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Abstract

MODELING AND SIMULATION OF A STEWART PLATFORM
TYPE PARALLEL STRUCTURE ROBOT
by

Gee Kwang Lim, Graduate Research Assistant
Robert A. Freeman, Assistant Professor of Mechanical Engineering
Delbert Tesar, Carol Cockrell Curran Chair in Engineering

The kinematics and dynamics of a Stewart Platform type parallel
stucture robot(NASA's Dynamic Docking Test System) were modeled using the
method of kinematic influence coefficients(KIC) and isomorphic ransformations of
system dependence from one set of generalized coordinates to another. By
specifying the end-effector (platform) dme trajectory, the required generalized input
forces which would theoredcally yield the desired motion were determined.

It was found that the relationship between the platform motion and the
actuators motion was nonlinear. In additon, the contribution to the total generalized
forces, required at the actuators, from the acceleration related terms were found to
be more significant than the velocity related terms. Hence, the curve representing
the total required actuator force generally resembled the curve for the acceleration
related force. Another observation revealed that the acceleration related effective

inertia matrix L 14¢] had the tendency to decouple, with the elements on the main
diagonal of [ I“] being larger than the off-diagonal elements, while the velocity

related inertia power array Pasa] did not show such tendency. This tendency
results in the acceleration related force curve of a given actuator resembling the
acceleration profile of that particular actuator. Furthermore, the investigation
indicated that the effective inertia matrix for the legs is more decoupled than that for
the platform. These observations provide essential information for further research
to develop an effective control strategy for real-time control of the Dynamic

Docking Test System.
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CHAPTER 1
INTRODUCTION

Change, rapid change is one of the most common daily occurrences in
today's world. Everyday there are new products cropping up in the market. It is
practically impossible for any manufacturer to stay competitive if the manufacturing
facilities are solely designed for a particular product, requiring months or maybe
years to convert the facilities for production of a different product. Hence, flexible
manufacturing is the key word in today's manufacturing environment. The facilities
must be able to adapt to changes rapidly. Besides being flexible in today's
manufacturing world, certain manufacturing processes require an almost absolutely
clean environment, eg., clean room operation. Furthermore, there are certain
environments which are hazardous to human existence, such as operation in space
and in nuclear facilities. In order to accomplish these tasks, robots, which are
computer controlled mechanical devices capable of adapting to 2 wide range of
operations, must be utilized. However, there is a limit to what a particular robot can
or cannot do depending on the physical structure of the robot and how the robot is
being controlled. There is nothing much that one can do to alter the physical
structure of a robot, besides getting a different one. But, there are many ways in
which one can improve the ability of a robot. The most obvious one is by altering
the control strategy of the robot. For example, there are different ways for a robot
end-effector to move to a certain location. One of the ways is to move the end-
effector to the vicinity of the location as fast as possible and subsequently employ
feedback control to reach the desired location. Another way is by using a more
accurate model of the robot to predict the input loads required for a given motion of
the end-effector and implement feedforward control in order to arrive at the desired
location. The basis of this work then is to obtain a robot's dynamic models for the
purpose of feedforward control.

There are a few desirable criteria which are frequently used to
characterize robot manipulators. They are:
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(1) Load capacity;
(2) Speed;
(3) Precision.

These three important factors are very often interrelated. Robots with
high load capacity are usually imprecise and can only move at low speed. Or,
robots moving at high speed are often imprecise. Hence, there is a trade-off among
the three criteria. There are three factors that characterize the precision of industrial
robots. The first factor is repeatability. Repeatability refers to the ability of a robot
to return to a previously defined location in space. The second factor is absolute
accuracy, which refers to the ability of a robot to reach a point in space defined by
the controller. The last factor is resolution. It gives the smallest movement the end-
effector can achieve.

The main concern in this work is the problem of load capacity. The
robots that are of interest here must be able to carry extremely high loads, maybe up
to a few thousand kilograms. With this degree of load capacity, the robots
themselves must be relatively rigid and heavy. As a result of the large mass in the
robot structure, dynamic effects become very significant in the robot motions,
although the robot maybe moving at a rela:ively low speed. There are basically two
different classes of robots that are in use today. These are "serial" robot
manipulators and "fully parallel” robot manipulators. Altﬁough, there can be a mix
of the two classes, for example, the hybrid manipulator systems discussed in Sklar
and Tesar [36], the focus in this work will be on serial and fully parallel
manipulators. .

Theoretically, serial robots can be designed to carry high load if
necessary. Practically, it is almost impossible to design serial robots that can carry
high loads and maintain relatively precise motion. This is due to the fact that errors
in serial manipulators are additive in nature. A one degree deflection in the first link
may easily cause a significant error at the end-effector position. On the other hand,
parallel manipulators are structurally more rigid and the error in each links is non-
additive. Therefore, parallel manipulators are the best alternative for tasks that
require high load capacity in a limited workspace. However, parallel manipulators



not only are structurally more complex, but they also require a more complicated
control scheme. The main objective of this work is to develop the necessary
dynamic models and computer software for future study of the generalized Stewart
Platform aimed at formulating an effective real-time control strategy.

This work concentrates on the development of the dynamic model for
a fully parallel robotic manipulator based on the modeling technique called the
method of Kinematic Influence Coefficients(KIC). The modeling procedure begins
with the discussion on serial manipulators and then extends the technique to include
parallel manipulators by utilizing an isomorphic transformation procedure called the
transfer of generalized coordinates.

To provide the readers with a better idea of the discussion that focuses
on the development of the model for a fully parallel manipulator, Chapter 2 begins
with an introduction on how the concept of parallel mechanisms was first
envisioned by Mr. D. Stewart [37] and the basic design concept for this class of
mechanism, subsequently known as Stewart Platforms. Also included is the
application employing this class of mechanism by the National Aeronautics and
Space Administration(NASA) for the development of the Dynamic Docking Test
System (Gates and Graves [18), Owen and Williams [33], Strassner ([38], [39],
[40])). In addition, a brief discussion on the different approaches adopted by
researchers to model Stewart Platform type mechanisms is meant to give the readers
an overview of the problems faced when using this class of mechanism.

Chapter 3 introduces the fundamental modeling approach employed in
this work. The approach, called the method of Kinematic Influence Coefficients, is
based on the separation of time dependent functions and position(or configuration)
dependent functions. This chapter develops the tools necessary for deriving the
kinematic and dynamic models for serial manipulators. Then, using the tools just
developed, the model for serial manipulators is formulated.

Chapter 4 gives a detailed description of the isomorphic
transformation technique which greatly enhances the modeling capabilities of the
method of Kinematic Influence Coefficients. A general procedure is developed to
transfer the kinematic and dynamic models referenced to any set of generalized
coordinates to any other desired set of generalized coordinates via the transfer of




generalized coordinates. The discussion begins with serial manipulators and then is
extended to include multi-loop parallel mechanisms.

Chapter 5 focuses on the application of the modeling technique
developed in the previous chapters to NASA's Dynamic Docking Test System,
which is a variation of the generalized Stewart Platform. This chapter gives a
detailed description of the derivation of the desired dynamic model, which can be
used to implement feedforward control for the Dynamic Docking Test System. The
development includes deriving the directly obtainable initial models for each leg
referenced to their respective joint parameters and the platform model referenced to
the platform coordinates. Also includad is the transfer of the joint-based model for
each leg to the intermediate common set of platform coordinates. And, finally, the

transfer of the model from the platform coordinate set to the desired input
coordinate set is discussed.

In Chapter 6, the results of various computer simulations using the
model developed in Chapter 5 are presented. Four different motion specifications
and two platform trajectories are simulated. The motion specifications used are:

(a) Class p=2, constant acceleration;

(b) Class p=3, 3-4-5 polynomial;

(c) Class p=4, 4-5-6-7 polynomial;

(d) Class p=4, 31 derivative trapezoidal.

From these simulations, the contribution to the overall actuator forces arising from
the velocity-related term and the acceleration-related term are studied. Furthermore,
the elements in the effective inertia matrix and inertia power array are also
investigated. The magnitude of these elements in general and the relative magnitude
of the main diagonal elements compared to the off-diagonal elements, are essential
for studying the feasibility of real-time feedforward control.



CHAPTER 2
BACKGROUND
2.1 tew, latf

In the search for a suitable means for simulating flight
conditions for the safe training of helicopter pilots, the design
of a mechanism has been established having all the freedoms
of motion within the design limitations of amplitude and
capable of being controlled in all of them simultaneously.

In the opening paragraph, as quoted above, from the 1965 publication
by Mr. D. Stewart [37], he saw the immediate need for a mechanism suitable for
pilot training. Serial manipulators having six degrees-of-freedom(DOF) are
potential candidates for the job. However, the mechanism must be able to carry a
large load and change direction, speed and acceleration within a short period of time
to simulate flight conditions. These requirements present a serious problem for any
serial manipulator. It was a known fact at that time, and today too, that serial
manipulators were very limited in load capacity. Thus, using a serial manipulator
alone to do the job is highly unlikely, so a different kind of mechanical structure is
necessary. Mr. Stewart envisioned mechanisms which had the ability to carry a
large load and still satisfy the above mentioned motion specifications could also be

used in the following ways:

(a) To simulate a space vehicle

(b) To simulate a stationary platform on a moving ship

(¢) As a human control mechanism (man-machine interface)
(d) As a machine tool

(e) As an automatic assembly or transfer machine.



2.1.1 Basic Design Concept

The mechanism which Mr. Stewart designed, called the Stewart
Platform, consists of a moving platform supported by three legs through a ball joint
at each of the connections. The other end of each leg is connected to ground
through a two-axis revolute joint as shown in Fig. 2-1. The connections at the ball
joints are free to rotate as the platform moves. All the legs are designed using
prismatic joints allowing control of the individual leg lengths. One axis of the two-
axis revolute joint is also controlled by an actuator. These inputs are referred to as
the controlled actions in Fig. 2-1. This arrangement gives the platform six DOF
with two DOF essentially controlled by each leg. The platform is also designed so
that when the three legs are in their mean positions, each of the legs is contained in
a tangential plane of a circle that passes through the three points of the platform as
shown in Fig. 2-2.

With this basic design concept, a wide range of applications
previously limited by the speed and load capacity of serial manipulators will soon
surface. For example, applications that require high load capacities will now be
possible due to the parallel nature of the mechanism. Unlike serial manipulators
where deflection from each link is additive in nature, any deflection under heavy
load in a parallel manipulator is non-additive, meaning the total deflection at the
end-effector is not the sum of each of the individual link. Another useful application
is in the area where high precision and accuracy are critical within a limited
operating range, eg. micromanipulator for use in micro-surgery. In this kind of
operation, very small motions are required from the manipulator but with high
precision, the parallel structure potentially gives the mechanism a faster and more
precise motion than its serial counterpart.

2-1.2 Control of the Mechanism

As technology advances, system control becomes a vital part of
everyday life. Take the very basic household temperature control. Without the use
of a thermostat, one will have to perform the boring routine of switching on and off



Platform

Freedom Axes

Fig. 2-1 General Arrangement of the Stewart Platform*

*Adapted from Stewart [37]
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the air conditioner(or heater) to keep the temperature at a desired level. Opening and
closing of the elevator door is another example of control. When someone enters
the elevator as the door is closing, the door will stop and start to open again. These
examples show how important control is in one's daily life, although one might not
realize it. Control systems not only relieve humans from some easy tasks, but they
can also facilitate the operation of a highly complex problem like sending a
spacecraft out to an unknown galaxy. For any mechanism be of any use, the ability
to control it effectively is essential. A mechanism will just be a show piece with no
practical purpose if there is no way of controlling it. Hence, this section discusses
some of the techniques suggested by Mr. Stewart for the control of the platform
mechanism. '

2-1.2.1 Linear Hydraulic Actuator

One of the methods that Mr. Stewart suggested in controlling the
mechanism was by using two hydraulic jacks for each leg. One of the jacks is to
control the length of the leg, while the other jack is to control the angle of the first
jack as shown in Fig. 2-3. Also depicted in the figure is a common axis and two
parallel axes at the base of the two jacks (two-axis joint). The common axis is not
controlled by the leg allowing the plane containing the individual leg to rotate freely
about that axis. This design gives the platform a three-axis motion about the ball
joint. When the three legs are connected together at the platform, the platform
direction, which cannot be controlled by a single leg, can be thought of as being
controlled by the other two 2 DOF legs. Thus, the platform has a total of six DOF
(three translational and three rotational motions).

2-1.2.2 Articulated Levers

Another proposed structure uses articulated levers as shown in Fig.
2-4. This system of controlling the platform differs from the linear actuators
discussed in the previous section. Instead of controlling one length and an angle,
the ball joint location within the plane of each leg, and hence, the platform is
controlled by two angles (& and B). One advantage for controlling two angles over
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Fig. 2-3 General Arrangement of Single Leg System*

*Adapted from Stewart [37]
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one length and an angle, as discussed in section 2-1.2.1, is that larger workspace
can be attained. By replacing the jack in Fig. 2-3 with an articulated leg, and
operating the jack part way along the outer limb (Fig. 2-4), the amplitude of the leg
extension can be increased as compared with the linear controlled actuator.

2.2 Dvnamic Docking Test Svstem (DDTS)

Utilizing the basic concept of the Stewart Platform, the National
Aeronautics and Space Administration's Lyndon B. Johnson Space Center built a
full-scale advanced docking system in the early 1970's (Gates and Graves [18],
Owen and Williams [33], Strassner ([38], [39], [40])). The DDTS is a large
motion, real-time docking test simulator designed to physically accommodate the
docking hardware of two spacecrafts. The physical configuration of the simulator is
shown in Fig. 2-5. The simulator consists of six linear hydraulic actuators which
support and move an active table (moving platform) on which the passive docking
hardware is mounted during a simulation. The overhead support structure is
supported by a strongback at one end and two vertical braced columns at the other
as shown in Fig. 2-6. This stationary portion of the simulator supports the active
docking hardware system, docking hardware adapter and load cell system.

During a docking test, the lower portion of the simulator manipulates
the passive docking hardware of one spacecraft to the acuve docking hardware of
the other spacecraft, which is attached to the stationary overhead soructure. Before
the two portions of the simulator (ie., active and passive) come into contact, the
active table is driven by the six hydraulic actuators in a preprogramed motion
trajectory relative to the stationary active docking hardware. On contact, the loads
sensed by the load cell system triggers the closed-loop portion of the simulation.
These loads are then used as inputs to spacecraft equations of motion to predict the
response of the two spacecrafts on the computer . Subsequently, real-time relative
motion of the two spacecrafts is determined and then transformed into actuator
motion commands. The simulation is terminated when the closed-loop load and the
spacecraft dynamics go to zero.

(8]



Fig. 2-5 Perspective View of the Dynamic Docking
Test System* :

*Adapted from Strassner [38]
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Ignoring the specific structural differences between the Stewart
Platform of Fig. 2-1 and the DDTS of Fig. 2-5, it is apparent that the two
mechanisms resemble each other. Both the mechanisms have a moving platform
that is supported by some mechanical linkages (or legs) and they are parallel in
nature. By controlling the orientation and/or length of the legs, the motion of the
platform is then defined. The only difference between the two mechanisms is that
the platform in Fig. 2-1 has three legs while the platform in Fig. 2-5 has six legs.
However, both the mechanisms still provide control of the six DOF of the platform.
Two DOF are controlled by each of the leg in the arrangement in Fig. 2-1, but only
one DOF is controlled by each of the leg in the design shown in Fig. 2-5.

The initial use of the DDTS was for the Apollo/Soyuz Test Project,
which was an international mission between the United States and the USSR. The
project involved the docking of Apollo and Soyuz docking modules in the space
orbit. The high load capacity requirement from the two docking modules
discouraged the use of serial test mechanism due to the additive nature of the
deflection from each of the serial linkages. Future applications of the DDTS will be
for the space shuttle and the space station.

2.3 urvev of Related Work her R rch

In the last two decades, science and technology have advanced
tremendously. Computer technology for instance, has reached a point where
products produced just one or two years ago are considered outdated. With this in
mind, one would expect the same impact on robotic technology since the computer
is the brain of the robot. Unfortunately, this is not true. Only recently has industry
seen the potential for robots in the manufacturing environment. This delay in
realizing the need for robotics technology created a gap between what the brain of a
robot is capable of doing and what the robot is physically able to do. Although there
is a lot of robotics research ongoing, most of the emphasis is in the area of serial
manipulators, from which most industrial robots are derived. A very limited amount
of effort is put into the development of parallel robotic mechanisms. A survey of the
literature will illustrates this trend in the engineering research community. After an
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extensive survey, only the following publications are available: Callan [4], Cox [6],
Cwiakala [8], Do and Yang [9], Fichter [12], Freeman and Tesar ([14], [15]),
Hudgens [21], Hunt [22], Marco [28], Mayer and Wood [30], Mohamed and
Duffy [31]. This limited effort maybe due to the complexity of the geometry as
compared to serial linkages or, it maybe because not many researchers have yet
realized the potential of parallel mechanisms.

In the following, a few of the recent publications from researchers
across the country covering the different aspects of parallel mechanisms will be
discussed. The first report investigates the dynamics of the platform type
mechanism using the Newton-Euler formulation. Following that is a report that
investigates the workspace of the mechanism. The third report deals with the

general theory and practical construction of the mechanism. While the last
investigation is to utilize the mechanism as a micromanipulator for delicate force

control, error compensation and fine manipulation.

In a publication presented by Do and Yang [9], Newtonian mechanics
was used to calculate the actuating forces for the actuators of a Stewart Platform
shown in Fig. 2-7. It is found that the dynamics of the mechanism is governed by
thirty-six simultaneous equations. Instead of solving the entire set of simultaneous
equations, which would be computationally demanding, it is also found that the
thirty-six equations can be arranged to form systems of six linear equations. The
approach taken in the reported research is very "conventional”. By conventional it is
meant that the method is widely used in the engineering community. As a result, it
is easily understood by most researchers. However, this approach lacks generality
in the sense that there is no general rule as to how to form the six desired equations.
A complete analysis of the mechanism may be necessary to obtain a similar set of
six equations if a slightly different model is used.

Another publication presented by Cwiakala [8], analyzed the
kinematics of the platform. Using only the kinematic model, the workspace of the
Stewart Platform was studied. By utilizing the special symmetry of the platform,
the investigator found that the problem of determining a representative workspace
cross-section could be reduced to a planar problem. Also addressed in this work is
the development of an efficient approach to generate the workspace of the platform.

16



Fig. 2-7 Kinematic Model of the Stewart Platform*

*Adapted from Do and Yang [9)
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It is found that the workspace cross-section of the Stewart Platform under
consideration is nonsymmetric. In addition, the nonsymmetry and the volume
increase as the ratio of the lower radius (base) to upper radius (platform) increases.
This implies that by increasing the radius of the platform, the workspace can be
increased.

A different approach was taken by Fichter [12]. Screw theory was
used to determine the dynamics of the Stewart Platform. Unfortunately, the author
of this work is not familiar enough with the technique of screw theory to contribute
any useful comment. However, one of the findings which has great interest to this
author is the determination of singular positions for the mechanism. It is noted that
instead of losing one or more degrees of freedom at the singular positions, as one
does with serial manipulators, parallel manipulators gain one or more degrees of
freedom. By this it means that the control of one or more degrees of freedom of the
platform is lost. The singular positions of the Stewart Plaiform similar to the one
shown in Fig. 2-5 or Fig. 2-7 occur when the six lines of action of the forces of the
legs are linearly dependent. This condition can also he found by calculating the
determinant of the matrix of the Plucker coordinates. At singular positions, the
determinant of the matrix becomes zero. For detailed results of this investigation the
readers are referred to the publication. In addition, Mohamed and Duffy [31] also
investigated the first-order properties via screw theory.

Applying the concept of the Stewart Platform, researchers have come
up with many applications for parallel robotic mechanisms. One of the very
practical uses is as a micromanipulator. It can be used alone for very small motion
and high precision operation or it can be combined with a serial manipulator to take
advantage of the positive aspects of both the parallel and serial manipulators. By
positive aspects the author means the relatively high speed and precision of the
parallel structure, and large workspace volume together with the relatively high
dexterity of the serial structure. Sklar and Tesar [36] investigated the kinematics and
dynamics of hybrid serial/parallel manipulator structurss.

Hudgens [21] investigated a fully-parallel six DOF micromanipulator
in his Master's Thesis. The micromanipulator investigated there, shown in Fig.
2-8, is a variation of the generalized Stewart Platform. Instead of varying the link

18
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length of the six legs to control the platform, it is controlled by varying the position

of the lower spherical joints in a circular arc within the base plane. The rotary input

in Fig. 2-8 controls the movement of the lower spherical joint via the base link. The
motivations for using the four-bar linkage at the active input to control the platform
instead of the link length are the following:

(a) only a small workspace is necessary in this particular application.

(b) this input arrangement provides high resolution at the platform. By
high resolution it means large input motion to small platform
motion.

(c) the fixed link provides higher load capacity compared to prismatic
link.

One simplification made in his research is to replace the lower
spherical joints by two DOF hooke (universal) joints, since the spin of each leg
about its own axis does not contribute to or affect the input/output relationship of
the mechanism. This simplification is shown in Fig. 2-9 for one branch. The
modeling technique employed by Mr. Hudgens is very similar to the method used
in this work. However, numerous modifications and variations are made and will
be highlighted as they appear in the following chapters of this work.

This chapter is only intended to provide a quick and brief overview of
the past and present works in the area of parallel robotic mechanisms. It in no way
represents all the research and advances in this area. However, deriving from the
limited resources and knowledge, the author strongly feels that a lot of research is
needed in order to fully understand and exploit the potential of parallel mechanisms.

20
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CHAPTER 3

KINEMATIC AND DYNAMIC MODELING USING
KINEMATIC INFLUENCE COEFFICIENTS

3-1 Qverview of The Method of Kinematic Influence Coefficients

Section 2-3 reviewed some of the techniques employed by a few
researchers for the kinematic and dynamic modeling of six DOF parallel robotic
mechanisms. This chapter will discuss a technique not very widely used in the
engineering community but which has been used with great success by a group of
researchers at the University of Florida(now at The University of Texas at Austin)
for the past few decades. The technique has been termed the method of Kinematic
Influence Coefficients(KIC). The basis of this work stems from the method of KIC
continually developed over the years by researchers including Tesar, Benedict,
Thomas and Freeman. The present chapter will concentrate on the discussion of
serial manipulator modeling using KIC. In the next chapter, discussion will focus
on how to apply the model of a serial manipulator to a paralle! manipulator. This
ability is largely a result of the generality and versatility of the KIC approach.

The method of KIC is based on the separation of time dependent
functions and position(or configuration) dependent functions. Throughout the entire
process of obtaining the kinematic and dynamic models, the formulation will strictly
adhere to this fundamental concept, keeping the two terms separated. Following
this concept, a lot of research has been done and well documented in the literature.
Some of the more significant findings are : Benedict and Tesar ([1], [2], [3]),
Thomas and Tesar ([42], [43]), Freeman and Tesar ([13], [14], [15]). The
technique was initially developed by Benedict and Tesar to analyze planar
mechanism. In 1982 Thomas and Tesar took the approach one step further by
developing procedures for the analysis of a general serial manipulator. Freeman and
Tesar through the years 1982 to 1986 extended the applicability of the approach by
developing the technique of generalized coordinate transformation, which will be
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discussed in the next chapter. This greatly enhances the potential power of KIC in
dealing with a larger and more general class of mechanism and forms the analytic
basis of this work.

To aid readers who are unfamiliar with the method of KIC and the
notational scheme employed in this work, it is essential to introduce the readers to
the notation used in the present work. The notational scheme adapted here was
developed by Freeman and Tesar [14]. Although part of the notation may appear
redundant at the stage when dealing with a single set of independent generalized
coordinates, it will be shown to graphically enhance the manipulation process for
the transfer of generalized coordinates, which will be discussed in the following
chapter. The basic formulation of this scheme involves a square(or block)
arrangement with the central block surrounded by both pre- and post- superscripts
and subscripts at the four corners as illustrated in Table 3-1. The square is divided
into two portions with the top half reserved for dependent system parameters and
the bottom half reserved for independent system parameters. The center of the
square is reserved for a symbol representing a system parameter (e.g., a set of
generalized position parameters (u)), a physical quantity (e.g., a generalized force
(D), or a mathematical operation (e.g., first-order partial geometric derivative (G)).
Post super- and sub-scripts denote which system parameter is involved with the
center symbol. Pre super- and sub-scripts give any additional information that
might be helpful to describe the system parameter. Hence, at times the pre scripts
maybe missing from the square. Matrices and higher dimensional arrays are
denoted by square brackets(ie. [ ]) enclosing the symbol along with the super- and
sub-scripts. Although the notational scheme may appear complex and confusing to
first time readers, when one becomes familiar with its usage, the advantages of this
scheme will soon surface. One will greatly appreciate the graphically descriptive
information provided in the square when dealing with the transference of system
dependence from one set of generalized coordinates to another.

Also, additional notation is used when dealing with higher
dimensional arrays and their subsets. When four dimensional arrays are used in this
work, the first index represents the leg number associated. Unfortunately, the first
index of a three dimensional arrays may represent the leg number or plane
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associated. However, only in the simulation software are four dimensional arrays
used with the first index indicating the leg number. Otherwise, throughout the
derivation, only up to three dimensional arrays are used with the first index
indicating the plane number. The last two indices represent the row and column,
respectively, of a matrix or the matrix of one of the planes. In other words, the
indices for four dimensional arrays, from left to right denote: leg; plane; row;
column. For three dimensional arrays, the indices denote: leg/plane; row; column.
Table 3-2 gives an example of the notation used. The subset of an array is also
indicated by its indices. A missing index implies that all the components in that
dimension are present in the subset of the array. For example, an array with indices
like this: k; ;m;n, represents the mt row and nt! column of all the planes for the kth
leg. This is also illustrated in Table 3-2.

The next two sections will focus on the development of a general
approach for the kinematic and dynamic modeling of serial manipulators, based
mainly on Freeman and Tesar [14] and Hudgens and Tesar [21]. Due to the fact that
all parallel mechanisms can be viewed and modeled as a combination of serial
mechanisms, it is essential that the readers fully understand the derivation that will
be discussed in the following sections. Besides, almost all of today's industrial
robots are serial in nature, hence, the method discussed here can be used to analyze
almost any robot in use and to aid in the design of robots.

3-2 eneral Approach to Develop the Kinematic Model of Serial
Manipulators
Consider a set of M-dimensional time dependent motion parameters,

eg., the vector (1), written as

T

u® =|u' © 0 O,.., “M(‘)] , (3-1)

where the superscripts(1,2,3,...,M) denote which of the system parameters are
involved in the description of the kinematic state. The superscript T denotes the
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transpose of the row matrix. It is also assumed that ¥ is a function of an N-

dimensional set of generalized coordinates £,

T

Q) = [cpl (), (1,95 (1),...0x (t)] (3-2)

where the subscripts denote which of the generalized coordinates are involved. As a
result, the system can be expressed parametrically as

um=um(gg);m= 1,2,3,...M (3-3)
and
(pn_—' (pn(t);n= 1,2,3,...,N. (3_4)
Using the above notation, the first order time derivative of ¥ is
du _2u de
dt oQ ot
ou -
=3 @
oL (3-5)

By defining the first order kinematic influence coefficients, which will be referred
to as the "G-function” throughout this work (as opposed to the more common use
of the term Jacobian), as

[a:]-2
o9 (3-6)
equation 3-5 can be expressed as
i=[cy]e. 3-7)
where [G:] 1s a M by N matrix and 9? is a N by 1 vector.

The second order time derivative of U is a direct differentiation of ¥ ,
which is expressed as

28



or

..=§g G .
: agewdt([ °])Q. (3-8)

Applying the chain rule to the time derivative of [Gv] gives

di~u] d[d

fol- 42
0 (au)
o\ (3-9)

Substituting equation 3-5 into equation 3-9 and regrouping gives

glol-( 5 )
(2ol

oQ (3-10)

By definition, the second-order kinematic influence coefficient is the partial
derivative of G+ with respect to 8, which will be denoted throughout this work as
u d u d au

)2

o0 dQ o (3-11)

or as the "H-function". The H-function is a M by N by N array. Substituting
equation 3-11 into equation 3-10 and arranging for dimensional compatibility with
equation 3-8 gives

é[G:J”‘QT[H:’] (3-12)

Substituting equations 3-6 and 3-12 into equation 3-8 gives
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.. . T )
i=[cy]e+e [H]e 5-13)
Recalling equations 3-7 and 3-13 and the method of derivation from equation 3-5 to
3-13, as far as possible, the expressions follow the fundamental principle of
separating the position(or geometry) dependent terms from the time dependent
terms. Also notice that both the G- and H-functions are purely position dependent.
Equations 3-7 and 3-13 are the two basic formulations which will be used in this
entire work for the velocity and acceleration terms. Freeman and Tesar [14] carried
the derivation further to include the third order time derivative of ¥, which is the
jerk. However, this will not be discussed in the present work.

Before going any further, it is important to explicitly define the

components that make up the G- and H-functions. Since
[c1]-2

2 (3-6)

and

[H:¢]=(§;[c:]),

(3-11)

the G-function can be written as

g1 82 --- 8N
2
u]_ g1

M M

M
g 82 ... 8n
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o
0p, 09, Py
au
LN

o9, 09, B 0Py

(3-14)

m 01
where &: is defined as the mth row and nth column of the M by N [G o] matrix and
m=1,2,...Mandn = 1,2,..N. The H-function can be written as

hi hy ... hyy
u ] hlZX

PQli;; =

=

_h;lh;z...h;N

3y’ 3’
09,00, 09,09,
32ul
- a(Pza(P1
o'y’ o'y’

0Py 0P, 0@y 00,

i

2 i

ou
0p, 90,

2 i
du

9P\ 09y

(3-15)

where i = 1,2,...,M. Note, By« is defined as the component of the ith plane, jth row

u

and kth column of the M by N by N, [HW] array.
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Until this point, none of the derivations pertain to any particular
manipulator. However, they provide the necessary tools for the development of the
next few sections and the chapters that follow.

3-2.1 Kinematics of Serial Manipulators

The kinematic analyses of serial manipulators has been treated
extensively by researchers including Colson and Perreira [5], Craig (7], Freeman
and Tesar ([13], [14], [15]), Fu, Gonzalez and Lee [17], Lee [24], Lee and Ziegler
(26], Paul [34], Paul, Shimano and Mayer [35], Takano, Yashima and Yada [41],
Thomas and Tesar ([42], [43]), and many others. This section is designed
specifically for the benefit of those readers who are unfamiliar with the previous
mentioned works or for those who are unfamiliar with the notational scheme
adopted by Thomas and Tesar ([42], [43]) or Freeman and Tesar ([13], [14], [15]).
It is only intended to serve as a brief review of the current topic.

An N DOF serial manipulator, as the name implies, consists of N
links and N joints connected together in series(ie., one link after the other). Only
two of the lower-pair connectors, revolute and prismatic joints, are considered in
this work due to the fact that any other joint can be treated as a combination of the
two. A general N DOF serial manipulator is shown in Fig. 3-1, as adapted from
Freeman and Tesar [14]. Each rigid link in the serial chain is characterized by four
independent parameters according to the Denavit-Hartenberg convention. They are

the link offset( Sii or Si), joint angle( ®ii or ®1), link length( 3 6») and twist
angle( ®igeny ). A double subscript here denotes a fixed system parameter, whereas,

a single subscript represents a system variable. Following this scheme, a revolute

6

link will have Sii and 9; as the two independent joint parameters. On the other

hand, S; and 0 will be the two joint parameters for a prismatic link. The
coordinate systemn adopted here sets the base link(or link 01) coincident with the

fixed axes( X» Y, Z), with the first axis of rotation (or translation) $1 defining the

12 e,

is along the fixed axis X when © I(or eH) is zero. The pre-
) '

direction of Z. &

@ i
superscript with a bracket in X and ~ Zrepresents the local X and Z axes. R’ is
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Fig. 3-1 Kinematic Representation of the
Serial Manipulator*

*Adapted from Freeman and Tesar [14]
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the vector pointing from the origin of the fixed reference frame to the origin of the
jth link frame. This vector can be expressed as a sum of all the preceding vectors &

and & as

Bj = 51151'*' 2 (a(H)i am)i* Siisi)
i=2 (3-16)

Following this convention for setting up the local link frames, the link parameters
can be defined as:

(+Dj iGeD
(a) Link offset Sii orSi = the distance from&  to2 measured

j
along & direction;
G-Dj i(j+1)
e e ] 3] ]

(b) Joint angle ¥ii or ¥J = the angle between & and

)
measured about $ axis;

(c) Link length 2i G+ = the distance from s to aiyI measured along
o direction; |
(d) Twist angle gy = the angle between s and i)d measured about
J(M)axis.

3-2.1.1 First-order Kinematics

General rigid body motion can be conveniently expressed in terms of a
translational velocity component and a rotational velocity component. These two
velocities can be separated by treating the body as a point to obtain the translational
term, and as an object rotating about that point to get the rotational term. Serial
linkages are made up of rigid bodies connected together sequentially. In order to
determine the velocity at any point in the chain, one needs to first find the angular
velocity of the link frame containing the point and then the velocity of the origin of
that frame.

34



Rotational. By the angular velocity addition theorem, the angular
velocity of link jk in Fig. 3-1 can be expressed as the sum of all the relative angular
velocities of the links preceding link jk, ie. :

i die m
[0 =20ms
m=i (3-17)
6_s"

where is the relative angular velocity between link (m-1)m and link m(m+1)

)

for a revolute joint and equals to zero for a prismatic joint, since “m is zero.

Following the technique used to derive equation 3-7, equation 3-17 is separated into

)

m
the geometric term & and the time dependent term ¥ m, and expressed as

jk

@ =[G)]@ 318

Comparing equations 3-17 and 3-18, it can be shown (Freeman and Tesar [14])
that,

. [G“] /5"’ , m<j; ¢,=0_ forrevolute joint
elime \Q , otherwise
(3-19)

Recall in Section 3-1 that [Gﬂ:m represents all the rows in column m of matrix
Gﬁ, which is the unit vector :‘Lm Qf joint axis m expressed in terms of the fixed
cartesian reference frame ( X, Y, Z) je.:

T

"= (%" ¥" 27 (3-20)

There is no angular velocity contribution from prismatic joints, therefore, the zero

vector for all other cases, including j > m.
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Translational. The translational velocity of a point P fixed in link jk
can be derived by taking the time derivative of the position vector of point P in the
fixed reference frame. The position vector of P can be written as :

p-R'+[T]"P (3-21)

j j
where B is as defined in equation 3-16, [T] is the rotation matrix relating link
frame j to the fixed coordinate frame. The pre-superscript with a bracket represents

J
a locally referenced vector or component, therefore, E is the position vector of P~

with respect to the origin of frame j and expressed in the local frame coordinates.
Taking the time derivative of equation 3-21 gives

by oo
P=si1s +

mm=2

.mDm .m . m -,
a(m-l)mg +SumS + Sm 8 )"'adT([TJ] Uh)

(3-22)

It can be shown (Freeman and Tesar [14]) that simplifying equation 3-22 gives a
more compact form as

= s (8,57 %[ B-R")
ml (3-23)

where = X" denotes a vector cross product. Equation 3-23 gives the necessary form
to separate the position dependent terms from the time dependent terms. As a result,
equation 3-23 can be expressed in the desired form

=[Gt e (3-24)

where
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§ X ( jB- Rm), m<j;¢,=06_ revolute joint
['63].a={ s ,MS;0,= S, prismatc joint
,m>j

(3-25)

Equation 3-25 simply states that the G-function of joint m is the vector cross
product of its unit vector along the axis of rotation with the vector pointing from the
origin of the mth link frame to the point P, if link m is revolute. In the case of a
prismatic joint, the G-function is simply the unit vector along the axis of motion.
Otherwise, it is the zero vector (ie., m > j ).

3-2.1.2 Second-order Kinematics

The reader is referred to the development of equation 3-13 in the
beginning of section 3-2, since the derivation of the second-order kinematics here is
based heavily on that section.

Rotarional. The angular acceleration of a rigid body can be obtained by
simply differentiating equation 3-18 with respect to time. This yields

(3-26)

Recalling equation 3-12

2lei]-[ms,] 12

The second term in bracket in equation 3-26 can then be expressed as

%[G{’k] - 1] (3-27)

Substituting equation 3-27 into equation 3-26 gives




jk

o =[c)a+ o [N (3-28)

jk
where [HW] is a 3 by M by M array with its ith plane corresponding to the ith row
ik

of the vector & .
Recall equation 3-19 for the rotational G-function. Taking the time
derivative of equation 3-19 results in

m

d [ij] - ]§ , m<j; ¢,=80, for revolute joint
dtt ") 0 | otherwise
(3-29)
Since
,m m-1- . i m
s =D 8,5 |xs
=t (3-30)
using the relationship
0 [nix 0 [d[n~ix
'a—[G]"]”“ - a—.(af[c’,];m) |
P, P; (3-31)
the non-symmetric rotational second-order influence coefficients are
i $ X3 ;m<nsj; ¢,=0,,¢,=8,
[H'P(P] ymn = .
\ Q ; otherwise
‘ (3-32)

[ij] [ij] .
99;mn ig the vector component of the aTay ] *9 , which can be viewed as a 3 by
HY

1 vector running into the three planes of L**#% at mth row and nth column of the
ik

(13 -

lanes. The ith row in [t eel:m2 corresponds to the ith plane in[HW.
P po P

Translational. The derivation for the translational acceleration of a
rigid body is more involved than the angular acceleration described above. This
author will not give the detailed derivation but rather just the final result. Readers
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who are interested in the derivation are urged to refer to Freeman and Tesar [14].
However, the general procedure is still similar to that of the angular acceleration.
By taking the time derivative of equation 3-24, the result is

- ‘ol [ 2] ]

(3-33)
Using the general result of equation 3-27 gives
B=['cave [ Hle 534
where
§ x [s (‘B- E)] , m<n<j;RR
$x|s"x (287, n<msj;RR
§nx§m , n<m<j ;PR
[jHic];m;n= Smxﬁn , m<n<j;RP
0] , m<n<j ;PR
Q ,n<m<j;RP
0 , morn>j;all
(3-35)

The first capital letter at the end of each row represents the joint type of m, the
second one represents the joint type of n; R stands for revolute joint and P stands
for prismatic joint. Notice that the form of equation 3-35 gives a symmetric matrix

P
for each plane of [ }HW], which is different from the non-symmetric planes of the
second-order rotational influence coefficients. The results for all the G- and H-
functions are listed in Table 3-3 and Table 3-4, respectively.




Symbol m n Restriction Value
Rotational - - m<sj s
jx ,

[Gw ];m - - m>) 0

- - Allm 0

. m ( ] m)
Translational - R m<] s x{ P-R
- \ . i

[ JGq>];m - P m<] s

- R,P m> _] Q

Table 3-3 First-order Kinematic Influence Coefficients for
Serial Manipulators
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Joint Type
Symbol m n Restriction Value
Rotational R R m<nsj S x§
jk
[ij];m;n R R m<n or n>j 0
PorR P Allm,n Q
" s 'e-x7)
Translational R R m<n<j § x|sx| E-R
) n m ] m
[JHz(p];m;n R R n<m_§j S X[S X( R_R ):l
P R n<m<j §nx §m
R P m<n<j §mx _s_n
P R m<n.<.j Q
R n<m<j 0
All cases morn >j 0

Table 3-4 Second-order Kinematic Influenc
Coefficient for Serial Manipulators



3-2.1.3 Forward Kinematics

After determining the first- and second-order kinematic influence
coefficients of a serial manipulator, we are ready to investigate the forward
kinematics (ie., position, velocity and acceleration) of serial manipulators. In a
practical situation, rather than specifying the state of the joints, often called the joint
space, usually the kinematic state of the end-effector, which is often called the
Cartesian space, is specified. It is frequently trivial to solve for the forward
kinematic state of any manipulator. Given the kinematic state of each of the joints,
the position and orientation of the end-effector can easily be determined by using
any of the fundamental geometric or algebraic approaches (Craig [7], Fu, Gonzalez
and Lee [17], Paul [34]). This will not be discussed in this work. However, in
order to aid those readers who are unfamiliar with the use of the G- and H-
functions, the forward kinematic analysis for velocity and acceleration will be
briefly reviewed here serving as a prelude to the reverse kinematics that will be
discussed in the next section.

Consider a general six DOF serial manipulator with a point P fixed in
the last link (or the end-effector). Knowing the kinematic state of each of the joints,

represented by the symbol £ as the generalized joint inputs, the kinematic state of

the end-effector, represented by ¥, can then be determined. 2 is a 6 by 1 vector for
a six DOF manipulator, and 2 is always a 6 by 1 vector. The resulting forward
kinematic model is

i-[Gi)e (3-36)
and

. uf e LT .

n=[Go]$D+SQ [Hw]Q (3-37)

where the first three rows of U and U are the translational terms, and the last three
rows are the angular terms. The combined 6 by 6 G-function is then given by
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[67] (3-38)

where the top consists of the 3 by 6 translational G-functions and the bottom
contains the 3 by 6 rotational G-functions. The H-function is formed as

[H:Q]i;; =[ 6H:w]i;'. ;1=1,2,3 (3-39)
and
[H:v]i;;=[H:7(Ji;; ;1=4,5,6 (3-40)

The combination of equations 3-39 and 3-40 gives a 6 by 6 by 6 array with its first
three planes(equation 3-39) corresponding to the first three rows of ¥ for the
6

translational acceleration £ , and the last three planes(equation 3-40) corresponding
67

to the last three rows of u for the angular acceleration &
3-2.1.4 Reverse Kinematics

Having been introduced to the application of the G- and H-functions
for the forward kinematics, this section will discuss the more operationally difficult
problem of reverse kinematics. This involves much more complex solutions and
physical considerations. Before solving the reverse kinematics problem, it will be
beneficial to discuss the complexity of the soiution(s).

There are three main concerns with the reverse kinematic solutions
(Craig [7]). The first concern is the existence of solutions. Do the solutions exit?
This raises the question of manipulator workspace. There are two kinds of
manipulator workspaces. One is called the dextrous workspace, which is defined as
the volume of space within which the end-effector can reach in all directions. The
other is called the reachable workspace, which is defined as the volume of space
that the robot can reach in at least one direction. Hence, the specification of the end-
effector must be within the possible workspace of the robot.

The second concern is the problem of multiple solutions. Unlike
forward kinematics which yield a unique solution, reverse kinematics can have
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more than one solution with the same end-effector specification. This requires the
selection of one of the possible solutions. The robot controller must be capable of
making this kind of decision. For example, to go from point A to point B in Fig.
3-2, the robot has the choice of two configurations, I and II . The robot has to
decide which is the more efficient way to take and if there is an obstacle, which is
the best way to avoid it.

Being able to resolve the previous two concerns still does not
guarantee a satisfactory solution. There is the problem of singularity. If the
specification for the end-effector puts the manipulator in a singularity configuration,
the robot must be able to foresee the problem and work out an acceptable alternate
solution.

Knowing the problems related to reverse kinematics, the next
discussion will concentrate on deriving the solution(s). Given the cnd effector
states( 4, Wand W), it is desired to determine the state of all the joints( 2, 0 and @ ),
where

¢=0 ; forrevolute joint

and
¢=S ; for prismatic joint

From equations 3-36 and 3-37, we can arrive at the following equations

o=[c!] s
-letli (3-41)
o= [G,,“,].I( - éT[H:,,] s'a) (3-42)

Substitute equation 3-41 into equation 3-42 gives

-1
u

o=[c] i-[c!]

-1 -1

R EEAIE Li) f3-43>
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3-2 Problem in Reverse Kinematic
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Using the method of generalized dot product(Appendix A), defined by Freeman and
Tesar[14], the second-order reverse kinematic state is given by

-1

a=lot] i-i"led] (o] [r.) ot s
[af)iva[m)a 34

However, there is still one serious problem, and informed readers should ponder

u u

for a minute and ask the fuestion how to determine [G v] and [HW]. Recall in

u u

Section 3-2.1.3, [H and [Heo

arriving at equations 3-41 and 3-44, £ has to be found. There are many different

] are functions of the joint inputs €. Thus, before

approaches which yield solutions for the joint inputs given the end-effector position
and orientation. Interested readers are strongly urged to refer to Duffy [11] as
reverse position analysis will not be discussed here.

Equations 3-41 and 3-44 are most useful in the context of this work,

u

of course, provided that [G 0] and [H:"P] are already known. The two equations give
a systematic and general approach to solving the first- and second-order
geometric(and time) derivatives of the joint parameters(£) in terms of the end-
effector parameters(u), which are among the most essential elements in determining
the cartesian based robot dynamic model. The first- and second-order KIC for serial
manipulators with revolute and prismatic links are listed in Table 3-3 and Table
3-4. Freeman and Tesar [14] expand the derivation to third-order KIC, which again
will not be discussed here.

3.3 neral Approach v he Dvnamic Model of Serial

So far this investigation has focused on the study of kinematic
considerations(ie., velocity and acceleration) of serial manipulator. Nothing has
been said about the generalized forces or torques associated with the rigid body
motion. The determination of the forces or torques that are necessary to cause the
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desired motion is another essential question to be answered in studying any
manipulator (Greenwood [19], Hollerbach [20], Kane and Levinson [23], Lee, Lee
and Nigam (25], Takano, Yashima and Yada [41], Torby [44], Tourassis and
Neuman ([45], [46]), Walker and Orin [47]). This section will discuss the
development of the dynamic model of serial manipulators.

The derivation of the manipulator dynamics in this work is based
almost entirely on Freeman and Tesar [14]. The two fundamental principles of
mechanics employed in the derivation are the principle of virtual work and
d'Alembert's principle. Similar to the kinematic model described in the previous
section, the form of the dynamic equations is also expressed in terms of
configuration dependent and time dependent terms. This separation greatly
facilitates the transfer of generalized coordinates employed in developing the
dynamic model. |

The dynamic model developed will be separated into two parts. The
first part is the effect of applied loads on the manipulator generalized input loads by
using the principle of virtual work. Then, d'Alembert’s principle will be appiied to
study the effect of the manipulator's inertia. The combination of these two parts
enables one to express a highly geometric form of the dynamic model for a
manipulator.

3-3.1 Applied Loads

Noting the simplicity of the robot kinematic expressions that result
from separating the rotational and translational KIC, the derivation of the dynamic
model of serial manipulators will follow this preferred scheme. Consider a M DOF
serial manipulator in space with a set of M, 3 by 1 force vectors ' along with a set
of M, 3 by 1 moment vectors ka (=1, 2, ..., M and k=j+1), acting respectively on
point P and link jk. Using the principle of virtual work, the set of M generalized
input loads required to offset the applied loads and keep the manipulator in static
equilibrium can be determined. The virtual work done by the applied loads is
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= (3-45)
and by the input loads is
’r .
OW, =(T,) @8t (3-46)

According to the principle of virtual work the total virtual work done on the system,
which must be zero for equilibrium, is

SW = 8W + 8W,=0 (3-47)

or, substituting equations 3-45 and 3-46 into equation 3-47,

j=1

aw={i{( )| ”G:]+(m"“)r[cg“]}+<lof}é&:o

(3-48)

Equation 3-48 implies that

- 34 el) (o )

=t (3-49)

L
where Lo is defined as the effective input loads. Notice that the effective input load

L
Lo has opposite sign from the required offset input loads To. The G- and H-
functions are as defined by equations 3-19 and 3-25.

3-3.2 Inerual Loads

Gy Jk

Consider the same M DOF serial manifulator as in Section 3-3.1.
, the local angular

Defining the locally referenced inertia tensor as
momentum of link jk is

Gyoje | 1k] () jx
L -[ I 0] (3-50)
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G) ik
where £ is the absolute angular velocity of link jk expressed in terms of the

local link frame. To express equation 3-50 in the fixed referenced frame, simply

]
premultiply the equation by a rotation matrix[ T ] This gives

. 1oy b G ik @) g
L)\::[ TJ] (J)L)k= [ T)][ I ] ® (3-51)
Since

QJ‘( _ [ Tj] (j)@jk (3.52)

rewriting equation 3-52 gives
G jx jk

4-1 ,
@ =[T] e (3-53)

J
Also, the inverse of the rotation matrix[ T ] is its transpose due to its orthonormal
property. Therefore, substituting equation 3-53 into equation 3-51 gives

L*=| TJ][ mnjk] [ Tj]ijk (3-54)

Notice that the angular momentum is now expressed in the fixed reference frame.
By defining the globally referenced inertia tensor as

T

[ij] - TJ][ mnjk][ T] (3-55)

equation 3-55 can be written as
ix [ jk] jk
L= |a (3-56)

Before continuing with the inertial load derivation, there is one more term that needs
attention. It is the mass center of each link, which is located by

T
3

C (3-57)

jk

C=Rj+[Tj]
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where R is the vector from the origin of the fixed reference frame to the origin of
link jk local reference frame. (])Q is the vector pointing from the local origin to the
center of mass expressed in the local frame. The linear velocity and acceleration of
the link center can be found by taking the time derivative of equation 3-57. The
results are in the same form as equations 3-24 and 3-34 for the velocity and
acceleration, respectively, due to the similarity between equations 3-21 and 3-57.

This gives the velocity of the center of mass as
jk jacl®
¢=['c¢]e (3-58)
and the acceleration as

ch_[JGc] u+ .T[JHC ] .
L Ne]2F R | Mool (3-59)

Finally, applying the generalized principle of d'Alembert, which is the
combination of the principle of virtual work and the principle of d'Alembert,
together with the Newton-Euler equations of motion gives the total effective inertial
load as

213 { o v e [l a"a "l ]}
(3-60)

Equation 3-60 correctly describes the effective inertial loads, but it is
not in the desired form. Recall the fundamental rule in this work is to separate the
position(or configuration) dependent terms from the time dependent terms. Freeman
and Tesar [14] showed that the last term in equation 3-60 can be expressed without
the cross product (in a quadratic form) as
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L LT (3-61)

where

] o | [
b W] 0| T

[ "k-a;; _ [njk]: -[ij]:; I Q - (3-62)

jk jk
Now, substituting equation 3-28 for & and equation 3-18 for @ along with
equation 3-61 into equation 3-60 gives

B RS AR
e I ([oax & [k &)
+ [Gf,,“]r(éT [G’;f]T)[-’-jk] ([s<]8) } (3-63)

Rearranging gives
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(3-64)

Utilizing the generalized dot product mentioned in the previous section, equation
3-64 can then be expressed as

IL=[I;¢]§+ S.QT[P;QW].Q (3-65)
where
- 3 {636 [0l
j=1 (3-66)
and

(o led - [£7)(e) e

Notice that equation 3-65 continues to separate the configuration dependent terms
from the time dependent terms. The form of equation 3-65 is most desirable for the
dynamic model of the effective inertial load of serial manipulators, in this context.
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3-3.3 The Dynamic Equations

Having determined the equations for the applied and effective inertial
loads, the dynamic equations for a general M DOF serial manipulator can then be
expressed as

I¢= I;'Ii

“[a 2 [Pho- S0t 1 [0 )

j=1

(3-68)

Equation 3-68 is expressed in a very compact and explicit form, yet not losing the
fundamental rule of separating the configuration dependent terms from the time
dependent terms. As a result of this formulation, modeling a serial manipulator can
be broken down into the following steps:

(a) set up the coordinate frame for each of the links according to the
convention adopted in Section 3-2.1;

(b) specify the desired position and orientation of the end-effector;

(c) perform the reverse position analysis to determine all the joint
variables ( 8 for revolute joint and S; for prismatic joint ), and the
location of the center of mass for each link;

(d) 1[f necessary, multiply any of the expressions by the rotation matrix

T

(e) form the G- and H-functions for the manipulator including the G-

to express it in terms of the global coordinate frame;

and H-functions for the mass center of each link, using Table 3-3
and Table 3-4;

(f) form [Iw] and [va] ;
g) substitute into equation 3-68 for the dynamic equation.

The simulation form of the dynamic equation can easily be obtained by
rewriting equaton 3-65 into the following form



Lo [Pod o 3 ([0 w6} )

j=1

-1

.21;. = [I; w]
(3-69)

Integration of equation 3-69 will give the time history of the joint parameters
resulting from the application of the generalized input loads. This concludes the
discussion on the development of the kinematic and dynamic model of serial
manipulators using the method of KIC. For more detail, readers are referred to
Freeman and Tesar [14]. The next chapter will expand the modeling technique to
include parallel manipulators via the transfer of generalized coordinates.
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CHAPTER 4
TRANSFER OF GENERALIZED COORDINATES

The discussion thus far has concentrated on finding the kinematic and
dynamic models of serial manipulators in terms of the relative joint parameters.
However, these may not necessarily be the models that one is interested in. For
design and control purposes, one maybe interested in having the system model
referenced to a different set of generalized coordinates. In the case of parallel
mechanisms, one may desire to have the system model referenced to a common set
of generalized coordinates. Unfortunately, at times, this model maybe impractical,
if not impossible, to obtain directly. But, as it is usually true, most mechanisms can
be modeled in terms of at least one set of generalized coordinates directly. This
leaves researchers with the alternative to first determine the easily, or at least
practically possible, direct model, then find a way to arrive at the desired model via
the direct model.

Freeman and Tesar [14] proposed using an isomorphic transformation
technique called the transfer of generalized coordinates to obtain the desired model
from the direct models. The development of this technique is based almost entirely
on the principle of virtual work. This transfer of generalized coordinates procedure
gives the method of KIC more generality and potential. As a result of this
development, the method of KIC can now be used to model redundant or
overconstrained systems, dual or multi-arms robots, and above all, multi-loop
parallel mechanisms which is the theme of this work.

4-1 Kinematic Model Transfer

The transfer of the kinematic model can be broken down into two
parts. One part is called the direct kinematic model transfer which has been briefly
discussed in Section 3-2.1.4. And obviously, the other part is the indirect kinematic
model transfer. Direct kinematic model transfer is defined as any transformation that
involves only the interchanging of dependent and independent system parameters.
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On the other hand, indirect kinematic model transfer involves the introduction of
one or more intermediate coordinate sets before arriving at the desired model.

4-1.1 Direct Kinematic Model Transfer

Consider again the resulting forward kinematic model given in Section
3-2.1.3. The first- and second-order time derivatives of a set of general position
parameters(u) are given as in equations 3-36 and 3-37,

i=[G] o (3-36)
i-=[ca+o [H:)o (3-37)

For the purpose of showing that ¥ need not always represent the kinematic state of
the end-effector, instead of using ¥ as defined in Chapter 3, 4 will be used to
represent the dependent system parameter, and € will represent any independent set

of generalized coordinates, in the initial model. Following this scheme, the initial
kinematic model is

q=[G}]e (4-1)
and .
'Q..=[G:].é+é [HL]S.P. (4-2)

However, the desired kinematic model is to have Q as the independent system

parameter set, and £ as the dependent system parameter set. This gives the form for
the kinematic model as

2=[ag | (4-3)

and

8=[csla+q [uy g (4-4)

56



Rearranging equations 4-1 and 4-2 also can give a form similar to equations 4-3 and
4-4

2=[Gi] 4 (4-5)
and 1 .

.. i .. ) 'T *

o=[ci] g+[cl] o [Hi.]e (4-6)

Substituting equation 4-5 into equation 4-6 for € gives

a=[03]"a-lce] 1aToe] Nms. (s3] s wn

Utlizing the generalized dot product introduced in Chapter 3 gives
5633 e [o3) [ lot] s

Comparing equation 4-3 with equation 4-5, it is seen that

[62)-[c] (4-9)

Similarly, comparison of equation 4-4 and equation 4-7 gives

-1 -1

1) - -] [oe] 2] o]

Equations 4-9 and 4-10 show how G- and H-functions change when the dependent
system parameter becomes the independent system parameter, and vice versa.

Notice that this interchange is possible only if G:] is invertable, which means that
it is non-singular and that g must be a potential set of generalized coordinates.

As mentioned in Chapter 2, at singularity configurations, serial
manipulators lose one or more DOF while parallel manipulators lose control of one
or more DOF. However, for the purpose of this discussion, it is always assumed

q
that G‘P] is non-singular. Also realize how the post super- and subscript help to
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denote the dependent and independent system parameters while performing the
transformation. They also serve as a checking device when writing the equations.
Any error will show up as an irregularity in the form of the super- and subscripts.

4-1.2 Indirect Kinematic Model Transfer

The previous section discussed how to interchange the dependent and
independent system parameters if it is difficult to derive the desired model directly.
This section will discuss the situation when it is laborious, if not impossible, to
arrive at the desired model by direct kinematic model transfer. The procedure
involves an intermediate set of generalized coordinates, which are employed to
facilitate the determination of the desired model, due to its direct relationship with
the desired coordinate set. Hence, the title indirect kinematic model transfer.

Let's assume that it is desired to have the kinematic model of 4
referenced to a set of generalized coordinates 4, but what is available directly is the
dependent system parameters 4 referenced to an initial set of generalized coordinates

€. Thus, the initial kinematic model is obtained according to equations 4-1 and 4-2,

as

i=[ci]o @1)
and .

i-[cl]e+e [H5,]e (4-2)

Also, it is assumed that the kinematic coefficients of the dependent system

parameters & referenced to the initial coordinates £ are directly available. This gives

d=[Gy]e (4-11)
and T
i-[Gy]a+e [HS,]0 (4-12)

However, what is desired is to express the kinematic state of 9 in terms of 4 as
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q=[G3]d
and

q=[GYa+d [H]d

Rewriting equation 4-1 gives
2-[c3] 4
Substituting equation 4-15 into equation 4-11 for 9 gives
a=[oi]les] q
Rearranging equation 4-16 gives
a=[ct)[e] 4

Comparing equation 4-13 with equation 4-17 yields

CHE (|

-1

(4-13)

(4-14)

(4-15)

(4-16)

(4-17)

(4-18)

This concludes the indirect transfer of the first-order KIC(ie., the G-functions).

Next, the transfer of the second-order KIC will be derived. Rewriting

equation 4-12 as
a=[os] (a-2 ] )

Substituting equation 4-19 into equation 4-2 gives
i-fotllo] (a2 fme.a) - o Tms.)

Rearranging equation 4-20 and using the generalized dot product gives

(4-19)

(4-20)
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-1

d=[Gi][Gi]-l§i+éT([HiJ‘[G:] ~[Hiw])é 4-21)

Substituting equation 4-11 for £ into equation 4-21 gives

-T 1

s ]-[os] ) o) e

(4-22)

CHCHIFRFRCH

Comparing equation 4-14 with equation 4-22 yields

8] o] [m ] - loe] " et ] w3

as the desired second-order KIC. Equation 4-18 and 4-23 give the necessary G-
and H-functions for the kinematic model with the dependent system parameter 4
referenced to the desired set of generalized coordinates 4. This procedure is not
limited to the transformation of generalized coordinates involving only one
intermediate set of generalized coordinates. There can be as many sets of
intermediate generalized coordinates as the situation requires, provided that all the
G- and H-functions are interrelated and can readily be determined either directly or
indirectly.

4-2 nami 1 fer

Similar to the kinematic model transfer discussed previously, the
readily available dynamic model referenced to an initial set of generalized
coordinates given as

. .. L] T . . L
Iq»:[Iw]Q‘*'Q [Pwo]g"Iw (4-24)
where [Iv 4’] and [qu,] are as defined in equations 3-66 and 3-67, respectively, may

not be the desired model. Actually, the dynamic model referenced to another set of
generalized coordinates d is the ultimate goal. However, it maybe very difficult to
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obtain this model directly. Hence, an operation to transfer the dynamic model from
the initial set of generalized coordinates to the desired coordinates set is necessary.

It is assumed that the kinematic influence coefficients between the
initial and the desired coordinates sets are available in the following form

d=[cs]o (4-25)
and T
d=[Gs]o+e [Hi,]0 (4-26)

Using the principle of virtual work, the dynamic equation can be expressed in terms
of the desired input set 4 as

Ts= [Gw] T (4-27

or

Id=[Gi].T( [I;o]§é+£QT[P;oo]$b-Iw ) (4-28)

Substituting equation 4-6, with q replaced by d, for € into equation 4-28,
rearranging, and using the generalized dot product gives '

-T

rlot] i Jlo:] e
ci{ [T ] - (e T dl0s] ) [0 S

7T L
-[es] 1
(4-29)
. .T
Substituting equation 4-5, with q replaced by d, for 2 and € into equation 4-29
yields
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-T -1

T.=[Gs] [1s.][Ge] d
U CAR ()
o o] ). e,

Comparing the form of equation 4-30 with that of equation 4-24, the dynamic

) a-[ot] 15 (4-30)

equation referenced to the desired set of generalized coordinates(d) can be
expressed as '

Te=[li)d+d [Pies] d - Tt 4-31)
1] [Gi]-r[l;w] [G:].l (4-32)
[P;aa] =[Gi]-T{ [G:]-T' [P;w] - [I;d] . [H:"P] >[G:]l (4-33)

(4-34)

Note that utilizing this generalized transfer, any readily obtained dynamic model can
be transferred to any desired set of generalized coordinates once the KIC's relating
d to @ are obtained.

For the purpose of discussion, the above mentioned procedure is not
the only way to arrive at the model referenced to the desired set of generalized
coordinates. An alternate procedure involves the derivation of intermediate dynamic
models. Instead of finding the kinematic model relating the initial set to the desired
set of generalized coordinates, then performing the dynamic model transfer as

q
before, the dynamic model at each stage is determined. This means that if Go ,

q g q
[HW], [Gd], and [Hdd] are known, where @, 4, and d are as defined before, Ta is
found in terms of La which is in turn found in terms of L. First, it is assumed that
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To is known. Second, transfer the dynamic model to the intermediate set of
generalized coordinates as

-T
o= [G:] T (4-35)

Finally, transferring from the intermediate set to the desired set of generalized
coordinates yields

I.= [G:]-TIq ‘ (4-36)

as the desired dynamic model. In equations 4-35 and 4-36, procedures similar to
those of equations 4-24 through 4-34 are implied.

Both the procedures are valid as shown in Freeman and Tesar[14].
The decision to choose either one of them is entirely up to the users. It depends on
what variable relations are available and/or which is easier to obtain. However, the
first approach is suggested by Freeman and Tesar{14] and Hudgens [21] for design
and control purposes since it maybe necessary to investigate more than one set of
generalized coordinates.

4-3 Application of Transfer of Generalized Coordinates to Multi-loop
Paralle]l Mechanisms

Generally, the load capacity of serial manipulators is limited by the
size of the actuators (Driga, Eppes and Flake [10]). Hence, for high load capacity,
hydraulic actuators are commonly used due to their high load to weight ratio.
However, the main shortcoming for using hydraulic actuators is low precision. As
mentioned before, the error in serial manipulators is additive. If hydraulic actuators
are used in serial manipulators, the inaccuracy will be even larger. Therefore, for
any robot with high load capacity and acceptable precision, parallel structure robots
are frequently used.

Chapter 2 gave a brief discussion of the work on parallel mechanisms
that has been done by other researchers. This section will introduce a different
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approach to parallel mechanism modeling using the method of KIC along with the
transfer of generalized coordinates. However, unlike the open-loop serial
manipulators that have been discussed so far, parallel manipulator structures are not
as straight forward as the serial manipulators due to the fact that there is more than
one way to form a parallel manipulator. The discussion here will concentrate on
mechanisms that can be classified as "fully parallel,” such as the generalized
Stewart Platform shown in Fig. 4-1. Although the figure shows six legs connected
to a common platform with each of the legs having six DOF, the procedure which
will be discussed shortly is equally applicable to mechanisms having any number of
legs, provided that each of the link has the same number of DOF as does the
operational space. |

The generalized Stewart Platform in Fig. 4-1 has six DOF at the
platform, but it has thirty-six joints. To control this mechanism, one has to decide
which of the six out of the thirty-six potential input locations to choose. For a start,
examining the mechanism a little closer shows that it actually consists of six serial
mechanisms connected to a common base and a common platform. Similar to the
procedure discussed previously for serial manipulators, the first step is to obtain a
model directly for each leg with respect to a set of generalized coordinates that can
easily be determined. By treating the other five legs as if they do not exist, each leg

is modeled with respect to its own joint coordinate set 2 where r(r=1, 2, ..., 6) is
the leg number. This yields results similar to the serial manipulator discussed in the
previous sections, ie.,

(e[ L] Lrsee] L]

where 4 represents the intermediate set of generalized coordinates associated with
the six parameters describing the motion of the platform. Next, apply the direct
kinematic transfer of equations 4-9 and 4-10 to give

-1

[ YGZ] -[.c3] | (4-37)

and
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Desired Generalized Coordinates

T

d.:[x(Pp @1, 39y Py, 5Py, 6‘91]

Inirial Generalized Coordinates

T

tm=[r(plr !‘sz r‘p]v r‘pu 1(p51 r(pg] ; I'=1.2,...,6

Fig. 4-1 Generalized Stewart Platform*

* Adapted from Freeman and Tesar {14)



[mg,]=-] rGl]-T([ rGl]-l-[ HY,] )[ G3] (4-38)

[rl;q]=[rG:] [,I;,,][,G:] (4-39)
EEEHREH )
‘([ rI;q] ‘[ rH:'v] )\{[ rG:]-l (4-40)

and
(4-41)

Notice that until this point, nothing has been said about the platform
itself. Actually, the model of the platform can be included in one of the legs in the
above derivation. However, it is felt that separating the platform model from the
legs gives a more explicit physical meaning in the final formulation. Now that all
the legs are referenced to the same intermediate set of generalized coordinates, they
can be combined together along with the inertia effect of the platform and any load
applied to the platform. As a result, the dynamic model can be expressed as

6

[I;q] =[Tgq)+ 2[ rI:m]

r=1 (4-42)

[P;qq] ={Poqa) + 264[ rP;qq]

-1 | (4-43)

and
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6 P L 6fc

= Z I -+ {.__";

-1 m (4-44)
6. ¢ 67

where f andm  are a set of external forces and moments applied to the platform,

respectively. The terms, [Laq] and [Paca) are the platform effective inertia matrix

and inertia power array, respectively, defined as

M67 0 0 QT
0o M o QT
[Tqq]= o o MY ¢
0 [Hm]
L 2 2 0 _ (4-45)

(0] [Pus 446
where
[1'167] =[ [Hsv] ) ‘ [an] 2 [H67] ) ] o
and the first three planes of[ quq] are 6 by 6 null matrices, and
[ T T
[Puse)= i Q l [HW] % l - [Hm]’; ] (4-48)

pudel BT 0 [T

(4-49)
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pule] B [T 0]
(4-50)

are the components in the last three planes. Equations 4-48 to 50 are all 3 by 3
matrices.

Up to this point the kinematic and dynamic model of the generalized
Stewart Platform has been formed referenced to the common set of generalized
coordinates 4. This common reference gives the flexibility to transfer the model to
any six of the thirty-six potential joint inputs. One may desire to have a single leg
provide control of all the six DOF or one may desire to control only one DOF from
each leg. For the sole purpose of this discussion, let's assume that it is desired to
have the first joint of leg one, the second joint of leg two, and so on, provide
control of the six DOF. This gives the desired generalized input set as

T

Q=[191, L PRI &e] (4-51)

To obtain the first- and second-order KIC relating the desired set of generalized
coordinates 4 to the intermediate set 4, simply extract the corresponding row of the
G-functions and plane of the H-functions, from equations 4-37 and 4-38 for the
respective legs. This extraction yields

Q
1}
oo oaaa

W

o
o0 6 0O 6 06 09 06 06
s, i m " " ;
w

e (4-52)

and

68



e (4-53)

Having formed the KIC required by the transfer equations, the desired dynamic
equation can be written as

To=Toe)d +d [Prua] 4~ T (54
[I;a] = [G:]-T[I;q] [G:]1 (4-55)
i =[] { [6] " i)
- ( [I;a] [H:q] )} [G:] | (4-56)
) zi-[o] = st

The above derivation shows how to model multi-loop parallel
mechanisms in terms of the relatively simple serial manipulator model. The beauty
of this procedure is that serial and parallel mechanisms can be treated in exactly the
same way. All that is needed are the isomorphic transformation equations.
Throughout the derivation, the desired equations are always in the same basic form,
ie., time dependent terms are separated from the configuration dependent terms.
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The G- and H-functions along with the [I ] matrix and [P ] array also maintain the
same form throughout, hence the term isomorphic.

The procedure discussed in this section for multi-loop fully parallel
mechanisms can be summarized in the following steps :

(a) number all the legs and joint inputs;

(b) determine the kinematic and dynamic model of every leg, in terms
of the easily obtained set of joint coordinates, by treating each of
them as a single serial linkage;

(c) perform the generalized coordinate transformation on each leg from
joint coordinates to a common set of generalized coordinates;

(d) include the inertia effect of the platform and any applied load;

(e) prepare to transfer the model to the desired reference by extracting
the respective row from the G-functions, and plane from the
H-functions;

(f) form the desired dynamic equation by applying the transfer
equations.

In terms of symbols, the above procedure can be summarized and
represented as

[.G3]. [ HSe). [ 10). [ Paes). T
!
[asl s [ [ pase), 2
l
(1] [Prcd]
¢
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This concludes the development of the kinematic and dynamic models

of the generalized Stewart Platform using the method of KIC together with the
isomorphic transformation of generalized coordinates. In the next chapter, all the
techniques and procedures discussed so far will be used to model the Dynamic
Docking Test System, which was described briefly in Chapter 2.



CHAPTER 5

KINEMATIC AND DYNAMIC MODELING OF THE
DYNAMIC DOCKING TEST SYSTEM

As discussed in Section 2-2, the Dynamic Docking Test
System(DDTS) is a mechanism consisting of a base and a platform connected by
six legs as shown in Fig. 2-5. All the legs are made up of prismatic joints with one
end of the leg connected to the platform by a ball joint and the other end connected
to the base by two intersecting revolute joints(or hooke joint). It is obvious that the
structural arrangement of the DDTS is a variation of the generalized Stewart
Platform addressed in Section 4-3.

A conceptual view of the DDTS showing the relative position of all the
connection points for the legs on the platform as well as the base is given in Fig.
5-1. Notice that each leg has six DOF, three from the ball joint, two from the hooke

joint and one from the prismatic joint. Although there can be one actuator for each
DOF, the physical structure of the mechanism is designed such that only one
actuator, located at the prismatic joints, is available for each leg. Therefore, the ball
and hooke joints are free to rotate about their own axes. The following sections will

discuss the development of the model, starting from coordinate frame definition to
the final dynamic model.

5-1 Kinematic Model

The approach taken here is different from that of Hudgens [21]. The
main difference is that they considered the three generalized coordinates for the ball
joint, with the X-axis of the last joint pointing towards the center of the platform,
the two generalized coordinates for the hooke joint, and the global reference
coordinate(or the base reference coordinate) together as one complete set of
generalized coordinates. These six coordinates make up their initial set. On the other
hand, the initial coordinates adopted in this work consist of three generalized
coordinates, two located at the hooke joint and one at prismatic link, as shown in
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Fig. 5-1 Legs Arrangement



Fig. 5-2. This requires a slightly different set of transfer equations to determine the
platform based intermediate model, which will be discussed in Section 5-3.

It is felt that separating the coordinates into small subsets will facilitate
the derivation and subsequently the computation. As a matter of fact, in the initial
model, instead of 6 by 6 matrices, only 3 by 3 matrices need to be dealt with. This
is made possible by neglecting the three DOF of the ball joint, which will constitute
three mutually orthogonal rotational axes. To neglect the ball joint in the first set of
coordinates, the first-order KIC relating the hooke and prismatic joints to the
platform must be independent of the three pseudo axes of the ball joint. This
independency can be shown by employing the matrix partitioning technique to the
G-functions as illustrated in Freeman [16]. However, the one shortcoming that
arose from dividing into three sets of generalized coordinates is that it was
necessary to perform several of the previously discussed generalized coordinate
transfers. Since all the six legs are identical, only one of them need be discussed in
the development of the total system model.

5-1.1 System Definition

As mentioned before, there are three DOF for each leg(neglecting the
ball joint). Two of the freedoms are from the hooke joint, and the other one is from
the prismatic joint. Following the convention adopted in Chapter 3, Section 3-2.1,
the three coordinate frames for each leg are set up as shown in Fig. 5-2. The fixed
frame for each leg is indicated as X, Y and Z in the figure. This frame is fixed
relative to each leg so that it behaves like a local global frame for each individual
leg. To transform the expression to the globally referenced frame at the center of the
base, one needs only to multiply the local global frame results by a rotation matrix.

Before all the different reference frames get too complicated, it is
appropriate to define each of the terms that will be used throughéut this work. From
now on, leg frame refers to the fixed frame for each leg(or the local leg frame in the
above paragraph), which is represented by the X, Y and Z orthogonal unit vectors.
Base frame is referred to as the world coordinate frame and is located at the center
of the base. X*, Y* and Z* are used to represent the three mutually orthogonal unit

74



a

a.ri

Fig. 5-2 Kinematic Representation of Oue of the Legs
of the Dynamic Docking Test System
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vectors for the base frame. Also, platform frame refers to the coordinate frame
located at the center of the platform, represented by the lower case x, y and z,
which will be discussed in a later section. The three coordinate frames mentioned
above are shown in Fig. 5-3.

Having a leg frame for each individual leg facilitates the modeling
procedure. Since, with respect to this frame, all the six legs can be modeled
identically. Referring back to Fig. 5-2, L is defined as the length of the piston
cylinder, L;is the length of the piston rod, whereas, L3 is the total length of the
piston, measured from the origin of the leg frame to the end of the prismatic link.
Notice that L and L; are fixed length but L3 is variable.

Following the set up in Fig. 5-2 and the convention in Section 3-2.1,
a simplified version of Fig. 5-2 can be made as illustrated in Fig. 5-4 along with the
resulting link parameters. Defining

$=1X,,Y,,2) 5 j=123

(5-1)
and premultiplying the locally referenced vector Wg; by the rotation matrix T,
X(j-l)j Y(j-l)z(j-l)j_zj-lY(J‘l).i Xi-l
T;= Youi  ZgnXgni— Xl Yia
Zgny; Xy Yo~ YiuXga  Zja (5-2)
gives
O SG, Celsez
$i={0| ., s:=|Co| . S:=|SeSs,
1 .
0 Ce, (5-3)
where

S°i= Sin(ei) , C9i=COS(9i)

Similarly, defining
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ij';(xjk, ij’zjk) ; J=1,235 k=j+1

(5-4)
and premultiplying its local vector by the matrix T in equation 5-2 gives
C,, Co,Cs, Cs,Cs,
312=]-Se,| , 823=]Se,Co| , 214=]SsCs,
0 Se, Se, (5-5)

Notice that 823 and @3+ are identical. This is expected since @3¢ is in the last link
and can be arbitrarily chosen to be parallel to 923,

5-1.2 Specification of the Platform Position and Orientation

To begin the kinematic analysis of the mechanism, it is assumed that
the kinematic state of the end-effector(or the platform) is known. For any rigid
body in space, its position can easily be specified by a vector pointing from the
origin of the reference frame to a fixed point in the body. However, there are many
wéys to specify the orientation of the rigid body as discussed in Hudgens [21].
Euler angles, Cayley-Klein parameters and quaternions are some of the possible
ways.

The method employed in this work to specify the position of the
platform is by specifying the vector pointing from the origin of the base frame to the
center of the platform. The orientation of the platform is given by a pair of
orthogonal unit vectors fixed at the center of the platform. One of these vectors is
normal to the surface of the platform. The vector cross product of these two unit
vectors gives the third vector to make up the three mutually orthogonal unit vectors,
which define the platform frame. Fig. 5-5 illustrates the specification for the
position and orientation of the platform. Vectors g and § represent the two mutually
orthogonal unit vectors used to specify the location of x and z axes, respectively,
of the platform frame in the base frame.

Once the position and orientation of the platform is known, the
positions of all the six connecting points (ie., the ball joints), which are fixed with
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Fig. 5-5 Specification of the Platform Position
and Orientation
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respect to the platform frame, can now be transformed to the base frame by a simple
rotation matrix T,

T=[ 4 8%X3d § ] (5-6)

and a linear translation vector

T
U=[Ux Uy U] 57

Note that equation 5-6 is in the basic form of equation 5-2.
5-1.3 Reverse Kinematics of Each Leg

The coordinate frames for each leg are set up in the previous section.
Furthermore, vectors 8i and 2ix for each joint are determined using equations 5-3
and 5-5. However, as stated in Chapter 3 that in all practical purposes, the end-
effector(or in this case the point P in Fig. 5-1) kinematic state is usually known
instead of the state at each joint. Thus, this section will discuss the reverse
kinematic(position only) of each link via the geometric approach.

The geometry of each leg can be represented as in Fig. 5-6. The
origin of the leg is always at the origin of the leg frame. The other end of the leg is
located at point P( Xp, Yp and Zp ), the ball joint, which is determined by knowing
the specified platform position and orientation and the location of the point P
relative to the platform frame. As indicated in the figure, each leg can be

characterized by two parameters( ie., Vi and VY2 ). The length of the leg can be

written as
2 2 2
L= ‘\fX, +Y,+2Z, (5-8)
Also,
v, =cos’ —Z—B}
! L, (5-9)
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Fig. 5-6 Reverse Position Kinematic of the Leg
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and

y,= sin‘l (.__YP__)
LgSln \I’l (5_10)

By geometry and the definition of 6, and 6 2, it can be shown that
el=180+\v2 (5_11)
and
62= 180+\V1 (5_12)
Equations 5-11 and 5-12 provide the solutions for the unknowns in equations 5-3
and 5-5.

5-1.4 Initial First- and Second-order Kinematics of Each Leg

From the given conditions, treating the relative joint parameters as the
independent system parameters, all necessary G- and H-functions can be easily
obtained directly. Recalling equations 3-24 to 3-34, the velocity and acceleration of
the ball joint can be written as

E=[.Gl].¢ (5-13)

rE=[ rG:] ré*’ r.QT[ TH;‘P] 1'5:Q (5-14)
and |

,m=(,91, 92, rLs) (5-15)

where r(r=1,2,...,6) is the leg number. However, instead of the 6 by 6 matrix for
the G-functions and 6 by 6 by 6 array for the H-functions as before, the G-function
here is a 3 by 3 martrix, where the H-function is a 3 by 3 by 3 array, since each leg
has three DOF.
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From Table 3-3, the first-order KIC for each leg can be expressed as
shown in Table 5-1. Similarly, using Table 3-3 and the fact that

Co, S,
r.E = L3 SOISOz
“Ce, (5-16)
where equation 5-16 is expressed in terms of the leg frame and
Ri= R, =0 (5-17)

the second-order KIC are shown in Table 5-2.

This section also includes the first- and second-order KIC for the
center of mass of each link to be used in the dynamic model. They are tabulated in
Table 5-3 and Table 5-4, respectively. Notice that the second-order KIC for point P
and the center of masses in Table 5-2 and Table 5-4 are all symmetric matrices.

'5-1.5 First- and Second-order Kinematics of the Platform

Recalling Section 5-1.2, the positions of the six connecting points at
the ball joints are fixed with respect to the platform frame. Define the location of the
ball joints in the platform frame as

oD
r WX

(P
g | Wy

=1 on
We (5-18)
where the pre-superscript (pl) denotes the platform reference frame. To rotate the
vector in equation 5-18 to the base frame, simply premultiply equation 5-18 with
the rotation matrix T, which is defined as

T=[ 2 sxa s | (5-5)
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[0 0 0]
[Gl]=| 0 0 o
1 0 0]
0 Se, O]
[ .62]=| 0 -cq 0
100

0 Se‘ Cg‘Sez

34
[Gd]=] o o S,
1 0 G

-L;SeSs, LyCqCo, CoSe,
[G%]=| LsCaSs, LiSeCs  SoSe,
0 L;Ss,  -Co,

Table 5-1 First-order KIC for Each Link
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[rHiz]x’;;=[ Q0 0 Q] ; 1i=1,2,3

[ 0 C,,0
[H2].=]oo00
1000
0 S4,0
[ BZ]=] 000
000

[E]=[ 0 o o]

0 C, 0
[ H]={0 0 o}
000
0 S4,0
[ HY)=l000
000

BN EREY

Table 5-2 Second-order KIC for Each of the Links
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'LgCelSQz 'L:;Selce2 "Selse2
['H:]l;?= -L3S°|C°2 -L3C9|sez Cexcez

-S6,Ss, CoCs, O

L4SsSs, LsCeCs,  CoSe

1 2

[ Hi|=| LiCaCs, -LsSeSs,  S6Co,
CoSs,  SeCo, 0
0 0 0

[ H].=| o L. s
0 S, O

Table 5-2 Second-order KIC for Each of the Links
(cont.)
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_753!592 ?(:QICQ2 0
< Lc Lc
[icy]= 5 CoSe, 5 SeCo, O
L.
0 5 S, 0

—LS,Se, LCeCo, Co
[1Gi]=| LCoSs, LSeCs S
O 14592 —CQz

where L¢ is the length from the origin of the link frame to the center
of mass of the piston cylinder. And

with L3 defined as the total length of the prismatc link, and Ly is the
piston rod length.

Table 5-3 First-order KIC for Each of the Center of
Masses



[3Hio]m=[g 0 Q] . i=1,2,3

- L L -
—7C:9]SQ2 —7SG,C91 O
2_.¢ Lc Lc
[ rHoc]l;;': -TSO,CO, "Tce,sez 0
0 0 0
- L L -
-Tse,sez ‘z‘colce, 0
2 ¢ Lc Lc
[ PHN’]Z;;: ‘2"C9,Ce2 —-Z—SQ;,S@2 0
0 0 0
0 0 0
c L.
[iHL]=| o 5:Cs, 0
0 0 0

Table 5-4 Second-order KIC for Each of the Center of
Masses
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3 ‘LCengz -LSOlCOI ’SQSQ_2
[ Heolu=| LS6Cs LCoSs CyCol
SeSs, CoCs O

3 -L S5,Ss, LCgCo, CoSs,
[ 'H"'P]z;i: Lcexcez -L Sexsez Sexcez
CeSe,  SeCo, 0
0 0 0
3¢
[ er¢]3;;= 0 Cez Sez
0 Se O

Table 5-4 Second-order KIC for Each of the Center of
Masses (cont.)



Letting
€=8%X4d (5-19)

and substituting into equation 5-5 yields

T=[a ¢ 5]

X. X. X,
=l Y. v. v
zZ. Z. Z.

y (5-20)

where the first column is the unit vector of the platform x-axis, the second column
is the y-axis and the last column is the z-axis, all expressed in the base coordinates
frame, implied by the superscript (*). Thus

WN=T" "W (5-21)
or
rwx Xa (Pl,)wx+ Xe (Plr)wy Xs (Plr)wl
(D (eh) (p1)
rWY =] Y, c W, + Ye rwy"" Y, rwz
Wz |z, W+ z, Pw,+z, P,
(5-22)

To determine the G- and H-functions for the ball joints in terms of
platform coordinates (which will be necessary to determine the G- and H-functions

relating the joint coordinates @ to the platform coordinates ), the velocity and
acceleration of the point P at the ball joint of leg r are written as

P=U+ax W (5-23)
and -
P=U+rax W+ax{ax W) (5-24)

C-
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where U is the position vector of the origin of the platform frame expressed in the

base frame, and @ and £ are the angular velocity and acceleration of the platform,
respectively. From equations 5-23 and 5-24, the first-order KIC are

10 0 0 W, W
['G?]=] o 1 0o W, 0 Wy
0 0 1 Wy -Wx O

(5-25)

The components in the three planes of the H-function are zero except the following

0 er rWZ ]
[ l'I-I\p.lu]l;m;u = 0 - Wy 0
0 0 W] (5-26)
Wy Wy 0]
[ H\P.lu]z;m',n= 0 0 ‘Wz
0 =Wy ] (5-27)
. ‘rWZ O rWX ]
[ Hﬁu]‘!;m;u= 0 'rWZ rWY
Lo o 0 (5-28)

where m, n = 4, 5, 6. As a result, the velocity and acceleration can be written as

. 4 P .

b= [ GIlu (5-29)
s T P . . T P f Y

B= [ Gu]u+ E [ Huu] E (5_30)

in terms of the G- and H-functions.

This concludes the kinematic modeling of the DDTS(or the generalized
Stewart Platform) referenced to the initial sets of generalized coordinates(ie., 12
and UJ). One very important point to note is that the derivation so far expresses the



G- and H-functions for P in terms of € in the leg frame, whereas, the G- and H-
functions for P are in terms of U in the base frame.

5-2 nitial Dvnamic Model of the Leg

Similar to the kinematic modeling discussed in the previous section,
the initial dynamic model also considers one of the legs and treats it as if it is an
isolated three DOF serial manipulator. Assuming that there is only inertial loading,
the procedures to arrive at the initial dynamic model follow the derivation of Section
3-3.2. Referring to Fig. 5-2, the model here assumes that the hooke joint is a solid
cylinder, the piston cylinder and the piston rod are considered slender rods. Due to
the symmetric nature of each of the links in the leg, all the local inertia tensors are
diagonal matrices.

Substituting the appropriate terms into equation 3-55, the leg frame
referenced inertia tensor for each of the links in Fig. 5-2 are given in Table 5-5. The
symbol I stands for the mass moment of in;rﬁa of each links, where

I,; isalong 3, . I[,, isalong §,
I,, isalong 2, . I,, isalong §,
I,; isalong Q4 : I,; is along S,

Substituting the inertia matrices in Table 5-5 and the G- and H-functions determined
in Section 5-1 into the effective inertia matrix equation 3-66 and the inertia power
array equation 3-67 results in the model coefficients tabulated in Table 5-6 and

.

Table 5-7, respectively. Finally, having determined [ ,IW] and [ Pooo ,
substitution into equation 3-66, gives the initial inertial load expression for the
dynamic model of each leg as

rI;=[ ,I;Q]i + @T[ ré;vw]é (5-31)
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2 2
LiCo+1,8s  (Ta=1,)S6Cs, 0
(1u-1,)86Co  LuSe+1,Ce, 0
0 O I1.l

’ IxZCle;;{" Izl S:l
L Se CoCa~ 12S6,Ce,
Ixzce,ce,s 0,

I,;C5 Co I3 S,
LaS6CeCo,m 1y286,Cs,
I,;Co Co,Se,

I,;Se CeCo,~ 12S6,C,
I;Ss Co.+ 112Ce,
L. S<~)‘Se,Ce2

Ixzc-‘re,c-jezse2
Isza,Se,Ce2
I, Se,

IsSe CoCo.m Iy3S6,Co,
I;Se Co+ Iy Ce,
I,3S6,S6,Co,
Ix3 Celce,s 8,

Ixsse,sezce,
. LsSe,

Table 5-5 Inertia Tensors
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. A 0 0
[Le=l 0 B o
where
L 2
¢ 2 2 2 2
A= I,_1+ M23(7'ng) +M34L Saz-i- Ixzsez+ ngsgz
2
B =Izz+Iy3+ Mu(%‘} +M34L2
and
L,
L= L3"?

Table 5-6 Effective Inertia Matrix
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where

and

0 D M,LSs,
[ fP”W‘P]l;;:: C 0 'Iygse!
M, LS, O 0
. E 0 IxJSe,
[ rpwo]z;;= 0 0 M,,L

0 ML 0

.

~M.LSs  LsSe,

[ 'P;'W]‘J;;: 43S, -M.L
0 0

Ly
C = Mzg( _2£ + M34Lb) Sezce2

L
D= Mzs(—zf) # Myep 2+ 2T+ 21 | So.Ce,

Lc : 2 )

E=|-My 5 -M, L =1:- 1] Se,Co,

Table 5-7 Inertia Power Array
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5-3 [ransfer of Generalized Coordinates to Obtain the Dynamic M_gd;!
Referenced to the Platform

Section 5-2 developed the initial inertial load model of each leg directly

in terms of the relative joint parameters 2. Since it is assumed that there is no
external load applied to the system, the controlling equation of motion in equation
5-31 can be written as

rIQ = rIL

*

(L] 42 [ Preel (5-32)

Before arriving at the desired model, which will be referenced to the actuators, it is
necessary to transfer the dynamic model in equation 5-32 to an intermediate set of
generalized coordinates, which in this case is the platform coordinate set U. Using

the relations
o=[ ’Gi]-x’E (5-33)
g=[c3] B+ mp] e (5-34)
2=[clu (5-35)
and
B={cIlu+u [ HL]u (5-36)

equation 5-32 can be expressed as
rI¢=[ ,I;.,][ x.G:’].l[ er]U+HT[ rP"““]H (5-37)

where



L)L Uel AL e ) e
(5-38)

e

Also, substituting equations 5-35 and 5-36 into equation 5-34 for E and E gives

o= "o} ([ "olu+u ma]u)

T

+U

KSIESCEIE 5:39)

the G- and H-functions for the joints referenced to the set of generalized coordinates
associated with the platform can then be expressed as

-1
['G]=["ct] ['Gl] (5-40)
and

[uz]=[rat] ) < [el] ][ 6] 541

Note, the kinematic influence coefficients relating the initial coordinate sets @ to the
platform coordinates UJ, which are required to determine the platform based model,

cannot be found by direct inversion of those relating U to 2 as in Hudgens [21],
since they do not exist. Here, r® is related to P and P is related to U yielding the

required relations of 2 to U as given by the above equations. Next, utilizing the
relation

I.=[.Gi] T, (5-42)

the 6 by 6 effective inertia matrix and the 6 by 6 by 6 inertia power array referenced
to the platform set of generalized coordinates can then be expressed as
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r)-led el ) el el s
[Plu]= 6] [Pl 5.1t
" el

Now that the dynamic model for each leg is referenced to the common
platform generalized coordinates, they can be combined by substituting into the
following equations similar to equations 4-42 and 4-43.

6

(1) =[tu]+ 2 [ ]

rel (5-46)

6

[Pr=[Pul+ 2 [ Pud

el | (5-47)

Finally, to complete the model of the DDTS, the platform effective inertia matrix
and its inertia power array need to be determined and substituted into the above
equations. They can be expressed as

M, O 0 0"
T
(1] o M, O 0
0 o M, Q
pl
oo o [T s

where My is the platform mass and the inertia tensor is
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[(pl) P'] T
=T o T (5-50)

o ) -
M, W
- 0 0
(¢ pl 2
[ I ]: o Ma¥ 0
4
2
0 0 M, W
I 2 (5-51)

where W is the radius of the platform, which is the magnitude of the vector in
equation 5-21. Note that the first three planes of [ Puu] are 6 by 6 null matrices, and

[PmL;mf{ Q l T l T } (5-52)
[Puuu]s;m;f[ T o | T ] (5-53)
[Pm]ﬁ;m;f[ r T oo ] (5-54)

where m, n = 4,5,6.

As a result of the above transfer of generalized coordinates, the
completz dynamic model of the DDTS is now referenced to the common set of
platform coordinates. The next section will discuss the final transfer of system
dependence to the desired set of generalized coordinates.
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5-4 Iransfer of the Dvnamic Model to the Desired Set of Generalized
Coordinates--The Input Actuators

Having the complete model of the system referenced to the platform
coordinates, the final step is to transfer the model to each of the actuators. Since the
actuator in each leg is at the third joint, the desired set of first-order KIC can be
obtained by merely extracting the third row from the result of equation 5-40 for
each of the legs, ie.,

Q aQ

o o o

r

Q

S (5-55)

Similarly, the second-order KIC is obtained by extracting the third plane from the
result of equation 5-41 for each of the legs, ie.,

uu _|3;;

uu_B;;

H
H

| uu_|3;;
s..¢ T
uu

H 3
LéH:u_h;

(5-56)

This extraction procedure has been described in Section 4-3. Once equations 5-55
and 5-56 are determined, the effective inertia matrix and inertia power array can
easily be computed by recalling equations 4-55 and 4-56 as




QEARCHN A )

and

(5-57)

rri- Lo { ([ [e)- (). [12]) YaT

Finally, substituting equations 5-57 and 5-58 into the dynamic equation
. .o . T . .
Is= I:Idd] d+d [Pddd d

gives the necessary generalized force at each of the actuators d, where

(5-58)

(5-59)

(5-60)

This concludes the dynamic modeling of the generalized Stewart

Platform(or the DDTS) needed for the simulations addressed in the next chapter.

Again, note that the final model essentially results from the multiple application of

the isomorphic transformation equations to simple open-chain models. This avoids

the much more difficult task of determining the desired dynamic model directly in

terms of the desired generalized input coordinates.
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CHAPTER 6
APPLICATION OF THE MODEL
6-1 Verification of the M.

The complete model of the generalized Stewart Platform(or the DDTS)
was developed in Chapter 5. The final model is used to calculate the generalized
forces for each input, given the position, velocity and acceleration of the inputs,
which are determined once the platform motion is specified. This section will
discuss three different approaches employed to verify the modeling technique,
particularly the distribution of the system mass parameters introduced in Chapter 5.
Additional verification of the general modeling technique can be found in Freeman
and Tesar [14].

6-1.1 Special Case Model

The first verification procedure involves specifying a system in which
the desired model coefficients are available by inspection. Applying the transfer
‘procedure and comparing those results with the known coefficient values completes
the verification process.

Instead of having the third(or the prismatic) joint from each leg be the
input locations as in Section 5-4, the first joint, which is the fixed revolute of the
hooke joint, is specified as the desired input location for each leg. Thus,

T

d =[ 197 2Py 3P Py 5O 6(91:] (6-1)
is the desired input set. Furthermore, only the first joint from each leg is given mass
so as to have direct knowledge of the desired model. Hence, substituting Mz _
10.0kg and the radius of the hooke joint as r = 0.06m into Table 5-6, gives the
effective inertia matrix as
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0018 0 0
[ L= 0 o o
o 0 0 (62
where
M r2
A=1,=-"52—=0018 kg.m’
(6-3)

Note that the pre-subscript r in M2 refers to the leg number and the r in r2 refers
to the radius of the hooke joint. '

Following these assumptions, by inspection, the effective inertia
matrix referenced to the desired set of coordinates(equation 6-1) is

0.018 0 0 0 0

0 0.018 O 0 0
0 0 0018 O 0
0 0 0 0018 O
0 0 0 0 0.018
0 0 0 0 0 0.018

-

[eoNeNoNeNo)

(6-4)

Also, the inertia power array [ Pd“] is a 6 by 6 by 6 null aray(ie., each actuator is
only responsible for its own mass).

Having knowledge of the expected results for[ I“] and[ Pd“], the
modeling procedure outlined in Chapter S is then applied. First, the directly
available joint referenced model coefficients for each leg,

el L) L] L mmd s e e

are determined. Second, applying the transfer of generalized coordinates to the
results in equation 6-3 to obtain the model referenced to the common set of platform
coordinates (equations S5-40 to 5-44) yields

[ee] [ me] (][ Pa] i r=12..006 6.6)
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Since the platform is assumed to be massless, equations 5-46 and 5-47 become

[I;u]=§[ L]

(6-7)
and
L] 6 r .
[Puuu]—"'Z[ Puuu
r=l (6-8)
Equation 6-7 gives
0.0020 0 0 -00023 0 0o |
0 0.0029 0 0 0.0011 -0.0012
[I‘ ]_ 0 0 0.0029 0 0.0012 0.0011
wi™l -0.0023 0 0 0.0030 0 0
0 0.0011 0.0012 0 0.0039 0
0 -0.0012 0.0011 0 0 0.0039
(6-9)

which is a symmetric matrix. Then, performing the extraction procedure discussed
in Section 4-3 to the first- and second-order KIC in equation 6-4 to obtain

-

[
J

W
I

Li]

Qo

8 £ 8 € 68 £ 6 49 £ @
i | i1

w

[a]-

>~

O o
L

W I
a o
it ]

O

b (6-10)

r
1

and
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e
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(6-11)

as the G- and H-functions relating the desired input coordinates(d) to the common
platform coordinates(U). Finally, applying the transfer equations again one arrives
at the desired model coefficients(equations 5-57 and 5-58),

[ re]=[ G:]‘T[ L] Gﬁ]‘l (6-12)

[P;dd]=[03]¢{ ([G:].T.[P;uu]) ‘
"([I;a]-[Hiu])HG:} (6-13)

Substituting equation 6-9 and the result from equation 6-8 into equations 6-12 and
6-13 yield

and

(0018 0 0 0 0 0 |
0 0018 0 0 O O
]-| © o o080 0 o
«=0 0 0 0 0018 0 O
0O 0 0 0 0018 0
0 0 0o o o0 0018 614
and
[Pddd]k;;=[O] ; k=1,2,...,6 (6_15)

where each plane in equation 6-15 is a 6 by 6 matrix. Comparison of the results of
equations 6-14 and 6-15 with the known results partially verifies the model
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developed in Chapter 5 and the computer program written for the simulation in the
later part of this chapter.

6-1.2 Verification of the Result for the First-order KIC

One quick and simple way to check part of the model is by verifying
the first-order KIC. From Table 3-3, the directly obtained first-order KIC can be

expressed as

KCHE

S1x( rE"Bx) Szx( rE'Rz) Ss ]

(6-16)
where a and b are some constants, and from equation 5-25
1 O - O O rwz 'er
['Gf]=] o 1 0 -w, 0 ,w,
0 0 1 Wy - W, 0
(6-17)

are the platform referenced G-functions. Using the transfer of generalized
9
coordinates and realizing that only the third column of G. is needed since each

leg's actuator is located at the third joint(prismatic), equation 5-45 can be written as
| ‘alli-[ 3L al] (6-18)

Furthermore, since

-1

[ rG:]=[ YG:»] (6-19)

the third row in the above expression can be shown to be
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[ ,Gf,’];;= S (6-20)

Rewriting equation 6-18 gives

T

([ rG:]u) -{ rG:]T([ ,G:]s.,) (6-21)

Substituting equation 6-20 into equation 6-21 yields

el 2]

W x
5 (6-22)
where
r_w X
rly. = r_“_, Y
r-W-Z (6"23)

which is as previously determined in equadon 5-21.

- Since equation 6-18 relates the directly obtainable initial G-functions
to the G-functions needed for the final transfer to the desired model, the above
procedure effectively checks the validity of the results for the G-functions used in
the desired model.

6-1.3 Actuator Motion Verification

Another way to partially verify the model is by checking the first- and
second-order KIC used throughout the process. The method adopted here is to
compare the result determined via the model developed in Chapter 5 with that
obtained from direct mathematical calculation. This method also serves as a check
for the verification process described in Section 6-1.2. '

Recalling equation 5-59, the terms d and 4 are the velocity and
acceleration of the actuators (ie., the prismatic links) in this model. As seen
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throughout the development in Chapter 5, the general expression for the velocity
and acceleration of the linear actuators can be written as

d-[ci]u (6-24)

d-[clu+un]u 625)
However, the velocity and acceleration can also be determined directly by taking the
time derivative of equation 5-8, ie.,

Ly=X, +Y, +Z, (6-26)
to obtain the velocity expression as’

_XPX,,+YPYP+Z,,ZP

L
’ L, (6-27)

Taking the time derivative of equation 6-27, gives

X . 2 o . 2 e . 2 3 2
X X+ X, +Y Y+ Y, +Z,Z,+Z, - L,
L, (6-28)

L,

for the acceleration.

Assuming that the platform motion (Il, U and jof ) is known,
comparing the results calculated from equation 6-24 with equation 6-27, and
equation 6-25 with equation 6-28 for each leg, that is,

[d]).= .Ls (6-29)
and .. .e
[d]t;I: rLS (6-30)

where r=1, 2, ..., 6 is the leg number, verified the G- and H-functions derived for
d d P P P
the model. This is because[ G“] and [ H““] are derived using [ G@], [ HW], [ GU],

d d

[ qu] and all the intermediate G- and H-functions. If[ G“] and [ HW] are checked,



all the other G- and H-functions are checked too. This concludes the verification for
the G- and H-functions.

6-2 imulation of the Dvnamic Docking T ystem(DDT

This section discusses several computer simulations for the DDTS
based on the model established in Chapter 5. The simulations are coded in
FORTRAN language employing a VAX/VMS 11/750 computer. A complete
computer listing of the program written for one of the simulations is listed in
Appendix B. The computer listing is for the case when the platform is translating
and rotating about the X* axis using a class p=3, 3-4-5 polynomial curve, which
will be discussed very shortly. To use the program for any other motion, one only
needs to modify the subroutine "NEXT_MOTION" and the respective parameters in
the calling statement. The input data corresponding to the subroutine
"READ_DATA" for the program listed in Appendix B is listed in Appendix C. The
main purpose of these simulations is to investigate the relative contribution to the
ovc:,rall generalized forces, required at c.ach actuator, of the acceleration related (ie.,
l: Idd] ) and the velocity related (ie.,l: Pddd:} ) terms.

Four different motion specifications for the platform are adopted from
Matthew and Tesar [29]. The first motion is the class p=2, constant acceleration
curve as shown in Fig. 6-1. The subroutine "NEXT_MOTION" for this motion is
listed in Appendix D. The second motion is the class p=3, 3-4-5 polynomial curve
as in Fig. 6-2. The last two motions both belong to class p=4, one of them is the 4-
5-6-7 polynomial curve and the other one is a 374 derivative trapezoidal curve, as
illustrated in Fig. 6-3 and 6-4, respectively. Similarly, the subroutines
corresponding to these two motions are listed in Appendix E and F, respectively.
The use of class p=2, 3, or 4 in this context indicates that a jump or discontinuity
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occurs in the pth derivative of the motion function. The expressions for the

displacement, velocity and acceleration corresponding to each of the motion curves
are also listed along with the figures. The maximum displacement is denoted by ¥
and the total time taken is denoted by ! Note that the 3rd derivative
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trapezoidal curve involves three constants A1, A2 and A3. They can be determined
by using the expression

2y - 2C,
A, _ )
Az =[t’.|] 6y—6(C,t+C2}
As - C,-2 -
24y—24 'i‘t'FCzt'*‘Cg
- d (6'31)

and

i+l i+l i+l i+l

_(E_th-Z) -(E_th-l) _(I_th) —(E‘tz,‘.x)

tj.1— taj.2 taj.1— Uy

ij
(6-32)

where Cy, Cp, C3 are the integration constants resulting from the initial conditions.
Detailed derivation of equations 6-31 and 6-32 is given in Matthew and Tesar [29].
The subroutine used in the simulation to determine the constants Al, A2 and A3 is
listed in Appendix G.

Besides employing different classes of motion specifications, two
arbitrarily chosen platform trajectories are investigated. First, the platform moves
vertically along the X* axis from 3m to 4m, while simultaneously rotating about the
same axis from O to -60 degrees, as shown in Fig. 6-5. In the second trajectory, the
platform moves horizontally along the Z* axis from Om to 1m while X* remains
constant at 3m. As before, the platform rotates about the X* axis from 0 to -60
degrees. This trajectory is illustrated in Fig. 6-6. For the second trajectory, only
the class p=3, 3-4-5 polynomial motion is investigated. In addition, a different
investigation is also conducted to study the relative contribution of the platform and
leg mass to the effective inertia matrix and the inertia power array. This can be
achieved by first assuming that only the platform has mass while the legs are
massless, then assuming that the six legs have mass while the platform is massless.
This investigation is conducted using the trajectory in Fig. 6-6 and the
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class p=3, 3-4-5 polynomial, since it is felt that this trajectory provides a more
general study due to its non-symmetric nature. The total time taken for each motion
is 2sec, with an interval of 0.1sec for every time step. The dimensions of the base,
platform, legs and all other components used in the simulations are listed in Table
6-1. Note that the numbers adopted here are all estimated values based on a
photograph of the DDTS since the actual numbers were unavailable. The mass of
the six legs and the platform are intentionally slightly overestimated to accommodate
the likely application of the mechanism for large space vehicle docking purposes.

The resulting actuator motions ( ie., &, d and d ) and the required
generalized forces at each actuator, along with the contribution from the velocity
and the acceleration related terms, are plotted in Fig. 6-7 through Fig. 6-29. The
notation used to denote the figures is a set of five alphanumerics. The code starts
with an uppercase letter denoting which platform trajectory is being employed. "D"
1s for the trajectory that translates and rotates about the X* axis. "E" refers to the
trajectory that translates along the Z* axis and rotates about the X* axis. The
following digit indicates which type of motion specification is used. The digit "4" is
for the class p=2, constant acceleration, "5" is for the class p=3, 3-4-5 polynomial,
"6" is the class p=4,'4-5-6-7 polynomial, and finally, "7" refers to the class p=4,
3rd derivative trapezoidal curve. The last digit denotes the total time allowed, which
in this work is always 2 for two seconds. The last lowercase letter refers to the leg
number, from "a" for leg 1 to "f" for leg 6. The two zeros in the code serve no
practical purpose. For the first trajectory (ie., translating and rotating along/about
the X* axis), the required generalized force curves of each leg are plotted following
the plot for the position, velocity and acceleration of the actuator for that particular
leg.

6-3 Congclusions

Comparing the plots for the platform motion ( ie., U-, U and 6] ) with
the plots for each actuator's motion (ie., Q, dand d ) does not show a direct
relationship between them. This implies that in equations 6-24 and 6-25,
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Radius of the base=B=3m
Radius of the platform=R =2 m

Radius of the Hooke joint =r =0.06 m
(modeled as cylinder)

Length of the piston cylinder=L; =3 m
Length of the pistonrod =Lr=3m

Mass of the Hooke joint = M2 = 10.0 kg
Mass of the piston cylinder = Ma3 = 260 kg
Mass of the piston rod = M34 = 175 kg

Mass of the platform = Mp|= 2250 kg

Table 6-1 Estimated Dimensions and Mass of the
Generalized Stewart Platform
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[cilu (6-24)

d-[ci]u-unl]u (6-25)

the G- and H-functions are nonlinear, as expected. This is particularly obvious by
comparing Fig. 6-1 for the platform motion with Fig. 6-8 and 6-10 for the actuator
motion. When the platform is moving with constant acceleration and deceleration,
the actuators are moving with nonlinear acceleration and deceleration. Notice that
for "D" trajectory, only leg 1 and leg 2(ie., "a" and "b") are plotted. This is because
this trajectory is symmetric about the X* axis. Hence, all the odd number legs are
the same, as are all the even number legs.

Next, looking at the plots for generalized forces versus time for each
of the motions, as expected, at the beginning of the motions when the velocities are
small, the acceleration related forces dominate the required generalized forces for
the actuators. Overall, the acceleration related forces are generally more significant
than the \felocity related forces. This is because the elements of the effective inertia

matrix | Lee fencrally have larger magnitude than that of the elements for the inertua

Pddd]. Furthermore, it is observed from Fig. 6-7, 9, 11, ..., 21 that d
remains relatively small, less than 1m/s, with respect to d. Recalling equation 5-59,

power array

To=[L.)d+d | Pueld (5-59)

for the generalized forces, since [ P“d] is operated on quadratically by d, the
velocity related term is expected to be smaller than the acceleration related term. In

addition, examining the configuration dependent effective inertia matrix [ I“],
reveals that it is symmetric, which is consistent with its definition, and the
magnitude of the diagonal elements are generally larger than the off-diagonal

elements. This implies that I“] has the tendency to decouple, although not

completely. An example of [ I“] is shown in Table 6-2. Table 6-2 also shows an
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-172.0
25.0

. 220.2
[P“‘]‘“ -l 1225
-62.6
-2.0

Table 6-2 Examples of Effective Inertia Matrix and a

1288.6 334.8
334.8 1622.9
[I. ]_ -1142  -9195
4 472.9 -516.3
-195.4  536.0
-856.4 -5353

75.1
-423.6
58.7
-11.7
-5.9

183

-114.2 4729
-919.5 -516.3
1145.7 370.3
370.3 1631.2
-52.4 -891.9
500.5 -543.6

20.9
854 -3
15.6
775 -12
329 10
18.6 2

-195.4
536.0
-52.4

-891.9

1226.9
307.2

-856.4
-535.3
500.5
-543.6
307.2
1650.1 |

9.7 -73.7 1313

74 533
1.6 -152.2
0.4 2393
8.8 -96.6
48 538

-8.1
100.0
-82.4
-53.2
-83.2

Plane of Inertia Power Array for the
Generalized Stewart Platform
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example of one of the plane of the inertia powér array [P ddd]. Reviewing the
general form of the inertia power array indicates that it is not decoupled nor does it

have the tendency to decouple. The characteristics of the [ I“] matrix and [ P ;dd]
array give some very important information concerning the controlling equation for
the implementation of real-time feedforward control, which will be discussed
shortly.

This work provides all the essential information for two different
control strategies (Fu, Gonzalez and Lee [17], Luh, Walker and Paul {27], Ogata
[32], Whitney [48]) for the generalized Stewart Platform( or DDTS ). To employ
pure, non-dynamic, feedback control for the DDTS, merely specify the desired
platform motion, the program will calculate the kinematic state of the platform at
each time step. Subsequently, the required actuator lengths corresponding to the
respective time step are calculated. Hence, in each segment of time, the initial and
final positions of the actuators are known. This gives the necessary information for
any of a number of position control algorithms.

The main objective of this work is, however, to provide the necessary
software for future study using the dynamic model to develop a control scheme,
possibly the computed torque technique, for the DDTS. Basically the computed
torque technique can be slightly altered to become a layered control having both

feedforward and non-linear feedback components. The interaction forces among all

the various joints are compensated by the control components. The feedback
component is used to compute the necessary correction torque to compensate for
any deviation from the desired trajectory. Due to the computational demands of this
control scheme, for any real-time control, it maybe necessary to simplify the
controlling equations. It is customary although not always acceptable, to neglect the
velocity-related coupling terms and the off-diagonal terms of the acceleration-related
matrix for closed-loop control of serial manipulators. But, very little has been
mentioned for parallel manipulators. Hence, this work provides some insights for
the control of parallel manipulators.

Investigating the [ Idd] matrix and the [ P“d] array of the Stanford
manipulator, generally shows that the inertia matrix is highly decoupled, the off-

145



diagonal elements are either zero or much smaller than the diagonal elements, and

the elements in thc[ P“d] array are mainly zero. Examples of the [ 1“] matrix and

the | Poea array for the Stanford manipulator are shown in Table 6-3. This
observation tends to support the simplification scheme adopted for some serial
manipulators as mentioned before. However, this scheme may not work effectively

for parallel manipulators since the[ Lee | matrix for parallel manipulators is not as

decoupled as it is for some serial manipulators and P ase array is relatively
significant in the parallel case. As a result, employing the same simplification
scheme to the parallel manipulators is likely to result in larger error, subsequently
relying more heavily on feedback control.

The investigation conducted to study the effect of the platform mass

" relative to the leg mass in the effective inertia matrix and the inertia power array

shows that with only the platform having mass, the resulting elements in rhc[ 1“]
matrix generally have the same order of magnitude, although the main diagonal
elements are slightly larger than the others. On the other hand, when the six legs

have mass while the platform is massless, the main diagonal elements in the I“]
matix are generally larger than the off-diagonal elements by an order of magnitude.
T =se two cases indicate that the platform has a larger coupling effect than the legs
in the final dynamic model. This provides information for one of the essential

factors in the design of parallel manipulators. The information indicates that the

[ Lee] marix has the tendency to decouple when the mass of the legs increases, for
the purpose of increasing the rigidity, relative to the platform. Unfortunately, the

inertda power array does not show any nodceable general tendency. Examples of the
[ Lee] marix and (P “d] array are shown in Table 6-4 and Table 6-5 for the case
when the legs are massless and when the platform is massless, respecuvely.

It is not the intention of this work to recommend the control smategy to
use for parallel manipulators. However, this work provides the essential model and
software for further study of parallel manipulators. To arrive at an efficient and

elatively accurate control scheme for real-time control of the generalized Stewart
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26920.0
0.0

. -570.0

[ Las ] = 0.0
0.0
0.0

0.0
-15.0

[P;dd]i;;= 88

-10.0
0.0

0.0
23045.0
0.0

0.0

10.0

0.0

-5.0
0.0
0.0
0.0
0.0
0.0

-570.0
0.0
95.0
0.0
0.0
0.0

0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

0.0
0.0
0.0
15.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
10.0
0.0
0.0
10.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

Table 6-3 Examples of Effective Inertia Matrix and

a Plane of Inertia Power Array for the
Stanford Manipulator
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7819 398.5 -472 4124 -3642 -514.4 |
398.5 866.5 -573.8 -249.4 4502 -340.0
(0| 472 5738 e 3864 3e60 asa
2 412.4 -249.4 3864 8368 -476.9 -232.5
3642 4502 -346.0 -476.9 923.1 3303
5144 -340.0 4842 -2325 3303 819.6

355 -754 -89.8 71.1 1348 56.6
24 203 158.6 -45.8 -76.1 -46.1
[P. ] _ -21.0 852 -69.7 -506 316 -67.4

dad Jiii 280 500 -65 -59 -290 514
60.0 -454 -11.9 46.2 -176.1 37.1
282 -168 -683 70.2 20.1 -220.9

Table 6-4 Examples of Effective Inertia Matrix and
a Plane of Inertia Power Array for the Case
when the Platform has Mass but the Legs are
Massless :




388.7 31.8

31.8 4602

[L.]- 5.5 -169.9
«l/=] 552 393

58.4 453

-165.3 -86.8

[ 276 222

449 622

. 432 13.0

[Pd“]= 3.8 -3.4
39.8 -0.5

33.4 -1.5

-5.5 552
-169.9 -39.8
3972 615
61.5 397.4
-70.7 -154.6

423 -41.4

-19.5 -13.0
11.7 194
-72.8 256
-10.2 -27.7
13.8 -11.1
-6.1

11.8
17.2
25.8

-13.0
2.3 -22.1

-58.4 -165.3
453 -86.8
-70.7 423
-154.6 -41.4
414.7 46.8
46.8 4445

-

9.1
-15.0
-31.5
-9.9 20.6
1.9
3.5

Table 6-5 Examples of Effective Inertia Matrix and

a Plane of Inertia Power Array for the Case
when the Legs have Mass But the Platform

is Massless
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Platform, additional research focusing on different trajectories and motion
specifications needs to be done.

6-4 Summary

In the second chapter, a general overview of the parallel manipulators
classified as generalized Stewart Platforms was presented. The basic design concept
and the control of the mechanism originated by Mr. D. Stewart was discussed
briefly. Subsequently, various applications that stemmed from the original concept
were discussed along with the different approaches taken by various researchers to
analyze the mechanism.

The modeling technique adopted in this work, called the method of
Kinematic Influence Coefficients, was addressed in Chapter 3. The notational
scheme employed to facilitate the derivation of the model was also introduced. The
presentation focused on modeling open-loop kinematic chains(or serial
manipulators). The discussion included forward and reverse kinematic and the
development of the dynamic model of serial manipulators.

Chapter 4 concentrated on the development of an isomorphic
transformation technique called the transfer of generalized coordinates. This chapter
started with the discussion of kinematic and dynamic model transfer for serial
manipulators and then further extended the technique to include multi-loop parallel
mechanisms. A general procedure was developed to perform the transfer of system
dependence from any initial set of coordinates to the desired set of generalized
coordinates.

Utilizing the modeling technique developed in the previous chapters,
Chapter 5 established a complete model of the Dynamic Docking Test System.
Starting from initializing the Denavit-Hartenberg parameters to the final desired
dynamic model referenced to the common platform coordinates set, through a
number of intermediate sets of generalized coordinates, this chapter described the
procedures used to arrive at the final model for the computer simulation,

As a note of advice for similar simulation programs in the future, it is
felt that FORTRAN language is inefficient and cumbersome for the modeling
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technique adopted in this work due to the many matrices and higher dimensional
arrays involved in the operation. A more efficient computer language suitable for
matrix operation (eg., APL) will reduce the time and effort spent in coding and
debugging the program. However, APL may not be computationally efficient for
real-time control.
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APPENDIX A

DEVELOPMENT AND DEFINITION OF GENERALIZED
SCALAR ( « ) PRODUCT OPERATOR FUNDAMENTAL TO
DYNAMIC MODELING AND TRANSFER OF COORDINATES

Quadratic operation of a MATRIX on a three dimensional ~ array.

Given:
[A]l=MxN Matrix
[B]=NxMxM  Armay

Define:

[A]'[B],;[A]

[A]'[Bls.[A]

[A]'[B][A]= “NxNxN Armay

T
| (AT [Bln[A]
Quadratic operation of a VECTOR on a three dimensional ~ array.

Given:
d = M component column vector

Define:

d"[Bly,d

T
d[B]),.d
[Bla =N x 1 vector

d'[Blds=
d"[B 1y, d
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Vector multiplication of quadratic result

Given:
[C]=KxN matrix
[Clk; =kthrowof [C]

Then
(C1(d [B1d)=1C1id" [Blud+[Cliad [Bld
#...+[Clond [Blx;d
=d’[Clai[Blid+d (Clia[Blad

+...+d [Cln[Bly;d

T N
=d { 2, [ClaalBls; 3 d

a=1
= scalar

Define operator (+) "DOT"

[Cly+[B1= 3 [Cliul By, = Mx M mamix

o=1
= scalar multiplication of planes followed by a
summation of the resulting planes

Matrix multiplication of quadratic result using (»)  operator

d'([C1;+(B1)d

T
d Cl,. +[B1}d
(ci{a’tB1d)- (1CTs;+(B]])

4 ([Cly[B1)d



=d'((C1.[B])d
=K x 1 vector

where ([C]+[B])=KxMxM array
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APPENDIX B

SIMULATION PROGRAM LISTING
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PROGRAM STEWART_PLATFORM

ALL UNITS ARE IN SI

Y AND Z POSITIONS FIXED

X MOVED FROM Xi(m) TO Xf(m) AND ORIENTATION FROM Ai
TO Af(DEGREES)

THE NOTATIONS USED IN THE PROGRAM MOSTLY
CORRESPOND TO THE DERIVATION IN THE THESIS,
EXCEPT THE FINAL DYNAMIC MODEL WHERE INSTEAD OF
THE SUBSCRIPT "d" AS IN THE THESIS, THIS PROGRAM
USED"q"

REAL L3,L,II(3,3),1zz1,1z22 I1xx2,Ixx3,lyy3,M23,M34,Lc,Lr

DIMENSION P_PL(6,3),P_GL(6,3),P_LK(6,3),

ZSIphi_LK(3,3),ZPphi_LK(3,3,3),PF_Iuu(6,6),
PF_Puuu(6,6,6),ZS1phi(3,3),ZPphi(3,3,3),
ZGp_LK(3,3),ZHpp_LK(3,3,3),ZGp_phi(3,3),
ZHp phi(3,3,3),PHI3(100,6),Q(6,1),UDOT(6,1),
UDDOT(6,1),QDOT(6,1),QDDOT(6,1)

COMMON/ORIEN/X1,Y1,Z1,X12,Y12,Z12

COMMON/ARR_Guw/Gu(6,3,6)

COMMON/ARR _Huu/Huu(6,3,6,6)

COMMON/DIRECT/DGp(6,3,3),DHpp(6,3,3,3)

COMMON/G_Hp_phi/Gp_phi(6,3,3),Hp phi(6,3,3,3)

COMMON/ARR_phi_uu/Gphi_u(6,3,6),Hphi_uu(6,3,6,6)

COMMON/SINERTIA_phi/SIphi_LK(6,3,3)

COMMON/POWER _phi/Pphi_LK(6,3,3,3)

COMMON/SINERTIA _uw/SIuu(6,6,6)

COMMON/POWER_u/Puuu(6,6,6,6)

COMMON/ARR_Gq_u/Gq_u(6,6)

COMMON/ARR_Hq _uu/Hq_uu(6,6,6)

COMMON/Iuw/TOT _luu(6,6)

COMMON/Puuw/TOT_Puuu(6,6,6)

COMMON/1qq/STAR _Iqq(6,6)
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COMMON/Pqqq/P_STAR qqq(6,6,6)
COMMON/CGpHpp/L3
READ IN ALL THE NECESSARY DATA
CALL READ DATA(X1,Y1,Z21,X12,Y12,Z212,XU,YU,ZU,
X1f,YIf,Z1£,X12f,Y12f,Z12f XUf, Y Uf,ZUT,
R,B,1zz1,1z22 Ixx2,Ixx3,lyy3,M23,M34,Lc,Lr,
TMAX,NSTEP,THETA,THETAf)
ATTENTION: ANGLE THETACf IS SPECIFIED AS POSITIVE,
BUT THE ROTATION CAN ONLY BE NEGATIVE
BECAUSE OF THE ASSUMPTION THAT THE
INITIAL ANGLE ALWAYS STARTS FROM
0 DEGREE, WHICH IS WHEN THE al2 AXIS IS
PARALLELED TO THE BASE Y* AXIS.
THETAf=-THETAf*3.1415926/180.
XUi=XU
THETAi=THETA*3.1415926/180.
CALCULATE TIME STEP
TSTEP=TMAX/NSTEP
WRITE(1,*) TIME STEP=',TSTEP
DO III=1,NSTEP+1
PTIME=(III-1)*TSTEP
CALCULATE THE NEXT PLATFORM POSITION AND
ORIENTATION
CALL NEXT_MOTION(TMAX,PTIME,XUi,XUF,THETAI,
THETAS,XU,THETA, V,W,ACC,AL,
Y12,Z12)
WRITE(1,*)" '
WRITE(1,*)PRESENT TIME="PTIME
WRITE(1,55)XU,YU,ZU
WRITE(1,*)'VELOCITY OF PLATFORM="V
WRITE(1,*)'ACCELERATION OF PLATFORM=",ACC
WRITE(1,66)X1,Y1,Z1
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WRITE(1,77)X12,Y12,Z12
WRITE(1,*)THETA=",THETA
CALCULATE THE POSITION OF POINT P IN PLATFORM
FRAME
CALL P_PLATFORM(R,P_PL)
GET THE ROTATION MATRIX TO ORIENTATE THE
PLATFORM TO THE BASE FRAME
CALL TRANSF P G
TRANSFORM ALL THE POINTS ON THE PLATFORM TO THE
BASE FRAME
DO I=1,6
CALL P_GLOBAL(1,Xu,Yu,Zu,P_PL,P_GL)
ENDDO
DO I=1,6
TRANSFORM ALL THE POINTS ON THE PLATFORM TO
THEIR RESPECTIVE LEG FRAME
CALL P_LINK(,B,P_GL,P_LK)
CALCULATE THE G- AND H-FUNCTIONS FOR THE
PLATFORM
CALL CAL_Gu(])
CALL CAL_Huu()
CALCULATE THE G- AND H-FUNCTIONS FOR THE LEGS
CALL CAL_G_Hp phi(I,P_LK(,1),P_LK(1,2),P_LK(I,3),
ZGp_phi,ZHp_phi)
DIRECT TRANSFER OF Hp_phi
CALL CAL_Hphi_pp(I,ZGp_phi,ZHp_phi)
ENDDO
TO DETERMINE Gphi_u AND Hphi_uu
CALL CAL_G_Hphi_uu
SET UP THE INERTIA MATRICES AND POWER ARRAY
DO I=1,6
.CALL CAL_INERTIA(I,Izz1,Izz2,Ixx2,Ixx3,lyy3,
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M23,M34,Lc,Lr,SIphi_LK)
CALL CAL_POW_phi(,Ixx2,Ixx3,Iyy3,M23,M34,
Le,Lr,Pphi_LK)
ENDDO
TO DETERMINE Iuu AND Puuu
CALL CAL_Iuu_Puuu
CALCULATE THE PLATFORM INERTIA MATRIX AND POWER
ARRAY
CALL PFORM_INERTIA(R,ILPF Iuu)
CALL PFORM_INEPOW(II,PF_Puuu)
CALCULATE THE INERTIA MATRIX AND POWER ARRAY
FOR THE SYSTEM
CALLI_STAR uu(PF_Iuu,TOT luu)
CALL P_STAR_uuu(PF_Puuu,TOT_Puuu)
DETERMINE THE FINAL DESIRED FIRST- AND SECOND-
ORDER KIC,Gq_u AND Hq_uu
CALL CAL Gq u
CALL CAL Hq uu ’
DETERMINE THE DESIRED INERTIA MATRIX AND POWER
ARRAY I*qq AND P*qqq
CALL CAL _Iqq Pqqq
SPECIFIED THE PLATFORM MOTION
UDOT(3,1)=V
UDOT(4,1)=W
UDDOT(3,1)=ACC
UDDOT(4,1)=AL
CALCULATE THE ACTUATORS MOTION
CALL CAL_QDOT(UDOT,QDOT)
CALL CAL_QDDOT(UDOT,UDDOT,QDDOT)
WRITE(1,88)
DO K=1,6
WRITE(1,99) UDOT(X,1),UDDOT(K,1),QDOT(X, 1),
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+ QDDOT(X, 1)
ENDDO
C CALCULATE THE REQUIRED GENERALIZED FORCES FROM
C EACH ACTUATOR
CALL GEN_FORCES(QDOT,QDDOT)
ENDDO

55 FORMAT(X,'Xu='F15.10,5X,'Yu="F15.10,5X,'Zu="F15.10)
66 FORMAT(X,'X1="F15.10,5X,'Y1="F15.10,5X,'Z1="F15.10)
77 FORMAT(X,'X12="F15.10,4X,'Y12=",F15.10,4X,'Z12=",
+ F15.10)
88 FORMAT(/,6X,'UDOT",14X,'UDDOT",13X,'QDOT",14X,'QDDOT"
99 FORMAT(X,4(F13.10,5X))

STOP

END
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* *
* SUBROUTINE READ DATA *
* *
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SUBROUTINE READ DATA(X1i,Y1i,Z11,X121,Y12i,Z12i,XUi,
YUL,ZUi, X 1f,Y1f,Z1f, X12f,Y12f,
Z212f XUf, YU, ZUf R,B,Izz1,1zz2,
Ixx2, Ixx3,Ilyy3,M23,M34,Lc,Lr,
TMAXNSTEP,THETAi, THETAf)
REAL 1zz1,1z22,1xx2,Ixx3,lyy3,M23 M34,Lc,Lr
C READ IN INITIAL ORIENTATION OF THE PLATFORM
READ (40,*) X11,Y11,211,X121,Y12i,Z12i, THETAI
C READ IN INITIAL POSITION OF THE PLATFORM
READ (40,*) XUi,YUi,ZUi
C READ IN FINAL ORIENTATION OF THE PLATFORM
READ (40,%)X1f,Y1f,Z1f,X12f,Y12f,Z12f THETAf
C READ IN FINAL POSITION OF THE PLATFORM
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READ (40,*) XUf,YUf,ZUf

READ IN PLATFORM AND BASE RADIUS
READ (40,*) R,B

CALCULATE MASS MOMENT OF INERTIA
CALL GET_CONST(Izz1,1z22,1xx2,Ixx3,Iyy3,M23,M34,Lc,Lr)
READ IN TOTAL TIME TAKEN

READ (40,*) TMAX

READ IN NUMBER OF STEPS NEEDED
READ (40,*) NSTEP

RETURN

END
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SUBROUTINE NEXT_MOTION *

%

2 34 o b o ke o k¢ 3 F¢ 34 e 2 3¢ 3k ke e e 3¢ 4 3¢ 3 34 3k b e 3 4 e b 2 s ok 2 3k e e b e 3k ke 3k Sk 3 3k b e Sfe e Sk e e e 3k k¢ 3 4 3 K o 3 e ke e e

O 0

SUBROUTINE NEXT_MOTION(TMAX,PTIME,XUi,XUf,

THETAI, THETAf,XU,THETA,V,
W,ACC,AL,Y12,Z12)
THIS SUBROUTINE CALCULATES THE NEXT PLATFORM
MOTION USING D5002
X=XUf-XUi
TTA=THETAf-THETAIi
T=PTIME/TMAX

XU=XUi+X*(10.*(T**3)-15.*%(T**4)+6.*(T**5))
V=(X/'TMAX)*(30.%(T**2)-60.*(T**3)+30.*(T**4))
ACC=(X/TMAX**2)*(60.*T-180.*(T**2)+120.*%(T**3))
THETA=THETAi+TTA*(10.*(T**3)-15.%(T**4)+6.*(T**5))
W=(TTA/TMAX)*(30.%(T**2)-60.*(T**3)+30.*(T**4))
AL=(TTA/TMAX**2)*(60.*T-180.%(T**2)+120.*(T**3))
Y12=COS(THETA)

Z12=SIN(THETA)
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SUBROUTINE P_PLATFORM(R,P)
DETERMINE ALL THE POINTS ON THE PLATFORM IN TERMS
OF THE PLATFORM FRAME

O N

O 0

THETA=THETA*180./3.1415926
RETURN
END

3k 3k 5k 3k 3K 3K 3 2k 3k 3k e 3k o3¢ sk sk 3 ke 3K ok 3K K 3 3K 5k 3K ke k¢ 3k ok 3 ok e 3 ok sk ok e ok e o ke e ke 36 3k e K sk e Sk e Sk ke e ke e ke e e ke ok ke ek K K

SUBROUTINE P_PLATFORM

DIMENSION P(6,3)

ASSUME THAT THE ANGLE BETWEEN THE POINTS TOGETHER

IS 5 DEGREES
BETA=S.
P(1,1)=R
P(2,1)=R*COSD(BETA)
P(2,2)=R*SIND(BETA)
P(3,1)=R*COSD(120.)
P(3,2)=R*SIND(120.)
P(4,1)=R*COSD(120.+BETA)
P(4,2)=R*SIND(120.+BETA)
P(5,1)=R*COSD(240.)
P(5,2)=R*SIND(240.)
P(6,1)=R*COSD(240.+BETA)
P(6,2)=R*SIND(240.+BETA)
RETURN
END
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* *
* SUBROUTINE P_GLOBAL *
* *
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SUBROUTINE P_GLOBAL(I,Xu,Yu,Zu,P P,P_G)
C  THIS SUBROUTINE TRANSFORMS ALL THE POINTS ON THE
C PLATFORM TO THE BASE FRAME

COMMON/ARR_R/ARM(6,3)

COMMON/TRAN_P_G/R(3,3)

DIMENSION P_P(6,3),P_G(6,3),P(3,1),AR(3,1)

P(1,1)=P_P(1,1)

P(2,1)=P_P(I,2)

P(3,1)=P_P(1,3)

CALL MATRIX_MULT(3,3,R,3,1,P,AR)
C  XP,YP,ZP IN GLOBAL COOR

ARM(, 1)=AR(1,1)

ARM(1,2)=AR(2,1)

ARM(,3)=AR(3,1)

P_G(I,1)=Xu+ARM(,1)

P_G(I,2)=Yu+ARM(,2)

P_G(I,3)=Zu+ARM(,3)

RETURN
END
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* *
* SUBROUTINE P_LINK *
* %
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SUBROUTINE P_LINK(I,B,P_ G,P L)
DIMENSION P_G(6,3),P_L(6,3),P_LK(3,1),P(3,1),R(3,3),
+ RI(3,3)
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XP,YP,ZP IN LEG COORDINATE FRAME

ASSUME THAT THE ANGLE BETWEEN THE TWO POINTS
TOGETHER IS 5 DEGREES

DELTA=S.

IF(I .EQ. 1) AL=0.

IF(I .EQ. 2) AL=DELTA

IF(I .EQ. 3) AL=120.

IFI .EQ. 4) AL=120.+DELTA

IF(I .EQ. 5) AL=240.

IF(I .EQ. 6) AL=240.+DELTA

CAL=COSD(AL)

SAL=SIND(AL)

POINT 1 ON THE BASE IS CONNECTED TO POINT 2 ON THE
PLATFORM AND SO ON

J=I+1

IF(I .EQ. 6)J=1

P(1,1)=P_G(J,1)

P(2,1)=P_G(J,2)-B*CAL

P(3,1)=P_G(J,3)-B*SAL

CALL ROT_MATRIX(I,R)

CALL MATRIX_INV(3,R,RI)

CALL MATRIX MULT(3,3,RL3,1,P,P_LK)

DO K=1,3
P_L(LK)=P_LK(K,1)

ENDDO

RETURN

END
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SUBROUTINE CAL_Gu

*

*

*
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SUBROUTINE CAL_Gu(N)

COMMON/ARR_Gw/Gu(6,3,6)

COMMON/ARR_R/ARM(6,3)

PUT Gu IN MATRIX FORM

SIMILAR REASON AS IN SUBROUTINE P_LINK FOR THE

FOLLOWING STEPS
J=N+1
I[F(N .EQ. 6)J=1
Gu(N,1,1)=1.
Gu(N,1,2)=0.
Gu(N,1,3)=0.
Gu(N,1,4)=0.
Gu(N,1,5)=ARM(J,3)
Gu(N,1,6)=-ARM(J,2)
Gu(N,2,1)=0.
Gu(N,2,2)=1.
Gu(N,2,3)=0.
Gu(N,2,4)=-ARM(J,3)
Gu(N,2,5)=0.
Gu(N,2,6)=ARM((,1)
Gu(N,3,1)=0.
Gu(N,3,2)=0.
Gu(N,3,3)=1.
Gu(N,3,4)=ARM(J,2)
Gu(N,3,5)=-ARM(J,1)
Gu(N,3,6)=0.
RETURN
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END
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* *
* SUBROUTINE CAL_Huu *
* *
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SUBROUTINE CAL _Huu(N)
COMMON/ARR_Huu/Huu(6,3,6,6)
COMMON/ARR_R/ARM(6,3)
DATA Huuw/648*0./
PUT Huu IN MATRIX FORM
SIMILAR REASON AS BEFORE
=N+1
IF(N .EQ. 6)J=1
Huu(N,1,4,5)=ARM(J,2)
Huu(N,1,4,6)=ARM(,3)
Huu(N,1,5,5)=-ARM(J,1)
Huu(N,1,6,6)=-ARM(J,1)

00

Huu(N,2,4,4)=-ARM(J,2)
Huu(N,2,4,5)=ARM(,1)
Huu(N,2,5,6)=ARM(,3)
Huu(N,2,6,6)=-ARM(,2)

Huu(N,3,4,4)=-ARM(J,3)
Huu(N,3,4,6)=ARM(,1)
Huu(N,3,5,5)=-ARM(,3)
Huu(N,3,5,6)=ARM(J,2)
RETURN

END
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SUBROUTINE CAL_G_Hp_phi

x*

*

*
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SUBROUTINE CAL_G_Hp_phi(N,XP,YP,ZP,ZGp_phi,ZHp_phi)
REALL3L
DIMENSION ZGp_LK(3,3),ZHpp_LK(3,3,3),ZGp_phi(3,3),
ZHp_phi(3,3,3) '
COMMON/CGpHpp/L3,PSI1,PSI2,51,52,C1,C2, T2, TETAI,
TETA2
COMMON/DIRECT/DGp(6,3,3),DHpp(6,3,3,3)
PI=ACOS(-1.)
L3=SQRT(XP**2+YP**2+ZP**2)
PSI2=ACOS(ZP/L3)
TETA2=PI+PSI2
L=L3*SIN(PSI2)
PSI1=ASIN(YP/L)
TETA1=PI+PSI1
S1=SIN(PSI1)
S2=SIN(PSI2)
C1=COS(PSII)
C2=COS(PSI2)
T2=TAN(PSI2)
TWO DIFFERENT WAYS TO DETERMINE Gp_phi AND Hp_phi
THIS PROGRAM USED THE RESULTS FROM INDIRECT, BUT
THE RESULTS FROM DIRECT SERVED AS A CHECK
CALL CAL_DR_Gp(N,XP,YP,ZP,DGp)
CALL CAL_DR_Hpp(N,XP,YP,ZP,DGp,DHpp)
CALL INDIRECT(N,ZGp_phi,ZHp_phi)
RETURN
END
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* *
* SUBROUTINE INDIRECT *
* *
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SUBROUTINE INDIRECT(N,ZGp_phi,ZHp_phi)

C THIS SUBROUTINE DETERMINES Gp_phi AND Hp_phi

C INDIRECTLY
DIMENSION Gs(3,3),Hss(3,3,3),ZGp_phi(3,3),

+ ZHp_phi(3,3,3)

COMMON/G_Hp_phi/Gp_phi(6,3,3),Hp _phi(6,3,3,3)
CALL CAL _Gs(N,ST1,5T2,CT1,CT2,Gs,ZGp_phi)
CALL CAL_Hss(N,ST1,ST2,CT1,CT2,Gs,Hss,ZHp_phi)
CALL CHG DIMLO(N,3,3,ZGp_phi,3,3,3,ZHp _phi,Gp_phi,

+ Hp_phi)
RETURN
END
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* *
* SUBROUTINE CAL_Hphi_pp *
* *
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SUBROUTINE CAL_Hphi_pp(N,ZGp_phi,ZHp_phi)
C THIS SUBROUTINE CALCULATES THE INVERSE OF Gp_phi
AND Hp phi

COMMON/G_Hphi_pp/Gphi_p(6,3,3),Hphi_pp(6,3,3,3)

DIMENSION ZGp_ phi(3,3),ZHp_phi(3,3,3),ZGphi_p(3,3),
TZGphi_p(3,3),XX(3,3,3),YY(3,3,3),22(3,3,3),
ZHphi_pp(3,3,3)

CALL MATRIX INV(3,ZGp_phi,ZGphi_p)

CALL TRANSPOSE(3,3,ZGphi_p,TZGphi_p)

CALL GENERAL_DOT(3,3,ZGphi_p,3,ZHp_phi,XX)
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DO I=1,3
CALL NN_DOT _NNN(3,3,1,3,TZGphi_p,XX,YY)
CALL NNN_DOT NN(3,3,1,3,YY,ZGphi_p,ZZ)

DO J=1,3
DOK=1,3
ZHphi_pp(1,J,K)=-ZZ(1,]J,K)
ENDDO
ENDDO
ENDDO
CALL CHG_DIMLO(N,3,3,ZGphi_p,3,3,3,ZHphi_pp,Gphi_p,
Hphi_pp)
RETURN
END
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*
SUBROUTINE CAL _DR_Gp *

*

*

*

e 24 24 24 2k 4e e 2 4 k¢ k¢ k¢ 2k ke 3k 3k 3K A6 ok 2K K K o ke e e ¢ ke s e e 3k K K o 3 3k o 3 ok K K K K o K o K o 3k sk 3k ke 2k e 3k Sk ke o sk o ke ke e ke ke

0

SUBROUTINE CAL_DR_Gp(N,XP,YP,ZP,Cp)
THIS SUBROUTINE IS NOT ACTUALLY USED BUT ONLY

SERVES AS A CHECK
REALL3L
DIMENSION Gp(6,3,3)
COMMON/CGpHpp/L3,PSI1,PSI2,51,52,C1,C2,T2,TETAL,
TETA2
Al=(L3**2)*T2
D2DXP=XP/Al
D2DYP=YP/AL

D2DZP=(ZP*C2-L3)/((L3%*2)*S2)
A2=C1*(L3*S2)**2
DIDXP=-XP*S1/A2
D1DYP=(L3*S2-YP*S1)/A2
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D1DZP=0
D3DXP=XP/L3
D3DYP=YP/L3
D3DZP-ZP/L3
Gp(N,1,1)=DI1DXP
Gp(N,2,1)=D2DXP
Gp(N,3,1)=D3DXP
Gp(N,1,2)=DIDYP
Gp(N,2,2)=D2DYP
Gp(N,3,2)=D3DYP
Gp(N,1,3)=D1DZP
Gp(N,2,3)=D2DZP
Gp(N,3,3)=D3DZP

RETURN

END
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% *
* SUBROUTINE CAL_DR_Hpp *
x* *
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SUBROUTINE CAL_DR_Hpp(N,XP,YP,ZP,Gp,Hpp)
C THIS SUBROUTINE IS ALSO NOT USED BUT SERVES AS A
C CHECK
REALL3L
DIMENSION Gp(6,3,3),Hpp(6,3,3,3)
COMMON/CGpHpp/L3,PSI1,PSI2,51,52,C1,C2, T2, TETAL,
+ TETA2
A2=C1*(L3*S2)**2
D23D2XP=(L3**2-XP**2)/L3**3
D23DXPDYP=-XP*YP/L3**3
D23DXPDZP=-XP*ZP/L3**3
D23DYPDXP=D23DXPDYP
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D23D2YP=((L3**2)-(YP**2))/L3**3
D23DYPDZP=-YP*ZP/L3**3
D23DZPDXP=D23DXPDZP
D23DZPDYP=D23DYPDZP
D23D2ZP=((L3**2)-(ZP**2))/L3**3
Ad=(L3**4)*(T2%*3)
D22D2XP=(((L3*T2)**2)-2*((XP*T2)**2)-
(XP/C2)**2)/A4
D22DXPDYP=(-XP*YP*(((1/C2)**2)+2*(T2**2)))/A4
AS=(L3**4)*(T2**2)*S2
D22DXPDZP=(-2*XP*ZP*S2*T2-XP*ZP/C2
+L3*XP/(C2**2))/AS
D22D2YP=((L3*T2)**2-2*((YP*T2)**2)-(YP/C2)**2)/A4
D22DYPDXP=D22DXPDYP
D22DYPDZP=(-2*YP*ZP*S2*T2-YP*(ZP*C2-
L3)/(C2**2))/AS
D22DZPDXP=D22DXPDZP
D22DZPDYP=D22DYPDZP
| D22D2ZP=((S2*¥L3**2)*(-Gp(N,2,3)*ZP*S2+C2-ZP/L3)-
(ZP*C2-L3)*(2*ZP*S2+Gp(N,2,3)*C2*L3**2))
/((S2*¥L3**2)**2)
A6=2*C1*S2%*2
A7=XP*Cl1
A8=XP*S1
A9=2*C1*C2*S2*L3**2
A10=S1*(S2*L3)**2
A11=S1*S2%*2
A12=L3*C2
A13=L3*S2-YP*S1
D21D2XP=-(A2*(Gp(N,1,1)*A7+S1)-A8*(XP*A6+
Gp(N,2,1)*A9-Gp(N,1,1)*A10))/A2%*2
D21DXPDYP=-(A2*Gp(N,1,2)*A7-A8*(YP*A6+
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Gp(N,2,2)*A9-Gp(N,1,2)*A10))/A2**2
D21DXPDZP=-(A2*Gp(N,1,3)*A7-A8*(ZP* A6+
Gp(N,2,3)*A9-Gp(N,1,3)*A10))/ A2%*2
D21D2YP=(A2*(YP*S2/L3+A12*Gp(N,2,2)-S1-
Gp(N,1,2)*YP*C1)-A13*(YP*A6+Gp(N,2,2)*A9-
Gp(N,1,2)*A10))/A2%*2
D21DYPDZP=(A2*(ZP*S2/L3+A12*Gp(N,2,3)-
Gp(N,1,3)*YP*C1)-A13*(ZP*A6+
Gp(N,2,3)*A9-Gp(N,1,3)*A10))/A2%*2
D21D27ZP=0
D21DZPDXP=0
D21DZPDYP=0
D21DYPDXP=D21DXPDYP
Hpp(N,1,1,1)=D21D2XP
Hpp(N,1,1,2)=D21DXPDYP
Hpp(N,1,1,3)=D21DXPDZP
Hpp(N,1,2,1)=D21DYPDXP
Hpp(N,1,2,2)=D21D2YP
Hpp(N,1,2,3)=D21DYPDZP
Hpp(N,1,3,1)=D21DZPDXP
Hpp(N,1,3,2)=D21DZPDYP
Hpp(N,1,3,3)=D21D2ZP

Hpp(N,2,1,1)=D22D2XP
Hpp(N,2,1,2)=D22DXPDYP
Hpp(N,2,1,3)=D22DXPDZP
Hpp(N,2,2,1)=D22DYPDXP
Hpp(N,2,2,2)=D22D2YP
Hpp(N,2,2,3)=D22DYPDZP
Hpp(N,2,3,1)=D22DZPDXP
Hpp(N,2,3,2)=D22DZPDYP
Hpp(N,2,3,3)=D22D2ZP
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Hpp(N,3,1,1)=D23D2XP
Hpp(N,3,1,2)=D23DXPDYP
Hpp(N,3,1,3)=D23DXPDZP
Hpp(N,3,2,1)=D23DYPDXP
Hpp(N,3,2,2)=D23D2YP
Hpp(N,3,2,3)=D23DYPDZP
Hpp(N,3,3,1)=D23DZPDXP
Hpp(N,3,3,2)=D23DZPDYP
Hpp(N,3,3,3)=D23D2ZP

RETURN -

END
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* SUBROUTINE CAL_Gs *
* *
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SUBROUTINE CAL Gs(N,ST1,ST2,CT1,CT2,Gs,Gphi)
C THIS SUBROUTINE CALCULATES THE G-FUNCTION FOR

C EACHLEG
REALL3
COMMON/CGpHpp/L3,PSI1,PSI2,51,52,C1,C2,T2,TETAL,
+ TETA2

COMMON/TETA_L/ST(6),CT(6),RL3(6)
DIMENSION Gs(3,3),R(3,3),Gphi(3,3)
WRITE(1,*))ACTUATOR LENGTH L3='L3
ST1=SIN(TETA1)

ST2=SIN(TETA2)

CT1=COS(TETAI)

CT2=COS(TETA?2)

ST(N)=ST2

CTMN)=CT2
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RL3(N)=L3

Gs(1,1)=-L3*ST1*ST2

Gs(1,2)=L3*CT1*CT2

Gs(1,3)=CT1*ST2

Gs(2,1)=L3*CT1*ST2

Gs(2,2)=L3*ST1*CT2

Gs(2,3)=ST1*ST2

Gs(3,1)=0

Gs(3,2)=L3*ST2

Gs(3,3)=-CT2

TRANSFORM THE G-FUNCTION FROM THE LEG FRAME TO THE
BASE FRAME

CALL ROT_MATRIX(N,R)

CALL MATRIX_MULT(3,3,R,3,3,Gs,Gphi)

RETURN
END
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. *
SUBROUTINE CAL_Hss *

*

*

*
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SUBROUTINE CAL_Hss(N,ST1,ST2,CT1,CT2,Gs,Hss,Hphi)

THIS SUBROUTINE CALCULATES THE H-FUNCTION FOR
EACHLEG

REAL L3

DIMENSION Hss(3,3,3),Gs(3,3),R(3,3),Hphi(3,3,3)

COMMON/CGpHpp/L3,PSI1,PSI12,51,52,C1,C2,T2,TETAL,

TETA2

Hss(1,1,1)=-Gs(2,1)

Hss(1,1,2)=-Gs(2,2)

Hss(1,1,3)=-Gs(2,3)

Hss(1,2,1)=Hss(1,1,2)
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Hss(1,2,2)=Hss(1,1,1)
Hss(1,2,3)=CT1*CT2
Hss(1,3,1)=Hss(1,1,3)
Hss(1,3,2)=Hss(1,2,3)
Hss(2,1,1)=Gs(1,1)
Hss(2,1,2)=Gs(1,2)
Hss(2,1,3)=Gs(1,3)
Hss(2,2,1)=Hss(2,1,2)
Hss(2,2,2)=Hss(2,1,1)
Hss(2,2,3)=ST1*CT2
Hss(2,3,1)=Hss(2,1,3)
Hss(2,3,2)=Hss(2,2,3)
Hss(3,2,2)=L3*CT?2
Hss(3,2,3)=ST?2
Hss(3,3,2)=Hss(3,2,3)

TRANSFORM THE H-FUNCTION FROM THE LEG FRAME TO THE

BASE FRAME

CALL ROT_MATRIX(N,R)
CALL GENERAL_DOT(3,3,R,3,Hss,Hphi)

RETURN
END
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SUBROUTINE CAL_G_Hphi_uu

*

*
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C
C
C

SUBROUTINE CAL_G_Hphi_uu
THIS SUBROUTINE TRANSFERS THE G- AND H-FUNCTIONS
TO REFERENCE THEM TO THE COMMON PLATFORM

COORDINATES

DIMENSION ZGu(3,6),ZGp_phi(3,3),ZHuu(3,6,6),
ZHp_phi(3,3,3),ZGphi_u(3,6),
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ZHphi_uu(3,6,6),TGu(6,3),GpHuu(3,6,6),
TGu_DOT_Hphi(3,6,3),TGuHphiGu(3,6,6),

ZIGp_phi(3,3),ZGphi_p(3,3),ZHphi_pp(3,3,3)

COMMON/ARR_Guw/Gu(6,3,6)
COMMON/ARR _Huu/Huu(6,3,6,6)
COMMON/G_Hp phi/Gp_phi(6,3,3),Hp phi(6,3,3,3)
COMMON/ARR_phi_uu/Gphi_u(6,3,6),Hphi_uu(6,3,6,6)
COMMON/G_Hphi_pp/Gphi_p(6,3,3),Hphi_pp(6,3,3,3)
DO1=1,6

SET Gu AND Gp INTO 2-D ARRAY

SET Huu AND Hpp INTO 3-D ARRAY

CALL CHG_DIMHI(1,0,Gu,Huu,ZGu,ZHuu)

CALL CHG_DIMHI(I,3,Gphi_p,Hphi_pp,ZGphi_p,ZHphi_pp)

CALL TRANSPOSE(3,6,ZGu,TGu)
CALL MATRIX_MULT(3,3,ZGphi_p,3,6,ZGu,ZGphi_u)
CALL GENERAL _DOT(3,3,ZGphi_p,6,ZHuu,GpHuu)
DO J=1,3
CALL NN_DOT _NNN(6,3,1,3,TGu,ZHphi_pp,
TGu_DOT _Hphi)
CALL NNN_DOT _NN(6,3,1,3,TGu_DOT_Hphi,ZGu,
TGuHphiGu)
CALL ADDT(3,6,J,GpHuu, TGuHphiGu,ZHphi uu)
ENDDO
SET Gphi_u INTO 3-D ARRAY AND Hphi_uu INTO 4-D
ARRAY
CALL CHG_DIMLO0(1,3,6,ZGphi_u,3,6,6,ZHphi_uu,
Gphi_u,Hphi_uu)
ENDDO
RETURN
END

176



177

ke sfe sk o o 3 k¢ o sk ok e ke ke sk ok e e ok ok s e 3k o e ke sk e o 6 3k e ke st s ke ok o ek sk e ke sk 3K e e ok ok s ke ke ok s o ok ok ok ok e o ke ok ok oK

* *
* SUBROUTINE GET_CONST *
* *
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SUBROUTINE GET_CONST(Izz1,Izz2,I1xx2,Ixx3,1yy3,

+ M23M34 Lc,Lr)
C THIS SUBROUTINE CALCULATES THE INERTIA TENSORS FOR
C EACHLINK
C REFERENCED TO THEIR RESPECTIVE LOCAL COORDINATES

REAL Izz1,1zz2,Ixx2,Ixx3,Iyy3,M12,M23 . M34,Lc,Lr
READ(40,*) M12,M23,M34,R,Lc,Lr
1zz1=(M12*R**2)/2.

[222=(M23*Lc**2)/12.

Ixx2=Izz2

Ixx3=(M34*Lr**2)/12.

Iyy3=Ixx3

RETURN

END
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* *
* SUBROUTINE CAL_INERTIA *
* *
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SUBROUTINE CAL_INERTIA(N,Izz1,1zz2,Ixx2,Ixx3,Iyy3,
+ M23M34,Lc,Lr,Iphi_LK)
THIS SUBROUTINE CALCULATES THE EFFECTIVE INERTIA
C MATRIX FOR EACH LEG EXPRESSED IN THE RESPECTIVE
C LEG FRAME
REAL Izz1,I1zz2,Ixx2,Ixx3,Iyy3,M23,M34,Lc,Lr,
+ Iphi_LK(6,3,3)
COMMON/TETA_L/ST2(6),CT2(6),RL3(6)

(@]
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Iphi LK(N,1,1)=Izz1+M23*(Lc*ST2(N)/2.)**2+

Ixx2*ST2(N)**2+M34*(RL3(N)-Lr/2.)**2*

ST2(N)**2+Ixx3*ST2(N)**2
Iphi_LK(N,2,2)=M23*(Lc/2.)**2+12z2+M34*(RL3(N)-

Lr/2.)**2+1yy3
Iphi LK(N,3,3)=M34
RETURN
END

SUBROUTINE CAL_POW _phi

*

*

*
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SUBROUTINE CAL_POW_phi(N,Ixx2,Ixx3,lyy3,M23,M34,
- Le,Lr,Pphi_LK)

THIS SUBROUTINE CALCULATES THE INERTIA POWER
ARRAY FOR EACH LEG EXPRESSED IN THE RESPECTIVE

LEG FRAME

REAL Ixx2,Ixx3,lyy3,M23,M34,Lc,Lr

DIMENSION Pphi_LK(6,3,3,3)

COMMON/TETA_L/S2(6),C2(6),RL3(6)

R=RL3(N)-Lr/2.

SC=S2(N)*C2(N)

Pphi_ LK(N,1,1,2)=M23*SC*(Lc/2.)**2+2.*Ixx2*SC+
M34*R**2*SC+2.*Ixx3*SC

Pphi_LK(N,1,1,3)=M34*R*S2(N)**2

Pphi_LK(N,l,2,1)=M23*SC*(Lc/2.)**2+M34*SC*R**2

Pphi_LK(N,1,2,3)=-Iyy3*S2(N)

Pphi_LK(N,1,3,1)=M34*R*S2(N)**2

Pphi_LK(N ,2,1,1)=-M23*SC*(Lc/2.)**2-Ixx2*SC-
M34*SC*R**2-Ixx3*SC

Pphi_LK(N,2,1,3)=Ixx3*S2(N)
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Pphi_LK(N,2,2,3)=M34*R
Pphi_LK(N,2,3,2)=M34*R
Pphi_LK(N,3,1,1)=-M34*R*S2(N)**2
Pphi_LK(N,3,1,2)=-Ixx3*S2(N)
Pphi_LK(N,3,2,1)=Iyy3*S2(N)
Pphi_LK(N,3,2,2)=-M34*R

RETURN

END
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%k

%

*®
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SUBROUTINE CAL_Iuu_Puuu *

*
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SUBROUTINE CAL_Iuu_Puuu
THIS SUBROUTINE CALCULATES THE TOTAL EFFECTIVE
INERTIA MATRIX AND INERTIA POWER ARRAY FOR THE
SIX LEGS REFERENCED TO THE COMMON PLATFORM
COORDINATES®
COMMON/ARR_phi_uu/Gphi_u(6,3,6),Hphi_uu(6,3,6,6)
COMMON/SINERTIA phi/SIphi_LK(6,3,3)
COMMON/POWER _phi/Pphi_LK(6,3,3,3)
COMMON/SINERTIA _w/SIuu(6,6,6)
COMMON/POWER _u/Puuu(6,6,6,6)
COMMON/ARR_Gu/Gu(6,3,6)
COMMON/ARR _Huu/Huu(6,3,6,6)
COMMON/G_Hphi_pp/Gphi_p(6,3,3),Hphi_pp(6,3,3,3)
DIMENSION ZGphi_u(3,6),TGphi_u(6,3),ZHphi_uu(3,6,6),
TZGphi_u(6,3),ZSIphi_LK(3,3),
ZPphi_LK(3,3,3),ZHu_phi(6,3,3),ZSIuu(6,6),
ZPuuu(6,6,6),ZGphi_p(3,3),ZHphi_pp(3,3,3),
TZGphi_pp(3,3),W(3,3),WW(3,6,6),X(3,3,3),
TZGphi_p(3,3),ZGu(3,6),ZHuu(3,6,6),TGu(6,3),
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Y(3,3,3),YY(3,3,3),X_YY(3,3,3),V(3,6,3),
VV(3,6,6),WV(3,6,6)
DO I=1,6
SET 3-D ARRAY INTO 2-D AND 4-D ARRAY INTO 3-D
CALL CHG_DIMHI(1,0,Gphi_u,Hphi_uu,ZGphi_u,ZHphi_uu)
CALL CHG DIMHI(,3,SIphi_LK,Pphi_LK,ZSIphi_LK,
ZPphi LK)
CALL CHG_DIMHI(,0,Gu,Huu,ZGu,ZHuu)
CALL CHG DIMHI(I,3,Gphi_p,Hphi_pp,ZGphi_p,ZHphi_pp)
CALL CAL I(3,6,ZGphi_u,TZGphi_u,3,3,ZSIphi_LK,ZSIuu)
CALL TRANSPOSE(3,3,ZGphi_p,TZGphi_p)
CALL MATRIX MULT(3,3,ZSIphi_LK,3,3,ZGphi_p,W)
CALL GENERAL DOT(3,3,W,6,ZHuu,WW)
CALL GENERAL DOT(3,3,ZSIphi_LK,3,ZHphi_pp,X)
CALL TRANSPOSE(3,6,ZGu,TGu)
DO J=1,3
CALL NN_DOT _NNN(3,3,J,3,TZGphi_p,ZPphi_LK,Y)
CALL NNN_DOT_NN(3,3,1,3,Y,ZGphi_p,YY)
ENDDO
DO J=1,3
CALL ADDT(3,3,J,X,YY,X_YY)
CALL NN_DOT_NNN(6,3,J,3,TGu,X_YY,V)
CALL NNN_DOT_NN(6,3,J,3,V,ZGu,VV)
CALL ADDT(3,6,J,WW,VV,WV)
ENDDO
CALL GENERAL DOT(6,3,TZGphi_u,6,WV,ZPuuu)
CALL CHG_DIMLO(I,6,6,ZSIuu,6,6,6,ZPuuu,SIuu,Puuu)
ENDDO
RETURN
END
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L ] *
* SUBROUTINE CAL I *
% *
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SUBROUTINE CAL_I(1,J,A,TA,K,L,B,C)
C THIS SUBROUTINE SERVES AS A GENERAL EXPRESSION TO C
CALCULATE THE EFFECTIVE INERTIA MATRIX

DIMENSION A(L,J),TA(6,6),B(K,L),C(J,J),TAS(6,6)

CALL TRANSPOSE(LJ,A,TA)

CALL MATRIX_MULT(J,I, TA,K,L,B,TAS)

CALL MATRIX MULT(,L,TAS,LJ,A,C)

RETURN

END
sk e ke R ok o e R e o Ko o o o ok o RS SRR R R e sk KR SRR ek Ak ok sk ol ok
* Lo
* SUBROUTINE PFORM_INERTIA *
* *
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SUBROUTINE PFORM_INERTIA(RR,PL_G,PF_Iuu)
C  THIS SUBROUTINE CALCULATES THE EFFECTIVE INERTIA
o MATRIX OF THE PLATFORM

COMMON/TRAN P_G/R(3,3)

REALM

DIMENSION PF_luu(6,6),PL_I(3,3),PL_G(3,3),

+ PP(3,3),TR(3,3)

M=2250.

PF_Iuu(1,1)=M

PF_Iuu(2,2)=M

PF_Iuu(3,3)=M

PL_I(1,1)=(M*RR**2)/4,

PL_I(2,2)=PL_I(1,1)

181



182

PL_I(3,3)=(M*RR**2)/2.
C TRANSFORM Ixx,lyy AND Izz TO GLOBAL COOR
CALL MATRIX MULT(3,3,R,3,3,PL_1,PP)

CALL TRANSPOSE(3,3,R, TR)
CALL MATRIX_MULT(3,3,PP,3,3,TR,PL_G)
DO K=1,3
DO J=1,3
PF_Iuu(K+3,K+3)=PL_G(K,J)
ENDDO
ENDDO
RETURN
END
34 ok 5k 5k 34¢ o Sk 5k k3¢ 34 ok dfe sk 5k 24 2k ¢ 3k dhe sk 26 ¢ 34 e e 3¢ dhe e e 3¢ k¢ e 4k sk k¢ e e A 24 Sk 2k e 46 ke e K e 4¢ e e Sk e e 3K e fe e ke 3K K e K ok KK
* ’ X*
* SUBROUTINE PFORM_INEPOW *
* %
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SUBROUTINE PFORM_INEPOW (P_luu,P_uuu)
C THIS SUBROUTINE CALCULATES THE INERTIA POWER
C ARRAY OF THE PLATFORM
DIMENSION P_luu(3,3),P_uuu(6,6,6) -
DO 1=4,6
J=I-3
P_uuu(4,1,5)=P_luu(],3)
P_uuu(4,1,6)=-P_luu(J,2)
P _uuu(5,1,4)=-P_luu{,3)
P_uuu(5,1,6)=P_luu(l,1)
P_uuu(6,1,4)=P_luu(J,2)
P_uuu(6,1,5)=-P_luu(,1)
ENDDO
RETURN
END
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* *

* SUBROUTINE I_STAR uu *

* *
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SUBROUTINE I_STAR_uu(PF_Iuu,TOT Iuu)

C THIS SUBROUTINE CALCULATES THE EFFECTIVE INERTIA
C MATRIX OF THE GENERALIZED STEWART PLATFORM
C REFERENCED TO THE PLATFORM
COMMONY/SINERTIA _u/SIuu(6,6,6)
DIMENSION STOT_Iuu(6,6),PF_Iuu(6,6),TOT_Iuu(6,6)
DO I=1,6
DO J=1,6
STOT _Iuu(L))=0.
DO K=1,6
STOT_Tuu(LN)=STuu(K,LJ)+STOT _luu(LJ)
ENDDO
TOT _Iuu(I,])=STOT _Iuu(LJ)+PF_Iuu(1J)
ENDDO
ENDDO
RETURN
END
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* *
* SUBROUTINE P_STAR _uuu *
% *
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SUBROUTINE P_STAR_uuu(PF_Puuu,TOT_Puuu)

C THIS SUBROUTINE CALCULATES THE INERTIA POWER

C ARRAY OF THE GENERALIZED STEWART PLATFORM

C REFERENCED TO THE PLATFORM
COMMON/POWER _u/Puuu(6,6,6,6)
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DIMENSION PF_Puuu(6,6,6),STOT_Puuu(6,6,6),

+ TOT_Puuu(6,6,6)

DOI=1,6
DO J=1,6
DO K=1,6
STOT_Puuu(L,J,K)=0.
DOL=1,6

STOT_Puuu(LJ,K)=Puuu(L,LJ,K)+STOT_Puuu(LJ,K)
ENDDO

TOT_Puuu(L,J,K)=STOT_Puuu(1,J,K)+PF_Puuu(I,J,K)
ENDDO
ENDDO
ENDDO
RETURN
END

2 2k fe o o4 ke e o sk e ok o ke e ok ke e e 3 e e e o ke o s o o ke 3 ok ok e 3 Sk 3k Sk 3¢ S Sl ok k¢ 3 Sk 2k 3 o 3k ok o e Sk 3k e ok ok ok o 3 ok ke e e ok ok ke

%

*

K

*

SUBROUTINE CAL_Gq_u *

*
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SUBROUTINE CAL_Gq u
THIS SUBROUTINE DOES THE EXTRACTION OF THE
G-FUNCTION REFERENCED TO THE DESIRED JOINT SET OF
COORDINATES
COMMON/ARR _phi_uu/Gphi_u(6,3,6),Hphi_uu(6,3,6,6)
COMMON/ARR_Gq_u/Gq_u(6,6)
WRITE(1,*)'Gq_u'
DO I=1,6
DO J=1,6
Gq_u(I,J)=Gphi_u(1,3,J)
ENDDO
WRITE(1,99)(GQ_U(1,J),J=1,6)




99

ENDDO
FORMAT(X,6(F10.3,2X))
RETURN

END
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*
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SUBROUTINE CAL_Hq_uu

*

*

*
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C
C
C

99

SUBROUTINE CAL_Hq uu

THIS SUBROUTINE DOES THE EXTRACTION OF THE
H-FUNCTION REFERENCED TO THE DESIRED JOINT SET OF

COORDINATES

COMMON/ARR _phi_uu/Gphi_u(6,3,6),Hphi_uu(6,3,6,6)

COMMON/ARR_Hq_uu/Hg_uu(6,6,6)
WRITE(1,*)'Hq_uu'
DOI=1,6
WRITE(1,*)PLANE="1
DO J=1,6
DO K=1,6
Hq_uu(1,J,K)=Hphi_uu(l,3,J,K)
ENDDO
WRITE(1,99)(HQ_UU(,J,K),K=1,6)
ENDDO
ENDDO
FORMAT(X,6(F10.3,2X))
RETURN
END
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%

%

*
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SUBROUTINE CAL Iqq Pqqq *

%
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SUBROUTINE CAL _Iqq_Pqqq
THIS SUBROUTINE CALCULATES THE EFFECTIVE INERTIA
MATRIX AND INERTIA POWER ARRAY REFERENCED TO
THE DESIRED JOINT SET OF GENERALIZED COORDINATES
COMMON/ARR_Gq_u/Gq_u(6,6)
COMMON/ARR Hq uu/Hq uu(6,6,6)
COMMON/Iuw/TOT _Tuu(6,6)
COMMON/Puuu/TOT_Puuu(6,6,6)
COMMON/1qq/STAR _Iqq(6,6)
COMMON/Pqqq/P_STAR_qqq(6,6,6)
DIMENSION Gu_q(6,6),TGu_q(6,6),EE(6,6,6),FF(6,6,6),
GG(6,6,6),XX(6,6,6),YY(6,6,6),Hu_qq(6,6,6),
F(6,6,6)
CALL MATRIX_IN V(6,Gq_u,Gu_q)
CALL CAL_I(6,6,Gu_q,TGu_q,6,6,TOT Iuu,STAR Iqq)
WRITE(1,*)T*qq'
DO II=1,6
WRITE(1,*)(STAR _IQQ(ILI)),JJ=1,6)
ENDDO
CALL CAL_Hu_qq(Gu_q,TGu_q,Hu_qq)
CALL GENERAL_DOT(6,6,TGu_q,6,TOT_Puuu,EE)
CALL GENERAL_DOT(6,6,STAR _Iqq,6,Hq_uu,FF)
WRITE(1,*)'P*qqq’
DO I=1,6
WRITE(1,*)PLANE=",I
CALL SUBT(6,I.EE,FF,GG)
CALL NN_DOT_NNN(6,6,1,6,TGu_q,GG,XX)
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CALL NNN_DOT_NN(6,6,1,6,XX,Gu_q,P_STAR _qqq)

DO J=1,6 .
WRITE(1,*)(P_STAR_QQQ(LJ.K),K=L,6)
ENDDO
ENDDO
RETURN
END
******************************************************************
* ¥
* SUBROUTINE CAL_Hu_qq *
* *
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SUBROUTINE CAL_Hu_qq(Gu_q,TGu_g,Hu_qq)
C THIS SUBROUTINE CALCULATES THE DIRECT TRANSFER OF
C Gq_u AND Hq_uu
COMMON/ARR_Hq_uu/Hq_uu(6,6,6)
DIMENSION Gu_q(6,6),TGu_q(6,6),GH(6,6,6),BB(6,6,6),
+ CC(6,6,6),Hu_qq(6,6,6)
CALL GENERAL_DOT(6,6,Gu_q,6,Hq uu,GH)
DO I=1,6
CALL NN_DOT_NNN(6,6,1,6,TGu_q,GH,BB)
CALL NNN_DOT_NN(6,6,1,6,BB,Gu_q,CC)
DO J=1,6
DO K=1,6
Hu_qq(,J,K)=-CC(1,J,K)
ENDDO
ENDDO
ENDDO
RETURN
END
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* *
* SUBROUTINE CHG_DIMHI *
* *
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SUBROUTINE CHG_DIMHI(M,N,A,B,C,D)

C  THIS SUBROUTINE CHANGES 3-DIMENSIONAL ARRAY TO
C 2-DIMENSIONAL MATRIX AND 4-DIMENSIONAL ARRAY TO
C 3-DIMENSIONAL ARRAY |
DIMENSION A(6,3,6-N),B(6,3,6-N,6-N),C(3,6-N),
+ D(3,6-N,6-N)
DO J=1,3
DO K=1,6-N
CU.K)=AM,] K)
DO L=1,6-N
D(J,K,L)=B(M,] K L)
ENDDO
ENDDO
ENDDO
RETURN
END
2k 2k e 36 ohe ok 3¢ Sie dfe 3 Si¢ sle e 2 46 sle e e 356 e i e 3k e A ¢ Sk 2l 3 3 vk ke 2k she 20 Sl e e 34 e e e 34 e e 3¢ 3k Sfe e ¢ ke e e A e S ke i e o ¢ dfe e e e Sk
* *
* SUBROUTINE CHG_DIMLO *
* *
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SUBROUTINE CHG_DIMLO(I,JJ,KK,A,LL,MM,NN,B,C,D)

C THIS SUBROUTINE CHANGES 2-DIMENSIONAL MATRIX TO

Cc 3-DIMENSIONAL ARRAY AND 3-DIMENSIONAL ARRAY TO

C 4 DIMENSIONAL ARRAY
DIMENSION A(JJ,KK),B(LL.MM,NN),C(6,]],KK),D(6,LL,MM,NN)
DO J=1,1J

c-5



DO K=1,KK
C(1,J,K)=A(,K)
DO L=1,NN
D{ILJ,K,L)=B(J,K,L)
ENDDO
ENDDO
ENDDO
RETURN
END
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*

%k

*

SUBROUTINE MATRIX_INV

*

%

*
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C
C

SUBROUTINE MATRIX_INV(N,A,Al)

THIS SUBROUTINE FINDS THE INVERSE OF ANY SQUARE N
BY N MATRIX

REAL A(N,N),AI(N,N)

DIMENSION INTER(15,2)

DO I=1,N
DO J=1,N
Al(J,D=A{J,D)
ENDDO
ENDDO

DO 12 K=1,N
JI=K
IF (K.NE.N) THEN
KP1=K+!
BIG=ABS(AI(K,K))
DO 5 I=KP1,N
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AB=ABS(AI(LK)) ! SEARCHING FOR LARGEST PIVOT
IF (BIG.LT.AB) THEN
BIG=AB
JJ=I
ENDIF
CONTINUE
ENDIF

INTER(K,1)=K
INTER(K,2)=1J
IF (JI.NE.K) THEN
DO 8 J=1,N
TEMP=AI(K,])
AI(K,J)=AI(JJ,]) ! INTERCHANGE ROWS
AI(JI,)H)=TEMP
CONTINUE
ENDIF

DO 10 J=1,N
IF (J.NE.K) THEN
TEMP=AI(K,J)/AI(K,K)
AI(K,J)=TEMP
ENDIF
CONTINUE
TEMP=1./AI(K,K)
AI(K,K)=TEMP
DO 11 I=1,N
IF (I.NE.K) THEN
DO J=1,N
IF (J.NE.K) THEN
TEMP=AI(LJ)-AI(K,))*AI(IK)
AI(LLJ)=TEMP
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ENDIF
ENDDO
ENDIF
CONTINUE

DO 12 I=1N
IF (ILNE.K) THEN
TEMP=-AI(LLK)*AI(K,K)
AI(LLK)=TEMP
ENDIF
CONTINUE
DO 13 L=1,N
K=N-L+1
KROW=INTER(K,1)
IROW=INTER(K,2)
IF (KROW.NE.IROW) THEN
DO I=1,N
TEMP=AI(LKROW)
AI(LKROW)=AI(I,IROW)
AI(I,IROW)=TEMP
ENDDO
ENDIF
CONTINUE
RETURN
END
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*

*

*

SUBROUTINE GENERAL _DOT

*

%k

*
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C

SUBROUTINE GENERAL_DOT(N,NC,A,M,B,AB)
THIS SUBROUTINE PERFORMS THE GENERALIZED DOT
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(@]

PRODUCT OF THE N BY NCMATRIX A ANDNCBY MBYM
ARRAY B
DIMENSION AB(N,M,M),A(N,NC),B(NC,M,M)
DO I=1,N
DO J=1M
DO K=1M
AB(1,J,K)=0
DO L=1,NC
AB(1,J,K)=A(LL)*B(L,J,K)+AB(1,J K)
ENDDO
ENDDO
ENDDO
ENDDO
RETURN
END
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* *
* SUBROUTINE TRANSPOSE *
* *
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SUBROUTINE TRANSPOSE(M,N,A,AT)
THIS SUBROUTINE FINDS THE TRANSPOSE OF THEM BY N

MATRIX A
DIMENSION A(M,N), AT(N,M)
DO I=1.M

DO J=1,N

ATU,D=ACLT)

ENDDO
ENDDO
RETURN
END

o®!
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* *
* SUBROUTINE MATRIX MULT *
* *
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SUBROUTINE MATRIX_MULT(IA,J,T,K,L,F,TF)
C  THIS SUBROUTINE MULTIPLIES A IA BY ] MATRIX WITH A
C K BY L MATRIX F
DIMENSION T(IA,J),F(K,L), TFIA,L)
INTEGER Q
DO M=1,IA
DON=1L
TF(M,N)=0.0
DO Q=1K
TFM,N)=T(M,Q)*F(Q,N)+TF(M,N)
ENDDO
ENDDO
ENDDO
RETURN
END

SR e R o s ok e e oo o s o ok oK R R e ok SR R ks Rk R s e ok R o e e s ke ok s sk ok ook o
* *
* SUBROUTINE NNN_DOT_NN *
x *
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SUBROUTINE NNN_DOT NN(M,N,L.LL,A,B,A_DOT_B)

C  THIS SUBROUTINE MULTIPLIES A LL BY MBY N ARRAY A
C WITH AN BY M MATRIX B
DIMENSION A(LL,M,N),B(N,M),A_DOT_B(LL.M,M)
DO I=1M
DO J=1M

A_DOT_B(L,L})=0.
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DOK=1,N
A_DOT_B(L,L))=A(L,LK)*B(K,))+A_DOT_B(L,L])
ENDDO
ENDDO
ENDDO
RETURN
END
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* *
* SUBROUTINE NN_DOT_NNN *
* *
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SUBROUTINE NN_DOT_NNN(M,N,L,.LL,A,B,A_DOT_B)
C  THIS SUBROUTINE MULTIPLIES A M BY N MATRIX A WITH A
C LLBY NBY N ARRAY B
DIMENSION A(M,N),B(LL,N,N),A_ DOT_B(LL,M,N)
DOI=1M
DO J=1N
A_DOT_B(L,L,1)=0.
DOK=IN
A_DOT _B(L,L)=A@IK)*B(LK,J)+A_DOT B(L,L,J)
ENDDO
ENDDO
ENDDO
RETURN
END
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* *
* SUBROUTINE ADDT *
* *
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SUBROUTINE ADDT(L,M,N,A,B,A_B)



C  THIS SUBROUTINE ADDS ALBY MBY M ARRAY ATO A
o LBY MBY M ARRAY B
DIMENSION A(L,M,M),B(LMM),A_B(L,M,M)
DO I=1LM
DO J=1M
A_B(N,LD)=AN,LI)+B(N,L])
ENDDO
ENDDO
RETURN
END
3k 24 2fe 55 34 ale 24 2k dfe 3¢ 3¢ 3 5§ e e e 2k dle ke ¢ k¢ e e ¢ dhe e 2k e 3¢ 3¢ e s e 34 dle 2k 34 k¢ e sk e e 24 k e e 3K ke ke e 3¢ e ¢ i ke e 2k e A ¢ ke e A ke ke ke
* *
* SUBROUTINE SUBT *
* *
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SUBROUTINE SUBT(M,N,A,B,A_B)
C THIS SUBROUTINE SUBSTRACT AN BY MBY M ARRAY A

C FROM AN BY MBY M ARRAY B
DIMENSION A(6,6,6),B(6,6,6),A_B(6,6,6)
DO I=1M
DO J=1M
A_BM,LN=AN,L))-B(N,L])
ENDDO )
ENDDO
RETURN
END
e 3je 35 3K 26 34 e 3¢ 34¢ 3§ K 35 3¢ 24 2l ol 3 e 34 3 3¢ e e 3¢ 3¢ o Sk ¢ e e 3 34 3 e k¢ 2 3 e 3 ke Sl e 3¢ o e 3k 3¢ e dfe ke e e vk k¢ A 5k sl e K oK e e K ek K
* *
* SUBROUTINE ROT_MATRIX *
% %
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SUBROUTINE ROT_MATRIX(N,R)
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C THIS SUBROUTINE ROTATES THE LEG FRAMES TO THE BASE
FRAME

DIMENSION R(3,3)

DELTA=S5.

IF(N .EQ. 1) AL=0.

IF(N .EQ. 2) AL=DELTA

IF(N .EQ. 3) AL=120.

IF(N .EQ. 4) AL=120.+DELTA

IF(N .EQ. 5) AL=240.

IF(N .EQ. 6) AL=240.+DELTA

R(1,1)=1.

R(2,2)=COSD(AL)

R(2,3)=-SIND(AL)

R(3,2)=-R(2,3)

R(3,3)=R(2,2)

RETURN

END
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% %
* SUBROUTINE TRANSF P_G *
% %
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SUBROUTINE TRANSF P G
C  THIS SUBROUTINE ROTATES THE PLATFORM FRAME TO THE
C BASE FRAME

COMMON/TRAN P_G/R(3,3)

COMMON/ORIEN/X1,Y1,21,X12,Y12,Z12

R(1,1)=X12

R(1,2)=Y1*Z12-Z1*Y12

R(1,3)=X1

R(2,1)=Y12

R(2,2)=Z1*X12-X1*Z12



R(2,3)=Y1

R(3,1)=Z12

R(3,2)=X1*Y12-Y1*X12

R(3,3)=Z1

RETURN

END
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%* *
* SUBROUTINE CAL_QDOT *
% *
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SUBROUTINE CAL QDOT(UDOT,QDOT)
C THIS SUBROUTINE COMPUTES THE DESIRED ACTUATORS
C VELOCITY

COMMON/ARR_Gq_u/Gq_u(6,6)

DIMENSION UDOQT(6,1),QDOT(6,1)

CALL MATRIX_MULT(6,6,Gq_u,6,1,UDOT,QDOT)

RETURN

END
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* . *
* SUBROUTINE CAL_QDDOT *
* *
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SUBROUTINE CAL_QDDOT(UDOT,UDDOT,QDDOT)
C THIS SUBROUTINE COMPUTES THE DESIRED ACTUATORS
C ACCELERATION
COMMON/ARR_Gq_u/Gq_u(6,6)
COMMON/ARR_Hq_uu/Hq_uu(6,6,6)
DIMENSION UDOT(6,1),UDDOT(6,1),QDDOT(6,1),XX(6,1),
+ TUDOT(1,6),YY(6,1,6),ZZ(6,1,1)
CALL MATRIX_MULT(6,6,Gq_u,6,1,UDDOT,XX)
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CALL TRANSPOSE(6,1,UDOT,TUDOT)

DO I=1,6
CALL NN_DOT_NNN(1,6,1,6, TUDOT,Hq_uu,YY)
CALL NNN_DOT NN(1,6,1,6,YY,UDOT,ZZ)
QDDOT(,1)=XX(I,1)+ZZ(1,1,1)

ENDDO

RETURN

END
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*

*

*

*

SUBROUTINE GEN_FORCES *

%k

******************************************************************

C
C

88

SUBROUTINE GEN_FORCES(QDOT,QDDOT)

THIS SUBROUTINE COMPUTES THE REQUIRED ACTUATOR
FORCES TO CAUSE THE DESIRED PLATFORM MOTIONS

COMMON/Iqq/STAR _Iqq(6,6)

COMMON/Pqqq/P_STAR _qqq(6,6,6)

DIMENSION QDOT(6,1),TQDOT(1,6),QDDOT(6,1),XX(6,1),

TQ(6,1),YY(6,1,6),ZZ(6,1,1)

CALL TRANSPOSE(6,1,QDOT, TQDOT)

CALL MATRIX_MULT(6,6,STAR _Iqq,6,1,QDDOT,XX)

DO I=1,6
CALL NN_DOT_NNN(1,6,1,6, TQDOT,P_STAR qqq,YY)
CALL NNN_DOT NN(1,6,1,6,YY,QDOT,ZZ)
Tqd,1)=2Z(1,1,1)+XX(1,1)

ENDDO

WRITE(1,88)

DO I=1,6
WRITE(1,991,XX(1,1),ZZ(1,1,1), TQ(1,1)

ENDDO

FORMAT(/,X,'LINK',10X,'ACC. TERMS',10X,'VEL.
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+ TERMS', 10X, Tq")
99 FORMAT(3X,I1,8X,E15.8,5X,E15.8,4X,E15.8)
RETURN |
END



APPENDIX C

INPUT DATA FOR THE SIMULATION
PROGRAM IN APPENDIX B

1,0,0,0,1,0,0

3,0,0

1,0,0,0,0.5, -0.866, 60
4,0,0

2,3

10, 200, 175, 0.06, 3, 3
2

20
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APPENDIX D

SUBROUTINE FOR CLASS P=2,
CONSTANT ACCELERATION
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*
*
*

SUBROUTINE NEXT_MOTION

*
*
*
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On

SUBROUTINE NEXT _MOTION(TMAX,PTIME,XUi,XUf, THETAI,
THETAf,XU,THETA,V,W,ACC,

AL,Y12,Z12)

THIS SUBROUTINE DETERMINES THE PLATFORM MOTIONS

USING CLASS P=2, CONSTANT ACCELERATION
AUG=(PTIME-TMAX/2)
T=TMAX**2 :
IF (AUG .LT. O)THEN

AUG=0. '

DEL=0.
ELSE

DEL=1.
ENDIF
X=XUf-XUi
TTA=THETAf-THETAIi
XU=XUi+2.*X*(PTIME**2-2.*AUG**2)/T
V=4 *X*(PTIME-2.*AUG)/T
ACC=4*X*(1.-2.*DEL)/T
THETA=THETAi+2*TTA*(PTIME**2-2. *AUG**2)/T
W=4 *TTA*(PTIME-2.*AUG)/T
AL=4*TTA*(1.-2*DEL)/T
Y12=COS(THETA)
Z12=SIN(THETA)
THETA=THETA*180./3.1415926
RETURN
END
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APPENDIX E

SUBROUTINE FOR CLASS P=4,
4-5-6-7 POLYNOMIAL
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*
*
*

%

SUBROUTINE NEXT MOTION *

*
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C
C

+
4

SUBROUTINE NEXT _MOTION(TMAX,PTIME,XUi, XUf, THETAI,
THETAf,XU,THETA,V,W,ACC,
ALY12,712)
THIS SUBROUTINE DETERMINES THE PLATFORM MOTIONS
USING CLASS P=4, 4-5-6-7 POLYNOMIAL
X=XUf-XUi
TTA=THETAf-THETAIi
T=PTIME/TMAX
XU=XUi+X*(35.*(T**4)-84 *(T**5)+70.*(T**6)-20.*(T**7))
V=(X/TMAX)*(140.%(T**3)-420.%(T**4)+420.*(T**5)- 140.*(T**6))
ACC=(X/TMAX**2)*(420.%(T**2)-1680.*(T**3)+2100.*(T**4)-
840.*(T**5))
THETA=THETAi+TTA*(35.%(T**4)-84.%(T**5)+70.*(T**6)-
20.%(T**7)) ‘
W=(TTA/TMAX)*(140.*(T**3)-420.%(T**4)+420.*(T**5)-140.*(T**6))
AL=(TTA/TMAX**2)*(420.%(T**2)-1680.*(T**3)+2100.*(T**4)-
840.*(T**5))
Y12=COS(THETA)
Z12=SIN(THETA)
THETA=THETA*180./3.1415926
RETURN
END
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APPENDIX F
SUBROUTINE FOR CLASS P=4,
THIRD DERIVATIVE TRAPEZOIDAL
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*
*
*

*

SUBROUTINE NEXT_MOTION *

*
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SUBROUTINE NEXT_MOTION(TMAX,PTIME,XUi,XUf,THETAI,

+
-+

THETAf,XU,THETA,V,W,ACC,AL,
Y12,Z12,T,A1,A2,A3)

C THIS SUBROUTINE DETERMINES THE PLATFORM MOTIONS

C

USING CLASS P=4, THIRD DERIVATIVE TRAPEZOIDAL

DIMENSION T(0:8),AUG(0:7),Y(2,4),A1(2),A2(2),A3(2)
DO 1I=1,2
DO 1=4,2,-1

++ + +

DO J=1,8
AUG(J-1)=PTIME-T(J-1)
IF (AUG(J-1) .LT. 0.)AUG(-1)=0.
AUG(-1)=AUG(-1)**I
ENDDO
FACT=I
DO K=I-1,1,-1
FACT=FACT*K
ENDDO
Y(ILD)=(A 1(IN/FACT)*((AUG(0)- AUG(1))/(T(1)-T(0))-
(AUG(2)-AUGGH(TR3)-T(2))+(A2(I/FACT)*
(AUG(2)-AUGRB)(T(3)-T(2))-(AUG(4)-AUG(5))/
(T(5)-T(4)))+(A3(L)/FACT)*((AUG(4)-AUG(5))
/(T(5)-T(4))-(AUG(6)-AUG(T)(TMAX-T(6)))

ENDDO
ENDDO
XU=XUi+Y(1,4)
V=Y(1,3)
ACC=Y(1,2)
THETA=THETAi+Y(2,4)
w=Y(2,3)
AL=Y(2,2)
Y12=COS(THETA)

Z1

2=SIN(THETA)

THETA=THETA*180./3.1415926
RETURN
END
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APPENDIX G

SUBROUTINE TO DETERMINE THE
CONSTANTS Al, A2 AND A3
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* %
* SUBROUTINE CAL_Al A2A3 *
* *
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SUBROUTINE CAL_A1A2A3(T,A1,A2,A3,XUi,XUf,THETAI,

+ THETAf)
C  THIS SUBROUTINE DETERMINES THE THREE CONSTANTS A1,A2
C AND A3 FOR THE CLASS P=4, THIRD DERIVATIVE
C TRAPEZOIDAL
DIMZENgION T(0:8),A1(2),A2(2),A3(2),TT(3,3),TTI(3,3),Z(3),A(3)
DO I=1,
DO J=1,3
TTLNH=(((T(7)-T(2*]-2)y**(L+ 1))-(T(7)-T(2*J-1))**(I+1))
+ /(T(2*I-1)-T(2*J-2))-((((T(7)-T(2*)))**(I1+1))-
+ (T()-T@*T+1))**(L+1))/(T2*J+1)-T(2*))))
ENDDO
ENDDO
DO K=1,2
IF (K .EQ. 1)THEN
Y=XUf-XUi
ELSE
Y=THETAf-THETAI
ENDIF
Z(3)=24.¥Y

CALL MATRIX_INV(Q3,TT,TTI)
CALL MATRIX MULT(3,3,TT1,3,1,Z,A)
Al(K)=A(1)
A2(K)=A(2)
A3(K)=A(3)
WRITE(1,*)'Al=",A1(K),'A2=",A2(K),' A3=",A3(K)
ENDDO
RETURN
END
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