NASA Technical Memorandum 101988

Laboratory Process Control Using
Natural Language Commands
From a Personal Computer

Herl?ert A. Will and Michael A. Mackin
Lewis Research Center
Cleveland, Ohio

(§ASA-TH-101988) LABCEATGEY EFCCBSS CONIRCL
LSING NATGRAL LANGUAGE COEMARDS FEGR A

PEESOMAL CCMPUTER (NASA. Lesis Besearch
CcSCL 098

Center) W ¢
G3/61

April 1989

N8§-24055

Upclas
02044 15

E-4690

LABORATORY PROCESS CONTROL USING NATURAL LANGUAGE COMMANDS FROM
A PERSONAL COMPUTER

Herbert A. Will and Michael A. Mackin
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Chio 44135

SUMMARY

PC software is described which provides flexible natural language process
control capability with an IBM PC or compatible machine. Hardware requirements
include the PC, and suitable hardware interfaces to all controlled devices.
Software required includes the MS-DOS operating system, a PC-based FORTRAN-77
compiler, and user-written device drivers. Instructions for use of the soft-
ware are given as well as a description of an application of the system.

INTRODUCTION

Process control flexibility is extremely important in the typical complex
research laboratory environment. Process control schedules require changes
frequently, often several times per day. These changes may include adding,
deleting, and rearranging steps in a process. Unattended process control is
also frequently required when process duration exceeds 24 hr. There is fre-
quently the additional requirement that the system be usable by technicians and

others with Timited programming skills.

A software system for an IBM PC or compatible has been developed to sat-
isfy the requirements mentioned above. Once set up, this system requires only
an input file containing natural language command lines telling the system what
to do and when to do it. Set up includes writing device driver routines for

all controlled devices.

The following text includes an overview of the software system, an
instruction section on system setup and operation, and a discussion of one
application at the NASA Lewis Research Center.

SOFTWARE SYSTEM OVERVIEW

The software system includes three programs. Two of the programs, SETUP
and ACDA, are written in FORTRAN-77. These programs are used to take data and
control a research process. The third program is written in Pascal and must be
used to generate subroutines used by the other two FORTRAN programs. (These
programs can be obtained from COSMIC, The University of Georgia, Athens, GA
30602, they are identified as LEW-14907.) A fourth element in the software is
the input data set SGxxxx.DAT generated by the user and contains the natural
language commands that are to be executed by the computer.

SETUP, the first of the two FORTRAN programs, is used to parse the input
data set (see flow diagram in fig. 1). SETUP scans the input data for syntax

@xxx‘DAT
SETUP
PROGRAM

ICMDS.DA)

FIGURE 1. - DATA FLOW DIAGRAM FOR SETUP PROGRAM.
errors and generates three intermediate data sets ICMDS.DAT, CMDS.DAT, and
RUNNO.DAT. These three data sets are used as input to the main time-sequencing
program ACDA (see flow diagram in fig. 2). RUNNO.DAT contains the run number
information; ICMDS.DAT contains the initialization commands; and CMDS.DAT con-
tains the time-sequencing commands.

TERMINAL

RUNNO.DAT

RUNNO.DAT

EXTERNAL
DEVICES

FIGURE 2. - DATA FLOW DIAGRAM FOR ACDA PROGRAM.

ACDA, the main time-sequencing program executes each command at the cor-
rect time using the intermediate data sets RUNNO.DAT, ICMDS.DAT, and CMDS.DAT
as input. The program communicates with external equipment using custom sub-
routines which must be written by the user and linked with the ACDA program.
The ACDA program contains two parts; a section for initializing the external
equipment, and a section for operating the external equipment at specific times
of the day. The maximum process duration is 100 hr.

The ACDA program prints the commands, as they are executed, on the printer
for a permanent record while the video display shows the last twenty commands
with the last command executed displayed in "reverse video." Also displayed
is the time until the next command. Data can also be printed from the ACDA
program.

The commands that are recognized by the SETUP program, and executed by the
ACDA program, must be defined by the user. The definitions are contained in a
subroutine, PCMD, and used by SETUP to recognize the input data commands and
check for errors.

Since the user must write routines to control and acquire data from exter-
nal equipment, SETUP and ACDA must know the names of these external routines

and the number and types of parameters passed when they are executed. The sub-
routine PERFRM contains information about the external routine names and param-
eters passed and does the job of calling the subroutines which interface with
external equipment. As many as six integers and six real numbers may be passed
to the external equipment subroutines. A convenience program, GENFOR, is
included as part of the system for the purpose of generating the PCMD and
PERFRM subroutines. The program GENFOR is written in Pascal.

SYSTEM SETUP
External Drivers

The first step in the setup process is to determine all the control and
data acquisition tasks required and to write drivers or subroutines to perform
these activities.

The external drivers can be any subroutine which conforms to the subrou-
tine calling convention of the FORTRAN-77 compiler used. The external drivers
are called from the PERFRM subroutine using the following type of statement:

CALL NAME(parameters).

"NAME" is the name of the subroutine and "parameters" are the parameters
defined in the data set COMMANDS.DAT. Data can be written to the line printer
within the driver routines using FORTRAN logical unit number nine. A typical
printer command would be:

WRITE (9,2001)
2001 FORMAT(]X ‘THIS IS A TEST OF THE PRINTER').

The computer programs SETUP and ACDA were written to execute commands at a
specific time.

Description of the WAIT Command

There are cases where the external driver subroutines must wait for some-
thing to happen, such as a furnace heating up. Since the wait time may not be
known, the user may want the program to recalculate the scheduled execution
time of the remaining commands. In order to do this the external subroutine
must contain the following FORTRAN commands:

LOGICAL*2 SCRFLAG
COMMON /SCR/SCRFLAG
SCRFLAG = .TRUE.

The command
SCRFLAG = .TRUE.

is the command that causes the recalculation of the scheduled execution time.
This flag is then automatically reset to FALSE after the execution time has
been recalculated.

Defining Commands

The first step in defining your own commands that will be recognized by
the SETUP and ACDA programs is to decide which external subroutines will be
called by these commands. Then you will have to decide on the form of the com-
mands. A description of how to write these commands follows.

The program GENFOR takes as input a set of command language definitions
and generates the two FORTRAN subroutines (PCMD and PERFRM). GENFOR expects
the definitions to be stored in a data set with the name COMMANDS.DAT. An
example of this data set is shown in figure 3.

INIT TEMPSCAN {ITSCAN}

INIT IEEE {IIEEE}

INIT VISHAY {IVSHAY}

INIT OVEN INTEGER REAL REAL {IOVEN}
INIT TABLE {ITABLE}

INIT DCVOLTMETER INTEGER {IDCMTR}
BELL {BELCPL}

INIT OHMAMETER INTEGER {IOHMTR}
READ MULTIMETER INTEGER {RMMETER}
READ TEMPS {RTEMP}

WAIT CTEMP INTEGER REAL

WAIT HTEMP INTEGER REAL

TEMP CHANNELS INTEGER INTEGER {TCHANLS}
SET OVEN INTEGER REAL {SOVEN}

MOVE TABLEIN REAL

MOVE TABLECM REAL

READ VISHAY REAL

VISHAY BRIDGE INTEGER

CLAMP TABLE {CTABLE}

UNCLAMP TABLE {UTABLE}

FIGURE 3. - LIST Of TYPICAL COMMANDS USED IN
THE DATA SET “COMMANDS.DAT."

The command definition format takes the following form:
<ELEMENT><sub-element><parameters>.
For example the fourth command in figure 3 is:
INIT OVEN INTEGER REAL REAL {IOVEN}.

In this example "INIT" is the element and "OVEN" is the sub-element. This com-
mand initializes an oven. One integer and two real parameters are passed to
the subroutine. The name "IOVEN" contained within the {} brackets is the name
of the external subroutine that will be called by this command. If the name
within the {} brackets is not included then the GENFOR program will use the
"sub-element" as the name of the external subroutine. If the sub-element is
missing then the "ELEMENT" is used. Note that if a "sub-element" is defined
for a particular command (ELEMENT) then a second command using this same

ELEMENT must have a different (nonzero) sub-element. For example the command
“INIT" with no sub-element would not be allowed. The "INTEGER REAL REAL" spec-
ifies the number and type of parameters to be used with the command.

Once the command definitions are stored in the data set COMMANDS.DAT they
can be used as input for program GENFOR. This program is executed simply by
typing in “GENFOR." The program will ask which drive the data set COMMANDS.DAT
is located (A,B,...). If the data set is on drive "A" you would reply "A:".

The GENFOR program then generates two data sets (PCMDX.FOR and
PERFRMX.FOR) on the same drive that contains the data set COMMANDS.DAT.

The data sets PCMDX.FOR and PERFRMX.FOR should be renamed PCMD.FOR and
PERFRM.FOR. Old copies of PCMD.FOR and PERFRM.FOR may be renamed or deleted.

The subroutine PCMD.FOR is used to parse the input commands and check for
typing errors. An example of the subroutine PCMD.FOR is shown in figure 4.
The subroutine PERFRM.FOR is used to call subroutines that interface to exter-
nal instruments. Note that it is up to the user to write these external sub-
routines. An example of the subroutine PERFRM.FOR is shown in figure 5.

At this point it is assumed that the external subroutines have been writ-
ten and compiled by the user. The source code for this system was written for
Microsoft FORTRAN-77 version 4.0. If a different FORTRAN compiler is used a
few modifications in the source code may be necessary.

The source code SETUP.FOR and PCMD.FOR should be compiled and linked as
SETUP.EXE. Then the source code ACDA.FOR, PERFRM.FOR, TIMDAT.ASM, USCROL.ASM,
and "external subroutines" must be compiled and linked as ACDA.EXE. These two
" EXE" programs will be the programs used to run your equipment. Note, the
" ASM" programs are written in assembly language and the compiled code is
".0BJ."

SYSTEM APPLICATION

When the setup activity is complete the data set SGxxxx.DAT must be
created to define the process events and their timing. This data set contains
timing information and a series of the previously defined commands that will
control the external equipment. ’

Process Control Data Set

The process control data set SGxxxx.DAT contains two sections; an initial-
ization section, and a time sequencing section. An example of a typical data
set is shown in figure 6. The initialization section extends from the begin-
ning of the data set to the first "END" command. The commands must be written
in the same format as the commands listed in the data set "COMMANDS.DAT."

100

102

103

104

108

106

SUBROUTINE PCMD(DONE,CHAIN)

INTEGER*2 RPTR,WPTR
CHARACTER INREC

DIMENSION INREC(81)
CHARACTER . OUTREC

DIMENSION OUTREC(81) 107
CHARACTER SYMBOL

DIMENSION SYMBOL(81)

CHARACTER COMMD®81

LOGICAL®2 CHAIN2

COMMON /DSTR1/RPTR

COMMON /DSTR2/WPTR

COMMON ,'BLK1/INREC, OUTREC

COMMON /BLK2/SYMBOL

COMMON /CHN/CHAIN2

LOGICAL®*2 DONE,FLAG,CHAIN

CHAIN = _FALSE.

CALL DTRMN(FLAG) 108
COMMD = 'ENDS'

CALL COMPR(FLAG,COMMD) 101

IF {FLAG) GO TO 899

COMMD = 'CHAINS'
CALL COMPR{FLAG,COMMD)
IF {FLAG) GO TO 890

COMMD = 'INITS'

CALL COMFR(FLAG,COMMD)

IF (.NOT.(FLAG)) GO TO 101
CALL DTRMN (FLAG)

COMMD = 'TEMPSCANS' 109
CALL COMPR{FLAG,COMMD)

IF (.NOT.(PLAG)) GO TO 102
COMMD = ‘1

CALL WQUEUE (OUTREC, COMMD)
coMMD = ', (!

CALL WQUEUE (OUTREC, COMMD)
COMMD = '), '

CALL WQUEUE (OUTREC, COMMD)
GO TO 900

COMMD = °‘'IBEES'

CALL COMPR(FLAG, COMMD)

IF (.NOT.(FLAG}) GO TO 103
coMMD = '2°'

CALL WQUEUE (OUTREC,COMMD)

COMMD = ' ('

CALL HQUBUE(OUTR!C COMMD) 111
COMMD = '),

CALL WQUEUE(OUTREC, COMMD)

GO TO 900

COMMD = 'VISHAYS'

CALL COMPR({FLAG,COMMD)

IF {.NOT.{PLAG)) GO TO 104

COMMD = '3°

CALL WQUEUE({OUTREC, COMMD)

COMMD = ', ('

CALL HQUEUE(OUTREC COMMD } 112
COMMD = '),

CALL WQUEUE (QUTREC,COMMD}

GO TO 900

COMMD = 'OVENS'

CALL COMPR (FLAG,COMMD}

IF (.NOT.(FLAG)) GO TO 105
COMMD = '4'

CALL WQUEUE (OUTREC, COMMD)

coMMD = ', ('

CALL WQUEUE (OUTREC, COMMD)

CALL DTRMN(FLAG)

CALL PNUMB 113
COMMD = ',°

CALL WQUEUE (OUTREC, COMMD) 110
CALL DTRMN (PLAG)

CALL PNUM2

COMMD = ',

CALL WQUEUE(OUTREC, COMMD)

CALL DTRMN{PLAG)

CALL PNUM2

COMMD = ') '

CALL WQUEUE(OUTREC, COMMD)

GO TO 900

COMMD = 'TABLES'
CALL COMPR(FLAG,COMMD)
IF (.NOT.(FLAG)) GO TO 106
COMMD = ‘S’
CALL WQUEUE(OUTREC, COMMD)
COMMD = ‘', (!
CALL HQUEUE(OUTREC COMMD)
COMMD = !
CALL WQUEUE(OUTREC COMMD)
GO TO 900

118
COMMD = ‘DCVOLTMETERS'
CALL COMPR(FLAG,COMMD)
IF (.NOT.(FLAG)} GO TC 107
COMMD = '6'
CALL WQUEUE (OUTREC, COMMD)
COMMD = * ('
CALL WQUEUE (OUTREC, COMMD)

FIGURE 4.

CALL DTRMN{FLAG)

CALL PNUMB

COMMD = ‘}, ¢

CALL WQUEUE (OUTREC,COMMD)
GO TO 900

COMMD = 'OHMUMETERS'
CALL COMPR(FLAG,COMMD)
IF (.NOT.(FLAG)) GO TO 108

COMMD = '7" 118
CALL WQUEUE{OQUTREC,COMMD)
COMMD = ', {' 114

CALL WQUEUE (OUTREC,COMMD)
CALL DTRMN({FLAG)

CALL PNUMB

COMMD = '), °*

CALL WQUEUE(OUTREC, COMMD)
G0 TO 900

STOP 'ERROR ON INIT COMMAND'

COMMD = 'BELLS'

CALL COMPR({FLAG,COMMD)

IF {.NOT.(FLAG)) GO TO 109
COMMD = '8'

CALL WQUEUE (OUTREC, COMMD)
COMMD = *, ('

CALL WQUEUE (OUTREC, COMMD)
CoOMMD = '), °

CALL WQUEUE (OUTREC, COMMD)
GO TO 900

COMMD = 'READS' 118
CALL COMPR(FLAG,COMMD)

IF {.NOT.(PLAG)) GO TO 110 117
CALL DTRMN(FLAG)

COMMD = 'MULTIMETERS'

CALL COMPR([FLAG,COMMD)

IF (.NOT.{FLAG)) GO TO 111

COMMD = '9"

CALL WQUEUE (OUTREC, COMMD)

COMMD = ', (*

CALL WQUEUE (OUTREC, COMMD)

CALL DTRMN({FLAG)

CALL PNUMB

COMMD = '),

CALL WQUEUE (OUTREC, COMMD)

GO TO 900

COMMD = 'TEMPSS$'

CALL COMPR(FLAG,COMMD)

IF (.NOT.(FLAG)) GO TO 112
COMMD = '10°

CALL WQUEUE (OUTREC, COMMD)

COMMD = ', ('

CALL WQUEUE (OUTREC, COMMD } 540
COMMD = ')’

CALL WQUEUE (OUTREC, COMMD) 119
GO TO 900

COMMD = 'VISHAYS'

CALL COMPR{FLAG,COMMD)
IF {.NOT.{FLAG)) GO TO 113
COMMD = '11°'

CALL HQUBU!(OUTREC COMMD)}
COMMD = ', ('

CALL WQUEUE (OUTREC, COMMD)
CALL DTRMN(FLAG)

CALL PNUM2

COMMD = ') ,*

CALL WQUEUE(OUTREC,COMMD)
GO TO 900

STOP 'ERROR ON READ COMMAND'

COMMD = 'WAITS'

CALL COMPR (PLAG,COMMD)

IF (.NOT.(FLAG}) GO TO 114

CALL DTRMN (FLAG)

COMMD = 'CTEMPS'

CALL COMPR{FLAG, COMMD)

IP (.NOT.(PLAG}} GO TO 115
COMMD = 12°

CALL WQUEUE (OUTREC,COMMD}

COMMD = ', (°

CALL WQUEUE (OUTREC , COMMD}

CALL DTRMN(FLAG)

CALL PNUMB 123
COMMD = ', *

CALL WQUEUE{OUTREC, COMMD) i
CALL DTRMN (FLAG)

CALL PNUM2

COMMD = ') ,*

CALL WQUEUE (OUTREC, COMMD)

GO TO 900

COMMD = 'HTEMPS'

CALL COMPR{FLAG,COMMD}

IF (.NOT.(FLAG)) GO TO 116
COMMD = '313°

CALL WQUEUE(OUTREC, COMMD}
COMMD = ', ('

CALL WQUEUE (OUTREC, COMMD)
CALL DTRMN{FLAG)

6

CALL PNUMB

COMMD = ', ¢

CALL WQUEUE (OUTREC, COMMD) 128
CALL DTRMN{FLAG)

CALL PNUM2 12¢
COMMD = '}),*

CALL WQUEUEZ{OUTREC,COMMD)

GO TO 900

STOP 'ERROR ON WAIT COMMAND'

COMMD = ‘TEMPS'

CALL COMPR({FLAG,COMMD)

IF (.NOT.(FLAG)) GO TO 117
CALL DTRMN(PLAG)

COMMD = 'CHANNELSS'

CALL COMPR{FLAG,COMMD)

IF (.NOT.(FLAG}) GO TO 118
COMMD = ‘14°

CALL WQUEUE (OUTREC, COMMD) 127
COMMD = ', ('

CALL WQUEUE {OUTREC, COMMD) 126
CALL DTRMN(FLAG)

CALL PNUMB

COMMD = ', '

CALL WQUEUE (OUTREC, COMMD)
CALL DTRMN(PLAG)

CALL PNUMB

COMMD = '), "

CALL WQUEUE(OUTREC, COMMD)
GO TO 900

STOP 'ERROR ON TEMP COMMAND'

COMMD = ‘SETS'

CALL COMPR {FLAG, COMMD)

IF (.NOT.(FLAG)) GO TO 119 129
CALL DTRMN(FLAG)

COMMD = 'QVENS' 128
CALL COMPR(FLAG,COMMD)

IF (.NOT.{FLAG)) GO TO 120 890
COMMD = '15°

CALL WQUEUE {DUTREC,COMMD)

COMMD = ', ('

CALL WQUEUE (OUTREC, COMMD)

CALL DTRMN(FLAG) 899
CALL PNUMB 900
COMMD = ',°

CALL WQUEUE (OUTREC, COMMD)
CALL DTRMN(FLAG)

CALL PNUM2

COMMD = '},

CALL WQUEUE (CUTREC, COMMD)
G0 TO 900

STOP 'ERROR ON SET COMMAND'

COMMD = 'MOVES'

CALL COMPR(PLAG,COMMD}

1F {.NOT.(FLAG}) GO TO 121
CALL DTRMN(FLAG)

COMMD = 'TABLEINS'

CALL COMPR(FLAG, COMMD)

IF (.NOT.(FLAG)) GO TO 122
COMMD = '16'

CALL WQUEUE{OUTREC,COMMD)
COMMD = *, ('

CALL WQUEUE (OUTREC, COMMD}
CALL DTRMN(FLAG)

CALL PNUM2

COMMD = '), *

CALL WQUEUE (OUTREC, COMMD)
GO TO 900

COMMD = 'TABLECMS'

CALL COMPR{FLAG,COMMD}

IF {.NOT.(FLAG)} GO TO 123
COMMD = '17°

CALL WQUEUE (OUTREC, COMMD)
COMMD = ‘', (!

CALI, WQUEUE(OUTREC, COMMD)
CALL DTRMN{FLAG)

CALL PNUM2

COMMD = '},

CALL WQUEUE (OUTREC, COMMD)
GO TO 900

STOP 'ERROR ON MOVE COMMAND'

COMMD = 'VISHAYS'

CALL COMPR(FLAG,COMMD)

IF (.NOT.(FLAG)) GO TO 124
CALL DTRMN(FLAG)

COMMD = 'BRIDGE$

CALL COMPR(FLAC,COMMD)

IF {.NOT.(FLAG)) GO TO 125
COMMD = '18'

CALL WQUEUE {QUTREC , COMMD)
COMMD = ', ('

CALL WQUEUE (OUTREC, COMMD |
CALL DTRMN{FLAG}

CALL PNUMB

COMMD = '),

CALL WQUEUE (QUTREC , COMMD)

a0 TO 900
STOP 'BRROR ON VISHAY COMMAND'®

COMMD = ‘CLAMPS*

CALL COMPR(FLAG,COMMD)

IFP (.NOT.(FLAG)) GO TO 12§
CALL DTRMN(FLAG)

COMMD = 'TABLES'

CALL COMPR{FLAG,COMMD)

IF (.NOT.(PLAG)) GO TO 127
CoMMD = *19°

CALL WQURUE (OUTREC, COMMD)
coMMD = *, ('

CALL HQUIU!(OUTR!C COMMD }
COMMD = ¢},

CALL WQUEUE{QUTRRC,COMMD)
GO TO 900

STOP 'ERROR ON CLAMP COMMAND'

COMMD = 'UNCLAMPS'®

CALL COMPR(PLAG.COMMD)

IF (.NOT.{FLAG)) GO TO 128
CALL DTRMN{PLAG)

COMMD = ‘TABLES'

CALL COMPR(FLAG,COMMD)

IF (.NOT.(FLAG}) GO TO 329
COMMD w '20°*

CALL WQUEUE(OUTREC,COMMD)
COMMD = ', ('

CALL WQUEUE(OUTREC, COMMD)
COMMD = '},

CALL WQUEUE(OUTREC,COMMD)
GO TO 900

STOP 'ERROR ON UNCLAMP COMMAND'
STOP 'NO SUCH ELEMENT'®

COMMD = '101,(}),

CALL WQUEUE{OQUTREC,COMMD)
CHAIN = .TRUE.

CHAIN2 = .TRUE.

GO0 TO 900

DONE = .TRUE.

RETURN

END

- EXAMPLE OF SUBROUTINE “PCMD.FOR® THAT WAS GENERATED BY THE PROGRAM “GENFOR,COM”.

SUBROUTINE PERFRM(I}

INTEGER®*2 TIME(100,4),TIMOLD(100,.4)

INTEGER®2 EVENT(100),IPARAM(100,6)

REAL®4 RPARAM(100,6)

INTEGER*2 TXLEN(100},J

INTEGER*2 X1 ,X2,K3,X4,X5,K6

REAL*4 R1,R2,R3,R4,R5,R6

COMMON /DSTR1/TIME, TIMOLD, EVENT, IPARAM, RPARAM, TXLEN

K1=IPARAM{I,1)
K2=IPARAM(I,2)
K3=IPARAM(I,3)
K4=IPARAM(1.4)
K3=IPARAM(I,S)
K6=IPARAM(I,6)
R1=RPARAM(I, 1)
R2=RPARAM(I,2)
RI=RPARAM(I,3}
Re=RPARAM(I, 4)
RS=RPARAM(I,S)
RE=RPARAM(I,6)
J=EVENT(I)
GOTO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
& 16,17,18,19,20)7
GOTO 900

1 CALL ITSCAN
GOTO 900

2 CALL IIEEE
GOTO 900

3 CALL IVSHAY
GOTO 800

4 CALL IOVEN(K1,R1,R2)

GOTO %00

CALL ITABLE

GOTO 900

CALL IDCMTR(K1)

GOTO @00

CALL IOHMTR(K1)

GOTO 900

8 CALL BELCPL

GOTO 900

$ CALL RMMETER(K1)

0
[+

o

- o

GOTO 90

CALL RTEMP

GOTO %00

11 CALL VISHAY(R1)
GOTO 900

12 CALL CTEMP({K1.R1)
GOTO 900

13 CALL HTEMP(K1,R1)
GOTO 900

14 CALL TCHANLS(K}1 ,K2)
GOTO 900

1% CALL SOVEN(K1,.R1)
GOTO 900

16 CALL TABLEIN(R1)
GOTO 900

17 CALL TABLECM{R}1)
GOTO 900

18 CALL BRIDGE(K1)
GOTO %00

19 CALL CTABLE
GOTO 900

20 CALL UTABLE
GOTO 900

900 RETURN
END

FIGURE 5. - EXAMPLE OF SUBROUTINE “PERFRM,FOR" FHAT WAS
GENERATED BY THE PROGRAM "GENFOR.COM”.

! TEST PROGRAM

! MEASURE RESISTANCE AND TEMPERATURE
! INITIALIZATION SECTION

INIT IEEE

INIT TEMPSCAN

TEMP CHANNELS 1 4

INIT OVEN 2 0.008192 -0.07589
INIT OHM4METER 1

INIT OHM4AMETER 2

END

! TIME SEQUENCING SECTION
00:00:00 READ TEMPS
00:00:10 READ MULTIMETER 1
00:00:05 READ MULTIMETER 2

|

00:00:02 SET OVEN 2 420.0
00:00:02 WAIT HTEMP 4 380.0
00:00:02 SET QVEN 2 400.0
00:15:00 READ TEMPS

00:00:10 READ MULTIMETER 1
00:00:05 READ MULTIMETER 2
|

00:00:02 SET OVEN 2 620.0
00:00:02 WAIT HTEMP 4 580.0
00:00:02 SET OVEN 2 600.0
00:15:00 READ TEMPS

00:00:10 READ MULTIMETER 1
00:00:05 READ MULTIMETER 2
00:00:02 SET OVEN 2 20.0

FIGURE 6. — EXAMPLE OF INPUT DATA SET "SGxxxx.DAT."

Initialization commands are written without any time parameter since they
are executed when the program is started.

Comment lines start with an exclamation mark as the first character.

The time sequencing section is after the first "END" command in the proc-
ess control data set. Each command in this section is preceded by a delay time
written as

hh:mm:ss

The first two numbers represent hours, the middle two minutes, and the right
two seconds. This time is the time delay between the previous command and the
command on this line.

The delimiter for the time-sequencing command lines is the space. Thus
there must be a space between the delay time and the actual command.

The ACDA program can handle 100 initialization commands and 100 time
sequencing commands at any one time. However this number can be extended by

inserting the command "CHAIN" into the data set before 100 commands are
reached. This allows the user to add another 100 commands. This can be can-

tinued as needed.

The process control data set must be terminated with an "END" command.

Running the Process

The process control data set which contains the users commands should be
stored on a disk in drive "A:" as SGxxxx.DAT where xxxx can be any four digit
number. The user should have the programs SETUP and ACDA on the default drive.
The SETUP program is run first. Figure 7 shows a copy of the CRT screen that
was obtained from the SETUP program. The program will ask the user for a run
number. The number xxxx from SGxxxx.DAT should be entered as a four digit num-
ber. The commands in the data set SGxxxx.DAT will be printed out as they are
checked by the SETUP program (comments are not printed). The SETUP program will
stop with a message if there is an error. The error will be in the last command
line printed out. In that case the user should fix the error and try again.

THIS PROGRAM CHANGES THE COMMANDS IN FILE A:SGXXXX.DAT
ENTERED BELOW. ENTER THE RUN NUMBER IN THE FORM XXXX
ENTER RUN NUMBER =>

0008

A:SGO008 .DAT

INIT IEEE

INIT TEMPSCAN

TEMP CHANNELS 1 4

INIT OVEN 2 0.0082 -0.076
INIT OHM4METER 1

INIT OHM4AMETER 2

END

00:00:00 READ TEMPS

00:00:10 READ MULTIMETER 1
00:00:05 READ MULTIMETER 2
00:00:02 SET OVEN 2 420
00:00:02 WAIT HTEMP 4 380.0
00:00:02 SET OVEN 2 400.0
00:15:00 READ TEMPS

00:00:10 READ MULTIMETER 1
00:00:05 READ MULTIMETER 2
00:00:02 SET OVEN 2 620.0
00:00:02 WAIT HTEMP 4 580.0
00:00:02 SET OVEN 2 600.0
00:15:00 READ TEMPS

00:00:10 READ MULTIMETER 1
00:00:05 READ MULTIMETER 2
00:00:02 SET OVEN 2 20.0

END

MAKE SURE A PRINTER IS ATTACHED TO DEVICE PRN:
BEFORE RUNNING THE "ACDA" PROGRAM

Stop - Program terminated.

FIGURE 7. - EXAMPLE OF CRT QUTPUT FROM "SETUP'" PROGRAM.

9

The second program that needs to be run is the ACDA program. An operating
printer must be assigned as the "PRN:" device, since this program will print
the commands as they are executed. The CRT output for the initialization part
of the ACDA program is shown in figure 8. The words "OK TO START" will be
shown in reverse video. A reply of "Y" will start the initialization. The
"TIME OF EVENT" has no meaning here and will be zero. The commands or "EVENT"
will be highlighted in reverse video after each is performed.

SYSTEM INITIALIZATION

[OK_TO START?1]

IME OF EVENT

IEEE

TEMPSCAN

CHANNELS 1 4

OVEN 2 0.0082 -0.076
OHM4METER 1
OHM4METER 2

FIGURE 8. - CRT OUTPUT FROM INITIALIZATION SECTION OF ACDA PROGRAM.

After the initialization is completed the time sequencing or "SCHEDULER"
part of the ACDA program is displayed on the CRT. This display is shown in
figure 9 before typing "Y" to start the SCHEDULER. The commands are displayed
under the "EVENT" column. The commands will be scrolled up as each is executed
if there are more than 20. The column under "TIME OF EVENT" represents the
time since the SCHEDULER started. The time from left to right is days, hours,
minutes, and seconds.

 _SYSTEM SCHEDULER
(0K 70 START?
TIME OF EVENT

READ TEMPS

READ MULTIMETER |
READ MULTIMETER 2
SET OVEN 2 420.0
WAIT HTEMP 4 380.0
SET OVEN 2 400.0
READ TEMPS

READ MULTIMETER 1
READ MULTIMETER 2
SET OVEN 2 620.0
WAIT HTEMP 4 580.0
¢ 0:15:42 SET OVEN 2 600.0

¢ 0:30:42 READ TEMPS

+ 0:30:52 READ MULTIMETER 1
¢ 0:30:57 READ MULTIMETER 2
0:30159 SET DVEN 2 20.0

0
0
0:
0:
0
0
0
0:
0:
0:
0:
0:
0
0
0:
0:

FIGURE 9. - CRT QUTPUT FOR TIME SEQUENCING PART OF ACDA PROGRAM BEFORE
TYPING “Y*“.

The display will change after a "Y" is typed in to start the program as
shown in figure 10. The column under "TIME OF EVENT" is now changed to the
actual time the command is scheduled to take place. The time is represented
as days, hours, minutes, and seconds from the beginning of the current year.
Each event is highlighted in reverse video after it is executed.

SYSTEM SCHEDULER
TIME UNTIL NEXT EVENT = 00:00:00:00
TIME OF EVENT

2531 14:24:32 READ TEMPS

2531 14:24:42 READ MULTIMETER 1
2331 14:24:47 READ MULTIMETER 2
2531 14:24:149 SET OVEN 2 420.0
253:14:24:151 WAIT HTEMP 4 380.0
253:14:24133 SET OVEN 2 400.0
233:14139:533 READ TEMPS
253:14:40: 3 READ MULTIMETER 1
253:14:40: 8 READ MULTIMETER 2
253:14:40: 10 SET OVEN 2 620.0
253+ 14:40: 12 WAIT HTEMP 4 580.0
253+ 14:40: 14 SET OVEN 2 600.
2353114:551 14 READ TEMPS
253:14:55:24 READ MULTIMETER 1
253:14:535:29 READ MULTIMETER 2
253:14:55:31 SET OVEN 2 20.

FIGURE 10. - CRT OUTPUT FOR VIME SEQUENCING PART OF ACDA PROGRAM AFTER
TYPING “¥Y*.

Description of Applications

This computer program is used in a high temperature sensor research pro-
gram at NASA Lewis. The research involves measuring various strain gage param—
eters at many different temperatures and for long periods of time.

The equipment consists of a 10 channel digital thermocouple for measuring
temperature, a dual programable power supply for setting the temperature of two
ovens, a digital multimeter for making voltage and four-wire ohmmeter tests on
the strain gages, a stepping motor for bending the strain gages, and a 10 chan-
nel strain gage bridge. A PC communicates with this equipment by means of ‘an
RS-232 port and a IEEE-488 buss as shown in figure 11.

The computer program can remotely control all of the instruments without
any intervention by the an operator once an experiment is set up. A typical
experiment would be to heat two strain gages to various temperatures and meas-
ure the resistance of the gages as a function of temperature. A typical data
set to do this is shown in figure 6. The first part of the data set (up to the
first END command) initializes the IEEE buss, the temperature scanner, the oven
no. 2, and the multimeter to be used as a four-wire ohmeter.

The second part of the data set (after the first END command) records the
temperature, resistance values, and then changes the oven temperature. Each

1

i [10 craneL RS 232
!TH‘E—RE@-—— TEMPERATURE
SCANNER
jovex 1] OVEN rURE COMPUTER
PROGRAMMER
e 488
DIGITAL
STRAIN GAGE
MULTIMETER
RESISTANCE VOLTS/0HMS
CRT

SINGLE AXIS
«<| STEPPING MOTOR
STEPLING i ConTROL l
I l PRINTER
T 10 CHANNEL
|STRAIN GA@———————<~ STRAIN GAGE A}-—J

BRIDGE

FIGURE 11. - EQUIPMEN] USED FOR HIGH TEMPERATURE SENSOR RESEARCH PROGRAM.

function is done at a predetermined time. The link between the computer pro-
gram and the instruments are the external driver subroutines. These subrou-

tines control the instrument and if needed can send the data to the printer.

The computer program (ACDA) also takes care of printing each command as it is
executed.

CONCLUSION

In conclusion this report is intended to be used as an instruction manual
for setting up and operating the SETUP and ACDA programs. The operator can
make up custom commands for operating and taking data from external research
equipment. The programs allow the operator to control and take data from
external equipment at any time of the day or night without the operator being
present.

National Aeronautics and
Space Admustration

1. Re;“)ort No. 2. Government Accession No.

NASA TM-101988

NASA Report Documentation Page

. Recipient’s Catalog No.

4. Title and Subtitle
Laboratory Process Control Using Natural Language Commands
From a Personal Computer

. Report Date

April 1989

. Performing Organization Code

7. Author(s)
Herbert A. Will and Michael A. Mackin

. Performing Organization Report No.

E-4690

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

10.

Work Unit No.
505-62-01

11.

Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

13.

Type of Report and Period Covered

Technical Memorandum

14.

Sponsoring Agency Code

15. Supplementary Notes

The programs described in this report are available from COSMIC; they are identified as LEW-14907.

16. Abstract

of the system.

PC software is described which provides flexible natural language process control capability with an IBM PC or
compatible machine. Hardware requirements include the PC, and suitable hardware interfaces to all controlled
devices. Software required includes the MS-DOS operating system, a PC-based FORTRAN-77 compiler, and
user-written device drivers. Instructions for use of the software are given as well as a description of an application

17. Key Words (Suggested by Author(s))

Personal computer

Timed sequence
Research equipment

18. D«'smbutionagtemem
Unclassified — Unlimited
System controller Subject Category 61

19. Security Classif. (of this report) 20. Security Classif. (of this page)
Unclassified Unclassified

21. No of pages 22. Price”

14 A03

NASA FORM 1626 OCT 86 *For sale by the National Technical Information Service, Springfield, Virginia 22161

