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TECHNICAL PAPER

FURTHER DEVELOPMENTS IN MODELING DIGITAL CONTROL SYSTEMS
WITH MA-PREFILTERED MEASUREMENTS

l. INTRODUCTION

Books on modern digital control systems usually treat the problem of controlling a linear time-
invariant plant, driven by a zero-order-hold with a sampled output, as shown in Figure 1 (see, for
example, Reference 1). The state vector x(t) € R"; the control input vector u(kT) € R"; the output or
measurement vector yi(kT) € R™; the system matrix F € R™"; the control matrix G € R™"; the output
matrix C; € R™". It is well known that this system can be modeled at the sampling instants by the discrete
state equations [1]

x(®FIT) = A x(KT) + B u(kT) (1)
yikT) = C; x(kT) (2)
where
o) =L [I-Fy'] € R™ 3)
A = (T) € R™ “)
T
B =[] 6(\dN] G € R™ (5)
0

In light of equation (2), y;(kT) represents an instantaneous measure of the system at the sampling instant
kT and, hence, can be thought of as being an instantaneous measurement vector.

Unfortunately, not all systems in the real world produce discrete measurements like this. For
example, there exist systems where discrete measurements represent average measures of the system
over the time interval T between outputs. Such systems can be found in the aerospace field wherever
startrackers and some state-of-the-art rate gyroscopes annd accelerometers are used, to name a few [2]. In
one system of this type, discrete measurements are generated every T/N seconds and averaged as in
Figure 2. Every N measurements are averaged to produce the averaged measurement vector y(kT) € R",
every T seconds. The system in Figure 2 also allows for the possibility of instantaneous measurements.
Discrete state variable models for this system were derived in References 2 and 3.
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The system in Figure 2 was then generalized to that shown in Figure 3 and discrete state variable
models for it were derived in Reference 4. In Figure 3, the output matrix Cp € RP*" and so the output
vector z(t) € RP. This is sampled every T/N seconds and multiplied by the weighting matrices H; € R¥*P,
j=0,1,...,N-1. After N repetitions, the results are summed to produce the weighted-averaged mea-
surement vector ye(kT) € R every T seconds. Functionally, this is equivalent to passing the mea-
surements generated every T/N seconds through a multi-input/multi-output moving-average (MA)
process with coefficient matrices H;, j=0,1,...,N-1 [5]. The output of the MA prefilter is sampled every
T seconds to produce the output vector ye(kT). Hence, yr(kT) can also be thought of as an MA-prefiltered
measurement vector. Observe that the system in Figure 2 is a special case of the one in Figure 3.

Reference 4 also derived discrete state equations for the system in Figure 4 when the matrix E_ €
RY*" is uniquely chosen. The system in Figure 4 is the same as the one in Figure 3 except the MA-
prefiltered measurement vector ye(kT) is modified to yield the output vector yg'(kT) € RY. This system is
the basis for a new type state reconstructor that is developed in References 6 to 10.

Enlightened by the work of Hagiwara and Araki [11], it became clear that the results for the sys-
tems in Figures 3 and 4 could be extended to the systems shown in Figures 5 and 6. In Figure 5, the
sampling intervals on the measurements to be MA-prefiltered vary from T/2 to T/N with the length of the
MA prefilters varying from 2 to N. Fori=2,3,...,N, the output matrix Cg; € RP*"; the output vector z(t)
€ R™; the weighting matrix H;; € R9*" where j=0,1,...,N-1; the MA-prefiltered measurement vector
yri(kT) € R%. Figure 6 is like Figure 5 except that each MA-prefilter measurement vector yg(kT) is
‘modified to produce the output vector y;'(kT) € R%. The matrix E;_ € R%*". Observe that Figures 3 and 4
are special cases of Figures 5 and 6, respectively.

This paper presents state variable representations for the systems in Figures 5 and 6. This is done
in Section III by extending the results for Figures 3 and 4 that are summarized in Section II. Concluding
remarks are made in Section IV.

Il. PREVIOUS STATE VARIABLE REPRESENTATIONS FOR DIGITAL
CONTROL SYSTEMS WITH MA-PREFILTERED MEASUREMENTS

In Reference 4, two discrete state variable representations are derived for the system in Figure 3.
The first one is

[x(k+1T) A 07 [x«kD B
= + u(kT) (6)
nk+17T) D, 0} ]|nkT E,

[ yi(kT) C, 0] x(kT)
= (7)
__\fF(kT) 0 1 n(kT)
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where the matrices A and B are defined by equations (3) to (5), the vector n(kT) € RY, and the matrix 1 is
a qxq identity matrix. The matrix D, is defined by the relationship

D, = Ha, € RY"
where
H = [H, EH| i EHN_,] € RIXNp)

and

rCF b(0)

Cr ¢[T(T/N)]
a, = € R(Np)xn

Cg o[T-(N=1)T/N]

The matrix E, is defined by the relationship
E+ = H B+ € qur

. where

e

B T
Ce [f d(N)dN] G
0

‘T-T/N

Cr L) AN G

0
B = € ROV

" T-(N-)T/N

cr1f oA G
0

L ol

The second state variable representation for the system in Figure 3, derived in Reference 4, is



Cx(k+1T) A 0] xxD B
= + u(kT) (8
Ln(k_+—lT) 0 0]|nkT) I
[ yi(kT) G 0 ] [xkm)
= 9
LZF(kT) D_ E || n(kT)

where n(kT) € R" and the matrix [ is an rxr identity matrix. The matrix D_ is defined by the relationship

D_ = Ha_ € R™"

where

[Cr d(0) ]

Cr ¢ (-T/N)
a = € RMpxn

| Cr ¢ [-(N-1)T/N]
The matrix E_ is defined by the relationship
E_ = HB_ € R

i where

| -

0
Ce 1) VAN G
0

—(T/N)

crlf SN G
0 € R(Np)xr

—(N=-1)}T/N)

el  oMdN G
0

| —

! 10




In Reference 4, the system in Figure 3 was modified to become that in Figure 4. A discrete state
variable representation for it was shown to be

x(k+1T) = Ax(kT) + Bu(kT) (10)
yi(kT) G

= x(kT) - (11)
ye'(kT) D_

The system in Figure 4 and this discrete state variable representation for it are the basis for the new type
state reconstructor developed in References 6 to 10.

lil. NEW STATE VARIABLE REPRESENTATIONS FOR DIGITAL CONTROL
SYSTEMS WITH MA-PREFILTERED MEASUREMENTS

Extending the results in Section II for the system in Figure 3, two discrete state variable represen-
tations can be defined for the system in Figure 5. From equations (6) and (7), the first one is

&+ | [A 1 Txan | [B ]

”f_]z(_‘*“—-i T) D>y . n2(kT) E>.

= [ O] - + u(kT) (12)

DN(mT) | D+ 1 [n(kT) | Env

[ yi(kT) "] x(KT) ]

yr2(kT) M2(kT)

= = (13)
LZFN(le LHN(kT)_

where i=2,3,...,N, the vector n;(kT) € R, and the matrix [; is a q;xq; identity matrix. The matrix D; ; 1s
defined by the relationship

11




Di; = Hja;, € R™"
where

H; = [Hjo EH“ i E Hii 1)) € RO
and
——(-:Fi &(T)

Cri &(T ~ _—T)
oy = 1 € RUp)xn

| Cri OIT - (1) -]

The matrix E;, is defined by the relationship

Ei. = HiBi, € RY"

where

T
Cri [fo d(N)AN] G

T-Th

Ce [J  oMdN G
Bi+ = 0 € R(ip.)xr

T-(i-1)T/

Crgi A
cr [{ SAdN] G

From equations (8) and (9), the second state variable representation for the system in Figure 5 is
x(k+1T) A 0 x(kT) B
[ = | + u(kT) (14)
nk+1T) 0 0 3(kT) I

12

e e - e o, . -
—— M e e e e el e aal



kD] [C 0

yr2(KT) D,. E,_ x(kT)
) B (15)

n(kT)

yen(kT) Dno Enc
= —

o e -t

where all vectors and matrices have been previously defined except for the following. Fori=2,...,N, the
matrix D;_ is defined by the relationship

Di— = HiOli_ € Ru*n
where

Cri (0)

Cri & (=Th)
Q. = € Ripoxn

Cr ¢[-(i~1) TA]
|

o

The matrix E;_ is defined by the relationship
Ei = HiBi € R

where

13



~ 0
Cri [{ d(N)dN] G

=T/

Cri [f d(N)dA] G
4]

Il

Bi— € R(ip.)xr

—(i—1)}T/)

Cr [{ dVAA] G

..J

For the system in Figure 6, a discrete state variable representation can be formed by extending the
results in Section II for the system in Figure 4. From equations (10) and (11), the result is

x(k+1T) = Ax(kT) + Bu(kT) (16)
vk 7 (o ]
Yr2'(KT) D,

= x(kT) , (17
yen'(kT) Dne
|~ _ L

where all vectors and matrices have been previously defined.

IV. CONCLUDING REMARKS

This paper presented new general state variable representations for digital control systems with
MA-prefiltered measurements. The previous models, derived in Reference 4 for the systems in Figures 3
and 4, were extended to the systems in Figures 5 and 6.

For the system in Figure 5, two models were presented. One is defined by equations (12) and (13)
while the other by equations (14) and (15). As to which one is best to use for a given system, the follow-
ing advice is offered. Choose the one which yields the least number of states. The resulting discrete state
equations are more likely to be observable and controllable.

For the system in Figure 6, the model presented is defined by equations (16) and (17). It is
especially intriguing because it has the same plant equation as the state variable model given by equations
(1) and (2) for the system in Figure 1.

14
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