Isotopic Study of Oxygen Diffusion in Oxide Coatings

Daniel A. Gulino
Lewis Research Center
Cleveland, Ohio

Lawrence A. Kren
Case Western Reserve University
Cleveland, Ohio

and

Therese M. Dever
Cleveland State University
Cleveland, Ohio

Prepared for the
16th International Conference on Metallurgical Coatings
sponsored by the American Vacuum Society
San Diego, California, April 17–21, 1989
ISOTOPIC STUDY OF OXYGEN DIFFUSION IN OXIDE COATINGS

Daniel A. Gulino
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Lawrence A. Kren*
Case Western Reserve University
Cleveland, Ohio 44106

and

Therese M. Dever
Cleveland State University
Cleveland, Ohio 44115

SUMMARY

Diffusion of oxygen in thin films of silicon dioxide has been studied using oxygen isotopically enriched in oxygen of atomic mass 18 (18O). This subject is of interest because thin films of dielectrics such as SiO2 are proposed for use as protective coatings for solar mirrors in low Earth orbit, which is a strongly oxidizing environment. Films of this material were prepared with a dc magnetron using reactive sputtering techniques. To produce 18O-enriched SiO2, a standard 3.5-in.-diameter silicon wafer was reactively sputtered using 18O-enriched (95 percent) oxygen as the plasma feed gas. The films were characterized using RBS and SIMS to establish stoichiometry and purity. Subsequently, the films were exposed to an air-derived oxygen plasma in a standard laboratory plasma reactor for durations of up to 10 hr. The concentration ratio of 16O as a function of depth was determined using SIMS profiling and compared to a baseline, nonplasma exposed sample. A value for the diffusivity of oxygen near the surface of these films was obtained and found to be about 10^-15 cm^2/sec.

INTRODUCTION

Electrical power generation for the initial configuration of Space Station Freedom will be accomplished by traditional photovoltaic panels providing a total of 75 kW. At a later date, two 25 kW solar dynamic power system modules will be added. Solar dynamic systems generate electricity by directing sunlight into the receiver of a thermal-to-electric power conversion unit, such as a Rankine or Brayton cycle heat engine. Collection and focusing of sunlight will be accomplished by a parabolic concentrator composed of 456 triangular (1 m) facets arranged into 19 hexagonal petals of 24 facets each (fig. 1). Details of the concentrator module design and construction are provided elsewhere (ref. 1 and 2).

Protection of the concentrator reflective medium (either silver or aluminum) from the low Earth orbit (LEO) atomic oxygen environment will be

*Summer Student Intern at NASA Lewis Research Center.
accomplished by overcoating the metal layer with one or more thin layers of transparent dielectric, such as aluminum oxide or silicon dioxide. While much previous work has demonstrated the resistance to oxidation by these metal/oxide systems, there has remained the question of the likelihood of long-term diffusion of atomic oxygen through these films to the dielectric/metal interface. This may cause oxidative degradation of the metal, and possibly the substrate, as well. The purpose of the present study was to measure the rate and extent, if any, of oxygen atom penetration through an oxide coating. This was accomplished by preparing a thin film of silicon dioxide by reactive sputtering of a silicon wafer target where the reactive gas was oxygen of atomic mass 18. Subsequent exposure to an 16O plasma and comparison with an unexposed sample provided a means of measuring any oxygen diffision.

APPARATUS AND PROCEDURE

Preparation of the 18O-enriched silica was accomplished using a dc magnetron with a boron-doped, (111) silicon wafer target mounted on a 10.16 cm (4 in.) diameter by 0.635 cm (0.25 in.) thick aluminum wafer occupying the normal target position. The arrangement is depicted schematically in figure 2. Electrical contact between the silicon and the aluminum was sufficient for proper operation of the unit. The belljar was first pumped down to a pressure 1 mtorr. Argon was then bled into the chamber at a rate of 852 SCCM, which raised the pressure to 5 mtorr. The magnetron was then started and set to ramp to 0.3 kW in 10 min. 18O (Scott Specialty Gases) flow was started 9 min into the ramp cycle in order to conserve 18O. Typical sputtering times were 2 min at 0.3 kW, giving films about 1000 to 1100Å thick.

Films of Si18O$_2$ were deposited on <100> silicon wafer substrates and analyzed by Rutherford backscattering spectrometry (RBS) for stoichiometry and purity. Separate samples were exposed to an air-derived oxygen plasma in a standard laboratory plasma ashers (thus 16O was the diffusing species of interest) to simulate the oxidizing environment of LEO for varying lengths of time. The ashers generate an oxygen plasma by RF excitation of air at 13.56 MHz, providing a variety of oxygen species at thermal energies. The utility of oxygen plasma ashers for LEO atomic oxygen simulation is discussed elsewhere (ref. 3 to 5). Any diffusion oxygen through the silica layer was then measured by depth profiling with secondary ion mass spectroscopy (SIMS) to look for changes in the 16O/18O ratio. These concentration profiles were used to calculate the diffusivity of oxygen through silica. Table I presents data on the deposition parameters for the films prepared in this study. The subsequent analysis performed is also listed.

RESULTS

Chemical Analysis

RBS analysis of the first four samples permitted determination of the stoichiometry of the SiO$_x$ films (table II). Flow rates above 10 SCCM were sufficient to obtain approximately stoichiometric SiO$_2$. Even at 16O flow rates of zero, significant amounts of oxygen were present in what were presumed would be pure Si films. The source of this oxygen is probably
residual moisture in the chamber. Its presence did not hinder the course of these experiments, however, since ^{18}O enrichment was successfully obtained in films prepared with ^{18}O replacing ^{16}O as the reactive feed gas. Figure 3 shows raw SIMS data for sample 7A, which was prepared with ^{18}O. The level of ^{18}O was increased considerably versus the normally expected natural abundance of ^{18}O (0.204 percent). Figure 4 shows raw SIMS data for sample 1A, which was an attempt to prepare a pure SI film (but did in fact incorporate oxygen impurity) and was the only nonenriched sample for which a SIMS profile was obtained. The expected natural abundance of ^{18}O was in fact observed. Thus it was possible to detect an increase in ^{16}O concentration levels in samples prepared identically to 7A after exposure to the ^{16}O plasma.

Figure 5 depicts ^{16}O concentration profiles as a function of depth for samples 7A (nonashed), 8B (1 hr ashed, 1.17×10^{19} atoms/cm2 equivalent fluence of 0 atoms), and 8C (10 hr ashed, 1.17×10^{20} atoms/cm2 equivalent fluence). Because the concentration of ^{16}O in the bulk of these films should be the same (since they were prepared during the same deposition run), and because the accuracy of the concentration measurements is good only to a factor of two with this technique, the concentration profiles were normalized to the bulk values. The concentration profile of the nonashed sample was then subtracted out and the data replotted as bulk-normalized concentration difference versus depth (fig. 6).

It should be noted that the concentration profiles reached their peaks at a depth of about 100Å, rather than at the surface, as would be expected. This is most likely due to out-diffusion of near-surface oxygen during the time (about 2 weeks) between oxygen plasma exposure and subsequent SIMS analysis. Therefore, in figure 6, the profiles begin at about 100Å depth.

Diffusion Model

Analysis of the concentration profiles was accomplished by modeling the system as a one-dimensional, nonsteady-state diffusion into a semi-infinite slab according to the technique described by Dosdale and Morris (ref. 6). Such diffusion is described by Fick's second law (ref. 7).

$$\frac{\partial C_a}{\partial t} = \frac{\partial}{\partial x} \left[D(C_a) \frac{\partial C_a}{\partial x} \right]$$

(1)

where C_a is the concentration of the diffusing species, x is distance (in this case, depth), t is time, and $D(C_a)$ is the diffusivity which in general is a function of concentration. If it is assumed that D is independent of concentration, equation (1) reduces to

$$\frac{\partial C_a}{\partial t} = D \frac{\partial^2 C_a}{\partial x^2}$$

(2)

Assuming the boundary condition that the surface concentration is constant at C_{a0} and the initial condition that $C_a = 0$ for all $x > 0$ at $t = 0$, then by the following substitutions
equation (2) may be written as

\[-2n \frac{dc}{dn} = D \frac{d^2C}{dn^2} \]

The solution to equation (5) is the complementary error function of \((\eta \sqrt{D}) \), or

\[C = \text{erfc} \left(\frac{n}{\sqrt{D}} \right) \]

If the inverse of equation (6) is taken

\[\text{erfc}^{-1}C = \frac{n}{\sqrt{D}} \]

and if \(z \) is defined as

\[z = \text{erfc}^{-1}C \]

then we have the simple equation

\[z = \frac{n}{\sqrt{D}} \]

Thus a plot of \(z \) versus \(\eta \) should be linear with slope equal to \(1/\sqrt{D} \). In practice, it is necessary to transform the original data by equations (3) and (8).

Performing the above analysis on the concentration profiles for the 1 and 10 hr exposures yielded \(\eta \) versus \(z \) curves such as shown in figure 7 for the 1 hr sample. Based on the slopes of a least-square fit to these lines, values of \(D \) were calculated and are shown in table III.

These values are in reasonable agreement and are between the ranges of values typically seen for gas-solid and solid-solid diffusion (table IV). Given the larger size of the oxygen atom relative to the helium atom, as well as uncertainties inherent in measurements such as this, the values obtained here appear reasonable.

From the values, calculations were made of time required for concentration at the interface (assumed to be at depth of 1000Å) to reach various fractions of the maximum concentration. These values are presented in table IV.
DISCUSSION

As described elsewhere, (refs. 2, 3, 9, and 10) much work has been done to evaluate the durability oxidative attack of silver/dielectric systems exposed to an oxygen plasma. In those studies, any effect of oxygen was measured as a loss in reflectance. A thin film of silver with no protective coating loses reflectance very rapidly (2 to 3 hr exposure results in a loss of about 30 percent) in the plasma ash environment (ref. 9). Exposure times have ranged to many hundreds of hours (far more than predicted in table V) with little or no oxidative degradation evident, as determined by reflectance measurements. The results obtained here would not predict this. It is not clear what concentration level of atomic oxygen at the SiO₂/Ag interface is necessary before macroscopic effects, such as reflectance loss, become observable. It is intuitively reasonable, however, that 10 or 20 percent or more of the plasma concentration should be sufficient. Oxygen is not reacting at the rates which might be predicted from these concentration profiles.

There are at least two possible explanations for the observed lack of oxidation: (1) oxygen is actually arriving at the interface, but is somehow prevented from reacting with the silver, or (2) oxygen is not arriving at the interface. Based on the assumptions made in using the semi-infinite slab approximation, the second explanation is the more likely. The semi-infinite slab model works best for short times and short distances. It is probable that, as the level of oxygen in the film increases, the diffusion rate of later arriving oxygen is retarded or even stopped altogether as the driving force (concentration difference) for that diffusion is lessened.

It is interesting to note that the extent of diffusion was approximately the same (about 300Å) in both the 1 and 10 hr cases. It would be instructive to repeat these experiments for longer exposure times (up to 100 hr) and then profile with SIMS to determine if diffusion extends beyond this depth. The structure of these amorphous silica films may be such that a certain degree of porosity exists near the surface which permits a small degree of diffusion to occur there. This would be consistent with earlier findings that SiO₂ films, among many others, are successful in protecting silver from atomic oxygen attack. The results obtained here would be useful in predicting the rate of oxygen diffusion in thinner films (<300Å).

CONCLUSIONS

Thin films of SiO₂, isotopically enriched in ¹⁸O, were successfully prepared, and diffusion of ¹⁶O from an air-derived oxygen plasma through these films were detected. Calculation of a diffusivity for ¹⁸O in these SiO₂ films yielded values which would predict a relatively rapid build-up of oxygen atoms at an SiO₂/Ag interface. The lack of experimental evidence for this, as measured macroscopically by reflectance loss, suggests that oxygen atoms are not actually reaching the interface, but may in fact diffuse only into the topmost 200 to 300Å.
REFERENCES

<table>
<thead>
<tr>
<th>Sample</th>
<th>Gas flow, SCCM</th>
<th>Film thickness, Å</th>
<th>16O plasma exposure, hr</th>
<th>Subsequent analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ar 16O 18O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>852 -- --</td>
<td>1040</td>
<td>--</td>
<td>RBS, SIMS</td>
</tr>
<tr>
<td>2A</td>
<td>852 10 --</td>
<td>1070</td>
<td>--</td>
<td>RBS</td>
</tr>
<tr>
<td>3A</td>
<td>852 25 --</td>
<td>1100</td>
<td>--</td>
<td>RBS</td>
</tr>
<tr>
<td>4A</td>
<td>852 40 --</td>
<td>1100</td>
<td>--</td>
<td>RBS</td>
</tr>
<tr>
<td>7A</td>
<td>568 40</td>
<td>580</td>
<td>0</td>
<td>SIMS</td>
</tr>
<tr>
<td>8B</td>
<td>568 40</td>
<td>580</td>
<td>1</td>
<td>SIMS</td>
</tr>
<tr>
<td>8C</td>
<td>568 40</td>
<td>580</td>
<td>10</td>
<td>SIMS</td>
</tr>
</tbody>
</table>
TABLE II. OXYGEN FLOW RATES AND RESULTING STOICHIOMETRY

<table>
<thead>
<tr>
<th>Sample</th>
<th>16O flow rate, SCCM</th>
<th>Si/O ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>2A</td>
<td>10</td>
<td>0.59</td>
</tr>
<tr>
<td>3A</td>
<td>25</td>
<td>0.52</td>
</tr>
<tr>
<td>4A</td>
<td>40</td>
<td>0.52</td>
</tr>
</tbody>
</table>

TABLE III. - CALCULATED DIFFUSIVITIES

<table>
<thead>
<tr>
<th>Exposure time, hr</th>
<th>D, cm²/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.30x10⁻¹⁶</td>
</tr>
<tr>
<td>10</td>
<td>2.16x10⁻¹⁷</td>
</tr>
</tbody>
</table>

TABLE IV. - TYPICAL GAS-SOLID DIFFUSIVITIES

[cm²/sec, 20°C; ref. 8.]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>He in SiO₂</td>
<td>2.4x10⁻¹⁰</td>
</tr>
<tr>
<td>He in pyrex</td>
<td>4.5x10⁻¹¹</td>
</tr>
<tr>
<td>He in SiO₂</td>
<td>2.1x10⁻⁸</td>
</tr>
<tr>
<td>Bi in Pb</td>
<td>1.1x10⁻¹⁶</td>
</tr>
<tr>
<td>Sb in Ag</td>
<td>3.5x10²¹</td>
</tr>
<tr>
<td>Al in Cu</td>
<td>1.3x10³⁰</td>
</tr>
</tbody>
</table>
TABLE V. - TIME REQUIRED TO
REACH THE GIVEN FRACTION OF
C_{ao} AT THE DEPTH OF 1000A

<table>
<thead>
<tr>
<th>$C = C_{a}/C_{ao}$</th>
<th>Time, hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>41</td>
</tr>
<tr>
<td>0.2</td>
<td>66</td>
</tr>
<tr>
<td>0.3</td>
<td>100</td>
</tr>
<tr>
<td>0.4</td>
<td>153</td>
</tr>
<tr>
<td>0.5</td>
<td>241</td>
</tr>
</tbody>
</table>

The D calculated from the 1 hr exposure data was used.

FIGURE 1. - SCHEMATIC DIAGRAM OF A SOLAR DYNAMIC POWER MODULE, WHICH INCLUDES A CONCENTRATOR MADE UP OF HEXAGONAL ELEMENTS, EACH OF WHICH IS COMPRISED OF SPHERICALLY CONToured TRIANGULAR FACETS. ALSO SHOWN ARE THE RECEIVER/HEAT ENGINE AND RADIATOR.
FIGURE 2. SCHEMATIC DIAGRAM OF THE DC MAGNETRON SPUTTERING SYSTEM.

FIGURE 3. SIMS PROFILE FOR 16O AND 18O FOR SAMPLE 7A, WHICH WAS PREPARED USING 18O-ENRICHED OXYGEN. THE CONCENTRATION OF 18O IS GREATLY INCREASED OVER THE EXPECTED NATURAL ABUNDANCE (0.204 PERCENT).
Figure 4. - SIMS profile of 16O and 18O for sample 8A, which was prepared only with argon sputtering gas (no oxygen gas present at all). The total amount of oxygen in the film was quite high, indicating residual oxygen in the chamber. This figure demonstrates the natural abundance of 18O versus 16O.

Figure 5. - 18O concentration profiles for 18O-enriched SiO$_2$ films exposed to an air-derived 16O plasma for varying lengths of time. 18O-enrichment is clearly evident.
FIGURE 6. - BULK-NORMALIZED ^{16}O CONCENTRATION PROFILES USED TO CALCULATE THE DIFFUSIVITY OF OXYGEN ATOMS IN THESE Si$_x$ films.

FIGURE 7. - PLOT OF η VERSUS Z FOR THE ONE HOUR EXPOSURE SAMPLE.
Report Documentation Page

1. Report No.
NASA TM-102082

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle
Isotopic Study of Oxygen Diffusion in Oxide Coatings

5. Report Date

6. Performing Organization Code

7. Author(s)
Daniel A. Gulino, Lawrence A. Kren, and Therese M. Dever

E-4764

9. Performing Organization Name and Address
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

10. Work Unit No.
506-41-31

11. Contract or Grant No.

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, D.C. 20546-0001

13. Type of Report and Period Covered
Technical Memorandum

15. Supplementary Notes
Prepared for the 16th International Conference on Metallurgical Coatings, sponsored by the American Vacuum Society, San Diego, California, April 17-21, 1989. Daniel A. Gulino, NASA Lewis Research Center; Lawrence A. Kren, Case Western Reserve University, Cleveland, Ohio 44106 and Summer Student Intern at NASA Lewis Research Center; Therese M. Dever, Cleveland State University, Cleveland, Ohio 44115.

16. Abstract
Diffusion of oxygen in thin films of silicon dioxide has been studied using oxygen isotopically enriched in oxygen of atomic mass 18 (18O). This subject is of interest because thin films of dielectrics such as SiO$_2$ are proposed for use as protective coatings for solar mirrors in low Earth orbit, which is a strongly oxidizing environment. Films of this material were prepared with a DC magnetron using reactive sputtering techniques. To produce 18O-enriched SiO$_2$, a standard 3.5-in.-diameter silicon wafer was reactively sputtered using 18O-enriched (95 percent) oxygen as the plasma feed gas. The films were characterized using RBS and SIMS to establish stoichiometry and purity. Subsequently, the films were exposed to an air-derived oxygen plasma in a standard laboratory plasma reactor for durations of up to 10 hr. The concentration ratio of 16O as a function of depth was determined using SIMS profiling and compared to a baseline, nonplasma exposed sample. A value for the diffusivity of oxygen near the surface of these films was obtained and found to be about 10$^{-15}$ cm2/sec.

17. Key Words (Suggested by Author(s))
- Oxygen diffusion
- Atomic oxygen
- Silicon dioxide
- Magnetron sputtering

18. Distribution Statement
Unclassified—Unlimited

Subject Category 23

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No of pages
12

22. Price
A03

For sale by the National Technical Information Service, Springfield, Virginia 22161