
Cenier for IILrbulence Rerearch 
Proceedingr of the Summer Program 1988 

41 

A numerical study of bifurcations 
in a barotropic shear flow 

By P. Huerre', L. R. Keefe2, G. Meunierl, 
M. M. Rogers3, L. G. Redekopp', and P. R. Spalart3 

1. Introduction 
In the last few years, more and more evidence has emerged suggesting that tran- 

sition to turbulence may be viewed as a succession of bifurcations to deterministic 
chaos. Most experimental and numerical observations have, for the most part, been 
restricted to Rayleigh-Benard convection and Taylor-Couette flow between concen- 
tric cylinders. The goal of the present study is to accurately describe the bifurcation 
sequence leading to chaos in a two-dimensional temporal free shear layer on the P- 
plane. 

The P-plane is a locally-Cartesian reduction of the equations describing the dy- 
namics of a shallow layer of fluid on a rotating spherical planet. It is a valid model 
for large-scale flows of interest in meteorology and oceanography. The mathematical 
formulation involves the following vorticity equation 

1 
- + U(y)- v2\E + J(V2\Y, \E) + (p - U"(y))Q, = %V'Q, G a?: 7 

where U(y) is the basic hyperbolic-tangent velocity profile, Q is the perturbation 
stream function, and Re is the Reynolds number. The symbol ,f3 denotes the gradient 
of the planetary vorticity. Inviscid linearized stability analyses (Dickinson and Clare 
1973) reveal that the flow is unstable within a neutral curve in the p - k plane as 
sketched in Figure 1 (from Burns & Maslowe 1983), k denoting the streamwise 
wavenumber. Thus P is a convenient control parameter with which one can bring 
about qualitative changes in the attractor as a function of the supercriticality 
Ip - Pel. The limit of the classical mixing layer is approached as /3 goes to zero. 

2. Numerical approach 
The three-dimensional code developed by M. Rogers has been adapted to the 

present problem by adding the appropriate p terms in the equations. The basic 
velocity profile has been changed to U(y) = tanh(y) (a body force is applied to hold 
that velocity profile against viscous diffusion). We recall that periodic boundary 
conditions are chosen in the streamwise direction and that a Cain mapping is used in 
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FIGURE 1. Neutral curve of linear theory in inviscid limit. 

K‘ 
the cross-stream direction. The exponential tails in y for the perturbation variables 
are known to decay more slowly than in the /3 = 0 case and the value of the B 
stretching factor in y had to be increased up to 10 (typical values are around 2) to 
properly account for this phenomenon. The numerical code is well-behaved with 16 
by 96 grids, but the execution is slow (8 Mflops on the Cray 2) due to the small 
length of the vectors. 

3. The first Hopf bifurcation 
Numerical simulations were conducted at Re = 1000 and a streamwise box length 

corresponding to the critical wavenumber IC, = m. The critical value @, = 
4 / ( 3 a )  was well approximated and linear growth rates were also found to be 
consistent with inviscid stability theory. 

As @ decreases below p,, the basic flow bifurcates to a finite-amplitude traueling- 
waue date  which takes the form of a vortex as shown on Figure 2. As a result of the 
/3 effect, the Kelvin’s cat’s-eye pattern is shifted off the a x i s  y = 0. The traveling 
wave is characterized by a circular frequency w and normalized amplitude 

The normal form pertaining to a supercritical Hopf bifurcation is known to be 

d A  -- dt - -i [wc + ~ a ( @  - p c ) ]  A - I’lA(’A, 

where A is the complex amplitude of the wave and w, the frequency at IC = IC,, 
/3 = p,. Other quantities appearing in (1) are wp 3 aw/a/31c and the Landau 
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FIGURE 2. Isovorticity contours at P = 0.7, Re = 1000, IC = I C , .  

constant r = rP + iri. An elementary analysis of (1) indicates that as P decreases 
below p,, the solution of (1) bifurcates from the basic flow A = 0 to a limit cycle 
of amplitude 

lA12 = P c  - P  (2) 
and frequency 

w - w, u pc - p. (3) 

The quantities [AI2 and w are represented as a function of P on Figures 3 and 4 
respectively. The exact linear value of w has also been plotted on Figure 4. One 
notes that lA12 and w do vary linearly with decreasing in the vicinity of Pc, in 
agreement with (2) and (3). The value of w at p = pc is indeed equal to w, = d / 3 .  
Finally one notes a nonlinear frequency shift in the value of w when compared to 
linear estimates. 

We attempted to compare the values of the slopes of these curves with the analyt- 
ical results obtained by Churilov (1988), Churilov and Shukhman (1986,1987), and 
Lipps (1965). There were large discrepancies and we suspect that the critical-layer 
structure is not satisfactorily resolved with the present distribution of points in the 
y direction. 

4. A preliminary look at pairing in the presence of dispersion 
To test the validity of the code, numerical simulations of the evolution of 3 vor- 

tices were conducted in a computational domain of length 67r/kc at p = 0.2. The 
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FIGURE 3. [AI2 versus p at Re = 1000, k = k,. 
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FIGURE 4. w versus p at Re = 1000, k = k,. -, nonlinear frequency; - - -, linear 
frequency. 
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fundamental IC,  was given a finite energy level at t = 0, the 2 subharmonics at 
k, /3  and 2&,/3 being initialized to low levels. Figures 5 a, b, c show the resulting 
evolution. One notes the nutation of the vortical structures in the course of time, 
indicated by a tilting motion. Pairing eventually takes place between 490 and 500 
time steps with a corresponding energy transfer from the I C ,  to the 2kc/3 compo- 
nent. At  /3 = 0.2, the k C / 3  component lies in the linearly stable domain and it is not 
triggered by nonlinear interactions. Thus, no further pairing events are observed 
and the asymptotic state consists of 2 vortices. This is distinctly different from the 
homogeneous mixing layer case where pairings take place until one observes a triple 
vortex condition in the computational domain. 

5. Future work 
The results obtained so far, namely the fact that a Hopf bifurcation takes place 

at /3 = suggest that nontrivial chaotic dynamics are likely to occur within 
subregions of the neutral curve. To back up this claim, we note that in the vicinity 
of /3,, the streamwise modulations of the complex amplitude A ( z , t )  are governed 
by the p.d.e. equivalent of (l), i.e.: 

This Ginzburg-Landau equation is known to give rise to chaos via a modulational 
instability mechanism [Keefe (1985)l. In the present context, we therefore suspect 
that amplitude and phase modulations applied to a row of vortices would induce 
a disordered evolution as the streamwise extent of the computational domain is 
increased. 
To test this hypothesis, we need to considerably increase the reliability and speed 

of the numerical code for low-wavenumber simulations. 
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FIGURE SA, B, c. Evolution of 3 vortices in a domain of size 67r/k, at p = 0.2, i Re = 200. 
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