledge of
viscosity), the results of the combination of a forward and reverse perturbation
runs typically yield the direct dynamic stiffness and quadrature dynamic stiffness
curves as shown in figure 1. Additionally, a steady-state load test can be used to
better evaluate the stiffnesses at a zero perturbation (precession) frequency (w=0)
[Ref. 2].

The general expressions of the fluid dynamic force components applied to the rotor
with a coordinate systemof +Y up and +X right and counterclockwise (X toward Y)
rotation are

+Y

4
= F K., K D, D : Mo 0| |X
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For sinusoidal isotropic (laterally symmetric) response, due to circular perturba-

tion force Fpert 2 at frequency w, the force balance relationship for a concen-

tically rotating shaft at the bearing or seal is as follows:
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pert z
where:

x+Jy
pert z

INI
Ul

A~ _

= [KB-(m-m)ZMﬂ+jD(w—m)+K-m2+josw]E

(1)

is rotor lateral response vector at frequency w.
is the perturbation force vector of the sinusoidal circular nature.

is the sum of the hydrodynamic plus the hydrostatic (externally pres-
surized) bearing/seal fluid film direct (radial) stiffness (the non-
linear character of this term as a function of shaft eccentricity is a
vital relationship for the rotor stability solution.
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FIGURE 1 TYPICAL SEAL OR BEARING FLUID FILM DYNAMIC STIFFNESS PLOTS VERSUS PERTUR-~

BATION FREQUENCY FOR FORWARD AND REVERSE PERTURBATION.

DIRECT DYNAMIC

STIFFNESS CONTAINS STATIC RADIAL (DIRECT) STIFFNESS AND INERTIA TERMS.
QUADRATURE DYNAMIC STIFFNESS CONTAINS RADIAL DAMPING AND "CROSS SPRING"
TERMS (SHAFT DAMPING NEGLECTED).

417



j is J-1.

w is sinusoidal perturbation frequency (+ for forward, - for reverse).
Later, this same term means also rotor precession rate when instability
(stable limit cycle, fluid-induced whirl or whip) occurs.

D is fluid film direct (radial) damping.

A is the average circumferential component of fluid flow ratio to rotative
speed in the seal, bearing, or rotor periphery. It is also the rate at
which the fluid dynamic force rotates. It has been described in prior
publications [Refs. 5-11]. Most authors assume that this rate is 1/2
[Refs. 14-16]. The major change and improvement documented by the au-
thors is that A is not constant and, in particular, is a nonlinear, de-
creasing function of the shaft eccentricity.

Q is rotor rotative speed.
M is a synthetic expression with units of mass, called the fluidic inertia
f1
effect.
C is bearing or seal radial clearance.
e is bearing or seal eccentricity ratio e=|z|/C.
K,M,D are rotor first lateral mode modal (generalized) stiffness, mass, and

S and external damping respectively.

From (1) the rotor system direct dynamic stiffness is as follows:

- = K - (m=20)2 - Mu2
KD = (Fpert z/Izl) (cos a) = KB (w-AQ) Mf] + K- Mo

The quadrature dynamic stiffness is

KQ= -(F pert z /1z]) (sin a) = D(w-AQ) + Dsw

where o is angle between the perturbation force and rotor response vectors.

Expanding the binominal terms of the fluidic inertia effect, it may be observed that
the fluid-related dynamic stiffness elements are as follows:

(a) K, = Kyy KB - AZQZMf1, so that the possibility of a "negative spring"
exists, as is noted by the authors in prior reports [Refs. 1-5], and is well

known to designers and researchers of squeeze film dampers.

(b) ny = Dyx = +2AQwa1. It is important to note that this term is positive in

nature, as is being now reported by all researchers. This has been reported as a
negative term in the 1950 to 1970 era.

(c) '&y = 'S/x = AW. The "cross" spring is the stiffness of the fluid wedge

support term which, as can be observed, is the product of the fluid average cir-
cumferential velocity AQ, times the fluid direct damping D. It results from the
rotative character of the fluid dynamic force [Refs. 5,11,14-16]. The term AQD
is the key of the rotor stability algorithm.

Two vital characteristics of the fluid inertia effect are
(1) The value of the fluidic inertia effect is zero when the precession speed
w=AQ. As most everyone knows, this corresponds, or is near, to one of the condi-
tions of forward fluid-induced instability such as whirl. At the threshold of
whirl, the fluidic inertia effect term is, therefore, quite ineffective.
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(2) The fluidic inertia effect has the '"ghost-like" characteristic because it
disappears with increased shaft eccentricity following increasing radial load.
Specifically, it is active only as long as circumferential flow is strong and the
force from the "cross spring" term is dominant. This occurs at low through
medium shaft eccentricities. At high eccentricities the circumferential flow is
suppressed, yielding priority to secondary flows (axial and backward [Ref. 10]).
At shaft high eccentricities the direct dynamic stiffness terms, mainly the
hydrodynamic spring, become dominant and the fluidic inertia effect vanishes.

Due to these characteristics, the fluidic inertia has very little effect on stabil-
ity threshold or the orbit amplitude and precessional frequency of whirl or whip
limit cycles. Therefore, it will be neglected in the following analysis.

NONLINEAR CHARACTERISTICS OF BEARINGS AND SEALS

The next required relationships for determination of rotor stability are nonlinear
expressions for the fluid film direct stiffness K, versus shaft eccentricity, direct
damping D versus eccentricity, and the fluid avJ;age circumferential flow velocity
ratio A versus eccentricity. It will soon be shown that the only vital nonlinearity
affecting the size of whirl or whip limit cycle orbit (rotating eccentricity) is the
direct stiffness term. Typical relationships are illustrated in figures 2, 3, and
4. The nonlinear functions of the eccentricity ratio which are taken into consid-
eration are as follows:
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These functions qualitatively exemplify the bearing/seal parameter behavior. They

are not locked into a specific bearing/seal geometry, dimensions, or Sommerfeld

number. KB » Do, and Ay are fluid film radial stiffness damping and circumferential
0

velocity ratio at concentric shaft respectively.

The experimentally identified variation of A with eccentricity ratio is noted in the
prior reports [Refs. 7, 9, 11]. No clean laboratory test has been found for obser-
vation of A at this time, but a few indirect measurements have been accomplished.
More numerical/analytical calculations, such as in [Ref. 10], will also help to
identify the values of A as function of eccentricity and other parameters.

ROTOR/BEARING SYSTEM

The final set of equations for determination of stability is the equation of the
rotor carrying bearing, seal, or other elements which provide the fluid. A simple
rotor supported in one rigid and one fluid lubricated bearing is illustrated in
figure 5.

The dynamic stiffness, Keq’ observed at the mass M of the rotor system in figure 5
is

=i

Kz
(5)

=
]

. B
Ki = w2M + jwD_ +
€q to s KB+K2

where KB is fluid film complex stiffness:
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KB =Kg + JD(w-AQ) (6)

Thus:
K2(K1-w2M)+K (Ky+Ko=w2M)-D D(w-AQ)+J[wD (K2+K )+D(w-AQ) (K;+Ko-w2M) ]
“eq o Kz + =) ("
In Eq. (7) K1,K2 are shaft partial modal stiffnesses (first bending mode); M is
rotor modal mass; is shaft modal external damping. Fluidic inertia effect is ne-

glected. More forﬁ%] analysis of this rotor/bearing system is in [Refs. 3 and 13].

ROTOR STABILITY ANALYSIS

From the standpoint of stability, the numerator of Keq represents poles and the

denominator represents zeros. Only those poles are of interest for stability.
Further, since only a steady level of the instabi]ity limit cycle orbit, if it
ex1sts, is of interest, the exponentially increasing and the exponentially decreas-
ing orbits (transient processes) are not discussed. Th1s allows the direct and
quadrature parts of the numerator of dynamic stiffness (the denominator of

dynamic motions) to be separated and set to zero 1nd1v1dua11y to find the stability
roots. Another way to state this, is that the roots are evaluated at log decrement
of zero. From control theory backgrounds, the root locus shown in figure 6 is
solved only when the direct (real) parts of the roots are zero. The corresponding
quadrature value is the precession rate, leading the system to the limit cycle of
whirl or whip.

Liapounoff contributed strongly to the study of stability. One of his theorems
noted in [Ref. 17] is

"Liapounoff's theorem states that under certain conditions which are frequently
encountered in physical problems, the information obtained from the linear
equations of the first approximation is sufficient to give a correct answer to
the question of stability of the nonlinear system."

Restated, the linear portions of the direct and quadrature stiffness Keq solved for

their roots yield the answer to the first problem of stability. Once the question
of stability is decided, the next step is to evaluate the amplitude of the limit

cycle orbit and rotor precession speed as a function of the nonlinear character-
jstics.

The direct and quadrature components of Eq. (7) are equalized to zero and solved
for K, and Q so that

B

-Kz(Kl-sz)(K1+K2-w2M)-w202K2
Ky = —— 5 (8)
B (K1+K2'NZM)£ + w2052

and
D_K

o= Y1+ 2 (9)

A DL(Ky+Ka~w*M)# + szé]
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The right-hand side expression of Eq. (8) for various precession rates, omit-
ting the minor terms with Ds, is illustrated in figure 7.

EXAMPLES

In order to plot the precession speed w against the rotative speed Q@ for a partic-
ular case, it is necessary to choose values and functional relationships for the
various rotor system parameters. The most simple process of solving the problem is
to step the eccentricity ratio "e" gradually from O to about 0.9. For each eccen-
tricity the values of K,, D, and A are calculated from appropr1ate equations such as
Egqs. (2), (3), (4). q (8) is then solved for the precession w associated with
corresponding eccentricity ratio e. Finally, for each rotative speed Q, the
size of the limit cycle whirl/whip orbit eC (where C is bearing or seal radial
clearance), and the speed of precession w, are all established.

As an example, for CASE A the nonlinear terms are stated as follows:

= 4000 1b/in (fluid film radia) stiffness (10)

KBo . K
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FIGURE 6 EXAMPLE OF ROOT LOCUS OF THE WHIRL/WHIP ROOT (w,, IS THRESHOLD OF STA-
BILITY).
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40 1b sec/in (constant for this case) (11)

>
]
g
]

0.48 (constant for this case) (12)

The remaining parameters are chosen as

K; = 2000 1b/in M 1.0 1b sec?/in

K = 38000 1b/in D

13

S 4.0 1b sec/in

The graph of the precession frequency of the whirl and whip against the rotative
speed is shown in figure 8. This figure also shows the whirl and the whip ranges,
and the smooth transition region between whirl and whip. It also shows a few
corresponding whirl and whip orbits at the bearing (or seal) with their magnitude
and frequency, as well as the stability threshold and asymptotic frequency.

) K, (K,—w*M)(K+K,~ 0 M)-? D} K,

@

— 21\ 2 2 n2
(K+ Ky = 0 M)?+0” D]

9000 4 - - e

BENTLY~MUSZYNSKA
4 sTaBILITY ASYMPTOTE |
THRESHOLD (16) (_—K,mz 2 |
~ - ASY = v |
c Wy = 75 rqd/s R |
( BO00 o - - e[

[Hao™ 4000 Ib/in |

[=-——RANGE OF "1&8% CRIMCAL" —]

() PRECESSION (RAD/S)

ﬂ\\sz""K;K1/(K1+Kz)

—3000 J T .

S A A e e e e e e e e e ... ..
¢ 3000 : |
PORITSKY ° |
T THRESHOLD |
- K, |
Wor= T.-MJZ rad/s :

| L T | T T ' 1

0 I . .
pp 100 150 2?0

|
|
I
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Figure 8 also illustrates the result of CASE B, where A is no longer considered
constant, but A = 0.48 (1-e2)¥ 5. The result is virtually the same as CASE A, with
constant A.

For CASE C, damping is no longer constant but equals D = ziéggjg. It may be noted
in figure 8 that the whirl/whip frequency of CASE C is much more like practically
observed behavior, much closer to the asymptotic frequency, which 1is natural,
because damping is always a nonlinear term.

From Eq. (9) the ratio of the precession rate w to rotative speed rate Q is an
intrinsic function of w:
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FIGURE 8 ROTATIVE SPEED VERSUS WHIRL/WHIP PRECESSION FREQUENCY FOR THE ROTOR
ILLUSTRATED IN FIG. 1 (C = 5 MILS, SHAFT CENTERED). WHIRL/WHIP ORBITS.
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1
DS K
1+ VATAVA THZ
DL(Ky+Ko~wéM)¢ + w2D%]

= () (14)

QOlE

The shaft damping D_ has a fair amount of control over the actual precession fre-
quency w to rotativé speed Q as shown in Eq. (14), but has very little control over
the right-hand side expression in Eq. (8). Therefore, dropping shaft damping D

from Equation (8) and solving the equation for precession rate w yields S
KiKz + Kg(K1+Kz)
we Ky + KM (15)

The Towest precession rate Wy p that the whirl or whip can have, is at the minimum
KB, which is at KBo for the case of the shaft centered in the seal or bearing con-

sidered in this paper. Therefore, in terms of precession frequency w, the threshold
of stability is

| KaKe + Ko (Ka+Kz)
Wen © (Kg, + KW (16)

Poritsky [Ref. 18] nearly had this threshold more than thirty years ago. He showed
the rotative speed whirl threshold at 2JK;/M. That is excellent for that time. Note
that if bearing stiffness KB = 0, shaft damping Ds = 0, and Ay = 1/2 and thus @ =

2w, it would be right on. His paper apparently was subjected to very heavy criti-
cism, so his excellent work was not pursued. The authors privately call the zero
bearing stiffness threshold the "Poritsky threshold." It is useful to observe that
if the outboard shaft stiffness K; (the portion of shaft away from the fluid lubri-
cated bearing) becomes very soft (approaches zero), whirling may occur at extremely
low rotative speeds. The authors demonstrated a laboratory model with this phenom-
enon for several years before fully understanding its rules of behavior.

The asymptotic frequency w gy, occurs as rotative speed increases so that the shaft
orbit takes up most of thé X1earance, and eccentricity ratio e approaches 1. The

limit occurs not with nonlinear terms A or D, but with bearing stiffness KB which
goes to extremely high values at high eccentricity so that for Eq. (15)

wASY = WIe_’]': Ji K1+K2 5;M (17)

It should be noted that shaft damping D_ was assumed to be O for Eq. (15). If
shaft damping D is high enough, it isspossib1e for the rotor system to escape
whipping as shown in [Refs. 12 and 13]. Virtually most documented cases from
actual machinery, however, exhibit the asymptotic behavior.
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OBSERVATIONS AND CONCLUSIONS

There are numerous straightforward observations available from these stability
algorithms.

First, while the "criticals" of machinery are often posted on the nameplate as a
fixed frequency, it is obvious that they vary widely due to the nonlinear stiffness
of fluid film in bearings and seals. The whirl/whip root of Eq. (8) shows clearly
that the resonance ("critical") varies from the threshold to the asymptotic fre-
quency wyey as a function of the nonlinear stiffness KB. In the examples shown, it

varies from the threshold of 75 rad/sec (716 rpm) to the asymptotic frequency of
200 rad/sec (1909 rpm) (Figure 8). This fact will probably be met with considerable
disbelief, until the nature of the fluid-induced whirl and whip instabilities become
more widely understood.

Since both of the quadrature dynamic stiffness elements contain the direct damping
term: K, = wD - AQD the magnitude of the direct damping D has very little effect
on staé%]ity for rotors operating at low eccentricity. This means that large
direct damping D does not create stability.

Direct damping D is well known to be a function of bearing or seal geometry and
physical dimensions. It also varies directly with lubricant viscosity n. However,
it is not the viscosity in direct damping D which influences stability. It is the
influence of viscosity in the hydrodynamic, as well as the hydrostatic (externally
pressurized) portions of the bearing or seal stiffness term KB that exhibits
influence on stability.

It is already known that antiswirling mechanisms which suppress the strength of
circumferential flow and drive the fluid average circumferential velocity ratio A as
nearly as possible to zero are the proper prevention of fluid-induced whirl and whip
[Ref. 6].

Reasonably well known is that forward preswirling of the fluid will drive the pre-
cession to rotation ratio to higher values [Ref. 6], sometimes well above half ro-
tative speed. A report on a pump [Ref. 19] with a whirl which tracked about 80% of
rotative speed was presented recently. Another verbal report [Ref. 20] on a double
volute pump on an offshore platform noted a whirl which tracked 75% of rotative
speed. A double driven generator connected by hydraulic clutches with two gas
turbines exhibited subsynchronous vibrations with frequency 82.5% to 89.7% of
the rotative speed when the clutches were not entirely engaged [Ref. 21]. An

"inside-out" bearing with a hollow shaft rotating around a stationary post, will
produce A of slightly over 1/2 [Ref. 22].

The pump with seal whirl [Ref. 19] was most unusual, because nearly all rotor/seal
systems exhibit whip only. With good probability, this is because there is a much
softer spring K; in that pump. Usually when the seal is involved, the stiffness K,
is much higher. It may be noted in the discussed example that an increase of the
magnitude of K; leads to the increase of the inception threshold of stability.

It is reasonably well known that any force which moves the rotor to high dynamic
eccentricity, thus raising bearing or seal stiffness, can prevent whirl or whip.
This action and the stability thresholds due to the unbalance force excitation were
previously published [Ref. 3].
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It is also well known that steady-state sideload forces, which move the rotor to
static high eccentricity in the seal or bearing, are a pallative for fluid-induced
instability. Newkirk [Ref. 23] made the first pressure dam bearing for that purpose
in 1934. Deliberate sideloading (often by gravity for horizontal rotors) is a very
popular "fix" for stability.

Two errors of first magnitude correlated to steady-state sideloads occur. The first
is the rule that "the heavier the rotor, the better the stability," which has been
published (and apparently believed) for over 30 years. As can be observed from the
stability algorithms, the more the rotor mass, the worse the stability for the
shaft-centered case. However, since the rule surely was meant to apply to hori-
zontal rotors in the gravity of earth, having more mass means more weight, resulting
in higher eccentricity, and thus higher KB’ yielding the better stability. (This
assumes no other steady-state sideloading forces, such as caused by misalignment,
which adds or subtracts from the gravity load.) Two stabilizing and destabilizing
factors, namely the weight-related preload and the added mass, are both very effec-
tive, so that which factor wins depends upon the particular conditions in each
particular case. A formula for stability that utilizes clearance and rotor weight
should be carefully avoided, no matter how popular it has been.

The second big problem of a steady-state sideload application occurs when the rotor
is stacked (not integral), consisting of shrink-on wheels or, especially, when the
rotor is bolted together (known as a shish ke-bab design). The bowing resulting
from the steady sideloading strongly activates the hysteretic internal friction.
Thus, attempts to sideload the rotor may help reduce the fluid-induced instability
by raising K,, but get the rotor into an even worse problem of hysteretic friction
instability, plus possible rotor-to-stator rubs.

There exists another rule which is incorrectly applied by rotating machinery users.
It states: "For stability maintain oil pressure low." This rule generally holds
true when the bearing has a partial fluid film (180 degrees as opposed to 360
degrees lubrication). As long as the partial film is maintained, a regular circum-
ferential flow pattern is not established so that stability is assured. To maintain
partial lubrication, the pressure should be kept low; otherwise the bearing becomes
fully lubricated with stronger circumferential flow, which makes the rotor suscep-
tible to instability. The rule, "Keep o0il pressure low," became however, universal,
and thus often incorrectly applied. Experimental evidences, as well as the con-
clusions from the stability algorithm discussed in this paper, show clearly that
fluid higher pressure, which directly increases the fluid film radial stiffness KB,
improves rotor stability.

An interesting.side1ight is that with the discussed stability algorithm it is simple
to get some idea of how much torque is developed by the whirl/whip instability
action. With a shaft radius R, and whirl or whip orbit radius eC:

Wedge Stiffness AQD b in Whirl/Whip Torque AQDeCR 1b in
Tangential Force AQDeC 1bs Whirl/Whip Power Loss AQDeCRw  1b in/sec

for A =.0.5, Q = 250_rad/sec, D = 40 1b sec/in, e = 0.5, C = 0.01 inch, and R = 10
inches, the whirl/whip torque is 250 1b/in, and the power loss at precession fre-
quency 124 rad/s is 31000 1b in/sec.

Finally, the f]qid dynamic force relationships discussed in this paper can success-
fully be used in modelling more complex rotor/bearing/seal systems [Refs. 9,12,
13,22]. The model predicts existence of several whirl/whip regimes and explains

427



A B
2.8x ‘ .
16 JUN 1987 4 . ) —
12 S 3 X -
: < N =~ i
UE———q & —=
] < AN ] =TT == | 2
10 §$“&E = |- HH A== 2
&5 -\ x| D] 13
'E" Pl S—— Y \L__' IEEREF ——»-,-;\4 &
Z \ . BE==41
S of 3 ~ NREE W 2 e = e e ly R
[a) y _-Q(O & K
%) N St =20 4 x
ny — ) 1
2 e = ]y
fé _-L«;é x | F
i 9 — - 17
'
% 113 T w
— “B-b d O
= 1 i
=il ik
N
R B 4 @

FREQUENCY [KCPM])

FIGURE 9 SPECTRUM CASCADE OF THE ROTOR VIBRATIONAL RESPONSE DURING START-UP,
MEASURED BY THE PROXIMITY TRANSDUCER "B." THE PLOT SHOWS A "JUMP" OF
SELF-EXCITED VIBRATIONS FROM WHIP MODE TO THE SECOND MODE WHIRL (JUMP IN
AMPLITUDE AND FREQUENCY). THE SKETCH INDICATES TRANSDUCER LOCATIONS.
OSCILLOSCOPE IN ORBITAL MODE FOR SIGNALS FROM TRANSDUCERS A AND B DISPLAYS
THAT SHAFT AT LOW SPEED WHIRL VIBRATES IN PHASE. AT HIGH SPEED WHIRL
SHAFT VIBRATES AT ITS SECOND MODE (RIGHT- AND LEFT-HAND SIDE SHAFT SEC-
TIONS ARE 90 DEGREES OUT OF PHASE).

the “jump” phenomenon observed on laboratory rigs and shown in figure 9, as well as
in reported field data (figure 10).

The role of the fluid circumferential flow in rotor stability is emphasized. The
fluid average circumferential velocity ratio is the key factor of the "cross spring"
term, which, in turn, represents a portion of the quadrature dynamic stiffness:

= D(w-AQ). The value AQ used to be referred to as "bearing resonance" across half
century. While this resonance is hidden in synchronous perturbation tests, it is
clearly exposed by nonsynchronous perturbation testing [Ref. 1-5]. An increase of
the circumferential flow strength leads to an increase of A, thus a decrease of the
quadrature stiffness of the system. When at the same frequency both KQ and direct
dynamic stiffness K, equal zero, the instability occurs. This was shown*on the root
locus of figure 6.° The quadrature dynamic stiffness, combined with the nonlinear
bearing (or seal) stiffness in the rotor system equation, provides the reliable
stability prediction formulas.
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