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Preface

The second Summer Program of the Center for Turbulence Research was held
during the four week period June 27-July 22, 1988. As in the summer of 1987 the
program focused on the use of direct numerical simulations of turbulent flows for
study of turbulence physics and modeling. The main differences were the absence of
distinct thematic groups, and a special emphasis on turbulent mixing layers; about
a third of the research projects were concerned with turbulent mixing layers. The
required data for these investigations were generated from four newly developed
codes for simulation of time and spatially developing incompressible and compress-
ible mixing layers.

The remaining projects covered a wide range of topics in turbulence research.
These included, the structure of wall bounded turbulent and transitional flows, eval-
uation of diagnostic techniques for detection of organized motions, energy transfer
in isotropic turbulence, optical propagation through turbulent media, and detailed
analysis of the interaction of vortical structures. Some of these projects were a con-
tinuation of the efforts started in the 1987 Summer Program. A significant fraction
of the research conducted during the Summer program used new simulations rather
than existing databases. This allowed exploration of different parameter regimes
and boundary conditions.

As part of the program, four review tutorials were given on topics related to
turbulent mixing: Convective and absolute instability (P. Huerre), Concepts for
mixing layer control (C. M. Ho), Dynamical systems and mixing (J. Ottino), Mixing
and Chemical reactions (J. C. Hill). There were also four special lectures on recent
numerical simulations and databases.

This volume begins with the nine papers on turbulent mixing layers arranged in
alphabetical order by the first author followed by the remaining papers also arranged
in alphabetical order. The volume is an account of a short but intense period of
research activity; therefore, the results should be considered as preliminary. Many
of the studies that began during the summer are being continued, and it is hoped
that in due course the results will be submitted to the appropriate journals by
the authors. Early reporting of virtually all of the projects occurred at the Forty-
First Meeting of the Fluid Dynamics Division of the American Physical Society in
Buffalo, New York, November 20-22, 1988. Twenty two abstracts based on the work
accomplished during the summer program were presented at this meeting.

Parviz Moin
William C. Reynolds
John Kim
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Chaos in a Spatially-Developing
Plane Mixing Layer

By J. G. Broze!, F. Hussain! and J. C. Buell?

A spatially-developing plane mixing layer has been analyzed for chaotic behavior.
A direct numerical simulation of the Navier-Stokes equations in a two-dimensional
domain infinite in y and having inflow-outflow boundary conditions in z was used for
data. Spectra, correlation dimension and the largest Lyapunov exponent have been
computed as functions of downstream distance z, over the range 0 < z/6, < 250,
from velocity time series in an Eulerian reference frame. When forced at a single
(fundamental) frequency with maximum amplitude v, /AU = 0.01, the flow is peri-
odic at the inflow but becomes aperiodic with increasing . The aperiodic behavior
is caused by the presence of a “noisy” subharmonic caused by the feedback between
the necessarily nonphysical inflow and outflow boundary conditions. In order to
overshadow this noise the flow was also studied with the same fundamental forcing
and added random forcing of amplitude v./AU = 0.01 at the inlet. Results were
qualitatively the same in both cases: for small z, spectral peaks were sharp and di-
mension was nearly 1, but as z increased a narrowband spectral peak grew, spectra
decayed exponentially at high frequencies and dimension increased to greater than
3. Based on these results, the flow appears to exhibit deterministic chaos. How-
ever, at no location was the largest Lyapunov exponent found to be significantly
greater than zero. Moderate forcing with both fundamental at v./AU = 0.01 and
subharmonic at v, /AU = 0.01 and 0.002 caused the flow to be periodic throughout
the computational domain.

1. Introduction

The discovery of deterministic chaos in dynamical systems has opened the possi-
bility of understanding and modelling transitional and turbulent flows, which pre-
viously could only be described statistically. Complementary to this concept, the
discovery and measurement in these flows of large-scale organized vortical motions,
called “coherent structures”, add evidence that there is order underlying the appar-
ent randomness of turbulence. To couple these two concepts — chaos and coherent
structures — might yield working models of turbulence which do not require solution
of the full Navier-Stokes equations but which may predict flow statistics and dy-
namics with useful accuracy. In order to do this, it must be established that chaos
and coherent structures are present in flows of interest and relevant measurements
must be made. It is the existence of deterministic chaos in a mixing layer which is

1 University of Houston
2 NASA Ames Research Center

PRECEDING PAGE BLANK NOT FILMED



4 J. G. Broze, F. Hussain and J. C. Buell

the object of this study; coherent structures in mixing layers have been studied in
detail previously.

Prior studies of flow chaos have been almost exclusively in closed flows, in par-
ticular, Rayleigh-Bénard convection and Taylor-Couette flow. However, most flows
of interest are open flows: jets, wakes, mixing layers and boundary layers. Finding
deterministic chaos in open flows is complicated by a number of factors. Most open
flows, including jets, plane Poiseuille low and spatially developing mixing layers,
are convectively unstable (Bechert 1985), i.e., perturbation wave packets do not
remain at the point of their origin but move downstream as they grow. It might be
relevant to make measurements in a reference frame moving with the disturbance;
for example, Deissler & Kaneko (1987) found that solutions of the time-dependent
generalized Ginzburg-Landau equation gave the appearance of being chaotic, but
had no positive Lyapunov exponents until they were measured in a moving frame.
However, measurements in a moving frame are quite difficult to make; laboratory
techniques such as hot-wire, hot-film, or laser-Doppler anemometry are best suited
to collecting time series at a single location, or in a few locations simultaneously.
New techniques, such as particle displacement velocimetry, can give more spatial
detail but have reduced accuracy. Numerical simulations have both spatial detail
and accuracy, but an advecting probe would leave the computational domain after
only about a thousand time steps, compared to tens of thousands needed for stan-
dard analysis techniques. It might also be useful to analyze instantaneous spatial
data for spatial chaos. Methods for analysis of spatial data are not well estab-
lished, although it is possible to apply techniques to a “space series” rather than
a time series, if those data are available (Sauliere & Huerre 1988). Even so, the
same obstacles to data collection apply in the spatial case as they do to the moving
probe.

The flow investigated was a two-dimensional, two-stream mixing layer with Re =
(U1 — Uz2)8,,/v = 100 and velocity ratio U;/U; = 0.2. U; and U, are the ve-
locities of the two streams, §, is the inflow vorticity thickness and v is the kine-
matic viscosity. All lengths and coordinates are normalized by §,, and velocities
by (Uy — U;). In order to minimize the streamwise pressure gradient, entrainment
velocities v(y=—o0) = 0.0115 and v(y = 0c0) = —0.0044 were imposed. The inflow
profile for the streamwise velocity u was calculated from the Blasius self-similarity
equation. The corresponding vertical velocity v could not be used since the self-
similarity solution has vorticity at infinity. Instead, a somewhat arbitrary profile
consistent with the entrainment velocities and containing a small amount of down-
wash was imposed at the inflow. Both velocity components were required to satisfy
a “convective” outflow boundary condition of the form 3¢/t = —c8¢/O0z, where
¢ = (U1 +U;)/2. See figure 2 of Buell & Huerre (1988) for a schematic of the

geometry.

Data for analysis were obtained from direct numerical simulations using a re-
cently developed code. The two-dimensional Navier-Stokes equations are solved on
a domain that is infinite in the vertical (y) direction and finite in the streamwise
(z) direction. Pressure is eliminated by taking the curl of the momentum equations
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FIGURE 1. Contours of vorticity for a = 0.01, b = 0.01, ¢ = 0.

twice and retaining only the z-component of the result. This yields a fourth-order
equation for the streamwise velocity u which is advanced in time explicitly using a
compact third-order Runge-Kutta scheme (Wray 1988). Since the Laplacian is con-
tained in the time-derivative term, a Poisson equation must be solved during each
substep. The vertical velocity v is recovered directly from the continuity equation.
The numerical algorithm is based on a Fourier method with a cotangent mapping in
the y direction (a modification of the method of Cain et al. 1984), and high-order
accurate Padé approximations in the = direction. The first z-derivatives in the con-
tinuity equation and in the advection terms are approximated with modified Padé
finite differencing (S. Lele, private communication). The particular approximation
used here yields sixth-order accuracy for the low to moderate wavenumber compo-
nents of the solution, and significantly lower dispersion errors for high wavenumbers.
The second and fourth-order z-derivatives are approximated with classical fourth-
order accurate Padé formulas. In order to avoid the inversion of very large sparse
matrices for the solution of the Poisson equation for u, the effective wavenumber
concept (Kim & Moin 1985) is applied in the z-direction so that the y-direction
matrices are decoupled. The mesh used here was 384 x 192 in (z,y), and the do-
main length in the z-direction was 250. Perturbations were introduced in v at the
inflow; the perturbation amplitude was tapered by a Gaussian shape over a small
region near y = 0.

The primary instability in mixing layers is a fundamental wave which grows ex-
ponentially from its initial (linear) amplitude at the inflow, becomes nonlinear and
saturates at some z, forming a rolled-up vortex. The secondary instability is the
subharmonic of the fundamental which grows and saturates, resulting in vortex
pairing. Both the fundamental and subharmonic are receptive to disturbances over
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a band of frequencies; the initial amplitudes and phase difference control the evolu-
tion of the mixing layer. For more details, see Monkewitz (1988). The frequencies,
amplitudes and phases from which these grow depend on extrinsic perturbations:
controlled excitation, feedback and ambient noise. A sample vorticity plot is shown
in figure 1 for a simulation with both fundamental and subharmonic perturbations.
This plot shows all stages of 2-D mixing layer dynamics up through pairing. The
vortex entering at z = 60 has not yet fully rolled up; the structure at z = 80 is
fully formed and will eventually pair with the one at z = 60. Two structures near
z = 120 are in the process of pairing, while the structures at z = 180 and z = 230
are fully paired structures.

Coflowing two stream mixing layers have been shown theoretically to be convec-
tively unstable. However, the upstream flow can be perturbed by feedback from
somewhere downstream. In experiments, this feedback may be provided by im-
pingement on a solid body, causing pressure fluctuations which propagate upstream
to the inflow, or perhaps by velocity fluctuations at the splitter plate induced by
downstream vortex rollup. In numerical experiments with solid surfaces absent,
this cannot occur except as boundary condition reflections. In the present numeri-
cal simulation, it was established that boundary condition reflection did exist (Buell
& Huerre 1988), causing vortex rollup to occur in a nontransient manner for the
conditions being simulated.

2. Approach

It is not clear whether the flow in question, a two-stream transitional mixing
layer, is temporally or spatially chaotic. The flow developsin z and is obviously not
spatially periodic, but it is not possible to examine the exact nature of its spatial
behavior in the current framework. The flow looks somewhat more periodic in time,
but closer examination reveals definite aperiodicity. It is entirely possible that the
flow is both temporally and spatially chaotic. Given the inability to follow distur-
bances spatially for great distances, we wanted to focus more closely on temporal
aspects of the flow and to exclude possible spatial dynamics. To do this, we chose
to analyze time series collected in an Eulerian frame at selected flow locations and
to treat streamwise distance z as a flow parameter. Since the disturbance at a given
z originates upstream and convects past our “probe”, we perturbed the flow by im-
posing a sinusoidal fluctuation (with a fundamental and/or subharmonic frequency)
at the inflow boundary. This way, we imposed a periodicity on the dynamics and
observed how it deviated from periodicity with increasing z. We still must rely on
the presence of other disturbances to initiate this deviation, but what is of interest
is how the flow organizes itself in the presence of these disturbances.

3. Excitation Case Studies

The inlet profile of the mixing layer had the form U(y)i + [V(y) + ve(y,1)]J,
where U(y) is the Blasius similarity solution for a 2-D mixing layer and v.(y,t)
is the perturbation. The inlet was excited with fundamental and subharmonic
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perturbations and random noise with several combinations of amplitudes:

ve(y,t) = f(y)[acos(wt) + beos(wt/2 + @) + cr(t)]

where f(y) has a Gaussian shape centered at y = 0 and is zero elsewhere and r(t)
is a uniform random variable distributed on the interval (-1,1). We isolated a few
key cases:

Case (i): no forcing (¢ =b=c =0),
Case (ii): (a) fundamental only (a = 0.01; b = ¢ = 0),
(b) fundamental plus random forcing (a = 0.01; b = 0; ¢ = 0.01),
Case (iii): fundamental and subharmonic (a = 0.01; b = 0.01, 0.002, 0.0005;
c=0).

In case (i), fundamental and subharmonic waves grow due to unknown perturba-
tions arising from boundary condition reflections; low-dimensional behavior is not
expected in general. In case (ii(a)), the fundamental is driven by periodic forcing,
but the subharmonic is subject to background perturbation by reflections. Case
(ii(b)) was used to study the difference between the subharmonic driven by back-
ground perturbation and by a random inlet forcing. In case (iii), both fundamental
and subharmonic are driven by the imposed periodic perturbation. The phase angle
¢ was chosen to be 100 degrees, in the range where subharmonic enhancement is
expected (Monkewitz 1988, Husain & Hussain 1988).

4. Analysis Techniques
4.1. Time Series Analysis

Power spectra, correlation dimension and largest Lyapunov exponent were calcu-
lated from time series collected at selected locations in the flow domain. To establish
the existence of chaos from (numerical or laboratory) experimental data is tricky,
at best; several pieces of supporting evidence must be assembled and analyzed for
trends as parameters are varied. Taken together, continuous spectra, noninteger
correlation dimension and positive Lyapunov exponent are strong indicators of de-
terministic chaos.

4.1.1. Power specira

Spectra can provide insight into flow dynamics. There are two obvious extremes:
a discrete spectrum indicates periodicity or quasi-periodicity, whereas a continu-
ous spectrum with no peaks suggests nonperiodic, random behavior. In contrast,
other spectra which are intermediate cases, such as sharp peaks on broadband back-
ground noise or a combination of sharp and narrowband peaks, indicate possible
low-dimensional, chaotic dynamics. The behavior of spectra at high frequencies can
be used to separate deterministic chaos from randomness. In particular, the idea
that exponential decay of spectra is indicative of deterministic chaos, while power-
law behavior is indicative of randomness, is argued by Sigeti & Horsthemke (1987)
and utilized in several studies, e.g., Brandstater & Swinney (1987).
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FIGURE 2. (a) Correlation integral for case (ii(a)), a = 0.01, b =c =0, m =
1,...,7 from top; (b) Slope of correlation integral, m = 1,...,7 from bottom.

4.1.2. Correlation dimension

The trajectories in phase space are reconstructed from a single dynamic variable
using time-series-delay embedding (Takens 1980). Time delays were chosen using
the first minimum of the mutual information (Fraser & Swinney 1986) and checked
visually by making two-dimensional phase portraits. Correlation dimension was
calculated using the algorithm of Grassberger & Procaccia (1983) (modified to use
1000 randomly chosen reference points). The correlation integral C(s), where s
is phase space distance, was computed for a range of embedding dimensions and
fit with a cubic spline polynomial (figure 2a). Each line in the figure represents a
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different embedding dimension m, increasing from top to bottom. Notice that, near
the region where the log, s = —3, all curves have approximately the same slope.
The slope of C versus s was computed analytically in log-log coordinates from the
spline coefficients (figure 2b). The slope is typically quite high (possibly as high as
m) at the smallest distances due to the presence of noise. At larger distances, the
slope drops off sharply and may flatten out; this occurs near log, s = —3 in the
example. The correlation integral is said to “scale” when the slope is constant over
some range of distances and said to “saturate” when this constant slope converges
as m increases. This saturated slope is called the correlation dimension v, and
is an estimate of the Hausdorff dimension. The distances over which the slope is
constant is called the scaling region, since it implies that the correlation integral
scales exponentially, i.e., C ~ s”. The scaling region is computed by finding the
scales over which the slope does not deviate more than a given bound, typically
5%. In the example shown in figure (2b), for m = 3, v = 1.07 over a scaling region
from s = 0.045 to s = 0.20, where s in this case is v. The actual value computed
from this algorithm cannot be used to determine n very accurately; e.g., it can not
discriminate between 1.0 and 1.05 and therefore can not be used to “prove” that
an object is fractal. It can be used to estimate dimension roughly and to measure
increasing complexity as a parameter is varied. Unfortunately, data length required
for the correlation dimension algorithm is large and increases roughly as k™, where
k is the some constant (Brandstater & Swinney 1987). Since higher embedding
dimensions are required to reveal higher dimensional attractors, data requirements
quickly get very large as dimension increases.

4.1.3. Lyapunov ezponent

The largest Lyapunov exponent is a measure of the maximum rate of exponential
divergence of trajectories in phase space and is indicative of chaos when positive.
We calculated it using the method of Wolf et al. (1985). The exact value of the
exponent is not crucial and should not be expected from this algorithm, although it
does give results within a few percent for time series from model systems of ordinary
differential equations, such as the Lorenz system. It is an important indicator of
chaotic behavior, and it is important to be sure whether or not it is positive. Since
the calculated exponent can vary significantly depending on input parameters (viz.,
time delay, embedding dimension, maximum and minimum scales, evolution time),
care was taken to select consistent values. The results of the correlation dimension
calculation form natural choices for several of these parameters. In particular, the
time delay was chosen from mutual information (the same delay was used for corre-
lation dimension and Lyapunov exponent), embedding dimension was chosen to be
the minimum m for which saturation was observed in the correlation integral, the
minimum and maximum scales were taken from the limits of the flat scaling region,
and the evolution time was chosen as the time delay. Several tests of these param-
eters were conducted. Small differences in time delay and embedding dimension
had little effect on the computed exponent. However, since the algorithm follows
the distance between nearby trajectories in the reconstructed phase space, mini-
mum and maximum scales are quite important. These scale parameters sets the
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range of distances between trajectories which will be considered. A distance which
is too small would include the random noise at the smallest scales and might give
a positive exponent even when the large-scale flow is not chaotic, while measuring
at very large distances might yield a negative or zero exponent even for a chaotic
attractor. The limits of the scaling region of the correlation exponent were chosen
for these parameters since those are the scales over which the flow behaves as an
attractor. Small variations about these values had little effect on the computed
value. The choice of evolution time has some effect on the magnitude, but not on
the sign, of the exponent. In summary, the exponents we calculated seem to give a
good indication of the sign of the largest Lyapunov exponent.

4.1.4. Flow variable

The choice of flow variable, in principle, should make very little difference in the
results using these methods. Three variables were tested: u, v, and G = [w.dy,
where w, is the vorticity. The v component had a smoother profile with a peak at
v ~ 0 while u had sharp peaks near y ~ 0. The variable G was generated as a means
of tracking passage of vortex peaks for use in the analysis of discrete sequences (see
next section). Results were in good agreement: dimension and Lyapunov exponent
using v and G were quite similar, while u tended to give slightly higher values and
smaller scaling regions. After these tests, v was chosen as the variable to be used.

4.2. Analysis of Discrete Sequences

Two goals of open-flow studies using nonlinear dynamics techniques are low-
dimensional modeling and prediction. One way to do this is to extract from the data
a discrete sequence of significant events, such as vortex passage periods T, vortex
strengths or any other significant dynamic measure. From this sequence, first-return
maps (T, versus Tn4;) can be constructed which give information about what the
next period will be based on the previous period. If these maps are highly ordered,
a curve fit might give a useful predictive model. If the maps are less structured,
it may still be possible to quantify how much information is “stored” by the flow
system — about the future based on the past — by computing “stored information”
(Shaw 1984). We constructed first-return maps from periods between zero-crossings
of v and computed stored information:

UToss|To) = [ P(T2) [ P(TutslT2) log(P(Tnsa|To)/ P(Ta)dTnsadT

where I(T,+1|Tn) is the stored information, P(T, ) is the probability density function
(pdf) of T, and P(T,+1|T») is the pdf of Ty, 4, conditional on T,,. Unfortunately, to
construct a convergent pdf estimate requires a large number of points, particularly
when one wishes to construct conditional pdfs from some subset of the data set. As
a result, we were unable to get useful results from our data, which had less than 200
structure passages (when we needed of the order of thousands). The pdfs and stored
information were quite sensitive to number of bins used in the pdf estimate. The
stored information fluctuated significantly as number of bins was changed. We were
unable to establish reliably even an approximate value which could reveal trends in
I(Th+1|Tn) as location was changed.
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FIGURE 3. Spectrum of v for case (i), a = b = ¢ = 0; (a) ¢ = 140, (b) =z = 230.

5. Results and Discussion
Case (i): (a=b=c=0)

Velocity spectra in the unforced case showed no sharp peaks: a broadband fun-
damental peak appeared at small z (figure 3a) and was replaced at larger z by a
broadband subharmonic peak (figure 3b). Computation of the correlation integral
revealed no scaling region. This is not unexpected; the instability is driven by am-
bient perturbations only, which are almost entirely boundary condition reflections
at the outflow. For the computational domain chosen, the reflection was weak and
aperiodic (Buell & Huerre 1988). Since the reflections are not periodic, the fluc-
tuations passing the “probe” are necessarily not. Due to the lack of scaling, no
parameters could be extracted to compute Lyapunov exponent.

Case (ii(a)): (a =0.01; b=c=0)

The fundamental was forced at w = 0.18. Traces of v velocity at four different
z locations (figure 4) show how the flow is periodic at z = 100 and becomes more
disordered with increasing z. At z = 140, the emergence of the subharmonic
component can be seen in the alternating higher and lower peaks at some times. At
z = 170 and 200, events can be seen with twice the period of the fundamental; this
is the footprint of paired vortices. Spectra of v velocity (figures 5a-d) at the same
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FIGURE 4. Time traces of v for case (ii(a)), a = b = 0.01, ¢ = 0; from bottom to
top, z = 100, 140, 170, 200.

locations reveal sharp peaks at the fundamental frequency and its harmonics which
slowly diminish with z. The peak of the subharmonic is not sharp, however; it
forms a noisy narrowband peak at about w = 0.09. This peak is initially quite low:
at z = 100 (figure 5a), the fundamental is almost 4 orders of magnitude higher; at
z = 140 (figure 5b), the fundamental is 2 decades higher; at = 170 (figure 5¢), the
peaks are only a decade apart; and at z = 200 (figure 5d), the noisy subharmonic
clearly dominates the spectrum. At this point, the spectrum looks quite similar
to the spectrum in the unforced case (figure 3b). This is not surprising, since the
subharmonic was unforced in both cases.

In contrast with case (i), correlation integral calculations worked quite well in
this case. Results for cases (ii(a)) and (ii(b)) are shown in figure 6. For case (ii(a)),
correlation dimension was near 1 for z < 100 and increased monotonically to a value
between 3 and 4 by z = 170. For locations ¢ > 170, the correlation integral did
not truly scale. An oscillation in the slope sometimes appears at high embedding
dimensions which obscures any flat slope; in other cases the slope is flat but still
rises a few percent with each higher embedding dimension. In all cases, at large z,
the scaling region is quite small, extending over a factor of two or less in distance.
This is quite likely due to a lack of long time series, as discussed above in Analysis
Techniques. Time series of only 9000 points (188 orbits) were used. The values
shown in figure 6 for z > 170 are estimates from the time series available; the true
dimension is likely to be higher.

Calculation of the largest Lyapunov exponent over the domain 100 < z < 200 did
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(ii(b)).

not show an appreciable positive value at any location. Values ranged from -0.0083
bits/orbit (-0.00023 bits/time unit) to 0.072 bits/orbit (0.002 bits/time unit), show-
ing a general, though not monotonic, increase with z. While the largest value found
might indicate chaos, this possibility is not certain. These exponents can be inter-
preted as the average rate at which information is lost or gained about the initial
condition of a phase space trajectory; a positive value represents a loss of informa-
tion and therefore sensitive dependence on initial condition. The largest calculated
value can be compared loosely with values reported by Wolf et al. (1985) for the
Lorenz attractor (2.16 bits/time unit, 1.08 bits/orbit) and the Rossler attractor
(0.13 bits/time unit, 0.78 bits/orbit) for typical parameter values.

Case (ii(b)): (a =0.01; =0; c =0.01)

Since the boundary condition reflection was difficult to quantify but was clearly
not periodic, we imposed a random perturbation on the inlet in addition to the
fundamental perturbation. This perturbation was designed to be of lower amplitude
than the fundamental but higher than the background. At the first z station (z =
0.7), the fundamental amplitude of the v spectrum was 10~%, while the white noise
amplitude was 10~1° (figure 7). For the case with no random input, the background
amplitude was less than 10711, Spectral development is quite similar to that of the
case with no random forcing, as was that of dimension (figure 6) and Lyapunov
exponent. The two dimensions begin to deviate after £ = 160; exact values at larger
z are unreliable, but the trend seems to indicate that the system under random
forcing may have higher dimension. The drop in dimension for the randomly forced
case at z = 190 is clearly not physical; it is most likely due to the lack of data
records of adequate length.

Case (iii): (a = 0.01; b= 0.01, b = 0.002, 0.0005; c = 0)
This case yielded both expected and unusual results. Intuition suggests that the
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presence of sinusoidal fundamental and subharmonic should make the flow periodic
for a larger streamwise distance. When the subharmonic amplitude was 1% and
0.2%, this was the case; in fact, the flow was periodic and dimension was 1 through-
out the domain (figure 8). When the subharmonic was very low (0.05%), however,
the flow was not periodic, and had higher dimension than with no subharmonic
forcing at all. This is contrary to intuition, since we expect that even a low ampli-
tude subharmonic would organize the flow more than no subharmonic at all. As a
check, spectra with and without this forcing were compared, and they revealed that
the noisy subharmonic had higher amplitude with the forcing. Further investigation
showed that the forcing amplitude was of the order of reflection noise. We speculate
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that superposition of subharmonic forcing with the boundary condition reflections
creates higher subharmonic amplitude which is still noisy.

The results of cases (ii(a)) and (ii(b)) seem to indicate chaotic behavior. The
growth of narrowband noise in the spectrum, exponential falloff of spectra at high
frequencies for large z and the increase from unity of correlation dimension all peint
to the presence of low dimensional chaos in this system. By comparing the devel-
opment in z of the spectrum with correlation dimension, one sees the connection
between dimension and the growth of the subharmonic. The fundamental excita-
tion has caused the flow to be periodic for small z, but the subharmonic does not
grow from a pure sinusoid and its contribution to the dynamics is necessarily ape-
riodic. As the subharmonic grows, the flow becomes less organized; however, this
disorganization appears to be low dimensional chaos.

The similarity between cases (ii(a)) and (ii(b)) is quite significant. The bound-
ary condition reflection can not be entirely random; reflections will peak as large
structures pass out of the computational window, yielding a broadband reflection
centered at the subharmonic frequency, as there is only one pairing within the com-
putational domain. The random forcing is white (figure 7). But the flow driven
by weak internal reflections and the flow driven by white noise are similar: these
perturbations are organized by the secondary instability into a low-dimensional
chaotic flow rather than a random flow. However, this low-dimensional behavior is
observed only in forced cases with periodic roll up; the unforced case showed no
scaling at all. Why is this? Perhaps the answer lies with the subharmonic resonance
phenomenon, which has been investigated both theoretically (Monkewitz 1988) and
experimentally (Husain & Hussain 1986). Comparing spectra in cases (i) and (ii(a)),
the bandwidth of the unforced flow (figure 3a) is significantly broader than that of
the subharmonic component in the forced flow (e.g., figure 5b). Because we have
supplied a single fundamental frequency w, it resonates most strongly with the fre-
quency w/2. Other frequencies near w/2 will resonate because of detuning, but
their amplitudes will be lower. However, if the fundamental is narrowband rather
than a sharp peak, resonance will occur over a wider range of frequencies, giving a
wider subharmonic bandwidth. Thus, the flow with no forcing has a wider spectral
band in both the fundamental and subharmonic. This lack of organization must
result in higher dimension, too high to be measured with the record length avail-
able. The linear falloff at high frequencies in case (i) and in cases (ii(a,b)) points
to deterministic chaos in this flow (Sigeti & Horsthemke 1987), although we could
not measure its dimension.

6. Concluding Remarks

A numerically generated, two-stream mixing layer has been studied as a function
of position in an Eulerian frame for evidence of temporal chaos. The most interesting
result was for cases in which a single, periodic perturbation was imposed at the inlet.
With increasing z, narrowband peaks developed in the spectra, dimension increased
from 1, and spectra at high frequencies fall exponentially, indicating that the flow
had become chaotic.
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The absence of a positive Lyapunov exponent is puzzling in light of other indi-
cators of chaos. The recent work of Deissler and Kaneko (1987) shows, using the
Ginzburg-Landau equation and coupled logistic maps, that convectively unstable
systems which appear chaotic may nonetheless have zero Lyapunov exponent when
measured in a stationary frame. However, positive Lyapunov exponents were mea-
sured in a frame moving with the disturbance. The mixing layer is a convectively
unstable flow and may exhibit the same behavior. Additional study will be focused
on this possibility.

The development of chaos in the singly forced case can be seen as the result of
resonance between the periodic fundamental and its subharmonic. Since the ambi-
ent fluctuations are broadband, the subharmonic develops as a narrow band rather
than a single frequency due to detuning. The layer shows qualitatively the same
behavior when forced with fundamental alone as when forced with fundamental and
random noise. This is quite interesting because the perturbation sources are quite
different: in one case the source is reflections which are due to downstream flow
conditions, whereas in the other case it is imposed random perturbations. More
investigation is necessary to determine whether this similarity is superficial or there
is some universality to the dynamics regardless of the extrinsic perturbation.

Laboratory experiments will serve as an important test of these results. Will
the flow evolve similarly in the laboratory, or will the low-dimensional dynamics
be overcome by three-dimensional phenomena? Three-dimensional mixing layers
should behave quite differently. The onset of the spanwise secondary instability, the
development of ribs, the possibility of vortex cut-and-connect and the breakdown
of the mixing layer are important dynamic events which are not possible in two
dimensions. In addition, 3-D spatially developing simulations and simulations of
temporally developing flows will be quite important to study these phenomena as
low-dimensional dynamical systems under carefully controlled conditions.
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Inflow/Outflow Boundary Conditions and
Global Dynamics of Spatial Mixing Layers

By J. C. Buell! AND P. Huerre?

1. Introduction

The numerical simulation of incompressible spatially-developing shear flows poses
a special challenge to computational fluid dynamicists. The Navier-Stokes equations
are elliptic and boundary equations need to be specified at the inflow and outflow
boundaries in order to compute the fluid properties within the region of interest.
It is, however, difficult to choose inflow and outflow conditions corresponding to a
given experimental situation. Furthermore the effects that changes in the boundary
conditions or in the size of the computational domain may induce on the global
dynamics of the flow are presently unknown. The purpose of this study is to exam-
ine these issues in light of recent developments in hydrodynamic stability theory.
The particular flow to be considered is the spatial mixing layer but it is expected
that similar phenomena are bound to occur in other cases such as channel flow,
the boundary layer, etc. A short summary of local/global and absolute/convective
instability concepts is given in section 2. In section 3 we present the results of nu-
merical simulations which strongly suggest that global resonances may be triggered
in domains of finite streamwise extent although the evolution of the perturbation
vorticity field is everywhere locally convective. In the last section, we discuss a rela-
tionship between finite domains and pressure sources which might help in devising
a scheme to eliminate these difficulties.

2. Local/Global, Absolute/Convective Instabilities

Rigorous definitions of absolute and convective instability have been given in
the context of plasma physics by Briggs (1964) and Bers (1983). Similar ideas
have recently been applied to inviscid instabilities in free shear layers by Huerre
& Monkewitz (1985), Koch (1985) and Monkewitz (1988), among others. For a
review, the reader is referred to Huerre (1987).

A parallel flow (i.e., independent of the streamwise coordinate z) is said to be
convectively unstable if its linear response to a delta function impulse in space
and time decays to zero everywhere as time increases to infinity, but increases
along certain rays in the downstream direction (Figure 1b). Conversely, a parallel
flow is absolutely unstable if its impulse response becomes unbounded everywhere
for infinite time (Figure 1a). These notions are particularly relevant in spatially-
evolving flows, as long as the streamwise variations of the basic velocity profile are
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FIGURE 1. Sketch of a typical impulse response: (a) absolutely unstable flow; (b)
convectively unstable flow.

small over a characteristic instability wavelength. One then says that the flow is
locally absolutely unstable or locally convectively unstable at a given streamwise
station. For instance, it has been demonstrated (Huerre & Monkewitz 1985) that
the hyperbolic tangent mixing layer is convectively unstable for values of the velocity
ratio R = (U, — U;)/(U; + U;) smaller than one (i.e., for coflowing streams),
U; and U; being the respective velocities of each stream. Since this model is a
good approximation to experimentally measured local mean velocity profiles, one
may safely conclude that spatially-developing shear layers are locally convectively
unstable everywhere: any initial vortical disturbance is advected downstream as it
is amplified and the flow is extremely sensitive to external forcing (Ho & Huerre
1984). It is important to note that this locally convective behavior strictly pertains
to vortical fluctuations in the shear zone and not to pressure fluctuations in the
outer potential flow.

Since there is no region of absolute instability, one cannot have a self-sustained
global response (i.e., a finely tuned oscillation with the streamwise coordinate as an
eigenfunction direction) involving temporally amplified upstream and downstream
propagating vorticity waves (Chomaz et al. 1988). In the absence of a splitter plate,
a downstream body, or a “non-transparent” outflow or inflow boundary, one there-
fore does not expect a self-sustained fluctuation field unless the flow is continuously
forced from the outside.

3. Effects of Boundary Conditions on Spatially-developing Simulations

A two-dimensional numerical code of the spatial mixing layer developed by the
first author was used to conduct the present investigation. The boundary condi-
tions applied to the perturbation quantities are indicated on Figure 2. The reference
length and velocity scales are the inflow vorticity thickness and the velocity differ-
ence, respectively. In all cases there was no external forcing at the inflow boundary
and no splitter plate was inserted into the flow. At a velocity ratio R = 2/3 and
for a computational domain of streamwise extent Lz = 250, one obtains through-
out the flow a self-sustained noisy dynamical state characterized by a broad power
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FIGURE 3. Power spectrum of v velocity at z = 170, y = 0.

spectrum, as shown in Figure 3. The spatial evolution of the vorticity field presents
all the usual features of laboratory experiments, namely: spatial amplification of
instability waves, roll-up, pairing of vortices, etc. The temporal behavior, however,
appears to contradict the reasoning of the previous section: a convectively unstable
flow should not be able to give rise to a “natural” self-excited state.

Time series of the cross-stream perturbation velocity v taken at different stream-
wise stations during the transient regime proved to be enlightening (see Figure 4).
The discontinuity in slope generated at time ¢ = 0 at the inflow boundary produces
a wavepacket which propagates downstream. This discontinuity is induced by a
mismatch between the initial conditions and the boundary condition at z = 0 (this
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FIGURE 4. Time traces of v-velocity at = = 1, 50, 85, 115, 140, 160, 180, 200, 220,
249 (from bottom to top). Each trace is scaled with its maximum amplitude.
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appears to be unavoidable). The wavepacket is associated with the start-up vor-
tex clearly seen in the downstream part of Figure 5. One can therefore conclude
that the numerically generated velocity profile is indeed convectively unstable, the
start-up transient being effectively a convolution of the initial state and the im-
pulse response. Furthermore, one notes that, as soon as the wavepacket hits the
downstream boundary, a sharp variation instantaneously takes place in the signal
measured at the inflow. This local inhomogeneity in turn generates, after suitable
filtering by the mean flow, a second wavepacket which also propagates downstream.
It appears that the self-excited noisy state is induced by multiple reflections at
the inflow and outflow boundaries of the computational domain. But temporally
amplified vorticity waves cannot propagate upstream since the flow is convectively
unstable!

Such is not the case for the pressure fluctuations prevailing outside the shear
layer: Figure 6 presents statistical averages of various fluctuating variables plotted
as a function of the cross-stream coordinate y. Two distinct regions are clearly
in evidence: an exponential decay (linear on the semi-log plot) region followed by
a much slower decay rate in the farfield region. The transition between the two
regions is well-defined. The velocity in the second region might be associated with
algebraically decaying pressure fluctuations generated by spatial inhomogeneities of
the vorticity field due to modulations (Crighton & Huerre 1984) or pairing events
(Gutmark & Ho 1985). Another likely candidate is the pressure field generated by
multiple reflections at the inflow and outflow boundaries (strictly speaking, such a
terminology is not legitimate: the potential flow is governed by an elliptic Poisson
equation and information is transmitied instantaneously everywhere). Levels of
constant mean-square v velocity are displayed in Figure 7. Levels are equally dis-
tributed on a log scale (two levels per decade). One observes a strong maximum at
the outflow boundary, with equally separated contours in the downstream portion
of the domain. Slower decay takes place in the upstream region, as indicated by
increasing separation between neighboring contours. One may therefore infer that
the v fluctuations in that region are due to pressure waves “radiating” towards the
inflow boundary.

The following scenario emerges: the flow is locally convectively unstable from
the point of view of vorticity fluctuations, but the global dynamics of the flow is
dominated by a feedback loop (Laufer & Monkewitz 1980, Ho & Huerre 1984). The
downstream branch consists of rotational instability waves rolling up into vortices.
The interaction between the vortical structures and the downstream boundary then
generates global irrotational pressure disturbances which are immediately trans-
mitted to the inflow boundary. These are in turn converted into hydrodynamic
instability waves by the inflow boundary condition. The noisy state is due to the
relatively long streamwise extent of the computational domain which does not allow
for stable periodic behavior. In a sense, the numerical experiment simulates a closed
flow which, at this particular value of Lz, is in a highly chaotic dynamical state.
This is consistent with a closer examination of Figure 3. The power spectrum is
not just a continuous broadband one, but exhibits in addition closely spaced peaks.
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Between frequencies 0.1 and 0.2 (for example) these peaks are equally spaced with
the separation equal to the “box frequency”, (2r)3(U; + Uz)/Lz. Thus the effect
of the feedback appears directly in the spectrum.

The above scenario is further supported by the observed behavior of the system
as the domain length Lz is varied. As mentioned previously, one sees a chaotic
state when Lz is sufficiently large. For small Lz (i.e., less than 100), the system
approaches a steady state. For Lz not too much above 100, a periodic state is
obtained (albeit after a long transient in some cases). Thus, one can think of Lz as a
bifurcation parameter. Figure 8 shows the variation in amplitude of the fluctuation
v velocity at two z locations as Lz increases from 100. The trend is consistent
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FIGURE 8. Maximum amplitude (in y) of v'? as a function of Lz at z = 85 (circles)
and z = 100 (squares).

with a supercritical Hopf bifurcation from a steady state to a periodic orbit at
approximately Lz = 100. A distinctive feature of all the periodic solutions obtained
is that an exact integral number of instability wavelengths A fit in the domain. For
102 < Lz < 125, we found A = 1Lz, and for Lz = 135, A = 1Lz. Thus, the
perturbations at the inflow and outflow boundaries are exactly in phase, indicating
instantaneous communication through global pressure fluctuations. The decrease in
amplitude for Lz > 115 is due to the largest fluctuations being associated with the
outflow boundary (in these simulations, at most only one rollup is obtained). For
sufficiently large Lz (in the chaotic regime), the fluctuation amplitudes at a given
z become independent of Lz.

4. Finite Domains and Pressure Sources

The results of the previous section indicate that self-sustained oscillations are
due to global pressure fluctuations being instantaneously transmitted between the
inflow and outflow boundaries. In other words, the imposed boundary conditions
do not correspond to those appropriate for an infinite (streamwise) domain. To cure
this problem, one might try, in some way, to adapt the boundary conditions on the
finite domain to simulate more accurately those of the infinite domain. We do not
have an explicit scheme to suggest but only a very preliminary analysis.

For instance, we may consider the boundary-value problem

Vip = Q, p=0onS.

for the pressure p within a finite volume V bounded by a surface S. (Nuemann
instead of Dirichlet boundary conditions may be imposed with little change in the
following analysis). The source distribution @(x) is contained within V and takes
the form &7 |
- uiv;
Qx) = 0z;0z;
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Let G(x|xo) denote the free space Green’s function such that
V3G = §(x — xo)-

The function G(x|x¢) gives the pressure field generated by a point source located at
xo and “radiating” in free space. From Green’s theorem, one may show that p(x,t)
satisfies the integral equation

) = [ Glxlxa)Qxo)dVi + /S [p(xo);—z(xlxo) - G(xlxs) g2 (xa)| dS5. (1)

The volume integral corresponds to the pressure field in free space due to the source
distribution @ within the field. The surface integral is associated with finite do-
main effects. Since p = 0 on S, only the pressure gradient dp/dno remains. The
surface integral is then the pseudo-sound field generated by a source distribution
of strength —dp/dng on the surface S. It is precisely this term that is responsible
for the “reflections” observed in the numerical simulations. Whether active control
methods can be used to cancel such surface integral terms remains to be deter-
mined. It might also be possible to obtain approximate expressions for these terms
in the case of large computational domains. One must also point out that similar
source distributions can also be obtained for the Navier-Stokes equations as derived
in Ffowcs Williams & Hawkins (1969).

A possible use of equation (1) might involve minimizing the component of the
pressure field at the inflow (z = 0) due to surface sources at the outflow (zo = Lz),
by adjusting the outflow boundary conditions on u and v. If dp/dny is known (from
the u-momentum equation), then this will require an estimate of how p at the exit
plane depends on the outflow velocity boundary conditions. Whether this can be
done without actually solving the Poisson equation for pressure is not presently
known.
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Phase decorrelation, streamwise vortices
and acoustic radiation in mixing layers

By C. M. Ho!, Y. Zohar!, R.D. Moser?,
M.M. Rogers?, S.K. Lele> AND J.C. Buell®

Several direct numerical simulations have been performed and analyzed to study
various aspects of the early development of mixing layers. Included are (1) the
phase jitter of the large-scale eddies, which was studied using a two-dimensional
spatially-evolving mixing layer simulation; (2) the response of a time-developing
mixing layer to various spanwise disturbances; and (3) the sound radiation from a
two-dimensional compressible time-developing mixing layer.

1. Phase decorrelation in a spatially-developing mixing layer

Since the realization that spanwise coherent structures (rolls) dominate the dy-
namics of free shear flows, much effort has been focused on the control of these
rolls in an effort to manipulate shear layers (Ho & Huerre 1984). When low-level
periodic excitation is applied to force a mixing layer, the vortex formation becomes
phase-locked with the forcing signal. However, experiments by Zohar et al. (1988)
show that a short distance from the splitter-plate trailing-edge, the phase jitter in-
creases abruptly indicating the loss of phase correlation. To achieve better control
of the mixing layer it is important to understand the cause of this phase jitter.

The phase decorrelation of the spanwise rolls was studied using a 2-D numer-
ical code written for spatially-developing free shear flows. The code is based on
a spectral method in the vertical direction (which extends to infinity) and high-
order compact finite differencing in the streamwise direction. The advantage of
numerical simulations over experiments is that some possible causes of the phase
decorrelation, such as 3-D effects or small-scale transition, can be isolated. A sim-
ulation was performed at a Reynolds number of 100, with 1% forcing of the inlet
vertical velocity at a frequency of 0.18. (The length and velocity scales are the
initial vorticity thickness and free stream velocity difference.) The velocity ratio is
R = (Uy — U2)/(Uy + Uz) = 2/3. As documented elsewhere, the inflow and outflow
boundary conditions lead to feedback from the latter to the former through the
pressure. This has the net effect of introducing a small amount of noise into the
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FIGURE 1. Standard deviation of the difference between successive zero crossing
(o) as a function of down-stream distance. Current results, ; Experiments of
Zohar et al., o , forced, o natural.

system at the inflow boundary. We believe the results should be independent of the
origin of the noise, although in the present case the noise is not random.

The numerical results quantitatively confirm the experimental data, as shown in
figure 1. The standard deviation of the difference between successive zero crossings
of the v-velocity is plotted as a function of the downstream distance. The phase
jitter of the passing coherent rolls increases sharply around the first vortex merg-
ing. Therefore, the phase jitter is primarily a 2-D phenomenon, and neither phase
instability nor small-scale transition is the cause of it. The frequency spectrum
of the velocity fluctuations, shown in figure 2, indicates that the contamination of
the subharmonic mode by background noise is responsible for the loss of the phase
information. The subharmonic mode is amplified as an unstable mode from the
noise via energy transfer from the fundamental. Consequently, the resulting paired
rolls are not phase-locked with the forcing signal.

2. Three-dimensional temporally-evolving mixing layers

Plan-view shadowgraph pictures taken by Konrad (1976) clearly reveal the exis-
tence of periodically distributed streamwise streaks, positioned in the braid region
between the large coherent spanwise rollers of their mixing layer. These streaks
are a result of counterrotating pairs of streamwise vortices (Bernal & Roshko 1986)
that arise from a secondary instability of the plane mixing layer. Pierrehumbert &
Widnall (1982) have used linear stability analysis to show that the most amplified
spanwise wavelength is about 2/3 of the streamwise wavelength of the large coherent
rollers for a class of Stuart (1967) vortices with a vorticity distribution similar to
that of experimental mixing layers. They also found that the growth-rate curve is
fairly flat around this most amplified wavelength. This wavelength ratio is in good
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FIGURE 2. Spectrum of the cross-stream velocity (v) at /6 = 140 and y = 0.

agreement with that of experimentally observed structures and was also found to
remain constant after the merging or pairing of the coherent rolls (Huang & Ho
1988). The mechanism by which this ratio remains constant during a pairing (i.e.,
how the spacing of the streamwise vortices doubles) is not understood.

A three-dimensional temporally-evolving shear layer code was used to study the
development of mixing layers in the presence of spanwise disturbances. The tem-
poral nature of the simulation permits the direct use of spectral methods in the
periodic streamwise and spanwise directions. The cross-stream direction is mapped
onto a uniform grid in a finite domain using a cotangent mapping and the spatial
dependence of each dependent variable in this direction is represented by a Fourier
series in the mapped domain (see Cain, Ferziger & Reynolds 1984).

In order to estimate the most unstable spanwise wavelength of a mixing layer
during both roll up and pairing the cede was modified to ensure that the three-
dimensional disturbances remained small (and thus could be treated as linear).
This rescaling of the disturbance in no way affects the development of the two-
dimensional base flow. The spanwise periodic boundary condition requires that all
spanwise disturbances must have an integral number of wavelengths in the com-
putational domain. In order to permit a “natural” wavelength selection it is thus
necessary to use a very large spanwise computational domain compared to the ex-
pected most unstable spanwise wavelength. This will ensure that the flow can
select the wavelength of its choice rather than one imposed by the computational
box. Each spanwise wavenumber is initialized with a small disturbance and the
growth (or decay) rate of the disturbance in each wavenumber is recorded as the
two-dimensional mixing layer undergoes first a roll up and then a pairing. The
initial streamwise disturbances used were eigenfunctions determined from inviscid
linear theory (Rayleigh eigenfunctions).

Plots of the growth rate of each spanwise wavenumber at two times in the mixing
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FIGURE 3. Growth rates (G) of Fourier modes of with spanwise wave-length A,
at two times: o , roll up (t = 166/U) and a , pairing (t = 25.56/U).

layer development are shown in figure 3. At early time, when the layer has rolled up
but not yet paired, the most unstable wavelength is about 60% of the streamwise
wavelength. When vortex pairing occurs, the amplified band of streamwise vortex
disturbances shifts toward longer wavelengths, as can be seen in figure 3. The most
amplified wavelength is then about twice the wavelength before pairing. Thus the
most amplified wavelength of the streamwise vortices remains proportional to the
local wavelength of the coherent structures, in agreement with the experimental
observations.

This analysis suggests a mechanism by which the experimentally observed span-
wise scale change could occur at a pairing; that is, the longer wavelength modes
begin to grow faster than the mode at the originally dominant scale. However,
there are two major shortcomings of the analysis. The first is that it is linear, and
there may be important non-linear effects. The second is that only local (in time)
growth rates are considered, whereas the observed strength of a given Fourier mode
depends on the time-integral of the growth.

To address these difficulties, a fully non-linear computation was performed. This
simulation was done using an improved numerical method based on a hyperbolic
tangent mapping of the cross-stream (y) coordinate. The simulation was initial-
ized with an array of weak streamwise vortices corresponding to the most unstable
spanwise wavelength (60% of the streamwise wavelength). The subharmonic in the
spanwise direction was also excited but at half the amplitude. It is this subhar-
monic which should grow to become dominant if there is to be a scale change after
a pairing. Energies in four of the Fourier modes in the simulation are shown as a
function of time in figure 4. The fundamental and subharmonic of the main Kelvin-
Helmholtz roll up (k, = 0) are shown indicating the time at which roll up (when
the fundamental is maximum) and pairing (when the subharmonic is maximum)
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FIGURE 4. Evolution of the energy in four Fourier modes: » , fundamental Kelvin-
Helmholtz mode, o subharmonic Kelvin-Helmholtz mode, x fundamental streamwise
vortex mode, + , subharmonic streamwise vortex mode.

occur. Note that the subharmonic of the mode representing the streamwise vortices
(k- = 0), does not grow or become dominant after the pairing. Thus there is no indi-
cation of a spanwise scale change in this simulation. The reason for the discrepancy
between the fully non-linear simulation and both the experimental observations and
linear analysis is not known. This is a problem for future research.

Another form of spanwise disturbance that was studied consists of a spanwise
variation of the vorticity thickness. Such flows could be difficult to realize in the
laboratory and numerical simulation provides a good means to study their behavior.

Several simulations were made using an initially sinusoidal spanwise variation
(one period in the computational domain) of vorticity thickness with a maximum
to minimum thickness ratio of two. As before, initial streamwise disturbances were
determined from inviscid stability theory. The spanwise extent of the computa-
tional box was five times the wavelength of the most unstable mode in the initially
thin region of the layer. When forced by the eigenfunction associated with the
most unstable frequency of the layer at its thinnest point, roll up was observed to
occur only in this region. Further simulations were made with the addition of an
eigenfunction at the subharmonic frequency at various phases relative to the funda-
mental. In these cases the layer rolled up and paired at the thin location while a roll
up occurred at the thick location, ultimately leading to one spanwise vortex (figure
5). Figure 6 shows the behavior at an earlier time. At the thin location (figure 6a)
two well-defined rollers have developed in a manner similar to a two-dimensional
layer with the same streamwise disturbances. At the thick location (figure 6b) a
weak roll up of two vortices has started. Intermediate locations show intermediate
behavior (figure 6¢). Slightly later the pairing at the thin location is nearing com-
pletion as it does in the two-dimensional case. At the thick location the forward



FIGURE 5. Vorticity distribution in z-y planes at a late time, t = 19.96/U. (a)
spanwise vorticity, w;, at the initially thin location (peak level —1.2); (b) spanwise
vorticity, w,, at the initially thick location (peak level —1.9); (c) spanwise vorticity,
w;, at location half way between (a) and (b) (peak level —1.8); (d) streamwise vor-
ticity, w,, at same location as (c) (levels ranging from —0.7 to 0.4, dashed contours
correspond to negative contour levels).

vortex lump has been almost completely absorbed by the rear vortex lump as the
full roll up of figure 5b is being approached (this stage bears some resemblance
to the two-dimensional “shredding” behavior observed when the fundamental and
subharmonic disturbance have a relative phase that inhibits pairing). Intermediate
locations are again intermediate in behavior.

During this process the blending of rollers at different locations is associated
with the development of streamwise vorticity. Initially there is no streamwise vor-
ticity anywhere in the domain and by symmetry none ever forms at the thinnest
and thickest spanwise sections of the layer. In the intermediate regions, however,
significant streamwise vorticity does develop. Figure 6d illustrates its form at a
section half way between the thickest and thinnest locations. From this section the
streamwise vorticity structure appears to resemble the streamwise vortices typical
of the secondary instability described earlier. However, a three-dimensional surface
plot shows that, rather than roughly axisymmetric streamwise vortices, this section
represents a cut through a slab-like structure of streamwise vorticity that extends
the entire width from the thinnest to thickest point of the layer. As the roll up
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FIGURE 6. Vorticity distribution in z-y planes at an early time, t = 12.06/U. (a)
spanwise vorticity, w,, at the initially thin location (peak level —1.4); (b) spanwise
vorticity, w;, at the initially thick location (peak level —1.2); (c) spanwise vorticity,
w;, at location half way between (a) and (b) (peak level —1.5); (d) streamwise
vorticity, w,, at same location as (c) (levels ranging from —0.45 to 0.6, dashed
contours correspond to negative contour levels).

progresses at the thick location the magnitude of the streamwise vorticity increases
(up to £1.6) but ultimately, when the layer approaches one large two-dimensional
roller it decays to the moderate levels observed in figure 5d.

Future plans include the study of the more interesting case where the ratio of the
vorticity thickness of the thick to the thin region is not an integer number.

3. Acoustic radiation from vortex roll up and pairing

In low Mach number shear layers, the energy radiated by sound is a small portion
of that generated by turbulence production. At higher Mach numbers the sound
radiation can be a major energy sink. It was suggested by Laufer (1974) that
the merging of the spanwise rolls was the dominant sound generation mechanism;
however, the detailed process has never been clarified. A compressible temporally-
developing shear layer code was used to study this problem. The code used high-
order accurate compact finite differencing. The calculation domain contained the
entire region with significant pressure fluctuations, from the near-field of shear layer
vortices to the far-field region. The process of noise generation was identified by
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only in a part of the domain) provide a visualization of the flow generating the

acoustic waves radiating to the far-field. The plotted dilatation contours are chosen
to show the waves in the far-field. Waves generated by the roll up and pairing are

equally spaced times are arranged from left to right. The vorticity contours (shown
preceded by an initial transient.

FIGURE 7.
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following the time evolution of vorticity, dilatation and pressure fields during the
roll up and pairing events. The roll up process generated a compression wave, while
the pairing event generated a compression and an expansion wave. The acoustic
power emitted during a pairing was 5-6 times stronger than the emission from a roll
up of the fundamental disturbance.

Examples of the time evolution of the vorticity and dilatation fields are shown in
figures 7 and 8, respectively. For this case, the velocity ratio %} 1s0.2and T3 = T,
where the subscripts refer to the high and low speed streams. The two streams
have Mach numbers of M; = 1.0 and M; = 0.2 which corresponds to a convective
Mach number (as defined by Papamoschou and Roshko 1986) of M. = 0.4. The
calculations are performed in a frame of reference moving with TU]{— of 0.4. Note that

this reference speed is different from the propagation speed of the vortices, gf of
0.6. It was verified that the reference speed had no effect on the results described

here. The panels in these figures correspond to 8 different snapshots of the flow
as it evolves. The roll up and pairing is evident from the vorticity contours. The

dilatation pattern associated with each vortex is a quadrupole, and the acoustic
waves radiate during the roll up and vortex merging stage. The vortex merging
process generates first a compression wave while the Reynolds stresses extract work
from the mean flow. Later in time the Reynolds stress is negative in the shear layer,
indicating that energy is being transferred from the shear region back to the mean
flow. At the same time, sound is radiated to the surroundings in the form of an
expansion wave.

In the far-field the density, pressure and velocity fluctuations were computed.
The acoustic energy flux radiated to the far-field was also monitored. It was found
that the far-field fluctuations satisfied plane wave acoustic relations exceedingly
well. The fluctuations in the near-field (pressure and velocity) were found to decay
exponentially away from the shear layer. This near-field region was found to scale
with the hydrodynamic instability wavelength.

In the future the Mach number dependence of the radiated acoustic flux will be
studied, and acoustic radiation from spatially-evolving mixing layers will be studied.
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A numerical study of bifurcations
in a barotropic shear flow

By P. Huerre!, L. R. Keefe?, G. Meunier!,
M. M. Rogers®, L. G. Redekopp?’, and P. R. Spalart?

1. Introduction

In the last few years, more and more evidence has emerged suggesting that tran-
sition to turbulence may be viewed as a succession of bifurcations to deterministic
chaos. Most experimental and numerical observations have, for the most part, been
restricted to Rayleigh-Benard convection and Taylor-Couette flow between concen-
tric cylinders. The goal of the present study is to accurately describe the bifurcation
sequence leading to chaos in a two-dimensional temporal free shear layer on the -
plane.

The B-plane is a locally-Cartesian reduction of the equations describing the dy-
namics of a shallow layer of fluid on a rotating spherical planet. It is a valid model
for large-scale flows of interest in meteorology and oceanography. The mathematical
formulation involves the following vorticity equation

(% + U(y)a—i)vz\ll +J(V2e,9)+ (B-U"(y))¥. = %V“I’,

where U(y) is the basic hyperbolic-tangent velocity profile, ¥ is the perturbation
stream function, and Re is the Reynolds number. The symbol 3 denotes the gradient
of the planetary vorticity. Inviscid linearized stability analyses (Dickinson and Clare
1973) reveal that the flow is unstable within a neutral curve in the 8 — k plane as
sketched in Figure 1 (from Burns & Maslowe 1983), k& denoting the streamwise
wavenumber. Thus 8 is a convenient control parameter with which one can bring
about qualitative changes in the attractor as a function of the supercriticality
|8 — Bc|. The limit of the classical mixing layer is approached as 3 goes to zero.

2. Numerical approach

The three-dimensional code developed by M. Rogers has been adapted to the
present problem by adding the appropriate 3 terms in the equations. The basic
velocity profile has been changed to U(y) = tanh(y) (a body force is applied to hold
that velocity profile against viscous diffusion). We recall that periodic boundary
conditions are chosen in the streamwise direction and that a Cain mapping is used in
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FIGURE 1. Neutral curve of linear theory in inviscid limit.

the cross-stream direction. The exponential tails in y for the perturbation variables
are known to decay more slowly than in the 8 = 0 case and the value of the B
stretching factor in y had to be increased up to 10 (typical values are around 2) to
properly account for this phenomenon. The numerical code is well-behaved with 16
by 96 grids, but the execution is slow (8 Mflops on the Cray 2) due to the small
length of the vectors.

3. The first Hopf bifurcation

Numerical simulations were conducted at Re = 1000 and a streamwise box length
corresponding to the critical wavenumber k. = \/2% The critical value 8, =
4/(3v/3) was well approximated and linear growth rates were also found to be
consistent with inviscid stability theory.

As B decreases below ., the basic flow bifurcates to a finite-amplitude traveling-
wave state which takes the form of a vortex as shown on Figure 2. As a result of the
B effect, the Kelvin’s cat’s-eye pattern is shifted off the axis y = 0. The traveling
wave is characterized by a circular frequency w and normalized amplitude

|A] = max 9(y, k.).
v

The normal form pertaining to a supercritical Hopf bifurcation is known to be

dA

=5 = ~ilwe +wp(B — Bc)| A~ TIA4, 1)

where A is the complex amplitude of the wave and w, the frequency at k = k.,
B = B.. Other quantities appearing in (1) are wg = Ow/08|. and the Landau
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FIGURE 2. Isovorticity contours at 8 = 0.7, Re = 1000, k = k..

constant I' = T’y + iI';. An elementary analysis of (1) indicates that as 3 decreases
below S, the solution of (1) bifurcates from the basic flow A = 0 to a limit cycle
of amplitude

A < B.-P (2)
and frequency
w-w, x B.—p. (3)

The quantities |A|? and w are represented as a function of 8 on Figures 3 and 4
respectively. The exact linear value of w has also been plotted on Figure 4. One
notes that [A|? and w do vary linearly with decreasing 8 in the vicinity of 8., in
agreement with (2) and (3). The value of w at 8 = 3. is indeed equal to w. = v/2/3.
Finally one notes a nonlinear frequency shift in the value of w when compared to
linear estimates.

We attempted to compare the values of the slopes of these curves with the analyt-
ical results obtained by Churilov (1988), Churilov and Shukhman (1986, 1987), and
Lipps (1965). There were large discrepancies and we suspect that the critical-layer
structure is not satisfactorily resolved with the present distribution of points in the
y direction.

4. A preliminary look at pairing in the presence of dispersion

To test the validity of the code, numerical simulations of the evolution of 3 vor-
tices were conducted in a computational domain of length 67 /k. at 8 = 0.2. The
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fundamental k. was given a finite energy level at ¢ = 0, the 2 subharmonics at
k./3 and 2k./3 being initialized to low levels. Figures 5 a, b, c show the resulting
evolution. One notes the nutation of the vortical structures in the course of time,
indicated by a tilting motion. Pairing eventually takes place between 490 and 500
time steps with a corresponding energy transfer from the k. to the 2k./3 compo-
nent. At 8 = 0.2, the k./3 component lies in the linearly stable domain and it is not
triggered by nonlinear interactions. Thus, no further pairing events are observed
and the asymptotic state consists of 2 vortices. This is distinctly different from the
homogeneous mixing layer case where pairings take place until one observes a triple
vortex condition in the computational domain.

5. Future work

The results obtained so far, namely the fact that a Hopf bifurcation takes place
at B = f., suggest that nontrivial chaotic dynamics are likely to occur within
subregions of the neutral curve. To back up this claim, we note that in the vicinity
of B., the streamwise modulations of the complex amplitude A(z,t) are governed
by the p.d.e. equivalent of (1), i.e.:

: 2

%?— = —'[wc + wg(B —ﬂc)]A —wk%g + %wkk%‘i—:- - PlAzlA.
This Ginzburg-Landau equation is known to give rise to chaos via a modulational
instability mechanism [Keefe (1985)]. In the present context, we therefore suspect
that amplitude and phase modulations applied to a row of vortices would induce
a disordered evolution as the streamwise extent of the computational domain is
increased.

To test this hypothesis, we need to considerably increase the reliability and speed
of the numerical code for low-wavenumber simulations.
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Dynamics of coherent structures
in a plane mixing layer

By F. Hussain!, R. Moser?, T. Colonius?, P. Moin?* AND M. M. Rogers?

An incompressible, time-developing three-dimensional mixing layer with idealized
initial conditions has been simulated numerically. Consistent with the suggestions
from experimental measurements, the braid region between the dominant spanwise
vortices or rolls develops longitudinal vortices or ribs, which are aligned upstream
and downstream of a roll and produce spanwise distortion of the rolls. The process
by which this distortion occurs has been explained by studying a variety of quantities
of dynamic importance (e.g. production of enstrophy, vortex stretching). Other
quantities of interest (dissipation, helicity density) have also been computed and
are discussed. The currently available simulation only allows the study of the early
evolution (before pairing) of the mixing layer. New simulations in progress will
relieve this restriction.

Introduction

While there is no doubt about the occurrence of large-scale coherent structures
in turbulent shear flows, there is doubt about their role and dynamical significance.
Unfortunately, a mathematical definition of coherent structures or a theory of tur-
bulence based on coherent structures has not yet been developed, nor is there any
in sight. Until the development of a theoretical framework , or even to formu-
late one, we must continue to improve our understanding of coherent structures.
Studies of coherent structures in shear flows, in particular the mixing layer, have
focused on the geometric form of the structures (morphology) and the relationship
of the structures to topological features of the flow (e.g. the stagnation line and
saddle between rolls in the mixing layer); also of interest are quantitative measures
of dynamical quantities such as coherent Reynolds stress and coherent production.
Experimental observations of coherent structures in the mixing layer have relied
on flow visualization techniques (which suffer from the indirect relationship of flow
markers to the hydrodynamics) and quantitative point-wise measurements (which
are unable to measure the full three-dimensional flow field). Such measurements
strongly suggest the complex morphology of the coherent structures in mixing lay-
ers, in particular the counter-rotating longitudinal vortices (ribs) in the braid region
between the rolls (Bernal & Roshko, 1986, Hussain, 1983). However, the details of
these structures are not currently accessible from experimental data. Fortunately,

1 University of Houston
2 NASA Ames Research Center

3 Stanford University PRECEDING PAGE BLANK NOT FILMED



50 F. Hussain, R. D. Moser, T. Colonius, P. Moin and M. M. Rogers

direct numerical simulation of turbulent flows can provide the 3D flow field with
adequate resolution, albeit at low Re (Metcalf et al., 1987, Hussain 1986).

Several numerical simulations were performed to study the details of the co-
herent structures observed experimentally in mixing layers. A three-dimensional
time-developing mixing layer with prescribed initial conditions was simulated. The
initial conditions were chosen to produce structures similar to those observed ex-
perimentally. These simulations are different from the experiments they are meant
to mimic in several important ways. First, the experimental flows are spatially
developing, whereas the simulations are time developing. The time-developing sim-
ulation approximates the evolution of a structure in the spatially-developing flow
as it travels downstream. Second the initial conditions do not necessarily reflect
the conditions present in an experiment. In the simulations the initial conditions
are very smooth and simple, there is no small-scale random motion, thus the re-
sulting flow fields are not turbulent. These simple conditions are used so that the
coherent structures can be studied in their simplest form. The question of how
the observed structures evolve from conditions actually present in experiments, and
how they respond to small-scale random disturbances is left to future work. Finally,
the Reynolds number in the simulations is quite low compared to experiments.

The simulations were performed using a numerical method similar to that dis-
cussed by Cain, Ferziger & Reynolds (1984). In this method periodic boundary con-
ditions are applied in the streamwise (z) and spanwise (z) directions, and Fourier
series are used in these directions. An infinite domain in the cross-stream direction
(v) is treated by using a coordinate transformation which maps the domain into a
finite interval. Fourier series are then used in the finite interval. In the particular
simulation to be discussed below, 32 Fourier modes were used in the £ and z direc-
tions and 64 modes were used in the y direction. The length of the computational
domain in the z direction was 4.487é8, and in the z direction it was 2.7w§ where §
is the initial vorticity thickness of the layer. The initial velocity field consisted of
an error function velocity profile and a pair of three-dimensional disturbances. The
first disturbance leads to the two-dimensional Kelvin-Helmholtz roll-up of the mix-
ing layer and ultimately pairing, the initial spanwise vorticity in this disturbance is
given by

w,=0. lfl(y)COS( 126) + 0. 05f2(y) COS(2 246)

where the functions f; and f; are Rayleigh eigenfunctions and the wave-lengths are
chosen to be the most unstable and its subharmonic. The second disturbance leads
to the longitudinal vortices in the braid region between the Kelvin-Helmholtz rolls.
This disturbance initially consists of an array of streamwise vortices described by

= 0.05g1(y)sin(———=) + 0.025g2(y)sin(——

0. 6756 1. 356)

where the functions g; and g, were chosen to represent streamwise vortices and the
wave-lengths were chosen to be the most unstable and its subharmonic. A Reynolds
number of 1000 based on initial vorticity thickness and velocity difference was used
in this simulation.
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FIGURE 1. Vorticity contours in plane 1; (a), w2, (8), wy and (¢), w,, and plane 2;
(d), w, at time 1. Contour increment is 0.1U/§. Negative contours are dashed in
(a)and (), positive contours are dashed in (c)and (d). Streamwise (z) direction is
horizontal; cross stream (y) direction is vertical.

Results and Discussion

For the current discussion we have selected two instants in the simulation de-
scribed above: time I (¢ = 26.46/AU) is when the initial Kelvin-Helmholtz roll-up
is saturating and the two rolls are nearly identical, and time II (¢ = 35§/AU) is
a short time later when the pairing interaction has started. To study the pairing
process, a much later time is required; however, the current simulation was stopped
at ¢ = 17.5 because of lack of resolution. Higher resolution simulations are being
performed to address questions of pairing. In the discussion to follow, two dimen-
sional contour plots of various quantities will be presented in two planes in the flow
field. The first plane (plane 1) is an z-y plane (plane of constant z) which passes
through the center of the longitudinal vortices (location of maximum streamwise
vorticity). The second plane (plane 2) is also an z-y plane, and it passes halfway
between the longitudinal vortices (streamwise vorticity is zero in this plane).

Contours of the three components of vorticity in both planes at time I are shown
in figure 1 (w, and w, are identically zero in plane 2). The role-up of the shear-
layer resulting in the concentration of spanwise vorticity in two large rolls is clearly
evident. Note that there is substantial spanwise vorticity in the braid region between
the rolls (as much as —0.55) compared to the initial maximum spanwise vorticity
(—2) As the roll-up continues, spanwise vorticity continues to be swept from the
braid region; at time II (figure 2) the spanwise vorticity in the braid region has been
reduced to —0.25. The streamwise and cross-stream vorticity (w, and w, in figures
1(a,b) are concentrated in the braid region as expected; these are the longitudinal
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FIGURE 2.  Vorticity contours in plane 1; (a), wz, (b), wy, and (¢), w,, and
plane 2; (d), w, at time II. Contour increment is (a), 0.15U/8, (b,c,d), 0.1U /6.
Negative contours are dashed in (a)and (8), positive contours are dashed in (c)and
(d). Streamwise (z) direction is horizontal; cross stream (y) direction is vertical.

(or rib) vortices. They include both w. and w, because they are inclined. There
are, of course, an array of counter-rotating rib vortices, the ones in this plane have
positive vorticity but in other planes the vorticity would be negative. The rib
vortices lie along the diverging separatrix of the stagnation point between the two
main rolls. Therefore they are subjected to a plane strain which stretches them
along the separatrix. The result is an increase in the vorticity magnitude with time
(wz = 0.65 at time I, and 0.98 at time II, see figures 1 and 2).

In the rolls there is a somewhat weaker region of streamwise and cross-stream
vorticity of opposite sign to that in the ribs (w, = —0.35 at time I). This is ap-
parently a result of the three-dimensional distortion of the rolls by the ribs. This
distortion is most apparent at time II where there is a marked difference in the
spanwise vorticity contours in planes 1 and 2 (figures 2(¢,d)). In plane 2, the span-
wise vorticity is concentrated near the bottom of the rolls and is very strong there
(—3.05) compared to the initial maximum spanwise vorticity (—2.0). In plane 1,
the vorticity is more evenly distributed through the roll and has a maximum value
of —1.85. The mechanism by which the ribs produce three-dimensionality in the
rolls can be understood by examining the rate of production of enstrophy (w;Sijw;,
where S;; = 3(0u;/8z; + Ouj/0z;)) at time II (figure 3). In plane 2 there is a
region of strong enstrophy production coinciding with the concentrated region of
spanwise vorticity. Above it there is also a region of negative enstrophy production.
The strong production is a consequence of the stretching of the spanwise vorticity.
This stretching occurs in the region between the counter-rotating rib vortices where
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FIGURE 3. Rate of enstrophy production in (a), plane 1 and (), plane 2 at
time II. Contour increment is 0.2U3/§3. Negative contours are dashed. Streamwise
() direction is horizontal; cross stream (y) direction is vertical.

FIGURE 4. Dissipation of kinetic energy in (a) plane 1 and (3) plane 2 at time II.
Contour increment is 0.0005U3 /8. Streamwise (z) direction is horizontal; cross
stream (y) direction is vertical.

the strain dw/0z is large and negative. Between rib vortices where 8w/8z is pos-
itive compression occurs resulting in the negative enstrophy production mentioned
above. In plane 1, which is through the center of the rib vortices (dw/8z = 0), the
enstrophy production in the rolls is small. There is however enstrophy production
in the braid region, corresponding to the stretching of the rib vortices.

Another quantity of interest is the dissipation of kinetic energy, which is shown
at time Il in figure 4. The dissipation is rather weak in plane 1 (0.003) compared to
plane 2 (0.009). In particular, the dissipation in plane 2 is concentrated in the region
of large w, and large enstrophy production discussed in the previous paragraph.
Thus the three dimensional distortion of the rolls results in significant dissipation of
kinetic energy. The work of Moffatt (1985) on inviscid flows suggests that dissipation
and helicity density (u;w;) should be spatially exclusive; however, Hussain (1986)
suggests that this may not be the case. Helicity density and dissipation contours
in plane 1 at time I are shown in figure 5. Helicity density is identically zero in
plane 2. The helicity density is concentrated in the region where the ribs meet the
rolls and is zero near the stagnation point between the rolls; this is as suggested
by Hussain (1986). We note that there is also a concentration of dissipation in the
braid region, thus at this time the dissipation and helicity density are not spatially
exclusive. This may be a consequence of low Reynolds number or the early stage of
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FIGURE 5. Dissipation of kinetic energy (a) and helicity density (b) in plane 1 at
time I. Contour increment is (a), 0.00025U3 /6§ and (b), 0.1U2%/§. Negative contours
are dashed. Streamwise (z) direction is horizontal; cross stream (y) direction is
vertical.

FIGURE 6. Helicity density in plane 1 at time II. Contour increment is 0.1U%/$.
Streamwise (z) direction is horizontal; cross stream (y) direction is vertical.

development of the flow. At time II the dissipation is not significantly concentrated
in the braid region (see figure 4), whereas the helicity density is nearly the same as
the earlier time (figure 6). Thus at time II the peak of dissipation occurs in plane 2,
where the helicity density is zero, and the peak of the helicity density occurs in
plane 1 where the dissipation is minimum.

Summary

A simulation of a time-developing mixing layer with idealized initial conditions
has produced flow structures which are at least qualitatively similar to those ob-
served in experimental mixing layers. With the availability of the three-dimensional
flow field, it is possible to investigate a variety of structural and dynamical ques-
tions by computing any number of flow quantities (e.g. vorticity, production of
enstrophy, dissipation etc.). For example, in this brief study we were able to ob-
serve and explain the three-dimensional distortion of the Kelvin-Helmholtz rolls by
the rib vortices, and we were able to study the relationship of helicity density and
dissipation. A more complete study of higher-resolution simulations should provide
great insight into the dynamics and topology of coherent structures in the mixing
layer. This is the focus of our ongoing research.
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Subharmonic Resonance in a Mixing Layer

By N. N. Mansour !, F. Hussain %, and J. C. Buell!

The subharmonic resonance phenomenon in a spatially-evolving mixing layer is
studied using direct simulations of the two-dimensional Navier-Stokes equations.
The computational domain extends to +oo in the cross-stream direction with U; =
1.25 and U, = 0.25 imposed at 400 and —oo respectively. The domain is finite
in the streamwise direction with inflow and outflow boundary conditions imposed
at /8, = 0 and z/§, = 100, respectively. A hyperbolic-tangent mean velocity
profile is assumed at the inlet and the Reynolds number based on the inlet vorticity
thickness and velocity difference is Re = 600. It is observed that the phase angle
between the fundamental and its subharmonic plays a key role in the spatial de-
velopment of these modes. Contour plots of vorticity show that varying the phase
will have a dramatic effect on the dynamics of the vortices. Pairing or shredding is
observed depending on the phase. Fourier decomposition of the time traces show
that the fundamental grows, saturates and decays with the downstream distance.
The subharmonic has a similar behavior. However, the level at which the modes
will saturate is affected by the phase. At 0° phase, we find that as the fundamental
saturates, the growth rate of the subharmonic is enhanced. At 90° phase, we find
that as the fundamental saturates, the growth rate of the subharmonic is inhibited.
In the later case, the growth rate of the subharmonic recovers after saturation of the
fundamental. These results are in qualitative agreement with experimental data.

1. Introduction

While the occurrence of large-scale, vortical coherent structures (CS) in turbulent
shear flows is not in question, what role they play, how this role is affected by the
interaction of these CS and how this role can be enhanced or suppressed through
manipulation of CS are still open questions. The initiation, growth, interaction,
breakdown and regeneration of coherent structures are manifestations of a hierarchy
of instability mechanisms in both transitional and turbulent flows. In a turbulent
flow the interaction of coherent structures is complex and three-dimensional. The
interaction of 2D coherent structures in a mixing layer should be addressed first as
the simpler case. Following the 2D roll-up of an initially laminar layer into discrete
structures, the most common, and dynamically significant, event observed is the
growth of the subharmonic which manifests itself as pairings. The pairing process,
i.e., the growth of the subharmonic, is a consequence of what has come to be known
as subharmonic resonance - a simple consequence of nonlinear interaction between a
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wave of angular-frequency w and its subharmonic wave (of angular-frequency w/2).
Under suitable conditions (say proper choices of relative phase and amplitudes of w
and w/2 components) the fundamental component that results from nonlinear in-
teraction can reinforce the subharmonic. The resulting growth of the subharmonic,
causing merger of the vortices, is one of the most striking features of turbulent
shear flows because it provides a direct mechanism for large-scale mixing and other
phenomena such as aerodynamic noise.

The subharmonic resonance mechanism was first analyzed by Kelly (1967) using
a weakly nonlinear temporal formulation for a parallel flow. He showed that the
mean together with a fundamental wave component can reinforce the growth of the
subharmonic of that fundamental. Monkewitz (1988) extended Kelly’s analysis to
spatially evolving mixing layers and addressed some interesting features: effect of
the phase angle between the fundamental and subharmonic, the critical fundamen-
tal amplitude required for resonance and the effect of detuning. The phenomenon
has been studied numerically by Patnaik et al. (1976) and Riley & Metcalfe (1980)
for the time-developing mixing layer. In this work the spatial mixing layer is inves-
tigated.

The computational scheme uses high-order approximations to the two-dimen-
sional Navier-Stokes equations. A spatially evolving mixing layer is studied by
forcing the inlet flow with the eigenfunction solutions to the Rayleigh equation at
the desired frequencies. The boundary conditions used are described in section
2. Vorticity contours, time spectra and the spatial development of the modes are
discussed in section 3.

2. The computational parameters

The numerical scheme approximates the Navier-Stokes equations by using a spec-
tral method in the vertical direction, high-order Padé finite differencing in the
streamwise direction and third-order Runge-Kutta in time. The mean inlet stream-
wise velocity is forced to be a tanh profile,

1/1
Uinlet = '2' (1 f: + tanh(2y)) (1)

where r = Uy /U, is the velocity ratio of the low-speed side over the high-speed
side. All lengths are nondimensionalized with the vorticity thickness, §,,, of the
inlet mean flow, all velocities are nondimensionalized with the velocity difference,
AU = U; — U;. To correspond with the experiment of Husain & Hussain (1986) we
want » = 0; however, computationally the exit boundary conditions for this case
are harder to prescribe. At the exit the structures are assumed to convect out of
the domain at a constant convection speed (c),

~Uuite—u; =0

ot oz

for both the streamwise and cross-stream velocity. If the velocity at the low speed
side is too low there will be intermittent backflow at the exit boundary which
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Case ag ¢ Summary

(23]
1 0.005] 0 0° | Forcing only the fundamental.

0 0.005] 0° | Forcing only the subharmonic.

3 0:005 0.005 0° | Forcing both the fund. and i1s sub. with 0° phase.

4 0.005] 0.005] 90°| Forcing both the fund. and its sub. with 90° phase.

Table 1. Summary of computed cases

will violate our “convection out of the domain” assumption. We chose r = 0.2.
Proper prescription of the exit boundary condition is still an unsolved problem.
Buell & Huerre (this proceeding) found that the exit boundary condition causes
global potential fluctuations which interact with the inflow boundary and create
small-amplitude noise at the inlet. In our study we will force the inlet flow at one
frequency and its subharmonic. The amplitude of the forcing (0.005 of the velocity
difference) is much larger than the feedback amplitude. It is found that the growth
rate of the forced frequency is not affected by the boundary feedback problem.

The boundary condition at oo is imposed so that the streamwise velocity is
constant and equal to U; = 1.25 and U; = 0.25 at +00 and —oo respectively. The
cross stream velocity can be defined arbitrarily at these boundaries. Numerical
experimentation with » = 0.2 suggest the values V; = —0.002 and V; = 0.005 at
+00 and —oo respectively. These entrainment velocities were selected to minimize
the streamwise pressure gradient. Numerical experimentation with these boundary
conditions show that the level of the cross-stream velocity will not affect the vorticity
thickness of the layer but has a direct effect on the momentum thickness.

The inlet profile is forced as follows:

u1 =Ujniet + a1Real(i s exp(—iwt)) + azReal(i s/, exp(—i(wt/2 + ¢))) 2
uz =a;Real(sy exp(~iwt)) + azReal(sy/, exp(~i(wt/2 + $))) )

where w is a fundamental frequency, iy, 9y, ..., are the eigenfunctions of the Rayleigh
equation corresponding to the forced frequencies, and ¢ is the phase difference
between the fundamental and its subharmonic. a; and a; are arbitrary constants
that were set equal to a; = a; = 0.005.

3. Basic measured quantities

Numerical integration of the Rayleigh equation show that the most unstable an-
gular frequency is about w = 0.65 for the mean profile given by Eq. (1). We will
choose this frequency as our fundamental frequency. The objective of this work is
to study the effect of the phase difference between the fundamental and its sub-
harmonic on the development of the layer. We know that mixing layers develop by
the interaction of vortices and that the layer grows by the amalgamation of these
vortices.

3.1 Vorticity Contours

Figures 1a-d show characteristic vorticity contours after the layer has developed
for the four cases that are summarized in Table 1. Case 1 corresponds to forcing
the fundamental without forcing the subharmonic. Case 2 corresponds to the case
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FIGURE 1. Contour plots of vorticity. a) Case 1, forcing the fundamental only. b)
Case 2, forcing the subharmonic only. c) Case 3, forcing the fundamental and its
subharmonic with ¢ = 0°. d) Case 4, forcing the fundamental and its subharmonic
with ¢ = 90°.

where only the subharmonic is forced. In case 3 both the fundamental and the
subharmonic are forced with ¢ = 0° phase difference between them. In case 4 the
fundamental and subharmonic are forced with ¢ = 90° phase difference between
them. One can notice that in all cases the layer breaks into vortices corresponding
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FIGURE 2. Time spectra at z = 28.1 and y = 0. a) Case 1, forcing the fundamental
only. b) Case 2, forcing the subharmonic only. ¢) Case 3, forcing the fundamental
and its subharmonic with ¢ = 0°. d) Case 4, forcing the fundamental and its
subharmonic with ¢ = 90°.

to the forced frequency. These vortices subsequently pair. The growth of the
subharmonic (pairing of the forced frequency) that occurs in case 1 is due to the
effect of the downstream boundary condition on the layer. In our reference frame
the mixing layer should be convectively unstable, therefore, no subharmonic can be
generated unless it is forced from the upstream. Because the inlet for cases 1 and 2
is forced at one frequency only, the appearance of the subharmonic as detected by
the pairing can only come from the effect of the downstream boundary condition
on the upstream. Comparing the four cases, we find that the earliest pairing occurs
in case 3 where the subharmonic was forced with ¢ = 0°.

The layer is thicker (at z = 40) for this case as compared to the other cases.
By changing the phase to 90° the location of the pairing is shifted downstream.
Comparing the case of ¢ = 90° phase difference (Figure 1d) with the case of forcing
only the fundamental (Figure 1a), we find that the two layers are similar. This is
an indication that the subharmonic is being inhibited for ¢ = 90°. The suppression
is not complete since pairing in case 4 still occurs earlier than in case 1.
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Vorticity contours yield a qualitative picture on the development of the layer. A
series of contour plots as a sequence in time or a movie will yield a better picture
of the dynamics of the layer, but the information they will yield is still qualitative.

3.2 Time spectra

An effective tool for the study of unsteady data is to analyze the time signal using
Fourier transforms in time. Given the time trace of the velocity component at a
location in space, the signal is windowed, and then expanded in a Fourier series in
time,

v= Z t(w) exp(iwt)

w

The spectrum of the velocity is defined as,
E,(w) = 3(w)d*(w).

Figures 2a and 2b show the spectra of the v-velocity component at z = 28.1,
and y = 0 for the four cases. We can see clearly that modes other than the forced
modes and their harmonics have developed. The development of a broad spectrum
is due to the interaction of the downstream boundary condition with the inlet flow.
This interaction is forcing a background noise which is unavoidable in experiments.
Since we are forcing a given frequency and are interested in the early development
of the layer, we expect that the effect of the downstream boundary condition on
our results and conclusion should be small. This is supported by the fact that the
forced frequencies and their harmonics are still the dominant frequencies at z < 30.
Comparison of Figures 2c and 2d show that the subharmonic is much larger for
case 3 as compared to case 2. This is an indication that the growth rate of the
subharmonic is larger for ¢ = 0°. Comparing the amplitude of the fundamental
for the three cases (1, 3 and 4), we find that the magnitude of the fundamental
is comparable for cases 1 and 4; for case 3, the growth of the subharmonic has
inhibited the fundamental. In case 2, the fundamental is a harmonic of the forced
frequency and is expected to be lower than the forced cases. To properly compare
the growth rate of the different modes we need to examine the development of the
modes in space.

3.8 Contour plots of Fourier modes.

In our discussion on the development of the layer (§3.1) we implicitly decomposed
the flow field into its Fourier components. In the present study we are interested in
the spatial distribution of the forced modes. Figures 3 and 4 show contour plots of
i s/2| and |64/2| for cases 3 and 4. From these figures we find that |ig/,| will grow
in the downstream direction and develop a double peak. Contour plots of |44 /2]| (see
Figure 3) show that in the early stages |i;/2| has one peak close to the centerline.
The effect of the phase difference is manifested by the shift in the downstream
direction of the peak. For case 3, the subharmonic saturates at around =z = 40,
while for case 4 the peak occurs at around z = 50. Comparing the contour plots
for the two cases, we find general similarities. Both [is/;| contours exhibit a region
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FIGURE 3. Contour plots of |iz/;|. a) Case 3, forcing the fundamental and its
subharmonic with ¢ = 0°. b) Case 4, forcing the fundamental and its subharmonic
with ¢ = 90°.

with double peaks, then a region of decay, followed again by a region with double
peaks. Quantifying the |iig/;| by plots of the intensity at one y location will not
yield a proper norm since this component varies rapidly across the layer.

In general, the |6| component is simpler to quantify . Contour plots of |#| show
a peak around y = 0 for both cases. The two plots are similar; however, shifting
the coordinate so that the peaks will coincide shows that the distribution of the
modes in space is different. The distance between contour levels in case 3 is shorter,
indicating that the subharmonic is growing at a faster rate.

3.4 Growth of the fundamental and Subharmonic

While contour plots show the distribution of the mode in space, it is not simple
to compare the data for the different cases. For simplicity, we assume that a proper
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FIGURE 4. Contour plots of |#5/;|. a) Case 3, forcing the fundamental and its
subharmonic with ¢ = 0°. b) Case 4, forcing the fundamental and its subharmonic
with ¢ = 90°.

norm for the distribution is well represented by the development of |5| along y = 0,
and study the development of the fundamental and subharmonic along that line.

3.4.1 Effect of the Reynolds number.

At the early stages of the development of the modes and at high Reynolds numbers
we expect linear theory to be a good approximation. At low Reynolds numbers the
viscous growth of the layer will be important and will affect the growth rate of the
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FIGURE 5. Effect of the Reynolds number on the development of the fundamental.
|os| with Re = 600. ---- |5¢| with Re = 300. ------- |5¢/2| with Re = 600.

modes. Figures 5 and 6 compare the development of ¥y at Re = 300 and Re = 600
for cases 1 and 2 where only the fundamental and only the subharmonic is forced.
We find that the effect of the Reynolds number is to reduce the growth rate in
the downstream direction. This effect is less severe for the subharmonic mode.
In addition, exponential growth is valid for significantly larger amplitudes of the
subharmonic mode as compared to the fundamental mode. Note that in the case of
forcing at only the fundamental, the subharmonic will develop because of feedback
from the downstream boundary condition.

3.4.2 Effect of the phase difference on |9].

The development of the magnitude of the fundamental and its subharmonic with
the downstream distance is shown in Figures 7a and 7b for ¢ = 0° and ¢ = 90°
respectively. We find that the growth rate of the fundamental is only slightly affected
by the presence of the subharmonic. However, the saturation level is higher for
¢ = 90° as compared to ¢ = 0°. This is an indication that there is an interaction
between the fundamental and its subharmonic. On the other hand the level at
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FIGURE 6. Effect of the Reynolds number on the development of the subharmonic.
|64/2| with Re = 600. —=-- [d,,| with Re = 300.

which the subharmonic saturates seems independent of the phase angle. But the
location of the peak is dramatically affected by the phase angle. Comparison of
the growth rate of the subharmonic with linear theory and case 2 (forcing only the
subharmonic) shows that with ¢ = 0° the subharmonic grows faster than predicted
by linear theory. On the other hand for ¢ = 90° its growth rate is suppressed as
the fundamental saturates. After saturation the subharmonic recovers and starts
growing. This is a clear indication that the phase between the fundamental and
the subharmonic plays a critical role on the development of the layer. In agreement
with Monkewitz’s analysis we find that the amplitude of the fundamental has to
reach a critical level before it can modify the growth rate of the subharmonic.

3.4.3 Effect of the phase difference on |u|.

The effect of the phase difference on |i| is more dramatic that the effect on [3].
Figures 8a and b show the development of [ig| and [iis/,| with the downstream
direction at y = 0. We find that at ¢ = 90°, |iy/;| actually decreases as the
fundamental saturates. After saturation the subharmonic grows at a faster rate than
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expected from linear theory. These observations are in qualitative agreement with
the experimental measurements of Husain & Hussain (1986), but give a different

pictures than Figure 7 on the development of the modes after saturation of the
fundamental. This is an indication that results based on one component of the
velocity should be interpreted with caution.

4. Future extensions

We have studied the effect of the phase angle between a fundamental and its sub-
harmonic for one frequency, namely the most unstable frequency as predicted from
linear theory. Two phases 90° apart were considered. In future work, the phase
range 0° < ¢ < 180° will be investigated. Early results indicate that the maximum
suppression occurs at ¢ = 97°. Also, in agreement with experimental observation,
the maximum suppression occurs in a narrow phase range. This is an indication
that suppression of mixing may be difficult to achieve in practical applications.
Simulations at various frequencies will also be carried out to investigate the effect
of Strouhal number on the phase difference between maximum enhancement and
suppression. Finally, evaluation of different nonlinear theories on subharmonic res-
onance will be carried out by comparing the numerical results with the theoretical
predictions and by evaluating the assumptions made by the theories.
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Scalar Entrainment in the Mixing Layer

By N. D. Sandham!, M. G. Mungall,
J. E. Broadwell? and W. C. Reynolds!

New definitions of entrainment and mixing based on the passive scalar field in the
plane mixing layer are proposed. The definitions distinguish clearly between three
fluid states — (a) unmixed fluid (b) fluid ‘engulfed’ in the mixing layer, trapped
between two scalar contours, and (c) mixed fluid. The difference between (b) and
(c) is the amount of fluid which has been engulfed during the pairing process,
but has not yet mixed. Trends are identified from direct numerical simulations
and extensions to high Reynolds number mixing layers are made in terms of the
Broadwell-Breidenthal mixing model. In the limit of high Peclet number (Pe =
ReSc) it is speculated that engulfed fluid rises in steps associated with pairings,
introducing unmixed fluid into the large scale structures, where it is eventually
mixed at the Kolmogorov scale. From this viewpoint pairing is a prerequisite for
mixing in the turbulent plane mixing layer.

1. Introduction

Existing definitions of entrained fluid are not specific about the state of the fluid
(whether mixed or unmixed) that is carried by large scale structures. Corcos &
Sherman [1984] used the instantaneous streamlines in the moving reference frame
to identify a cat’s-eye structure boundary. Similarly Hernan & Jimenez [1982] in
their digital analysis of movies of the mixing layer, used a best-fit ellipse to frame
each structure, and measured the area within the ellipses to estimate entrainment.
Neither definition distinguishes between entrained fluid that is mixed, entrained
fluid that is doomed to be mixed, and appear to allow for the possibility of ‘en-
trained’ fluid subsequently leaving the ellipse.

In this paper we use insights from direct numerical simulations to provide ideas
on how the large-scale structure dynamics affect scalar transport in the mixing
layer. For this purpose a two-dimensional time-developing code was used to solve
the compressible Navier-Stokes equations (Sandham [1988]). The simulations were
made at low convective Mach number (M, = 0.4) so that the results can be ap-
plied to the low-speed mixing layer. The simulations are of course limited by two-
dimensionality and the low Reynolds and Schmidt numbers that can be handled
numerically. However some basic trends emerge clearly in the simulations and by
using the Broadwell-Breidenthal model of the post-mixing-transition layer we are
able to make some qualitative statements about the influence of pairing on mixing
in the high Reynolds number mixing layer.

1 Stanford University
2 California Institute of Technology
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FIGURE 1. Time series of a pairing cycle.

2. Observations From Direct Simulations

From flow visualisations it is apparent that the pairing process is the dominant
mechanism for local adjustment of the mixing layer eddy length scale to allow
growth in the streamwise direction. To investigate this basic process we consider the
simple case of the numerically-simulated time-developing mixing layer undergoing a
pairing, shown in Figure 1. The mixing layer is viewed at approximately equal time
steps in the cycle. At the first step shown it has already undergone one pairing and
by the last (5th) time step the structure has filled its periodic box and is unable to
grow or pair any further. The Reynolds number based on vorticity thickness was
initially 200 and rose to 2000 by the end of the simulation. The Schmidt number
was 1, and a 300 x 300 grid was used.

If the structure is assumed to maintain self-similarity from the first time step
to the last, then the area must rise by a factor of 4. Two vortices have paired;
so in the final structure half the fluid came from the original two structures and
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FIGURE 2. Scalar cut-and-connect process showing the 0.1 and 0.9 scalar contours
(a) before (b) after.

the other half was introduced during the pairing cycle. Mixing by diffusion is one
mechanism for the growth of the structure. A second mechanism can be identified
from the scalar contour plots as a scalar cut-and-connect, which has the effect of
trapping nearly-unmixed fluid within the structure. This is shown in more detail
in Figure 2. Unmixed fluid is wrapped around the structure at time 1 (see Figure
1), with mixing only occurring by diffusion. Then, between times 1 and 2 this fluid
is cut off from the outside and becomes trapped in the structure. Between times 3
and 5 mixing is occurring in two places — diffusion from the outside, and diffusion
of the fluid inside the structure which was captured by the pairing.

This observation suggested new definitions of fluid state based on the scalar con-
tours. Engulfed fluid (E) is that fluid contained between the outermost scalar
contours, for example fluid between the levels 0.1 and 0.9, where 0 and 1 represent
the free-stream values. Mized fluid (M) is that fluid throughout the mixing layer
which is molecularly mixed between two levels (e.g. 0.1 and 0.9). The difference
E — M is the fluid that has been engulfed, but is yet to mix.

The effect of Peclet number on the process was investigated by running 150 x 150
simulations at a Reynolds number of 200 and Schmidt numbers of 0.25 and 1.0.
The results are shown in Figures 3(a) for S¢ = 0.25 and 3(b) for Sc = 1.0. Engulfed
fluid E was found by integrating around scalar contours, while mixed fluid M was
calculated by scanning the computational domain for mixed fluid and adding area
increments. The two measures are equal so long as all the fluid within the newly
defined structure is mixed. It is seen from Figure 3(a) that at low Schmidt number
molecular diffusion is very strong, and fluid is essentially diffusion-mixed before it
is engulfed. The plots are shown for various scalar cutoff levels 0.1 — 0.9 (containing
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FIGURE 3. Growth of engulfed and mixed fluid at Sc = (a) 0.25 and (b) 1.0.

80% of the mixed fluid), 0.2 —0.8 (60%), and 0.3 —0.7 (40%). The effect of lowering
the limits on the cutoff is to exclude some of the diffusion effects and give some
indication of how a higher Schmidt number flow would behave. At Sc = 1.0 (Figure
3(b)) and taking the 40% and 60% limits there is a clear trend emerging. The E
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curve shows a sharp jump at the moment of the scalar cut-and-connect, trapping
fluid within the structure, which later mixes. By extrapolating these results we
speculate that in the limit of infinite Pe, for simulations with Re fixed below the
mixing transition, the function E would be a step function, while the function M
would remain essentially zero since the computations have no three-dimensional
small scales to increase the interfacial area for mixing.

In the following section we use the Broadwell-Breidenthal picture of the mixing
layer past the mixing-transition to include the small scales of the vortex core in our
model pairing event, and to make some predictions about the influence of pairing
on the mixing process.

3. Extension of Ideas to High Reynolds Numbers

A simplified model of mixing in the plane mixing layer was proposed by Broadwell
& Breidenthal [1982] and has been extended to include chemical reactions of arbi-
trary rate by Broadwell & Mungal [1988]. In the model, fluid is viewed as mixing
(1) in laminar strained-flame regions between the two free-stream fluids, and (2)
inside the structure at the Kolmogorov scale. In the former process the amount of
product that is formed has Reynolds and Schmidt number dependence, while in the
latter process it does not. The model correctly predicts many features of the mixing
layer experiments, including the differences between liquid and gas experiments and
the variation of product formation with equivalence ratio, that cannot be explained
with conventional gradient-diffusion models.

In the limit of high Peclet number, such as occurs in liquid mixing layers and in
gases at very high Reynolds numbers, mixing in the laminar strained flame regions
is reduced to zero and we need only consider mixing at the Kolmogorov scale. The
ideas from the previous section show that the pairing is responsible for introducing
unmixed fluid into the structures in a discrete manner. Immediately after the scalar
cut-and-connect process the structure contains one-half old fluid and one-half new,
unmixed fluid. The vorticity field at this stage consists of the two pairing vortices,
plus their associated streamwise vortices and small scales. It is assumed that a
cascade in scales occurrs and that mixing finally occurs at the Kolmogorov scale
when the interfacial area of fluid has increased dramatically. Schematically the
proposed process is given in Figure 4. From the Broadwell-Breidenthal model the
time scale for mixing to occur after engulfment would be given by Tar —Tg ~ L/AU,
where L is a characteristic length scale at the start of the cascade.

Some experimental results of Roberts and Roshko [1985] can be interpreted in the
light of the above ideas. Roberts performed chemical reactions in a liquid mixing
layer (Pe — oo) at high Reynolds number and found that, when the layer was
forced, new product formation dropped to zero. We can now postulate that the
effect of forcing is to lock the mixing layer, stopping pairing and hence preventing
new fluid being engulfed, which in turn prevents any new product being formed.

In reaching the above conclusions for Pe — oo it has been assumed that the
increase in interfacial area due to the presence of streamwise vortices in the flow
is not sufficient to outweigh the reduction in diffusion coefficient. At lower Peclet
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FIGURE 4. Prediction of growth in engulfed and mixed fluid for Pe — oo.

numbers, for example in the gaseous mixing layer, these streamwise vortices will be
important, and have been invoked by Mungal & Dimotakis [1985] to explain some
features of ‘ramping’ in the temperature time traces of a reacting mixing layer.
Finite Peclet numbers will have the effect of reducing the jump in engulfed fluid
and giving the E and M curves a positive slope between pairings, due to mixing
in the strained laminar diffusion layers. At the Reynolds number used by Mungal
& Dimotakis (6.8 x 10* based on visual thickness) it was estimated that about half
the mixing occurred in these diffusion layers, and we would expect the jump in E
to be reduced by approximately a factor of two.

The method used by Hernan & Jimenez [1982] to estimate entrainment in a
gaseous mixing layer at high Reynolds number (but finite Pe) involved framing
each structure with a best-fit ellipse. Figure 5 shows how this might work for the
structure at time 5 in the pairing cycle. For times 2 and 3 (see Figure 1) it was
more difficult to fit any meaningful ellipse to the structures. This method evidently
includes unmixed fluid that is not contained in our engulfed fluid definition, and
may exclude some mixed fluid. The amount of extra fluid included is a function of
the particular structure orientation, so that the area of the ellipse may change even
if no mixing is taking place. The conclusion of Hernan & Jimenez that entrainment
mostly occurs between pairings should therefore be viewed with caution, since it
may be influenced by the method that they used to measure entrainment. Also, we
should not interpret their measurements of entrainment as giving any information
about mixing. The model proposed here for finite Pe is that mixed fluid rises
steadily in between discrete jumps which are associated with the mixing of fluid
that was engulfed during pairing and has reached the Kolmogorov scale. The size
of each jump is speculated to be Reynolds number dependent, reducing as Reynolds
number is reduced.
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FIGURE 5. Result of fitting an ellipse to a structure.

4. Conclusions

Definitions of entrainment and mixing based on the scalar field of a numerically
simulated plane mixing layer have been used to study the fundamental effects of
pairing on the mixing process. It was found that pairing is responsible for the
process of ‘engulfment’, bringing unmixed fluid into the structure, while actual
mixing lagged behind. Use of the Broadwell-Breidenthal mixing model allowed
the results from two-dimensional simulations to be extended to the high Reynolds
number mixing layer, leading to a model picture of pairing for Pe — oo as a step
function doubling in fluid contained in a structure, followed by molecular mixing
after a time lag for the cascade in scales to reach the Kolmogorov scale. It is
concluded that for Pe — oo pairing is necessary for mixing, helping to explain
some experimental findings of Roberts & Roshko [1985].
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Use of Passive Scalar Tagging for the Study of
Coherent Structures in the Plane Mixing Layer

By B. R. Ramaprian!, N. D. Sandham?,
M. G. Mungal? and W. C. Reynolds?

Data obtained from the numerical simulation of a two-dimensional mixing layer
have been used to study the feasibility of using the instantaneous concentration of
a passive scalar for detecting the typical coherent structures in the flow. The study
has shown that this technique works quite satisfactorily and yields results similar
to those that can be obtained by using the instantaneous vorticity for structure
detection. Using the coherent events educed by the scalar conditioning technique,
the contribution of the coherent events to the total turbulent momentum and scalar
transport has been estimated. It is found that the contribution from the typical
coherent events is of the same order as that of the time-mean value. However, the
individual contributions become very large during the pairing of these structures.
The increase is particularly spectacular in the case of the Reynolds shear stress.

1. Introduction

Several techniques have been used in the past to educe and study organized struc-
tures in turbulent shear flows. These vary from simple level detection of the velocity
signal to the use of various types of short-time averages of the flow properties. A
relatively simple technique which proved to be very successful in a recent study of
the two-dimensional wake of a flat plate (Jovic and Ramaprian [1986]) consisted of
using heat as a passive scalar to tag the flow. In this experiment one side of the
wake was maintained at a uniformly higher temperature relative to the other side.
The resulting instantaneous temperature levels in the flow were found to provide a
convenient and simple means of detecting the arrival of organized structures at the
probe. In fact, with this technique, it was possible to isolate and study organized
structures in the flow even at distances of the order of 250 momentum thicknesses
downstream of the trailing edge using only single point measurements. The results
of this study are in good agreement with the recent findings of other researchers
(Browne et al.[1986], Hussain and Hayakawa [1987)) who have used more sophisti-
cated techniques for the eduction and analysis of the organized structures.

The success of the heat tagging technique in detecting organized large-scale struc-
tures suggests that there is a strong correlation between passive scalar transport and
the large scale structure and that presumably the former is predominantly brought

1 Washington State University
2 Stanford University
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about by the latter. It seems also that the manner of introduction of the scalar (uni-
formly over the entire side of the wake, as opposed to introduction at the trailing
edge) contributed to the success of the method. This is apparent from the exper-
iments of Cimbala [1985] in the two-dimensional wake of a cylinder, which clearly
showed that the flow field inferred from visualization of the passive scalar depends
critically on the location of the point of introduction of the scalar contaminant (and
the Schmidt number).

Some of the above issues can be better understood if the scalar tagging technique
is tested under conditions when the available flow information is not limited to
single-point measurements. It was therefore proposed to apply this technique to
study the large scale organized structure of a numerically generated two-dimensional
mixing layer, in which case, information on the entire flow field is available at all
instants of time. Such a test would enable one not only to determine the power
and limitations of the scalar tagging technique as a means of identifying large-scale
organized structures but also to understand role of these structures in the process
of turbulent transport in the mixing layer. The present paper describes the results
of such a numerical study.

2. Flow Studied

The flow studied is a two-dimensional mixing layer. The database was produced
by Sandham & Reynolds [1987], using a random-walk on the phase of the forcing
eigenfunctions to simulate the natural mixing layer. The computations are made
for the mixing layer between two streams with scalar concentrations G; =1 (‘high
scalar’ side) and G; = —1 (‘low scalar’ side), and moving at velocities U; = 2 and
U; = 1 respectively. The code is two-dimensional, i.e., the two-dimensional instan-
taneous Navier-Stokes equations are solved. The computational domain extends
from z = 0 to z = 200 initial vorticity thicknesses in the streamwise direction and
y = —oo to y = +o0 in the normal direction. The flow development within this
domain is computed from the initial time ¢ = 0 to a time corresponding to 640
vorticity time units. At z = 0, velocity perturbations of a frequency corresponding
to the fundamental and subharmonic instability modes of the mixing layer but with
a randomly walked phase are introduced. A hyperbolic tangent distribution across
the mixing layer is assumed for the scalar. The numerical simulation corresponds to
a Reynolds number (based on the initial vorticity thickness) of 100. The simulated
mixing layer has been found to agree reasonably well with experimental measure-
ments with respect to growth rate, and distributions of mean velocity and turbulent
stresses. Hence, in spite of the rather low Reynolds number and two-dimensionality
of the simulation, the numerical data can be considered to be adequate for the pur-
pose of the present studies. In order to avoid the effects of the initial conditions,
data corresponding to ¢ > 240 only have been used in the study. Likewise, data
corresponding to only two locations, namely z = 78 and £ = 137 have been used in
the present study. These locations are sufficiently far away from the boundaries to
be directly influenced by the specified boundary conditions.
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FIGURE 1. Schematic of the eduction procedure

3. Eduction Procedure and Results

It was decided to study the organization in the flow in terms of coherent events
in time rather than coherent structures in space. The study thus simulated the
experimental situation in which fixed probes measure flow properties as a function
of time. Furthermore, averages taken over the events have direct significance since
they represent the contribution by the coherent activity to the ‘conventional’ time-
averaged properties. The procedure used for the eduction of the organized structure
in the flow was, in principle, similar to that used in the experiments described in
Jovic and Ramaprian [1986] and briefly, is as follows. First, a given x-location is
selected for the study. The instantaneous velocity, vorticity and scalar values at
this station are each organized in the form of a time series for each y-location. A
y-location in the ‘high scalar’ side sufficiently away from the y = 0 line is selected
(arbitrarily to begin with). Based on the reasoning that a scalar value of less than 1
at this location indicates contamination with fluid from the ‘low scalar’ side brought
in by the large eddies, the scalar time-series is scanned to detect the time instants
when the scalar level crosses a prescribed threshold (say 0.95). The interval between
two such crossings from 1 to 0.95 is defined as a large ‘event’ (see Fig.1). All such
events are collected and a histogram of the duration ¢; of these events is generated.
Also, the mean duration of the events and the standard deviation are evaluated.
The y-location and the threshold level are optimized so as to minimize the standard
deviation of the durations. The resulting normalized histogram is shown in Figure
2 for the station z = 78, along with the lognormal distribution predicted by Bernal
[19088]. The agreement indicates that the random-walk phase model used in the
simulation algorithm yields a realistic description of the mixing layer.
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FIGURE 2. Normalized histogram of event durations. Station z = 78, y = 19,
scalar threshold=0.95. Mean duration=10.3 ¢ = 0.315. The solid line is the Bernal
model.

The next step in the analysis consists of obtaining at all y-locations, ensemble-
averaged values of the velocity components U, V, the vorticity w and the scalar
concentration G at several instants during the event. For this purpose, the time
coordinate T is measured relative to the beginning (‘front’) of the event and is
normalized with respect to the duration of the event. Ensemble averages over the
several realizations are obtained at ten equally spaced intervals of /{;, separately
for each duration ¢;. From these ensemble averages, contours of these properties
within the event are constructed. Results from this study indicated that not only
were realistic contours obtained in each case but also that the contours were nearly
the same for all the durations in the range 9 < ¢; < 12 suggesting thereby that these
typical events are indeed coherent. As a final step, the contours are averaged over
these different durations to obtain the ensemble-averaged contours for the typical
coherent event.

Figures 3 and 4 show typically the results for the scalar concentration G and
the vorticity w. The contours are drawn for equal intervals. These contours are
analogous to those that would be obtained in an experiment from the instantaneous
outputs of a multitude of probes located across the mixing layer at the given x-
station, as a coherent event passes by the station. The figures clearly show that the
scalar conditioning technique has been successful in educing the typical coherent
events in the flow. A secondary observation that can be made from the figures is
that while details within the event may differ, there is a strong overall correlation
between the scalar field and the vorticity field associated with the coherent event.
This close correlation perhaps explains why the scalar conditioning technique is
successful in educing the coherent (vortical) events in the flow. It is, however,
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FIGURE 4. Contours of ensemble averaged vorticity in the typical coherent event.

important to note that in this case the Schmidt number of the passive scalar is of
the order 1 and that the scalar is ‘introduced’ at all y-locations. It is also important
to note that there are differences in detail between the scalar and vorticity fields.
For example, it is very clearly seen that the scalar gradients are very strong within
the braid but there is hardly any spanwise vorticity carried by the braid.
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4. Contribution from Coherent Events to Turbulent Transport

The availability of information on the instantaneous flow field in this case, pro-
vides an opportunity to study the detailed structure of these typical coherent events
and their contribution to the overall turbulent transport. One can estimate, for ex-
ample, the contribution from the coherent structures to the conventionally defined
turbulent shear stress u/v’ and the turbulent scalar transport u/gi and v/g/ in the
streamwise and normal direction respectively. During a coherent event, the instan-
taneous velocity fluctuations u' and v' with respect to the long-time average velocity
U and V, and the instantaneous scalar concentration fluctuation g’ with respect to
to the long-time averaged scalar concentration G can respectively be written as

u' =< U > +u, (1)
v' =< V > +v‘ (2)
g =< G > +g, 3)

where the sign <> denotes ensemble-averaged fluctuations with respect to the cor-
responding long-time average value and the subscript ‘s’ denotes the random de-
parture of the instantaneous value from the ensemble average. The latter can be
regarded as ‘turbulence’ superposed on the deterministic fluctuations. The instan-
taneous products u'v',u'g’' and v'g’ can then be ensemble averaged for each nondi-
mensional time 7/t; within the typical coherent event and subsequently averaged
over the entire duration of the event to obtain

<uv'>=<U><V>+<u,v, > (4)
<u'g'>=<U><6G>+<u,g, > (5)
<vg'>=<V><G>+<v,9, > (6)

The left hand side of the above equations represent the contribution from a typical
coherent event to the time-average transport. The two terms on the right hand
side represent the contributions respectively from the deterministic and the random
part of the fluctuations associated with this typical event.

Typical results for the station £ = 78 are shown in Figs. 5 and 6 for the shear
stress and the scalar transport in the normal direction respectively. It is seen
that the superposed turbulence (which can be regarded as representing the jitter
associated with the process of ensemble averaging) is as large as the organized
component in the case of the shear stress but is less significant in the case of the
scalar flux. However, at z = 137, the level of the superposed shear stress also was
found to have a relatively small magnitude. In any case, the total contribution
from the typical coherent event, given by the sum of the two components is seen
to be about 60 % of the time-mean value. Similarly, at £ = 137 this contribution
was found to be approximately equal in magnitude to the time-mean value. Figure
10 shows similar results for the scalar transport. Results for the streamwise scalar
transport also showed a similar trend. It is thus concluded that the typical coherent
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events carry shear stress and heat flux of approximately similar magnitude as the
corresponding time-mean values. Hence, these typical coherent events are perhaps
as significant as the rest of the events in the flow (but not necessarily the most
significant) from the point of view of turbulent transport. The result, however,
differs from the experimental results for the wake obtained in Jovic and Ramaprian
[1986] which indicated that the shear stress associated with the coherent motion
was 2 to 3 times larger than the time-mean value. This difference in the results
must be due to the fundamental differences between the dynamics of the mixing
layer and the far-wake, though effects of three-dimensionality and contamination
with atypical events during eduction in the experiments might have contributed
somewhat to the observed differences.

5. Results for a Pairing Event

The above results correspond to the so called typical coherent event observed
at a given x-location. The mixing layer, however, is characterized by pairings of
the coherent structures, which occur at random streamwise locations. However,
it is likely that at any x-location, a pairing event can be observed if one waits
for a long enough time. The rather restricted space-time domain of the present
numerical simulation did not allow a large enough number of such pairing events to
be sampled and ensemble averaged. However, individual pairing events were isolated
and studied. The results for one such event, corresponding to the completion of a
pairing at x=137 are discussed here. The results shown are expected to be typical
of this phase of the pairing process.

Figures 7 and 8 show the scalar concentration and vorticity contours for the
pairing event. Once again, overall topological similarity can be observed between
the scalar and vorticity fields. However, the scalar gradients in the interior of the
event are less strong than those of vorticity, which shows a nearly uniform variation
from the center to the outer edge of the structure. Figures 9 and 10 show the cross-
stream distribution of the transport terms for momentum and scalar. The same
nomenclature as was used in Fig.5 and 6 has been retained even though the ensemble
‘average’ has been obtained over only one realization and hence the superposed
component is zero. It is seen that the organized motion associated with the pairing
event carries nearly eight times the value of the time-mean maximum shear stress
in the mixing layer. On the other hand, the contribution from the pairing event
to the scalar transport is of the same order as the time-mean value. Comparing
these results with those for the typical coherent event, one can conclude that pairing
events are responsible for bringing about a significant amount of turbulent transport.
The contribution to transport of momentum is indeed spectacular during pairing,
while the contribution to scalar transport is only moderate. Browand & Weidman
[1976] have shown experimentally that single events lead to Reynolds stresses that
are comparable to the time average, while pairing events are very significant with
respect to Reynolds stress production; results that are consistent with our findings.
The results shown in Figs. 9 and 10 may be slightly modified if ensemble averages
are obtained over a large number of realizations. However, the events are so strongly
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FIGURE 8. Contours of vorticity for a pairing event. Station z = 137.

coherent that it is unlikely that a major departure from this trend would emerge
from the study of a large number of realizations.

6. Comparison of Scalar Conditioning with Vorticity Conditioning

Finally, it is instructive to compare the present eduction technique based on scalar
level conditioning with other techniques. Unfortunately, it was not possible to make
extensive comparisons with several techniques due to time-constraint. However,
comparisons of the present results were made with those obtained using vorticity
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level for the eduction of the coherent events. Vorticity is often regarded as the best
criterion for the identification of the coherent structures. Instantaneous vorticity
is, however, one of the most difficult quantities to monitor in an experiment. In
the present numerically simulated mixing layer, however, instantaneous vorticity
values were readily available. The eduction procedure used was analogous to that
used with the scalar. Thus, a suitable y-location and a vorticity threshold level are
selected by trial and error. Crossings of this level by the vorticity values in the
increasing direction from zero are assumed to be associated with the passage of the
coherent (vortical) events. Optimized histogram and ensemble averages are then
obtained as in the case of scalar conditioning. Figure 11 shows the histogram of the
duration of the coherent events. This can be compared with Figure 2. It is seen that
while there are some differences in detail, the two histograms are quite similar. The
mean duration of the events was nearly the same in the two cases. So also are the
durations of the most frequent events. In fact, the contours of ensemble averaged
scalar concentration and vorticity were found to be indistinguishable from those
shown in Figs. 2 and 3 and are not therefore presented separately. The contours
of ensemble-averaged shear stress < U >< V > (corresponding to the organized
motion) obtained with the two techniques are compared in Fig.12. It is seen that
there are only very small differences between the two results. For example, there
is only a 4% difference in the maximum values (and also minimum values) for the
two cases. A somewhat larger difference (about 15%) was found in the value of
the total shear stress carried by the coherent event. Even this difference is well
within the uncertainties to be expected in a study such as this, especially when a
small number of realizations are used to obtain the ensemble averages. It appears
reasonable to conclude that with scalar tagging and conditioning, it is possible to
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isolate the typical coherent structures as reliably as with the more difficult vorticity
conditioning technique.

7. Concluding Remarks

The present study, though limited in scope by time constraints, has led to some
interesting observations and useful results. The study has demonstrated that, if
properly used, passive scalar conditioning can prove to be a simple and effective



Passive scalar tagging in the mizing layer 89

technique for the eduction and analysis of large-scale coherent structures in turbu-
lent shear flows. The reason for its success is the fact that the scalar field under
such conditions closely resembles the vortical field in respect of overall features like
topology and large-scale structure. There are however differences between the two
fields in respect of finer details within the structure. But, these latter differences
do not affect the eduction process significantly. In fact, eduction based on scalar
conditioning captures more or less the same structures as those captured by an
alternate technique such as vorticity conditioning. The key requirements for the
success of the scalar conditioning technique, however, are that the entire stream on
one side of the mixing layer is maintained at a uniform scalar concentration and
that the Schmidt number of the scalar is close to unity.

The study of the ensemble averaged properties associated with the coherent events
was also very useful, in spite of the several restrictive test conditions, such as the
use of two-dimensional simulation, low Reynolds number, arbitrary (though reason-
able) initial forcing and downstream boundary conditions, and the small number of
realizations under which it was conducted. This study showed that typical coherent
events carry a significant amount of ‘turbulence’ and can therefore affect the overall
transport of momentum and scalar in a significant manner. However, even more sig-
nificant are the pairing events in affecting these transport phenomena. Particularly
spectacular is the role of these events in the transport of momentum, which reaches
several times the time-mean value. Scalar transport is not significantly increased
during these events.
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Sensitivity of mixing layers
to three-dimensional forcing
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1. Introduction

It is well-known that turbulent mixing layers are dominated by large-scale, fairly
coherent structures, and that these structures are related to the stability charac-
teristics of the flow (see, for example, Ho & Huerre 1984, for an excellent review
of this subject). These facts have led researchers to attempt controlling such flows
by selectively forcing certain unstable modes, which can in addition have the effect
of suppressing other modes. For example Oster & Wygnanski (1982) and Ho &
Huang (1982) found that, by subjecting the mixing layer to oscillatory disturbances
upstream of the splitter plate at frequencies related to unstable modes, the growth
of the layer could be significantly inhibited. Similarly it has been found (Husain
& Hussain 1986) that forcing at certain frequencies and their subharmonics can
enhance the growth of the mixing layer.

Much of the work on controlling the mixing layer has relied on forcing two-
dimensional instabilities. In this study we address the results of forcing three-
dimensional instabilities. The ob jectives of our work are twofold: (1) to understand
how a mixing layer responds to three-dimensional perturbations, and (2) to test
the validity of an amplitude expansion in predicting the mixing layer development.
The amplitude expansion could be very useful in understanding and predicting the
three-dimensional response of the flow to a variety of initial conditions.

The mixing layer is sensitive to several aspects of the imposed perturbations,
including their wavelength or frequency (see, e.g., Michalke, 1964), the relative
phases of the disturbances if more than one are used (e.g., Patnaik, Sherman &
Corcos 1976), the relative amplitudes of the disturbances (Metcalfe et al. 1987),
and their shape (e.g., eigenfunctions of the Orr-Sommerfeld equation, etc.). The
approach we would like to take is to systematically explore the sensitivity of the
mixing layer to various types of three-dimensional perturbations, using both direct
numerical simulations and amplitude expansions. However, the potential parameter
space to explore is very large. In this preliminary study we begin by selecting several
different conditions for simulation and examining the behavior of the computed flow
fields. In order to test the amplitude expansion technique, we compare previous
simulation results with predictions from the theory for cases where the simulations
and theory treat similar initial conditions. In this preliminary study, we limit the
application of the expansion technique to two-dimensional mixing layers.
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2. Mathematical description

Consider a temporally evolving mixing layer with a Cartesian coordinate system
oriented with z in the mean flow direction, y in the direction of the variation of the
mean velocity, and z in the transverse direction.

It is both convenient and natural to consider initial perturbations of the form

ui(z,y,2) = 1-li(a,y,-y)e"("l==+‘7z)

since this is the form of the stability eigenfunctions. The simulations and analysis
were performed using initial conditions consisting of the sum of a few perturba-
tions of this form. Consider first the two-dimensional modes, where v = 0. If
the simulations were initialized at a very low level with broad-banded noise, then
the first significant disturbance would appear at approximately (ar,0), where ar
is the wave number of the most unstable mode based upon linear stability theory
(ar = 0.88926, where § is the initial vorticity thickness, Michalke, 1964). Initializa-
tion of this mode causes roll up to occur (Patnaik, Sherman & Corcos 1976; Riley
& Metcalfe, 1980), and the development of higher harmonics (e.g., (2ar,0)). If
the initial field is broad-banded, then the subharmonic (1/2 ar,0) will also show
significant growth, both due to its own inherent instability and also to nonlin-
ear interaction with the fundamental. Vortex pairing will eventually occur. The
behavior of these two-dimensional disturbances is well-documented by laboratory
experiments, numerical simulations, and theory.

Next consider three-dimensional disturbances (4 # 0). In laboratory experiments
used to study the mixing layer downstream of a splitter plate, it is observed that
the initial primary three-dimensional disturbance consists of streamwise vortices of
a particular wavelength (approximately yr = 1.5aF) that appear locked in phase
(Bernal, 1981; Ho & Huang, 1982). In the current nomenclature, these modes are
the points (0,7F) in the (a,v) plane. Initial disturbances of this type were con-
sidered by Pierrehumbert & Widnall (1982), and their growth termed translative
instability. It was found that, based upon linear stability theory, these translative
modes are weakly algebraically unstable. However, in the presence of a finite ampli-
tude, two-dimensional disturbance, the translative modes become highly unstable.

Another mode that has received some previous attention is the oblique mode at
(ar,vF), which was addressed theoretically by Pierrehumbert & Widnall (1982)
and Corcos & Lin (1984), and numerically by Metcalfe et al. (1987). The latter
work showed that initializing these modes along with the fundamental results in
streamwise disturbances very similar to those observed in the laboratory. This mode
is unstable according to linear stability theory, but the quoted previous work shows
that it is much more unstable in the presence of finite amplitude, two-dimensional
disturbances.

At this point it is important to mention certain differences between the spatially-
evolving and temporally-evolving mixing layers. The former is what is usually
studied in laboratory experiments, and is a more realistic approximation to many
flows encountered in technology, e.g., in mixing regions in reaction chambers. The
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temporally-evolving mixing layer is probably a better model for geophysical situ-
ations, e.g., mixing layers in the atmosphere or oceans. It has been studied more
often numerically because of the significant numerical advantages in avoiding in-
flow/outflow boundary conditions. Some laboratory experiments have been con-
ducted for the temporally-evolving case (see, e.g., Thorpe, 1985) using salt-stratified
water in a tilting tank.

The temporal mixing layer studied in the tilting tank experiments shows lit-
tle evidence of the strong streamwise vortices which are commonly observed in
spatially-evolving mixing layers (Thorpe 1985). This is perhaps due to the fact
that the (0,7r) mode would not be preferentially excited in these experiments. In
spatially-evolving mixing layer experiments, streamwise vortices are often present
at the edge of the splitter plate, and are probably related to features of the particu-
lar experimental facility (Ho, 1988). Although the temporally-evolving flow exhibits
the same qualitative two-dimensional features as the spatially-evolving mixing layer,
e.g., rollup and pairing, it appears that the development of the three-dimensional
disturbances may be significantly different, due to differences in the nature of the
disturbances. In the numerical simulations presented in §4, initial disturbances
which would produce streamwise vortices similar to those observed in spatially de-
veloping mixing layers were selected.

To address the problem of the sensitivity of the mixing layer to three-dimensional
disturbances, we consider the constant density Navier-Stokes equations:

%1:-+u-Vu= -Vp+ R™'V?u (2.1)
V:u=0 (2.2)

Here u = (u,v,w) is the velocity vector and p is the pressure. The equations have
been nondimensionalized using the velocity scale AU/2, half the mean velocity
difference across the layer; the length scale § = AU/U,(y = 0) (initial vorticity
thickness) and the time scale 2§/AU. The Reynolds number R is defined R =
AUS/2v.

The initial velocity field consists of an initial mean velocity U plus an initial per-
turbation u'. U is taken to be an error function, (U(y) = erf(y/7y)) For boundary
conditions we assume periodicity in the z and z directions, and assume that all
perturbations decay as |y| — oo.

3 Amplitude expansion technique

We have extended a procedure for theoretical analysis of two-dimensional wave-
wave interactions in unstable shear flows (Mourad, 1987; Mourad & Brown, 1988) to
the case of two- and three-dimensional waves, here applied to the temporal mixing
layer. The details of this derivation and results are in the Appendix. As a first ap-
plication to the mixing layer, we will consider the classic problem of the interaction
of a two-dimensional wave with its two-dimensional subharmonic, to determine if
we can reproduce the phase-dependency of their evolution, as described in Patnaik,
Sherman & Corcos (1976), Riley & Metcalfe (1980) and Ho and Huerre (1984); see
also Mansour et ¢l. in this volume.
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3.1 Two-dimensional amplitude ezpansions

We begin by listing the equations governing the temporal evolution for the stream
function of the two dimensional fundamental, with amplitude and phase A(t) and
4(t), respectively, and of the subharmonic, with amplitude and phase B(t) and
0p(t), respectively.

2 -
%% - ia‘-izoA =ao + al%e-‘(”"’*’ +a3A? + a,B? (2.3)
1dB .d —i(0a -
Far Vg0 =bot+bide 64-2%8) 1 b3 A? + by B, (24)

+ by A?e2H04-208) 4 by A?e (947293 co5(0,4 — 26p)
+ by A2~ (04 ~205) sin(64 — 20p)

As discussed in detail in the Appendix, the rational for these equations is similar
to that of Lorenz, or of Stuart’s energy method (Ho & Huerre, 1984). Like them, we
derive Equations (2.3) and (2.4) without benefit of asymptotic analysis, which would
ordinarily allow for an ordering of the weights of the various physical processes in
the mixing layer. We forgo asymptotics, because a reasonable small parameter is
not available for our use in supercritical mixing layers. Instead, the expansions
are truncated based on the physical processes we wish to include or remove from
the model. Finally, like Lorenz and Stuart, we hope that the results lend at least
qualitative insight into the true physical processes. We do, however, include more
detail in the expansions than these other theories.

In 2.3 and 2.4, a; and by govern the linear growth of their respective disturbances.
They are complex constants of the form o, — w,i, where o, is the growth rate and
wp is the linear frequency of each of the waves.

The terms beginning with a; and b; represent the effects of the changes induced by
each wave on the other. This direct interaction was the focus of the asymptotic study
of Monkewitz (1988), who used an expansion near the critical Reynolds number
(= 0) to define a small parameter. However, for supercritical flows, other nonlinear
effects are also important (see Ho & Huerre 1984). Only a, and b; terms are included
by Monkewitz and others, because they show that when the flow is near critical the
return-feedback effects discussed below occur on a much longer time scale than the
initial interaction. '

Next, the term with coefficient a3 represents the affects on the fundamental wave
of the modified mean flow and the first harmonic (2ar,0). Both the modified mean
and the first harmonic are forced by the fundamental. This term generally acts to
check the unbridled growth of the wave in a supercritical flow.

The term with a4 represents a variety of physical effects. These include the effect
on the fundamental of (1) the modification to the mean flow induced by the sub-
harmonic wave; (2) the distortion of the subharmonic induced by the fundamental
(as represented by the b; term). The energy methods would have a term like a4 in
their evolution equations which would not include the second contribution.
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FIGURE 1. Evolution of the energy in the (A) fundamental (E(,, 0)) and (B)
subharmonic as predicted by equations (2.3) and (2.4).

The term beginning with b; represents the effects on the subharmonic of the
changes in the mean flow induced by the fundamental, and the b4 term is analo-
gous to the a; term. In addition, bs includes additional effects due to the direct
interaction of the fundamental and subharmonic, as in the a4 term.

The more exotic looking terms with by, bg and by are all due to the impact of the
direct interaction of (ar,0) and (ar/2,0) on the subharmonic.

3.2 Two-dimensional amplitude expansion resulls

For this report, we will not consider a detailed discussion of the roles played by
the various terms in the calculations; though this is of great interest, it is left for
future work. Here we will verify the effect on the interactions of changing the initial
phase difference between the fundamental and subharmonic. The importance of
the relative phase is well documented (Husain & Hussain 1986, Patnaik, Sherman
& Corcos 1976, and Riley & Metcalfe 1980). Following the definitions used in the
numerical simulations, the fundamental and subharmonic are in-phase if alternate
cores of the fundamental modes are aligned with the cores of the subharmonic
modes. They are out-of-phase if the cores of the subharmonic are between the
cores of the fundamental. (This is apparently opposite to the definition used in the
review article of Ho & Huerre, 1984.) An operational definition like that above is
important, since the linear stability eigenfunctions have an arbitrary phase.

Figure 1 shows a typical result of integrating the evolution equations (2.3 and
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FIGURE 2. Contours of the stream function at time 13 as computed using the
amplitude expansion for disturbances which are in-phase.

2.4). What is plotted is an approximation to the energy (E(, 4)) in the fundamental
and subharmonic modes, as given by;

o
E(dho) = Az(t)/w[ug,(ur,ﬂ) + vg.(ur.o)] dy
- (3.1)

E(ar/20) = B%(1) / 46 (cr /2,0) F 2o (ar/2,0)] Y

Note that these are unnormalized energies. The theory is also capable of generating
a more complete energy integral, with the total nonlinear form u(q, o), rather than
the structurally linear form ug (4, 0) (see the appendix for an explanation of the
notation). This is a matter for future work.

The linear growth of each of the waves (the straight lines on this log-linear graph)
is followed by the weak acceleration of the subharmonic (between nondimensional
times 13 and 16) due to the effects of the b, term. The fundamental then equilibrates
due to the action of a3, while B keeps growing due to the forcing of A, as well
as its own ability to extract energy from the mean flow. Once the subharmonic
amplitude reaches a critical value, the fundamental is reduced, and the subharmonic
equilibrates due to the action of by and a4. (Note that the final state as predicted
here is suspect, since we have discovered that b; and a4 are incomplete as currently
calculated. This will be amended in future work.) This graph is representative of
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FIGURE 3. Contours of the stream function at time 18 as computed using the
amplitude expansion for disturbances which are in-phase.

both the in-phase and out-of-phase calculations, at least qualitatively, and is similar
to that in Riley & Metcalfe (1980).

During the linear portion of the evolution, the total stream function field (Figure
2) shows the characteristic scales associated with the fundamental mode, here at
time 13 for the in-phase case. The subharmonic is there, with its core at the
center of the plot underneath that of the fundamental. However, the subharmonic
makes a negligible contribution to the field at this time. The stream function field
for the out-of-phase case is the same. Note that this and all the following plots
have streamwise domain lengths which equal the wavelength of the subharmonic:
therefore, two fundamental vortices and one subharmonic vortex can fit into the
domain. ‘

Once the nonlinear interactions become important (nondimensional time of about
18), the flow patterns for the in-phase and out-of-phase cases become different. The
total stream function field for the in-phase case (Figure 3) shows an enhancement
of the original, central, fundamental vortex, at the expense of the vortices to either
side, whose torn remnants are at the edge of the graph. This is the ‘tearing’ mode
discussed in Patnaik, Sherman & Corcos (1976). Note that the mixing region, as
well as the vortex itself, is smaller here than for the out-of-phase case at the same
time (Figure 4). There the subharmonic vortex, made up of two paired, fundamental
vortices, fills the graph, showing an increase in the mixing region.
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FIGURE 4. Contours of the stream function at time 18 as computed using the
amplitude expansion for disturbances which are out-of-phase.

In this application of the amplitude theory, an important experimental and nu-
merical result is reproduced: the effect of the relative phases of the waves. This is
an important validation of the approach for this flow which provides encouragement
for future applications of the theory. Future applications should include detailed
analysis of the role played by each term in the expansion, and should include three-
dimensionality as laid out in the appendix. Three-dimensional predictions can be
compared to three-dimensional numerical simulations as described in §4 below.

4. Direct numerical simulations

In the numerical simulations, the Navier-Stokes equations (2.2) are solved using
a spectral numerical method based on the expansions discussed by Cain, Ferziger
& Reynolds (1984). Grid resolutions up to 64° were used for the results presented
below.

In these preliminary studies, we present results for four different simulations. In
the first two cases (Case I and Case II), the fundamental (ar,0) as well as the
translational mode (0,+r )are initially nonzero. The fundamental mode is taken to
be the solution to the Rayleigh equation at a = ar, while the mathematical form
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FIGURE 5. Evolution of model energies for CASE I, for the modes: o, (ap,0);

o, (2ar,0); 2, (0,7r); + (ar,vr); and x (ar,29r). Modes (ar,0) and (0,7F)

were initially excited with energies 2 x 10~3 and 1.5 x 10~* respectively.

for the translational mode is chosen to be

u(z,y,2,0) =0,
v(2,9,2,0) =Ae™" cos(7r2),
w(z,y,2,0) = — ﬂe_z"2 sin(vFz).

14

The difference in the two cases is the amplitude A. In Case I it is set to 0.025,
while in Case II it is 0.05. In the latter two cases (Case III and Case IV), the
fundamental plus the oblique modes (aF,vr) and (aF, —yF) are initially nonzero.
The normal velocity v for the oblique modes is initially as given above, the other
velocity components are such that continuity is satisfied and ypu — apw = 0. In
Case III the oblique mode is approximately out-of-phase with the fundamental, i. e.,
it is symmetric about the core of the two-dimensional vortex, while in Case IV the
oblique wave is in-phase.

A plot of modal energies versus time for case I is shown in figure 5. In this and
in the following, the modal energy is defined by

1 -
B(@,7,8) = 3B [ lii(a,3,7, 00 dy. (32)
Here summation over i is implied, and #;(e,y,7,t) is the Fourier transform of

ui(z,¥, 2,t) in the (z,z) plane. The summation sign denotes a sum over the modes
(a77), (a’ “7): (—a, 7), and ("av _7)'
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FIGURE 6. Evolution of model energies for CASE II, for the modes: @, (ar,0);

o, (2ar,0); 2, (0,7r); + (ar,7r); and x (ar,2vr). Modes (ar,0) and (0,7r)
were initially excited with energies 2 x 103 and 6 x 10™* respectively.

In Figure 5 we see that the energy in the fundamental mode grows, at first expo-
nentially, then more gradually, and finally levels off at time 12, which corresponds
approximately to vortex rollup. At the same time the harmonic (2a,0) grows very
rapidly, peaking at about ¢ = 9, and then decays as rollup is completed.

The translative mode, which is only algebraically unstable without the finite
amplitude, two-dimensional mode, initially grows very rapidly. Further analysis
of the results showed that this growth is initially mainly in the u-component, and
is due to the streamwise vortices inducing motion in the y-direction, along the
gradient of the mean velocity (Squire mode). As the mixing layer rolls up, vortex
stretching occurs along the layer, resulting in further increase in this translative
mode. We see that subsequently the oblique mode begins to grow rapidly, and
ultimately overtakes the translative mode. Analysis of visualizations (see below)
suggests that this growth is due both to the tilting of the streamwise vortices and
the distortion of the main spanwise rollers by the the streamwise vortices.

Figure 6 gives the modal energies versus time for Case II, which has the same
initial conditions as for Case I except that the translative mode amplitude is in-
creased by a factor of 2. Comparing Figures 5 and 6, we see that the energies in
the fundamental mode and its harmonic are essentially the same for the two cases.
From an energetics point of view the two-dimensional rollup is totally unaffected
by the three-dimensional motions, even though in this latter case the energy in the
translative mode is within a factor of two of that in the fundamental mode (at
about ¢ = 2). Previously Metcalfe et al. (1987) observed that, in the interaction of
an oblique mode with the fundamental, the fundamental mode played a catalytic
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(c)

FIGURE 7. Iso-level surfaces of enstrophy (a,c) and w; (b,d) for CASE I (a,b) and
CASE II (¢,d). Solid surfaces represent negative values. Contour levels are 1.5 in
(a,c), —0.3 and 0.3 in (b) and —0.6 and 0.6 in (d).

role. Its presence was required for the enhanced growth of the oblique mode, but
its energy was unchanged by the interaction. The increased energy in the oblique
mode came from the mean flow. Our results indicate that this catalytic trait holds
for both the fundamental and its harmonic interacting with the translative mode.
The total energy in the three-dimensional modes is significantly different for the
two cases. However, examining the results more closely we find that the total energy
in a particular three-dimensional mode for Case II is almost exactly four times the
corresponding value for Case I. Since the initial amplitude for Case II is exactly twice
that for Case I, this is consistent with the interpretation that the development of
the three-dimensional dynamics is linear. This result gives some indirect support
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FIGURE 8. Evolution of model energies for CASE III, for the modes: o, (aF,0);

o, (2ar,0); 2, (0,7r); + (ar,7r); and x (ar,27F). Modes (ar,0) and (ar,7r)
were initially excited with energies 2 x 10~3 and 1073 respectively.

to the model of Corcos & Lin (1984) who, although studying the interaction of the
fundamental mode with an oblique mode, assumed that the dynamics of the oblique
mode were linear.

Perspective plots of iso-value surfaces of both streamwise vorticity (w;) and the
norm of the vorticity (w = ,/w;w;) for these two cases are shown in figure 7. Note
that in the plot of w,, the contour level for Case II was chosen to be twice that
of the level for Case I. We see the development of the streamwise vorticity along
the braids, and also these vortices being wrapped into the large-scale vortex core.
Note that the streamwise vortices appear to be somewhat flat due to the straining
field of the two-dimensional vortices. Also note the appearance of counter-rotating
vortices in the core, probably due to the bending of the large-scale vortices by the
streamwise vortices. It is interesting to note that the streamwise vorticity plots for
the two cases are almost the same, lending strong support to the interpretation that
the three-dimensional dynamics are essentially linear. This is surprising in view of
the large distortions observed in the flow field. The plots of w indicate the distortion
of the large-scale vortices by the streamwise vortices.

We next discuss the results for the oblique wave cases: Case III, in which the
oblique wave disturbance was initially approximately out-of-phase with respect to
the vortex core, and Case IV, in which it was in-phase. Plots of the modal energy
versus time for Cases III and IV appear in Figures 8 and 9, respectively. First
note that in both cases the behavior of the energy in the two-dimensional modes
is essentially identical to that for Cases I and II. This is further evidence that the
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FIGURE 9. Evolution of model energies for CASE I, for the modes: o, (ar,0);

°,(2ar,0); 2, (0,7F); + (ar,7r); and x (ar,2vr). Modes (ar,0) and (ar,7F)
were initially excited with energies 2 x 10~3 and 1073 respectively.

two-dimensional modes are unaffected by the three-dimensional motions, and is con-
sistent with the catalytic character of the fundamental mode observed by Metcalfe
et al. (1987). We further note that in both cases the oblique mode (ar,vyr) grows,
but not as rapidly as the translational modes in the previous cases. Furthermore,
in these cases the translational mode quickly grows from zero to be the same order
as the oblique mode.

Though the energetics of the modes are unaffected by the phases, examination of
the flow fields reveals that the details of the fields are quite different. Perspective
plots of w, and w for both cases appear in Figure 10. The time selected is ¢ = 10,
when rollup is almost complete. In Case III there is very little evidence of streamwise
vorticity in the braid region; it has mainly been rolled into the vortex core. This is
due to the fact that, initially, the stagnation point in the braids was near the zero
in the streamwise vorticity. In Case IV streamwise vortices are evident, similar to
those in Cases I and II. Comparing the plots of w we see that the flow in the rollup
regions is very different for the two cases.

5. Conclusions

From this preliminary study of the sensitivity of the mixing layer to three-
dimensional disturbances, we draw a number of tentative conclusions. First it is
clear that the mixing layer is sensitive to the wavelength of the disturbances (or fre-
quency in the spatially-developing flow), the relative phases and amplitudes of the
disturbances, and to the form of the disturbances. Clearly the disturbance needs to
be well-defined in order to predict its behavior.
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(c) (d)

FIGURE 10. Iso-level surfaces of enstrophy (a,c) and w, (b,d) for CASE III (a,b)
and CASE IV (¢,d). Solid surfaces represent negative values. Contour levels are
1.5 in (a,c), ~0.25 and 0.25 in (b) and —0.5 and 0.5 in (d).

Secondly, it is important to realize that naturally-occurring temporally-evolving
mixing layers may develop very different three-dimensional disturbances from those
of spatially-evolving mixing layers. The principal initial three-dimensional distur-
bances in the spatial layer are fairly narrow-banded streamwise vortices, whose
development and breakdown appear to be a principal factor in the transition to
turbulence of the mixing layer. Their initiation appears to be related to features
of the experimental facility. In the temporal layer it is unlikely that this mode is
initially excited, and laboratory experiments do not show evidence of these vortices
in the braid regions.

Third, at least during vortex rollup, the two-dimensional modes appear to be
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almost totally unaffected by the three-dimensional disturbances. In addition, the
three-dimensional disturbances behave in an almost linear fashion, being only af-
fected by the two-dimensional rollup and not by their own interactions. This is
true even though their energy levels are large, of the order of the energy in the
two-dimensional modes.

Fourth, the translative instability appears to be faster growing than that of the
oblique modes. This appears to be due to the growth of streamwise velocity fluctua-
tions (the Squire mode). Fifth, the relative phase of the oblique mode perturbation
with respect to the fundamental mode is not important in the energetics, but is
important in the resulting flow pattern. And sixth, the successful preliminary work
with the amplitude expansions suggests that they may be a useful quantitative tool
for future research.

Finally, this preliminary study suggests additional simulations and mathematical
analysis. For example, it would be useful to more carefully test the amplitude
expansion technique by comparing its predictions with the results of direct numerical
simulations for cases, both two- and three-dimensional, that treat the exact same
initial conditions. If the theory appears to be adequate, then it could be used to
better understand the interactions occurring in the simulations, and to determine
what combinations of initial conditions might lead to desired features of the mixing
layer behavior. With regard to the numerical simulations, there are a large variety
of initial conditions which should be explored. Further simulations to determine
the range of possible outcomes would be useful.
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APPENDIX

In this appendix, we develop a theory for wave-wave interactions between oblique
waves in supercritical shear flows. A more limited set of theoretical equations based
upon the same procedure is used in the body of the text to study the interactions of
a fundamental wave and its subharmonic. The more complete equations discussed
here were developed during the summer workshop, and will be used in future studies.

The heart of the theory is a set of nonlinear evolution equations which govern the
temporal history of the amplitudes of interacting waves. The theory is similar to
Stuart’s energy integral method, and Lorenz’s derivation of his famous amplitude
equations for convection. As in these other methods, we manipulate the Navier-
Stokes equations in a formal way, without benefit of asymptotic arguments and
with severe Fourier, Orr-Sommerfeld and amplitude truncations. Also like them,
we hope that these truncations are a good approximation of the full series solution,
and that they lend at least a qualitative insight into the physics of the problem.
If we had recourse to asymptotically small parameters, a perturbation formalism
would determine the relative weights of different physical effects. However, since
the flow in question is supercritical, one cannot create a small parameter out of the
governing Reynolds number. Neither has the relative energy of the disturbance to
the mean flow proven useful as a small parameter. The subsequent evolution of the
waves in the presence of the mean flow is governed by the ability of the waves and
mean flow to exchange energy with each other, which, even in an initially linear
regime, is independent of this parameter. With these obvious choices removed for
supercritical flows there are no readily apparent small parameters that we can use.
Supercritical flows generally evolve quickly away from any given initial state to a
relatively remote state — a process which is not usually amenable to asymptotic
analysis. With the formalism developed here, we can build tools which are simpler
to use than the full Navier-Stokes equations, as well as lay bare the underlying
physical processes. It becomes a powerful tool of analysis when used in tandem
with experimental observations and/or direct numerical simulations.

The theory starts with the fully nonlinear, nondimensional Navier-Stokes equa-
tions, in the coordinate system used in the text. Separate the mean flow (a function
of y and ¢ alone) from the wavelike part (oscillatory in z and z) of the dependent
variables, with the following notation:

U(z,y,2,t) = Us(y) +ﬁ(y,t) +u(z,y,z,t) (A1.1)

P = ﬁ(y, t) + p(z,y, 2, t) (A1.2)

The vector Uy = (Uy, 0,0) defines the original flow field which will house the inter-
acting waves. We have chosen:

Uo = erf(\/7y) (A1.3)

where y is nondimensionalized by the initial vorticity thickness §. This profile is
selected because it is the self-similar laminar profile for a temporally-evolving mixing
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layer. The mean pressure field will remain unspecified, as it does not enter into the
problem. The vector U = (U,0,W) represents a time-dependent modification to
the initial mean flow caused by nonlinear feedback from the spatially oscillating
part of the field. It is calculated as part of the solution, as well as the modified
mean pressure, given by P.

Substituting the expansion (A1) into the Navier-Stokes equations one obtains the

following:

ut + Upu, +v—%Un - %Au+pJB =—(u+U)-V(u+U)+u-Vu (42.1)

ve + Upvy — —I%EAv +py=—(u+TU)-V(v)+u-Vo (A2.2)
we + Upw, — ElgAw +p.=—(u+TU)-V(w+W)+u-Vw (42.3)

_— 1 — _—
Ut-EUW=—u-Vu (A24)
W, - éww =—u-Vw (A2.5)

with:
lig i &
A= g T o T

and the bar over the non-linear terms indicates the average in z and z (but not
time) of each term.

A.1 Fourier expansions

The next step is to write the spatially oscillating components of the flow in a
highly-truncated Fourier series in z and 2. This series is truncated at the beginning
so that the smallest number of Fourier components need be considered.

The collective nonlinear behavior of the primary waves with wavenumber vectors
(,0), (a/2, 0), (a/2,7) and (e,7) is the main focus of this study. (Note that, for
notational simplicity in this Appendix, we are dropping the subscript F, which de-
notes the fundamental mode in the main body of this paper.) This theory describes
the evolution of a flow field by studying components of the Fourier transform of the
velocity fields. The choice of the primary waves is motivated by the observation that
these are significant waves: with this theory we will only attempt to explain their
behavior, and can only suggest why these should be the waves of choice. Accord-
ing to linear theory, (a,0) (also called the fundamental mode) initially grows most
quickly, and (a/2,0) is its subharmonic. The subharmonic is significant because
after the roll-up of the initial vortices (equilibration of the fundamental wave), the
subharmonic is observed to grow resulting in the pairing of the two-dimensional
vortices. The pairing process is dependent upon the relative phases of («,0) and
(a/2,0), among other things. Observations show that the pairing is followed by,
and sometimes concurrent with, the development of three-dimensionality in the
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originally two-dimensional flow. Spectrally, this is represented by the inclusion of
oblique waves (a,v) and (a/2,7).

Other waves could also be chosen as primary: for example, an interesting choice is
the wavenumber vector (0,7), which denotes a system of longitudinal vortices. The
formalism would proceed in the same fashion if these were included, with different
evolution equations as the result. However, since this is as yet only a temporal
theory, and (0,~) seems to be more relevant for spatially developing flow fields, we
ignore this mode for now.

There is another class of waves which are included here, because they are forced
by various combinations of the primary waves and their complex conjugates. For
short times, these waves are observed to be slaved to the primary ones, that is the
dynamics of these modes are dominated by the forcing. Their intrinsic dynamics are
considered insignificant so no extra degrees of freedom will be required to account
for their effects. For this limited study, we only include the first harmonic of (a,0),
given by wavenumber vector (2a,0) because it is important for the interaction
between («,0) and (a,v). We also assume that the modification to the mean and
the so called Squire modes (see below) remain slaved to the primary waves.

Which waves to include, and whether they are included as free or forced waves,
are subtle, contentious, important and open questions. They represent large areas
of possible improvement as well as additional complexity.

Finally note that while we have only been discussing modes of the form (p, q), with
p and g positive, all the modes (+p, +q) are important. However, the velocity fields
are real, which implies that two of these modes are not independent due to conjugate
symmetry. In addition, we will require that the velocity be mirror symmetric in
the z direction, which will eliminate the independence of another mode. This is a
symmetry which is preserved by the Navier-Stokes equations so that with an initial
condition satisfying this symmetry the solution will remain symmetric. Thus with
the reality of the velocity and the mirror symmetry, only the modes (p,q) with p
and q positive are independent.

For each Fourier mode (p, q) the y-dependence of the three velocity components
must be represented. However, the constraint of continuity eliminates a degree of
freedom so that only two y functions need be considered. To do this we define two
new functions of y:

[

>

=2 w=pi— i (43)

>3

where i, ¢ and w represent the Fourier coefficients of the velocity components for
the given wave number and § = 1/p? + ¢2. This notation is chosen because 3 can
be interpreted as a stream function and w is proportional to the y component of the
vorticity; w is also referred to as the Squire mode. Given ¥ and w for a particular