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SUMMARY 

This paper describes the use of special interface finite 
elements to model frictional restraint in composite interfaces. 
These elements simulate Coulomb friction at the interface, and are 
incorporated into a standard finite element analysis of a 
two-dimensional isolated fiber pullout test. Various interfacial 
characteristics, such as the distribution of stresses at the 
interface, the extent of slip and delamination, load diffusion 
from fiber to matrix, and the amount of fiber extraction or 
depression are studied for different friction coefficients. The 
results are compared to those obtained analytically using a 
singular integral equation approach , and those obtained by 
assuming a constant interface shear swength. The usefulness of 
these elements in micromechanical modeling of fiber-reinforced 
composite materials is highlighted. 

INTRODUCTION 

In composite materials with brittle constituents, such as 
ceramic matrix composites, the fiber and matrix are unbonded, and 
are restrained by frictional forces at the interface. In such 
composites, the interface has been modeled [1,2,31 as having a 
constant interface shear strength to, and for shear stresses 
greater than t slipping occurs at the interface. This means of 
analyzing load transfer is approximate, and it is not clear for 
which conditions it is appropriate. 
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A more realistic analysis of interfacial load transfer, 
described by Coulomb friction, has been recently presented by 
Dollar and Steif 141. Instead of assuming a constant interface 
shear strength beyond which slip occurs, the maximum stress that 
the interface can sustain is related to the prevailing normal 
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stress, Q ,  and the coefficient of friction at the interface, p, 
n 

by the relation 

'c0 = p IQnI (1) 

Thus the allowable shear stress changes with the level of the 
applied load, and with the depth of the fiber. 

According to this friction law, at any instant in the loading 
history, either sticking, slipping or opening occurs at a generic 
point along the interface. Conditions for these three states are 
as follows: 

(a) Stick: Q < 0 (compressive) 
n 

dg/dt = 0, and 

h = dWdt = 0 
(b) Slip : u <  0 

n 

h = dh/dt = 0 

(c) Open (equivalent to interface cracking): 
u = 0, 

t = 0, and 
n 

( 2 )  

( 3 )  

h > O  (4) 

In these equations, g and h represent the relative slip and 
separation between the fiber and the matrix respectively, while 
dO/dt is the derivative with respect to a time-like parameter 
that increases monotonically as the loading proceeds. 

The above analysis was used to study the load transfer and 
slip lengths for the simple problem of a two-dimensional fiber 
pullout (and indentation) test (Fig. 1). A n  analytical integral 
equation approach was used to obtain the solution for the half 
plane problem with the fiber loaded with an axial stress p 
(tension or compression), and subjected to a uniform lateral 
compressive prestress, u Their results indicate that the extent 
of slipping as well as the rate of load transfer from the fiber to 
the matrix may be significantly different from those predicted by 
using the constant shear stress approximation, particularly for 
high compressive stresses, p. In order to avoid added mathematical 
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complexity, the authors have not incorporated the opening case in 
their analysis, and have also assumed that both the fiber and the 
surrounding matrix are made of the same material. 

This paper describes the use of special interface friction 
elements in a finite element model of the problem described. These 
special elements employ incremental elasto-plastic constitutive 
relationships to simulate realistic frictional restraint at 
composite interfaces. This model is capable of implementing all 
the interface conditions mentioned earlier and can also be 
extended to consider non-homogeneous interfaces and more 
complicated finite geometries. 

DESCRIPTION OF THE FRICTION ELEMENT 

A two-dimensional quadratic displacement finite element for 
contact friction problems was developed by Ballarini, Parulekar 
and Plesha 151 for modeling rough, dilatant rock joints, and has 
proved to be quite useful for handling such elastic-plastic 
friction problems. A brief description of the friction model will 
be given here. Each friction element shown in Fig. 2 has zero 
thickness, and 6 nodes with two degrees of freedom at each node 
corresponding to displacements u and u , tangential and normal to 
the plane of the surface respectively. The constitutive law we 
adopt in this paper was fully developed by Plesha [61, and is 
analogous to the theory of continuum elasto-plasticity. 

t n 

The kinematic variables used in the constitutive law are the 
relative surface displacements in the tangential and normal 
directions. which are defined as 

+ + where u and u are the displacement vectors of adjacent points on 
the 5nterface associated with the two phases A and B respectively, 
and t and 2 are unit vectors in the tangent and normal directions 
of the interface respectively. The tangential and normal stresses 
the interface supports at any point are denoted by rt and (r 

respectively, with the convention that compressive stresses are 
negat i ve. 

A B 

n 

A basic assumption in the theory is that the deformation can 
be additively decomposed into 

i = t , n  ( 6 )  
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where superscripts e and p denote elastic (recoverable) and 
plastic (irrecoverable) parts of the deformation and subscript i 
denotes a vector component in the tangent or normal direction. 
This provides the advantage of leading to a more convenient 
numerical implementation compared to frictional idealizations 
adopted in this paper in which a "stick" condition precedes 
frictional sliding. 

The elastic displacements are related to stresses by the 
elastic constitutive law dcl J= El  Jdg: , while plastic deformations 
obey the following slip rule 

0 if F < 0 or dF < 0 (no slip) r 
h -  if F = dF = 0 (slip) a c  

1 

(7) 

E 1 that 
nn' E tt' tn where E are the interface stiffnesses ( E  

1 J  
have units of force per unit volume, 
giis the sum of the elastic (pre-slip) and plastic 

(post-slip) displacements at any load level, 
F is a slip function given by F = 191 + prn , 

C is a slip potential given by C = 191, and 
h is a non-negative scalar which gives the magnitude of slip. 

For elasto-plastic analysis, the element employs an 
incremental constitutive law relating increments of stress to 
increments of total relative displacements: 

aF acr E* dgq 
dcl = E 1 J  {g J - P ac E} 1 ac  Da aCr 

(8) 

Since the above explicit relationship is incremental, it is valid 
for arbitrary load and deformation histories that can involve 
loading and subsequent unloading (changes in the direction of 
frictional sliding, for example). 

It has been shown [61 that E = E = 0, hence, for no-slip, 
nt tn 

Eq. ( 8 )  reduces to 

dc = Ettdgt, and 
t 
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1 M ] 
while for the slip case, Eq. 

matrix form, 

' dg'], 

dgn 

( 8 )  becomes 

dct = - PEnn sgn(rt)dgn, and 

= E nn dgn, or, 

dg .1 (10) 

When the fiber and matrix separate under normal tensile 
stress, the interface carries no further stress, Eq. ( 4 ) .  Hence 
for the opening condition, the stiffness of the interface element 
is set to zero. 

Mathematically, E and Ett are penalty numbers, and in order 
to satisfy Eqs. ( 2 ) - ( 4 ) ,  their values must be manipulated so as to 
obtain the type of rigid-perfectly plastic response shown in Fig. 
3. Eq. ( 4 )  allows no normal separation at the interface until the 

turns tensile. Hence E should be as high as normal stress, 
possible for Q < 0 (compressive). but at the same time should not 
create numerical problems in the solution procedure. Similarly, 
Eq.  (2) requires that the elastic part of the tangential 
displacement ( g  in the pre-slip condition) be invariant with 
respect to the load steps. A parametric study was therefore 
conducted to determine the appropriate stiffness coefficients 
which abide by Eqs. (2) to ( 4 ) .  The following sections present the 
finite element analysis and discussion of the results. 

nn 

"n * nn 

n 

THE ANALYSIS 

The finite-element model of the half plane fiber pullout (or 
indentation) setup is shown in Fig. 4 (not to scale). Symmetry was 
used to discretize only one half of the domain into 192, 8-node 
isoparametric rectangular elements, while the special 
zero-thickness friction elements were employed at the interface. 
The fiber elements are bound to those of the surrounding matrix 
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through the enforcement of displacement compatibility with the 
interface elements. 

A transient finite element analysis employing an explicit 
time integration scheme developed in Ballarini et. al. [51 is 
implemented in this problem. The load is applied on the fiber in 
small increments, and convergence is observed for step sizes 
greater than 50. The average tangential and normal stresses are 
calculated in each interface element for each load step, and E q s .  
(2) to (4) are used for determining the stiffness of the interface 
elements at the next load step. 

RESULTS AND DISCUSSION 

In order to check the results of the finite element model, 
various interfacial characteristics, such as the distribution of 
interfacial stresses, the extent of slip and opening, load 
diffusion in the fiber, and slip at the surface are studied for 
various constitutive properties and are compared to those obtained 
by Dollar and Steif [41. 

Parametric Studies for E and E 
M tt' 

The Young's modulus, E, for the fiber and matrix is assumed 
as 400 GPa. Different values of E and Ett were used to study the 
behavior of the interface elements with respect to conformity with 
Eqs. (2) to ( 4 ) .  It was observed that in order to zatisfy E q s .  (2) 
to (41, the E required is as high as 1.OE15 N/m , while Etthas 
to be higher than 1.OE14 N/m3. 

nn 
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Interfacial Stresses Under Perfectly Bonded Conditions. 

Perfect bonding between the fiber and matrix is obtained by 
removing the friction elements from the interface. The interfacial 
stress distributions under such conditions w a s  studied in order to 
check the validity of the finite element model, since exact 
solutions for various stresses at the perfectly bonded interface 
are available in the literature. 

The distribution of shear and normal tractions, z and u 

respectively, due to axial tensile loading of the perfectly bonded 
half-plane with respect to the depth of the fiber is shown in Fig. 
5 for u = O .  These are in excellent agreement with analytical 
solutions for t and u 141 given by 

n 

0 

n 
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. 
-1 

T(d) = '4p , Q (d) = E [ - tan (d/2) - - 
d2+ 4 n n(d2+4) 

where d=depth into the fiber/fiber radius 
= -y/a 

Variation of Slip Lengths, ls and delamination lengths, lo. 

(11) 

When the fiber is loaded in tension, the shear stress t is 
maximum at the loading surface ( y o ) .  Slipping takes place when 
the interfacial shear stress t is greater than the allowable shear 
stress T = plrnl.  The variation of the extent of slip, ls, with 

load for different friction coefficients, p,  is plotted in Fig. 6. 
The extent of slip increases with load and diminishing friction 
coefficient, since t is correspondingly smaller. These curves are 
abruptly ended at points where the interface normal stress turns 
tensile, and hence separation occurs at the interface. Fig. 7 
shows the extent of the delamination lengths, lo for various p. 

The depth of interfacial opening increases with the tensile load 
and diminishing p. 

0 

0 

When the fiber is loaded in compression (indentation), slip 
first initiates at a depth from the surface ranging from one to 
three fiber radii (Fig. 61, and spreads both in depth and towards 
the surface with increasing load. For similar loads, 1 for 
compression is less than that for applied tension, particularly 
for high p,  where slips initiates at much higher applied loads. No 
opening w a s  observed to occur under compressive loads. The results 
compare very well with those presented in Dollar et. al. 141 (they 
are not duplicated on these plots for the sake of clarity). 

S 

Load Transfer from Fiber to Matrix. 
Stresses are transferred from the fiber to the matrix (or 

vice versa) through the interfacial shear stresses. The variation 
of the axial tensile (and compressive) stresses carried by the 
fiber, Q with respect to the fiber depth is shown in Fig. 8. For 

purposes of comparison with the results in Dollar et. al. [41 .  the 
applied load w a s  fixed at Ip/wol= f 10, and again, the agreement 
was found to be very good. It is observed that the load diffusion 
is faster for compression than for tension. This is due the fact 
that for compressive loadings, the interface normal stress is 
always compressive, and is much higher than that for applied 
tension. Hence the interface is able to sustain much higher shear 
stresses in compression than for tension where extensive slipping 

f' 
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and tensile separation occurs thereby restricting the shear 
stresses at the interface . 

The rate of load transfer for a given applied load (p/r0=+5) 
as a function of p is shown in Fig. 9 (p >O, tensile) and Fig. 10 
(p ( 0 ,  compressive). As expected, the load diffusion is much 
faster for higher coefficients of friction, and in compression, it 
approaches that for the perfectly bonded interface for 
sufficiently high p (Fig. 10). The load diffusion in the fiber 
under the constant shear stress approximation is shown in the form 
of broken lines in Figs. 9 and 10. The development length, 

required in this case to diffuse the fiber load completely is 
given by I 41  

Ld , 

where T = pro is the constant shear stress at the interface. 
0 

The constant interface shear strength approximation neglects 
differences between tensile and compressive loads on the fiber. It 
is observed that for compressive loadings, the diffusion rate is 
faster than that for the constant shear stress approximation, 
while it is slower for applied tension. Unlike the constant shear 
stress approximation, which gives a discrete cutoff load 
dissipation length, Ld, it is seen that for a frictional 
restraint, a small residual stress is retained in the fiber and 
decreases exponentially with depth. 

Slip at the surface. 
Tensile (or compressive) loads applied on the fiber causes an 

extraction (or indentation) given by the slip between the fiber 
and matrix at the surface. The slip at the surface A , normalized 
by ap(K + 1)/G (where K = 3-4v for plane strain, C is the shear 
modulus of the fiber material) is plotted as a function of the 
normalized load p/pr in Fig. 11. The results are similar to those 
presented in Dollar et. al. [41, though our results indicate that 
for compression, slip at the surface is somewhat greater than that 
in [41. For the constant interface shear strength approximation A 
is given by (41 

0 

A e G/{ap(K+l)) = p/(16pr0), (13) 

and is plotted in the form of broken lines in Fig. 11. 
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SUMMARY AND CONCLUSIONS 

Preliminary results obtained from the finite element model of 
the pullout test show good agreement with analytical solutions 
predicted by Dollar et. al. [41. Further investigation is 
necessary to obtain appropriate values for E and Ett for 
inhomogeneous interfaces, and to study stress distributions for a 
system of proximate fibers embedded in the matrix in contrast to 
the case of an isolated fiber. It is seen that interfacial stress 
characteristics for a frictionally restrained interface is 
different from that obtained from the simple constant shear stress 
approximation, at least for the case of an isolated fiber. It is 
not presently known however whether such frictional modeling would 
affect the overall strength characteristics of composites 
significantly, and whether such a degree of sophistication is 
justified. The interface friction elements may be easily 
incorporated into existing micromechanical analytic models for 
brittle matrix composites (such as the local-global model 
developed by Ballarini et, al. [71), which presently assume a 
constant shear strength at the f iber-matrix interface. They could 
also be used to study problems involving complicated and finite 
geometries, and to analyze size effects on interface behavior. 
This would make model assumptions very realistic, and render them 
amenable for the analysis of a wide range of composites. Such 
constitutive local-global modeling using the interface friction 
elements is presently under investigation and will be reported in 
a future communication. 

nn 
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Fig. 2. The interface friction element. 
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Fig. 3. The rigid-perfectly plastic response required of the  
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Fig. 4. Finite element mesh for  the fiber pullout test. 
(not t o  scale) 



. 

Q 

15 

2 4 

DeptWf iber radius (-y/al 

Fig. 5. Distribution of normal (a a 1 and tangential ( 5 )  interfacial 
stresses for a perfectly bonded interface 
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Fig. 6. Extent of slip as a function of the normalized load p/ro. 
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Fig .  9. Fiber  load diffusion for tensile loading (p/c0= 5 )  
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Fig. 10. Fiber load diffusion for compressive loading (p/ro= -5.0). 
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Fig. 11. Sl ip  at the surface for tensile and compressive loadings 
as a function of the renormalized load p/wo. 
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