
NASA Technical Memorandum 4072

CSM Testbed Development
and Large-Scale Structural

Applications

N. F. Knight, Jr., R. E. Gillian, S. L. McCleary,
C. G. Lotts, E. L. Poole, A. L. Overman,
and S. C. Macy

APRIL 1989

NI\S/\

)(88 - 30/&£

-------- ._------

NASA Technical Memorandum 4072

CSM Testbed Development
and Large-Scale Structural
Applications

N. F. Knight, Jr., and R. E. Gillian
Langley Research Center
Hampton, Virginia

S. L. McCleary and C. G. Lotts
PRC Kentron, Inc.
Aerospace Technologies Division
Hampton, Virginia

E. L. Poole and A. L. Overman
Awesome Computing, Inc.
Charlottesville, Virginia

S. C. Macy
PRC Kentron, Inc.
Aerospace Technologies Division
Hampton, Virginia

NI\S/\
National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
I nformation Division

1989

The use of trademarks or name of manufact urers in t his
report is for accurate report ing and does not constitute an
offi cial endorsement, either expressed or implied , of such
products or manufacturers by the at ional Aeronautics and
Space Administra tion.

Trademarks

U IX i a registered trademark of AT&T. CRAY and U TICaS
are registered t rademarks and CRAY-2 and CFT77 are trade­
mark of Cray Research, Inc. VAX , MicroVAX, and VMS are
t rademarks of Digital Equipment Corp. PATRAN i a registered
t rademark of PDA Engineeri ng. IRIS is a t rademark of Silicon
Graphics, Inc. FORG E is a t rademark of Pacific Sierra Research.

Abstract

A research activity entitled computational struc­
tural mechanics (CSM) at the NASA Langley Re­
search Center is described. This activity involves
developing advanced structural analysis and compu­
tational methods that exploit high-performance com­
puters. New methods are developed in the framework
of the CSM Testbed software system and applied to
representative complex structural analysis problems
from the aerospace industry. An overview of the
CSM Testbed methods development environment is
presented and some new numerical methods devel­
oped on a CRAY-2 computer system are described.
Selected application studies performed on the N AS
CRAY-2 computer system are also summarized.

Introduction

Research in computational methods for structural
analysis is encumbered by the complexity and cost
of the software development. In addition, new com­
puter architectures with vector and multiprocessor
capabilities are being manufactured to provide in­
creased computational power. Analysis and compu­
tational algorithms that can exploit these new com­
puter architectures need to be developed. These new
algorithms should be developed and evaluated in a
standard, general-purpose, finite-element structural
analysis software system rather than in an isolated
research software system so they can be evaluated on
large-scale application problems as well as on small
verification problems.

At the NASA Langley Research Center (LaRC),
a research effort is being directed towards developing
advanced structural analysis methods and identify­
ing the requirements for next-generation structural
analysis software which will exploit multiple vector
processor computers (ref. 1). This activity, called
computational structural mechanics, or CSM (ref. 2),
has resulted in the development of the CSM Testbed
software system (e.g., Lotts et al. (ref. 3)) to aid in
the definition of these requirements and to serve as
a "proving ground" for new methods for large-scale
structural application problems. This research activ­
ity makes extensive use of the computational facilities
provided by the Numerical Aerodynamic Simulation
(NAS) Program at the NASA Ames Research Center
(ref. 4).

This paper describes the implementation expe­
riences, the resulting capability, and the future di­
rections for the CSM Testbed on supercomputers.
The distributed nature of the computing hardware
environment is described herein and its use demon­
strated. The flexibility of the CSM Testbed, coupled
with the computational facilities available through

the NAS system, makes it possible for structural an­
alysts, method developers, numerical analysts , and
computer scientists to integrate their research in a
common, shared computing environment. The pow­
erful , problem-solving capability of this computing
environment is demonstrated in the solution of sev­
eral structural application problems involving linear
and nonlinear stress analysis, buckling analysis, and
transient dynamics analysis.

Overview of CSM Testbed
The field of computerized structural analysis is

dominated by two types of computer programs. One
type is the huge, 2000-subroutine, general-purpose
program (ref. 5) that is the result of over 100 man­
years of effort spanning more than a decade. The
other type is the relatively small, special-purpose
code resulting from a research environment that rep­
resents a 1- to 2-year effort for a specific research ap­
plication. This dichotomy has resulted in long delays
in making research technology available for critical
structural analysis problems that NASA faces. To
accelerate the introduction of successful research
technology into large-scale applications programs, a
modular, public-domain, machine-independent , ar­
chitecturally simple software development environ­
ment has been constructed. This system is denoted
the CSM Testbed. One goal of the CSM Testbed
is to provide a common structural analysis environ­
ment for three types of users- engineers solving com­
plex structures problems, researchers developing ad­
vanced structural analysis methods, and developers
designing the software architecture to exploit multi­
processor computers.

The CSM Testbed software system is a highly
modular and flexible structural analysis system for
studying computational methods and for exploring
new multiprocessor and vector computers. The CSM
Testbed is used by a group of researchers from uni­
versities, industry, and government agencies. Un­
restricted access to all parts of the code, including the
data manager and the command language, is permit­
ted. Research on these elements of software design is
needed because deficiencies in the data management
strategy can have a devastating impact on the per­
formance of a large structural analysis code, totally
masking the relative merits of competing compu­
tational techniques. Furthermore, software designs
that exploit multiprocessor computers must be devel­
oped; in particular, techniques for handling parallel
input/output (I/O) are required.

The CSM Testbed is public-domain software, and
source code is available. The initial CSM Testbed,
called NICE/SPAR, began with the integration of
the NICE system (refs. 6 and 7) and Level 13 of

SPAR (ref. 8). Since then, new capabili t ies and
improvements have been implemented in the CSM
Testbed . A brief description of selected CSM Testbed
pr'ocessors is given in table 1. Each step of the
evolut ion of the CSM Testbed provides improved
structural analysis capabili ties to structural analysts.

Distributed Computer Environment

Distributed computer environments are made up
of stand-alone computers of different sizes, architec­
tures . and vendors, with a common network proto­
col offering the user easy file transfer and remote
login functions. Structural analysts require the
diverse computer capabilities offered by a dis­
tributed environment (work tation-mainframe­
supercomputer) but cannot afford the "overhead" of
learning the operating system commands for each
sy tem they use. Application developers have a sim­
ilar problem. but at a lower level. They cannot afford
the overhead of learning a new set of system calls for
each computer on which they wish to implement their
app lication code. The CSM Testbed, as depicted in
figure 1. addresses these problems. Thf' inner circle.
the computer-specific operating system, is provided
by the computer vendor and is different for each ven­
dor. The outer ring. t he applications development
environment . insulates both the user and the appli­
cation developer from those differences by providing
a consistent interface. The methods development en­
vironment of the CSM Testbed is described by Gillian
and Lotts (ref. 9).

The computing environment of t he CSM activ­
ity is currently a distributed environment, as shown
in figure 2. Typically, a structural analyst will de­
velop a finite-element model of the structure either
by using a preprocessing software system such as
PATRA or by using CLAMP (command language
for applied mechanics processor) for "parameteriz­
ing" the model. Run streams are the vehicle used to
perform structural analyses with the CSM Testbed .
The term run stream most commonly refers to the
file (or files) of input data and commands used to
perform a specific analysis, although it may also re­
fer to input at an interactive session. Run streams
for the CSM Testbed are usually developed. verified
on a workstation, and then transferred to the NAS
CRAY-2 computer sy tem for complete processing.
Following a successful execution. the computational
data base may then be "unloaded" (i. e., converted
from the binary format of t he AS CRA Y -2 com­
puter system to the ASCII format) , transferred intact
to LaRC using the NASnet wide-area network. and
then "loaded" (i.e., converted from ASCII format to
the binary format of the desired workstation) back

2

into a computational data base which has the iden­
t ical Testbed library format as on the AS CRAY-2
computer system. Finally. postprocessing is done to
help the structural analyst visualize the computed
structural response. The sequence of steps just de­
scribed depicts the comput ing environment to which
the structural analys t must adapt in order to exploit
the full potential of these comput ing systems.

To exploi t this new computing environment, ex­
perti e is needed in the areas of computational strate­
gies, numerical techniques, computer science, and
communication networks , together with a firm un­
derstanding of the principles of st ructural mechan­
ics. New comput ing hardware environments . like the
NAS system, offer the computational power. mem­
ory, and disk space necessary for routine analys is of
large structural models. New computing software
environments. like the CSM Testbed. offer an in­
tegrated system with data management. a general
command language, and many different app lication
processors features that enable the structural ana­
lyst to develop new analysis methods and to tailor
t he analysis for specific application needs.

CSM Testbed Architecture Features
The CSM Testbed is a Fortran program organized

as a single, executable file (called a macroproces­
sor) which calls structural applicat ions modules that
have been incorporated as subroutines . The macro­
processor and applications modules interface with
the operat ing system for their command input and
data management functions through a set of com­
mon "architectural utilities. " Processors access the
Testbed utilities by calling entry points implemented
as Fortran-77 functions and subrout ines which are
available to module developers in the Testbed object
libraries. Applications processors do not communi­
cate directly with each other, but instead commu­
nicate by exchanging named data objects in a data
base managed by a data manager called GAL (global
access library) . The user controls t he exec ut ion of ap­
plications processors using an interactive, or batch .
command run stream written in a command language
for applied mechanics processors (CLAMP). which is
processed by the command language interpreter pro­
gram (CLIP).

Command Language

The Testbed command language CLAMP is a
generic language originally designed to suppor t the
NICE system and to offer program developers the
means for building problem-oriented languages
(ref. 10). It may be viewed as a stream of free-field
command records read from an appropriate com­
mand source (the user's terminal, actual files. or

_ _ J

Processor

ELD
LAU
E
EKS
TOPO

RSEQ
AUS
K
M
INV
SSOL
BAND
ITER
KG
EIG
ES
VEC

Table 1. Selected CSM Testbed Processors

Description

Element definition (connectivi ty, material properties, etc.)
Laminate analysis utility for 2-D and 3-D elements
Element-state initiation (builds element information packets)
Computes the element intrinsic stiffness matrices
Analyzes the finite-element mesh topology and build tables to drive

assembly and factorization of system matrices
Renumbers nodes for minimum fill or minimum bandwidth
Arithmetic utilities
Assembles unconstrained system stiffness matrix
Assembles unconstrained system mass matrix
Applies constraints and factors assembled system matrix
Performs forward reduction and back substitution
Factors and solves using profile or banded solvers
Factors and solves using iterative solvers
Forms and assembles unconstrained system geometric stiffness matrix
Solves linear algebraic eigenproblems
Generic element processor shell
Performs variety of vector algebra operations

Applications
development
environment

Computer-specific
operating system

Figure 1. Organization of CSM Testbed software.

NAS CRAY-2

CSM Testbed

/

-180 000 lines Fortran
plus low-level I/O

C-routines

Transfer t
problem

data sets and NASnet

Unload
re sults

data base
procedures i

IRIS Workstation ~ CSM MicroVAX /
~------------~

LaRC Central
Site Computers

PATRAN graphicsL-....- Local - I--LaRCnet-
1- k Load/translate

preprocessing and networ re sults data base
postprocessi ng

Archival mass
storage

Figure 2. Distributed computing environment of CSM.

3

processor messages). The commands are interpreted
by a "filter" utility called CLIP, whose function is
to produce object records for use by its user pro­
gram. The standard operating mode of CLIP is the
processor-command mode. Commands are directly
supplied by the user , retrieved from ordinary card­
image files or extracted from the global data base,
and submitted to the running processor. Special
commands, called directives , are processed directly
by CLIP; the processor is "out of the loop." Tran­
sition from processor-command to directive mode is
automatic. Once the directive is processed , CLIP
returns to processor-command mode. Directives are
used to dynamically change run-environment param­
eters, to process advanced language constructs such
as macrosymbols and command procedures , to imple­
ment branching and cycling, and to request services
of the data manager. CLIP can be used in this way
to provide data to a processor as well as to control
the logic flow of the program through a single input
stream. All command language directives are avail­
able to any processor that uses the CLIP-processor
interface entry points.

Data Manager

The data manager within the CSM Testbed was
derived from the global access library (GAL) con­
cept developed at the Lockheed Palo Alto Research
Laboratory (ref. 11). Methods for data management
in structural analysis programs can be divided into
three levels of complexity: file systems, file partition
systems, and data-base systems (ref. 12). Since data­
base files are subdivided or partitioned into data sets,
the Testbed data manager is classified as a file par­
tition manager. To a processor, a GAL data library
is analogous to a file . It must be opened, written,
read, closed, and deleted explicitly. The GAL re­
sides on a direct-access disk file and contains a di­
rectory structure called a table of contents (TOC),
through which specific data sets may be addressed.
Low-level I/O routines access the GAL library file in
a word-addressable scheme, as described by Felippa
(ref. 13). The data management system is accessi­
ble to the user through the command language di­
rectives and to the running processors through the
GAL-processor interface.

The global data base is made up of sets of data
libraries (GAL's) residing on direct-access disk files.
Data libraries are collections of named data sets ,
which are collections of data set records. The data
library format supported by the Testbed is called
GAL/82, which can contain nominal data sets made
up of named records. Some of the advantages to
using this form of data library are (1) the order
in which records are defined is irrelevant, (2) the

4

data contained in the records may be accessed from
the command level, and (3) the record data type
is maintained by the manager, and this simplifies
context-directed display operations and automatic
type conversion.

To provide the efficiency required to process the
volume of data required for a complex structural
analysis, all usual overhead associated with Fortran
has been eliminated. The actual I/O interface be­
tween the GAL data manager and the UNIX operat­
ing system is accomplished through a set of block I/O
routines written in the C programming language. For
non-UNIX computer systems, this interface is accom­
plished through a set of assembly language routines
which are unique to each computer system.

Interprocessor Control

The SuperCLIP capability of the Testbed archi­
tecture performs interprocessor control, which allows
independent programs which use the Testbed archi­
tecture facilities (CLIP and GAL) to be executed
from within a single Testbed run stream. SuperCLIP
handles the interprocessor CLIP-state preservation
and restoration so that the CLIP environment is
maintained across independent program executions.
These independent programs can be used in conjunc­
tion with the Testbed macroprocessor , with other in­
dependent Testbed processors, or entirely alone, as
appropriate to accomplish the required task. The
implementation of SuperCLIP is the most complex
and machine-dependent element of the Testbed archi­
tecture software . To date, it has been implemented
under the VAX/VMS and the UNIX operating
systems.

User Interface

The user may develop run streams using the
high-level command language CLAMP for a specific
engineering problem (ref. 10). These run streams
may contain CLAMP directives and CLAMP pro­
cedures which are processed by the command lan­
guage interpreter CLIP. Applications processors are
called using the [XQT command, or the GAL (e.g.,
ref. 11) may be interrogated . Engineers typically in­
teract with the Testbed using simple run streams
or through CLAMP procedures. Researchers in­
teract using CLAMP procedures (e.g., to study
nonlinear solution strategies) or through Fortran pro­
cessors (e .g., to implement new element formula­
tions). Developers interact with the entire Testbed
architecture, including the design of the command
language , the data handling techniques for large­
scale analyses, and the strategy for I/O on parallel
computers.

CSM Testbed Structural Analysis Features
The CSM Testbed presently provides structural

analysis capabilities that permit an analyst to per­
form large-scale nonlinear stress analyses of shell­
type structures. Three-dimensional stress analyses
are presently limited to linear elastic orthotropic ma­
terials. Eigenvalue problems associated with either
linear bifurcation buckling or linear vibration analy­
ses may also be solved. Transient dynamic analyses
are limited to linear elastic problems with either di­
rect time integration or mode superposition used to
obtain the transient response. Some of the newly
developed engineering features of the CSM Testbed
are the equation solvers, the element library, the ma­
terial modeling, and the solution procedures. Inter­
face utilities to and from the PATRAN graphics sys­
tems have been developed to support the modeling
and analysis of large-scale structures. Access to such
a preprocessing and postprocessing software system
enhances the structural analyst 's ability to under­
stand the structural behavior through visualization
of the computed results.

Equation Solvers

The linear system of equations that arise in static
structural analysis applications has the form Ku = f,
where K is the symmetric, positive-definite stiffness
matrix, f is t he load vector , and u is the vector of gen­
eralized displacements. Such linear systems can be
as large as several hundred thousand degrees of free­
dom (dof) and often require significant computing
resources (both memory and execution time). The
structure of the stiffness matrices in these applica­
tions is often sparse, although in many applications
an ordering of the nodes which minimizes the band­
width makes banded or profile (skyline) type storage
of the matrices practical. The choice of a particular
method to solve Ku = f will depend on the nonzero
structure of K and, in the case of the iterative meth­
ods, the condit ion number of K. In addition, the
architecture of the computer , part icularly for mod­
ern vector and parallel computers, influences both
the choice and t he implementation of methods used
to solve these linear systems of equations. Ortega
(ref. 14) presents a thorough description of these var­
ious methods and their implementations as applied
to vector and parallel computers.

The data structure of the global stiffness matrix
is a key factor in the design and implementation of
equation solvers for the CRAY-2 architecture and the
Testbed software (e.g., ref. 15). The generation of
stiffness matrices is accomplished by several differ­
ent processors producing element stiffness matrices ,
defining boundary conditions, applied loads, and or­
dering of nodes, and assembling the global stiffness

matrix. The stiffness matrices are stored in a nodal­
block sparse form. The original sparse out-of-core
Choleski solver used by the Testbed code (proces­
sors INV and SSOL) factors and solves the stiffness
matrices using this data structure. A major source
of inefficiency for this equation solver on a CRAY-2
computer system is that the operations carried out
in factoring the stiffness mat rix and solving the re­
sulting triangular systems are carried out using these
small nodal blocks (usually 3 x 3 or 6 x 6 in size).
The vector length of these operations is therefore six
or less and the code is faster when run without vector
optimization.

The new vectorized equation solvers (processors
BAND and ITER) require K to be stored in one of
several different sparse and banded storage schemes.
Processor ITER contains three conjugate gradient it­
erative methods. These methods vary in their types
of preconditioning, which include diagonal scaling,
incomplete Choleski factorization with a sparse stor­
age scheme, and incomplete Choleski factorization
with a diagonal storage scheme. P rocessor BAND
contains three basic algorithms that are all based
on Choleski factorization of banded matrices. The
first algorithm uses the standard LINPACK routines
(ref. 16) for banded solvers, namely SPBFA and
SPBSL. The second algorithm, kj i Choleski, uses
column storage of the lower triangular part of the
symmetric matrix to take advantage of vectors with
a constant stride of one and loop unrolling to a depth
or level of four. Loop unrolling reduces t he number of
memory references by holding vectors longer in the
registers and increases the amount of vector com­
putations within a loop. As a result, many of the
multiplication and subtraction operations and mem­
ory references will overlap, leading to greater perfor­
mance. In addition, the local memory of the CRAY-2
computer system is used to store up to four columns
of the factored matrix to further decrease execution
time. The third algorithm uses profile storage of the
matrix instead of banded storage, and this type of
storage results in a significant reduction in memory
requirements and in the number of operations.

The strategy used for the vectorized equation
solvers involves four steps. First , the coefficients of
the unconstrained stiffness matrix are read from the
global data base into a temporary array. Second, the
nodal constraint information and node ordering se­
quence information are retrieved from the global data
base. Third, the appropriate pointer arrays for the
new storage scheme are formed. Finally, the coeffi­
cients of K are placed in a singly dimensioned array
and modifications are made to the right-hand side (f)
corresponding to any applied displacements. For
the direct Choleski methods, an addit ional storage

5

scheme is included to reformat Testbed stiffness ma­
trices into the standard LINPACK (ref. 16) banded
storage format. The reformatting procedure is essen­
tially sequential, but the time to reformat the ma­
trices is small compared with the time to solve the
equations for large problems.

The capability to reorder the nodes automatically
is an important part of the equation solving process
in general-purpose finite-element codes. The struc­
ture of the assembled stiffness matrices is determined
by the node connectivities and the node number­
ing scheme used in the finite-element model. Al­
though the node connectivity is fixed by the problem
definition and discretization, many node orderings
are possible. The Testbed software contains proces­
sor RSEQ , which uses four different algorithms to
reorder nodes automatically. These algorithms are
nested dissection, minimum degree, reverse Cuthill­
McKee, and Gibbs-Poole-Stockmeyer. The first two
algorithms are used by sparse solvers and minimize
fi ll in the factorization process. The last two are
profile and bandwidth minimizing routines, respec­
tively. The direct banded solvers implemented in
processor BA D are most efficient with node or­
derings which minimize bandwidth, while the sparse
out-of-core Choleski equation solver in processor INV
is most efficient with orderings which minimize fill.
For the various preconditioned conjugate gradient
methods in processor ITER, the pre conditioner used
determines which ordering is best . Although the
precise relationship between node ordering and the
convergence rate of the incomplete Choleski conju­
gate gradient (ICCG) is not known, preliminary re­
sults show that the ordering of nodes can have a great
effect on the convergence rate. In the test problems
used with the ICCG method, the convergence rate of
ICCG is better for the sparse, minimum-fill orderings
than for the bandwidth-minimizing orderings. How­
ever, in some cases, the ordering used to define the
problem gives the best convergence rate. For the ba­
sic conjugate gradient method, the matrix structure
has no effect on the convergence rate but the matrix
structure is important for the storage requirements if
diagonal storage is used. Orderings which minimize
bandwidth also concentrate the coefficients near the
main diagonal , thereby minimizing the number of di­
agonals required for matrix storage. As a resu lt, the
vector lengths of the diagonals are longer and the
number of extra zeros added between nonzero coef­
ficients is fewer; thus, the memory requirements are
reduced and the computation speed is increased.

Generic Element Processor Template

The generic element processor template shown in
figure 3 provides the element developer with a stan-

6

dard outer software "shell" that handles all user­
command input and all I/O to and from the global
data base. In addition, a standard set of "shell­
to-kernel" interface routines (e.g., ES_K, ES_M, and
ES_F) are provided as cover routines for the element
developer's "kernel" routines. The function of the
interface routines is to perform the transformation
between the standard argument lists of the outer soft­
ware "shell" and those of the element developer 's per­
sonal code. The element developer's kernel routines
are integrated with these interface routines through
the convention that the interface subroutine names
and argument lists are standardized. The indepen­
dent structural element processors (i.e., processor
ESi, where i = 1,2, ...) are installed and readily ac­
cessible to all CSM researchers for small benchmark
problems as well as large-scale application problems.

*call ES (function = ·FORM STIFFNESS/MATL· ; esyroc = ESi)

L Procedure ES (...)

L [XQTESi +
Processor ESi

Generic Element Processor Software ··Shell" 0

Figure 3. Generic element processor template.

A
T
A
B
A
S
E

The generic element processor features a standard
high-level procedure ES that processes user com­
mands such as

*call ES (function= 'FORM STIFFNESS/MATL' ; -­

es-proc = ESi)

All the ESi processors are driven by a common set of
commands through calls to the ES procedure and cre­
ate the same data structure, regardless of how the ele­
ment developer programmed the kernel routines (e.g.,
the element stiffness calculations and element stress
recovery). This approach provides an extendible
and easy-to-use vehicle for integrated finite-element
research, development , and application within the
CSM Testbed.

A key feature of the generic element proces­
sor shell is the easy access to the utili ties associ­
ated with an element-independent corotational for­
mulation (ref. 17). Through these utilities, element

developers may readily attempt geometric nonlinear
problems which exhibit large rotations. Only the
basic element characteristics associated with linear
strain-displacement relations are required from the
element developer in the kernel routines. Extensions
to include the nonlinear strain-displacement relations
require the element developer to provide additional
kernel routines (e.g., internal force calculations).

Presently only two-dimensional shell elements and
three-dimensional solid elements have been installed
in the CSM Testbed with the generic element pro­
cessor template. Processor ES1 contains a family
of four- and nine-node continuum-based resultant
(CBR) quadrilateral shell elements (ref. 18). This
family of elements includes the assumed-natural co­
ordinate strain quadrilateral shell elements (ref. 19)
and the Lagrangian quadrilateral shell elements
with selectively reduced integration. Processor ES2
contains a new hybrid curved four-node quadri­
lateral shell element (ref. 20). Processor ES3
contains a family of three-dimensional hybrid solid
elements, including 8- and 20-node bricks (hexa­
hedrons), 6- and 15-node wedges (pentahedrons), and
4- and 10-node pyramids (tetrahedrons). Proces­
sor ES4 contains a fami ly of hybrid plate-shell ele­
ments, including four-node quadrilateral and three­
node triangular elements. Processor ES5 contains
a displacement-based, four-node quadrilateral plate­
shell element, denoted the 410 element, from the
STAGSC-1 computer code (ref. 21). Additional ESi
processors are under development. In addition, ele­
ments in the original element library of Level 13 of
SPAR (ref. 8) are currently still available for linear
analyses.

Material Modeling

The material modeling features of the CSM
Testbed are directed toward the analysis require­
ments of laminated composite structures. Consti­
tutive relations for classical and shear flexible two­
dimensional plate and shell models as well as for
three-dimensional solids are evaluated and available
to the element developer or structural analyst. Pro­
cessor LAU is a laminate analysis utility for calcu­
lating the constitutive relations for two-dimensional
and three-dimensional isotropic, orthotropic, and
laminated structures. The formulation is based on
the usual lamination theory (e.g., refs. 22 and 23)
whereby the laminate constitutive relat ions are de­
rived from the constitutive relations for each layer in
the laminate. With the midplane strains and curva­
tures, the in-plane strains and corresponding stresses
in each layer of the laminate may be calculated and
used to evaluate selected stress- and strain-based fail­
ure criteria. The failure criteria implemented in the

Testbed include the maximum stress criteria, the
maximum strain criteria, and several quadratic poly­
nomial fai lure criteria.

Solution Procedures

Various types of analysis may be performed with
the CSM Testbed through the use of either or­
dinary run streams which execute various proces­
sors sequentially or CLAMP procedures which exe­
cute directives and processors and perhaps call other
procedures. Linear stress analyses and eigenvalue
analyses are both performed using simple analy­
sis run streams. Solution procedures that require
looping and branching are more complex procedures
than linear analysis procedures. Two sets of solu­
tion procedures that require looping have been writ­
ten and may be used to solve various application
problems. The first solution procedure is named

EWMARK. Its function is to perform a linear tran­
sient dynamic analysis using the well-known New­
mark method for direct time integration of the equa­
tions of motion. The second set of procedures is
named NL_STATIC_l. These procedures are used to
perform a geometric nonlinear static analysis using
a modified Newton-Raphson algorithm with corota­
tional updates and the Riks- linearized-Crisfield arc­
length control strategy (refs. 24 and 25) for either
applied force or applied displacement problems.

Application Studies Using CSM Testbed
Research in methods development for the CSM

Testbed is driven in part by the analysis deficiencies
identified in the solution of various application prob­
lems. The LaRC CSM activity uses the concept of
focus problems to provide a common set of structural
analysis problems for all CSM participants. Focus
problems may be entire aerospace vehicles or various
subcomponents that pose difficult computational and
structural mechanics problems. These focus prob­
lems help guide methods research and development
for generic classes of problems. New focus problems
are selected as new technology evolves and computa­
tional structural mechanics methodology develops. A
wide range of CSM application studies are presented
in reference 26. Problems selected for presentation
here are the following:

• Composite blade-stiffened panel with discon­
tinuous stiffener

• Circular cylindrical shell with two rectangular
cutouts

• Impulsively loaded truncated conical shell
• Space Shuttle solid rocket booster

These application studies demonstrate the struc­
tural analysis capabilities of the CSM Testbed. The

7

analyses presented herein utilize solution procedures
implemented through the CLAMP language as well
as various finite elements implemented through the
generic element processor template. The execu­
tion times for selected CSM Testbed processors are
compared for the various analysis problems consid­
ered. Postprocessing of the results, including both
deflections and stress resultants , is performed with
PATRA to help the analyst visualize the com­
puted results, and examples of this capability are also
presented.

Composite Blade-Stiffened Panel With
Discontinuous Stiffener

Discontinuities and eccentricities are usually
present in practical structures . In addition, potential
damage of otherwise perfect structures is often an im­
pOl·tant design consideration . Predicting the struc­
tural response in the presence of discontinui ties , ec­
centricities, and damage is particularly difficult when
the component is built from brittle composite ma­
terials or is loaded into the nonlinear range. The
nonlinear response of a flat, blade-stiffened graphi te­
epoxy panel with a discontinuous stiffener loaded in
axial compression (fig. 4(a)) was chosen as a focus
problem and is summarized in this section. A more
complete discussion of this problem i presented in
reference 26.

This problem represents a generic class of lam­
inated composite structures with discontinuities in
which the interlaminar stress state becomes impor­
tant. This problem is characterized by a discontinu­
ity (the hole) , an eccentric loading, large displace­
ments, large tress gradients , and a brittle material
system. The geometry and laminate properties are
given in reference 26. The loading is uniform ax­
ial compression. The loaded ends of the panel are
clamped and the sides are free .

The finite-element model is shown in figure 4(b).
A total of 144 9-node quadrilateral shell elements
(processor ESl) are used in the nonlinear analysis.
This model has 628 nodes and 2910 act ive degrees
of freedom. The procedure NL_STATIC_1 is used to
perform the nonlinear analysis.

End-shortening results are shown in figure 5 as
a function of the applied compressive load. The
end shortening u is normalized by the overall panel
length L, and the applied load P is normalized by the
panel prebuckling extensional stiffnes EA obtained
from the te t. The blade-stiffened panel with a
discontinuous stiffener was tested to fai lure. Local
failures occurred prior to overall panel failure, as
is evident from the end-shortening results shown in
figure 5. Good agreement between test and analysis
is shown up to the load where local failures occurred.

8

L-79-7347

(a) Stiffened panel.

(b) Finite-element model.

F igure 4. Composite blade-stiffened panel with discontinuous
stiffener.

Oblique views of two deformed shapes with exag­
gerated deflections are shown in figure 6 for two val­
ues of applied compressive load. Load A corresponds
to approximately half t he value of load B (37800 lb) .
Contour plots of the longitudinal in-plane stress re­
sultant N x are also shown in figure 6. These N x dis­
tributions reveal several features of the global struc­
tural behavior of this panel. First, away from the
discontinuity, the N x distribution in the panel skin
is nearly uniform and approximately half the value

.0030
- ... - Linear buckling
---- Experimental
----*- Nonli near

.0025

~P
.0020

~ u

Appl ied load, 0015
PlEA .

L

.0010 / '/ '/

.0005

o .0005 .0010 .00 15 .0020 .0025 .0030

End shortening, u/L

Figure 5. End-shortening results for blade-stiffened panel.

-4500

-3600-

Nx, /b/in. -2700

-1800

z

\-Y -900

x Load A Load B a

Figure 6. Longitudinal in-plane stress resultant Nx distributions.

9

of Nx in the two outer blade stiffeners. Second,
the load is diffused from the center discontinuous
stiffener into the panel skin rapidly such that the
center stiffener has essentially no Nx load at the edge
of the hole. Third, the N x load in the two outer
stiffeners increases towards the center of the panel
and, because of panel bending, is concentrated in the
blade tips. Fourth, the N x load in the panel skin near
the center of the panel is much greater than the Nx
load in other portions of the panel skin.

Longitudinal in-plane stress resultant distribu­
tions at panel midlength are shown in figure 7 as
a function of distance from the hole. The results in­
dicate that high in-plane stresses and a high stress
gradient exist near the hole. As the load increases,
both the longitudinal in-plane stress resultant and
the stress gradient increase near the hole and the
blade stiffeners. These high in-plane stresses and
stress gradients coupled with the large out-of-plane
displacements at the free edge of the hole may cause
material nonlinearities, local failures, and/or delam­
inations to develop.

Computation times for the nonlinear analysis of
the composite blade-stiffened panel with a discontin­
uous stiffener are given in table 2 for selected Testbed
processors. The ratio of the overall execution time
on a VAX 11/785 computer system to the execution
time on the NAS CRAY-2 computer system is 17.2
for the complete nonlinear analysis of the composite
blade-stiffened panel with a discontinuous stiffener.
The global tangent stiffness matrix was reevaluated
and factored 15 times, and a total of 64 iterations
were required to predict the nonlinear structural re­
sponse of this panel. Most of the CPU time was spent
in processors that perform computations on the el­
ement level such as processor ES1, which computes
new elemental tangent stiffness matrices. The ratio
of the execution times for the evaluation of the el­
emental stiffness matrices is lower than the ratio of
the overall execution time. These processors (e.g. ,
ELD and ES1) have not been modified to exploit
the features of vector computers. However, proces­
sor INV has been modified and performs 41.8 times
faster on the NAS CRAY-2 computer system than on
a VAX 11/785 computer system.

Performance results obtained with various direct
solvers implemented in processor BAND are shown
in table 3. Increased performance is obtained by
using "loop unrolling" to level 4, where a column
of K is updated by four columns at a time rather
than one, and by also exploiting the local memory
of the CRAY-2 computer system. For this problem,
only the profile method in processor BAND performs
better than processor INV.

10

Circular Cylindrical Shell With Two
Rectangular Cutouts

A common structural configuration is that of a
cylindrical shell (e.g. , storage tanks, pipelines, air­
craft fuselages , and rocket motor cases). Shell-type
structures are generally sensitive to initial geomet­
ric imperfections and to local discontinuities such
as cutouts. Many aerospace vehicles contain large
cutouts (e.g., access holes and windows). The
strength of these structures is limited to the static
collapse load. Predicting the nonlinear collapse be­
havior of these shell structures is a difficult and com­
putationally intensive analysis problem.

The circular cylindrical shell with two rectangu­
lar cutouts loaded by uniform end shortening shown
in figure 8 is representative of this class of struc­
tures. This problem has also been used as a bench­
mark problem by Hartung and Ball (ref. 27) for
shell analysis computer codes and by Almroth and
Brogan (ref. 28) for assessing shell elements. These
researchers considered only one-eighth of the shell in
their analyses. The results reported herein are com­
pared with their results , and hence only one-eighth
of the shell is modeled. The finite-element model is
composed of 101 9-node quadrilateral shell elements
(processor ES1) , 449 nodes, and 2012 active degrees
of freedom , as shown in figure 9(a).

A linear bifurcation buckling analysis was per­
formed prior to the nonlinear collapse analysis. The
buckling load computed in this study is 1016 lb which
agrees with the results presented by Hartung and
Ball (ref. 27). The buckling mode shape indicates
that the vertical edges of the cutout buckle locally.

The nonlinear analysis of the cylinder with
cutouts was performed with the procedure
NL_STATIC_1. Out-of-plane deflections ware shown
in figure 9(b) as a function of the applied load for
two points (denoted as "a" and "b" in fig. 9(a)).
The elastic collapse load predicted with the Testbed
is 2846 lb- nearly three times the linear bifurcation
buckling load. As the out-of-plane deflections near
the vertical edges of the cutouts develop, the com­
pressive stresses are redistributed away from these
regions and the load is carried by the remaining por­
tions of the shell, as shown in figure 10.

Hartung and Ball (ref. 27) reported a collapse
load of 2109 lb using a finite-difference version of the
STAGS computer code. Later, Almroth and Bro­
gan (ref. 28) , in a convergence study using the finite­
element version of STAGS, reported a "nearly" con­
verged collapse load of 2750 lb. Additional research
in shell element technology is needed in order to pro­
vide analysts with reliable structural analysis tools.

Jj

Table 2. Selected Processor Execution Times for Blade-Stiffened Panel

[628 nodes; 2910 degrees of freedom; average semi-bandwidth of 439]

Solution P rocessor NAS CRAY-2, VAX 11/785,
phase name CPU sec CPU sec

ELD 3.2 6.7
Mesh generation E .3 11.4

TOPO 1.6 15.8
ES 50.1 821.0

Global stiffness K 1.4 26.8
matrix formation INV 8.3 347.0
and factoring VEC 2.9 18.4

SSOL .9 28.8
SSOL 0.9 35.3

Each iteration VEC 2.1 19.4
ES 13.5 230.1

Table 3. Performance of Direct Solvers in Processor BAND

[628 nodes; 2910 degrees of freedom; average semi-bandwidth of 439]

NAS CRAY-2 , Compute rate,
Method CPU sec MFLOPS

LINPACK 27.1 64.1
kji Choleski 27.4 63.4
kji Choleski" 17.7 98.2
kji Choleskit 12.7 136.9
kji profile 12.7 57.1
kji profile" 7.9 92.9
kji profilet 5.6 129.4

"Loop unrolling to level 4.
tLoop unrolling to level 4 and use of local memory.

-5000

-4000

N
x

,Ib/in.

-2000

-1000

o

~m_ y U2mr
)

+-LoadBl t
I I I

: i ~

I
I
I
I ~Blade
i/ slifiener
r
r

~LoadA~: :
/ : I I

I I I

~Edge --J ------~
I of I : "'-.
I hole I Blade I
I I 'fi I I I sIr ener-I
I I I

I
10.0 12.0

Distance y across panel midlength, in.

Figure 7. Longitudinal in-plane stress resultant Nx distributions at panel midlength.

11

Uniform end shortening

T
+ + + + + + + + ,

x
I

I
I

I
I

Clamped
~0. 014

f ~0.61 / ~

T
3

3 +
+

3

~

Material Properties:

E = 107 psi
u = 0.3

Figure 8. Circular cylinder with cutouts- geometry, properties , and loading. Dimensional quantities are in
inches unless otherwise noted.

Region modeled
I , 3000

® ----...,
" \

I
I I a'

:;,1 I bU
.;1 2000 / I

Total applied L10w
/ a

" load,lb /
"

/

1000 I "'----w I
I b

I

y 0.06 0.08
Normal displacement w, in.

(a) Finite-element model. (b) Out-of-plane deflections .

Figure 9. Nonlinear response of cylinder with cutouts .

12

0.10

Figure 10. Deformed geometry for several load levels .

Axial
stress

resultant,
Ib/in.

-600-

-480-

-360-

-240-

-120 -

0-

13

Computation times for the nonlinear analysis of
the cylinder with cutouts are given in table 4 for se­
lected Testbed processors. The ratio of the overall
execution time on a VAX 11 / 785 computer system
to the execution time on the NAS CRAY-2 computer
system is 17.7 for the complete nonlinear analysis of
the cylinder with cutouts. The global tangent stiff­
ness matrix was reevaluated and factored 31 times
and a total of 122 iterations were required to predict
the nonlinear structural response. Most of the CPU
time was spent in processors that perform compu­
tations on the element level, such as processor ESl.
The ratio of the execution times for the evaluation of
the elemental stiffness matrices is lower than the ratio
of the overall execution time. These processors (e .g. ,
ELD and ES1) have not been modified to exploit
the features of vector computers. However, proces-
or INV has been modified and performs 44.1 times

faster on the NAS CRAY-2 computer system than on
a VAX 11/785 computer system for this problem.

Impulsively Loaded Truncated Conical Shell

A number of important engineering problems are
associated with the prediction of the response of a
hell to high-energy, short-duration dynamic loads.

Examples include reentry vehicles, space vehicles
subjected to pyrotechnic separation loads, and vehi­
cles subjected to blast or impulse environments (e.g. ,
water impact). Sometimes these high-energy loads
only generate a rapidly varying linear elastic tress
state, but in other cases the loads may be sufficiently
high or of sufficient duration that the structural re­
sponse is nonlinear.

The linear elastic transient response of the trun­
cated conical shell subjected to an impulse load
(initial velocity) shown in figure 11 is selected as
representative of these transient dynamic shell anal­
ysis problems. This problem also has been u ed as
a benchmark problem by Hartung and Ball (ref. 27).
The finite-element model is composed of 540 4-node
quadrilateral elements , 589 nodes, and 2569 active
degrees of freedom. The predicted transient response
shown in figure 12 for the normal deflections at two
points on the shell correlates well with the results
presented in reference 26. Both points are located
6.5 in. from the clamped small-diameter edge, one at
e = 0° (point a) and one at e = 180° (point b). The
transient response was calculated for 1400 f.Lsec us­
ing the Newmark method with a t ime step of 2 f.Lsec.
Oblique views of the deformed shape with exagger­
ated deflections from the transient analysis at various
points in time T are shown in figure 13.

14

Space Shuttle Solid Rocket Booster

The basic elements of the Space Shuttle system
are the orbiter , t he external tank (ET), and the
two reusable solid rocket boosters (SRB 's). The
SRB's provide the primary hutt le ascent boost fo r
the first 2 minutes of flight with an assist from the
three Space Shuttle main engines (SSME's) on the
orbiter. A major subsystem of the SRB is the solid
rocket motor (SRM) , which consists of four lined ,
insulated rocket motor segments. These segments are
connected with pinned tang-clevis joints. Each SRB
is approximately 144 ft long and 12 ft in diameter.

The linear elastic static analysis of the SRB
loaded by internal pressure was analyzed as repre­
sentative of a large-scale structural analysis problem
that is critical to ASA. The finite-element model
shown in figure 14 involves 9205 nodes with 1273
2-node beam elements, 90 3-node triangular ele­
ments , and 9156 4-node quadrilateral elements . Al­
though the finite-element model involves 54870 de­
grees of freedom, it does not have the fidelity
necessary to determine detailed stress distributions
in particular SRB sub ystems. In this global shell
model, the field and factory joints are modeled with
equivalent stiffness joints rather than detailed mod­
els of the joint. As such, local joint behavior cannot
be obtained from this global model.

The linear stress analysis considered herein in­
volves only the loading case of a uniform SRM in­
ternal pressure of 1000 psi. An oblique view of the
deformed geometry with exaggerated deflections is
shown in figure 15. The deflection pattern exhibits
a "pressure pillowing" behavior in the vicinity of the
joint. The influence of the partial (270°) SRB/ET
attachment ring on the SRB shell re ponse is shown
in figure 16. An abrupt change in the deflection
pattern near the ends of the ET attachment ring is
exhibited .

Computation times for the SRB global shell anal­
ysis are given in table 5 for selected Testbed proces­
sors . The ratio of the overall execution time on a
VAX 11/785 computer system to the execution time
on the NAS CRAY-2 computer system is 35.6 for one
linear stress analy is of the SRB global shell model.
Most of the CPU time wa spent in processor INV
factoring the global stiffness matrix, a process which
is 63 .7 times faster on the NAS CRAY-2 computer
system than on a VAX 11/785 computer system.
However , several other processors (ELD, EKS, and
TOPO) also used a sizeable amount of CPU time .
All these processors need to be studied and improved
for large-scale analysis problems.

The new Testbed equation solvers implemented
in proce sors BA D and ITER have also been

-I

I

l

Table 4. Selected Processor Execution T imes for Cylinder With Cutouts

[449 nodes; 2012 degrees of freedom]

Solution Processor NAS CRAY-2 , VAX 11/785,
phase name CPU sec

ELD 4.8
Mesh generation E .3

TOPO 1.7

ES 33.4
Global stiffness K 1.0
matrix formation INV 9.8
and factoring VEC 3.9

SSOL .8
SSOL 0.8

Each iteration VEC 1.9
ES 8.8

0.543

--.--c;::::::::~~T

Initial velocity
V = Vo cos e

10.23

--1-'--_ Z

Clamped J

b

;::;-15.004----;

Clamped

Vo = 444.08 in Isec

Material properties:

E = 3.52 x 106 psi

u = 0.286
-4 2 4

P = 1.88 x 10 Ib-sec l in

CPU sec
5.3
9.1

14.7
549.7

18.3
432.2

15.5
20.2
20.6
8.0

125.3

Figure 11 . Truncated conical shell- geometry, properties, and loading. Dimensional quantities are in inches unless otherwise
noted.

Normal
displacement, in .

.04

-.04 L-_L-----lL-----l_---l_---'-_---'-_-'

o 200 400 600 800 1000

Time, psec

Figure 12. Normal deflections at points a and b on truncated conical shell.

15

16

T = 200 psec T = 400 psec

T = 800psec T = 1000 psec

T= 600 psec

- . -
. ~:'. ".,.-

T = 1200 psec

.x ·

Figure 13. Deform ed shapes for t runcated conical shell during transient analys is.

J--z X

Figure 14. Finite-element model of SRB.

Figure 15. Deformed geometry plot of global SRB hell model.

z

z~:

x z

z~:
Figure 16. Close-up of undeformed and deformed geometries at SRB/ET interface.

Table 5. Selected Processor Execution Times for SRB Global Model

[9205 nodes; 54870 degrees of freedom; average semi-bandwidth of 382J

Processor NAS CRAY-2, VAX 11/785,
name CPU sec CPU sec

ELD 248.6 460.8
E 2.0 70.7
EKS 168.3 1625.0
TOPO 94.3 1678.4
K 46.9 472.3
I V 804.1 51185.1
SSOL 17.2 295.6

17

I

_J

L

applied to this problem. Using the skyline method
in processor BAND with loop unrolling to level 4
and exploiting local memory results in the solution
time to factor and solve being 74.8 CPU sec on the
NAS CRAY-2 computer system (a compute rate of
127.9 MFLOPS). Processor BAND factors the global
stiffness matrix in less than one-tenth the CPU time
required by processor INV on the NAS CRAY-2 com­
puter system. With use of the incomplete Choleski
conjugate gradient method with a sparse storage
scheme, the solution is obtained after 562 iterations.
The solution time is 455 sec which corresponds to a
computation rate of 20 MFLOPS.

CSM Research Directions
The broad objective of the CSM activity is to

develop advanced structural analysis and computa­
tional methods that exploit modern and emerging
scientific computers, such as computers having vector
and/or parallel processing capabilities. The evolv­
ing computational environment (both hardware and
software) is providing new opportunities to structural
analysts that enable them to study the structural be­
havior of complex nonlinear systems.

Command Language Enhancements

The CLIP enhancements include the implemen­
tation of a table-driven parser and lexical analyzer.
The UNIX utilities LEX and YACC are being used to
implement an easily extendable language. This lan­
guage will be primarily the CLAMP language with
modifications to remove context sensitive constructs
from the language. As a side benefit , the resulting
interpreter should be more efficient and maintainable
and should provide the required extendability. This
extendability will be tested by the addition of lan­
guage directives to control processor-task allocation
and synchronization at a high level through CLAMP
directives. The resulting capability should provide
a convenient research environment for the structural
analyst to investigate parallelism without relying on
computer-dependent coding.

Parallel Data Management

In addition to providing machine-independent
control of parallel mechanisms, it will be necessary
for the Testbed to provide machine-independent par­
allel data management. The data management com­
ponents for engineering applications are reasonably
well understood for sequential computers. However,
multiple-instruction- multiple-data (MIMD) comput­
ers are a different matter. These new architecture
computers, with the nondeterministic nature of pro­
cesses running in parallel, create new requirements
for maintaining data integrity across processors. For

18

example, if data are written by processor one and
will be needed by processor two, a mechanism must
exist to ensure that processor one has written the
data before processor two successfully returns from a
read operation on that same data. The simple solu­
tion of blocking all subsequent I/O operations until
processor one is complete must be avoided because
that solution would eliminate the advantages offered
by MIMD computers in the first place. In addition,
if the structural analyst is to benefit from the capa­
bility of parallel I/O on the MIMD computers, the
implementation details and internal workings of such
a system must be hidden in a methods development
environment such as the CSM Testbed.

Advanced Numerical Algorithms

To complement the transition to MIMD comput­
ers, numerical analysts are preparing a wealth of new
algorithms designed to take advantage of the vector
processing capability offered by many modern com­
puters. In the past , the sparse nature of the matrices
that dominate the structural analysis task has made
vector processors of limited use. It is anticipated that
work will continue on the development of numerical
algorithms that will take full advantage of both the
vector capabilities and the MIMD capabilities of fu­
ture computer architectures. Such algorithms will
be developed within the Testbed framework and will
be evaluated on challenging structural analysis focus
problems.

Structural Analysis Technology

The LaRC CSM activity for structural analysis
technology is currently focused on methodology for
predicting the nonlinear structural response of large­
scale composite primary aircraft structures. Many of
the structural analysis software systems available to­
day can predict the nonlinear structural response of
composite components. However, the lack of progres­
sive failure analysis techniques in large-scale struc­
tural analysis systems limits the analyst in the design
of composite aerospace structures. A capability to
model and analyze damaged composite structures is
needed in the aerospace community. In addition, de­
signers need analysis tools that can be used to assess
the sensitivity of variations in material properties or
loads on selected response parameters for complex
structural systems. Finally, error sensing and con­
trol strategies for finite-element solutions are needed
in order to provide quantitative as well as qualitative
information about the quality of the results from such
calculations.

Summary

The computational structural mechanics (CSM)
Testbed is a powerful methods development en­
vironment for developing structural analysis and
computational methods. With enhancements and
extensions for multiple-instruction multiple-data
(MIMD) computers. the Testbed should continue to
be a useful research environment for the fOl'seeable
future. It is currently being used by researchers
developing structural analysis methods and J1Ul1l(,[­

ical algorithms and evaluating MIMD I/O strate­
gies. The Testbed application environment provides
the mechanism to allow researchers concentrating on
different parts of the structural analysis problem to
communicate on solutions to problems directly re­
lated to current NASA needs. The transfer of tech­
nology among researchers in structural engineering.
computer science. and numerical analysis can now
be accomplished more effectively than was previously
possible.

An overview of the CSM activity at the NASA
Langley Research Center has been presented. The
CSM Testbed software system serves as a framework
for structmal analysis and computational methods
research for high-performance computers. The CSM
Testbed has been described and its use demonstrated
through solution of selected structural analysis prob­
lems. Future directions for CSM research using the
Testbed have been outlined. These future develop­
ments will take full advantage of both vector proces­
sors and parallel methods on the NAS CRAY-2 com­
puter system and on anticipated supercomputers of
the 1990's.

Appendix

eRA Y -2 Implementation
The source code for the Testbed. both archi­

tecture and application modules. is maintained in
text files with embedded preprocessing commands
which allow selective conditional precompilation by
machine-independent utility programs. The archi­
tecture code is made up of approximately 650 mod­
ules totaling about 83000 lines of source code and
include files. The application code is made up of
approximately 1300 modules with about 95000 lines
in somce code and include files. Distribution of the
code in the UNIX environment is accomplished with
the U IX utility TAR to package the source code.
makefiles, and scripts in a single file; this distri­
bution file occupies approximately 8 megabytes of
disk space. Installation of the Test bed on the N AS
CRAY-2 computer was accomplished over a period
of about 1 month in 1987 short ly after the computer

was made available to LaRC users . The Testbed soft­
ware system was the largest software system to be
ported to the NAS CRAY-2 computer system, and
consequently many problems which had not been ex­
perienced by other users had to be diagnosed and
overcome.

Compilation Problems

Because the Testbed Fortran code uses character
variables heavily. the CFT77 compiler had to be used
for compilation. Most problems encountered with
this compiler were related to its handling of charac­
ter variables and formatting of output. These prob­
lems were encountered only at execution time. Most
of these were resolved by inserting code blocks for
the CRAY /UNICOS version into the master source
files so that the modifications could be carried along
into future versions of the code. The porting of the
Testbed to the CRAY-2 computer system was ac­
complished using a very early vers ion of CFT77 un­
der UNICOS. Although several errors in the compiler
were discovered. these errors could be worked around
easily. These errors in the compiler have been cor­
rected in subsequent releases of the CFT77 compiler.

Fortran-C Interface

One problem related to CFT77 character han­
dling which had to be resolved twice (once under
UNICOS 1.0 and 2.0 and again under UNICOS 3.0)
was the difference in data st ructures for CFT77 char­
acter arguments and C compiler character string ar­
guments. This problem arises where t he Fortran
code for the data management function calls low­
level C language I/O funct ions. In this respect, the
CFT77 compiler does not conform to the same stan­
dard as the Fortran compilers on other U IX sys­
tems . To overcome the problem, in the C functions a
C structure was defined to correspond to the CFT77
character argument; upon entry to the C function,
a transformation was performed from the argument
structure to a C character string. T his structure was
initially defined to be compatible with the compilers
used under UNICOS 1.0 and 2.0. When version 3.0 of
UNICOS was installed with a new CFT77 compiler,
the CFT77 character variable structure was changed
without documentation, so the C functions had to be
modified to accommodate the new structure once the
problem was identified.

Loader Problems

The initial installation procedures used the LD
loader for linking the executable fi le. When the op­
timization options fo r the CFT77 compiler had been
used in compilat ion, all subroutine argument ad­
dresses and some temporary variables were defined in

19 I

I

I
_J

local memory by the compiler. The LD loader con­
catenates the local memory segments for all modules,
so attempting to link a ll the application modules and
libraries with the macroprocessor resulted in over­
flow of local memory (400008 words) and failure of
the load. The LMSTAK utility to enable overlaying
local memory segments was used, but the resulting
program would not execute. In order to check the
operation of the software before resolving the local
memory overflow problem, all the code was recom­
piled without optimization, linked successfully, and
tested.

Later, following a suggestion by the N AS ana­
lysts, the segmentation loader (SEGLDR) was used.
This loader performed the local memory overlay cor­
rectly, so the optimized object code could be used.
No execution errors were encountered as a result
of using the optimizing compiler. Performance was
improved by a factor of 3 in CPU usage with the op­
timized code for most of the demonstration problems
executed. Installation of a new CFT77 compiler with
options to enable the user to control the allocation of
local memory has since eliminated the requirement to
use SEGLDR for the Testbed to overlay local mem­
ory. However, vectorization is not used efficiently
in this version of the code because of short vector
lengths actually used (::;6 in a critical area). Much
greater improvements should be gained by tailoring
the matrix operations in the code to take advantage
of vectorization.

Optimization

In order to identify the most promising areas for
performance improvement , two utilities were used.
First, the UNICOS utility FLOW was used, after re­
compilation of the code with the CFT77 flowtrace
(-ef) option. The resulting executable file was exe­
cuted with several demonstration problems perform­
ing different types of analysis functions. The FLOW
utility analyzed the output files and identified the
modules which were using most of the CPU time for
the executions. A calling tree diagram was also ob­
tained in the FLOW output, which was helpful in
analyzing the execution path of the program.

After identifying the biggest CPU users, the For­
tran source code for those modules was sent to an
IRIS workstation on which the FORGE software was
installed. FORGE is a software system for optimiz­
ing Fortran programs for CRAY computer systems.
FORGE attempts to exploit many of the intricate de­
tails of CRAY hardware and software and to restruc­
ture the Fortran programs for faster execution on
CRAY computer systems. FORGE was used to insert
timing function calls into the modules , which were
then sent back to the CRAY computer, compiled,

20

and linked into the executable file. The demonstra­
tion problems were executed again and very detailed
analyses of the execution of the modules of interest
were obtained. These analyses led to replacement of
some code with UNICOS library function calls and
some other minor revisions. This work resulted in an
improvement of about 12 percent ill the performance
of the affected analyses.

NASA Langley Research Center
Hampton, VA 23665-5225
February 3, 1989

References
1. Blankenship, Charles P.; and Hayduk, Robert J .: Poten­

tial Supercomputer Needs for Structural Analysis. Pro­
ceedings Supercomputing '87- Industrial Supercomputer
Applications and Computations, Volume II, International
Supercomputing Inst ., Inc. , 1987, pp. 180- 202 .

2. Knight , Norman F. , Jr. ; and Stroud, W. Jefferson: Com­
putational Structural Mechanics: A New Activity at the
NASA Langley Research Center. NASA TM-87612, 1985.

3. Lotts, C. G. ; Greene, W. H. ; McCleary, S. L.; Knight,
N. F., Jr.; Paulson, S. S.; and Gillian, R. E.: Introduc­
tion to the Computational Structural Mechanics Testbed.
NASA TM-89096, 1987.

4. Bailey, F. R.: NAS- Current Status and Future Plans.
Supercomputing in Aerospace, ASA CP-2454, 1987,
pp. 13- 21.

5. McLean, Donald M., ed.: MSC/NASTRAN Program­
mer's Manual- MSC/NASTRAN Version 63. MSR-50,
MacNeal-Schwendler Corp. , Oct. 1983.

6. Felippa, Carlos A.: Architecture of a Distributed Anal­
ysis Network for Computational Mechanics. Comput. 8
Struct., vol. 13, no. 1- 3, June 1981, pp. 405- 413.

7. Felippa, C. A.; and Stanley, G. M.: NICE: A Utility Ar­
chitecture for Computational Mechanics. Finite Element
Methods for Nonlinear Problems, P. G. Bergan, K. L.
Bathe, and W. Wunderlich, eds., Springer-Verlag, c.1986,
pp. 447-463.

8. Whetstone, W. D.: SPAR Structural Analysis System
Reference Manual - System Level 13A . Volum e I: Program
Execution. NASA CR-158970-1 , 1978.

9. Gillian, Ronnie E.; and Lotts, Christine G.: The CSM
Testbed Software System: A Development Environment
for Structural Analysis Methods on the NAS CRAY-2.
NASA TM-100642, 1988.

10. Felippa, Carlos A.: The Computational Structural Me­
chanics Testbed Architecture. Volume I- The Language.
NASA CR-178384, 1988.

11. Wright, Mary A.; Regelbrugge, Marc E.; and Felippa,
Carlos A.: The Computational Structural Mechanics
Testbed Architecture. Volume IV- The Global-Database
Manager GAL-DEM. NASA CR-178387, 1989.

12. Hurst, Patricia W.; and Pratt, Terrence W.: Executive
Control Systems III the Engineering Design

l

Environment. Collection of Technical Papers, Part 1-
AIAA/ ASME/ ASCE/ AHS 26th Structures, Structural
Dynamics and Materials Conference, Apr. 1985,
pp. 96- 105. (Available as AIAA-85-0619.)

13. Felippa, Carlos A. : Fortran-77 Simulation of Word­
Addressable Files. Adv. Eng. Sojtw., vol. 4, no. 4,
Oct . 1982, pp. 156- 162.

14. Ortega, James M.: Introduction to Parallel and Vector
Solution of Linear Systems. Plenum Press, c.1988.

15. Poole, Eugene L.; and Overman, Andrea L.: The Solution
of Linear Systems of Equations With a Structural Analysis
Code on the NAS CRAY-2. NASA CR-4159, 1988.

16. Dongarra, J . J. ; Bunch, J . R; Moler, C. B.; and Stewart ,
G. W.: LINPACK Users' Guide. SIAM, 1979.

17. Rankin, C. C.; and Brogan, F. A.: An Element Indepen­
dent Corotational Procedure for the Treatment of Large
Rotations. J. Pressure Vessel Technol., vol. 108, no. 2,
May 1986, pp. 165- 174.

18. Stanley, Gary Mitchel: Continuum-Based Shell Elements.
Ph.D. Diss. , Stanford Univ. , 1985.

19. Park, K. C. ; and Stanley, G. M.: A Curved CO Shell
Element Based on Assumed Natural-Coordinate Strains.
J. Appl. Mech. , vol. 53, no. 2, June 1986, pp. 278- 290.

20. Kang, David S.; and Pian, Theodore H. H.: A Ver­
satile and Low Order Hybrid Stress Element for Gen­
eral Shell Geometry. A Collection of Technical Pa­
pers, Part 1- AIAA/ ASME/ ASCE/ AHS 28th Structures,

Structural Dynamics and Materials Conference,
Apr. 1987, pp. 633- 641. (Available as AIAA-87-0840.)

21. Rankin, C. C.; Stehlin, P.; and Brogan, F. A.: Enhance­
ments to the STAGS Computer Code. NASA CR-4000,
1986.

22. Jones, Robert M.: Mechanics of Composite Materials.
McGraw-Hill Book Co., c.1975.

23. Whitney, James M.: Structural Analysis of Laminated
Anisotropic Plates. Technomic Publ. Co. , Inc. , c.1987.

24. Riks, Eduard: On the Numerical Solution of Snapping
Problems in the Theory of Elastic Stability. AFOSR
70-2258TR, U.S. Air Force, Aug. 1970.

25. Crisfield, M. A.: A Fast Incremental/Iterative Solut ion
Procedure That Handles "Snap-Through." Comput. 8
Struct. , vol. 13, no. 1- 3, June 1981, pp. 55- 62.

26. Knight , orman F. , Jr.; McCleary, Susan L.; Macy,
Steven C.; and Aminpour, Mohammad A.: Large-Scale
Structural Analysis: The Structural Analyst, the CSM
Testbed, and the NAS System. NASA TM-100643, 1989.

27. Hartung, Richard F.; and Ball, Robert E.: A Comparison
of Several Computer Solutions to Three Structural Shell
Analysis Problems. AFFDL-TR-73-15 , U.S. Air Force,
Apr. 1973. (Available from DTIC as AD 762946.)

28. Almroth, B. 0. ; and Brogan, F. A.: Computational
Efficiency of Shell Elements. Nonlinear Finite Element
Analysis of Plates and Shells , Thomas J. R Hughes, A.
Pitko, and A. Jay, eds., AMD-Vol. 48, American Soc. of
Mechanical Engineers, 1981, pp. 147- 165.

21

NI\SJ\ Report Documentation Page
NaT ndl Aen'''dU[,esano
Soare Anm" ,strdt.on

1. Report No. 12. Government Accession No. 3. Recipient·s Catalog No.

ASA TM-4072
4. Title and Subtitle 5. Report Date

CSM Testbed Development and Large-Scale Structural April 1989
Applications 6. Performing Organization Code

7. Author(s)
8. Performing Organization Report No.

N. F. Knight, Jr., R. E. Gillian, S. 1. McCleary, C. G. Lotts,
L-16499

E. L. Poole, A. L. Overman, and S. C. Macy
9. Performing Organization Name and Address

10. Work Urut No.

NASA Langley Research Center 505-63-01-10

Hampton, VA 23665-5225 11. Contract or Grant No.

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

ational Aeronautics and Space Administration Technical Memorandum

Washington, DC 20546-0001 14. Sponsoring Agency Code

15. Supplementary Notes

N. F. Knight, Jr., and R. E. Gillian: Langley Research Center, Hampton, Virginia. , S. L. McCleary, C. G. Lotts, and S. C. Macy: PRC Kentron, Inc., Aerospace Technologies Division,
Hampton, Virginia.
E. L. Poole and A. L. Overman: Awesome Computing, Inc., Charlottesville, Virginia.

16. Abstract

A research activity entitled computational structural mechanics (CSM) at the NASA Langley
Research Center is described. Thi activity involves developing advanced structural analysis and
computational methods that exploit high-performance computers. New methods are developed
in the framework of the CSM Testbed software system and applied to representative complex
structural analysis problems from the aerospace industry. An overview of the CSM Testbed
methods development environment is presented and some new numerical methods developed on
a CRAY-2 computer system are described. Selected application studies performed on the AS
CRAY-2 are also summarized.

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement
Computational structural mechanics U nclassified- U nlimi ted
Structural analysis

Subject Category 39
19. Security Clas if. (of this report) 120. Security Classif. (of this page) 21. No. of Pages 122. Price

Unclassified Unclassified 22 A03
NASA FORM 1626 OCT 86 NASA·Langley, 1989

For sale by the National Technical Information Service, Springfield , Virginia 22161-2171

