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Operator Induced Multigrid Algorithms Using Semirefinement * 

Naomi Decker, John Van Rosendale 

Abstract 

This paper describes a variant of multigrid, based on zebra relaxation, and a new 
family‘ of restriction/prolongation operators. Using zebra relaxation in combination 
with an operator-induced prolongation leads to fast convergence, since the coarse grid 
can correct all error components. The resulting algorithms are not only fast, but are 
also “robust,” in the sense that the convergence rate is insensitive to the mesh aspect 
ratio. This is true even though line relaxation is performed in only one direction. 

Multigrid becomes a direct method if one uses an operator-induced prolongation, 
together with the “induced” coarse grid operators. Unfortunately, this approach leads 
to stencils which double in size on each coarser grid. In this paper, we show how the use 
of an implicit three point restriction can be used to “factor” these large stencils, in order 
to retain the usual five or nine point etencile, while still achieving fast convergence. This 
algorithm achieves a V-cycle convergence rate of 0.03 on Poisson’s equation, using 1.5 
zebra sweeps per level, while the convergence rate improves to 0.003 if optimal nine point 
stencils are used. This paper presents numerical results for two and three dimensional 
model problems, together with a two level analysis explaining these results. 

*Research supported by the National Aeronautics and Space Administration under NASA Contract 
No. NAS1-18605 while in residence at the Institute for Computer Applications in Science and Engineering 
(ICASE), NASA Langley Research Center, Hampton, VA 23665-5225. 
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1. Introduction 

It is well known that zebra-based multigrid algorithms are fast. They usually have a 
spectral radius comparable to that of the best multigrid algorithms based on point relax- 
ation, though their cost per V-cycle is somewhat greater. Zebra-relaxation is generally 
used in combination with semicoarsening, the grid is coarsened only in the direction 
orthogonal to the line relaxation direction. With semicoarsening, the geometric se- 
ries 1 + 112 + 114 + ... enters the complexity bounds, rather than the usual series 
1 + 1/4+ 1/16+ ... Since the first series sums to 2 rather than 413, and since the cost 
of a zebra sweep is slightly more than the cost of an SOR sweep, zebra-based algorithms 
are more expensive than point-relaxation based algorithms.. 

Despite this cost difference, zebra-based methods are attractive. It is been known for 
some time that zebra-based algorithms can be “robust” [6), though this fact is not widely 
appreciated. A “robust” algorithm is one in which the convergence rate is insensitive 
to mesh aspect ratios. In real applications highly stretched grids are ubiquitous, so this 
property is of great importance. Multigrid methods based on alternating line relaxation 
are robust, while methods based on point relaxation are not. It is a pleasant fact that 
zebra-based algorithms can be robust, even when one performs the line relaxation in 
just one direction. 

Zebra relaxation also has another important property. After an odd zebra half- 
sweep, the residual is zero on the odd rows of the fine grid. This means that the coarse 
grid operator can “see” all components of the residual. Thus if one chose the proper 
coarse grid operator, one could, in principle, annihilate all fine grid error in one step. 
This possibility hinges on two requirements: 

0 one must use exactly the right coarse grid operator 

0 the prolongation to the fine grid must introduce no new residual on odd lines. 

1 

The first requirement here is problematic, but the second is easy to achieve. The 
family of prolongations known as “operator induced” prolongations has exactly the 
property required, see for example [3], [5]. Suppose we are looking at  the fine grid 
operator, L.1, resulting from the discretization of the negative of the Laplacian on a grid 
0, using the 5-point stencil: 

- 
-1 

-a 2 a + 2  -a 

-1 d 

where a = 
formed by 

(dy /dz)2 .  Let 01 be a grid with mesh sizes dx and dy, while f l 2  is the grid 
semicoarsening, having mesh sizes 2 * dz and dy. Then the prolongation 
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operator, P ,  given by the stencil 

1 PA- 
d?J2 

-1 

a 2 a + 2  a 

-1 

is operator inducing, in the sense that 

produces zeroes on odd columns of the fine grid. By direct calculation, the result of 
applying L I P  to a delta function (of height dy') on the coarse grid is: 

0 0  1 0 0  

0 0 - 4 a - 4  0 0 

-a2 0 2 a 2 + 8 a + 6  0 -a2 

0 0 - 4 a - 4  0 0 

0 0  1 0 0  

Now suppose we perform a V-cycle algorithm, in which an odd zebra sweep is per- 
formed on the fine grid immediately before the coarse grid correction is computed. Thus 
there is residual only along even columns of the fine grid. This residual must be in the 
range of the operator L I P ,  as can be seen by a simple dimensionality argument; the 
number of coarse grid mesh points, and the number of points along even columns of the 
fine grid match. 

Given this property, that the residual is in the range of LIP, one can solve the fine 
grid linear system in one step if the right coarse grid operator is inverted. That operator 
is easy to construct; one just drops the zero columns from the results of applying LIP 
to a delta function: 
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r 

1 I - 

dy2 I -' z2 2 a 2 + 8 a + 6  - 
I 

Notice that this stencil is larger than the fine grid stencil. This is the fundamental 
difficulty with this approach; the steiicils approximately double in size at each coarser 
grid level. Use of these growing stencils in a k-level algorithm would result in a rather 
inefficient direct method. 

Rather than using these growing stencils, our approach is instead to rely on simple 
five and nine point stencils, but to adjust the restriction operator Q, and perhaps the 
coarse grid operator L2 as well, so that the operator 

QL2 

closely approximates the optimal coarse-to-fine grid operator L I P .  To do this effectively, 
we must allow implicit restriction operators. Using three point implicit restrictions, 
which require inversion of tridiagonal systems, leads to a V-cycle algorithm which has 
very fast convergence. In effect, one is closely approximating a direct method. Table 1 
gives the observed convergence rate per V-cycle of this algorithm applied to Laplace 
equation, as a function of problem size in two and three dimensions. We refer to this 
as the ZOOM algorithm, which stands for Zebra Optimized Operator Multigrid. 

The remainder of this paper is organized as follows. Section 2 describes the design 
of our implicit restriction operators. Section 3 gives a two level Fourier analysis of our 
algorithm, and section 4 shows how this Fourier analysis can used to derive correction 
terms which can be added to the na'ive choice of coarse grid operators to accelerate 
convergence. After that, section 5 compares the computational complexity of this algo- 
rithm with that of competing algorithms, and section 6 shows how these results extend 
to three dimensional problems. The paper finishes with a conclusion section giving a 
preliminary assessment of the utility of this method. 
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problem size 

1 - 
dY2 

4 

8 

16 

32 

64 

128 

256 

- 
1 

-4a - 4 

-a2 2 a 2 + 8 a + 6  -a2 

-4a - 4 

1 
h 

two dimensional 
results 

.0025 

.0025 

3025 

.0025 

.0027 

.0028 

.0028 

three dimensional 
results 

.0025 

.0025 

.0025 

.0025 

.0026 

- 

- 

Table 1: ZOOM convergence rate, as a function of mesh size 

2. 

As stated in the last section, if we invert the induced coarse grid operator, the V-cycle 
zebra algorithm would be a direct method. This operator has the stencil 

Design of Coarse Grid Operators 

so performing zebra relaxation would involve pentadiagonal solves. Unfortunately, the 
stencils of these induced operators continue to grow, roughly doubling for each coarser 
level. 

Rather than attempting to cope with these unwieldy stencils, we approximate these 
induced coarse grid stencils by combinations of 5-point or %point stencils. The possi- 
bility of doing this is based on the observation that the operator induced prolongation 

4 



P, given by the stencil - - 
-1 

a 2a+2 a 
1 - 

dY2 
.. -1 1 

1 - 
dY 

contains second differences in the y-direction, but is only an averaging operator in the 
x-direction. Thus the three point operator Q, 

- 
-1 

0 4a+2  0 , 

m -1 4 

1 - 
dY2 

formed by summing the values of P along each row, should be close to P when applied 
to “smooth” functions. 

Given Q, we can form the coarse grid approximation of the fine grid operator, 

- - 
-1 

-a14 2+a/2  -a14 

- -1 4 

where L2 is the (negative of the) five point Laplacian on the coarse grid: 

The idea here is that the unwanted effect of the second difference in P is canceled by 
the identical second difference operator built into Q. 

In order to examine the effectiveness of this approach, we need to compare the fine 
grid operator L1 with the coarse grid correction operator: 

While L1 has a finite stencil, the right hand side is a global operator, making comparison 
awkward. To circumvent this we multiply both sides by P, arriving at  the relationship 

which allows easy comparisons. 
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With the choices above, the operator QLz has the form: 

-a2 - a/2 2a2 + 9a + 6 -a2 - a/2 'I dY 
0 

- 4 . 5 ~  - 4 

1 

Thus the difference between QLz and L I P  is 

which looks like uzzyy. Therefore, since dz2Q M 4 - dz2uyy, the coarse grid operator 
is approximating Q-'LlP to second order. We return to this in more detail when 
we consider other coarse grid operators which are higher order approximations, see 
Section 4. 

3. Analysis 

In this section we present the analysis of our algorithm for the case of the positive 
definite Helmholtz equation on the unit square. This analysis is remarkably simple 
because the subspaces involved in both the relaxation and coarse grid correction are 
identical. Assume the equation is discretized on a uniform mesh using the standard five 
point stencils for the second order derivatives. Let N ,  and Nu be the number of points 
in the z and y directions, respectively. The complex fourier modes represented on this 
mesh are given by 

ueir(rn, n)  = exp(i6rn + i+n) for rn = 1, - , N ,  - 1, 
and n = l , . . . , N , ,  - 1 

where 6 = r j / N , ,  j = - N ,  + 1 , .  - - ,  N ,  - 1 and + = 7rk/Nu, k = -Nu + 1, - , Nu - 1. 
The zebra-relaxation (by columns) and the coarse grid corrections (semi-coarsening 

by deleting columns) mix the fourier modes, so it is not possible to use a simple scalar 
amplification factor for the analysis. Applying either operator to a single fourier mode, 
ues#, results in a linear combination of two modes, and ue+"*#. These two modes 
form an invariant subspace under both the zebra-relaxation and the coarse grid cor- 
rection, and therefore form an invariant subspace of the iteration matrix of the two 
level multigrid algorithm. Thus, we can think in terms of a 2 x 2 "matrix amplification 
factor", depending on 8 and +, and the spectral radius is a bound on the asymptotic 
convergence rate for any error in that subspace. The maximum over all 6 and 4 is a 
bound on the asymptotic convergence rate of the two grid algorithm. 
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Zebra relaxation 

Consider the zebra relaxation acting on the subspace corresponding to a fixed 0 and 4. 
The symbol of the discrete operator is given by 

2, = 4 ~ , 2  sin2(e/2) + 4~y2 sin2(+/2) + K, 

LlueSd = 2 , u e t  

LlUe+r*4 = pue+r,4. 

in other words, 

We define the symbol for the other mode in the subspace as b, where 

Thus, 
P = 4Nj cos2(8/2) + 4Ni sin2(q4/2) + K. 

For the odd-column relaxation we have (see [4],[6]) 

(Note that it is easy to check that this formula is consistent with the property that, 
after an odd-column relaxation, the residual vanishes on odd lines.) By Equation 1, the 
symbol of the odd-column relaxation is: 

Similarly for the even relaxation we have: 

Coarse grid correction 

The coarse grid correction is a combination of the restriction, prolongation and coarse 
grid operators. The symbol of the prolongation operator for the (e,+) mode is f'. Recall 
that this is also the symbol of the fine grid operator for the (0 + 7r, 4) mode. 

For the restriction operator we have: 

R = Q-l c0s2(e/2) ue~4 

R ~ e + r d  = Q-l sin2 p/2)  ue+ri4 

where Q = 4Ni + 4N; sin2(0/2) + K is the symbol of the restriction, Q. On coarse grid 
points (even columns) the two modes in the subspace are identical, 

ue,d = ,etr,4 
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and therefore the coarse grid solve can be represented by a scalar symbol, 2T1. 
Putting it all together, we see that the coarse grid correction has the symbol 

where 

d = 1 - e,F(Qe,)-' sin2(8/2). 

The complete two grid iteration matrix is therefore: 

&EP&O = P(u  - C )  + E l ( b  - d)  

(El + F)2 

Since each of the 2 x 2 amplification factors is singular, the largest eigenvalue is just 
the trace (sum of the diagonal elements). We are thus left with a simple formula for 
the non-zero eigenvalue and the spectral radius of the two grid algorithm is given by: 

From this formula it is clear that if Q E 2  = then the two grid method would 
be direct. In our two grid algorithm the coarse grid operator is the product of the 
inverse of the coarse grid operator and the approximate inverse to the prolongation 
(which is performed either in the prolongation or the restriction). A good strategy is to 
take, as we have done, the coarse grid operator to be an approximation of the fine grid 
operator. However, it is also apparent that to get even better convergence rates, the 
factor, [I-k&(Q&)-'I, only needs to be small when I(P-e1)2/(P+e1)21 is not small. 
In the next section we use this analysis to predict 'optimal' coarse grid operators, Le., 
the coarse grid operators which are consistent with the fine grid operator, but contain 
additional correction terms which can further reduce the convergence rates. 
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4. Accelerated convergence 

In certain situations it is possible to accelerate the convergence rate of the ZOOM 
algorithm. For example, consider the Helmholtz equation: 

-uZz - UVV + KU = f. 

Using the same rectangular mesh as in the last section, the symbol of the fine grid 
operator, L1, is 

where 

21 = 4N: sin2(8/2) + e,, 
2, 4N; sin2(q5/2) + K. 

The symbols of the prolongation and restriction operators are: 

f' = 4N: cos2(8/2) + 2,, 
and 

Q = 4N: + 2,. 

symbol 22), so that 22s w ZIP.  The symbol of the 'natural" coarse grid operator is 
From Equation 3 we see that we want to choose the coarse gl,, operator, L2 (with 

i 2  = 4(Nz/2)2 sin2 8 + 2, 
and we want to find a correction term to be added to L 2  to optimize the convergence 
rate of the algorithm. Thus we choose our coarse grid operator, to approximate the 
quantity Q-'21k, where 

LIP = (4N: cos2(8/2) + 2,)(4N: sin2(8/2) + e,) 
= (4N: sin2 8 + 4N:2, + 2;). 

The goal is to approximate Q-' as closely as possible without allowing the stencil of 
the coarse grid operator to grow. For small 4, 

Q w 4N; + K.  

For larger values of 4, the (k - e)/(k + i) term in Equation 3 is small (the smoothing 
reduces the high frequencies in the y-direction) so the correction term is less important 
for the high frequency modes. Therefore we want to choose 

For K = 0 we compare Q 2 2  - i l k  and Qt2  - LIP. For the operator with no 
correction term: 

Q i 2  - 21P = 4Nl sin2(4/2) sin2 8 
= O(1). 
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but with the correction term: 

4N: 
-- sin4(+/2) sin2 e 

N,2 
= 0 ( d x 2 ) .  

Thus Lz approximates Q-' L I P  to fourth order whereas with no correction the approx- 
imation is only second order. 

The analytic operator which would give us the coarse grid operator, & (discretizing 
directly on the coarse grid with the standard difference formulae) is 

where d x  is the fine grid spacing in the x direction. More generally, we consider the 
family of coarse grid operators of the form: 

-u,% - uVv + KU + 6dx2Uvvzz - a d z 2  K i l z z  

Since we want to use multigrid recursively, these correction terms will accumulate. 
Thus, on grid level k, the correction terms will be: 

6 k  = S ( l + - + - + . - + p )  1 1  1 
4 16 
1 1  1 
4 16 

ak = a ! ( l + - + - + . . * + - )  4k-2 

For the case K = 0, only the 6 correction is needed. Table 2 lists the asymptotic 
convergence rates of the ZOOM algorithm using various amounts of this correction. The 
above analysis indicates that for the two grid algorithm we should use 6 = .0625. The 
theoretical two grid rates (solving the coarse grid equations exactly) are obtained from 
Equation 3. Experimental results both for the two grid and using all available coarse 
grids indicate that the convergence rates are better for a slightly smaller correction, 
6 = .0525. 

Figure 1 examines the effect of the fine grid aspect ratio d x l d y ,  on the convergence 
rates for three different values of 6. We see that 6 = .0525 is an excellent choice, though 
the convergence rate remains uniformly good with all three choices. Notice that for 
the ZOOM algorithm, we are particularly interested in large aspect ratios since we are 
coarsening in the x direction only. 
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I 0.350e-01 

0.300e-01 
cu 
0 
-cJ 

0.250e-01 

Qi 
u 

delto=.0000 
delto=.0525 
delta=.0625 

. . . . . . . . . 
_ _ _ _ _ _  

0.500e-02 c _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - -  

- . . . _  . . 
. . . . . . ._. ._.______ . . _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ . _ . . _ _ _ _ _ _ ,  

0.000 
- 1 0 .  - 8 .  -5. -3.  0 .  3. 5. 8. : 0 .  

log2 ( d X / d Y )  

Figure 1: Dependence of convergence rate on mesh aspect ratio 

correction 
6 

0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.0525 
0.06 
0.07 
0.08 
0.09 
0.10 

theoretical 
PTG 

.0190 

.0158 

.0125 

.0092 

.0059 

.0027 

.0026 

.0041 

.0067 

.0101 

.0137 
,0175 

experimental 
2 level 

.0186 

.0153 

.0121 

.0088 

.0055 

.002 4 

.0024 

.0040 

.0065 

.0096 

.0131 

.0168 

experimental 
k level 

.0237 

.0199 

.0159 

.0118 

.0077 

.0035 

.0025 

.0040 

.0065 

.0097 

.0135 

.0177 

Table 2: Convergence rates for various amounts of coarse grid operator corrections, (32 x 32 grid) 
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Returning to the positive definite Helmholtz operator, K > 0, we consider the effect 
of using only the 6 correction or using the full Helmholtz correction, with both 6 and a. 
Figure 2 shows a graph of the theoretical two grid convergence rates for various values 
of K, on a 32 by 32 grid. The solid line is for 6 = a! = 0, the dotted line for 6 = .0525, 
a! = 0, and the dashed line is the convergence rate for 6 = a! = .0525. Thus, with 
the full correction, we expect uniformly good convergence rates for all K > 0. This is 
important for the three dimensional version of ZOOM, since the operators inverted in 
the plane solves contain zeroth order terms. In the k-level experiments, we see exactly 
the same behavior, see Tables 3-5. 

0.500e-01 

a, 0.300e-01 

u 
C 
e, 

Q) 0.200e-01 
> 
C 
0 
0 

Y 

0 . 1  OOe-0  1 

0.000 
0. 4. a. 12. 16. 20. 

Figure 2: Dependence of convergence rate on Helmholtz term 
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c 
size 

4 

8 

16 

32 

64 

size 

4 

8 

16 

32 

64 

Helmholtz term, K 

0 1 3 10 30 100 300 1000 3000 10000 

.0176 .0173 .0165 .0132 .0065 .0011 .OW0 .OOOO .OW0 .OOOO 

.0233 .0233 .0230 .0208 .0175 .0098 .0022 .0002 .OW0 .OOOO 

.0243 .0243 .0241 .0228 .0233 .0202 .0130 .0032 .OW3 .OOOO 

.0245 .0245 .0243 ,0235 .0243 .0235 .0215 .0154 .0050 .0005 

.0245 .0245 .0244 .0240 .0242 .0241 .0236 .0223 .0177 .0065 

~ ~~ 

Table 3: k grid convergence rates, 01 = 7 = 0.0 (no corrections) 

Helmholtz term, K 

0 1 3 10 30 100 300 1000 3000 10000 

.0025 .0023 .0042 .0064 .0045 .0009 .Om1 .OOOO .OW0 .OOOO 

.0025 ,0039 .0068 .0110 .0135 .0088 .0021 .0001 .OOOO .OOOO 

.0025 .0044 .0073 .0120 .0182 .0186 .0126 .003 1 .OW3 .OOOO 

.0025 .0045 .0075 .0122 .0190 .0216 .0209 .0153 .0050 .0005 

.0026 .0046 .0076 .0122 .0192 .0222 .0230 .0221 .0176 .0065 

Table 4: k grid convergence rates, 7 = 0.0525, a = 0.0 (no helmholtz correction) 
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size 

Helmholtz term, K 

0 1 3 10 30 100 300 1000 3000 10000 

Table 5: k grid convergence rates, Q = 7 = 0.0525 (full correction) 

5. Comparison with other algorithms 

In this section we compare the efficiency of the ZOOM algorithm with that of three 
other multigrid methods. The first of these is a standard V-cycle algorithm based on 
red-black Gauss-Seidel iteration, as given in [1],[4]. This algorithm is not robust, in the 
sense that the convergence rate degenerates on stretched grids. All multigrid algorithms 
based on point iterative relaxation lack robustness. This algorithm was included to show 
how the ZOOM algorithm compares to a standard algorithm. The second is a zebra- 
based algorithm described by Winter [6], which uses semicoarsening, and has the same 
robustness properties as the ZOOM algorithm. The third is an alternating direction 
zebra algorithm, [4], which has fast convergence and is also robust. There are obviously 
a wide variety of other multigrid algorithms we could have compared against, but the 
comparisons given should be representative, and adequately demonstrate the efficacy of 
our approach. 

To make fair comparisons between these algorithms, one must take into account the 
cost per iteration. Table 6 gives the operations required in a V-cycle for each of the 
four algorithms being compared. Details, such as the order of even and odd relaxation 
sweeps, and the like are omitted; the interested reader is referred to the references 
cited. The approximate cost of these operations is given in Tables 7 and 8. The cost 
of the operations involved in point Gauss-Seidel algorithms is given in Table 7, while 
Table 8 gives the cost of the operations involved in zebra-based algorithms. The entries 
here are floating point operations per mesh point. The reader is cautioned that the 
particular values occurring are sensitive to assumptions, such as which symmetries can 
be exploited, and whether the tridiagonal factorizations are stored or recomputed. 

4 

8 

16 

32 

64 

14 

.0025 .0024 .0025 .0025 .0025 .0016 .OW4 .0001 .OW0 .OOOO 

.0025 .0025 .0025 .0025 .0025 .0025 .0021 .0005 .OW1 .OOOO 

.a25 .0025 .0025 .0025 .0025 .0025 .0025 .0023 .Om8 .0001 

.a25 .0025 .0025 .0027 .0025 .0025 .0025 .0025 .0025 .0011 

.0026 .0026 .0026 .0026 .0025 .0026 .0025 .0025 .0025 .0025 



Red-black GS algorithm 
fine grid 

coarse grids 

relaxation 

Winter’s algorithm 
fine grid 

coarse grids 

restriction 

Alternating direction 
fine grid 

coarse grids 

1.5 red-black GS 
2.0 red-black GS 

ZOOM algorithm 
fine grid 

coarse grids 

bilinear 
n 

operator 

1.5 odd-even zebra 

5 point 
n 

injection 5 point 
n 

2 odd-even zebra 5 point 
n 

bilinear 

5 point 
9 point 

1 odd-even zebra 
1.5 odd-even zebra 

implicit 
1) 

I n 

n 

Table 6 Operations in methods being compared 

red-black GS 

bilinear restriction 

bilinear prolongation 

standard Laplacian 

5 point 9 point + 

~~~ ~ 

prolongation 

bilinear 
n 

injection 
n 

bilinear 
n 

5 point 
9 point 

variable coefficients 

Table 7: Cost of operations in red-black GS multigrid 
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I standard Laplacian variable coefficients I I I 

Table 8: Cost of operations in zebra-based multigrid 

Cost per V-cycle 

Given these tables, we can estimate the effectiveness of each algorithm. The number of 
floating point operations per V-cycle of the red-black Gauss-Seidel algorithm is: 

1 1  
4 16 

(1.5 4 + 2.5 + 1) + (2.4 + 2.5 + 1) * (- + - + . . .) = 13.33 

1 1  
4 16 

(1.5 * 8 + 6 + 1) + (2 8 + 6 + 1) . (- + - + . . .) = 26.67 

in the constant coefficient, and variable coefficient cases respectively. The first term in 
each equation is the cost of the fine grid operations, while the second term is the cost 
of the coarse grid correction. For Winter's algorithm we have 

1 1  
2 4  

1 1  
2 4  

(1.5 7 + 3 + 0.5) (1 + - + - + . . .) = 24.8 

(1.5 * 12 + 5 + 0.5) . (1 + - + - + . . .) = 41.6 

where the series 1 + 1/2 + 1/4 + . . . enters because of the semicoarsening. For the 
alternating direction zebra algorithm we have: 

1 1  
16 

1 1  
4 16 

(2 * 7 + 3 + 0.5) * (1 + z +  - + . . .) = 23.33 

(2 * 12 + 5 + 0.5) * (1 + - + - + . . .) = 39.33 
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t 

algorithm 

red-black GS 
constant coef. 
variable coef. 

Winter’s zebra algorithm 
constant coef. 
variable coef. 

Alternating direction zebra 
constant coef. 
variable coef. 

ZOOM algorithm 
constant coef. 
variable coef. 

.0741 13.33 
26.67 

.0230 23.33 
39.33 

.0024 I 36 

I 66 

cost per factor 
of 10 reduction 

11.8 
23.6 

24.8 
41.6 

14.2 
24.0 

13.7 
25.2 

Table 9: Comparison of algorithms 

Finally for the ZOOM algorithm we have: 

(7+3 .5+1)+ (1 .5 .11+5 .5+2 .5 ) . (1 /2+1 /4+  ...) = 36 

(12+6+2)+(1 .5*20+10+6) - (1 /2+ 1/4+ ...) = 6 6  

The performance of each of these algorithms is summarized in Table 9. The first col- 
umn gives the required number of floating point operations per mesh point, as computed 
above. The second column gives the two-level convergence rate for each algorithm. It 
would have been better to use k-level rates, but we did not have k-level rates for all 
four algorithms. 

Now combining these results, we estimate the relative effectiveness of each algorithm. 
Define the ‘cost per factor of 10 reduction” as: 

cost / l09lO(P) 
where p is the convergence rate. Not surprisingly, the point Gauss-Seidel algorithm 
is slightly faster than these robust algorithms, though the difference is rather slight. 
Among the robust algorithms, the ZOOM algorithm and the alternating direction al- 
gorithm appear fastest. However, if one looks at stretched grids, the convergence rate 
of the alternating direction algorithm degenerates, while that of both the ZOOM alge 
rithm and Winter’s algorithm do not, Table 10. Thus the ZOOM seems preferable to 
either of the other robust algorithms. 
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Alternating 
direction [4] 

.119 

.082 

.019 

.023 
,019 
.082 
.119 

Winter’s 
algorithm [6] 

.015 

.063 

.074 

.074 

.074 

.074 

.074 

ZOOM 
algorithm 

.0010 

.0020 

.0024 

.0025 

.0025 

.0025 

.0024 

Table 10: Two grid convergence rates for L = -EU,, - uyy 

Parallel  Implications 

The ZOOM algorithm also has advantages as a parallel algorithm. Algorithms based on 
full coarsening are attractive on sequential machines, where the cost of operations on 
coarse grids is unimportant. However, on parallel architectures, operations on coarse 
grids are important, since they limit parallelism. Thus semicoarsening, which increases 
sequential cost, is not a disadvantage on parallel architectures. 

In considering the parallel speed of this kind of algorithm, there is one issue in 
ZOOM which needs to be addressed. In the ZOOM algorithm, each coarser level has 
half as many tridiagonals as the next finer level, but the size of these tridiagonals does 
not change. This is clearly awkward on parallel architectures. One would prefer the 
exact opposite, that the number of tridiagonals remains the same, but the size of each 
tridiagonal halves on each coarser grid. Though we cannot achieve this while retaining 
robustness, we can implement ZOOM using z-direction zebra on odd levels and y- 
direction zebra on even levels, still using semicoarsening. Two level analysis shows that 
this does not change the algorithms numerical properties, and all coarse grids are now 
approximately square. 

Given this modification, a direct comparison of ZOOM and the alternating direction 
algorithm shows ZOOM to be much faster on sufficiently parallel architectures. The 
number of zebra sweeps per V-cycle is the same (including the implicit restricts), so the 
execution times of these algorithms should be comparable on sufficiently parallel archi- 
tectures. However, the convergence rate of ZOOM is ten times better on unstretched 
meshes, and almost a hundred times better on highly stretched meshes. Thus ZOOM 
seems clearly superior on parallel architectures. 

The comparison between ZOOM and Winter’s algorithm as parallel algorithms is 
closer. These algorithms are very similar, so the use of parallel architectures effects 
both of these algorithms identically. Thus the difference in the performance of these 
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algorithm on parallel architectures, will be the same as the difference in their sequential 
complexity. 

6. Three Dimensional Problems 

The ZOOM algorithm uses zebra relaxation, and is thus natural in two dimensions. 
However, it can be used in three dimensions as well, if one performs the analogous three 
dimensional zebra relaxation. To solve the system of equations for each plane in the 
zebra relaxation, we simply use the two dimensional ZOOM algorithm. 

Suppose, for example, one is solving Poisson’s equation in three dimensions. The 
seven point Laplacian in three dimensions is: 

0 

0 -a 2 o  

0 

where a looks like l/dz2, and varies from grid to grid in semi-coarsening. 

Helmholtz operator 
To perform three dimensional zebra relaxation, we need to invert the five point 

(4) 

A similar Helmholtz operator needs to be inverted in the implicit restriction. Since 
the convergence of the two dimensional ZOOM algorithm was not harmed by positive 
definite Helmholtz terms, this presents no difficulty. 

Acceleration of convergence works exactly as in two dimensions. For the operator 

- uZZ - u y y  - u,, + Ku ( 5 )  
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we need to  add the term 
Sdz2(-uZz - u,,,, - K U L ) ~ ~  

where dz is the fine grid mesh spacing, and S is chosen exactly as in two dimensions. 
- 

size 

4 

8 

16 

32 

64 

no 
correct ion 

.0080 

.0165 

.0206 

.0231 

.0239 

with correction 

1 inner iteration 

.0063 

.0061 

.0063 

.0063 

.0063 

2 inner iterations 

.0025 

.0025 

.0025 

.0025 

.0025 

Table 11: three dimensional Laplace equation 

The performance of the three dimensional zoom algorithm is given in table 11. The 
second column shows the spectral radius, when the correction term is neglected. The 
convergence rate here is similar to that in the two dimensional case. The next column 
gives the rate of convergence when the correction term is included, if one uses a single 
ZOOM V-cycle for each of the plane solves required, including those required in the 
implicit restrictions. While a single ZOOM V-cycle reduces the error by a factor of 
400, the error remaining still harms convergence of the three dimensional algorithm 
slightly. The last column gives the convergence rate when two ZOOM V-cycles are used 
to solve the equations on each plane. Two V-cycles reduce the error on each plane by 
a factor of more than 100,000, and so provide, in effect, exact solutions. In this case, 
the convergence of the two and three dimensional ZOOM algorithms are seen to be 
identical. 

Despite this fast convergence, the three dimensional ZOOM algorithm is not com- 
petitive with three dimensional multigrid algorithms based on point relaxation, unless 
one requires robustneas. This is both because of the cost of the plane solves, and be- 
cause of the slow geometric series caused by semicoarsening l + 1/2 + 1/4 + ... rather 
than usual series 1 + 1/8 + 1/64 + ... with full coarsening. However, when robustness 
is an issue, the ZOOM algorithm is competitive. As in two dimensions, the convergence 
rate of the algorithm is insensitive to mesh aspect ratio. 
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7. Conclusions 

The ZOOM algorithm is new and relatively untried, but is clearly promising. The 
algorithm has been shown to be effective on simple self-adjoint problems, and we are 
in the process of studying it on problems dominated by first derivative terms. We also 
expect that it will make an effective preconditioner for conjugate gradient iteration on 
the indefinite Helmholtz equation, since the coarse grid operators in ZOOM closely 
approximate the fine grid operators, and thus should have very similar eigenfunctions 
and eigenvalues [ 21. 

The fundamental limitation to this method is its restriction to  tensor product grids. 
It is also sensitive to  rapidly varying problem coefficients. At locations where coefficients 
jump, it is impossible to form a prolongation stencil which properly “operator-induces;” 
one must make numerical compromises. However, given that the coefficient jumps are 
not extreme, analysis suggests convergence rates of 0.03 or better can still be achieved. 
With this lower convergence rate, there is no need to include the accelerating correction 
terms on coarse grids, so the cost of the algorithm can be reduced by use five point 
stencils. 

One of the most interesting applications of this method is in the solution of elliptic 
equations on Chebyshev grids. Such problems arise when one uses an implicit dis- 
cretization of the pressure equation in the Navier Stokes equations, and in a variety of 
other applications. The Chebyshev grid causes a slow variation in the coefficients in the 
difference stencil, with the rate of variation going to zero as the grid is refined. Very 
high and very low mesh aspect ratios are also encountered along the domain bound- 
aries. Thus the ZOOM algorithm should be ideal for this application, and we anticipate 
convergence rates comparable to those obtained on uniform grids. 
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