NASA Contractor Report 179441

[35

Expert Systems for Real-Time
Monitoring and Fault Diagnosis

S.J. Edwards and A.K. Caglayan

(MASA-CE-179441) EXPERT SYSTEBS FOR N89-232¢CS
REAL-IIME BCHNIICKING ARD FADLIT DIAGNOSIS

Final Feport (Charles River: 2ralytics)
116 p CSCL 09B Uaclas
G3/63 0206417

+ Contract NAS 2-12725
April 1989

NASN

National Aeronautics and
Space Administration

NASA Contractor Report 179441

Expert Systems for Real-Time
Monitoring and Fault Diagnosis

S.J. Edwards and A.K. Caglayan
Charles River Analytics Inc., 55 Wheeler Street, Cambridge, Massachusetts 02138

Prepared for

Ames Research Center
Dryden Flight Research Facility
Edwards, California

Under Contract NAS2-12725

1989

NANASA

National Aeronautics and
Space Administration

Ames Research Center

Dryden Flight Research Facility
Edwards, California 93523-5000

TABLE OF CONTENTS

MRODUanN ® ® 0 0 80 800t 00 s ® @ & o s 0 68 09 ¢8% 00 0D ® ® 08 O8 00 50 08 00 09 30
.1 Real-Time Monitoring and Pault DiagnoSiS :ccceeccsoscesces
.2
.3
.4

Expert Systems Overviewc.ce0:5
Summary of Approach and ReSUltScicescccscennsesancen
Outline of the RgQDtt oo e e v 00 v s e s sa s e0 00 st eR s OO

e

ESIRED ATTRIBUTES OF RSP FOR DYNAMIC SYSTEMS .cccosvsscnsacee
.1 Actuator FDI System - Two ImplementatioNsccseccecoses
.2 External Environment Interface
.3 Knowledge Representation ISSU@S ...c.cceecscscsscscssscsns
.4
.5
.6
.7

TempOral REASONING ..veevevesscrccrsrssvossccssscancssosane
Integration into Conventional SOftWALE ..cccsscscesssncos
Symbolic and Numeric ReASONING +.cccecessooccancsascscssescs
Real-Time RESPONSE .ccvcevcscoerssscsscssscsassacasssssoass

NN ND

SET PROCESSOR KNOWLEDGE REPRESENTATION ..::cccc0o00ves0ce0s
A Hybrid Approach to Knowledge Representatiol
USDL Semantics: SysStel$cceo00ecenne cecescncsansaans
USDL Semantics: BlOCK ...cccovecoecossnsecacsnscsscocssscca
3.3.1 USDL Semantics: Block - Block Attributes$.cccceoe.
3.3.2 USDL Semantics: Block = Block Line@Scceecscocs
3.3.3 USDL Semantics: Block - Block Subsystems
3.4 USDL Semantics: Blocktype
3.5 USDL SemanticsS: Declarecccecceeeececeescsssoscnasensenss
3.6 USDL Semantics: External tesecesssssenssesnssnsasone
3.7

3.8

(=]
(]

wwwxm

L
W=

USDL Semantics: Pathc.cc0
USDL Semantics: RUIESELS ..ccceevceecssssrsoasnsssnssasee
3.8.1 USDL Semantics: Rulesets - Declarations:..
3.8.2 USDL Semantics: RulesetS - RuleS ..ccevcevecscccea

RULE SET PROCESSOR USAGE ..cc.vcsvncsvecee
4.1 System Model Development CYCle ...ccecsseccovascssasssesns

4.2 System Model INterpretatioNccccvssscesnccscacasncns
‘03 USD Simlatim Stratgﬂ! 2 % 6 @ 20 5 0 00 60 0 B0 SO OSSO S ST PSS 0SS

‘o‘ USD DiagnOSiS Stfateg! 4 20 00 08 5000 000NN BIIB s GOSOEDD
‘.S RSP Examplﬁ System $ 060 860 0500080000080 00 00000 sEELBEIROOYN

RULE SET PROCESSOR PROTOTYPE ARCHITECTUREcc0ccvcss00ss00
501 5? IMchitxture overView 2 % 8 @ 88 8 8 050 00 08 00 s HEEBNOT O SO
5.2. ISD SUDStrUCLULeS «.vevseocescs

5.2.1 1SD Substructure: System Record/Ada type "syst_t"

5.2.2 ISD Substructure: Block Record/Ada type “"comp_t” .
$.2.3 1SD Substructure: Blocktype Record/Ada type

“Ctyp t. ----------- ® 00 60 00 CEOEN RSSO BROREENSLE OB

PRECEDING PAGE BLANK NOT FILMED

- iii-

78

S.2.4 ISD Substructure: Declare Item Record/Ada type
B o S ceseeess 19

5.2.5 ISD Substructure: Path Record/Ada type "path_t" .. 79
5.2.6 ISD Substructure: Ruleset Record/Ada type "rset_t" 79
5.2.7 1ISD Substructure: Rule Record/Ada type “rule_t" .. 80
5.2.8 ISD Substructure: External Record/Ada type
BB 1.3 2 ¢ crecsnecaans ctecartaraans 80
5.3 Top Level Control Cessesecsisessacaeas B - 1¢]
5.4 Command ProcesSiNg .e.ceececscecanceee secreennen sessssesss Bl
5.5 Parsing and Compilationccveeiniennnnenenesnas ceeenee 8l
5.5.1 Recursive Descent Parser cteesccvana ceanen . 81
5.5.2 Lexigraphical ARalyzZeleveeesvosooes I -1
5.5.3 Structure Allocation and Initialization 84
5.5.4 Error Management T - X
5.5.5 Scope Management ceessennas ceeteea ... B84
5.5.6 Source Listing Processing ceseves essseess B85
5.6 ISD Interpretation cectsaaaas P - 1
5.6.1 ISD SeqUencCiNgcceeeveeeees ceeseereae sseeesss 8BS
5.6.2 ISD Expression Evaluationcevcevvveaessceses 86
5.6.3 1ISD Scalar Location and Access - X
5.7 1/0 Utilities tetearesananne Ceeescettreneannane 87
6. CONCLUSIONS AND RECOMMENDATIONScocevonosonnace csesssssses B8
6.1 CONClUSIONS ..vivevenrenneccennacannna st eessesesssssaseasss B8
6.2 Recommendationscccceevee P -1
7. REFPERENCESttt rreecnonnnncnn tsescsaneseas teerscesccas . 91

APPENDIX A: USER SYSTEM DESCRIPTION LANGUAGE SYNTAX SPECIFICATION. 94
APPENDIX B: USER INTERFACE SPECIFICATION:ccccscsesecosasseaccnasses 102

APPENDIX C: RSP PROTOTYPE ADA SOURCE PILES+cscsccecccscsssccssces 108

.iv-

L

Figure

Figqure

Figure

Figure

Pigure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Pigure

3.1 :

4.1 :

4.2 :

4.3

£

4.5

4.6

..

4.7 :

4.8

4.9 :

4.10:

4.11:

LIST OF FIGURES

Elements of a System using the User
Description Language

Example System Model: Binary Adder
Representation

Example System Model: Binary Adder
System Level Representation

Example System Model: Binary Adder
Lowest System Level Representation

Example System Model: Binary Adder
Lowest System Level Representation

Example System Model: Binary Adder
Lowest System Level Representation

Example System Model: Binary Adder
Lowest System Level Representation

Example System Model: Binary Adder
Lowest System Level Representation

Example System Model: Binary Adder
Lowest System Level Representation

Example System Model: Binary Adder
Lowest System Level Representation

Example System Model: Binary Adder

System

Highest Level

Intermediate

(And_System)

(Pork_System)

(Indicator_System)

(Or_3_System)

(Xor_System)

(Value_Module)

(Result_Module)

(Sum_Generation_

Module) Lowest System Level Representation

Example System Model: Binary Adder (Excess_Generation_

Module) Lowest Systam Level Representation

67

68

69

70

71

72

73

74

75

76

Table

Table

Table

Table

Table

Table

Table

Table

2.1:

2.2:

3.1:

3.2:

3.3:

3.4:

5.1:

LIST OF TABLES

Attributes of Actuator FDI Program (FORTRAN Version)
Attribytes of Actuator PDI Expert System (CLIPS Version)
USD Resources and Functions

Elements of USD Resources

USD Language Operators

USD Language Ruleset Statements

RSP Frototype Functions

18

20

39

40

82

1. INTRODUCTION

This report summarizes the research and development results of the SBIR
Phase I study entitled "Expert Systems for Real-Time Monitoring and Fault
Diagnosis” supported by NASA Dryden undesr Contract No. NAS2-12725. The major
aim of this study is the definition, design and prototype demonstration of a
knowledge compiler concept which retains the desirable attributes of expert
systems during the development stage while producing an efficient conventional
embedded code for real-time onboard expert system applications. In this
study, we generalize this concept into a Rule Set Processor (RSP) method
allowing the specification of topological and procedural application knowledge
for time-critical applications, the interactive development of an expert
system based on this specification, and the integration ¢f a compiled version
of this knowledge into conventional time-critical application software. For
physical systems composed of interconnected elemental dynamic objects, RSP
provides a knowledge representation facility which allows the specification of
topological information about the physical interconnection among these
elemental dynamic objects and procedural information about the functional
dynamic behavior of the dynamic elements. Moreover, RSP provides a
hierarchical dynamic representation mechanism allowing multiple
representations of a subsystem at several levels of abstraction. Under the
Phase I effort, a preliminary specification of the RSP design has been
completed and a prototype RSP implementation has been developed in Ada.

1.1 Real-Time Monitoring and Fault Diagnosis

Real-time faulr monitoring and diagnosis algorithms are crucial in
building highly reliable systems. These software-implemented hardware fault
tolerance algorithms have been used to increase system reliability for a given
recundant hardware configuration, or to reduce hardware redundancy for a given
reliability figure. Such algorithms have been applied to the detection,
isolation, and compensation of failures in various components (sensors,
actuators, valves, linkage, circuitry, etc.) in electromagnetic, electronic,
mechanical, and hydraulic systems. For instance, BIT (Built-In-Test) for on-
line diagnosis of Line Replaceable Unit's (LRU's) and failure detection and
1solation (FDI) algerithms for on-line diagnosis of sensor and actuator
failur=s are ccamonly used on current generation aircraft.

The major problem in current real-time fault monitoring systems is the
high rate of false alarms, i.e. "retest OK" and “"cannot duplicate” conditions
(Malcolm and Highland 1981). One of the major reasons for these deficiencies
i5 the limitations in the model assumptions that the monitoring algorithm is
based upon. These limitations are , in turn, due to the inaccuracy of the
analytic representation on which the BIT/FDI algorithm is based on.

Faced with the high rate of false alarms in a conventional approach, a
monitor designer has only one choice: increase the accuracy of the numerical
model on which the monitoring algorithm design is based. This approach
necessarily increases the complexity of the monitoring algorithm. Expert
systams offer an alternative approach to this problem: model the deficiencies
cf the monitoring algorithms using a rule-based approach.

Another major reason for these deficiencies is that most BIT/FDI
implamentations do not make use of the information about the unit's
operaticnal environment (e.g., status of other interconnected units,

temperature, RF interference, power supply conditions) and the operating
conditions for the vehicle that the unit :is located in (e.g., aircraft
maneuver, vibration).

The conventional approach to fault diagnosis system design does not
provide a representation capability allowing the easy integration of such high
level knowledge (e.g., topological structure, maintenance history). Here
again, expert systems offer an alternative approach allowing the easy
integration of such knowledge into the monitoring system design. For
instance, for non-real-time fault diagnosis applications, expert system based
approaches have been demonstrated in the maintenance diagnostics area (Davis
1988).

Qualitative reasoning based on symbolic representation of domain
knowledge applied by expert systems can enhance the performance of fault/event
monitoring systems. For instance, when used as a supervisory decision maker,
such an expert system can ignore the failure indication of the underlying
algorithm when deemed to be a false alarm and declare a failure indication
when deemed to be a missed detection as dictated by the Rule Base.
Furthermore, such research would lay down the rules of integrating expert
systems to the design of new monitoring systems.

The successful application of expert systems technology to onboard fault -
diagnosis problems in the aerospace domain requires the development of expert
Ssystems that operate in real-time. Problem solving in a real-time environment
is different from that faced in conventional applications of expert systems
which presuppose a high degree of human interaction during the problem solving
process. Further, the powerful explanation feature of the inference mechanism
in an expert system is likely to be neither required nor desirable during on-
line execution of fault diagnosis algorithms. We thus see a number of unique
attributes of real-time expert systems-based problem solving, in the fault
diagnosis area, including:

- Data and the associated facts deduced from the data are not static but
dynamic. Hence, problem solving requires temporal reasoning to handle
the implications of event sequencing and temporal interdependence.

~ An expert system for real-time fault diagnosis should interface with
cnboard sensor measurement data and other conventional real-time
software programmed using a procedural language.

- Problem solving in a real-time fault diagnosis environment requires
both numeric and symbolic reasoning. Hence, an integrated numeric and
symbolic knowledge representation is needed in any model of the domain
knowledge.

- In a real-time fault diagnosis domain, problem solving requires the
handling of unscheduled events on an interrupt basis according to
their importance. Hence, a time-varying attention allocation strategy
is needed in solving a problem for such a real-time environment.

- Finally, a guaranteed response time is required for problem solving in
in a real-time fault diagnosis environment. Therefore, a decision
strategy producing the best possible answer within the deadline
constraints is required.

1.2 Expert Systems Overview

An expert system is a computer program that can perform a task normally
requiring the reascning ability of a human expert (Stefik et al. 1982).
Expert systems are highly specialized according to their application domains.
Recent interest in artificial intelligence is mainly due to the success of
expert systems 1in various applications: SOPHIE in computer assisted
instruction (Brown et al. 1974), MYCIN in medical diagnosis (Shcrtliffe
1976), PROSPECTOR in oil exploration (Duda et al. 1978), and DENDRAL in
biology (Buchanan and Feigenbaum 1678). Current expert systems research for
time-critical aerospace applications include Experimental Expert Flight Status
Monitor (EEFSM) in flight control systems monitoring (Regenie and Duke 1985),
(Duke and Regenie 1985), (Disbrow et al. 1986), Faultfinder for building
diagnostic expert systems in onboard aircraft applications (Palmer et al.
1987); (Schutte et al. 1987), (Abbott et al. 1987), and FIXER for automatic
failure management in Space Station applications (Malin 1987).

Although any program solving a particular problem may be considered to
exhibit expert behavior, expert systems are differentiated from other programs
according to the manner in which the application domain specific knowledge is
structured within a program. In particular, expert system programs partition
their knowledge into the following three blocks: Data Base, Rule Base, and
Inference Engine.

In other words, the knowledge about the applicaticn domain is
compartmentalized rather than distributed throughout the program. The Data
Base contains the facts about the application domain. The Rule Base contains
the set of rules specifying how facts in the Data Base can be combined to
generate new facts and form conclusions. The Inference Engine determines the
construct of reasoning in the application of the rules. For instance, the
diagnostic system MYCIN starts from the symptom facts in order to find the
conditions causing the symptom. This manner of reasoning is called "backward
chairing.” In contrast, "forward chaining” inference starts with the
established facts to find a set of consistent conclusions.

The partitioning of application domain knowledge in expert systems allow
the incremental addition of rules to the Rule Base without major revisions to
the program. Horeover, the expert system can explain the reasoning chain by
recording the rules as they are applied.

While expert systems have been traditionally built using collections of
r:les based on empirical associations, interest has grown recently in
krnowledge~based expert systems which perform reasoning from first principles
such as those based on representations of structure and function knowledge.
Per instance, an expert system for digital electronic systems troubleshooting
is being developed by using a structural and behavioral description of digital
circuits (Davis et al. 1982), (Davis 1983, 1984, 1987). OQualitative Process
(QP) theory (Forbus 1982, 1984, 1987, 1988) is another approach which allows
reasoning from first principles using the reprasentation of causal behavior
based on a qualitative representation of numerical knowledge using predicate
calculus. QP theory is a first crder predicate calculus defined on objects
parameterized by a quantity consisting of two parts: an amount and a
derivative, each represented by a sign and magnitude. In Qualitative Process
theory, physical systems are described in terms of a collection of objects,
their properties, and the relationships among them within the framework of a
first order predicate calculus.

In applying QP theory to physical dynamic systems such as aircraft fault
diagnosis problems, the bottoms-up approach in getting the qualitative rules
from low levels of elemental descriptions can possibly yield erroneous results
at higher levels (Govindaraj 1987). In contrast, finding qualitative rules at
high levels using a complete knowledge of the system via reduced order
modelling would not be susceptible to such problems. Consider the following
exampie for a QP description (where the magnitudes have been omitted for
clarity) of altitude hold and autothrottle subsystems on an aircraft:

If altitude drops, then the altitude hold system pitches the aircraft up.

If the aircraft pitches up, then the aircraft speed decreases.

If the aircraft speed decreases, then the auto throttle increases thrust
after a time interval.

If the thrust goes up, then the aircraft speed increases.

Note that the sequence of gqualitative rules are the kind of explanations that
a knowledge engineer is likely to get when questioning an FCS designer.
Similarly, these rules can be obtained by a system theoretic approach with
reduced order modelling. In this example, Qualitative Process theory can
explain, through symbolic reasoning, the oscillations in sink rate and thrust
if the altitude-hold and auto throttle subsystems are not properly designed.
In such a case, when the aircraft reaches its desired altitude, the thrust
would be higher than the required trim value with resultant overshoots in both -
altitude and speed. This event would fire another set of rules, and the cycle
would continue. However, it is not clear that one can get the same rules at
this level of abstraction if we apply QP approximation to an elemental level
such as flight control law, aircraft dynamics, actuators, etc.

For fault diagnosis in digital circuit applications, Davis advocates
reasoning from first principles starting with simple hypctheses, keeping track
of simplifying assumptions made, and using multiple representations (e.g.,
both physical and functional representation of a digital circuit) (Davis et
al. 1982) and (Davis 1683, 1984, 1987). Multiple representation approach 1is
analogous to Rasmussen's hierarchical knowledge representation at several
levels of abstraction (Rasmussen 1985) used in modelling human problem solving
strategies for complex systems.

Rasmussen introduces an abstraction hierarchy in modelling human fault
diagnostic strategies. This hierarchy is two dimensional. The first is the
functional layers of abstraction for the physical system: functional purpose,
abstract function, generalized function, physical function, and physical form.
The second is the structural layers of abstraction for the physical system:
system, subsystem, module, submodule, component. Using a qualitative
approximation method based on a simplified version of such a functional
hierarchy, a training system for marine engineers ¢f a steam power plant has
been developed by Govindaraj (1987).

Current commercially available expert system building tools (shells) are
not generally applicable to building expert systems for onboard fault
diagnosis applications due to the following reasons (Laffey et al. 1988): 1)
the shells are not fast enough; 2) the shells have insufficient facilities for
temporal reasoning; 3) the shells are not easily embeddable into conventional
nigh level programming languages and most cannot run Oon numeric
microprocessors used for embedded applications; 4) the shells have
insufficient facilities for devoting attention to significant events; 5) the
shells are not designed to accept onboard sensor data; 5) the shells have no

integration with a real-t.ume clock and do not handle hardware interrupts; and
7) the shells cannot provide zuaranteed response times.

As discussed :n {Gupte 1685), most interpretive expert system shells
spend S0% of their time in wmatching the current facts against the antecedent
of rules in their rule base. Hence, an expert system development approach
where the interpretive processing is performed off-line would offer a
substantial execution time improvement. Similarly, the execution efficiency
is a strong function of the knowledge representation facilities employed in
the expert system shell. Por instance, an approach based on multiple
hierarchical representations of a physical system and using forward chaining
would have a linear execution time complexity as compared to a rule based
system with forward chaining having expcnential time complexity.

For ease of integration into conventional high level programs,
programming langquage of the expert system shell is an important choice. For
instance, the choice of a programming language commonly used for embedded
application such as Ada or C would be advantageous from an integration
viewpoint. PForeover, such an expert system would be easily portable to
microprocessors commeonly used for embedded applications (e.g., 17S0A, 80386,
68C20). Moreover, the language constructs for handling real-time issues
(tasking, 1interrupt servicing, exception handling) would be available to such
an expert system development tcol.

As discussed by ‘Laffey et al. 1988), there are two formal definitions
for real-time expert systems: the expert system is said to exhibit real-time
performance of a) it is predictably fast enough for the process being served,
or b) if it can provide a response within a given time limit.

For real-time fault diagnosis applications, even if an expert system
satisfies both of thesa premises, it would still not be sufficient for
inclusion in an embeaded application since the quality of the response would
determine its inclusion in an onboard time-critical system. We believe that
the following is an appropriate criterion for real-time expert systems for
empedded epblizations: an expert system is Said to exhibit real-time
perfcermance 1f the execution speed of a standalone compiled version of the
expert svstem for a fixed application is comparable to the speed of a real-
rtime conventional program written <0 solve the specific application at hand.

The 1ntegraticon of experi systems technology into time-critical
applications presents new challenges due to the unique attributes of these
applicacions. Por instance, most expert systems have usually been implemented
as standalone computer programs that presuppose a high degree of human
interaction will be available during the problem solving process. While this
approach is quite satisfactory for many naturally interactive applications,
immediate human interaction is neither available nor desirable in time-
critical avionics monitoring applications. Similarly, the powerful
explanatiocn feature of the inference mechanism in expert systems is also
neither required nor desirable during on-line execution in these applications.

1.3 Summary cf Apprcach and Resuilts

As discussed by Duke et al, (1986), what is needed for real-time onboard
exgert c<ystems development 1s a kinowledge compiler for converting the
developed knowledge base into a conventional program, thus retaining the

desirable attributes of the expert systems during the development stage while
producing an efficient conventional code for a target embedded microprocessor.
In this study, we generalize this concept into a Rule Set Processor (RSP)
method allowing the specification of topological and procedural application
knowledge for time-critical applications, the interactive development of an
expert system based on this specification, and the integration of a compiled
version of this knowledge into a conventional time-critical application.

The target application domain of our expert system development tool is
real-time fault diagnosis applications for physical systems composed of
interconnected elemental dynamic objects. Our expert system shell allows
multiple hierarchical representations of such dynamic systems at several
levels of abstraction. Our work generalizes Davis' approach to real-time
dynamic systems in that the RSP allows the definition of elemental dynamic
objects such as an integrator, actuator, sensor, etc. and specification of
both the physical interconnection among these elements and their functional
dynamic behavior. Hence, our physical system model generalizes the
conventional functional dynamic system representation (state-space, transfer
function, etc.) to include tcpological representation (physical
interconnections, structural description). In addition, RSP includes an
inheritance mechanism such that a dynamic object can be defined in terms of
previously defined dynamic elements. Moreover, RSP provides a hierarchical
dynamic representation mechanism aliowing multiple representations of a .
subsystem at several levels cf abstraction associated with each element.

Under the Phase I effort, a preliminary specification of the RSP design
has been completed. In addition, a prototype implementation of the RSP has
been programmed using Ada. The prototype RSP includes the BNF specification
of the User System Description Language (USDL), a parser, and an interpreter.
The following is a brief functional summary of these major RSP components:

- User System Description Language (USDL) supports both topological
knowledge (i.e., system, blocks, paths, externals) and procedural
knowledge (i.e., ruleset, rules, expressions) about dynamic systems.

-~ RSP I parser translates the USDL source after a lexical, syntactic,
and semantic check into an Internal System Description (ISD) suitable
for interpretation.

- RSP I interpreter interactively interprets the ruleset determined by
the selected user command (e.g., Simulate, diagnose) using the error-
free ISD.

The proposed integration of expert systems technology with existing time-
critical applications would provide a significant upgrade potential of
existing monitoring systems. Many time-critical applications today have been
solved by use of a conventional programming language with the human supplied
expertise translated by a programming team. Often, the solution for a time-
critical problenm is also based on earlier conventional language treatments of
a similar problem - a method employed in part due to the high cost of original
development and testing with new systems, new human experts, and new
programming staff. Another goal of our investigation is to demonstrate an
alternative approach to the implementation of an expert system - an apprcach
that allows for the integration of current expert system technology with
existing time-critical application solutions.

1.4 OQutline of the Report

In Chapter 2, we outline the desirable attribution of a real-time expert
system development environment in the ccntext of an actuator failure detection
and isolation system example. The RSP knowledge representation approach and
the USDL semantics are discussed in Chapter 3. In Chapter 4, we discuss the
expert system development cycle using the RSP and provide an example. Chapter
S contains the architecture and software components of RSP. The report ends

-
with Chapter 6 providing the conclusions and recommendations.

2. DESIRED ATTRIBUTES OF RSP FOR DYNAMIC SYSTEMS

In this chapter, we discuss the desirable attributes of a Rule Set
Processor architecture in the context of an actuator failure detection and
isolation (FDPI) system example. The selected sample application is from a
Self-Repairing Flight Control System (Caglayan et al. 1987). The objective of
the actuator FDI system is to detect, 1isolate and classify actuator failures
on the Control Reconfigurable Combat Aircraft. The actuator FDI decisions are
used by a reconfiguration strategy to reconfigure the aircraft flight control
law after impairment to provide safety of flight and to recover maximum
performance. Here, we discuss the various implementations of such an FDI
system: a procedural language implementation, a rule-based expert system
implementation and a hybrid implementation.

2.1 Actuator FDI System ~ Two Implementations

The actuator FDI system for the CRCA application has been implemented as
two standalone applications: one as a single FORTRAN program driven by the
CRCA simulation through a file interface, and second as a rule-based expert
system using CLIPS (Giarratanc 1987) driven by the CRCA simulation through a
similar file interface.

CLIPS - C Language Integrated Production System -~ is a tool for the
development of rule-based expert systems. CLIPS provides a powerful rule
syntax and an inference engine based on the Rete match algorithm (Forgy 1982).
We have selected CLIPS for this example since it is written in C, embeddable
to other programs written in different languages (C, Ada, FORTRAN), and
portable across various hardware platforms. Here, we summarize and compare
the two implementations.

The implemented actuator FDI algorithm functions as follows. At each
sampling instant, the actuator command and surface position measurements are
read in. Using a fixed length moving window of the surface position
measurements, estimates for the actuator command and rate of change are
computed. If the computed rate is greater that the actuator rate limit, or if
the actuator position measurement exceeds the maximum or minimum position
limits, or if the difference between the actual and estimated command is
greater than a specified threshold, then the actuator is declared as failed.
In case of a failed sensor, the actuator failure is classified as either
runaway or floating or stuck through further tests.

Table 2.1 Attributes of Actuator FDI Program (FORTRAN Version)

Source Ccde (No. of Lines) Executable Image (Kb)

Initialization/ 40 8
run-time I/0

Estimation/FDI 198 13
Total 238 21

Table 2.2 Attributes of Actuator FDI Expert System (CLIPS Version)

Source Ccde (No. of Rules) Executable Image (Kb)

Initialization 13 -=
Run-time I/G 8 -=
Estimation 8 -
FDI 19 --
Total 48 352
- Tables 2.1 and 2.2 show a cocmparison of two implementations. As seen

from the tables, the FORTRAN version consists of 238 lines of code. In
contrast, the CLIPS version contains 40 rules. The executable image of the
FORTRAN version is 21 Kb whereas the rule-based expert system equivalent 1is
352 Kb. Since the standalone run-time CLIPS is 278 Kb, the rule base
introduces an additional 74 Kb. Since increasing software size imposes
additional weight requirements on an aircraft (more memory, wires, power,
etc.), the comparison undsrscores the importance of generating a tight expert
system code for ambedded applications.

Figure 2.1 shows the rule for asserting an actuator failure based on the
difference between actual and estimated actuator commands. Figure 2.2 shows
the rule for asserting a locked actuator failure based on whether the actuator
is following the local angle of attack or not. '

(defrule check-for-failure
(umave ?umave-val)
(ym 2ym-val)
(comdiif ?comdif-val)
(cmdthr ?emdthr-val)
{loop ?count)
(surface ?count ?name)

?actuator <- (actuatcr surface ?name
status ok
tick 1
time ?val

sp-sensor 7sps
sp-ccamrand ?spc
pos-lim-mx ?plmx
pos-lim-mn ?plmn
rate-limit ?rl)
{test (>= (* 7comdif-val ?comdif-val) (* ?cmdthr-val ?cmdthr-val)))
=>
(retract ?actuator)
(fprintout t "Pailure detected: " ?name crlf)

N (assert (actuator surface ?name
status failure
tick 1
time ?val

sp-sensor 7?sps
sp-command ?spc
pos-lim-mx ?plmx
pos-lim-mn ?plmn
rate-limit ?rl))

(assert (sfapos ?name 7umave-val))

(bind 7sfalfa-val (* ?ym-val 57.29578018))

(assert (sfalfa ?name ?sfalfa-val)))

Figure 2.1: Rule for Asserting an Acuator Failure
..g-

(defrule if-failure-check-locked
(loop ?count)
?2check <- (check-isolation)
(surface ?count ?name)

?actuator <- (actuator surface ?name
status failure
tick 1l
time ?val

Sp-sensor 7sps
sp-command ?spc
pos-lim-mx ?plmx
pos-lim-mn ?plmn
rate-limit ?rl)

(alferr ?alferr-val)

(alfthr 2alfthr-val)

(test (> (* ?alferr-val alferr-val) (* 2alfthr-val ?7alfthr-val)))

=>

(retract ?actuator)

(retract ?check)

(assert (actuator surface ?name
status locked
tick 1
time ?val

Ssp—-sensor ?7sps

sp-command ?spc

pos-lim-mx ?plmx

pos~-lim-mn ?plmn

rate-limit ?rl))
(fprintout t "Actuator locked: " ?name crlf)
(assert (fail-cont)))

Figure 2.1: Rule for Asserting an Actuator Failure

In terms of execution speed, the CLIPS version was about 25 times slower
than the PORTRAN version. Since the efficiency of the CLIPS code was not
optimized, the execution speed performance can be further improved using the
standard iterative techniques for improving the efficiency of production
Ssystems (Braunston et al. 1986). We suspect that any improvement beyond a 10
to 1 execution speed ratio would be hard to accomplish due to the overhead
associated with pattern matching, and fact assertion and retraction.

Although not implemented, there are at least two logical hybrid
implementations of this actuator FDI example. The first one would be using
the FORTRAN code for reading the measurements and computing the various
estimation parameters (sequential algorithmic tasks performed at every
sampling instant) as user defined functions in CLIPS. This would reduce the
number of rules by about 50%, increase execution speed over the standalone
CLIPS version with an accompanying slight decrease in program size. The other
alternative would be the replacement of FDI code in the FORTRAN version with a
CLIPS call for performing the FPDI decision. We suspect that the program size
and execution speed of this hybrid implementation would be comparable to the
first one.

- 10 -

2.2 External Environment Interface

Real-time fault moritoring systers have to read in data at a fixed rate
from a set of sensors (e.g., FCS outputs, surface position RVDT's,
differential pressure transducers, BIT results, accelerometers, rate gyros,
etc.). Hence, a real-time expert system for onboard applications should
support efficient input and display data functions. Since conventional expert
systems development presuppose an inieractive environment, an efficient
repetitive data read-in and assignment facility is not available in most
expert system shells.

2.3 Knowledge Representation Issues

As typified by the simple actuator FDI example, real-time onboard fault
diagnosis systems require a hybrid knowledge representation allowing both
structural declarative knowledge and sequential procedural knowledge. For
instance, in the actuator FDI example, the description of the physical
interconnection between the FCS, actuator and surface position measurement
sensor requires a topological knowledge representation capability. Such a
symbolic representation is ideally suited for an expert system implementation.
In contrast, sequential command estimation algorithm performed at each
sanmpling interval requires a procedural knowiedge representation facility.

ldeally, a real-time expert system shell should support both of these -

knowledge representation facilities.

Since it was originally developed using a procedural programming
language, there is an important knowledge representation construct missing
from the actuator FDI example: namely, the hierarchical representation of a
physical system at several levels of abstraction. Such a structural knowledge
representation facility is usually available in hybrid expert system shells
which alliow object definitions with inheritance relationships. 1In this
example, such a hierarchical representation of an actuator can take the
following form: At the highest level, the system can be described by three
objects: actuator command input post, actuator subsystem and surface
weasuremant RVDT. At thics level, actuator subsystem model can, for example,
be a iirst order model. At the next lower level of hierarchy, actuator
susbystem can be further decomposed into input limiter, mode selector,
mechanical bias, position limiter, and a first order dynamic system with rate
limiting.

Apart from the evidence of similar diagnosis strategies employed by
humans, such a hierarchical representation would enable a faster reasoning
mechanism than a flat description where all elemental dynamic objects have to
be tested at each iteration. Moreover, in such an inference tree, a failure
declaration at a higher level may deemed to be a false alarm at a lower level
based on a more accurate physical system model. 1Ideally, a real-time expert
system shell for onboard applications should support hierarchical knowledge
representation at various levels of abstraction so that both top-down
diagnosis, bottoms-up simulation or hybrid failure diagnosis strategies can be
enployed.

- 11 -

2.4 Temporal Reasoning

In real-time systems, an expert system has to reason about past, present,
and future events. Moreover, the temporal sequence of events has to be
accounted for as well. In the theory of temporal reasoning, a number of
formuylations have been developed (Shoham 1988). The two most important ones
are based on, first, assertions abcut time intervals and, second, assertions
about time points. For instance, in an interval based formalism, one deals
between interval relations such as before, after, overlaps, starts, finishes,
etc. Such a temporal logic propagates constraints about intervals by
transitivity.

Most expert system shells do not support such temporal reasoning. Only
in hybrid expert systems supporting dynamic objects, objects and their links
to classes can be modified at runtime. In the actuator FDI example, the
temporal reasoning i1s implicitly contained in the length of the moving window
over which the masurements are saved. In general, every physical model of a
physical dynamic system would dictate a different time interval for which the
input and output measurements have to be saved. PFor instance, for an auto
regressive moving average description, such a choice is explicitly stated.
Ideally, an expert system shell should support the specification of the memory
attribute of a dynamic object (the time interval over which the reasoning
abcut a fault has to be performed).

2.5 Integration into Conventional Software

Since most current embedded applications dictate either C or Ada, an
expert system shell written in one of these languages would allow an easy
integration into conventional software. CLIPS is an example of such a shell
written in C. It is completely embeddable in other applications written in
PORTRAN, Ada, and C by building an appropriate interface package. In a real-
time onboard expert syctem, such an interface should be accomplished without
incurring any significant computational overhead.

2.6 Symbolic and Numeric Reasoning

In the actuator FDI example, the reasoning about the interconnections
between the actuators and surface position sensors need a topological
knowledge representation which requires symbolic reasoning. Other higher
level information such as hydraulic system test results, maintenance history
about a specific unit can be easily incorporated into such a representation,
thus allowing additional reasoning power for asserting malfunctions. In
contrast, the expressions on the left hand side of if-then-else rule in the,
actuator FDI system involve extensive mathematical computations (e.g.,
computation of the command estimate). This example is a fairly simple
application; in most systems, more elaborate mathematical computations
(involving, for instance, operations with matrices vectors, etc.) would be
needed. Hence, an ideal expert system shell for onboard real-time expert
system applications should support extensive domain algebra in rule
expressions.

- 12 -

2.7 Real-Time Response

An actuator PDI system such as the example described, has to exhibit
strict real-time performance. For instance, in an unstable aircraft such as
the X-29, such a system has to produce the correct answer in at most two
sampling instants. Therefore, just being predictably fast enough most of the
time or just providing an answer within a time limit are not satisfactory
criteria for real-time performance. Hence, the worst case execution time
performance of an expert system has to be determinable before embedding into a
time-critical application. Therefore, a real-time expert system shell should
support user defined search strategies so that the fault diagnosis strategy of
the domain expert can be incorporated into the expert system design.

_13..

3. RULE SET PROCESSOR KNCWLELGE REPRESENTATION

The primary goal of the entire project is the discovery and exploration
of novel ways for implementing expert system style programming techniques for
use in real time applications. The central approach towards the fulfiliment
of this gocal is the specification of a new form of programming language along
with the means to translate and interpret this new language. The new'aspect
of this language, the USDL (User System Design Language), is the incorporation
of additional representational facilities for handling topological system
information in the same way as conventional programming languages handle
procedural information. Thea design of the USDL itself and the implementation
of a program that translates and interprets the USDL are the two joint tasks,
executed in parallel, that formed the main research effort.

The syntactical specification of the User System Description Language is
presented as a document appendix. Goals for USDL design include: 1) to
manipulate variables and expressions in a comprehensive fashion similar to
that employed by conventional programming languages (e.g., Ada and FORTRAN);
2) to define and access subprograms in a block structured fashion supportive
of structured programming methodology; 3) to support the usage of if-then-else
rules in a forward chaining manner; 4) to allow rule clustering according to
user indicated functional contexts; 5) to specify topological information
regarding the interconnection of components in a general dynamic system; 6) to
provide mechanisms to support multiple representation of components at various
levels of abstraction - either as single objects or as entire subsystems; 7)
to supply complete user control of flow of control throughout the entire
system model - a2 combination of transversing any one system level and also
moving down to expand embedded systems as required; 8) to specify topological
types (aggregates of components and connections) and to bind procedural
informaticn tc these types; 9) to allow rapid software prototyping by using
powerful and quickly .mplemented compilation techniques; 10) to support
interactive testing of a user system description; 1l1) and to support a
translation o2f the user system model into a language suitable for
implemenitation in a real time environment for time critical applications (a
feature not readily available using conventional expert system development
tools).

These were the goals for the parallel RSP prototype effort: 1) to
prov:ide a simpie but functional user interface to explore usage of the User
System Description Language; 2) to support the parsing of the USDL; 3) to
detect and diagncse ucer errors in USDL programs; 4) to design and implement
an Internal System Description (ISD) data structure used to construct an
internal (to the RSP) version of the system model generated from the USDL
program; 5) to provide a platform for the interactively directed
interpretation of the ISD resulting from the translation of the user system
model; 6) tc show the ability to support retranslation of the ISD into a
target language suitable for use in embedded computer systems; 7) and to
demonstrate the feasibility of using Ada to fulfill the above mentioned goals.

3.1 A Hyprid Approach to Knowledge Representation

The User System Description iLanguage (USDL) processed by the Rule Set
Processor (RSP, is the means used to represent knowledge about a system. The
USDL is a well definacd language, with standards for both the representation of
meaning (language semantics) and structure (language syntax). This section of

-14_

this document describes the language semantics of the USDL. The USDL BNF
{syntax specification) appears as an appendix to this document.

Much of the specification of the USDL comes from commcnly used block
structured programming languages. For example, the expression syntax and
semantics used by the USDL are roughly a subset cof Ada, while scoping rules
for most names are taken from Pascal. However, a most important feature of
the language, a merger of specification of the topological relationships among
systems and system hierarchies with procedural rescurces, 1$s entirely new and
SO represents a novel approach to solving simulation and diagnosis
requirements of general dynamic systems.

The USD Language described here is the result of a preliminary
investigation into the requirements of a general purpose system description
language, and as sucl. may probably undergo revision under a Phase II
development. It is unlikely that any of the current features may be deleted -
although some may be changed - and it is expected that new language features
will be added as necessary to improve performance and increase productivity.
The USDL referred to in this document is officially khown as "USDL 1.1";
future versions will be assigned new version numbers as appropriate.

The kind of knowledge commonly used to represent sequences of actions and
aigorithms is referred to as procedural information. Procedural information
is usually realized as mostly linear arrangements of instructions.
Traditional computer languages are examples of knowledge representation tools
using primarially procedural information strategies. These languages work
well for those problems that can be treated in an easily reducible, one step
at a time, sequential approach.

The kind of knowlsdge commonly used to represent the relationships among
multiple entities in a fixed but arbitrary arrangement is referred to as
topoclogical information. Topological information is usually realized as a
graph structure composed cf a set of nodes with arcs forming the various
interconnections of the nodes. Traditional representations of topological
knowledge include both graphical approaches (box and arrow diagrams) and
computer generated network data structures. Graphic hardcopy diagrams can be
easily made, but are not easily represented by traditional computer languages.
It is possibie to dyramically produce data structures to represent topological
information, but the design and development needed for this task is often time
consuming.

Tie probizm of the computer modeling of a general system requires both
types of knowledge for a complete representation. For each component (block)
of the system, procedural knowledge is required to model the actions of that
component for certain inputs and outputs. Prom the viewpoint of the
component, it is unimportant to know from where the input values arrive or to
where the output values are sent; it is only necessary to create (using
procedural knowledge) the cerrect output results from the given current and
past input data. For the entire arrangement of the components that make up
the general system, topological information is required to accurately move
data throughout the system mcdel. From the viewpoint of the network that
connects the ccmponents, it is unimportant to know how the various values
transmitted are generated or used; it is only necessary to correctly transmit
(using topological knowledge) these values among the components and to and
from the world cutside of the model.

_ls-

The USDL is designed for the realization of both procedural and
topological information about general systems. Figure 3.1 illustrates the
elements of a system model using the USDL.

Topological Knowledge

* Blocks - functional elements of systems * Attributes - vanables internal to a block

* Blocktypes - describe blocks using inheritance * Lines - define connection points to paths -
» Externals - connections across systems » Subsystems - low leve! representation

« Paths - connections among blocks in a system

« Systems - define subsystems for biocks

Procedural Knowledge

* Declare tems - variaties {per system) » Declare ltems - variables (per rule)
* Rulesets - groups of procedural information * Test expression - yields boolean result
» Then/Else statements - executable code

» Declare ltems - variabies (per ruleset)
* Rules - if-then-else knowledge representation
* Rulesets - nested procedural information

s

89-009

Elements of a System using the
User System Description Language

Figure 3.1

- 16 -

3.2 USDL Semantics: Systems

4 system L1s reprssented oy the USDL as a collection of resources
bracketed by a system descrip:iion header and tail. An example:

MAAKRRRARERRE AN RN

-- Start of example.

~- Here is an example systen description.

-~ The system name is "example system l".

-- Note that comments are always preceded by a double dash.

system example_system_l is
begin

-- Various system resources appear here.

end example system_1;

-~ EnZd of example.

HRATERARTATAARTNTNST Y

The reserved word "system” introduces a system description. (Reserved
words have special meaning for the RSP and are unavailable for use as user
identifiers.) It is followed by the user defined name to identify the system.
The reserved wcrds "is" and "begin" follow the system identifier. After the
reserved word "begin", an arbitrary number of system resources (defined below)
may appear, all of which are thereafter associated with the enclosing system.
L system description is concluded with the reserved word "end” and a
semicolon.

The system name may be optionally repeated immediately prior to the
samicolon for the sake of clarity. Note that all reserved words in the USDL
must appear using only lower case letters. User identifiers may use a mixture
ctf upper and lcwer case letters along with digits and the underscore
character. All identifiers must begin with a letter. Identifiers may be
arbitrarily long and all characters are considered significant.

Each system descripcion defines an enclosing name scope. This enclosing
sccpe i1s used to control access to the names defined as a result of resource
cdefinitions within the system description. All names, except for a few
ciasses of identifiers described later, defined at a given scope level are
available only within that scope and only after their defining descriptions.
On.y the name of a system along with certain identifiers (external labels and
ruleset names) defined at that system level can be referenced outside of the
system description. This feature, also found in all modern block structured
langrages, helps to limit unnecessary complexity by restricting identifier
access to only those regions that require such access.

When a system description is given, it actually describes a system type -
a template that can be used as a resource of a larger, enclosing system onhe or
Dore times. For example, a particular system may consist of ten subsystems,
all cf which are identical except for their arrangement within the enclosing
svstem. The USDL facilitates this usage by allowing the one time definition

17

of the subsystem (as a type) and then referencing this system as required as a
building block in an enclosing system.

A USDL main program source file, a User System Description (USD), is just
a single system description. This single system type, because it appears at
the outermost possible level, is interpreted as the actual system being
modeled. One and only one such system description may appear at the outermost
level of a USDL source file. (Important note: the outermost system present
acts as a root to the system model and so is commonly referred to as the "root
system".)

System descriptions in the USDL may include various resources that define
both the topological and procedural information required to completely specify
the system model. Each of these resources are defined below; Table 3.1 lists
all the available resources and their functions:

Table 3.1: USD Resources and Functions

Resource Purpose

Block A node in a system graph; has inputs/outputs
Blocktype Definitions used to help create blocks

Declare Defines and allocates a user defined scalar
External Connects inputs/outputs with enclosing system
Path An arc in a system graph; connects nodes

Ruleset Contains rules and other procedural information
System A subsystem type; same format as enclosing system

The block, blocktype, external, and path resources are primarily
concerned with the representation of topological knowledge. Ruleset
resources, which include rules with executable statements, are closely
connected with the representation of procedural knowledge. Systems combine
all resources (including subsystems) to merge topological and procedural
knowledge.

3.3 USDL Semantics: Block

A block (a.k.a. component) may be considered as a node of the graph that
makes up the immediately enclosing system. For example, if a given system
describes a simple logic circuit, each gate could be represented as a separate
block. For another example, a complex electro-mechanical control system may
have blocks that represent entire systems (computers, actuators, sensors,
filters, and mechanical linkages) - such blocks themselves could be
represented by subsystems.

Here are some examples of block descriptions:

L8 222222222822 2]

-- Start of example.
-- There are three blocks here, "block_52", "switch_18", and "stick_l".

system example_system 1l is
begin

-- Various system resources appear here.

18

-- Here is a block that uses 3 general type.

block bleck_52 1s jeneral
begin

~= Various block resources appear here.
end block_52;
-- Here 1s 2 block that uses a specific named type.

block switch_1€ is type switch_blcck_type
begin

-- Varaious block resourcas appear here.
end switch_18;

-- Here 135 aznother block that uses z specific named type and has
-- nro other rescurces:

block stick_1l is type stick _block_type;
end example_ system_l;

-- End of example.

—_— R EETRARTTARNNNR

The reserved word "block” introduces a block description. It is followed
by the user defined name to identify the biock. The reserved word "is" follows
the block icdentifier. Blocks may inherit types from blocktype descriptions
{described below) or may have general types. If a given block has no
inherited rescurces, the reserved woréd "general” appears after the word "is"
in the block nhzader. If the block does inherit some resources, the blocktype
that centains those resources is represented by the reserved word "type"
followes by the appropriate biocktype identifier. In either case of tvpe
raeference, the Taserved word "begin"” immediately follows. After the reserved
word "bsgin", an arpitrary number of block resources (defined below) may
appea &1l of which are thersafrer associated with the enclosing block. A
b‘c"k ae.:. 2Dt 10n is concluded with the reserved word "end” and a semicolon.
The bic¢ck name mey be optionally repeatzad immediately prior to the semicolon
or the sake of clarity

in the case where no additional block resources are defined, then the
"begin end <ilock-id>" may be deleted. For example:

block no_extra resources is type complete_tblock_type;
is a complete block description.
ccks and blocktypes contain an arbitrary number of block resources.

three kincs of block resources: attributes, lines, and subsystems.
sources ara described below. These attributes resources are given in

W
—

Table 3.2: Elements of USD Resources

Resource Elements Resources

Block Attributes, lines and subsystems
Blocktype Attributes, lines and subsystems
Declare Identifier, basetype indicator
External Identifier

Path Block and line identifiers

Ruleset Declarations, rules, nested rulesets
System Blocks, blocktypes, declarations,

externals, paths, rulesets

3.3.1 USDL Semantics: Block - Block Attributes

An attribute resource acts as a statically allocated variable bound to a
given block. Attributes allow for the parameterization of block function by
associating scalar values with particular blocks or blocktypes. For example,
a block representing a simple switch with a single input and a single output
would have an attribute with a boolean value indicating whether or not the
input-output path was currently conducting. A much more complicated block
that describes a multipole bandpass filter may require many attributes with
floating point values used to describe the filter transfer function.

Attributes have identifiers and basetypes. There are three basetypes
used 1n the USDL. These basetypes are: boolean, float, and integer. (These
three words are reserved by the USDL.) A boolean basetype value may be either
true or false, a float basetype value takes on floating point values, and an
integer basetype indicates integral values. (The words "true” and “"false" are
also reserved.)

An attribute may be given an initial value as part of their definition.
The value of an attribute may be changed later unless it is declared to be
constant.

Here are some examples of attribute descriptions:

—— REAAXARNATRRATEN

-- Start of example.

system attribute_example system is
begin

-- Various system resources appear here.

block simple_switch_ 1 is general
begin

- 20 -

-- Here is a simple attribute that gives

-- the switch conducting status.

-~ The words “attribuie”, "is", "basetype",
-- and "boolean” are reserved.

attribute is_closed is basetype boolean;
end simple_switch_l;

block simple_switch_2 is general
begin

-- Here is another switch example with an initial value (closed).
-- The words "default” and "true” are reserved.

attribute is_closed is basetype boolean default true;
end simple switch_2;

block simple switch_3 is general
begin

-- Here is ancther switch example with
-- a constant initial value (open).
-~ The words "constant”™ and “"false" are reserved.

attribute is_closed 1s constant basetype boolean default false;
end simple_switch_3;

biock several attributes_block is
begin

~- Note that identifiers used within a block description must be
-- unique within that description.

attribute flag i is basetype boolean;

attribute fiag_2 is basetype boolean default true;
attribute flag_3 i< basetype boolean default false;
attribute flag_4 is constant basetype boolean default true;
attribute fiag_5 is constant basetype boolean default false;

attribute x_1i is basetype float;

attribute x_2 is basetype flocat default 2.71828;
attribute x_3 is basetype float default -3.14159;
attribute x_4 is constant basetvpe float default 0.0;
attribute x 5 is constant basetype float default 2.59e+06;

attribute ival_l is basetype integer;

attribute ival_2 is basetype integer default 0;

attribute ival_3 is basetvpe integer default -312;
attribute ival 4 is constant basetype integer default 32767;
attribute ival_S is constant basetype integer default -1;

end several_attributes_block;

-21_

end attribute_example_system;

-- End of example.

ERAXRXRARRRRNTNNREN

The reserved word "attribute" introduces an attribute resource. It is
followed by the user defined name that identifies the attribute. The reserved
word "is" follows the attribute identifier. If the attribute value is to
remain constant, the reserved word "constant"” follows immediately. The
attribute basetype is then defined by the reserved word "basetype" followed by
one of the three available basetype indicators. An initial value can then be
specified by the reserved word "default” and then a literal value of the
appropriate basetype. A semicolon concludes an attribute resource.

Note that the attribute identifier is always required but the constant
and default value clauses are optional. The basetype clause is required if no
basetype information for that attribute has been inherited from a previously
appearing blocktype description. Attribute identifiers must be unique within
a block.

Attributes can be referenced as parts of expressions (described below) in
the enclosing system description. An attribute reference is of the form:

component_id.attribute_id

where presence of the component identifier in an attribute reference allows
for disambiguation where two Or more components have attributes that happen to
have the same name. The symbol between the component and attribute
identifiers is a period and is referred tc as a "selector” operator.

3.3.2 USDL Semantics: Block - Block Lines

In order that blocks may receive and transmit data (in this case,
discrete scalar values), a mechanism defining the inputs and outputs of a
given block is necessary. The USDL uses the "line" block (and blocktype)
resource. Each line resource within a block describes a single data channel
either in or out of the block. A complete line resource includes an
identifier, a mode indicator (flow data direction) clause, a basetype clause,
and an optional history (recent value record) clause.

Each line of a block has an associated value. This value represents some
scalar value at a particular moment in time corresponding to some potentially
measurable quantity at that line. The basetype of this value may be boolean
(binary values, single pole switches, etc.), float (voltages, pressures,’
currents, forces, etc.), and integer (multipole switches, discrete positioned
mechanisms, etc.) as required by the application. Because the modeling of
dynamic systems requires not only a current value at a given point, but also
recent values at the same point, the USDL allows for automatic recording of
recent measurements in addition to the current measurement of any line value
in the system. The count of recorded history (default one) values at a line
is specified using a history clause. History recording is particularly useful
i1in modeling systems with components with behavior dependent not only on
current inputs but alsc past recent input and output values.

- 22 -

Here are some examples of line resources:

METAANRXRBRTTENE RN

-- Start of example.

system line_system_example is
begin

-- Various system resources appear here.

block low pass_filter 53 is general
begin

-- Here are attributes for the filter:

attribute cut_off is basetype float default 20.0;
attribute gain is basetype float 0.95;

-- Here is the input line:
line filter_input is mode input basetype float;
-- And here is the output line:
line filter_output is mode output basetype float;

end low_pass_filter 53;

block push_button 8 is general

begin

-- This is a model of a SPST momentary contact push button.
-- Here is the mechanical input:
line button is mode input basetype boolean;
-- Here are the electrical connections:

line current_in is mode input basetype float;
line current_out is mode output basetype float;

end push_button_8;

-- Here is a block that keeps the last four inputs and
-- the last two outputs:

block debouncer_0 is general
begin

line db_in is mode input basetype integer history §;
line db_out is mocde output basetype integer history 2;

end debouncer_0;

- 23 -

end line_system_example;

-- End of example.

LA A 23R AR RS AR 2]

The reserved word "line"” starts a line resource. It is followed by the
user defined name that identifies the line within the block. The reserved
word "is" appears immediately after the line identifier. The next part of the
line definition is the information flow indicator for the channel; this is
referred to as the flow mode of a line and this mode clause consists of the
reserved word “"mode” followed by either the reserved word "input” or the
reserved word "output”. An "input” mode indicates that data is flowing into
the block; an "output” mode indicates that data is flowing out of the block.
After the mode clause, the basetype clause appears. The basetype clause
defines which of the available basetypes is used for the representation of the
value of the line. As with basetype clauses for attributes, a basetype for a
line starts with the reserved word "hasetype"” followed by one of the available
basetype indicators. Following the basetype information, an optional history
clause appears 1f records of multiple recent values are required. A line
history clause is the reserved word "history” followed by a positive integer
constant that defines the number of records of a line's value. If no history
clause is present, a default value of one is assumed. A line resource is
concluded by a semicolon.

Note that the line identifier is always required and the history clause
is optional. Each of the mode and basetype clauses are required if such
information for that line has not been inherited from a previously appearing
blocktype description. Line identifiers must be unique within a block.

Line values (current and past) can be referenced as parts of expressions
(described below) in the enclosing system description. A reference of the
current value of a line can be of two forms:

component_id.line_id
and also:
component_id.line_id.history({0]

where the zero inside of the brackets of the second reference indicates the
current value ("time zero"” or "current time plus zero”). The value inside the
brackets can be an arbitrary integral expression but should, when evaluated,
fall in the range of zero to (minus N), where N equals history reservation
minus one. Here is an example of a reference at time "current time minus
three":

filter_l8.voltage_in.history[-3]

Note that the reserved word history always precedes the bracketed expression,
and that the expression is never positive. History values are kept only for
lines and not for attributes.

The USDL implements the passage ¢f time in the system description as a
sequence of equal interval discrete periods of duration. The system
developer's selection of actual units of time in use (seconds, microseconds,
etc.) is not important to the mcdel; the RSP only requires that each interval

- 24 -

is equal in length to the next, and that all portions of the system model are
synchonized. The advancement of model time is under user control and the RSP
automatically shifts values along the history storage lists.

Of course, most real world systems function using continuous time, which
is somewhat difficult to simulate with discrete digital computers. The
quantized treatment of time by the USDL can be thought of as a periodic
sampling of continuous time with each time dependent value in the system model
being updated simultaneously.

3.3.3 USDL Semantics: Block - Block Subsystems

For a very low level system model, the individual blocks directly
enclosed by the system description will represent the lowest level,
undivisible components of the system. For systems descriptions at higher
levels, blocks may represent entire subsystems. These subsystems in turn may
have blocks that also represent lower level subsystems, and so forth all the
way down to systems composed of only atomic components.

The USDL allows for the association of subsystems as a block (and
blocktype) resource. Note that a given block (or blocktype) may have both a
subsystem representation and a simple representation composed of only lines
and attributes. The motivation for this is to provide greater developer
flexibility in modeling systems: some simulation strategies may require in
depth subsystem representation while many diagnostic approaches would employ
top-down methods that first use a simple view of a component and investigating
a block's subsystem representation only when necessary.

A block subsystem representation is the simplest of the block resources.
A subsystem resource starts with the reserved word "subsystem” to indicate the
presence of a subsystem representation. The name (system identifier) that
identifies the subsystem type appears after the subsystem keyword, and the
resource is concluded by a semicolon. Here are some examples of block
subsystem resources:

subsystem and_gate_system;

subsystem high pass_filter_system;
Note that the system identifier must correspond to a system type already
defined. This is an example of the rule that each identifier in the USDL must
be defined before it is used.

A maximum of one subsystem resource is permitted per block or blocktype.

Here are some examples of subsystem resource usage:

HANWNAARXTRARNTTRY

-- Start of example.

system subsystem_usage_example is
begin

-- Various system resources appear here.

_25-

-- For a block to use a subsystem resource, the indicated resource
-- must first be defined. The following are two system descriptions
-- usable as subsystems:

system simple_switch_system is

begin
-- Various system resources appear here. These resources define
-- the characteristics of the system type "simple_switch_system”,
-- a subsystem that can be referenced by blocks in the enclosing
-- system "subsystem usage_example”.

end simple_switch_system;

system tricky op_amp_system is
begin

-- Various system resources appearing here define a system to
-- model tricky operational amplifiers.

end tricky_op_amp_system;

-- With the appropriate subsystems defined, block descriptions can
-- now reference them as block subsystem resources.

block switch_1 is general
begin

-- Various block resources appear here.
-- Here is the subsystem resource:
subsystem simple switch_system;

end switch_l1;

block op_amp 33 is general
begin

-- Here is an instance of the use of "tricky op_amp_system”.
subsystem tricky_op_amp system;
end op_amp 33;

block op_amp 34 is general
begin

-- Here is another use of the "tricky op_amp"” subsystem. Note that
-- each such instantiation of a subsystem refers to a different

-- copy of the subsystem; the subsystem system description actually
-- defines a system type that can be used repeatedly among different
-- blocks.

subsystem tricky op_amp_system;

- 26 -

end op_amp_34;
end subsystem_usage_example;

-- End of example.

AN ARRNANRTRANAR

3.4 USDL Semantics: Blocktype

Some systems described by the USDL many contain many blocks that are made
up of only a few types. For example, an actively controlled beam composed of
three hundred components could be modeled using only a few types of blocks
(lateral and longitudinal struts, piezoelectric Strain sensors, and integrated
servo actuators) repeated throughout the overall system. To aid in the
development of models for such kinds of systems, the USDL supports a language
construct called a blocktype. A blocktype is another system resource (like a
block) and appears in system descriptions in the same places a block
description appears. A blocktype description is quite similar to a block
description and its only use is to help with the definition of blocks (or
other blocktypes).

Blocktype descriptions have the same three kinds of resources as do
blocks: attributes, lines, and subsystems. ’

An attribute or a line may be either partially or completely defined in a
blocktype. A subsystem resource, if present, must be completely defined in a
blocktype description. The basic idea for the function of blocktypes is to
copy the collection of block resource information from a type parent (if any)
and combine it with explicit resource information in the blocktype description
and then construct a new set of block resource definitions (a type) to made
available for usage by blocks and other blocktypes.

Here are some examples of block and blocktype usage:

AAWRNARAANT AR XN

-- Start of example.

systeu blocktype_example is
begin

-- Various system resources appear here.

~-- Here is a simple blocktype declaration that defines the presence
-- of a single attribute.

blocktype single_scalar_blocktype is
begin
attribute factor is basetype float;
end single_scalar_blocktype;
-- Here are two usages of the above blocktype:

biock multiplier 32 is type single_scalar_blocktype
begin

-27_

-- Because of the type inheritance, an implicit resource of
-- "attribute factor is basetype float;" exists for this block.

line voltage_in is mode input basetype float;
line voltage out is mode output basetype float;

end multiplier_32;

block divider_ 91 is type single_scalar_blocktype
begin

-~ Because of the type inheritance, an implicit resource of
-- "attribute factor is basetype float;" exists for this block.

line pressure_in is mode input basetype float;
line pressure_out is mode output basetype float;

end divider 91;

-- Here is a blocktype example sequence that includes attribute,
-- lire, and subsystem resources.

blocktype one_from_two_type is general
begin

line q_in_1 is mode input;

line q_in_2 is mode input;

line q_out is mode output;
end one_from_two_type;

blocktype boolean_gate_type is type one_from_two_type
begin
line g_in_1l is basetype boolean;
line g_in_2 is basetype boolean;
line q_out is basetype boolean;
end boolean gate_type;

blocktype adder_type is type one_from_two_type
begin
line g_in_1 1is basetype float;
line g_in_2 is basetype float;
line q_out is basetype float;
end adder_type;

blocktype and_nand_gate_type is type boolean_gate_type
begin
attribute inversion_flag is boolean;
subsystem and_nand system;
end and nand gate_type;

blocktype and_gate_type is type and nand gate_type
begin

attribute inversion_flag is constant false;

end and_gate_type;

blocktype nand_gate_type is type and_nand _gate_type
begin

_28-

attribute inversion_flag is constant true;
end nand_gate_type;

block and_gate_l is type and_gate_type;
block and_gate_2 is type and gate_type;
block and_gate_3 is type and_gate_type;

block nand_gate_l is type nand_gate_type;
block nand _gate_2 is type nand_gate_type;
block nand _gate_3 is type nand_gate_type;

end blocktype example;

-- End of example.

-—— ARAREANRARARRTANT N

The important point to remember about blocktype usage is: when the
ultimate inheritor of blocktype information (a block) is described, each
attribute and line resource must be minimally defined. An attribute is
minimally defined by its basetype (constant and default information is
supplimental). A line is minimally defined by its mode and its basetype.

3.5 USDL Semantics: Declare

A “declare” description acts as a resource to USDL system descriptions to
indicate a user declared scalar associated with that system type. USDL rule
and ruleset descriptions (described below) also use declare descriptions as
resources in a similar fashion.

A declare description indicates the binding of a user defined identifier
with storage for a scalar of one of the available basetypes. Here are some
examples of declare descriptions:

declare active_mode: boolean;

declare standby_voltage: float;

declare control_lever_detent_position: integer;

A declare description is started by the reserved word “"declare”. This is
followed by a user supplied identifier, a colon, the desired basetype
indicator, and finally a semicolon. 1Identifiers used in declare identifiers

should be unique at the scope level of their declaration.

Items defined as a result of declare descriptions can be referenced as
parts of expressions or as variables (both are described below).

Here is an example of declare descriptions appearing in system
descriptions:

- AANRGOOWNANOORN NN

-- Start of example.

system declare_example_ system is
begin

29

declare temporary sum_l: float;
declare temporary sum 2: float;

-- Various system resources appear here that may use the variables
-- “temporary_sum_l" and "temporary_sum_2".

system another_system is
begin

declare delta_x: integer;
declare delta_y: integer;

-- Various system resources appear here that may use "delta_x"
-- and "delta_y" along with “"temporary_sum_l" and "temporary_sum_2".

end another_system;
end declare_example_system;

-- End of example.

—— BAAABAARRAINRREN

Items defined as a result of declare descriptions obey scoping access
rules. This means that an identifier declared at one system level are

accessible to interior system descriptions, unless another object with the
same name is declared at an interior level. An identifier declared at one
system level is not accessible at enclosing (exterior) levels.

3.6 USDL Semantics: External

Most systems have an interface to an exterior environment; this
environment is either the "outside world” or an immediately enclosing system.
To facilitate the transmission of values into and out of systems, the USDL has
a system resource for associating connection points (a particular line of a
particular component) with labels (identifiers) external to the system. Here
are some examples of external descriptions:

external voltage_in is terminal_strip.connector_4;
external torque_xy out is actuator_2.shaft_output;

There are two different interpretations of external descriptions. If an
external description appears at the outermost system level, the external
identifier corresponds to a connection to the world outside the system model.
If an external description appears at any level interior to the outermost
system level, the external identifier corresponds to a line (with the same
identifier) within a block that uses the subsystem with the external
description.

An example USD illustrates both cases:

_—— RWMARATARATAANER AN

-- Start of example.

system external sample outermost_system is

_30-

begin
-- Here is a system type that describes a simple switch:

system simple_switch_system is
begin

block sss_bl is general
begin
line sss_bl_in is mode input basetype float;
) line sss_bl_out is mode output basetype float;

end sss_bl;
- block sss_b2 is general
begin

line sss_b2_in is mode input basetype float;
line sss_b2 out is mode output basetype float;
end sss_b2;

block sss_b3 is general
begin
line sss_b3 _in is mode input basetype float;
line sss_b3_out is mode output basetype float;
end sss_b3;

external sw_in is sss_bl.sss_bl in;
external sw_out is sss_bl.sss_b3_out;

end simple_switch_system;
-- Here are two blocks that use the above subsystem:

block switch_in is general

begin
line sw_in is mode input basetype float;
line sw_out is mode output basetype flcat;
subsystem simple_switch_system;

end switch_in;

block switch _out is general
begin
. line sw_in is mode input basetype float;
line sw_out is mode output basetype float;
subsystem simple_switch_system;
end switch_in;

-- Here are two external descriptions that are system resources to the
-~ outermost system:

external current_in is switch_l.sw_in;
external current_out is switch_2.sw_out;

end external_sample outermost_system;

-- End of example.

AXABRERARET RN RN

- 31 -

3.7 USDL Semantics: Path

A path description is a system resource used to provide a connection
between an output line of one block and the input line of another block.
(Actually, a path may also connect an output line of a given block to an input
line of the same block.) The restrictions on path definitions are that: an
output must always be connected to an input, the basetypes of the input and
output connections must be identical, and paths may only exist between
components at the same system level.

Paths represent physical connections such as wires, struts, beams,
hydraulic lines, etc. The USDL provides for mechanisms to propagate
information along these paths using the "pulse" statement (detailed below).
The information moved along a path consists of a single scalar value of the
basetype of the input and output lines.

Here are some examples of path descriptions{

path alpha is from block_23.line_4 to block_38.line_3;
path p_23 1s from piston_2.flow_out to valve_2.flow_in;
path from beam support.corner_2 to brace_3.west;

A path description begins with the reserved word "path”. An identifier
may be supplied for a path, but is not required; if present, it is immediately
followed by the reserved word "is"”. The source connection is introduced by
the reserved word "from” and is specified by giving the corresponding block
and line identifiers separated by a period. The destination connection point
then appears with the reserved word "to" and then the corresponding block and
line identifiers also separated by a period. Note that the line referenced as
part of the source connection point must be declared with a flow mode of
output and the line associated with the destination connection point must be
declared with an input flow mode. The blocks referenced in the path
description must be declared prior to the appearance of the path description.

Here is an example of a system with paths:

AERRARNR AR NN

-- Start of example.

systemn example path_system is
begin

blocktype simple_block_type is general
begin
line input_terminal in mode input basetype float;
line output_terminal in mode output basetype float;
end simple_block_type;

block blk_1 is type simple block_type;
block blk_2 is type simple_block_type;
block blk_3 1s type simple_block_type;

-- Paths are used to make a circular linkage:

-32-

path alpha is from blk_l.output_terminal to blk_2.input_terminal;
path beta is from blk_2.output_terminal to blk_3.input_terminal;
path floyd is from blk_3.output_terminal to blk_l.input_terminal;

end example path_system;

-- End of example.

—_— RAT AN ARTRETNAR

The USDL allows for an arbitrary number of paths in a system, and a
connection point may have an arbitrary number of paths connected as long as
the above directional mode and basetype matching rules are ocbeyed. It is not
necessary for all connection points to have paths, but such a condition may be
commented upon by the RSP to indicate a possibly incomplete system
specification.

3.8 USDL Semantics: Rulesets

A ruleset is a language construct, analogous to a subroutine, that acts
as the carrier of procedural information in the USDL. Specifically, a ruleset
is composed of three kinds of ruleset resources: declarations ("declare”
items, same as system level declare items), rules (containing declarations,
tests and executable statements), and nested rulesets (analogous to nested
systems) .

A system may have zero or more associated rulesets declared as system
resources. Those rulesets declared at the system level (and not those
declared in other rulesets) are the only rulesets accessible as a higher
system level, either by use of an "elaborate" statement (described below), or
by interactively specified elaboration.

A reminder: system descriptions may contain nested systems (used as
templates for block subsystems); ruleset descriptions may contain nested
rulesets (these can be called from rules as described below); and systems may
also have zero or more rulesets (these are the only rulesets accessible from
the immediately enclosing system to the system of declaration).

Here is an example including ruleset descriptions:

—_—— RRANNRARNNRNATEES

-~ Start of example.

system ruleset_example system is
begin

system interior_system is
begin

-- The following ruleset is embedded in the
-- system "interior_system”:

ruleset interior_ruleset 19 is
begin

—-- Various ruleset resources appear here.

33

end interior_ruleset_19;

-- The following ruleset is also embedded in the
-~ system “"interior_system":

ruleset interior_ruleset 42 is
begin

-~ Various ruleset resources appear here.

-- The following ruleset is embedded in the
-~ ruleset "interior_ruleset_42":

ruleset used_only by ruleset_42 is
begin

-- Various ruleset resources appear here.
end used_only by ruleset_42;
end interior_ruleset_42;
end interior_system;
-- Here is a ruleset embedded in the outermost system:

ruleset main ruleset_l is
begin

—-- Various ruleset resources appear here.
end main_ruleset_l;
end ruleset_example system;

-- End of example.

AARAARNTTRATNRITEN

The reserved word "ruleset” introduces a ruleset description. It is
followed by the user defined name used to identify the ruleset. The reserved
words "is" and "begin” follow the ruleset identifier. After the word "begin”,
an arbitrary number of ruleset resources (declare items, rules, and interior
rulesets) may appear. After the last (if any) ruleset resource, the ruleset
description is concluded by the reserved word “"end" followed by a semicolon.
The ruleset name may be optionally repeated immediately prior to the closing
semicolon.

A ruleset description defines a name Scope in a manner similar to a
system description. Names defined in a ruleset description (except for the
ruleset name itself) are accessible only within the ruleset description.

Rulesets embedded in the highest level system are accessible from the
outside environment. The RSP interpreter treats three ruleset identifiers at
this level in a special manner; these three are directly executable by using
interactive interpreter commands:

-34-

Interpreter Ruleset Intended

Command Identifier Purpose

preset preset Initialize external values.

simulate simulate Step simulated time and simulate.
diagnose diagnose Diagnose and report system performance.

More such specially cased interpreter commands may be added during further
development.

3.8.1 USDL Semantics: Rulesets - Declarations

Ruleset descriptions may contain an arbitrary number of declare items in
a fashion similar to system descriptions. A declare item in a ruleset
description has the same syntax as a system description declare item
(described above), and the identifier used for the declare item storage is
accessible only within the enclosing ruleset and only after the appearance
(definition) of the declare item itself.

Here is an example of declare items in a ruleset description:

— OB WONRNRRNNDENNWY

~~ Start of example.

system example_for_declare_items_in_ruleset_system is
begin

ruleset a_ruleset_with_some_declare_items is
begin

declare x: flcat;
declare i: integer;
declare a_flag_variable_with_a_long_name: boolean;

end a_ruleset _with_some_declare_items;
end example for_declare_items_in_ruleset_system;

-- End of example.

—_— DRAWNETRAEANFIAANNENN

For the sake of clarity, all declare items in a ruleset description
should be grouped together at the start of sequence of ruleset resources that
make up the body of the ruleset description.

The storage associated with declare items in a ruleset is statically
allocated. This means that, although rulesets can be recursively referenced
(by use of the call statement - described below), each invocation of a ruleset
uses the same storage for the declare items (i.e, only a single unit of
storage for a declare item is allocated). This static based style of
allocation was chosen because of its potentially greater speed and simplicity
for time critical embedded applications. A future revision of the USDL may
offer a way to specify automatic (per invocation) storage in place of the
default static allocation.

- 35 -

3.8.2 USDL Semantics: Rulesets - Rules

Rule descriptions appear as ruleset resources. Taken collectively, rules
contain all of the procedural information about the system model. Rules also
provide for the static and dynamic ordering of the execution of procedural
information,

An arbitrary number of rules may appear in any ruleset. When present,
rule descriptions appear serially (never recursively), in a ruleset. Rules
usually appear after any declare item descriptions and after any embedded
(interior) ruleset definitions. Unlike the other, topological portions of the
USDL, the order in which rules appear in a ruleset is very important, as the
rules embody procedural information and so the rules in a given ruleset are
(nominally) executed in sequential order. Rule execution starts with the
first rule in a ruleset and continues with subsequence rules in the ruleset
unless redirected by certain executable statements. The purpose behind the
described rule/ruleset organization is to group rules in semantically related
groups and to allow user greater user control of rule search and execution by
use of such context sharing. The common alternative to such rule placement is
to have all the rules in a single, linear database and so require extensive
search and evaluation overhead. While the latter approach is conceptually
simpler, it is regrettably unacceptable for those applications that cannot
tolerate conventional rule based expert systems because of their excessive
time requirements. '

Rules have two main parts: the declaration part and the conditional part.
The declaration part appears first and consists of zero or more declare items
with the same characteristics as ruleset declare items. The conditional part
consists of an expression test followed by a affirmative statement (the "then"
part) optionally followed by an alternative statement (the "else” part. When
the rule is executed, the expression test is evaluated and, if evaluated to Le
true (or nonzero), the affirmative statement is executed. If the expression
test evaluates to false (or zero), the alternative statement is executed (if
present).

A useful convention in the current USDL is to simply use the boolean
constant “"true” in the rule's expression test to unconditional execute the
affirmative statement. It is possible that a future version of the USDL may
allow a condensed version of the above and just allow a compound statement
instead.

3.8.2.1 USDL Semantics: Rulesets - Rules - Declarations

A rule may have zero or more declare items. A rule declare iten
associates a unit of storage with a user specified identifier. The declare
item is available for reference from the point of its definition to the end of
the rule description in which it is defined.

tlere are some rule declare items:

declare q_flag: bcolean;

declare counter: integer;

declare scale_factor: float;

Note that the declare syntax for rule declare items is identical to that

of rulesets and that of systems. The reason for allowing declare item

_36-

descriptions to appear inside of these three forms is to allow for the user
controlled association of names (variable identifiers) with areas of reference
(systems, rulesets, and rules). Because the USDL enforces name scopes for the
above forms (i.e, names may not be referenced outsi:de of their scopes), it is
easier for the system developer to enforce good programming style by reducing
opportunities for inadvertent object references.

3.8.2.2 USDL Semantics: Rulesets - Rules - Expressions

Expressions are groups of identifiers and symbols, assembled according to
specific syntactical rules, that provide for the manipulation of arithmetic
quantities using common mathematical operations. USDL expressions appear in
rules, both as rule test expressions and as general expressions in many of the
available statement kinds. Expression forms in the USDL have been designed to
be very similar to those in conventional programming languages (e.g., Ada and
FORTRAN) to minimize system developer learning requirements.

3.8.2.2.1 USDL Semantics: Rulesets - Rules - Expressions - Literals

The USDL allows for the representation of different types of constant
values. Such values are usually referred to as literals. There are three
type of literals available: boolean constants, float constants, and integer °
constants. Here are some examples of these scalra literals:

boclean: false true
float: 0.0 1.0 389.334 1.0e+6 42.5e-11
integer: 0 1l 412 12442

Note that constant negative literal values are disallowed. However, a
literal integer or literal float, when preceeded by a minus sign, can be
correctly prccessed as an expression with a unary minus (negation operator).

String literals are also allowed by the USDL. Although string literals
are not permitted as parts of expressions, they are used in other contexts in
certain statement kinds. A string literal is a sequence of zero or more
nonjuote chracters delimited by quotes. Here are some examples of string
literals:

R

“"hello there folks"

"

"a long string literal value is okay to use; no length limit"

3.8.2.2.2 USDL Semantics: Rulesets - Rules - Expressions - Variables

A variable in the USDL is an object that is associated with a value such
that the value can be changed. Each variable is of exactly one of three
scalar basetypes: boolean. float, and integer. Variables come in several
classes:

-37-

Class Declared in:

declare 1tem systems, rulesets, rules
block attribute blocks, blocktypes
block line blocks, blocktypes

A declare item is referenced by use of the declare item identifier.

A block attribute is referenced by use of an attribute indication - a
three part construct made up of: the block identifer corresponding to the
block that includes the attribute, a period, and the attribute identifier.
Examples:

block_52.threshold_limit
battery 2.electrolyte_level

A block line can be referenced by use of a block line current value
indication - the block identifier corresponding to the block that includes the
line, a period, and the line identifier. This manner of line value indication
always refers to the present value of a line ("current time minus zero").
Examples:

block_52.output_displacement
hattery 2.output_voltage

A block line can also be referenced by use of a block line history value
indication. This mode of line value indication is similar to the block line
current value mode, except that a history buffer selection suffix is appended.
A history suffix consists of a period, the reserved word "history”", and a
nonpositive integer expression enclosed in brackets. The value of the integer
expression is the number of time periods in the past that corresponds to a
stored history value. A bracketed expression that evaluates to zero indicates
the current line value. A bracketed expression with a value of minus one
indicates the immediately (chronological) preceding line value, and
successively negative indices indicate earlier and earlier line values.
Examples:

block_52.ocutput_displacement.history(0] -- redundant suffix
block _52.cutput_displacement.history(-2] -- two ticks ago
battery 2.cutput_voltage.history[i + (j / 2)] -- expression index

3.8.2.2.3 USDL Semantics: Rulesets - Rules - Expressions - Operators

The USDL supports a wide variety of expression operators that manipluate
boolean, fioat, and integer objects (literals and variables). A USDL operator
is either monadic (one operand, prefix format) or dyadic (two operands, infix
format) and always returns a single value as a result of evaluation.

- 38 -

Table 3.3: USD Language Operators

Monadic Operators:

+ arithmetic affirmation
- arithmetic negation
not boolean negation
Dyadic Operators:

+ arithmetic sum
arithmetic difference

* arithmetic product

/ arithmetic quotient

il arithmetic exponentiation

> relational: greater than

>= relational: greater than or equal
< relational: less than

<= relational: less than or equal

= relational: equal

/= relational: not equal

and boolean product

or boolean inclusive disjunction

xor boolean exclusive disjunction

cand boolean product, conditional second operand evaluation

cor boolean inclusive disjuction, conditional 2nd op evaluation

The order of evaluation follows the usual conventions, and for those
operators that are also present in Ada, the precedence ranking is the same as
in Ada. Parentheses may be used to group expressions for both readability and
to overide default precedence.

The exact rules for expression formation are described in the BNF
specification appendix of this document.

3.8.2.3 USDL Semantics: Rulesets - Rules - Statements

Statements in the USDL represent various kinds of actions that can be
performed during system modeling. Each statement kind has its own syntax and
semantics. Table 3.4 presents a list of available ruleset statements in the
USD language. Each statement kind (except assignment statements) starts with
a reserved word for that kind. A statement is terminated by a semicolon.
Multiple statements may be grouped together for (nominally) sequential
execution by using a block statement.

-39_

Table 3.4: USD Language Ruleset Statements
Statement Function
Accept Bring external data into system model
Advance Advance history buffers by one step
Assignment Evaluate expression and assign to a variable
Call Transfer control to a descendent ruleset
Compound Associate an arbitrary number of statements
Display Export data outside the model
Elaborate Transfer control to subsystem ruleset
Exit Terminate user system description
If-then-else Control conditional execution
Null Perform no action
Pulse Copy output line value to connected input lines
Read Read a value from an external file
Reset Reset all scalar values in system model
Return Terminate ruleset execution and return to caller
Write Write a value to an external file

3.8.2.3.1 USDL Semantics: Rulesets - Rules - Accept Statement

An "accept” statement is used for bringing data values into the system
model from a scurce outside of the mcdel. During the interactive execution of
the RSP, this external source is the standard input (console) of the
environment; when running in an embedded system, the accept statement is
ignored.

An accept statement takes one of the two following forms:

accept <variable> ;
accept <prompt-string> <variable> ;

The action of an accept statement (when running interactively) is to
pause USD interpretation and request a value of the user. In the first form,
a prompt character ">" is printed on the console and the RSP waits for the
user to tvpe in a scalar value of a basetype appropriate for the <variable>.
After a valid scalar literal is entered, the RSP assigns the value to the
<variakle>. In the second form, the <prompt-string> is printed on the console
on its own line before the user is prcmpted for a value for the <variable>.

Here are some examples of the accept statement:
accept "Enter a value for voltage: "
accept "Retry ccunt: " k_val;

accept connect_status;

voltage_2;

3.8.2.3.2 USDL Semantics: Rulesets - Rules - Advance Statement

The "advance" statement provides control over the advancement of values
aiong the history buffers asscciated with the lines of blocks. There is only
one form of the advance statement:

-‘G-

advance ;

When executed, the advance statement causes all history buffers in the
entire system being modeled to be advanced by one step. This action is
intended for the writing of "simulate" rulesets to model time advancement.
The advancement of a history buffer associated with a line causes each value
to be moved towards the "past” by one time unit; a value at position P will be
moved to position (P - 1). Values that are at the least recent position in
the buffer are lost. The value at the most recent position of the buffer is
cleared (becomes zero or false as appropriate).

3.8.2.3.3 USDL Semantics: Rulesets - Rules - Assignment Statement

An assignment statement is used to calculate a value from an expression
and to assign the result to a variable. There is a single form:

<variable> := <expression> ;

When executed, the assignment statement evaluates the <expression> on the
right side of the assignment symbol ":=" and stores the result in the storage
indicated by by the <variable> on the left side of the assignment symbol.
Note that allowable variables include declare item identifiers, line values,
and block attribute values. Here are some examples of assignment statements:

x0 := 0.0;

delta_y := yl - yC;
block_l19.voltage_out := block_l9.voltage_in * block_l9.scaling;

3.8.2.3.4 USDL Semantics: Rulesets - Rules ~ Call Statement

The "call” statement is used to transfer control to a descendent ruleset
in the same system. When the descendent ruleset terminates, control is
returned to the point following the call. Execution of the call statement
does not change the current system level being modeled (compare with the
"elaborate” statement). There is a single form of the call statement:

call <ruleset-id> ;
Here are some examples:
call load_inputs;

call calculate_results;
call store_outputs;

3.8.2.3.5 USDL Semantics: Rulesets - Rules - Compound Statement

The compound (or block) statement is used to associate an arbitrary
number of statements for (nominally) sequential execution. A compound
statement has the form:

begin

<statement>
end ;

-41_

Here are some examples:
begin
accept "Enter scale: scale;
s := (yl - y0) / (x1 - x0) " scale;
call put_slope;
end;
begin
call rsl;
begin
call rsx_a;
call rsx_b;
end;
end;

3.8.2.3.6 USDL Semantics: Rulesets - Rules - Display Statement

The "display" statement is used for bringing data values from the system
model to a destination cutside of the model. During the interactive execution
of the RSP, this external source is the standard output (console) of the
environment; when running in an embedded system, the display statement is
ignored.

A display statement takes one of the three following forms:

display <label-string> ;
display <expression> ;
display <label-string> <expression> ;

The action of the display statement, when running interactively, is to
print the <label-string> (when present), followed by the result of evaluating
the <expression> (when present). Here are some examples of the display
statement:

display "Now entering phase 3.";

display block_l4.line_3.history[-5];
display "Subsystem W fault indication: " flag_a or flag_b;

3.8.2.3.7 USDL Semantics: Rulesets - Rules - Elaborate Statement

The "elaborate” statement provides the only means by which the subsystem
representation of blocks, when present, can be expanded for modeling. There
is a single form of the elaborate statement:

elaborate <block-id> using <ruleset-id> ;

The action of an elaborate statement is to transfer control to the
ruleset designated by <ruleset-id> in the system associated by the subsystem
resource in the block designated by <block-id>. Of course, to work properly,
the <block-id> block must have a subsystem representation and that subsystem
must include a directly enclosed ruleset with the name of <ruleset-id>. Wwhen
the indicated ruleset concludes execution, control is returned to the
statement following the elaborate statement. In this manner, the elaborate
statement is similar to a call statement. However, the elaborate statement

_42-

also changes (for the duration of its indicated ruleset execution) the system
associated with the "current system scope”

Here are some examples of the elaborate statement:

elaborate block_49 using diagnose;
elaborate part_4_b using simulate;
elaborate converter_24 using dump_variables;

The action of elaborate statement execution also provides for moving data
between the enclosing system (the one containing the elaborate statement) and
the enclosed system (the one used as the subsystem representation by the block
being elaborated). Wwhen an elaborate statement executes, all of the scalar
values associated with the current values of the input lines of the elaborated
block are copied into the associated external items in the enclosed system,
and then the indicated ruleset is called. When the indicated ruleset
concludes execution, all of the scalar values associated with the current
values of the output lines of the elaborated block are copied from the
associated external items in the enclosed system.

This one-to-one corresondance of lines in the elaborated block and

external items in the subsystem is the basic formal/actual parameter mechanism
for data transmission betreen system levels.

3.8.2.3.8 USDL Semantics: Rulesets - Rules - Exit Statement

The "exit” statement terminates the modeling of the user system
description and control exits to the enclosing environment. When run
interactively, such termination is indicated to the user via the console. The
modeling is also terminated when the first ruleset elaborated terminates
exception. There is only one form of the exit statement:

exit ;
An exit statement may appear in any ruleset and still have the same

action regradless of placement. The intended use of the exit statement is to
provide a means of model termination when exceptional conditions occur.

3.8.2.3.9 USDL Semantics: Rulesets - Rules - If Statement

The "if" statement in the USDL is like a rule within a rule and is used
for controlling conditional execution. An if statement has two forms:

if <expression>
then <affirmative-statement>
end if;
if <expression>
then <affirmative-statement>
else <alternative-statement>
end if;

When an if statement is executed, the <expression> is evaluated first.

If the result of the evaluation is nonzero (or true), then the <affirmative-
statement> is executed. If the result is zero (or false) and the

-43-

<alternative-statement> is present (second form), then the <alternative-
statement> is executed. Compound statements can be used to group multiple
statements in either the <affirmative-statement> or the <alternative-
statement>.

Here are some examples of the if statement:

if flag
then call rs_4;
end if;
if (delta_s / delta_t) =0
then display "“Speed zero” ;
else
begin
speed := (delta_s / delta_t) * fudge_factor - adjustment;
display "Speed: " speed;
end;
end if;

3.8.2.3.10 USDL Semantics: Rulesets - Rules - Null Statement

The "null” statement performs no action. It is intended to be used as a
placeholder for system mcdels under development to indicate as yet unwritten °
executable code. It has a single form:

null ;

3.8.2.3.11 USDL Semantics: Rulesets - Rules - Pulse Statement

The pulse statement is used to help automate the simulation of a system
model by copying all the current values of the output lines of a designated
block to the appropriate input lines of connected blocks. The pulse statement
has a single form:

pulse <block-id> ;

When the pulse statement is executed, the value of each output line of
the indicated block is copied into the corresponding inputs of connected
blocks. Note that because more than one path may be connected to an output
line, more than one copy of the output value is made. Here are some examples:

pulse input_pads;

pulse block_18;

3.8.2.3.12 USDL Semantics: Rulesets - Rules - Read Statement

The "read” statement is used to read a value from an external file to the
system model. All read statements read from the same file (named "dfr"), and
each read statement reads a single value in text format reading a single text
line in the input file. There are two forms of the read statement:

read ;
read <variable> ;

- 44 -

The first form actually transfers no value but is used to read in a
single text line (which is ignored). The intent here is to provide a means of
skipping over commentary lines in the input file. The second form also reads
in a single text line and causes the value of the scalar literal on that line
to be assigned to the indicated <variable>.

Here are some examples:
read;

read delta_t;
read block_4196.1nversion_attribute;

3.8.2.3.13 USDL Semantics: Rulesets - Rules - Reset Statement

The "reset” statement provides a way to reset all of the scalar values in
the system model. There is a single form:

reset ;

When a reset statement is executed, all model values are reset: all
declare items, block line values, and block line history buffer values are all
cleared. All block attribute variable values are cleared, unless a default
clause 1s present; if so, the attribute variable value is reset to the default -
value. A booclean variable is cleared by setting it to the value false;
integer and float variables are cleared by setting them to zero.

3.8.2.3.14 USDL Semantics: Rulesets - Rules - Return Statement

The “"return” statement causes a ruleset to terminate execution and return
to its caller. If the ruleset was invoked using a call statement, execution
is returned to the point following the call statement in the calling ruleset,
and the current level of system modeling is unchanged - the system level
remains the same. If the ruleset was invoked using an elaborate statement,
execution is returned to the point folliowing the elaborate statement in the
elaborating ruleset in the enclosing system, and the current level of system
access is moved one step closer to the top level; a return to an elaboration
while already at the top level (implied by a ruleset elaborated as a direct
command to the RSP), terminates the system model.

There is a single form for a return statement:

return ;

Rulesets also have implicit returns present. Each ruleset, upon
execution of 1ts last available statement, will return to its invoker.
Explicit return statements are provided so that a ruleset may return early,
and so not execute all of its rules, in order to same processing resources
when appropriate.

3.8.2.3.15 USDL Semantics: Rulesets - Rules - Write Statement

The “write"” statement is used to write a value from the system model to
an external file. All write statements write to the same file (named "dfw"),

..45-

and each write statement writes a single value in text format on a single text
line in the output file. There are two forms of the write statement:

write ;
write <expression> ;

The first form actually transfers no value but is used to write out a
single empty text line. The intent here is to provide a means of inserting
blank lines in the output file to enhance readability. The second form also
writes out a single text line and causes the value of the indicated
<expression> to be written out on the single output text line.

Here are some examples:
write;

write mass * velocity;
write block_4196.inversion_attribute;

-‘6_

4. RULE SET PROCESSOR USAGE

One goal of the RSP I (Rule Set Processor Prototype) effort has been the
relative ease of use of the program. The motivation here is to enhance
productivity by making the software tool solution simpler than the system
model problem so that the developer may willingly spend more time on the
problem than on the solution. Since an over-elaborate tool solution may
require extensive training for a tool such as the RSP to be useful, it should
be simple enough to learn to use.

The RSP prototype has been implemented in the style of a conventional
programming language interpreter/compiler. Operation of the RSP itself is
therefore quite simple (and is similar to operation of commonly available
language processors). The result of this decision is to emphasize the role of
the USDL (User System Description Language) itself along with the developer's
ability to express a system model in terms of the USDL. Because the USDL was
carefully designed to represent conventionally specified systems (blocks +
interconnections + subsystem abstraction), a developer has a relatively simple
task of transferring the topological aspects of a system model into the USDL.
Although the procedural information portion of a system model actually does
require some programming using rulesets (structures analogous to procedures),
this programming is not too much different from that of frequently used block
structured programming languages (e.g., C, Pascal, Ada).

In addition to ease of use, another important reason for implementing the
RSP in the style of a conventional language processor is that the USDL formal
language specification, required for system description, alsoc enforces a
useful formalism upon the expression of system models. As system models
require a formal description that is realized external to the RSP software,
the future modeling effort is not necessarily tied to the fate of a particular
RSP implementation. For example, it would be possible to develop other
software modeling tools to work in conjunction with the RSP (e.g., graphical
interfaces, alternative debugging tools) without having to re-specify the
system model itself. Because the USDL supports (and encourages) usage of
component libraries (resuable system models), there is a potentially high
return in investing time in using a formal language description of dynamic
systems.

4.1 System Model Development Cycle

The first step in the system model development cycle is to study the
system to be described. It is not important at this stage of the cycle to
fully specify the entire system, even if such knowledge is available as would
be the case in an already existing system. What is important is to organize a
complex system description in terms of a nested hierarchy where much of the
lower level details are (temporarily) hidden by a high level description. An
appropriate high level description may, for instance, consist of less than a
dczen modules along with their interconnections. Those blocks at one level in
the hierarchical arrangement can later be represented as entire subsystems at
the immediately lower level; these subsystem descriptions may be supplied at a
later time. The goal here is to use the USDL's power of nested representation
to hide low level details so as to avoid having such details overwhelm the
entire modeling effort.

_47-

The next step in modeling a system is to examine any available component
libraries for resuable subsystem descriptions. The USDL allows any USDL
system model to be used as a component in a larger and more complex model.
For example, an aerospace engineer may have a library composed of limiters,
multipliers, filters, notch filters, actuators and sensors; a mechanical
engineer may use a component library stocked with various models of controls,
motors, linkages, and power supplies; a structures engineer may have a custom
library built up from previous work filled with system models of struts,
beams, and strain gauges. A proper set of component libraries may go far in
relieving the system developer of repetitive and error prone wbrk.

The third step of the system modeling task is to write (using the USDL) a
first attempt at a USD (User System Description). This first try should use
only the highest layer of the modeled system along with any usable library
subsystems. After the USD is written, it can be run through the RSP prototype
to detect and report various errors even though not enough information may be
present for simulation or diagnostic activities.

Once this high level topographical description is proved syntactically
correct, the fourth step of incorporating procedural information in the USD.
As stated elsewhere in this document, there are three designated rulesets
(procedures) available for direct interpretation at the highest system level:
"simulate” (intended for simulation), "preset” (intended for reading in a
system state from a data file), and "diagnose” (intended for diagnostic
activities). At this stage in the model cycle, it would be prudent to first
write the procedural information required for system state presetting and
simulation and insure its proper functioning before implementing diagnostic
knowledge.

The fifth step is to try interpreting the system model simulation using
the RSP, and continuing refinements in the model based upon observations of
its behavior. As more confidence in the correctness of the model is gained,
the fidelity of the mcdel can be improved with the expansion/substitution of
various components throughout the model with lower level subsystem
representations. Ultimately, every component in the model's topological
knowledge is either atomic (undivisible) or represented by a subsystem;
additionally,; the entire system has simulation code present and tested.

Once a system model is established with a complete topography and
complete simulation procedural knowledge, the sixth stage of model development
is to provide the system model with diagnostic procedural knowledge. For each
system and component in the model, diagnostic ruleset code in written to
perform tests upon functions for that part of the model. In order to test the
diagnostic code, the developer can (purposely) introduce faults in the system
simulation. Such introduction can be performed by various techniques: reading
in a faulty system state via a preset operation, writing deliberate (and
temporary!) faults in the system topography or simulation information, or by
providing for the interactive prompting for critical information during
simulation. (An obvious extension to the RSP is to have it, upon command,
introduce errors automatically throughout the simulation. This error
injection would be either random or uniform dependent upon user command, and
the results of the diagnostic information performance would be tabulated
automatically.)

-‘8-

Now armed with a well-tested system model, the developer should now
review the model for any potentially reusable components, and to take such
components and add them to the system library for future application.

The final step in the USD development cycle (not yet supported by the RSP
prototype), is to use the RSP to translate the USD into a conventional
programming language in a manner suitable for porting the model to an embedded
computer environment., Under this stage of the development, the standalone
interpreted/compiled version of the RSP would be tested, first, using a real-
time simulation generated sensor data, and fourth, using the embedded program
in a flight test.

4.2 System Model Interpretation

The RSP prototype user interface includes three commands used to activate
system model interpretation. Each of these commands, "simulate”, "preset”,
and "diagnose"”, initiate interpretation of the ruleset of the same name in the
outermost level of the system model. Other than starting the indicated
ruleset interpretation, the RSP treats each of the above user commands in the
same fashion and so it not "aware” as to the particular function of the
ruleset. The three ruleset names chosen were picked to establish a
programming convention and have no other significance.

During the interpretation of these rulesets, interaction with the user is
allowed, but is not necessary. The USDL has statements that perform input and
ocutput of data; to and from both the console and external files. These
statements can be incorporated into any ruleset throughout the system model
according to the desire of the developer.

The intented purpose of the "simulate” ruleset is to perform a one step
simulation of the entire system. The interpretation of the "simulate” ruleset
should: take the values of system's inputs, simulate each component, propagate
results in the direction from internal input connections to internal output
connections, and finally assign values to the system model external outputs.
In multilevel systam models, each subsystem should have its own "simulate"”
ruleset. When the system model is translated and ported to an embedded
environment, the “simulate” ruleset code is no longer needed since the
physical envirorment now supplies actual values.

The intended purpose of the "preset” ruleset is provide an alternative
means of initializing the scalar values of a system model. The idea is to use
the "preset” ruleset to read values from an external file instead of producing
them via simulation. Use of the "preset” method can then help test out the
diagnostic ruleset code by providing consistent values for development
purposes. In multilevel system models, each subsystem that requires such
initialization should have its own "preset” ruleset. The "preset” ruleset,
like the "simulate"” ruleset, would be removed upon porting of the system model
to an embedded environment.

The intended purpose of the "diagnose” ruleset is to provide
"intelligent"” diagnosis. PFor a multilevel system model, a "diagnose” ruleset
is required for each subsystem within the model for which diagnosis is to be
performed. Unlike the "simulate” and "preset"” rulesets, the "diagnose”
ruleset should be preserved upon porting to the application environment so as
to provide real time diagnostic ability.

- 49 -

4.3 USD Simulation Strategy

The basic technique employed for designing simulation rulesets is the
input-to-output, bottom-up approach. Each system in the system model should
have a "simulate"” ruleset, and this ruleset should only be concerned with
activities for that system and no other system. Fortunately, once a
simulation ruleset is written for a given system (and then incorporated into
that system), that system can then be used repeatedly as a subsystem in more
complex systems.

Here is the basic algorithm for system simulation (using a psuedocode
listing):

procedure simulate
/* This routine is called first for the root system and later for
each subsystem in a depth first manner. This depth-first
search insures that the simulation of the components is
performed in the correct order so that all information
generated at the lower levels is made available to the higher
levels of the simulation. */
begin
/* Handle system inputs */

for each external carrying a value into the system do
begin

propagate input value

from external connection
to input line of of the appropriate component;

end;

/* Handle components (blocks) */

while unsimulated blocks remain do
begin

for each unsimulated block do
begin

/* process only blocks with complete inputs */

if the block has valid data for all of inputs then
begin

/* check for recursion */
if the block has a subsystem representation then
/* recurse and process lower level */

elaborate the block using the simulate ruleset;

- 50 -

else

/* no further recursion */
hand-simulate the block;

end if; /* subsystem exists test */
/* propagate outputs */

for each cutput line of the block
propagate the line value to the next block;

/* done with this block */
mark the block as simulated;

end; /* block simulation */
end if; /* all inputs valid */

end; /* for loop */
end; /* while loop */
/* Handle system outputs */

for each external carrying a value out of the system do
begin

propagate output value
from output line of of the appropriate component
to external connection;

end;

end; /* simulate */

4.4 USD Diagnosis Strateqy

As 10 supplying of such intelligence, the major responsibility resides
with the developer. The USDL and its RSP interpreter provide a considerable
level of support for its system model implementation (topological/procedure
knowledge fusion, built-in block structured programming language, forward
chaining rules, etc.), but it is up to the user to employ these tools
properly.

RSP I leaves the writing of the specific¢ diagnostic ruleset code to the
developer. That is, RSP I provides the environment so that the application
domain expert can select the appropriate procedural rules from the wealth of
algorithms developed for BIT and fault diaghosis in dynamic systems (Pau
1981), (Mozgalevskii 1978), (Willsky 1980), and (Basserville 1981). However,
as is the case with simulation ruleset code, diagnostic code for a given
system only has to be written once and can then be duplicated and reused for
other system models. Also, both diagnostic and simulation procedural
information for subsystems can be written by specialists and then later used

-sl-

by generalists without requiring the generalists to be fully familiar with the
lower level details.

Diagnosis of a system begins with the "diagnose” command at the user
interactive interface. Diagnostic interpretation should be performed only
when the system model has a full set of valid values as will be the case after
a complete simulation or preset. The complete interpretation of the
"diagnose” ruleset is assumed to take place between successive time sample
instants using a "frozen" set of values that do not vary during the diagnosis
pericd.

A useful concept in writing diagnostic code is idea of the "consistency
relation” check. A consistency relation is some set of arithmetic operations
performed on the inputs and outputs of a block that results in a determination
of fault for that block (e.g., a wrap-around BIT, a parity check or a
statistical hypothesis test). If a consistency relation fails for a block, it
can be assumed that there is a failure of that block (or its subsystem
representation, if any). If a consistency relation succeeds for a block, it
can be assumed that the subsystem representation for that block (if any) is
functioning correctly. In the case where it is not feasible to construct such
a consistency check at a high level it may be necessary to instead write
multiple consistency checks at a lower level and then combine the results of .
these checks for a higher level decision.

The goal of achieving high speed diagnostic capability can be met by
designing consistency relation checks for the higher level components; when
these checks are passed, it allieviates time consuming examination of checks
at lower levels.

It may not be possible to write concise fault/no-fault consistency check
ruleset code for each component type in a system model. For many real world
components, usual consistency check methods produce only probabilistic
results, and it is the responsibility of the developer to combine these
results. The USDL supports a full set of operations upon probability values
(using floating point variables) thus allowing the user to perform customized
conditional analysis.

For certain time critical applications, circumstances may occur so that
it may not be possible to run all of the desired diagnostic code in the
limited time available. For these applications, a family of consistency
checks may be written such that the quicker running (more general) checks are
used first and slower running (more specific) checks are used should time
remain available. This graded strategy helps ensure that at least some
diagnostic results are generated even if the interval allowed for diagnosis is
insufficient for the circumstances for a particular cycle. The reasoning here
is that it is better to derive a general, partially useful result instead of
no result at all,

The exact details of a diagnostic ruleset will vary among differing
systems. However, for system models with multiple levels, a top-down
selective approach would be appropriate for fixed time interval diagnosis.
This approach, unlike the bottom-up full evaluation approach used for
simulation, will spend time working on only those subsystems where problems
are suspected.

- 82 -

Here is a suggested algorithm for system diagnosis (using a psuedocode
listing):

procedure diagnose

/* This procedure is called first at the root level of the system
model, and may be called recursively at lower system levels as
required. The goal is to expend effort at the level of
invocation first and to only elaborate subsystems for
diagnosis when consistency relation checks at the level of
invocation fail and further analysis is indicated. */

/* The diagnosis here is a very simple one with an interest
in only a certain fail/no-fail status. Most real world
applications would use the standard rules for combination of
certainty factors to produce a more useful result. */

begin

/* 1If called at the root system level, clear the failure site
global variable. This variable holds the name of the first
ccmponent (if any) that fails a consistency check. */

if (called at root level) then
failure_site := nowhere;
end if;

/* Should diagnosis time exceed the allocated interval, we can
assume an interrupt will occur. The value of this
variable will 1indicate whether or not enough time was
available for a complete diagnosis. */

if (called at root level) then
diagnosis_completed := false;
end if;

/* Perform diagnosis at this level. Elaborate subsystems only
when necessary. */

while (failure_site = nowhere) and (undiagnosed blocks remain) do
begin

/* Select the block among the undiagnosed blocks with the
highest diagnostic figure-of-merit. This figure is given
by the quotient of the probability of failure divided by
the expected amount of time required for consistency
relation checking for that block. This approach will
minimize the overall diagnosis time; it will not affect
the accuracy of the diagnosis if enough time is available
for full diagnostics. */

current_block := highest_merit(undiagnosed blocks);
/™ Mark component as diagnosed */

set_diagnosed(current_block);

-53_

/* Perform the consistency check on the current block. */
fault_detected := consistency_check_block(current_block);
/* Process according to detection status. */
if (fault_detected) then
/* Inconsistency - check for subsystem representation. */
if (subsystem_exists(current_block)) then
/* Recursively activate a lower level diagnostic ruleset.
This recursive scan should eventually detect a fault
at a lower level; the location will be reported back
in the global variable "failure_site”. */
elaborate subsystem of the current_block with diagnose;
/* Check to see if detection was false alarm. */
if (failure_site = nowhere) then
report(“"Warning: consistency check fault”);
report("At location: ", current_block);
end if;
else
/* Pault detected of a simple block. */

failure_site := current_block;

end if; /* subsystem exists test */
end if; /* consistency check failure test */

end; /* block scan */
/* Diagnosis completed, adjust global completion indicator. */
if (called at root level) then

diagnosis_completed := true;

end if;

end; /* diagnose */

4.5 RSP Example System

system binary_adder_ system is (see Figures 4.1 and 4.2)

-- This system is used to model a full binary adder. A binary adder is a
-- computational element that takes two input bits along with a carry-in
-- bit and produces a single bit sum and a single bit excess (carry-out).
-- This binary adder system directly encloses four modules to perfores its
-- function. The value module indicates input values (using lights), the

-54-

-- sum generation module produces the single bit sum, the excess generation
-- module produces the single bit excess (carry out), and the result system
-- indicates (also using lights) the results of the addition.

-- Here is the truth table that describes this system:

-- adder_a adder_b adder_c¢ ------ > adder_s adder x
-- false false false false false
-- true false false true false
-- false true false true false
-- true true false false true
-- false false true true false
-- true false true false true
-- false true true false true
-- true true true true true

begin

-- The following global varaible, "failure”, is used to indicate a

~- detected failure at any level. This variable is initially cleared
-- by the root level diagnose ruleset and is set only if a problem is
-- detected.

declare failure: boolean;

system and_system is (see Figure 4.3)

-~ This system is used to represent an AND gate. An AND gate takes two
-- binary inputs and produces a single binary output that represents the
-- logical product of the inputs.

~- This system is independent of all other systems.

-- Here is the truth table for this system:

-- a_inl a_in2 ------ > a_out
-- false false false
- true false false
-- false true false
- true true true
begin

block anchor is general

begin
line opl is mode input basetype boolean;
line op2 is mode input basetype boolean;
line result is mode output basetype boolean;

end anchor;

external a_inl is anchor.opl;

external a_in2 is anchor.op2;
external a_out is anchor.result;

- §§5 -

ruleset simulate is
begin
rule s_1 is
begin
if true then:
anchor.result := anchor.opl and anchor.op2;
end if;
end s_1;
end simulate;

ruleset diagnose is
begin
rule d_1 is
begin
if (anchor.result /= anchor.opl and anchor.op2) then
begin
display "failure detected: and_system";
failure := true;
return;
end;
end if;
end d_1;
end diagnose;

end and system;

blocktype and_mocdule_type is general
begin
line a_inl is mode input basetype boolean;
line a_in2 is mode input basetype boolean;
line a_out is mode output basetype boolean;
subsystem and_system;
end and_module_type;

system fork_system is (see Figure 4.4)

-- This system is used to represent a forking connection. Each of the
-~ two boolean outputs is set to the value of the single boolean input.

-~ This system is independent of all other systems.

-- Here is the truth table for this system:

- £ in --—--- > £l £2
-- false false false
- true true true
begin

block anchor is general

begin
line operand is mode input basetype boolean;
line resultl is mode output basetype boolean;
line result2 is mode output basetype boolean;

end anchor;

-56-

external £ _in is anchor.operand;

external fl1 is anchor.resultl;
external £2 is anchor.result2;

ruleset simulate is

begin
rule s_1 is
begin
if true then
begin

anchor.resultl
anchor .result2 :
end;
end if;
end s_1;
end simulate;

ruleset diagnose is
begin

rule d_1 is
begin

anchor .operand;
anchor .operand;

1f (anchor.resultl /= anchor.operand) then

begin

display "failure detected

failure := true;
return;
end;
end if;
end d_1;

rule d_2 is
begin

fork_system (resultl)”;

if (anchor.result2 /= anchor.operand) then

begin

display "failure detected: fork system (result2)”;

failure := true;
return;
end;
end if;
end d_2;

end diagnose;

end fork_system;

blocktype fork_module_type is general

begin

line f_in is mode input basetype boolean;
line f1 is mode output basetype boolean;
line £2 is mode output basetype boolean;

subsystem fork system;

end fork_module_type;

system indicator_system is (Figure 4.5)

- 57 -

-- This system is used to represent an indicator lamp. This lamp is lit

-- if and only if the single boolean input is true.

~- output is the same value as the input.

-- This system is independent of all other systems.

-- Here is the truth table for this system:

-- indicator_in ------ > 1indicator_out
-- false false

- true true
begin

block anchor is general

begin

attribute light is basetype boolean;

line operand is mode input basetype boolean;
line result is mode output basetype boolean;

end anchor;

external indicator_in
external indicator_out

ruleset simulate is
begin
rule s_1 is
begin
if true then
begin
anchor .result :
anchor.light :=
end;
end if;
end s_1;
end simulate;

ruleset diagnose is
begin

rule d_1 is
begin

if (anchor.result /= anchor.operand) then

begin

is anchor.operand;
is anchor.result;

anchor .operand;
anchor .operand;

The single boolean

display "failure detected: indicator_system (result)”;

failure := true;
return;
end;
end if;
end d_1;

rule d_2 is
begin

if (anchor.light /= anchor.operand) then

begin

- 58 -

display “failure detected: indicator_system (light)";
failure := true;
return;
end;
end if;
end d_2;

end diagnose;
end indicator_system;

blocktype indicator_module_type is general
begin .
line indicator_in is mode input basetype boolean;
line indicator_out is mode output basetype boolean;
subsystem indicator_system;
end indicator_module_type;

system or_3_system is (see Figure 4.6)

-- This system is used to represent an OR gate with three inputs. An OR
-- gate with three boolean inputs produces the logical sum of its inputs
-- and sets the single boolean output to this value.

-- This system is independent of all other systems.

-- Here is the truth table for this system:

-- or_3_inl or_3_in2 or_3_in3 ------ > or_3_out
- false false false false
-- true false false true
- false true false true
-- true true false true
- false false true true
-- true false true true
- false true true true
- true true true true
begin

block anchor is general

begin
line opl is mode input basetype boolean;
line op2 is mode input basetype booclean;
line op3 is mode input basetype boolean;
line result is mode output basetype boolean;

end anchor;

external or_3_inl is anchor.opl;
external or_3_in2 is anchor.op2;
external or_3_in3 is anchor.op3;
external or_3_out is anchor.result;

ruleset simulate is
begin

- 59 -

rule s_1 is
begin
if true then

anchor.result := anchor.opl or anchqt.opz or anchor.op3;

end if;
end s_1;
end simulate;

ruleset diagnose is
begin
rule d_1 is
begin

if (anchor.result /= anchor.

begin

display "failure detected:

failure := true;
return;
end;
end if;
end d_1;
end diagnose;

end or_3_system;

opl or anchor.op2 or anchor.op3) then

or_3_system";

blocktype or_3 _module_type is general

begin

line or_3_inl is mode input basetype boolean;
line or_3_in2 is mode input basetype boolean;
line or_3_inl is mode input basetype boolean;
line or_3 out is mode output basetype boolean;

subsystem or_3_system;
end or_3 module_type;

system xor_system is (see Figure 4.7)

-~ This system is used to represent an XOR gate. An XOR gate takes two
-- binary inputs and produces a single binary output that represents the
~- exclusive-or (either but no both) of the inputs.

-=- This system is independent of all other systems.

-- Here is the truth table for this system:

-- xor_inl xor_in2 ------> xor_out

- false false
- true false
- false true
- true true
begin

block anchor is general
begin

false
true
true
false

line opl is mode input basetype boolean;
line op2 is mode input basetype boolean;

- 60 -

line result is mode output basetype boolean;
end anchor;

external xor_inl is anchor.opl;
external xor_in2 is anchor.op2;
external xor_out is anchor.result;

ruleset simulate is
begin
rule s_1 is
begin
if true then
anchor.result := anchor.opl xor anchor.op2;
end if;
end s_1;
end simulate;

ruleset diagnose is
begin
rule d_1 is
begin
if (anchor.result /= anchor.opl xor anchor.op2) then
begin
display “failure detected: xor_system";
failure := true;
return;
end;
end if;
end d_1;
end diagnose;

end xor_system;

blocktype xor_module_type is general

begin
line xor_inl is mode input basetype boolean;
line xor_in2 is mode input basetype boolean;
line xor_in3 is mode input basetype boolean;
line xor_out is mode output basetype boolean;
subsystem xor_system;

end xor module_type;

system value_system is (see Figure 4.8)
begin

block indicator_module a is type indicator_module_type;
block indicator_module b is type indicator_module_type;
block indicator_module_c is type indicator_module_type;

external val_in_a is indicator_module_a.indicator_in;
external val_in_b is indicator_module_b.indicator_in;
external val_in_c is indicator_module_c.indicator_in;
external val out_a is indicator_module_a.indicator_out;
external val out b is indicator_module_b.indicator_out;
external val out ¢ is indicator_module_c.indicator_out;

-61-

end value_system;

system result_system is (see Figure 4.9)
begin

block indicator_module a is type indicator_module_type;
block indicator_module b is type indicator_module_type;
block indicator_module ¢ is type indicator_module type;

res_in_a is indicator_module_a.indicator_in;
res_in b is indicator_module_b.indicator_in;
res_in_c is indicator_module_c.indicator_in;
res out_a is indicator_module a.indicator_out;
res_out b is indicator_module_b.indicator_out;
res_out_c is indicator _module_c.indicator_out;

external
external
external
external
externail
external

end result_system;

systelm Sum_generation_system is (see Figure 4.10)
begin

block xor_module_ 1 is type xor_module_type;
block xor_module_2 is type xor_module_type;

path from xor_module_l.xor_out to xor_module_2.xor_inl;
external sg_in_a is xor_module_l.xor_inl;
external sg_in b is xor_module_l.xor_in2;
external sg_in_c is xor_module 2.xor_in2;

end sum_generation_system;

systel excess_generation_system is (see Figure 4.11)
begin

block
olock
bleck

fork_module_l is type fork_module_type;
fork_module 2 is type fork_module_type;
fork_module 3 is type fork_mcdule_type;

block
block
block

and_module 1 is type and_module type;
and module 2 is type and_module_type;
and module_ 3 is type and_module_type;
block or_3 module is type or_3_module_type;

fronm

path
path

path
path

path
path

fork_module 1.f1
from fork_mcdule_1.£2
from
from

fork_module_2.f1
fork_module_2.f2

from
from

fork_module_3.f1
fork_module 3.f2

to and_module_2.a_inl;
to and_module_3.a_inl;

to and_module_l.a_inl;
to and_module_3.a_in2;

to and_module_l.a_in2;
to and_module 2.a_in2;

external eg_in_a is fork_module_l.f_in;
external eg_in_b is fork_module_2.f_in;

- 62 -

external eg_in_

c is fork_module_3.f_in;

external eg_out is or_3 _modulé.or_3_out;

end excesS_generation_system;

block value_module is general

begin

line val_in_a is mode input basetype boolean;
line val_in_b is mode input basetype boolean;
line val_in_c is mode input basetype boolean;

line val_out_a
line val_out b
line val_out_c

is mode ocutput basetype boolean;
is mode output bhasetype boolean;
is mode output basetype boolean;

subsystem value system;
end value_module;

block result_module is general

begin

line res_in_s is mode input basetype boolean;
line res_in_x is mode input basetype boolean;

line res_out_s
line res_out_x

is mode output basetype boolean;
is mode output basetype boolean;

subsystem result_system;
end result_module;

block sum_generation_module is general

begin

line sg_in_a is mode input basetype boolean;
line sg_in_b is mode input basetype boolean;
line sg_in_c is mode input basetype boolean;

line sg_out is

mode output basetype boolean;

subsystem sum_generation_system;
end sum_generation_module;

block excess_generation module is general

begin

line eg_in_a is mode input basetype boolean;
line eg_in_b is mode input basetype boolean;
line eg_in_c is mode input basetype boolean;
line eg_out is mode output basetype boolean;
subsystem excesS_generation_system;

end excess_generation _module;

external adder_a
external adder b
external adder c
external adder_s
external adder_x

~-- The following
ruleset simulate
begin
rule s_1 is
begin

is value_module.val_in_a;
is value_module.val_in_b;
is value_module.val_in c;
is result_module.res_out_s;
is result_module.res_out_x;

ruleset handles simulation at the root level.

is

63

if true then

begin
elaborate value_module using simulate;
elaborate sum_generation_module using simulate;
elaborate excess_generation _module using simulate;
elaborate result_module using simulate;

end;

end if;

end s _1;
end simulate;

-- The following ruleset handles diagnosis at the root level.

ruleset diagnose is

begin

rule diagnose_setup is
begin
if true then
failure := false;
end if;
end diagnose_setup;

rule check_value_module is
begin
if (not failure) then
begin
elaborate value_module using diagnose;
if (failure) then
display "failure detected: adder (value_module)”;
end if;
end;
end if;
end check_value_module;

rule check_sum generation_module is
begin
if (not failure) then
begin
elaborate sum generation_module using diagnose;
if (failure) then
display "failure detected: adder (sum_generation_module)"”;
end if;
end;
end if;
end check_sum_generation_module;

rule check_excess_generation_module is
begin
if (not failure) then
begin
elaborate excess_generation_module using diagnose;
if (failure) then
display “"failure detected: adder (excess_generation_module)”;
end if;

-6‘-

end;
end if;
end check_excess_generation_module;

rule check_result_module is
begin
if (not failure) then
begin
elaborate result_module using diagnose;
if (failure) then
display "failure detected: adder (result_module)";
end if;
end;
end if;
end check_result_module;

end diagnose;

end binary_adder_system;

- 65 -

§ Joppe

uoljejuasaiday [ana 1saybiy
19ppy Areuig :[apoy walsAg ajdwexy

"uonesedo pejrejep jo 86pemouy |9Ae]-10m0] jO
Wweweinba) ey} Inoyum Jusuodwod ejBuis e se we)sAsqns eiue ue
esn 0} 16d0jeABD By} SMOYB UsIORIISqR WelsAS 10 |0ae}-1seybiy sy

"peuyep seul| bunoeuuoo sy Ajuo yum weuodwiod
e{0uss © se sugedde leppyAieuig ey) ‘uolejuesesdes jo 19A8) SiY) Iy

: (0™ 1eppe pue q 1eppe) J0
(0™ seppe pue e "1eppe) 10 (q"1eppe pue e”1eppe) =: X 10ppe
! 97 1eppe 10X q"18ppB 10X B I6ppE =: S 1eppe

“(x"19ppe) Indino (no-A1sed) ssaoxe
ue yim pue (s™seppe) Indino wns e eanposd pue (2 1eppe)
enjeA ul-A1ied e yum buoje (q 1eppe pue e 1eppe) spuesedo ndu)
oM} 6xel 0} st 1eppe Aseuiq e jo uonouny eyy “sindino pue sinduy
Ue8j00q yim Jueweie jeuoyieindwod e s) Jeppe Aieuiq v

18ppy Aeuig

9 Jeppe

Q Jeppe

B Joppe

Figure ¢.1

- 66 -

T110-68

adder_x

adder_s

uofejuasaiday |9Aa WoISAS aleipawlalu|

' X U) ses

X")}N0 " seJ

‘s u"ses
-

SN0 seu

a|NPOW
“)nsay

1eppy Areuig :jopojy walsAg ajdwex3

: (97ui Be pue q uj Be)
10 (9" uj Be pue 8" uy Be)
40 (Q"uy 6o pue 8" u|" Be) =: 1no Be

8|NPO uonelauar)” ssadx3

197 uy Bs 1ox q"ul Bs sox e Ui Bs
= N0 bs

8|NPOW uoljelausry wNg

‘oueA
-

0 N0 [BA

QU ea

q 0 [eA

B Ul jea
-

8 IN0 |eA

ajnpow
“anjep

o Jeppe

qQ Jeppe

e Jeppe

Figure 4.2

- 67 -

uojjejuasaidoy _.m>o._ WwajsAg 1semo]

(waysAs puy)
1eppy Areuig :[apopy wajsAg ejdwex

U epue |y e = N0 B

26y o) 1esejnu esoulew v pue uuoped
0} 1658)L SRINWIS B Y10Q SBY WOIBAS S|

"sjoae] o0y
18 SweisAs u) SeINPOYY puy, UL} O} PEsSn S) pus

RSO0 djwole ue sjuesesdes weisAs puy, syL

"senine sisoubep
40} puB uolBINLWIS J0) SENJBA 8S6LY] SS8J8 URD
8pod jese|nu tey) 08 Swiod UOIPEUUOD YIM Sjeqe)

[8LI8Ix3 B]BROSSE O] POsn s ‘JOyouR, “Ho0|q Spj)

(w-an jeussixa) Joyouy

2ue

L

Pigure ¢.3

uonejuasaiday |9Aa] WoISAS 1SOMOT
(walsAs yi04)
Jappy Areuig :jopojy walsAg ajdwex3

fu}= gy
g gy

%08Y0 0} j9sejru esoubeip e pue
uuoped 0} 18Sayy BlEjNWIS B YOG Sty WeIsAS S|

‘sjeAe) 1eybiy
1@ sweisAs uj ,Se|Npoyy }10. UL} O} pesn S| | pue

1OruISuco Jnwoje ue sjuesesdes weisAs HHo4., sy

‘saaoe sisoubeip
10} pue uoiiejnwis 10} SENjRA 8S8Y) SS8d0e ued
8p0d 18s8jrU jey) os suod uoIOBUU0d Yiim Sjeqe|

Jeusoixa 8jelo0sse 0} pasn si ' JOYIue, ‘NooIq S|

(ur-an jeussyxa) Joyouy

Pigure ¢.4¢

- 69 -~

P10-68

indicator_out

:oaﬁcmmmamm |oA9T] WaISAS 1samoT]

(wasAs 101e01pU))

19ppy Ateuig :jopopy walsAg ajdwex]

‘uf"Jojedipuy = By ujTI01BIPUY = INO~I0}BOPUY

%0842 0} jese|nu esoubieip e pue
uuoped o) jeseju ele|NWS B Yl0q SBY WeisAs sy |

"Induy 8y} JO enjeA 8y} o1 165 S| lBy) BINGUNE
ueejooq 1By, eiBuis B sey %00)q SN

"S|eAey Joy0iy 1 sweisAs ui sejnpoyy
J0JEJipU|, WLOj O) POSN S} i pue JONUISUod
Juuoje ue sjueseides weishs ojeaipuy, sy

‘seAloe sisoubeip
10} pue uolBINWIS 10} SBN|RA 8SBY} SSeJ0e ued
8pod 1888)1u Jey) os sjujod uoROBLUOD YIM Sjeqe;
[BUJBIX8 8]OSSE 0} PASN S| * JOYOUB, *%O0iq S|

(ui-an jeusa)xa) Joyouy

Ui JoJedIpUy

Pigure ¢.5

- 70 -

ST0-68

r_3_out

or_.

(weisAs € 10)

uofejuasaiday [aAaT] Wao)SAS 1SOMOT]

19ppy Ateuig :japopy waisAg sjdwex3

' €U| € 1010 2ujE 40 4O LUI € 10 = N0 E 10

108y2 o) jesejns esoubep B pue
uuoped 01 18s8yU 8lBINWS © Y10q SBY WelsAS Spy)

'S|oAe] J8yBiy 18 swe)sAs
U} .S8INPO € 10, ULOj O} POSN S)) PUB JONUISUCD
Jlwole ue sweseidas weisAs €710, syL

"selANoe sisoubeip
40} puB uoHEINWIS 10} SBNJEA BSBL} SS820. UBd
8pod 18sejru jey) os Sjuiod UoIDBUUCD YIM S|eqe)
[euselxa ejeosse o} pasn S| ‘ J0youe, ‘¥oo|q Siy |

(w-an feusayxa) Joyouy

g

gui g 40

gui g o

iU g o

Figure 4.6

- 71 -~

9710-68

uoiejuasalddy |9AaT WwalsAg 1somoT

(waysAg 10Y)

18ppy Areuig :|spoy wajsAs aidwex3

12Uy 10X JOX LUj 10X =: N0 JOX

%0eyd 0} jesejns esoubeip e pus
uuoped 0) 18sejru elBINWS B Yioq Sey welsAs siy|

‘sjeaey seybiy
18 swelsAs uy Se|nNpoyy 10X, Lo} O} Pesn S § pus
0ruIsuod Jiwoje ue sjuesesdas welsAs 10y, syl

"solAloe sisoubep
10} pue UOHIRINWIS 10§ SBN|BA 8S8Y} SS8I0e ued
8p0J 18s8jru jey) 0s SiuIod UOIPBUUD YIm S|eqe)
feusaixe 8iEI00SSe 0} Pasn St * I0Ydue, '320iq SKEL

(ui-ay} jewsa)x8) Joyouy

2ui Jox

{uItiox

Figure 4.7

- 72 -

val_out_c

i val_out_b

val_out_a

uonejuasalday |9A97 Wa)sAS 1amo
(aInpoly anjep)
19ppy Areuig :japopy waisAg sjdwex3

! Uj 10JBOIPUY =: N0 J0}ROIPUYY

O 9|npoy\ 10jedipu|

! UJ"101821pU) =: N0 J01BDIPU}

g 8INpojy10jedIpu

: U I01BDIPUY =: IN0 J0JBIPUI

V 3|Npo 10jedipu|

B Ul jea

STuljeA

q urea

Figure 4.8

- 73 ~

res_out_x

res_out_s

uonejuasaiday [aAd7 WoISAS JamoT]

(aInpoyy ynsay)
1eppy Aieuig :jspopy walsAg ajdwexy

! U 101EDIpUY = N0 JOJEDIPUY

X 8|npoyy101edipu|

: Uy 101eOIpUI = N0 JOJBDIPU

S 8Inpo iojedipu|

XUl se.

sTui"sel

Figure ¢.9

-7‘-

uonejussalday [9A97] WaoysAg 1omo]

(ajnpopy uonelsuan

wng)

Jappy Aeuig :japopy walsAg sjdwexy

: 2 U)0X JOX | TUITI0X =: N0 10X

2 9|npoyy 10X

2 UlTI0x JoX | TUjTI0X =: N0 TJ0X

| 8|npoyy 10X

o~ ui bs

Figure 4.10
- 75 -

qQu Bs

B Ul B8

eg_out

uonejuasalday |oAa7] waysAg JETI o
(8INpo\” uoiesauary ssaox3)
iappy Areuig :jopoy wajsAg sidwexs

cuiepue juie=no" e ‘U= =gy

€ 8INPO o

€ 9INPO puy
‘gurgio .

‘U= tuye gy

Z 8INPOW 04

02ui g 10 uj B pue Lu"e =: N0~
lo2ure o ‘ILN "8 pue Luj e =: jnoe

= ¥no"g7o ¢ 8|npopy puy

U= tuy =y

m_DUOS_Im.I._O ‘/‘ gurepue jue = jno"e

| 8inpop puy

L ~8|NpO 304

i Be

u

o=

I Be

qu

e u Be

Figure ¢.11

76

5. RULE SET PROCESSOR PROTOTYPE ARCHITECTURE

The Rule Set Processor prototype (RSP I) represents the working software
component of the result of our investigation into the development of a tool
for constructing real time expert system software for time critical
applications.

The RSP prototype is a single computer program written in the Ada
programming language. It was developed and tested on a Sun Microsystems SUN
3/160, a system that uses a Motorola MC68020 microprocessor and four megabytes
of memory for a hardware platform along with Sun UNIX 3.4 as a software
development environment. The Ada compiler in use is from Verdix Incorporated.
The RSP Ada source is intended to be portable to any system that passes the
standard Ada validation suite and possesses reasonable memory and file
capabilities.

S.1 RSP 1 Architecture Overview

Written according to commonly accepted modular programming style, the
prototype is implemented as a short main program along with thirty-two
separate Ada packages organized according to functional purpose. The main -
program, Ada procedure "rsp”, occupies a single source file; each package
occupies two separate files: a package specification source file and a package
body source file. These sixty-five files together contain three hundred and
sixteen subprograms and a total of 14,355 source lines. The coding portion
required approximately three months of concerted effort with parallel testing.

This is a brief description of the Ada source files used in the rule set
project. The functional interrelations of the packages are described in
further in this section of this document.

The main program is found is the file "rsp.a". All of the other Ada
source files are paired: for each package, there is a single specification
file and a single body file. Each package specification filename is sixteen
characters long. The first four characters are "rsp_" and the last eight
characters are "_pkg_s.a”™. The fifth through eighth characters identify the
contents of the file. The corresponding package body file has the same name
except the fourteenth character is a "b"™ (for body) instead of an "s" (for
specification). Each package name is twelve characters long starting with
"rsp_" and ending with "_pkg" with the middle four characters identifying the
contents of the file. Thus, the package name is taken from the filename by
dropping the last four characters.

A package may be referred to in abbreviated manner by supplying only its
four distinguishing letters; for example, package rsp_cont_pkg (specification
in the file rsp_cont_pkg_s.a and body in the file rsp_cont_pkg_b.a) may be
indicated by the simpler term "package CONT". All subprograms contained in
the packages start with the four characters "rsp_" and continue with the next
five characters "XXXX " where the four X letters are the four distinguishing
letters of the package that hold the definition of the subprogram. This
subprogram naming convention allows for the immediate recall of the defining
package of any function or procedure.

All site dependencies are declared in the first section of the
specification of rsp_defs_pkg in the file rsp_defs_pkg_s.a. The complete

-77 -

history of the Ada source files in the RSP prototype is given in Appendix C.
These dependencies include definition of the integer and float types used by
the project. The rule set project also uses the package "text_io" from the
standard Ada environment.

5.2. ISD Substructures

The program written by the RSP user in the User System Description
Language (USDL) describes a single system. (The acronym in use for this
program is "USD" for User System Description.). This single system, referred
to as the root system after its compilation by the RSP, is represented as a
complex internal system description (ISD). The ISD generated by the RSP
contains all the information necessary to represent the described system
completely including both its topological information (structures and
connectivity) and its procedural information (rules and statements). The ISD
also contains the statically allocated storage required for the interpretation
of the USD.

The Internal System Description is built from linking together an
assemblage of objects of several different Ada record types. Most record
types correspond directly with USDL structures, and in those cases where an
arbitrary number of language Structures may appear in the same context (e.g., .
a sequence of statements or rules) these records are connected together in a
two way linked list. The head of such a list corresponds to the first item
encountered in that context of a particular type, and the tail of a list
corresporkds to the last item so encountered. Some object types used in the
ISD may also refer to interior objects of the same type, either directly or
indirectly, thus allowing for the power of topological recursive
representation.

The entire ISD is built via dynamic allocation of its substructures. The
single system in the USD program corresponds to the anchor of the ISD - an
object of type “"syst_t" (a system record) that represents the root system of
the ISD. All parts of the ISD are reached through the pointer to this root
system record.

The substructure record types listed in this section are those most

closely connected with syntactic structures in the USDL. Other record types
are also in use but are not listed here for sake of brevity.

5.2.1 1ISD Substructure: System Record/Ada type "syst_t"

For the root system and for each subsystem in the model, an Ada record of
type "syst_t” is allocated and initialized. Note that system records (and
their contents) will be present in the ISD for subsystem indication via
duplication from their original definition. This means that the "syst_t"
structure built by parsing is used as a template; copies are made of this
template for each use of the system as as subsystem representation of a block.
These records are connected in linked lists (when associated with a parent
system); and with descriptions of blocks/blocktypes (when associated with a
subsystem representation).

The syst_t record contains the following information: 1) The user
assigned name of the system; 2) A linked list of blocks; 3) A linked list of

- 78 -

blocktypes; 4) A linked list of declare items; 5) A linked list of paths; 6) A
linked list of rulesets; 7) A linked list of systems; 8) A linked list of
externals; 9) Links to previous and next system records.

$.2.2 1SD Substructure: Block Record/Ada type "comp_t”

An object of Ada type "comp_t” (from "component") is allocated and
attached to the ISD for every block in the modeled system. These records are
connected in linked lists and are associated with systems. A "comp_t" record
contains the following: 1) The user supplied name of the block; 2) The user
supplied name of the block's parent (if any); 3) A link to the type parent (if
any); 4) A link to the description (attributes, lines, subsystem); 5) A count
of connection points (lines, in and out); 6) Links to previous and next block
records.

5.2.3 1ISD Substructure: Blocktype Record/Ada type “ctyp_t"

An object of Ada type "ctyp t" (from “"component type”) is allocated and
attached to the ISD for every blocktype in the modeled system. These records
are connected in linked lists and are associated with systems. A “"ctyp_ t" -
record contains the following: 1) The user supplied name of the blocktype; 2)
The user supplied name of the blocktype's parent (if any); 3) A link to the
type parent (if any); 4) A link to the description (attributes, lines,
subsystem); 5) A count of connection points (lines, in and out); 6) Links to
previous and next blocktype records.

5.2.4 1ISD Substructure: Declare Item Record/Ada type “"decl_t"

An object of Ada type "decl_t" (from "declare item"™) is allocated and
attached to the ISD for every declare item in the modeled system. These
records are connected in linked lists and are associated with systems,
rulesets, and rules. A "decl_t" record contains the following: 1) The user
supplied name of the declare item; 2) The basetype of the item; 3) The current
value associated with the item; 4) Links to the previous and next declare
items.

5.2.5 1SD Substructure: Path Record/Ada type “path_t"

An object of Ada type "path_t" (from "path connection”") is allocated and
attached to the ISD for every path in the mcdeled system. These records are
connected in linked lists and are associated with systems. A "path_t" record
contains the following: 1) The user supplied name of the path (if any); 2) A
link to the source block; 3) A link to the source line; 4) A link to the
destination block; 5) A link to the destination line; 6) Links to the previous
and next paths.

$.2.6 ISD Substructure: Ruleset Record/Ada type “"rset_t"

An object of Ada type "rset_t" (from "ruleset”) is allocated and attached
to the ISD for every ruleset in the modeled system. These records are
connected in linked lists and are associated with systems and rulesets. A

- 79 -

"rset_t" record contains the following: 1) The user supplied name of the
ruleset; 2) A linked list of declare items; 3) A linked list of rules; 4) A
linked list of rulesets; 5) Links to previous and next rulesets.

5.2.7 ISD Substructure: Rule Record/Ada type "rule_t"

An ' object of Ada type "rule_t" (from "production rule") is allocated and
attached to the ISD for every rule in the modeled system. These records are
connected in linked lists and are associated with rulesets. A "rule_t" record
contains the following: 1) The user supplied name of the rule; 2) A linked
list of declare items; 3) A link to the expression that forms the test of the
rule; 4) A link to the affirmative statement ("then part"); 5) A link to the
alternative statement ("else part”, if any); 6) Links to the previous and next
rules.

$.2.8 ISD Substructure: External Record/Ada type "xtrn_t"

An object of Ada type "xtrn_t” (from "external”) is allocated and
attached to the 1ISD for every external in the modeled system. These records
are connected in linked lists and are associated with systems. An "xtrn_t"
record contains the following: 1) The user supplied name of the external; 2)
A link to the associated block; 3) A link to the associated line; 4) Links to
previous and next externals.

5.3 Top Level Control

RSP prototype execution begins with the procedure rsp in the Ada source
file rsp.a. This procedure forms the main program of the prototype and it
contains only a few statements. Procedure rsp first calls an initializer
(rsp_cont_init), then calls the main command cycle (rsp_cont_cycle), and
finally calls a terminator routine (rsp_cont_term). This procedure also
provides for trapping exceptions unhandled elsewhere.

The package CONT provides for the high level control of the prototype.
This package contains the main initializer controller (rsp_cont_init) that
orchestrates all required initialization functions by calling subsidiary
initialization routines of all other packages as appropriate. Package CONT
also contains the main terminator routine (rsp_cont_term) that functions
analogously to the initializer.

Package CONT contains the procedure rsp_cont_cycle that implements the
command read-parse-dispatch loop. A command input line, either from a
configuration file or from the user, is read by the routine rsp_cont_read.
Tokens in the command line are parsed by rsp_cont_token_parse and checked by
rsp_cont_token_check. The command dispatch itself is handled by the routine
rsp_cont_dispatch. Each nonblank command line is viewed as a sequence of one
or more tokens of which the first is interpreted as one of the available
commands and following tokens are considered parameters to that command. Each
command is fully processed after dispatch and before continuing the read-
parse-dispatch loop.

80

5.4 Command Processing

A command read in and checked by package CONT is passed by the procedure
rsp_cont_dispatch into a command specific procedure in package DPCR for
processing. For each command type available, there is a corresponding
procedure in package DPCR by the name of "rsp_dpcr_X", where X represents the
spelling of the command. For example, the procedure rsp_dpcr_exit handles the
"exit" command.

Some of the commands available require only a small amount of processing
code, and their implementations can be entirely enclosed in their single
handling routine. Other commands require much more extensive processing, and
$O involve many other portions of the prototype. 1In all cases, the command
processing required is completed upon the return from the called dispatch
routine.

5.5 Parsing and Compilation

The two main functions of the RSP prototype are compilation and
interpretation. The compilation process is the translation of the User System
Description source into an Internal System Description and is performed by the
recursive descent parser (from package PARS). The interpretation of the ISD
is handled by the interpretation subsystem (from package EXEC).

The term “"parsing” is used to refer to the generation of the derivation
sequence by which the USD source is built from the syntactical specification
of the language. The word "compilation™” indicates the processing, executed in
parallel and as part of the parsing activities, that converts the externally
represented (USD source) semantics of a system into an internal representation
(ISD). The parsing detects syntactic errors and ensures that only correctly
formed USDL sources can be then sent to a later interpretation stage; the
compilation forms the ISD so that the later interpretation stage has something
to work upon.

A proposed function of further RSP investigation is to incorporate a
"translation” capability into the program. Such a translation facility would
use the ISD produced by the parser and compilation processing and "translate"
this structure into an external text file to be used as a source to a
conventional software compiler. For example, a USD would be parsed, its
generated ISD interpreted, and the final tested version would then be
translated into a language (e.g., Ada, FORTRAN, 1750 Assembler) to be further
processed.

5.5.1 Recursive Descent Parser

The parsing and compilation of a USD source is directed by use of the
"compile” command. This command causes the indicated user source to be
parsed, errors to be detected (if any), an ISD to be generated (if no errors),
and a listing output file to be produced.

The mode of parsing is known as “"recursive descent", a powerful technique
for processing those languages that have recursive definitions and that allow
single symbol disambiguation ¢f alternate grammatical derivations. The USDL,
like many languages, has recursive definitions such as expressions within

- 81 -

expressions and systems within systems. The USDL also has, by design, the
above mentioned disambiguation property where it is easily decidable (by the
parser) which syntactic derivation is the correct one at any point in the
parse. The main reasons for choice of the recursive descent method are that
it can be quickly implemented and it can be easily modified to allow for
changes in the language during the construction of the prototype.

The recursive descent parser works in a "top-down” fashion - it starts
with the working assumption that it has a complete program, and then proceeds
to £fill in the specifics by calling subsidiary routines to handle the various
syntactic forms included in a complete program. The scanning of the input
source is a one pass, forward scan with no backup. Each syntactic form (e.g.,
a program, a system, a rule, an expression) has a corresponding function in
the parser. Each of these functions has a specific task: to parse the
corresponding syntactic form and to create a corresponding data structure that
holds the semantic information from the USD source for that form. The
returned data structure is then connected to other parts of the ISD under
construction. The final result is a complete ISD ready for interpretation or
translation.

The parser is activated by a call to the procedure rsp_pars_compile from
the dispatch routine rsp_dpcr_compile. This routine performs various
initialization tasks first and then calls the syntactic form parsing function
rsp_syst_rdp_syst to parse the entire USD source. When the parsing function
completes, it returns a pointer to the structure representing the parsed
system description; if no errors where detected during the parse, this pointer
becomes the root pointer of the entire ISD. If one or more errors were
detected, the ISD root pointer remains null.

The names of the routines in the RSP that are used to parse a syntactic
form have a common format. Each function name takes the form
"rsp_XXXX rdp YYYY" where XXXX is the defining package and YYYY is the name
(usually shortened to four letters) of the parsed syntactic form. For some
examples, the routine rsp_path_rdp_path parses a path description and the
routine rsp_expr_rdp_expr parses a general expression. Table 5.1 lists all
such functions in the RSP prototype along with the structure pointer types
returned.

Table 5.1: RSP Prototype Functions

rsp_comp_rdp comp returns compptr_t (blocks)
rsp_ctyp_rdp_ctyp returns ctypptr_t (blocktypes)
rsp_desc_rdp_attr returns attrptr_t (block attributes)
rsp_desc_rdp_desc returns descptr_t (block descriptions)
rsp_desc_rdp_line returns lineptr_t (block lines)
rsp_desc_rdp_subs returns subsptr_t (block subsystems)
rsp_expr_rdp_expl returns exprptr_t (level 1 expressions)
rsp_expr_rdp_exp2 returns exprptr_t (level 2 expressions)
rsp_expr_rdp_exp3 returns exprptr_t (level 3 expressions)
rsp_expr_rdp_expé4 returns exprptr_t (level 4 expressions)
rsp_expr_rdp_exp5 returns exprptr_t (level 5 expressions)
rsp_expr_rdp_expé returns exprptr_t (level 6 expressions)
rsp_expr_rdp_expr returns exprptr_t (general expressions)
rsp_path_rdp path returns pathptr_t (paths)
rsp_prim_rdp_prim returns exprptr_t (primary expressions)
rsp_rset_rdp_rset returns rsetptr_t (rulesets)

_82-

Table 5.

l: RSP

Prototype

Functions (continued)

rsp_rule_rdp_rule
rsp_stmt_rdp_advn
rsp_stmt_rdp_asgn
rsp_stmt_rdp_bloc
rsp_stmt_rdp_call
rsp_stmt_rdp dfrl
rsp_stmt_rdp_dfwl
rsp_stmt_rdp_elab
rsp_stmt_rdp_exit
rsp_stmt_rdp_ifte
rsp_stmt_rdp_null
rsp_stmt_rdp_puls
rsp_stmt_rdp_rest
rsp_stmt_rdp_rtrn
rsp_stmt_rdp_scva
rsp_stmt_rdp_scvd
rsp_stmt_rdp_stmt
rsp_syst_rdp_decl
rsp_syst_rdp_syst
rsp_xtrn_rdp_xtrn

returns
returns
returns
returns
returns
returns
returns
returns
returns
returns
returns
returns
returns
returns
returns
returns
returns
returns
returns
returns

ruleptr_t
stmtptr_t
stmtptr_t
stotptr _t
stmtptr_t
stmtptr_t
stmtptr_t
stmtptr_t
stmtptr_t
stmtptr_t
stmtptr_t
stotptr_t
stmtptr_t
stmtptr_t
stmtptr_t
stotptr_t
stmtptr_t
declptr_t
Systptr_t
xtroptr_t

(rules)

(advance statament)
(assignment statement)
(compound statement)
{call statement)

(read statement)
(write statement)
{elaborate statement)
(exit statement)
(if-then-else statement)
(null statement)
(pulse statement)
(reset statement)
(return statement)
(accept statement)
(display statement)
(general statement)
(declare item)
(system)

(external)

Note that saome structure types are returned by more than one function.
The parser is organized in this fashion so that the relatively complex forms
(statements and expressions) can be handled in a divide and conquer strategy
while retaining a single data representation.

Each of the above parsing routines are written according to a single
plan, although the details will differ somewhat for each function. The
actions of this general plan are:

1) Initialize a data structure of the type corresponding to the syntactic
form to be parsed;

2) If appropriate, test the current source input to ensure that the
routine was called is the correct routine for the input - and report an
internal consistency fault if the wrong routine was called;

3) Scan ard record any items associated with a prologue (if any) of the
syntactic form;

4) Por each item scanned in the source input, either record information
directly into the local working data structure, or invoke subsidiary parsing
routines to construct the appropriate data structures and then record the
resultant pointer values inte the local data structure;

5) Scan and record any items associated with a epiloque (if any) of the
syntactic form;

6) Return as the function result a pointer to the working data structure
cornstructed to represent the information gained from the parse of the
syntacta: form.

(Por each step in the plan, complete syntactic and semantic error
detection and repcrting also takes place.)

- 83 -

5.5.2 Lexigraphical Analyzer

The RSP prototype uses a lexigraphical analyzer (a.k.a. lexer) to provide
an interface between the main functions of the parser and the text of the USD
source. The main function of the lexer is to read characters sequentially
from the user source and to detect and assemble lexical tokens. Lexical
tokens are the atomic syntactic forms of the USDL. These tokens include:
literal values (integers, floats, booleans, and strings), identifiers (user
supplied names), reserved words (keywords), and reserved symbols (punctuation
and the end-of-file marker).

The lexer resides in package LEXR. The main lexer subprogram is the
procedure rsp_lexr_next_token which scans the user source and generates a
value for the variable "tokn" (also defined in package LEXR). This variable
is declared to be of the record type "tokn_t” and its components contain the
pertinent information about the token required for parsing and ISD generation.
The lexer also detects and reports certain simple source errors. As the lexer
scans the input text lines it also sends these lines to the listing generation
system so that a listing file may be produced.

5.5.3 Structure Allocation and Initialization

The data structures used to construct the ISD require routines for
allocation and initialization. These routines are located in package ARCH
(from "architecture”). For each type of record that can be used in the ISD,
there is a corresponding routine that allocates and initializes storage for
that type. These routines are called by the parser as required. The
specification portion of package ARCH contains all of the Ada type
declarations for these record types. The motivating idea for this
centralization is aid development and maintenance efforts by simplifying the
layout of the strongly interrelated definitions required for the ISD.

5.5.4 Error Management

The RSP prototype provides for the detection and reporting of those
errors associated with parsing (lexical, syntactic, and semantic). The RSP
detects and reports sixty-three different error types. Error processing is
enclosed in package ERRS.

When an error is detected, a call to the procedure rsp_errs_scan_post is
made with the error type and the error text position passed. This procedure
records the error information along with other error information for that line
(if any). This collection of information (error type index / source column
number) is saved for further listing processing so that the error indications
are reported to the user in a useful fashion.

5.5.5 Scope Management

Some USDL syntactic forms have an associated lexical scope. A lexical
scope 1s the contiguous source region where a name is available. Por example,
a name associated with a declare item in a ruleset is available only in the
scope of that ruleset, while the name of a declare item in a system is
available throughout the system. In order to detect various semantic errors

- 84 -

and to correctly generate the ISD, the parser requires knowledge of the
current scope and of enclosing scopes.

Scope information is processed by routines in package SCOP. This package’
has routines to push (establish) a new scope and to pop (disestablish) the
current scope. These routines are called by those parsing routines that
handle syntactic forms which have associated scopes. Also included are
functions that search for identifiers throughout the enclosing scopes to
locate corresponding ISD structures. The scoping information handled here is
recording in a linked list data structure, one record for each scope. This
list is the only data structure in the RSP other than the ISD that records
information about the USD source.

5.5.6 Source Listing Processing

The RSP prototype generates an output listing text file as part of the
compilation process. This generation is performed by routines in package
LIST. The output file contains several items:

1) One informative header that identifies the file and the version of
the RSP program responsible for the campilation;

2) A listing of the user source with line numbering;

3) When required, error indicators composed of error type indices (small
integers) adjacent to the line and column of detection in the user
source;

4) When required, a decoder table after the end of the user source

listing that contains earlier reported error type indices
(numerically ordered) along with corresponding descriptive messages.

5.6 ISD Interpretation

The RSP prototype creates an ISD upon the successful compilation of an
error-free user system description. This ISD can then be interactively
interpreted by the ruleset interpretation routines. Interpretation is
triggered by one of the appropriate commands, each of which starts the
interpretation of a particular ruleset embedded in the root level system.
These commands are: "preset”, "diagnose”, and "simulate”, each of which
initiates the interpretation of the ruleset with the same name. The entry
point for ruleset interpretation is the procedure rsp_exec_rset; it is called
with a pointer into the ISD that identifies the data structure corresponding
to the indicated ruleset.

$.6.1 ISD Segquencing

The correct interpretation of a ruleset requires that the various
portions of the ruleset are interpreted using the correct ordering. This
means that certain static and dynamic information concerning rules and
statements may cause the path of interpretation to vary from the normal top-
down sequential convention. In all cases, the processing of any part of

-85_

interpretive code in the ISD corresponds to a potentially recursive call of a
procedure in the RSP prototype.

A ruleset is interpreted (rsp_exec_rset) by interpreting its rules in
top-down order until some condition occurs to suspend, abort, or normally
terminate ruleset interpretation. After that last rule is processed, the flow
of interpretation returns to the invoker of the ruleset. If the ruleset was
invoked by an interactive command, interpretation terminates and control is
returned to the interactive level.

A rule is interpreted (rsp_exec_rule) by first evaluating (rsp_eval_expr)
its test expression and then either executing (rsp_exec_stmt) the rule's
affirmative statement (test true) or its alternative statement (test false).

A statement (rsp_exec_stmt) is interpreted by a dispatch to a routine
that corresponds to the statement kind begin interpreted. Most statement
kinds do not modify the normal flow of interpretation, but a few do change
this flow.

A compound statement (rsp_exec_bloc) is interpreted by processing each of
its enclosed statements in top-down order, subject to possible diversions by
these enclosed statements.

An if-then-else statement (rsp_exec_ifte) is interpreted in a manner
analogous to a rule's interpretation. 1Its expression is evaluated and the
appropriate statement is then interpreted.

A return statement (rsp_exec_rtrn) is interpreted by the immediate
termination of the enclosing ruleset and a return to the ruleset invoker.

An exit statement (rsp_exec_exit) is interpreted by the immediate
termination of the inclosing ruleset and of all invoking rulesets and the
termination of the interpretation session with a return to the interactive
command level.

A call statement (rsp_exec_call) is interpreted by the temporary
suspension of the enclosing ruleset and a transfer to another ruleset. When
the called ruleset concludes, interpretation (generally) returns to the
caller.

An elaborate statement (rsp_exec_elab) is interpreted in the same fashion
as the call statement except that the current system level is changed to a
subsystem representation of the indicated block thus allowing multilevel
representation of systems and system knowledge. When the elaborated ruleset
concludes, interpretation (generally) returns to the caller, and the current
system level returns to its prior status.

$.6.2 1SD Expression Evaluation

Various parts of the ISD (declare items, lines, line history, and
attributes) will assume scalar values. These objects are collectively
referred to as variables as their values may vary with interpretation. These
variables, along with literals (constant values) may be referenced and
combined in expressions in order to represent the numerical and logical

- 86 -

aspects of the system model. (Most RSP interpretive evaluation is coded in
package EVAL.)

An expression is an arrangement of one or more of these values along with
zero or more operator symbols according to the syntactic specification of the
USDL. Expressions are parsed by a set of routines that are organized into a
hierarchy that correctly records the desired evaluation precedence by
constructing an expression tree with nodes representing operators and operand.
During interpretation, an expression tree is evaluated (rsp_eval_expr) using a
normal recursive infix transversal starting at the root of the tree. For each
of the available operator kinds (thirty-two in all) there is a separate
routine that handles that particular operator. Each of one of these routines
handles evaluation for all appropriate scalar basetype (boolean, float, and
integer).

5.6.3 1ISD Scalar Location and Access

The Internal System Description data structure contains storage for all
of the scalars in the system model. Storage for a scalar is bound to the
defining record in the ISD. Scalars associated with declare items are
allocated in decl_t records and scalars associated with block attributes are
allocated in attr_t records (inside of blocks). Scalar storage for the one or |
more history values associated with lines are allocated in linked lists
connected to line_t records.

Access and manipulation of scalar storage is handled in packages SASA and
HIST. These routines are called mostly by the expression evaluation routines
to load or store values. Routines also exist in these packages for the
resetting of initial object states and to propagate values throughout the
topography of the system model.

5.7 I/0 Utilities

All input/output operations are performed with the standard family of Ada
routines. For purposes of modularity, access to these routines is itself
compartmentalized into its own package (package IOCP).

All files used are organized as basic sequential access text files opened
for either reading or for writing., File formats used by the RSP are kept
simple so as to also possible interfacing with other software development
tools.

..87_

6. CONCLUSIONS AND RECOMMENDAT IONS

6.1 Conclusions

The central goal of this research effort is the exploration of techniques
for the implementation of expert system programming for the domain of real
time dynamic systems. The work includes both an examination of an
established, general purpose expert system shell approach (using CLIPS) and a
new language/interpreter approach (USDL/RSP) that is tailored for simulation
and diagnosis of real time dynamic systems. These two methods have some
similarities, but also have important differences.

The selected general purpose expert system shell approach employs a
fairly large program, written in the C language, that uses a powerful and
general pattern matching capability for inference processing. A drawback of
this method is that extensive computational facilities are required for
running the expert system shell, either in its interpretive mode or in its
standalone application mode. Moreover, most shells are written in a computer
language that is not yet well standardized and for which optimized compilers
may not be readily available for those dedicated processors commonly used for
real-time onboard tasks.

The USDL/RSP approach also employs a fairly large program, comparable in
size with a general purpose interpreter. However, this program is only used
during the interactive development phase (where plenty of computational
resources are present) where size is not as important as a consideration as it
is during the production phase (in a more restrictive embedded requirement).
Although not yet operational, the translator portion of the RSP program should
produce compact, quick, and compilable Ada source for the target processor.
The reasoning behind this prediction is based upon the differences in the
inference mechanisms involved: the extensive resource requirements of pattern
matching of a general purpose shell versus the direct, no-search, programmer-
directed ruleset approach of the RSP. While the ruleset method may not be
among the first chosen for general purpose reasoning in general domains, its
use of a standardized language (Ada) along with the speed and integration
requirements of real time applications make its a good candidate for further
development.

The general purpose expert system shell approach requires extensive
programming skills by the developer in order to construct the system model.
Usually the general flavor of programming is that of the LISP computer
language with a slight mixture of the constructs of a procedural language such
as C. Usage of a LISP style is certainly appropriate for problems that
require search and pattern matching where the system model and the inference
mechanism used in reasoning about the system is not well known even to the
domain experts, as many years of artificial intelligence programming practice
has demonstrated. However, much of the power of expression may be wasted
because a framework for the representation of elemental dynamic¢ objects
required for event monitoring and fault diagnosis is not readily available in
these general purpose shells.

The RSP approach also requires considerable programming skills by the
developer. However, the User System Description Language is designed with two
important features in mind: first, the USDL is explicitly intended for the
rodeling of dynamic systems; second, the USDL style is intentionally similar
tc that of the Ada language. The result of the first feature is to eliminate

88

excess baggage (and thus lessen chance for programming error), the result of
the second feature is to reduce the probable effort required in training
programmers. B

The central conclusion of this investigation is that use of a dedicated
language/interpreter is appropriate for applying expert system programming
methodologies to the domain of onboard fault diagnosis and event monitoring
applications. Furthermore, we have identified the desirable knowledge
representation and inference mechanism facilities for such a dedicated real-
time expert system shell and incorporated these feature into the USDL/RSP

design:

- RSP provides a framework for specifying a physical system model which
includes both the topological representation (elemental dynamic
objects, physical interconnections between these objects) and the
procedural representation (functional dynamic system representation).

- RSP provides a hierarchical dynamic representation mechanism allowing
multiple hierarchical representations of a dynamic system at several
levels of abstraction. For instance, such a representation mechanism
can be used to look at a flight control system as a single block with
pilot inputs and actuator commands, or as interconnection of several
interconnected dynamic objects such as limiters, shaping filters,
notch filters, etc.

- RSP provides the necessary tools in its ruleset for building powerful
inference strategies which can move up and down (elaborate statement)
or horizontally (call statement) within the specified knowledge
hierarchy. Such a mechanism can be used to construct top-down,
bottoms-up or hybrid diagnosis strategies.

6.2 Recommendations

The central recommendation of this research is to continue the
examination and development of the promising dedicated real-time expert system
shell the USDL/RSP strategy. Such examination and development can be targeted
towards specific goals:

Goal: The application of the USDL/RSP approcach to a real world onboard
fault diagnosis application. This goal means the selection of a particular
real-time application such as a reconfiguration strategy for a self-repairing
flight control system (Caglayan et al. 1987), or a sensor failure detection
and isolation system (Caglayan et al. 1988), or a fault diagnosis system for a
flight control system of a specific aircraft, development of an expert system
based on the USDL/RSP approach for the selected application, and demonstration
of the developed expert system in a real-time $imulation.

Such a goal is the real test of the USDL/RSP method. Because of the
successes in meeting the initial goals of this investigation, we believe that
future exploration of the USDL/RSP is indicated, and that such exploration
1nclude a treatment of a real world, real-time application. In order to
achieve this gcal, the following modifications would be needed to the RSD
prorotype design:

- RQ -

Goal: Expansion of constructs in the User System Description Language.
As currently specified, while the USDL is capable of extensive modeling
efforts, it lacks several useful features commonly found in conventional
languages: structured types (arrays and records), subprogram formal
parameters, and a facility for separate compilation. The addition of these
features would be a natural extension of the corrent effort as the current
syntactic specification 1s designed with such extension in mind.

Goal: Correction of certain deficiencies in the Rule Set Processor
interpreter. RSP I is a partial implementation of the RSP prototype design.
For instance, it does not provide interpretation for certain hierarchical
models. Also, the RSP compilation occasionally emits spurious complaints
about incorrectly perceived semantic source errors. An important extension to
the RSP interpreter is to provide a more comprehensive interactive debugging
facility; such a facility should greatly increase developer productivity as
have similar high level debugging tools for conventional programming
languages.

Goal: Implementation of a convenient system component library mechanism.
Currently, the RSP program requires the developer to manually combine
component specifications into a single source file prior to compilation. A
much more desirable approach is to have the RSP program handle the librarian
task of configuring systems that involve the reuse of software. This library
mechanism of the RSP corresponds with the addition of a separate compilation
facility in the USDL syntax.

Goal: Implementation of the RSP translator mechanism. The current RSP
program is not yet able to translate the Internal System Model into an
standalone application source language program to be embedded onto a flight
computer. This effort requires not only the programming of the ISD-source
translator, but also the resolution of the interfacing issues involved in the
porting of the expert diagnostic knowledge.

-90-

7. REFERENCES

Abbott, K.H., Schutte, P.C., Palmer, M.T. and Ricks, W.R., "Faultfinder: A
Diagnostic Expert System with Graceful Degradation for Onboard Aircraft
Applications, Symposium on Aircraft Integrated Monitoring Systems,
Friedriechshafen, W. Germany, Sept. 15-17, 1987.

Braunston, L., Farrell, R., Kant, E., and Martin, N., Programming Expert
Systems in OPSS5: An Introduction to Rule-Based Programming, Addison-
Wesley, Reading, MA, 1986.

Brown, J.S., Burton, R.R., and Bell, A.G., "SOPHIE: A Sophisticated
Instructional Environment for Teaching Electronic Troubleshooting,” Bolt
Beranek and Newman, Inc., Report No. 2790, Cambridge, MA, 1974.

Buchanan, B.G., and Feigenbaum, E.A., "DENDRAL and Meta-DENDRAL: Their
Applications Dimension,” Artificial Intelligence, Vol. II, 1978.

Caglayan, A.K., Rahnamai, K., Moerder, D.D. and Halyo, N., (1987) "A
Hierarchical Reconfiguration Strategy for Aircraft Flight Control Systems
Subjected to Actuator Failure/Surface Damage,” AFWAL-TR-87-3024, May 1987.

Caglayan, A.K., Godiwala, P.M. and Satz, H.S., "User's Guide to the FPINDS
Computer Program,” NASA CR 178410, June 1988.

Davis, R., Shrobe, H., Hamscher, N., Wreckert, K., Shirley, M., and Polit, §S.,
“"Diagnosis Based on Descriptions of Structure and Punction,™ AAAI
Proceedings, Carnegie-Mellon Univ., Pittsburg, PA, August 1982.

Davis, R., "Reasoning from First Principles in Electronic Troubleshooting,”
Int. J. Man-Machine Studies, Vol. 19, pp. 403-423, 1983.

Davis, R., "Diagnostic Reasoning from Structure and Behavior,” Artificial
Intelligence, Vol. 24, pp. 347-410, 1984.

Davis, R., "Diagnosis via Causal Reasoning: Paths of Interaction and the
Locality Principle,” Proceedings AAAI-83.

Davis, R., "Knowledge-Based Systems: The View in 1986," in AI in the 1980s
and Beyond - An MIT Survey, editors Grimson and Patil, The MIT Press,
Cambridge, MA, 1987. '

Davis, K., "Diagnostic Expert System for the BlB," IEEE AES Magazine, April,
1988.

Disbrow, J.D., Duke, E.L., and Regenie, V.A., "Development of a Knowledge
Acquisition Tool for an Expert System Flight Status Monitor,"” NASA TM
86802, January 1986.

Duda, R.O., Gaschnig, J., Hart, P.E., Konolige, K. Reboh, R., Barrett, P., and
Slocum, J., "Development of the PROSPECTOR Consultation System for Mineral
Exploration Inc., Pinal Report, Project No. 6415, SRI International Inc.,
Menlo Park, CA, 1978. :

Duke, E.L. and Regenie, V.A. "Description of an Experimental Expert Systenm
Flight Status Monitor,” NASA TM 86791, October 1985.

C -9

_91-

Duke, E.L., Regenie, V.A., Brazee, M., and Brumbaugh, R.W., "An Engineering
Approach to the Use of Expert Systems Technology in Avionics
Applications,” NASA TM 88263, May 1986.

Forbus, K.D., "Qualitative Process Theory,"” A.I. Memo No. 694, M.I.T.
Artificial Intelligence Laboratory, Cambridge, MA, February 1982,

Porbus, K.D., "Qualitative Process Theory,” Ph.D. Thesis, M.I.T., Dept. of
Electrical Engineering and Computer Science, 1984.

Forbus, K., "Interpreting Observations of Physical Systems,” IEEE Trans. on
SMC, Vol. 17, No. 3, May 1937.

Forbus, K., "Qualitative Physics: Past, Present and Future,” in Exploring
Artificial Intelligence, Morgan Kaufman Publishers, 1988.

Porgy, C.L., "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Prcblem,” Artificial Intelligence, Vol. 19, 1982.

Govindaraj, T., "Qualitative Approximation Methodology for Modelling and
Simulation of Large Dynamic Systems: Applications to a Marine Steam Power
Plant,” IEEE Trans. on SMC, Vol. 17, No. 6, 1987.

Giarratano, J.C., "CLIPS User's Guide, Version 4.1," Al Section, NASA Johnson '
Space Center, 1987.

Gupta, A., "Parallelism in Production Systems: The Sources and the Expected
Speed Up,” Expert Systems and their Applications, Fifth International
Workshop, Avignon, France, 1985.

Laffey, T.J., et. al., "Real-Time Knowledge Based Systems,"” AI Magazine, Vol.
$, No. 1, Spring, 1988.

Malcolm, J.G. and Highland, R.W., Analysis of Built-In-Test (BIT) False Alarm
Conditions, RADC-TR-81-220, Rome Air Development System, Griffiss, AFB,
NY, 1981.

Malin, J.T., "Processes in Construction of Pailure Management Expert Systems
from Device Design Information,” IEEE Trans. on SMC, Vol. SMC-l17, No. 6,
1987.

Palmer, M.T. Abbott, K.H., Schutte, P.C., and Ricks, W.R., "Implementation of
a Research Prototype Onboard Fault Monitoring and Diagnosis System,” 1987
Computers in Aerospace Conference, Wakefield, MA, October 7-9, 1987.

Rasmussen, J., "The Role of Hierarchical Knowledge Representation in Decision
Making and System Management,” IEEE Trans on SMC, Vol. 15, No. 2, 198S.

Regenie, V.A. and Duke, E.L., "Design of an Expert-System Flight Status
Monitor,"” NASA TM 86739, 1985.

Schutte, P.C., Abbott, K.H., Palmer, M.T. and Ricks, W.R., "An Evaluatiof of a
Real-Time Pault Diagnesis Expert System for Aircraft Applications,”
Proceedings IEEE CDC, Los Angeles, CA, December 9-11, 1987.

-92-

Shortliffe, E.H., Computer-based Medical Consultations: MYCIN, American
Elsevier, New York, NY, 1976.

Shoham, Y., Reasoning About Change: Time and Causation from the Standpoint of
Artificial Intelligence, The MIT Press, Cambridge, MA, 1988.

Stefik, M., Aikins, J., Balzer, R., Benoit, J., Birnbaum, L., Hayes-Roth, F.
and Sacerdoti, E., "The Organization of Expert Systems: A Prescriptive
Tutorial,” Xerox Report No. VLSI-82-1, Palo Alto, CA, 1982,

APPENDIX A: VUSER SYSTEM DESCRIPTION LANGUAGE SYNTAX SPECIFICATION

; Syntactic Specification for the User System Description Language
; USDL version 1.1
; 05 Oct 1988

<accept-prompt-string> ::=
<string-constant>

<accept-statement> ::=
accept <accept-prompt-string> <variable> ;
accept <variable> ;

<additive-expression> ::=
<prefix-expression>
<prefix-operator> <prefix-expression>

<additive-operator>
+

<advance-statement>
advance ;

<assignment-statement> ::=
<variable> := <expression> ;

<attribute-basetype> ::=
basetype <basetype-indicator>

<empty>

<attribute-body> ::=
<attribute-constant> <attribute-basetype> <attribute-default>

<attribute-ccnstant> ::=
constant
<empty>

<attribute-default> ::=
default <literal>

<empty>

<attribute-definition> ::=
attribute <attribute-id> is <attribute-body> ;

<attribute-igd> ::=
<identifier>

<attribute-indication> ::=
<comporient-id> . <attribute-id>

<basetype-indicator> ::=
boolean
float
integer

<boolean-literal> ::=
false
true

<call-statement>
call <ruleset-id> ;

<component-body> ::=
<component-item>
<component-item> <component-body>

<component-description>

<component~head> <component-body> <component-tail>

<component-head> ::=

block <component-id> is general begin

block <component-id> is

<component-id> ::=
<identifier>

<component-item> ::=
<attribute-definition>
<line-definition>
<subsystem-definition>

<component-tail> ::=
end ;
end <component-id> ;

<component-type-body> ::i=
<component-type-item>

type <component-type-id> begin

<component-type-item> <component-type-body>

<component-type-description>

<component-type-head> <component-type-body> <component-type-tail>

<component-type-head>

blocktype <component-type-id> is general begin
blocktype <component-type-id> is type <component-type-id> begin

<component-type-id> ::=
<identifier>

<component-type-item> ::=
<attribute-definition>
<line-definition>
<subsystem-definition>

<component-type-tail> ::=
end ;
end <component-type-id>

<compound-statement> ::=
begin <compound-statement-list> end

-e

- 95 -

<compound-statement-list> ::=
<statement>

<statement> <compound-statement-list>

<conjunctive-expression> ::=
<relational-expression>

<relational-expression> <relational-operator> <conjunctive-expression>

<conjunctive-operator> ::=
and
cand
cor
or
xor

<declaration-description> ::=

declare <declaration-id> : <basetype-indicator>

<declaration-id> ::=
<identifier>

<declared-item~indication> ::=
<declaration-1id>

<digit-sequence> ::=
<digit>
<digit> <digit-sequence>

<display-label-string> ::=
<string>

<display-statement> ::=
display <display-label-string>

display <display-label-string> <expression>

display <exprassion> ;

<elaborate-statement> ::=

elaborate <component-id> using <ruleset-id>

<empty> ::=

<exit-statement> ::=
exit ;

<exponaatial-expression> ::=
<primary>

<exponent> ::=
E + <digit-sequence>
E - <digit-sequence>
E <digit-sequence>

;|3|4i5|6|7|8|9

’

_96-

-
’

<expression> ::=
<conjunctive-expression>
<conjunctive-expression> <conjunctive-operator> <expression>

<external-description> ::=
external <external-id> is <line-indication> ;

<external-id> ::=
<identifier>

<floating-literal> ::=
<digit-sequence> . <digit-sequence>
<digit-sequence> . <digit-sequence> <exponent>

<history-indication> ::=
<component-id> . <line-id> . history [<expression>]

<identifier> ::=
<letter>
<letter> <letter-digit-underscore-sequence>

<if-statement> ::=
if <expression> then <statement> else <statement> end if;
1f <expression> then <statement> end if;

<integer-literal> ::=
<digit-sequence>

<letter> ::=
alblec|]d|lelf|lg|n]li]li|lk|[l]|m
n o P q r s t u v w X Y z
A|B|/C|D|E|P|G|H|I|J|KR|LI|M
N|OoO|P|Q|R|S|T|U|V|wW|X]|Y]Z

<letter-digit-underscore> ::=
<digit>
<letter>
<underscore>

<letter-digit-underscore-sequence> ::=
<letter-digit-underscore> _
<letter-digit-underscore> <letter-digit-underscore-sequence>

<line-basetype> ::=
basetype <basetype-indicator>
<empty>

<line-body> ::=
<line-mode> <line-basetype> <line-history>

<line-definition> ::=
line <line-id> is <line-body> ;

<line-history> ::=

history <integer-literal>
<empty>

- 97 -

<line-id> ::=
<identifier>

<line-indication> ::=
<component-id> . <line-id>

<line-mode> ::=
mode <mode-indicator>
<empty>

<literal> ::=
<boolean-literal>
<float-literal>
<integer-literal>

<mode-indicator> ::=
in
out

<multiplicative-expression> ::=
<exponential-expression>

<expcnential-expression> ° <multiplicative-expression>

<multiplicative-operator> ::=
*

/

<null-statement> ::=
null ;

<path-description> ::=

path fram <line-indication> to <line-indication>
path <path-id> is from <line-indication> to <line-indication>

<prefix-expression> ::=
<multiplicative-expression>

<multiplicative-expression> <multiplicative-operator> <prefix-expression>

<prefix-operator> ::=
+

not

<primary> ::=
<literal>
<variable>
{ <expression)

<pulse-statement> ::=
pulse <ccmponent-id> ;

<read-statement> ::=
read ;
read <variable> ;

- 98

<relational-expression> ::=
<additive-expression>
<additive-expression> <additive-operator> <relational-expression>

<relational-opefat0r> $:=

AN W

<reset-statement> ::=
reset ;

<return-statement> ::=
return ;

<rule-body> ::=
<rule-body-declaration-sequence> <rule-body-test>

<rule-body-declaration-sequence> ::=
<declaration-description>
<declaration-description> <rule-body-declaration-sequence>

<empty>

<rule-body-test> ::=
if <expression> then <statement> end if ;
if <expression> then <statement> else <statement> end if ;

<rule-description> ::=
<rule-head> <rule-boady> <rule-tail>

<rule-head> ::=
rule <rule-id> is begin

<rule-id> ::=
<identifier>

<rule-tail> ::=
end ;
end <rule-id> ;

<ruleset-body> ::=
<ruleset-body-declaration-sequence> <ruleset-body-rule-sequence>

<ruleset-body-declaration-sequence> ::=
<declaration-description>
<declaration-description> <ruleset-body-declaration-sequence>

<empty>

<ruleset-body-rule-sequence> ::=

<ampty>
<rule-description>
<rule-description> <ruleset-body-rule-sequence>

<ruleset-description> ::=
<ruleset-head> <ruleset-body> <ruleset-tail>

<ruleset-head> ::=
ruleset <ruleset-id> is begin

<ruleset-id> ::=
<identifier>

<ruleset-tail»> ::=
end ;
end <ruleset-id> ;

<statement> ::=
<accept-statement>
<advance-statement>
<assignment-statement>
<call-statement>
<compound-statement>
<display-statement>
<elaborate-statement>
<exit-statement>
<if-statement>
<null-statement>
<pulse-statement>
<read-statement>
<reset-statement>
<return-statement>
<write-statement>

<string-character> ::=
<levter>
<digit>
!l!#lf
{

F=1"1 1011
tp b |

") —

<string-character-sequence> ::=
<empty>
<string-character>
<string-character> <string-character-sequence>

<string-constaat> ::=
" <character-seguence> "
<subsystem-definiticn> ::
subsystem <system-id> ;

<systam-body> ::=
<system-item>
<systam-item> <system-body>

<system-description> ::=
<system-head> <sysitem-body> <system-tail>

<system-head> ::=
system <system-id> is begin

=100 -

<system-id> ::=
<identifier>

<system-item> ::=
<component-description>
<component-type-description>
<declaration-description>
<external-description>
<path~description>
<ruleset-description>
<system-description>

<system-tail> ::=
end ;
end <system-id> ;

<underscore> ::=

<user-system-description> ::=
<system-description>

<variable> ::=
<attribute~-indication>
<declared-item—~indication>
<history-indication>
<line-indication>

<write-statement> ::=
write ;
write <expression> ;
write <string> ;
write <string> <expression> ;

~e

end ‘of syntactical specification

-101-

APPENDIX B: USER INTERFACE SPECIFICATION

The RSP (Rule Set Project) is an expert system development program with
extensive emphasis on the description, simulation, and diagnosis of
topologically complex realtime systems.

This appendix describes the Rule Set Project user interface. The user
interface is the interaction between the RSP computer program and a user of
the system, either performed with an interactive terminal or via batch
processing. The interface operates with a standard character file stream
style that would be appropriate for most text oriented terminals and also for
text I/0 in a windowing environment.

The RSP user interface is a command driven system. The RSP program first
signs on to initialize the interface, and then repeatedly requests and
processes user commands. The RSP program terminates by one of the following:
an explicit user command, an end of file condition on the command input
stream, or by the occurance of an abnormal operating event.

The use of a simple command driven system is easy to learn, can be
quickly and confidently implemented, helps enable RSP program host
independence, and is easily extendable.

The RSP program sign-on consists of various program identification items
including: program name, program version, the time and date of program
generation, and the current time and date. The intent here is not just for
the sake of verbosity but instead to aid in configuration control and
deficiency reporting. The sign-on messages, along with all non-abnormal
reporting, is written to the standard output text file stream in order to
allow for high level redirection should the host operating system support file
redirection.

The RSP program command cycle is invoked after the program sign-on. Each
run thraugh this cycle has the following actions:

1) A command prompt ": * (colon space) is output.

2) A user RSP command line is read from the input.

3) The user command is parsed and checked for validity.

4) The validated user command is processed.

The RSP program allows for use ¢of a configuration file. 1If the file
"config” exists and is readable, the program will read and process commands
from this file immediately after the program sign-on. For these commands,
both the prompt and the command are printed to the standard output. The
intent is that interactive outputs of the RSP system are identical for
identical inputs irregardless of the source of the commands (either an
initialization file or by manual input).

After the commands on the initialization file (if any) are processed, the
normal interactive cycle will commence. The exception is that if some command
on the initialization file caused the system toO terminate early.

Eventually, the RSP program will complete command processing, either

because of an explicit command or by an abnormal operating event. This
concludes the command cycle and provides for normal program termination

-102 -

activities.

The program closes any open data files, reports interesting

operation statistics, and signs off.

Each command line entered is parsed for validity immediately after it is

entered.

Blank input lines are ignored.
tokens separated by whitespace characters.

A valid command line is composed of
A token is a sequence of non white

space characters; a white space character is a character from the set {blank,

tab, form feed}.
value 21) upto " " (hex value 7e).
error in the command line.

Token charcters are those with ASCII values from "!'" (hex

Characters outside these values signify an

The first token on the input command line should match one of the

commands in the RSP program.
the line is considered to be erroneous and the user is encouraged to

command,

try the "help” command for assistance.

If the first token does not match an available

If the first token does match an

available command, the remaining tokens (command parameters), if any, are

scanned for for consistancy with the indicated command.
token matching,

like

Note that command
the rest of the text processing activities of the RSP

system, is fully case sensitive.

Erroneous command lines are diagnosed, reported, and then ignored.

Unless an abnormal operating event has occurred,

entered.

the command cycle is re-

RSP Command Table (all commands in lower case)

Command
clearflag
compile

describe
dribbleoff
dribbleon
dump

exit

halt

help
listing
noop
object
quit
setflag
preset
simulate
diagnose
source
status
stop
translate

Action

Clear zero or more internal processing flags.
Generate internal representation of current source
file.

Present a brief descption of zero or more symbols.
Deactivate auxillary output dribbling.

Activate auxillary output dribbling.

Produce RSP program developer diagnostic file dump.
Terminate RSP processing (preferred form).

Terminate RSP processing.

Present a brief description of available RSP commands.
Specify an output file for listing purposes.

No operation.

Specify an output text file for ocbject processing.
Terminate RSP processing.

Set zero or more internal processing control flags.
Preset inter representation.??

Simulate internal representation.

Diagnose internal representation.

Specify an input text file for source processing.
Present a brief status report.

Terminate RSP processing.

Generate object output based upon internal
representation.

- 103-

RSP Processing Control Flags (Options):

Option Description (action when set)

debug Enables developer debugging operations.

tr_source Trace: source echo to console

tr_token Trace: token echo to console

verbose Enables increased reporting of RSP internal operations.

Command Description: clearflag

The "clearflag” command is used to clear (set to false) zero or more RSP
internal flag variables. The RSP system has several user accessible flags to
control various aspects of processing. The current flag values can be printed
with the "status"” command. User accessible flags can be set with the
"setflag” command.

The clearflag command takes zero or more additional parameters; each
parameter is the name of an internal user accessible flag.

Cozmand Description: compile

The "compile” command is used to generate a complete internal
representation of the user system description found on the indicated source
file (established by a prior "source" command). The compile command
processing first performs a syntactical check identical to the “check
command”. If no errors are detected, an internal interpretable representation
of the user system is constructed in memory and is initialized for either
simulation (see the "simulate”™ command) or for translation (see the
"translate" command).

The compile ccmmand takes no additional paramters; the source, listing,
and object files should already be specified with previous "source”,
"listing™, ard "cbject"” commands.

Command Descripticn: describe

The "describe"” command is used to present information about zero or more
symbols. The informative symbol descriptions are generated from internal
information resulting from a previous compile command. The intent is to
provide a helpful feature for controlled access into the RSP system symbol
table mechanism.

The describe command tskes zero Of more parameter tokens; each token is
an identifier found in the RSP symbol table.

Command Descripticn: diagnose
The "diagnose” command provides for the internal diagnosis of the user
system descpticn by interpretation of the corresponding data structure

resulting from compilation. A correct, compiled user system description must
already exist.

The diagnose command takes no additional parameters.

-104 -

Command Description: dribbleoff

The "dribbleoff” command is used to deactivate the output dribble
facility. After the dribble is deactivated, console output is not longer
echoed to the output dribble file.

The dribbleout command takes no additional parameters.

Command Description: dribbleon

The "dribbleon” command is used to activate the output dribble facility.
After the dribble is activated, console output is echoed to the output dribble
file. User command line input is also echoed to the dribble file.

The dribbleout command takes a second optional parameter, the name of the
dribble file to receive the echo of the console output. If no additional
parameter is specified, the file name "dribble” is used. 1In either case, the
selected output file is cleared prior to use.

Command Description: dump

The "dump” command is used to provide a RSP system diagnostic dump onto a
file. This feature is intended only for use by the RSP project development
staff.

The dump command takes an optional second parameter: the name of the file
to receive the dump. If no file name is present, the file "dump” receives the
diagnostic dump.

Command Description: exit

The “"exit” command is used to terminate execution of the RSP program.
The processing of this command concludes the command cycle processing and
initiaites RSP system normal shutdown operations. Synonyms for this command
are: "halt", "quit", and "stop”.

The exit command takes no additional parameters.

Command Description: halt

The "halt” command is a synonym for the "exit” command.

Command Description: help

The "help"” command is used to provide a brief description of the
available commands of the RSP program user interface.

The help command takes no additional parameters.
Command Description: listing

The "listing” command is used to specify an output text file to recieve
the listing of the user system description produced by the "translate”
command.

- 105 -

The listing command takes an optional second parameter: the name of the
file upon which user system description listing is written. If no second
parameter is present, the name "listing” is used for the output listing file.

Command Description: objéct

The "object” command is used to specify an output text file to recieve
the Ada source code produced by the "translate” command.

The object command takes an optional second parameter: the name of the
file upon which generated Ada realtime code is written. If no second
parameter is present, the name "object” is used for the output object file.

Command Description: preset

The "preset” command provides for the internal presetting of the user
system descption by interpretation of the corresponding data structure
resulting from compilation. A correct, compiled user system description must
already exist.

The preset command takes no additional parameters.
Command Description: quit

The "quit” command is a synonym for the "exit" command.
Command Description: setflag

The "setflag"” command is used to set (set to true) zerc or more RSP
internal flag variables. The RSP system has several user accessible flags to
contrcl various aspects of processing. The current flag values can be printed
with the “status” command. User accessible flags can be cleared with the

"clearflag” command.

The setflag command takes zero or more additional parameters; each
additional parameter is the name of an internal user accessible flag.

Command Description: simulate

The "simulate” command provides for the internal simulation of the user
system descption by interpretation of the corresponding data structure
resulting fram compilation. A correct, compiled user system description must
already exist. RSP simulation provides a rich, comprehensive, and user-
directed examination of the described .system including its user-supplied'
simulation ruleset.

The simulate command takes no additional parameters.
Command Description: source

The "source” command is used to specify the text file that contains a
user system description to be processed by the RSP program.

The source command takes an optional second argument: the name of the

input file that contains the user system description. If no second argument
is supplied, the name "source” with be used for the input source file.

-106 -

Command Description: status

The "status” command is used to present a brief status report about the
current state of the RSP system. The report contains items such as: the names
of the currently associated files, the values of the user accessible flags
(options), the current state of the internal user described system, and the
current resource utilization factors.

The status command takes no additional parameters.
Command Description: stop

The "stop” command is a synonym for the "exit" command.
Command Description: translate

The “"translate” command is used to generate a realtime diagnostic expert
system from the internal representation of the user described system into Ada
source code. A correct compiled description must already exist, as must a
specified output object file.

The translate command takes no additional parameters.

-107 -

APPENDIX C: RSP PROTOTYPE ADA SOURCE FILES

rsp.a:
Main program (procedure rsp)
rsp_arch_pkg_s.a and rsp_arch_pkg_b.a:
User System Description architecture definitions/resources
rsp_comn_pkg_s.a and rsp_comm_pkg_b.a:
User command knowledge
rsp _comp _pkg_s.a and rsp_comp_pkg b.a:
User System Description recursive descent parsing (components)
rsp_cont_pkg_s.a and rsp_cont_pkg_b.a:
Control routines (command dispatch)
rsp_defs pkg_s.a and rsp_defs_pkg_b.a:
General definitions (constants, types)
rsp_desc_pkg_s.a and rsp_desc_pkg_b.a:

User System Description recursive descent parsing (component descriptors)

rsp_dpcr_pkg_s.a and rsp_dpcr_pkg_b.a:

Command processing (dispatch target routines)
rsp_dump pkg_s.a and rsp_dump_pkg_b.a:

Diagnostic dump resources
rsp_dupl_pkg_s.a and rsp_dupl_pkg_b.a:

User System Description substructure duplication
rsp_errs_pkg_s.a and rsp_errs_pkg_b.a:

User System Description parsing/lexing error reporting
rsp_eval _pkg_s.a and rsp_eval_pkg_b.a:

User System Description interpretation (expression evaluation)
rsp_exec_pkg_s.a and rsp_exec_pkg_b.a:

User System Description interpretation (main line system execution)

rsp_expr_pkg_s.a and rsp_expr_pkg b.a:
User System Description recursive descent parsing (expressions)
rsp_find_pkg_s.a and rsp_find pkg_b.a:
Post-translation User System Description probe/fetch
rsp_form pkg_s.a and rsp_form pkg b.a:
General formatting resources
rsp_hist_pkg_s.a and rsp_hist_pkg b.a:
User System Description history scalar access
rsp_iocp_pkg_s.a and rsp_iocp_pkg b.a:

1/0 choke point routines and file information (all input and output

operations)
rsp_lang _pkg_s.a and rsp_lang pkg b.a:

User System Description language syntactics
rsp_lexr pkg_s.a and rsp_lexr_pkg b.a:

User System Description lexigraphical scanner
rsp_list_pkg_s.a and rsp_list_pkg b.a:

User System Description listing processing
rsp_optn_pkg_s.a and rsp_optn_pkg_b.a:

Program option knowledge
rsp_pars_pkg_s.a and rsp_pars_pkg_b.a:

User Systemn Description recursive descent parsing (main line)
rsp_path_pkg_s.a and rsp_path_pkg_b.a:

User System Description recursive descent parsing (paths)
rsp_prim pkg_s.a and rsp_prim pkg _b.a:

User System Description recursive descent parsing (primary items)

rsp_rset_pkg_s.a and rsp_rset_bpkg_b.a:
User System Description recursive descent parsing (rulesets)
rsp_rule_pkg_s.a and rsp_rule_pkg_b.a:

- 108 -

User System Description recursive descent parsing (rules)
rsp_sasa_pkg_s.a and rsp_sasa_pkg_b.a:

User System Description interpreter storage allocation and scalar access
rsp_scop_pkg_s.a and rsp_scop_pkg b.a:

User System Description declarative identifier scope processing
rsp_stmt _pkg_s.a and rsp_stmt_pkg _b.a:

User System Description recursive descent parsing (statements)
rsp_syst_pkg_s.a and rsp_syst_pkg b.a:

User System Description recursive descent parsing (systems)
rsp_util pkg_s.a and rsp_util _pkg b.a:

General utilities
rsp_xtrn_pkg_s.a and rsp_xtrn_pkg b.a:

User System Description recursive descent parsing (externals)

- 109 -

NNASA Report Documentation Page

NSUONS Asronmics and
SO.CE AT I SON
1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
CR-179441
4. Title and Subtitie 5. Report Date

April 1989
Expert Systems for Real-Time Monitoring and

Fault Diagnosis 6. Performing Orgsnization Code

7. Authoris) 8. Performing Organization Report No.
S.J. Edwards and A.K. Caglayan H-1540

10. Work Unit No.
RTOP 505-66-71

9. Performing Organization Name snd Address

Charles River Analytics Inc. 11. Contract or Grant No.
55 Wheeler Street NAS2-12725
Cambridge, Massachusctts 02138

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report—Final
National Aeronautics and Spacc Administration
Washington, D.C. 20546 14. Sponsoring Agency Code

15. Supplementary Notes

NASA Tecchnical Monitor: E. Lcc Duke, NASA Amcs Rescarch Center, Dryden Flight
Rcscarch Facility, Edwards, California 93523-5000.

16. Abstract

The aim of this study is to investigatc mcthods for building rcal-time onboard expert
sysicms and to dcmonstratc thc usc of expert systems technology in improving the
performance of current rcal-timc onboard monitoring and fault diagnosis applications.
The potential applications of thc proposed (rescarch include an expert system environ-
ment allowing the intcgration of cxpert sysicms into conventional time-critical applica-
tion solutions, a grammar for describing thc discrete event bchavior of monitoring and
fault diagnosis systems, and their applications to new rcal-time hardware fault diagnosis
and monitoring systems for aircraft,

17. Key Words {Suggested by Author(s)) 18. Distribution Smomom o
Control systems Unclassified—Unlimited

Expcrt systecms
Fault dctection

Fault isolation Subjcct category 63
19. Security Classi(: {of this report) 20. Security Cll“'f (of this page) 21. No. of pages 22. Price
Unclassificd Unclassified 119 A06

NASA FORM 1628 OCT 88
*Lor sale by the National Technical Information Service, Springfield, Virginia 22161.

