Two-Dimensional Numerical Simulation of a Stirling Engine Heat Exchanger

Mounir B. Ibrahim
Cleveland State University
Cleveland, Ohio

and

Roy C. Tew and James E. Dudenhoefer
Lewis Research Center
Cleveland, Ohio

Prepared for the
24th Intersociety Energy Conversion Engineering Conference
cosponsored by the IEEE, AIAA, ANS, ASME, SAE, ACS, and AIChE
Washington, D.C., August 6-11, 1989
TWO-DIMENSIONAL NUMERICAL SIMULATION OF A STIRLING ENGINE HEAT EXCHANGER

Mounir Ibrahim
Cleveland State University
Cleveland, Ohio 44115

Roy C. Tew and James E. Dudenhoefer
NASA Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

This paper describes the first phase of an effort to develop multidimensional models of Stirling engine components: the ultimate goal is to model an entire engine working space. More specifically, this paper describes parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, have been solved using Crank-Nicolson finite-difference scheme. Model predictions have been compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. The simplifying assumptions will later be relaxed to permit modeling of compressible, laminar/turbulent flow that occurs in Stirling heat exchanger.

Excellent agreement has been obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.

NOMENCLATURE

dp/dx axial pressure gradient, N/m^3

\(f \) time-averaged Fanning friction factor = \(2 \sqrt{\frac{\nu}{w^2/\rho u^2}} \)

\(f_u \) unidirectional Fanning friction factor

Pr Prandtl number

p pressure, N/m^2

Re Reynolds number = \(2 u_{av}(R_o - R_i)/v \)

R_i half width of the channel, m

R_o half distance between two consecutive plates, m

r radial location, measured from channel centerline, m

T temperature, k

\(T^* \) normalized temperature = \(T/(\lambda \Delta x) \)

\(t \) time, s

u axial velocity, m/s

\(u^* \) normalized axial velocity = \(u/u_0 \)

u_{av} cross-stream-averaged velocity, m/s

u_0 characteristic axial velocity, m/s

x axial distance, m

y cross stream distance, measured from plate centerline, m

\(\alpha_e \) effective averaged thermal diffusivity, "the thermal diffusivity that will produce the same axial heat flux as obtained from radial conduction and axial convection heat transfer"

\(\alpha_x \) normalized effective averaged thermal diffusivity = \(\alpha_e/(\omega \Delta x^2) \)

\(\Delta x \) tidal displacement "the cross-stream-averaged maximum axial distance which the fluid elements travel during one half period of oscillation"

\(\Delta x^* \) normalized tidal displacement = \(\Delta x/(u_0/\omega) \)

\(\Delta T \) axial temperature gradient, k/m

\(\rho \) density, kg/m^3

\(\nu \) fluid dynamic viscosity, kg/m/s

\(\nu_k \) fluid kinematic viscosity, m^2/s
ANALYSIS

Assumptions

Figure 1 shows a sketch of the channel flow with the computation domain and boundary conditions. The following assumptions were made:

1. The flow is laminar, incompressible and has constant thermophysical properties.
2. Since we are only concerned with the fluid flow in the central part (in the z-direction) of the channel, hydrodynamic and thermal end effects can be ignored. This assumption can be satisfied by using a long channel compared to its width.
3. As a consequence to assumption (2) all convection terms in the momentum and energy equations can be ignored, except for the \(\rho \Delta T / \Delta x \) term in the energy equation; since it is the only convective driving mechanism for the heat transfer.
4. The axial temperature gradient is constant. This assumption is consistent with the experimental finding for a similar setup [2] where it was found that the temperature varies linearly with \(x \) in almost 90 percent of the central length of the channel.
5. Under the oscillating flow conditions, heat transfer is controlled by radial conduction and axial convection. Therefore the axial heat conduction can be ignored.

Governing Equations

Applying the above assumptions to the general form of the Navier-Stokes equations yields the following set of equations:

\[
\begin{align*}
\text{Continuity:} & \quad \frac{\partial u}{\partial x} = 0 \quad (1) \\
\text{x-Momentum:} & \quad \rho \frac{\partial u}{\partial t} = -\frac{dp}{dx} + \rho \frac{1}{r_1} \frac{\partial}{\partial r}(r_1 \mu \frac{\partial u}{\partial r}) \quad (2) \\
\text{Energy:} & \quad \rho \frac{\partial T}{\partial t} = \mu \frac{\partial T}{\partial r} \left(r_1 \frac{\partial }{\partial r}(r_1 \mu \frac{\partial T}{\partial r}) \right) \quad (3)
\end{align*}
\]

where \(i = 1 \) for circular tubes

The code developed is capable of predicting both circular tube flow and flow between parallel plates; however, the results provided in this paper are only for parallel plates.

The pressure gradient term in Eq. (2) is assumed to be of oscillatory nature according to:

\[
\frac{dp}{dx} = \left(\frac{dp}{dx} \right)_{max} \cos \omega t \quad (4)
\]

The above equations are subjected to the following boundary conditions:
Since the computation domain includes both the solid and the fluid, the boundary condition at the solid/fluid interface is automatically satisfied.

It should be noted that the above boundary conditions have been carefully selected for the following reasons:

1. They match the boundary conditions given in Kurzweg's [11] analysis. Accordingly, the numerical results can be compared with his analytical solution.
2. The above boundary conditions to great extent could simulate the central element (from both axial and radial directions) of a Stirling engine regenerator.

Numerical Method

The above partial differential equations have been transformed into finite difference equations using different schemes, namely, fully explicit, Crank Nicolson and fully implicit. A sensitivity analysis was conducted by comparing the results from each finite difference scheme with the fluid flow analytical solution. It was concluded that the Crank Nicolson scheme is the most accurate; this is consistent with other research findings for unsteady heat equation problems [31.

RESULTS

Comparison with Analytical Solution

One of the main objectives of this work is to develop an accurate and efficient numerical scheme that can be used with confidence in future engine models. Therefore, an extensive grid variation test was conducted for both space and time to obtain grid independent and accurate numerical results.

Table I shows the normalized tidal displacement and normalized effective thermal diffusivity as obtained for water (Pr = 10.26) with R_o = 2R_i and the assumption that the solid has the same thermophysical properties as the fluid. In the table the present work numerical predictions were compared with the analytical solution [11] for \(\omega^* \) from 0.09 to 9. The numerical results showed the same trend where a maximum \(\omega^* \) occurs at \(\omega^* = 0.306 \) as indicated by the analytical solution for Pr = 10.26. Table I shows differences between the numerical and analytical results of less than 2.0 percent.

Furthermore, the present work velocity profiles for different fluids (water and air) were checked against the corresponding analytical velocities at several radial locations. Figures 2(a), (b), and (c) show the numerical velocity versus the analytical one at various radial locations in the channel (near wall region, \(y/R_o = 0.506 \); half distance between the wall and centerline \(y/R_o = 0.75 \); and centerline, \(y/R_o = 1.0 \)). Results are shown for water, \(\omega^* = 0.306 \) (Fig. 2(a)); water, \(\omega^* = 9.0 \) (Fig. 2(b)); and air, \(\omega^* = 4.48 \) (Fig. 2(c)). The plots show, again the close agreement between the numerical and analytical solutions.

Fluid Flow Results

Velocity profile

Figures 3(a), (b), and (c) show the dimensionless velocity profile \(u^* \) versus the dimensionless distance (\(y/R_o \)) for water, \(\omega^* = 0.306 \) (Fig. 3(a)); water, \(\omega^* = 9 \) (Fig. 3(b)); and air, \(\omega^* = 4.48 \) (Fig. 3(c)). Upon examining the above figures the following were noted:

1. For low dimensionless frequency \(\omega^* = 0.305 \) the velocity profile has a maximum at the channel centerline.
2. As \(\omega^* \) increases a boundary layer starts to develop near the solid surface.
3. Also, as \(\omega^* \) increases the flow direction near the wall becomes opposite to that in the core, in certain parts of the cycle.

Friction factor

From the velocity profiles described above one can obtain wall shear stress, friction factor and Reynolds number at any pressure gradient phase angle. In addition, a root-mean-square can be calculated for the wall shear stress as well as the mean cross-sectional axial velocity. From the latter one can calculate friction factor and Reynolds number based upon time averaged quantities, similar to the work done on circular tubes by Chen and Griffin [8]. Chen and Griffin had obtained a correlation for the normalized friction factor (with respect to the corresponding unidirectional flow), \(f/f_5 \) based upon an approximate velocity profile given by White [5]. Work is underway to compare present work results with Chen and Griffin's correlation.

Heat Transfer Results

In the channel flow under study, the maximum radial temperature difference, between the channel wall temperature and the bulk fluid temperature, can be obtained by ignoring the radial heat conduction. Accordingly, this maximum radial temperature difference is equal to the axial temperature gradient times the tidal displacement. Now, one can obtain a normalized temperature profile utilizing the maximum radial temperature difference described above.

Figures 4(a) and (b) show the normalized temperature profile versus \(y/R_o \) for \(\omega^* = 0.306 \).
Finally, the maximum effective thermal diffusivity described above in Table I can be better explained by plotting both the velocity and temperature at the same radial location versus ϕ. Figures 5(a) and (b) show the normalized velocity and normalized temperature profiles versus ϕ at $y/R_o = 0.506$, 0.75 and 1.0; for $\omega^* = 0.306$ (water), and $\omega^* = 4.48$ (air) respectively. It should be noted that the value of ω^* chosen for each fluid corresponds to the maximum ω^* that can be obtained.

It can be seen from the plots that there is always a phase shift between the velocity and temperature profile. It is interesting to notice that the phase shift is almost the same for the above two cases examined. It is believed that this phase shift (approximately 120° at $y/R_o = 1.0$) provides the maximum interaction between axial convection and radial conduction and consequently the maximum net axial heat flux.

CONCLUDING REMARKS

An accurate numerical scheme has been applied to calculate the fluid flow and heat transfer characteristics in an oscillating channel flow. The flow was assumed laminar, incompressible and has constant thermophysical properties. Also a constant axial temperature gradient was imposed on the channel; however the axial heat conduction was assumed negligible.

The numerical scheme has been successful in predicting velocity profiles, tidal displacement, temperature profiles, and effective thermal diffusivity for a wide range of ω^* and different types of fluid (water and air). This shows that the present work numerical studies confirm earlier investigations.

The interaction between axial convection and radial conduction heat transfer, if tuned properly, would result in a considerable enhanced axial heat transfer. These tuned conditions, for the cases examined in the paper, occurred at $\omega^* = 0.306$ (water) and $\omega^* = 4.48$ (air). It is believed that the phase shift between the velocity and temperature profiles are tied in with this tuning process.

In a Stirling engine regenerator, these conditions (at which maximum axial heat transfer occur) should be avoided.

It should be noted that those tuned ω^* are restricted to the channel configuration and the different assumptions explained in the paper. A study is underway to examine other operating conditions (such as type of fluid, wall material, order of magnitude of axial pressure and temperature gradients, etc.) that are relevant to Stirling engines.

This work is a first step in the planned development of a two-dimensional code which can be used to model Stirling engine heat exchangers-tubular heaters, tubular and foil type regenerators, and tubular coolers. As the studies continue, the simplifying assumptions will be changed to include laminar/turbulent flow, compressible working fluid, and different outer thermal boundary conditions.

A second study has begun to model the rapid expansion and contraction of oscillating flow entering and exiting the heat exchangers. This work will permit the incorporation of hydrodynamic and thermal end effect conditions to the heat exchanger model.

REFERENCES

TABLE I. - COMPARISON BETWEEN PRESENT WORK NUMERICAL RESULTS FOR \(\Delta x^* \) and \(\alpha_e^* \) AND ANALYTICAL SOLUTION [1] FOR DIFFERENT \(\omega^* \)

[Water (Pr = 10.26) and \(R_0/R_1 = 2.0 \)]

<table>
<thead>
<tr>
<th>Valensi number, (\omega^*)</th>
<th>Normalized tidal displacement, (\Delta x^*)</th>
<th>Normalized effective averaged thermal diffusivity, (\alpha_e^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present work</td>
<td>Analytical [1]</td>
</tr>
<tr>
<td>0.09</td>
<td>0.05941</td>
<td>0.05995</td>
</tr>
<tr>
<td>.16</td>
<td>0.1055</td>
<td>0.1064</td>
</tr>
<tr>
<td>.25</td>
<td>0.1643</td>
<td>0.1658</td>
</tr>
<tr>
<td>.306</td>
<td>0.2019</td>
<td>0.2023</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6160</td>
<td>0.6181</td>
</tr>
<tr>
<td>9</td>
<td>1.607</td>
<td>1.61</td>
</tr>
</tbody>
</table>
Figure 1. - Sketch of a parallel plate heat exchanger.

(a) Sketch of overall system.

(b) Central part showing the computation domain and boundary conditions.
Figure 2. - Comparison between numerical and analytical velocity profiles at $y/R_0 = 0.506$ (near wall), 0.75 and 1.0 (centerline) for $R_0/R_1 = 2.0$. (Note that the data points for different y/R_0 almost coincide and lie on a line at 45° with the axis).
FIGURE 3. - NORMALIZED VELOCITY PROFILES VERSUS DIMENSIONLESS RADIAL DISTANCE AT DIFFERENT PRESSURE GRADIENT PHASE ANGLES.
FIGURE 4. - NORMALIZED TEMPERATURE PROFILES VERSUS DIMENSIONLESS RADIAL DISTANCE AT DIFFERENT PRESSURE GRADIENT ANGLES.
(a) WATER (Pr = 10.26), R_0/R_i = 2.0 AND \omega^* = 0.306.

(b) AIR (Pr = 0.72), R_0/R_i = 2.0 AND \omega^* = 4.48.

FIGURE 5. - NORMALIZED VELOCITY AND TEMPERATURE PROFILES VERSUS PRESSURE GRADIENT PHASE ANGLE AT DIFFERENT RADIAL DISTANCES (y/R_0 = 0.506, 0.75 AND 1.0).
Title and Subtitle

Two-Dimensional Numerical Simulation of a Stirling Engine Heat Exchanger

Abstract

This paper describes the first phase of an effort to develop multidimensional models of Stirling engine components; the ultimate goal is to model an entire engine working space. More specifically, this paper describes parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, have been solved using Crank-Nicolson finite-difference scheme. Model predictions have been compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. The simplifying assumptions will later be relaxed to permit modeling of compressible, laminar/turbulent flow that occurs in Stirling heat exchanger. Excellent agreement has been obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.