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PREFACE

This document contains the proceedings of the Workshop on Computational
Methods for Structural Mechanics and Dynamics held at NASA Langley Research
Center, June 19-21, 1985. The workshop was sponsored by NASA Langley
Research Center.

The workshop had two objectives. The first objective was to introduce to the
structural analysis technical community a new Langley research activity in
structural analysis called Computational Structural Mechanics, or CSM. The
second objective was to hear experts discuss important structural analysis
problems and methods for solving those problems.

The workshop was organized into the following four sessions:

1. Local/qlobal Nonlinear Stress Analysis - Full day - June 19
2. Tire Modeling - Half day - June 20
3. Transient Dynamics - Half day - June 20
4. Multi-Body Dynamics - full day - June 21

Each session closed with a panel discussion.

Papers in these proceedings are grouped by session and identified in the contents.
The order of the papers is the order of the presentations at the workshop. The
proceedings also include any transcription of questions and answers that followed
each paper and panel discussions that followed each session.

The use of trade names or names of manufacturers in this publication does not
constitute an official endorsement of such products or manufacturers, either
expressed or implied, by the National Aeronautics and Space Administration.

W. Jefferson Stroud
Jerrold M. Housner
John A. Tanner
Robert J. Hayduk
Workshop Co-Chairmen
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PART 1
INTRODUCTION

Computational Structural Mechanics Activity

NASA Langley has initiated a new research activity in structural analysis called
Computational Structural Mechanics (CSM). The broad objective of the CSM activity
is to develop advanced structural analysis technology that will exploit modern and
emerging computers, such as computers with vector and parallel processing capabili-
ties. There are three main research activities under way in CSM: (1) parallel pro-
cessing, (2) software test bed, and (3) structural analysis methods. The following
three paragraphs provide a brief description of the three main CSM research
activities.

Parallel processing.— Within the next 5 years, all new high-performance computers
will have multiple processors. CSM researchers are developing software approaches
and structural analysis algorithms that will exploit this new capability. This
research activity has been under way for several years and has used an experimental,
in-house-developed multiprocessor computer known as the finite-element machine
(FEM). At this writing, FEM has 16 processors. A new commercial multiprocessor
computer will be delivered to Langley for parallel processing research. The
parallel processing research activity involves several in-house researchers and
universities.

Software test bed.- The test bed is to be a modern, modular system that handles data
efficiently, that contains a command language which is powerful and easy to learn
and use, and that has an architecture which allows users to add software with minimal
difficulty. The test bed will be used to study the ingredients of modern software
and how those ingredients should fit together. More importantly, the test bed will
be used to study and evaluate structural analysis methods on practical applications
problems. The test bed research is just now getting under way. It involves in-house
researchers and contractors.

Structural analysis methods.- The structural analysis methods research has several
goals. One goal is to develop analysis methods that are general. This goal of
generality leads naturally to finite-element methods, but the research will also
include other structural analysis methods. Another goal is that the methods be
amenable to error analysis; that is, given a physical problem and a mathematical
model of that problem, an analyst would like to know the probable error in predicting
a given response quantity. The ultimate objective is to specify the error tolerances
and to use automated logic to adjust the mathematical model or solution strategy to
obtain that accuracy. A third goal is to develop structural analysis methods that
can exploit parallel processing computers. Our structural analysis methods research
will focus initially on three types of problems: local/global nonlinear stress
analysis, nonlinear transient dynamics, and tire modeling. These three types of
problems are the topics of the workshop and are discussed in detail subsequently.

Workshop Description
This workshop had several objectives, among which were

1. To introduce CSM to the structural analysis technical community,
particularly the university community



2. To hear experts discuss important structural analysis problems and
methods for solving those problems

3. To help make decisions regarding research thrusts in structural
analysis methods development

Three types of problems were addressed at the workshop: local/global nonlinear
stress analysis, nonlinear transient dynamics, and tire modeling. The following
is a description of these three types of problems.

Local/global nonlinear stress analysis.~ A local/global stress analysis is a local,
detailed stress analysis within a larger, less-refined analysis model. Both the
application and the solution procedure are taken to be arbitrary. The definition
of local/global is not precise. Because of this ambiguity, two focus problems are
used to define (for the workshop) what is meant by the words local and global. The
first focus problem is a stiffened flat composite panel with a circular hole that
causes a stiffener to be discontinuous. The panel is subjected to an in-plane com-~
pressive load in the direction of the stiffeners. The second focus problem is
similar, except that it is curved and unstiffened. 1In each case, the overall
response of the panel is the global problem; the response near the hole is the
local problem. In their talks, speakers might not have presented solutions to the
workshop focus problems, but their comments regarding analysis methods referred to
the focus problems.

Structural problems requiring a local/global stress analysis generally involve dis-
continuities which cause rapid changes in stress. The high stress gradients are a
local phenomenon. Analysis procedures that must be used to predict these stress
gradients are not required away from the discontinuity. In regions in which stresses
vary slowly, less-refined analyses are adequate. Practical considerations demand a
multilevel approach. It is these various levels of analysis that cause difficulties
in the local/global problem. In the vicinity of the discontinuity, an analyst may
refine a finite-element grid, introduce a three-dimensional grid, use more powerful
elements, apply a classical solution, and use other analysis tools and approaches.
Usually, the analyst will take additional steps to insure that his analysis is
adequate. He may rework the problem with a modified model, or he may make compari-
sons with the results from other analysis procedures.

To help the structural analyst overcome the difficulties just described, a syste-~
matic analysis procedure is needed that is amenable to error analysis. The analyst
would like to prescribe the error tolerances in predicting the stress at specified
locations and use automated logic to adjust the mathematical model or solution
strategy to obtain that accuracy. In addition, an analyst needs the capability to
calculate derivatives of response quantities with respect to parameters that define
the problem. Such a sensitivity analysis is necessary for design purposes and is
helpful in determining the validity of an analysis. Finally, this systematic
analysis procedure that includes error analysis, adaptive solution refinement, and
sensitivity analysis should be easy to use. The goal is for solutions to local/
global problems, as well as other structural analysis problems, to become routine.

Tire modeling.- One of the most challenging problems in the field of Computational
Structural Mechanics is predicting the response of automotive and aircraft tires
during ground handling operations. The pneumatic tire exhibits a complex geometry
which can generally be described as a noncircular, incomplete torus. Under normal
operational conditions, these tires are subjected to large deformations and




structural rotations. The heavy weight loading requirements imposed on many air-
craft and off-road vehicle tires require their carcasses to be so thick that a sig-
nificant portion of the resulting strain energy is attributed to transverse shear
deformation. Furthermore, the most interesting loading conditions associated with
braking and steering operations are nonsymmetric.

The tire is a laminated composite structure consisting of rubber and textile con-
stituents. The material properties of the constituents may differ by as much as

2 or 3 orders of magnitude, thereby pushing the limits of current composite theory.
The rubber exhibits nearly incompressible characteristics and is subject to large
hysteresis effects. Under dynamic loading conditions, these hysteresis effects can
lead to large thermal gradients in the tire carcass and, hence, significantly affect
the material properties of the constituents. Furthermore, the material properties
of the tire carcass can be highly anisotropic and nonhomogeneous.

A central feature of any tire model must be a sophisticated contact algorithm which
is capable of handling contact friction forces. The tire designer will also require
the model to predict stress distributions in critical regions of the tire carcass.
This requirement might necessitate the local integration of three-dimensional finite
elements into an otherwise two-dimensional model. Finally, the model must demon-
strate its cost effectiveness before it is generally accepted by the United States
tire industry.

Nonlinear transient dynamics.- During the last 2 decades there has been a growing
interest in the numerical solution of time varying equations of structural and
mechanical systems. Such interest comes from such diverse fields of application as
impact mechanisms, robotic manipulation, aircraft structures and space structures.
These applications often involve the response of systems composed of many structural
or mechanical components.

Dynamic analyses of these systems involve both the formulation of the governing
equations and their solution. Usually, the governing equations are discretized
spatially and then integrated temporally using one of a wide variety of time inte-
gration procedures. It is therefore reasonable to consider the dynamic analysis as
consisting of two activities: a formulation and spatial modeling activity and a
temporal solution activity.

The formulation and spatial modeling activity involves treatment of constraints,
controls, possible large deformations of components and large relative angular motion
between components. It is not unusual that the formulation and modeling results in
large sets of nonlinear governing equations. Consequently, the temporal solution of
such systems can be computationally intensive, and it becomes the aim of the formula-
tion and modeling activity to improve computational efficiency and computer
implementation.

The solution of the governing equations involves the temporal integration of equa-
tions of motion subject to initial conditions and constraints. The integration is
usually carried out using either some type of modal superposition procedure or a
direct time integration procedure. The modal superposition procedure, though very
powerful for the solution of linear equations, loses much of its effectiveness in
dealing with nonlinear equations and for this reason is not included in this volume.
Generally, direct time integration procedures are used for dynamic analysis of
mechanical and structural systems governed by nonlinear equations.



Direct time integration procedures are usually referred to as algorithms since it is
the computation of the response quantities which are sought by these procedures
rather than theorems relating to solution existence, uniqueness, etc. A very large
number of these algorithms exist. Their popularity is attested to by the inclusion
of such algorithms in nearly all general-purpose computer programs for analyzing
structures, mechanisms, and satellites. Many such programs offer the user a selec-
tion of algorithms. However, for the solution of problems involving the temporal
integration of a large number of equations, the use of some of these algorithms
leads to very intensive computer usage due to a lack of computational efficiency.

Not only is solution efficiency in need of improvement, but so is solution relia-
bility. The user desires a certain level of confidence that the computed results
are reasonably accurate. Unlike problems of statics, solution satisfaction of the
governing equations does not provide a guarantee that the solution is correct, for
the solution must come from a prescribed set of initial conditions. Conservation of
energy affords a level of confidence in the solution, if such is applicable, but in
many problems it is not applicable. Thus, both efficiency and reliability are items
which need improvement.

Research into developing improved formulations and modeling and their solution is
presently being performed. However, much remains to be done. Furthermore, it takes
considerable time for such developments to find their way into computer programs
which are used in routine practice. Yet the application needs to continue to grow.

Two sessions in this research area were held. One half-day session dealt exclusively
with solution procedures, while one full-day session dealt with development and
treatment of items critical to proper formulation and modeling of multi-body systems.

Thirty papers dealing with the three classes of problems just discussed were pre-
sented at the workshop. 1In these papers, solution concepts are reviewed, computa~
tional algorithms are outlined, an assessment of various methodologies is made, and
problem areas are identified. In addition, directions for future research are

recommended.
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Some Issues in Numerical Simulation of Nonlinear Structural Response

H. D. Hibbitt
Hibbitt, Karlsson and Sorensen
Providence, R.1.

1. Introduction

For some considerable time the author has been involved in the development of commer-
cial finite element software, and this paper is written from that perspective. One of the
remarkable features of the finite element method is its generality, and there is no better
reflection of this than the observation that our company and several of our competitors
each market one product only—a single, “general purpose” finite element code (our par-
ticular code is called Abaqus). These codes provide practical tools that are used in an
astonishingly wide range of engineering applications that include critical aspects of the
safety evaluation of nuclear power plants or of heavily loaded offshore structures in the
hostile environments of the North Sea or the Arctic, major design activities associated with
the development of airframes for high strength and minimum weight, thermal analysis of
electronic components, and the design of sports equipment. For various reasons, the code
that my company develops and markets is generally used in the area of more advanced
applications. These applications almost always involve nonlinear effects. There is little
doubt in my mind that the need for such analysis will continue to grow—it is very easy to
identify problems which should be reachable in the next generation or two of computers
and software and which have substantial economic importance.

The development, maintenance and support of production software involves many ac-
tivities, but—at least in the more advanced application areas where we try to contribute—
the effectiveness of our product depends critically on the quality of the mechanics and
mechanics related algorithms that we implement. It is generally true that the end users
are not sophisticated with respect to what is now being called “computational mechanics.”
They have other interests and motivations. not the least of which is the need to complete
work successfully and to a schedule. Thus. “algorithmic robustness™ is of primary con-
cern to us: we should choose those methods that we believe will maximize reliability with
minimal understanding on the part of the user. Computational efficiency is important
because there are always limited resources, and hence problems that we would like to do
but which are too time consuming or costly. In reality, we compromise: for example, we
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knowingly commit what Strang and Fix (1973) call “variational crimes” because we get
awav with them often enough for it to be worthwhile. But robustness implies a need for
thorough understanding of the algorithms: we should at least know where the limitations
of an algorithm are likely to be. This is not a simple task: for example, we still do not
have practical ways or assessing local error, even in a linear numerical solution.

It is easy to identify important practical problems that, presently, are computationally
rather difficult. but which will become relatively routine in the not too distance future.
Two that are taking up much of our time just now are the problem of simulating vehicle
(especially automobile) crashes, and the simulation of rather complicated contact situa-
tions, such as the analysis of threaded connectors in drill pipe or casing which is subjected
to very large axial forces, causing possible thread jump and quite substantial strains in the
pipe. Both problems are modeled today on current generation computers (the Cray-1 and
X-MP) with Abaqus and other codes. They challenge the limits of the algorithms in our
code, and are computationally intensive—typical run times are several hours per case. The
observations made in this paper are based on our experience to date with such problems.

Large scale general purpose codes have a rather long life span: two codes that are
widely used at this time (Ansys and Nastran) were begun in the mid 1960’s. Thus, in
designing such a code, it is important to try to anticipate what sort of computers will be
in general use for such applications in 10-15 vears. Based on past history, this is a difficult
extrapolation—computers are still developing at a rapid rate. We can make some guesses.
For example, at Cray Research’s Science and Engineering Symposium held in Minneapolis
in 1985 Seymore Cray discussed the specification of the Cray-3, which he expects will be
available in three years. The most relevant parts of that specification from our point of
view are the size of the high-speed, directly addressable, memory (10° words), and the
machine’s parallelism. Consider a problem of order 50000 unknowns: many important
cases of the types mentioned above are of this size or smaller. The rms half-bandwidth in
such a case would be about 5000, so that the assembled symmetric part of the Jacobian
(stiffness) matrix will occupy 250 x 10® words—a quarter of the available memory; the
complete matrix will occupy half the memory. (More and more problems are likely to need
the full Jacobian matrix in the context of Newton methods, because of the use of more
realistic constitutive models, such as damage mechanics models for brittle or composite
materials, which have a non-symmetric Jacobian). Element matrices, state variables for
constitutive calculations, etc. are unlikely to occupy more than 5 x 10° words in such
a case. Thus, it would seem that, for such applications, we need not worry about “I/0O”
problems—we can assume the model can run “in-core.” This means that, for our purposes,
the practical computational limitation will be the time taken to do the arithmetic. Cray
Research and others seem to be moving rapidly toward paralielism to provide arithmetic
speed. This should fit well with that part of our finite element codes that perform element
and constitutive calculations: there we process a large number of such calculation points
(perhaps 4000 elements, 30000 integration points in the 50000 degree-of-freedom case) so
that, provided the code is designed to allow inner loops to spread over the processors, load
balancing should not be much of a problem. It is interesting to note that, in this part
of the code, typical vectors are of order 10-100, so that any vector processor with a long
start-up time (like the Cyber 205) is not very suitable. The solution of the linear equations



is not such a natural fit into parallel architecture, but the problem is such an important
one that it is likely that very effective modules will become available (such as Floating
Point Systems now provide for their processors). Since we in fact are solving a nonlinear
system, it may be that non-Newton methods, not requiring the resolution of a Jacobian
matrix, may be preferable in such an environment. I assume that load balancing is the
critical issue in a multi-processor machine, and that the most effective approach to that
issue is at the inner loop level, rather than the macro (finite element) level.

The remainder of the paper discusses three principal areas. First, the paper discusses
our experiences with the approaches we use to the two initial value problems of primary
interest here—static and dynamic nonlinear response of structures. It then has a brief
section on shell modeling. Then it discusses our current approach to the constitutive
integration problem, in the context of conventional plasticity models. Finally, the paper
lists some areas where we hope that research work will provide us with new methods, or
with improvements to our present approaches.

2. Experience with initial value problems

2.1 Structural dynamics

The nonlinear dynamic problems that we most often see involve globally nonlinear
response—most of the structure yields and undergoes finite rotations and, possibly, finite
strains. However, locally nonlinear dynamic problems are not uncommon: in fact they
represent a sufficiently important application area that we have found it worthwhile to
provide methods to model them with some efficiency. A good example of such a case is
the flow induced vibration of a steam generator tube in a nuclear plant. The tube rattles
in its support plates due to vibration excited by instabilities in the coolant flow, and this
intermittent contact causes wear and, eventually, may lead to leakage. The tube itself may
be “sprung” —that is, the initial stress in the tube may be large enough that it forms a
significant contribution to the tube’s stiffness—but the vibration amplitude is not large
enough that the stiffness of the tube changes significantly during the motion. The nonlin-
earities are therefore confined to the support interaction, where they involve intermittent,
“chattering” contact and friction. Our approach to such problems has been through con-
ventional Guyan reduction, retaining the transverse displacements at the support points
and enough other degrees of freedom in the tube to model its response accurately in the
frequency range of interest (up to about 150 Hz in this case). The Guyan method has
two drawbacks—it is based on guesswork, and the reduced model may be much bigger
than necessary. Since the majority of the applications that have come to our attention
involve relatively small models (typically less than 1000 degrees of freedom, with 30-80
degrees of freedom directly involved in local nonlinearities), these limitations are not very
critical: it is not much effort to extract the modes of interest on the full model and then
to experiment with reduced models until a reasonably small one is found that provides
adequate matching.

Nonlinear dynamic problems are integrated explicitly or implicitly. The explicit ap-
proach brings with it several advantages because it is always used with a lumped mass
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matrix and so no equations need be solved: this leads to great simplification in the com-
puter code. But conditional stability is a serious limitation, especially in structural models
where the thickness of the shell is usually the determining factor with respect to the time
step. Many of the problems that we see are “event and response” cases, in which an initial
input of energy is mostly dissipated as inelastic response in the structure. In these cases
the response usually damps out fairly quickly into a pattern of plastic hinges, until some
later disturbance—perhaps a secondary impact, or a sudden effect associated with geome-
try changes—causes this pattern to undergo a redistribution. Indeed, this phenomenon of
plastic hinge formation is so much a part of such problems that it has given rise to the suc-
cessful mode form solution approach of P. S. Symonds, J. B. Martin, and others (Symonds,
1967). It is difficult to accept that a conditionally stable integration method which can
never expand the time step beyond some fraction of the shortest period exhibited by the
model provides the optimal approach for such an application. My own experience with
explicit methods is limited, so that I do not know how one deals with constraints (such as
arise in mixed element formulations) within these methods. But if the methods are only
useful when we do not solve equations, it seems that the generality of their application is
limited.

Implicit methods are chosen for their numerical stability. Stability is usually discussed
in the context of linear systems, and 1 am not sure of what stability proofs exist for
the nonlinear problems we are trying to model. My own practical experience has been
that numerical stability of the operator has never been a limitation: except for accuracy
considerations, the time step is most usually limited by our ability to solve the equations.
I will return to the equation solving problem later, because it is, in our experience, a
key issue. Implicit methods have the great advantage of generality——the time step can be
chosen for modeling reasons. And since we have to solve equations anyway, we are at liberty
to introduce whatever additional equations we care to, including, for example, Lagrange
multipliers to impose constraints. In Abaqus we have for some time been using the Hilber-
Hughes-Taylor (1978) operator (an extension of the trapezoidal rule that provides the
ability to introduce some numerical damping) with a simple “automatic” time step selection
scheme, and this approach has been of great practical benefit. Again, consider the car
crashworthiness problem. A front end collision test case for a car design usually involves
about 10-15 milliseconds of response. With the shell elements in Abaqus and a mesh
that is adequate to model the response usefully, the stability limit of the central difference
operator is in the microsecond range. Using the implicit method, the analysis is usually
completed in 150-300 time increments, which range from a few microseconds just after a
major impact up to a significant fraction of a millisecond during the fixed plastic hinge
régime. The utility of the method then depends on whether we can solve the nonlinear
equations 150-300 times in an acceptable amount of computer time.

2.2 Statics

Smoothly nonlinear static problems are not uncommon, but it seems that many impor-
tant applications involve abrupt changes in the response, which is often unstable as well.
The car crash problem again serves to provide an example. During a front end crash, most
conventional designs of front rails in cars are responding unstably during about 80% of



their usable deformation, and the switch into this collapsing response occurs quite sharply,
as a buckling of the structure (which is a shell), after it has undergone considerable plastic
deformation. Most shell buckling cases involve relatively thin shells, so that the equilib-
rium equations are not well conditioned. Elastic-plastic buckling often involves sudden
“localization” of the plastic deformation into narrow regions, while major parts of the
structure, which were yielding in the pre-collapse phase, unload elastically. Such problems
make demands on the solution strategy--it must be able to detect, and to switch into,
the alternate equilibrium path, and the instability of the collapse phase of the response
must be handled. For the latter purpose we have found that our version of a “Riks” algo-
rithm (Riks, 1979) has been most valuable. We use it with an “automatic” incrementation
scheme, and find that it can often march right through into the collapse as far as we want
to go, without too much stuttering. The most common complaint that we receive is that
the solution sometimes turns back on itself. When this occurs it is at critical points where,
presumably, the equilibrium path has very high curvature. For the present we ascribe this
to a weakness in our implementation only: the method finds an equilibrium path, but it
is not the path of interest. We have nothing in our code that can detect the possibility of
alternative equilibrium paths: for example, we know we cannot obtain sensible results for
a round bar in compression (Euler buckling) or tension (necking), without knowing that
the switch may occur and seeding the problem definition with a suitable imperfection. A
robust algorithm would not need this.

Rate form constitutive models (such as conventional plasticity or visco-plasticity theo-
ries) still must be integrated, even though the overall problem is quasi-static. There seems
to be relatively little motivation for choosing explicit methods in general for this aspect of
the problem, although there are some particular cases where an explicit approach makes
sense: for example, many high temperature creep problems associated with metal struc-
tures can be treated efficiently with explicit integration of the creep model, because in these
cases the response times of interest are usually not very long compared to characteristic
relaxation times for the material subjected to the stresses that arise in the structure—
otherwise the design would be unacceptable anyway. In Abaqus, except for this particular
case, we use implicit integration for rate plasticity models, as discussed below.

3. Equation solving

Almost all of the procedures we use in Abaqus are based on a “full” Newton method.
We have tried a few alternatives (modified Newton and quasi-Newton methods), but so
many problems of interest are not very well conditioned and exhibit such knotty response
that we have not looked at many of our standard test cases before we have rejected the
alternatives that we have tried, and returned to the quadratic convergence of the full
Newton method. However, our work is hardly rigorous or complete.

A significant part of the usage of our code involves systems for which the Jacobian
matrix of the Newton method is not symmetric. Examples are the non-associated flow
plasticity models that are often used in soil mechanics applications, and loading cases with
“follower forces”, like Morison drag on offshore pipes and risers. In these cases we usually
form and solve the non-symmetric system. There are some problems where we offer the
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possibility of approximating the Jacobian with its symmetric part because our experience
has suggested that many typical cases of that class are analysed with less computational
expense in that way. An example is mentioned later in this paper in connection with
integration of plasticity models. But we always provide the possibility of invoking the
non-symmetric capability if needed, typically by restarting the simulation at sore point,
because it often happens that the symmetric approximation becomes less effective as the
solution develops. '

Newton’s method introduces difficulties of its own. The most expensive is the need to
form and solve a system of linear equations at each iteration, and the most awkward is the
need to define the Jacobian matrix. The algebraic manipulations involved in defining this
matrix can be formidable—and there are obviously cases when it cannot be defined, except
perhaps numerically. For example, a recent paper on numerical methods in plasticity (Simo
and Ortiz, 1984) contains the remark:

“In general, however, the task of evaluating the consistent tangent
moduli in closed form may prove exceedingly laborious. It would appear,
therefore, that a general purpose implementation of the physically more
compelling algorithm ... may require the use of quasi-Newton or secant-
Newton methods ...”

This difficulty should not be underestimated.

The straightforward approach we have been using for conventional plasticity models is
discussed in Section 5. One further comment concerning that method is appropriate
here: even in cases when the rate plasticity model exhibits the usual symmetry property
obtained from assuming associated flow and a smooth yield surface, the exact Jacobian of
the integrated model—using the integration operator that we have chosen—is not always
symmetric.

The full Newton method is expensive computationally. We can provide some numbers
to quantify this on computers that are available today. Abaqus is a general purpose code
and is used on many different computer systems, presently ranging from the Apollo 300
to the Cray X-MP. The code is not particularly “tuned” to any system, and therefore
should be representative of typical straightforward finite element codes (we know from
benchmarks that this is generally true). We use some standard benchmark problems to
estimate performance of our code on various computers: experience has shown that these
benchmarks are reliable. One of these is a shell model, with 1000 eight-node elements.
It has about 17000 degrees of freedom and an rms wavefront of 400 degrees of freedom.
Such a mesh would be adequate for the typical front-end collision analysis that 1 used
as an example above. On a CrayX-MP this problem takes 48 cp seconds per iteration:
60% of that time is in the linear equation solver. and most of the rest is associated with
element and constitutive calculations. A typical dvnamic analysis of a front end collision
needs 150-300 time increments with the implicit operator that we use, and between three
and four iterations per increment with the “almost full Newton” implementation of the
shell in Abaqus (the initial stress terms associated with bending are not defined exactly
in the Jacobian—there is no basic problem, we have simply not completed some lengthy
manipulations. 1 do not think the terms we omit are very significant). Thus, such a crash



simulation can be expected to pass through the basic loop about 500-1200 times if our
algorithms for time stepping, impact, etc. all are working well. This implies about 6% to
16 hours on the Cray for the job.

4. Shells

A substantial part of the modeling for which Abaqus is used involves shells, much of it
in cases where geometric and material nonlinearities dominate the response. We have
tried to provide useful capabilities for shell modeling, but we know that there are serious
deficiencies in what we offer. Irons wrote often about shells: his definitive account of
SemiLoof (Irons, 1976) and his textbook (Irons and Ahmad, 1980) both contain succinct
statements of the difficulties. My impression is that things are improving rapidly. I hope
so: I think we are all aware of the need.

In Abaqus we always treat shells as shells—we do not have any numerically degener-
ated solid elements acting as shells. The elements are formulated in terms of forces and
moments at integration points. The behavior of the cross section is defined in closed form,
or by numerical integration through the thickness. In most cases we use shear deformable
elements, but the transverse shears are not considered in the constitutive calculations—we
assume the shell is thin enough that transverse shear is not very important: it is simply
a numerical technique that allows us to manage with low order interpolation. Low order
elements are often desirable in practical cases.

Abaqus includes three types of shell model: axi-symmetric shells with axi-symmetric
deformations. general shells. and pipes and elbows with deforming sections (ovalization and
warping). These last elements are a rather special case which turns out to be important
in certain piping applications that arise in the nuclear power industry and in the offshore
oil industry. We often see problems where a mixture of shell and solid modeling is needed
(K-joints in offshore platforms; Tees in pressure vessels). We have a standard technique for
joining the shells to the solids, based on kinematic assumptions introduced as constraints.
The approach appears to be satisfactory for the small strain cases where we have seen
results.

The purely axi-symmetric case is rather simple because the problem is one dimen-

sional. For this case we use a linear interpolation element with one integration point and a
quadratic interpolation element with two. Our impression is that these elements are quite
effective. Our implementation of these elements is based on a simplified finite membrane
strain theory. The theory is similar in concept to Rodal’s thesis (Rodal and Witmer, 1979),
except that we use somewhat different strain measures because our applications involve
material models for which logarithmic strain seems to be appropriate, and, in a case like
this where the principal directions do not rotate. it is easy to work directly in terms of
this strain. The main simplifying assumptions in the theory are that the thinning of the
shell is uniform through the thickness and is defined by an incompressibility assumption
on the reference surface of the shell. and that the thinning occurs smoothly, so that we
can neglect gradients of thickness change with respect to position.

There are many applications for which a finite membrane strain model should be
useful-obvious examples arise in sheet metal forming processes. The axi-symmetric case
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is particularly simple and our version of a finite membrane strain theory is quite basic.
Nevertheless, it takes two pages of the Abaqus theory manual just to write out the definition
of the initial stress matrix, and the manipulations involved in reaching that definition are
lengthy. The extension of the same formulation to general shell deformations will involve
substantial algebraic manipulation.

The general shell elements that we use are the Batoz triangle, and the four and eight
node “Ahmad quadrilaterals” (shear flexible elements using reduced integration). Our
implementation of the Batoz triangle uses Batoz’ interpolation functions in a co-rotational
frame for bending, together with constant membrane strain. The element is in Abaqus
because it is essential for us to offer a three-node triangular element for shell problems,
and we have been advised that this element is among the better elements of this category.
The element appears to behave well in bending—it converges rapidly and is relatively
insensitive to distortion. The shortcomings of our implementation of the element are the
constant membrane strain assumption, the faceted geometric approximation, and the need
to use three integration points, this last because it makes the element more expensive than
it should be, given the constant membrane strain assumption.

The Ahmad quadrilaterals are very attractive for cases involving material nonlinearity
because the use of reduced integration minimizes the constitutive evaluations needed to
form the element. The basis functions are also very simple. The four node element is
of limited value without hourglass control: we use the hourglass controls proposed by
Belytschko (Belytschko and Tsay., 1983) for this element. This improves the situation,
but it is still not entirely satisfactory-——we still find it necessary to change the hourglass
stiffnesses from time to time, without being too sure of the reasons for the values we choose.
Abaqus includes a print option which summarizes the energy content of the solution. It
is not uncommon to see relatively significant “artificial strain energy” associated with the
hourglass control: in typical high energy dynamic events this artificial strain energy may
even exceed the residual “physical” energy (strain energy plus kinetic energy) at the end
of the event. Yet the overall predictions of the significant aspects of the response are
generally usable.

As Irons pointed out in his last paper (Irons and Loikkanen, 1983), the eight node
Ahmad element does not pass the patch test except as a rectangle. We offer this element
for historical reasons—it seemed to be a good choice at the time. In fact it does respectably
well on shells that are not too thin, even if it is somewhat distorted. But there is another
practical objection to the eight node interpolation scheme: contact problems are awkward
with such functions. Contact over the entire element does not present serious difficulties,
but. with the contact algorithms that we use (which have Lagrange multipliers to represent
the contact pressure), we do not know how to deal with partial contact over an element—
that is. with the possibility that contact or separation may occur over part of the surface
represented by an element. We plan to add the nine-node version of the same element to
overcome this last objection, even though lrons has told us that this form of the element
only passes the patch test when it is geometrically bilinear (which would soon not be the
case in a large displacement analysis, even if it were true to start with).

Both of the Ahmad elements, as we have implemented them, perform poorly if they
are distorted and the shell is thin. This is a serious objection, but it would appear that



the element of K. C. Park (Park and Stanley, 1984) alleviates this problem. I think it
is important, for practical cases, that we retain the simplicity of the low order elements
as well as the cost effectiveness of reduced integration, especially when relatively severe
nonlinearities (requiring, for example, modeling of finite strain effects) are present.

5. Integration of Conventional Plasticity Models

Conventional plasticity models present an interesting integration problem: the mate-
rial behavior changes drastically at yield; the plastic strain is defined only as a rate, and
the stress measures usually used are defined on the current configuration, so that the rota-
tion of the material must be accounted for in some way. The problem has been receiving
attention recently (for example Ortiz and Popov, 1984), and new approaches have been
suggested. 1 would like to describe the approach that we have been using in Abaqus: over-
all, we are reasonably satisfied with it, but it raises some questions that we have not been
able to answer, and which may also be relevant to the more recently proposed approaches.

Abaqus is primarily an implicit code, so that it is desirable to use an algorithm that
is unconditionally stable. This is not strictly essential. In typical cases involving metals
under ordinary conditions, our experience has been that we are unlikely to succeed in
using increments in which the rotations exceed 10-15 degrees, or the strains exceed a
few percent over important parts of the mesh (these limitations are associated with our
Newton approach to solving the equations). Thus, any method that is stable for this size of
increment should be satisfactory. However, I would be surprised to see conditionally stable
algorithms that can handle such increments: typical yield strains in metals are about 1073,
so that the increment size is about ten times the size of the yield surface in strain space,
and I assume that the stability limit of a conditionally stable operator would not be larger
than the yield strain. Because we have found the full Newton method to be effective, we
want an algorithm that is sufficiently simple so that the Jacobian matrix, (3T /0E);;+ a4,
where T is the stress , E is the strain, and ¢t + At is the time at the end of the increment
(where we write the equilibrium equations in an implicit code), can be obtained exactly
for common plasticity models. It is desirable that this matrix have an additional property:
several plasticity models of practical importance are derived from a locally smooth potential
which is also the yield surface, so that the rate equations of the model give a symmetric
form 0T /OE. We would like the integration operator to preserve this symmetry—this is of
practical significance with respect to computational cost. The operator we use in Abaqus
does not do so, except in a restricted class of plasticity models (which does not include
some of those that are available the code and which have a symmetric rate form).

We first integrate the kinematic aspect of the model by using the algorithm of Hughes
and Winget (1980) to define an increment of rotation. which we apply to .all vector and
tensor valued functions at the material point; we also follow the Hughes-Winget suggestion
and define the strain increment by the central difference approximation. Various authors
have commented on the inadequacies of this class of method in the context of theories that
involve tensor valued hardening variables, such as classical kinematic hardening theory. 1
do not see much utility in simple kinematic hardening with respect to finite strain appli-
cations, and the approach does not suffer the same obvious deficiency when it is used with
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the isotropic yield models that we generally use for metals and soils at finite strains. The
algorithm leads to a symmetric initial stress matrix, which is tedious to derive.

We are left with the integration of the change of state associated with deforma-
tion. The following discussion considers only isothermal, rate independent behavior with
isotropic hardening. In Abaqus we use the same approach for rate dependent models (ex-
cept where we integrate explicitly, as mentioned in Section 2.2 above), for non-isothermal
cases (including fully coupled temperature-displacement calculations) and for more com-
plicated hardening models. such as kinematic hardening.

The isotropic hardening plasticity models in Abaqus all have the following structure.
We assume a strain rate decomposition,

dE = dE* + dE*'

where dE is a differential change in total mechanical strain, dE¢ is a differential change
in the elastic strain, and dE* is a differential change in the inelastic (plastic) strain. We
have introduced the Hughes-Winget approach to account, in an approximate way, for the
rigid-body rotation of the material during the increment, and to define a finite increment of
total strain during the increment. This allows us to write this decomposition in integrated
form as

E - E¢ - E" (1)

where E, E¢ and EP! are defined as summations of the corresponding rotated values at
the start of each increment and the incremental values associated with that increment.
During the constitutive calculations E is known, except in the case of plane stress.

We assume an elastic strain energy potential so that the stress. T. is defined as

ow

T= g4 2

where W = W (E*®,0) is the strain energy potential, and 6 is the temperature.

Some of the plasticity models that we use in Abaqus assume linear elasticity. while
others (soils models) use a nonlinear elasticity in which the logarithm of the pressure
stress is proportional to the volumetric strain. None of these elasticity models has internal
constraints such as incompressibility, so that (2) defines the stress completely. It can be
differentiated to give

or - IW - g
T QE¢gEe T
which we write as
AT = D¢ : 9E* (3)

A simple isotropic hardening model has the vield function

=0 (4)



where f = f(T,0, H*), with H* being a set of hardening parameters; f is defined such
that, whenever f < 0, the response is purely elastic. The models we use in Abaqus all
have a smooth yield function. so that df /9T, 8°f 0T OT. and 9f/OH*> are well defined
everywhere on f.

The flow rule is written

pl _ @
dE?"" = d\ 3T (5)

where dX is a positive scalar and ¢(T,0, H*) is the flow potential. Since the material
models being discussed are rate independent, d) is determined only by the kinematic
solution at the material point being considered.

The hardening parameters evolve with plastic strain:

dH* = h*(dEF', T,0, H?)

where h® defines the hardening: h* must be homogeneous of degree one in dEF! for the
model to be rate independent. Therefore
dH = dxhe (22 1.0, HF) (6)
8T b hl b
The plasticity model is now defined, except for choosing particular forms for the elastic
strain energy potential, W, the yield function, f, the flow potential, ¢, and the hardening
rules, h<.

The only rate equations in the formal definition of the material model are the evo-
lutionary rule for the hardening and the flow rule. The simplest operator which may at
least fulfill the requirement of unconditional stability mentioned at the beginning of this
section is the backward Euler method, which can be introduced into (5) to give

dg
E*' = AXZ 7
JAN A 5T (7)
while (6) is written
AH® = £ (2% 1,9, HP) (8)
oT

In these equations and in all of the following. all quantities are evaluated at the end
of the time increment.

Remark: Ortiz and Popov (1984) propose the midpoint rule as a more accurate oper-
ator. based on an error analysis with small strain increments. Their analysis
appears to assume that the material is vielding during the entire increment.
This is often not the case—in most calculations there are always material
points where yielding begins part way through the increment. At such points
the mid-point rule requires solution for the initial intersection with the yield
surface during the increment. and application of the rule only within the
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vielding part of the increment. This creates some formidable algebra. espe-
cially if one wishes to derive the Jacobian. Our analysis of this problem leads
us to the conclusion that, even for an associated flow material, the Jacobian
will, in this case, not be symmetric, and that its non-symmetric part may
not be very small. We choose the backward Euler method partly because it
does not introduce this difficulty, and so retains sufficient tractability that
we can complete the algebra rather easily. It is interesting to note that Ortiz
and Popov confirm the conclusion of Schreyer et al. (1979): that, for strain
increments that are not small compared to the size of the yield surface in
strain space, the backward Euler method exhibits the highest accuracy of
any of the simple methods that they tested.

From a computational viewpoint the problem is now algebraic: we must solve the
nonlinear equations (1), (2), (4), (7) and (8), and thus define the state of the material at
the end of the increment. The “material stiffness matrix”,

aT]
OE’
must also be defined for the overall Newton scheme that we use for the equilibrium equa-
tions. Simple manipulations lead to the definition

D] = |

L

(D} = {[1] + AA[H]} : [L)] ' [H]

where (I is the fourth order identity tensor, and

H| = |D]*: |Z]
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and

ON ( ON 9k 8N 4N aha)
- aT BH> N "'aT = 8H® oT

For a non-associated flow material, f /0T and N are not related, so that [D] cannot
be symmetric. For an associated flow material, 3f/0T and N (and hence N) will be
co-linear. Therefore {D] will be symmetric if

ohe ON, . ok

oN laT! TV MY B
which is the case, for example, for the simple Prandtl-Reuss model that is commonly used
for metals, but is not true for the modified Cam-clay model that is sometimes used for
clays. However, in associated flow cases when it is not true, the non-symmetric contri-
butions to [Dj appear only in the terms multiplied by (A))2, so that they are of the
order of (the plastic strain increment)? compared to unity. This suggests that, for prac-
tical purposes, the lack of symmetry should not degrade the convergence of the Newton
iterations for equilibrium if we approximate |[D] with its symmetric part, and our experi-
ence to date confirms this—at least, the performance of the algorithm with the symmetric
approximation has been satisfactory, by our standards.

=0

There remains the problem of solving the algebraic equations for the state at the end
of the increment. In the general case, this is not a simple matter: whatever method is used
should not be expensive on the computer. but it must work for the tightly curved yield
functions that appear in some models of practical interest, even when the strain increment
is many times the typical size of the yield surface in strain space. The problem is made
more awkward in cases such as Cam-clay, where exponential terms appear in the elasticity
and in the hardening. Our approach has been as follows. A Newton scheme should work,
provided we choose suitable variables as a basis, and provided we start with a good guess.
The plastic strain increments, AEP!, should be a suitable set of variables. Then Newton’s
method for (1), (2), (4), (7) and (8) is the linear equations

. ~ 1
11+ AN2Z): (L] : [D]]: €™ = [2]: (AAN - AEP) + N—f
which are solved for CP' | the improvement to the solution for AEF!:

AEP = AEP 4 CT

The elastic strain is then obtained from (1), the stress from (2). 2 A from the projection
of (7) onto N:

N : AEF!
AN = ————
N:N
and AH? from (8).
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This loop is repeated until the components of AE" converge. A tight convergence
criterion is necessary, so that the solution is accurately defined: this is essential for the
overall Newton scheme for the equilibrium equations to converge quadratically.

The Newton method requires solution of the linear system at each iteration. Although
the system of equations is not large (at most six), these computations are done at each
integration point and at each iteration of the overall equilibrium solution, so that it is
desirable to solve the problem more efficiently than by direct application of the Newton
method. In addition, when the strain increment is large, a reasonable starting guess is
necessary for the method to converge. For these reasons we have been using a projection
of the problem onto a smaller number of variables to start the solution. If this subspace
is chosen appropriately, we should be able to develop a useful estimate of the solution at
low cost. The general idea is as follows.

Let Ka, a=1,...,n, be a set of tensors that are orthonormal:
K : K = §°°

and choose n to be less than the number of stress components in the actual problem.
The K& are chosen for a particular guess and are fixed during the solution for that
guess.
Assume that the plastic strain increment is

AEP = Nel'K® (9)

The elasticity, (2), and the strain rate decomposition, (1), then define the stress,
which we require to satisfy yield, (4). The integrated flow equation, (7), is imposed in the
sub-space:

AEP = AN
where
N=K*K*:N (10)
Since the K are orthonormal, (9) and (10) then define
NePl = AAN® (11)
where
]\701 = Ka : N
The Newton scheme described above for the full stress space projects directly:

)
d

. Iz

(6°F + AAZO(KT ¢ L] D] KA) e = Z9F(AANF — Ael) + N©



where

Zaﬁzaaf’—%f{a NM: D K?
N*=K°: N
and
3 e TR P IR af
d=M:|D*:K*K :N~aHacaghﬁ

These linear equations provide the ¢, the improvements to the AeR':

NePl = NeP! + ¢

At each iteration the solution is updated as described for the full stress-space solution,
except that A is calculated by projecting (11) onto N<:

a I
N*Aek!

OA= NENE

The utility of this technique depends on the choice of the K", and on n. Clearly it is
unlikely that it would be worthwhile to use n > 2. Most of the plasticity models in Abaqus
are isotropic. in the sense that the yield function, f, and the flow potential, g, are defined

in terms of the stress invariants. An obvious choice for the K¢ in these cases is n = 2,
with

(here I is the identity matrix),

and

where SU is the deviatoric part of TV, the stress that would occur at the end of the
increment if there were no plasticity occurring in the increment, and

3
(8]
=4/ =8S¢:80
7 2
If the only stress dependencies in f and g are the effective pressure stress,
1
=—-1:T
P=73

and the deviatoric stress magnitude, ¢; and the elasticity is isotropic, (and the hardening
is isotropic, as has been assumed here), the subspace solution is the exact answer to the
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problem, except for the plane stress case. For some simple yield surfaces and hardening
definitions the subspace problem can be solved in closed form, without the need for iter-
ation. For the simplest case of a Mises material, where ¢ is the only stress term in f and
g, the one-dimensional sub-space defined by K?2 above provides the exact solution. For
perfect plasticity the method is then precisely Wilkins® “radial return” algorithm.

Our experience with more general yield functions and flow potentials, where the third
stress invariant is also used, is that the two-dimensional sub-space provides a satisfactory
guess, from which the solution can be completed usually with no more than two iterations
of the full stress-space problem.

6. Closure

The paper has presented a brief review of our experience in the recent past in the
general area of nonlinear structural analysis of metal shells. It is not difficult to identify
the most severe limitations in the methods we have used so far, to write down a “wish
list” of areas where we would like to be using better methods than those we have used to
date. The list is as follows.

e We do not like the rapid deterioration in the accuracy of the isoparametric shell
elements that we currently use when they are not rectangles and the shell is thin.

e Reduced integration elements are attractive because they minimize constitutive calcu-
lations, which are often a significant part of the computational cost when the material
model is not simple. Numerical artifices, such as hourglass control, are not objection-
able, when they are effective and are well understood. Our own understanding so far
is lacking.

e The characteristic hinging of thin metal shells under compressive loads raises difficul-
ties and opportunities. The difficulties are associated with concerns about capturing
this behavior with smooth discretizations. The opportunities are indicated by the re-
markable success of the rigid-plastic models of Wierzbicki. Perhaps it is true that, in
practical cases, load bearing members are too thick for this to be important, although
movies of front-end collision experiments on cars shown very pronounced hinging.

e A straightforward finite membrane strain shell formulation would have wide applica-
tion in several problem areas that we often encounter. The axi-symmetric formulation
we have been using is based substantially on the assumptions introduced by Rodal in
his thesis, although we have taken a rather different approach in detail. We do not
have a good appreciation of the limitations of the formulation.

e We expect to continue to work with implicit methods in many problem areas, including
a large part of the analysis work associated with structural design. If this is a correct
assessment. it would be highly desirable to have equation solution methods that are
more effective and less difficult to use than Newton's method. This is, from our point
of view, one of the most severe limitations that we face in practical applications.

e So much shell behavior involves branching on the solution path that it would be very
satisfying to have methods that can handle this unassisted.



e Finally, we have not mentioned rezoning, or the treatment of localization, but these
are becoming important issues in practical cases.
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COMPUTERIZED STRUCTURAL MECHANICS FOR 1990'S: ADVANCED AIRCRAFT NEEDS
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Abstract

This paper describes the needs for computerized structural mechanics (CSM) as
seen from the standpoint of the aircraft industry. It projects these needs
into the 1990's with special focus on the new advanced materials. It identi-
fies the major areas:

® preliminary design/analysis
® research
e detail design/analysis

and elaborates on the role of local/global analyses in these different areas.

The lessons learned in the past are used as a basis for the design of a CSM
framework that could modify and consolidate existing technology and include
future developments in a rational and useful way.

A philosophy is stated, and a set of analyses needs driven by the emerging
advanced composites is enumerated. The roles of NASA, the universities, and
the industry are identified.

Finally, a set of rational research targets is recommended based on both the
new types of computers and the increased complexity the "industry" faces.

Computerized structural mechanics should be more than new methods in
structural mechanics and numerical analyses. It should be a set of engineer-
ing applications software products that combines innovations in structural
mechanics, numerical analysis, data processing, search and display features,
and recent hardware advances and is organized in a framework that directly
supports the design process.

PRECEDING PAGE BLANK NOT FILMED
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There are two aspects to the development of engineering applications software:
(1) innovations and (2) improvements in the productivity of engineers.

While this paper concentrates on the first aspect, it is still important to
consider the productivity aspect in the development of new methods because the
software ultimately will be part of the set of tools used in the design of
aircraft structures.

Structural Analysis Needs
for the Aircraft Industry

® New capabilities
® Concepts
® Materials.
® Details
® Improved productivity
® Engineering workstations

® Tutorial software
® CAD/CAM interfaces
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New non-ductile materials have entered the scene and will be part of the

picture for a long time to come. These materials require more detailed analyses
not only because of micro-considerations and interlaminar effects but also
because of their unforgiving nature which entails a significant participation

of "secondary" effects in the failure modes. The complex definition of these
materials and their responses required to identify behavior has resulted in a
large increase in the information volumes for processing of a typical aircraft
problem in the structures field.

At the same time, we have seen tightening up of requirements not only in terms

of adverse environment but also in terms of improved quality. In both cases
this tightening results in a need for more sophisticated analyses.

The general areas of computing technology and information science have seen
dramatic changes in both hardware and software. There have been hardware
changes that could be parlayed into: (1) optimization of structures with
practical constraints, (2) nonlinear analyses at reasonable cost, and

(3) micro-analyses at acceptable storage requirements. Developments have
occurred in the field of data processing that make data base management a
natural cornerstone in the future of CSM. Finally, there have been develop-
ments in the fields of graphics and CAD/CAM which would make the establishment
of standardized user interfaces extraordinarily useful both from the stand-
point of technology and management.

Motivation for Increased Development

e Advanced composites
e Higher complexity
* More unforgiving
e Larger information volumes
e More stringent requirements
e Lighter weights
e Higher temperatures
e Longer lives
e Improved computing technology
e Numerical methods
e Data processing/search and display

« CAD/CAM
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The only result of significance in the aircraft industry is to produce a new
"better" aircraft. Any other result is intermediate and will only be accept-
able if it contributes to this improvement. The success of CSM is therefore
contingent on three abilities:

e To promote and support new technology in the fields of structures,
numerical methods, and data processing

® To include and improve methods in the preliminary design and analysis of
new aircrafts (the need to develop and refine conceptual methods for
the selection and comparisons of sophisticated candidates with no
experience basis should be a strong driver in goal setting)

® To introduce new methods and integrate these methods in a framework that
can produce the visibility, data reduction, and sophistications that
are necessary to support a production effort in a new era

What Constitutes Success?
. Better aerospace vehicles

B Therefore “CSM’’ must
e Support technology development
e Provide NEW preliminary design and analysis methods

e Automate detail design and analysis methods
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The successful development of new methods in computerized structural mechanics
requires an understanding of the psychology of the situation.

1. An efficient method that supports the needs of the industry must be
established.

2. A practical input and output language must be used.
3. A set of useful user interfaces must be available.

4, An appropriate amount of visibility and data reduction features should
be provided.

5. A realistic marketing effort should be launched.

6. A developer and user interaction is required.

Y ardstick for Success for CSM

Computerized methods development
will not be successful unless
the new ‘‘product’ is totally acceptable
to the users
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The CSM framework should be designed and implemented with common design ques-
tions in mind. Of these, the question of material choice and mix is very
complex. An optimum distribution of materials in the primary structure of an
airplane is dependent on the critical failure modes. Is it strength (in
tension), stability, fatigue, damage tolerance, or stiffness requirements that
size a local detail? Again, it can be seen how a global/local/global cycle
must be used to come to grips with this design problem. All the design
drivers are closely related, and the question of environment involves the
determination of temperature, moisture, presence of chemical, corrosion, and
risks of FOD*. These effects need to be assessed at least on a parallel track.
The performance requirements, such as speed, load factors, roll rates, and
landing speeds, all are very basic and need to be addressed again in a local/
global fashion. Finally, design criteria are "soft" early in the design
process and evolve in a cyclic manner as the local/global analyses of the
structure mature,

What are the Structural Design Drivers?

e Material choice and mix

e Strength

o Stiffness

e Damage tolerance

e Fatigue performance
¢ Environment
e Performance requirements

¢ Design criteria

*foreign object damage



There are three fields of structures that have to be included in order to give
attention to all the aspects of engineering design in the aircraft industry.
The first of these fields is the research activity that leads to a new tech-
nology and a better understanding of the ingredients in the design process.
The second field is the preliminary design and analysis that leads to the
selection of the appropriate family of vehicles or products. Both syntheses
and analyses on one side and parameters and variables on the other are in-
volved in this design and analysis.

The third field is the detail design and analysis, of which perhaps the local/
global concept is more applicable than anywhere else. Here the objective is
to learn as much as possible about a specific design candidate. The demands
are especially stringent on CSM to include features that facilitate data
reduction and display as well as sophisticated local analyses methods.

CSM, What Should be Included?

CSM
1 |
e . Research Production
Preliminary Design {Pilots) {Detail Design)
] 1 Information
r l r I Center
Optimization Trade-Studies Synthesis Detail Design
Local-Global Sensitivities Analysis Optimization
Parameter 1-Global Local-Global
Evaluation Local-Glo ocal-Global
Local-Global Error Estimation
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The overwhelming requirement in the preliminary design and analysis phase
deals with synthesis methods that discriminate between parameters and vari-
ables in the design process and makes it possible to study alternative
formulations.

Preliminary Design and Analysis

e Access to expert system data base (trade study
results)

e Parametric results from local-global analyses as
baseline for optimization

e Determination of sensitivities (data base)

® Algorithms for parameter determinations and
variable selections

e Strategy algorithms, history function



The role of research in the CSM arena is central and its primary purpose is to
promote better understanding of the materials and structures technologies
required to produce better vehicles. To that end, it is essential to have
significant development in (1) structural and continuum mechanics,

(2) numerical methods, and (3) failure prediction and test evaluation. This
must be done in a framework that allows for empiricism that is sensitive to
user needs, aims at synthesis, and produces pilot capabilities with well-
defined interfaces.

Research
® Phenomena evaluation for better understanding
e Special purpose detail analyses
® New numerical methods
e “Pilot”’ development
e Test data evaluation methods

® Empirical corrections methods
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The detail design and analysis fields have always been characterized by large
volumes of data. This is becoming more and more the case as the new advanced
composite materials are introduced into the production environment. (Just
consider the simple problem of calculating margins of safety.) This together
with more complex requirements and the less forgiving nature of the materials
has resulted in order-of-magnitude increases in data volumes in addition to a
myriad of local analyses methods demands.

Production (Detail Design and Analysis)

¢ Postprocessing, search and display (graphics)

e Strength checking (software for detail analyses)

® Management visibility and access

¢ Data base access (parametric representation...allowables)

e Automated resize (optimization), baseline updates

e Strategy for local-global analyses

| ® Error estimation
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The CSM framework has to have an information center that supports the local/
global analyses and makes it possible to combine all aspects of theory,
empiricism, test data, and criteria.

This data base should be such that it supports the preliminary design, detail
design, and research.

Information Center (Data Base)

¢ Self educating expert system (better modeling, improved
parameter evaluation, trade projections)

® Test data evaluation and empirical correction
e Sensitivities
e History writing

e Search and display
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The building blocks for CSM are naturally many and of very different nature,
but the central core in a local/global system will have to be a set of special

purpose methods that in a very flexible way can be included, updated, and
replaced.

What are the Building Blocks?

Ad hoc Genera

methods Purpoge
System
Post .
rocessor
?search and
display)

pd hot

me(\\ods
Graphics
ftware
aa b c . SO
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Ad ho c
methods

User
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Without the proper discipline in the structuring and targeting for CSM, there

is a significant risk that spur-of-the-moment CSM designs will prevail.
designs will be avoided by a central NASA leadership.

Should the Philosophy be Uncontrolled Growth?

LOCAL-GLOBAL
FAILURE PREDICTION

Failure
prediction
{progression)

General purpose
system
(internal loads

flutter)

PRELIMINARY DESIGN

Parametric

@ software

Phenomena
methods

Parametric

SEARCH AND
reproduction

DISPLAY

THE ANSWER IS NO!

i

Such
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From the standpoint of the aircraft industry, the last 20 years have seen an
increased reliance on highly specialized experts to perform special purpose
(1ocal) analyses. This is an undesirable development, and the CSM framework
should provide the requirements necessary to curtail and reverse this software
engineering trend. At the same time a number of general systems have emerged,
reached maturity, expanded to a high level of maintenance budget needs, and
then stagnated. Finally, the framework must provide local/global communica-
tions and user interfaces.

Need from Users

¢ Present situation

* Increasing dependence on highly specialized
experts

» General purpose systems in use require more
user driven long term plans

* As the present trend shows high main-
tenance burden and early stagnation

* Proper framework for global to multi-local
communications is missing



The strategy for the long-term CSM development could include: (1) identifica-
tion of existing software that can be modified for a new environment, (2) a

plan that is based on an evaluation of industry needs and experience with new
operating systems, compilers, hardware, and methods, (3) the new hardware poten-
tial that must be part of the picture when targeting special fields; optimiza-
tion is still a cost/hardware constrained activity, and (4) emphasis that

should be based on the priorities that come out of industry needs. NASA has a
key role to play in pulling all these together.

Strategy

¢ Plan that modifies and uses existing software where feasible
¢ Plans driven by what the industry presently knows
¢ Plan that recognizes new hardware potentials

¢ Plan that encourages more “applied research’ into fields
driven by industry needs
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The requirements mentioned previously translate into a set of organizational
issues that are essential to CSM development follow-through. First, the size
of the software demand is such that a national commitment is necessary if the
technology benefits are to be realized. Second, a number of general-purpose
scientific systems and an assortment of special-purpose software have demon-
strated the need for a framework designed to draw upon the benefits of both.
Finally, user acceptance will depend on good visibility and easy access to
solutions and results.

Fundamental Organizational Issues

® The successful development of
CSM requires central leadership

e CSM should provide the framework
for unification of general/global and
special/local methods

e Search and display algorithms and
standardized user interfaces are as
important as solutions



The backbone of the CSM design approach is the data management, but the foun-
dation for success can be found in the quality of the special-purpose methods
and the associated software. Experience has shown that the success and accep-
tance of these methods are very dependent on availability of required data,
ease of interpretation of results, and visibility of the steps leading to the
final solution.

The approach should also deal with the present trends in structures, in which
on one hand we are moving into fields with very limited experience bases and
on the other hand we produce innovation through point design testing. We can
address both situations in a framework that not only accepts new methods with
ease but also uses these methods for experience development and empirical
evolution.

Could This be a “Better’” Approach?

. Data communication
Problem definition Executive
(analyses/design strategy)
Research L Structural Pre!iminary Production
analysis design (detail design)
[
Search and General purpose Ad hoc
display algorithms structural analysis software
system
New information
data bases
Requested
results Learning module

Parameter selection
Empirical rules

History and

management
visibility

History and management visibility
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The typical situation in the structures field involves a number of analyses
that are directed at different levels of resolution. These levels will have
to be revisited a number of times during the design process. The evolution of
the design, therefore, obviously requires a number of global-to-local-to-
global transitions involving huge data volumes. The efficiency of these
transitions requires as much attention as the methods development.

Local-Global Analyses

¢ Internal loads/global, overall FE analyses, stability,
aeroelastic effects, flutter, ...

e Detail stress analysis (linear/nonlinear), ‘“local”
buckling, allowables processing, postbuckling
analyses, interlaminar analyses, residual strength,
damage tolerance analyses, fatigue analysis

e Local optimization, multilevel optimization,
automated remodeling, ...

® Error estimation

® Micro-detail-macro strategy (transitions)



An understanding of the design drivers leads to the identification of a number
of fields in which work should be done in order to efficiently produce pre-
lTiminary and final designs. Here the preliminary and final design processes
are different in focus, but similar principles could serve both enterprises
and emphasis should be given to synthesis-like features.

Development Support

® Determination of material development targets

e Selection of ‘‘best’’ structural materials (based on most important
design drivers, and determine failure progression)

¢ Establishing environmental effects

¢ Determining an optimum set of performance requirements
(temperature/speed, weight, load factor,...)

e Exploration of sensitivities to variation in design criteria
e Multilevel strength, stress/stability analyses

e Multilevel optimization

® Pre- and postprocessing with search and display features
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The framework for CSM must be such that both categories of users/developers
(typical engineers and experts) can be allowed their proper influence in a

manner that promotes natural roles and allows for organized communications of
both needs and results.

What are We Aiming For?

e A system for technology development and improved
scientific understanding for experts

e A system for preliminary design, detail design and
analyses for typical engineers in production environments



The local/global analysis development is seen as a three-pronged effort that
includes: (1) advanced methods, (2) typical engineering analyses, and

(3) data base and associated methods for experience development. The advanced
methods would primarily be intended for expert evaluations, but could, if
properly packaged, be included among the typical engineering analyses. The
expert evaluations would produce direct input to the overall design effort,
but would also feed the data base and indirectly support both parametric
evaluations and preliminary design approaches. The example problem represents
a number of analyses that belong on the local level and should be considered

from the design standpoint.

Local-Global Analysis

Example
problem

In-house

research Postpro-
University
research
results )
evaluation Typical
(transfer) engineering
analysis
Preliminary design
Detail design
?l::t:::f Detail analysis
(literature) Design criteria
Visibility
Pilots
(codes) .
Test—empiricism—theory

Y,

quality design

system
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The example problem in the context shown in the previous figure represents a
number of analyses and syntheses. All of these belong to the local or micro
level when seen from the standpoint of the design process. All of these, and
a number of others, are natural development (research) targets that after
implementation should either directly feed results into the “"typical®
engineering activity or produce results to the local data base for future use
or parametric access. All these developments should result in pilot capabili-
ties or products that in an ad hoc fashion would satisfy one of the above two
requirements.

What are the Analyses for the Example Problem?

o Local failure modes and progression
based on test, for correlation and
empirical inputs

e Multilevel analyses: interlaminar,
local damage growth, local influence
of postbuckling

® Stability analyses

® Postbuckling
analyses

@ Nonlinear material
response,...

® Sensitivities to design
changes

o Flaw-growth for a number of
damages

o Local optimization
e Allowables determination

e Automated ‘‘remodeling’’ and
® Parametric representation and transition regions

empirical input to data base
® Screening for criticalities, critical
requirements

e "“Gross’’ FE properties

© Residual stresses



The example problem is one of many analogous local problems that must be
solved as part of the design process. Each one of these problems is solved a
number of times during the evolution of the design. We are therefore forced
to minimize the number of micro evaluations and expert involvement in order to
produce an efficient design process. This can be done by including the
results on a communal experience basis in a way that supports the practical
engineering tasks. Many of the local analysis packages must be designed for
minimum involvement by experts. In many types of problems, it will be
necessary to identify important parameters and produce solutions in advance in
a format that can be accessed in a data base management environment. Very
similar considerations apply to the allowables question, whether it is pro-
cessing of material structural allowables. Finally, in the failure prediction
development, one can see elements of the other types and here one can hardly
expect practical support of the design process without a two-level software
development that ulitmately depends on empirical modifications.

The Example Problem

® Local with “micro” requirements

¢ Local analyses with minimum expert requirements
¢ Basis for parameter selection

¢ Panel for allowables generation

e Candidate for failure prediction development
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In conclusion, we find that there are a number of research targets waiting for
initiative from the engineering community. It has become clear, however, that
the majority of these targets will be missed if not approached from the stand-
point of their overall role in the design process. It is also felt that the
objectives will not be met without a proper technology transfer to the users.
This naturally involves both the software packaging and the promotional
activity necessary for dissemination.

Conclusions

e Research should include

e Analysis methods (nonlinear, advanced materials
structures)

gee

e Numerical methods

e Artificial intelligence

eSearch and display/data processing

e Emphasis on technology transfer to industry



NASA has a key role in the development of CSM for the 1990's and beyond. A
national effort is required if new materials (composites), new computers, new
methods, and new requirements are to be addressed in a manner that establishes
economic advances and preserves the superior safety record established by the
aircraft industry. NASA has a role not only in leadership but also as com-
municator assuring technology transfer and promoting user acceptance.

Recommendations

e Coordination

o Clear interfaces

¢ Standardization

® Enforcer

«Standing committee

NASA has
key-role

University
and
research
institution

Aircraft
industry

Packaging
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NONLINEAR RESPONSE OF A BLADE-STIFFENED GRAPHITE-EPOXY PANEL
WITH A DISCONTINUOUS STIFFENER: WORK IN PROGRESS

Norman F. Knight, Jr., William H. Greene,
and W. Jefférson Stroud
NASA Langley Research Center
Hampton, Virginia

INTRODUCTION

Discontinuities and eccentricities are usually present in practical
structures. In addition, potential damage of otherwise perfect structures is often
an important design consideration. Predicting the structural response in the
presence of discontinuities, eccentricities, and damage is particularly difficult
when the component is built from graphite-epoxy materials or is loaded into the
nonlinear range. Recent interest in applying graphite-epoxy materials to aircraft
primary structures has led to several studies of postbuckling behavior and failure
characteristics of graphite-epoxy structural components (e.g., refs. 1-3).
However, these studies concentrated on two topics: prediction of thé overdll
response of composite structural components in the postbuckling range or failure
mechanisms and analytical failure prediction techniques for fibrous composite
materials. The problem of calculating detailed stress distributions around
discontinuities in buckled, composite structural components for use with the
various analytical failure prediction techniques has not been thoroughly explored.

The purpose of this paper is the application of computational methods to the
detailed stress analysis problem which is the focus of this session of the
workshop. One approach to uncovering the difficulties of this type of analysis and
to providing specific directions for future research in this area is a direct
attack on the problem using currently available analysis tools. A candidate
problem has been selected and the remainder of the paper describes experiences from
calculating its structural response.

PRECEDING PAGE BLAMK NOT FILMED
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BLADE-STIFFENED GRAPHITE-EPOXY PANEL WITH A DISCONTINUOUS STIFFENER:
FOCUS PROBLEM

The focus problem for the local/global stress analysis session of this
workshop is to determine the nonlinear response of a flat blade-stiffened graphite-
epoxy panel with a discontinuous stiffener. The material system for the panel is
T300/5208 graphite-epoxy with a nominal ply thickness of 0.0055 in. Typical lamina
properties for this graphite-epoxy system are 19,000 ksi for the longitudinal
Young's modulus, 1,890 ksi for the transverse Young's modulus, 930 ksi for the
shear modulus, and 0.38 for the major Poisson's ratio. The panel skin has 25 plies
E[+45/02/755/o /+45/0,/%45/0,/+45/0,/+45]) and the blade stiffeners have 24 plies

[i45/020/+u5]j. The overall length of the panel is 30 in., the overall width is
11.5 in., stiffener spacing is 4.5 in., stiffener height is 1.4 in., and the hole
diameter is 2 in. The loading is uniform axial compression. The locaded ends of
the panel are clamped and the sides are free. ’

This problem was selected as the focus problem because experimental results
are available and because it has characteristics which often require a local/global
analysis. These characteristics include a discontinuity, eccentric loading, large
displacements, large stress gradients, high inplane loading, and a brittle material
system. This problem represents a generic class of laminated composite structures
with discontinuities in which the interlaminar stress state becomes important.

Graphite—epoxy (T300/5208)

Flat panel with three blade stiffeners
30 in. long

11.5 in. wide

Stiffener spacing of 4.5 in.
Stiffener height of 1.4 in.
2.0-in.~diameter hole
25-ply panel sKin

24-ply blade stiffeners
Axially loaded with loaded ends clamped and sides free
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LOCAL/GLOBAL TERMINOLOGY

The definition of a local/global structural analysis is not precise., For
example, several levels of detail are considered in the analysis of an aircraft
structure, and the concepts of local and global can change with every change in
analysis level. To some, the entire aircraft is the global model, and a fuselage
section is the local model., To others, lamination theory represents the global
model, and micromechanics is used for the local model. For this workshop, a
local/global analysis is a local, detailed stress analysis within a larger, less-
refined global analysis model. The overall response of the panel is the global
problem; the response near the hole is the local problem.

Current areas of research associated with local/global methodologies are
described in the literature (e.g., refs. 4 and 5). One research area
(discretization procedures) includes finite-element methods, finite-difference
methods, and boundary element or boundary integral methods. Adaptive mesh
refinement, h- and p-convergence, and error analysis are current research topics in
this area which address discretization effects in the presence of a large stress
gradient. A second area (refined theories) includes research in transverse shear
formulations and three-dimensional elasticity solutions. These topics focus on the
mathematical representation of the mechanics of the problem. A third area includes
classical and closed-form solutions which are often restricted to simple
geometries, specific boundary conditions and material systems, and often to a
linear response prediction. A fourth area is hybrid techniques in which two or
more methods are used simultaneously but in different domains of the structure.

All four of these areas of research are addressed in the local/global session of
this workshop.

® Concept of local/global changes with analysis level

® Definitions

—-—— Global means overall panel response

——— Local means response near the hole

® Local/global methodologies

——— Discretization procedures
——— Refined theories
——— Classical and closed-form solutions

——— Hybrid techniques
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APPLICATION OF THE FINITE-ELEMENT METHOD
TO LOCAL/GLOBAL STRESS ANALYSIS

The local/global methodology adopted for this paper is the finite-element
method because of its generality. The first step in applying the method was to
develop and verify a finite-elemént model of the focus problem. Model verification
involved solving simpler example cases and comparing the results with other
analytical results. This model verification process was aided by the development
of a flexible mesh generation capability which allowed various finite-element
discretizations to be evaluated rapidly and systematically. The mesh generation
capability also provided an easy way to construct and study several idealized
example cases.

Once an adequate finite-element model for the global response was verified,
the nonlinear structural response was calculated. To identify the local modeling
detail required to predict accurately the stress distribution near the hole, linear
stress analyses were performed on a rectangular plate with a circular hole using
several refined 2-D models near the hole,

e Finite-element model development

e Finite-element model verification

e Global nonlinear response prediction

® Local linear stress analysis
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FINITE-ELEMENT MODEL DEVELOPMENT

The model development strategy is to predict the global nonlinear response
using the complete model and then to construct a refined, local 2-D model for a
small distance away from the hole to predict accurately the large stress gradient.
Displacements and rotations from the global nonlinear solution obtained using the’
complete model will be applied to the refined model and the state of stress will be
determined. This strategy will be referred to as a multi-level or "zoom-in"
approach,

The automated mesh generation capability allowed versatile modeling of the
complete problem as well as local regions near the hole. The analyst could specify
the number of elements across the stiffener depth and déwn the length of the panel,
the number of rings of elements around the hole, and the number of elements around the
hole, and could control the element spacing in the vicinity of the hole. Models could
also be generated with the hole and discontinuous stiffener filled-in or with no
stiffeners.

Complete global model

Global model
of panel skin

Global model

of hole region Local model

of hole region
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FINITE-ELEMENT MODEL VERIFICATION:
BLADE STIFFENED PANEL

In the first step of the verification process, a simplified version of the
focus problem was studied. This simpler problem was identical to the focus problem
except that the hole and discontinuous stiffener are filled-in and the end boundary
conditions are now simple support conditions. For this prismatic panel, an exact
solution was obtained using the PASCO computer code (Panel Analysis and Sizing
COde, ref. 6). The finite-element analysis system EAL (Engineering Analysis
Language, ref. 7) was used for the finite-element analysis. The finite-element
model used in the verification was developed from that of the focus problem to
determine if any problems related to element distortion or aspect ratio were
present. The prebuckling boundary conditions and end loading are such that a
uniform stress state is present in the skin and the blade stiffeners. The three
lowest buckling eigenvalues obtained using EAL are very close to the PASCO
solutions.

Buckling mode

Eigenvalues

1 2 3
PASCO 44536 51063 61601
EAL 44652 51182 60975

Difference +0.26% +0.23% -1.02%
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FINITE-ELEMENT MODEL VERIFICATION:
FOCUS PROBLEM

The next step of the verification process was to define an adequate finite-
element model for the global response of the focus problem. Finite-element model
verification for the focus problem started with a "reasonable grid" of 376 4-node
assumed-stress quadrilateral elements and 422 nodes. This discretization is
referred to as Mesh 1. A second, refined grid of 1088 U4-node quadrilateral
elements and 1168 nodes (Mesh 2) was generated for model verification. Linear
bifurcation bu¢kling solutions for Mesh 1 and Mesh 2 were compared to establish the
adequacy of the models. The three lowest eigenvalues from both discretizations
agree within approximately one percent.

Mesh 1 Mesh 2
376 elements 1088 elements .
422 nodes . 1168 nodes
N

Eigenvalues
1 2 3 4
Mesh 1 41378 52754 54288 55344
Mesh 2 41829 52533 54259 56895
Change -1.08% +0.42% +0.05% -2.73%
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LINEAR BIFURCATION BUCKLING SOLUTION

Oblique views of the prebuckling deformation pattern and the eigenmodes

corresponding to the four lowest eigenvalues are shown in this figure.

The

discontinuous stiffener leads to an eccentric loading condition which causes large

out-of-plane displacements to develop near the hole from the onset of loading.

Because of this coupling between inplane and out-of-plane displacements, no linear

equilibrium path exists and the linear bifurcation buckling results do not have the

The linear buckling solutions may be used as a guide in

selecting the initial load for the nonlinear analysis and in choosing a load step

traditional meaning.

However, their main use is in studying the effects of spatial

discretization.

size.

ion pattern

Linear prebuckling deformat

58



GLOBAL NONLINEAR RESPONSE PREDICTION

The global nonlinear response predicted for the focus problem was obtained
using a new release of EAL. This new release has a nonlinear analysis capability
using a corotational formulation with linear strain-displacement relations within
the elements. For this problem, the loading was applied in increments with a full
Newton-Raphson algorithm. Convergence was based on the maximum error in the
residual force vector.

An oblique view of the deformed geometry for the last calculated solution is
similar to the linear solution shown previously, indicating that the primary
equilibrium path is being followed. A global response quantity, end shortening, is
nearly a linear function of the applied load. A local response quantity, out-of-
plane displacement at the edge of the hole and blade stiffener, indicates large
displacements from the onset of loading. Longitudinal inplane stress-resultant
distributions for two values of the applied load, as a function of distance from
the hole, indicate high inplane stresses and a high stress gradient near the hole.

These high inplane stresses and stress gradients coupled with the large out-
of-plane displacements and the free edge of the hole may cause material
nonlinearities, local failures, and/or delaminations to develop in order to provide
local stress relief mechanisms (like plasticity in metal structures) near the hole
and blade stiffener. However, an accurate prediction of the effects of these
mechanisms on the global nonlinear response is beyond the current analysis
capabilities. Stress fracture criteria are developed in reference 8 for an inplane
loading condition in which the influence of these stress relief mechanisms can be
accounted for in failure studies without knowing exactly what is happening locally
near the hole. The point stress failure criterion developed in reference 8 and
applied in reference 9 to a broad class of laminated composite plates with holes
will be used in this study as a guide for establishing an adequate finite-element
model for predicting the stress distributions near the hole.

Out-of-plane
End shortening "—_’T displacement
50 u 50~
//
7 Y|
/ZLoad B | |
Load A
25} _\ 25+
P P
(KIPS) --- Extension of (KIPS)
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GLOBAL NONLINEAR RESPONSE PREDICTION
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POINT STRESS FAILURE CRITERION

The point stress failure criterion assumes that failure occurs when the stress
at a distance d, away from the edge of the hole reaches ultimate. The distance d,
is a characteristic dimension which takes the form of a material property. A
consequence of using this criterion is that an accurate prediction of the state of
stress precisely at the free edge of the hole is not required. It is only
necessary to have an accurate stress prediction at a distance 'd, from the edge of
the hole. Based on results of reference 9 with a similar graphite-epoxy material
system, a value of d, = 0.05 inches was assumed. Model A corresponds to the global
model near the hole for Mesh 1. Model B is a refined model which more accurately
predicts the stress gradient near the hole.

Assumed value of
|<* do is 0.05 in.
do

Model A Model B
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LOCAL LINEAR STRESS ANALYSIS

To understand how the spatial discretization near the hole affects the
prediction of the stress at d,, a simpler structural configuration was considered
which did not include the stiffeners. Using this planar structure, an adequate 2-D
finite-element model was identified for the local stress analysis. This approach
provided the necessary insight required for a multi-level model of the focus
problem. An alternate approach would have been to use an adaptive mesh refinement
procedure. However, no such procedure was available. The longitudinal inplane
stress resultant distributions as a function of distance away from the edge of the
hole are shown for two finite-element models. The results from both models
approach one another away from the hole. However, at a distance d, from the edge
of the hole, the solutions for Models A and B differ by 12.5 percent. The finite~
element model in the vicinity of the hole was refined by doubling the number of
elements. The inplane stress resultant at d, changed by only 2.2 percent between
Model B and a model with half as many elements.
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STATUS AND ADDITIONAL TASKS

The overall strategy for this study is to predict the global nonlinear
response using the complete global model and then to construct a refined, local 2-D
model for a small distance away from the hole. The global nonlinear response has
been predicted for the focus problem and the local modeling detail required for an
accurate local stress analysis near the hole of an unstiffened panel has been
identified. The tasks that remain to be completed for the focus problem include
performing the multi-level analysis and applying a failure criterion. The multi-
level analysis will involve applying the displacements and rotations from the
global nonlinear solution on the refined local 2-D model and determining the state
of stress at d,. In addition, a three-dimensional model near the discontinuity
will be required for an accurate determination of the through-the-thickness state
of stress (i.e., normal and transverse shearing stress distributions). The use of
3-D elements within a 2-D model will also require a strategy for the transition or
blending of the two models.

Status

® Finite element model developed and verified
e Global nonlinear response predicted

® Required modeling detail identified for stress gradient
near the hole for an unstiffened panel

Additional tasks for focus problem

e Perform multi-level 2-D analysis (refined, local 2-D model)

® Apply point stress failure criterion

® Perform multi-level 3—-D analysis (refined, local 3—-D model)
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SUMMARY

The local/global nonlinear stress analysis of a blade-stiffened graphite-epoxy
panel with a discontinuous stiffener is indeed a computational challenge.
Substantial engineering effort is required in modeling the structure, in verifying
that the physics of the problem are modeled, and in interpreting the predicted
nonlinear solutions. Approximately fifty percent of the analysis effort to date was
devoted to model development and verification., The development of a flexible mesh
generation capability was essential for model verification. Several models of
similar but simpler structures were required and easily generated using the
automated mesh generator.

To complete the analysis effort for the focus problem several issues need to be
addressed. The transition or interface between the various levels of the multi-
level model needs to be defined. An adaptive mesh refinement procedure is needed
to automate the definition of the finite-element models at each stage of the multi-
level approach. To obtain a detailed through-the-thickness stress distribution, a
three-dimensional analysis will be required and the number of three-D elements through-
the-thickness of the laminate needs to be determined. In addition, to predict the
response of the structure up to overall structural failure, a progressive failure
analysis capability would be required in which various failure mechanism and

failure criteria are incorporated.

® Substantial engineering effort required in modeling,
model verification, and response interpretation.

e Flexible mesh generation capability essential to model
verification.

e Definition of transition/interface region between
multi-level models required.

e Required number of 3-D elements through—the—thickness
to be determined.

e Nonlinear analysis procedure with progressive failure
analysis capability needed.
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COMPUTATIONAL PROCEDURES FOR
POSTBUCKLING OF COMPOSITE SHELLS

G. M. Stanley and C. A. Felippa
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Palo Alto, California

SUMMARY

A recently developed finite-element capability for general nonlinear shell analysis, fea-
turing the use of three-dimensional constitutive equations within an efficient resultant-
oriented framework, is employed to simulate the postbuckling response of an axially
compressed composite cylindrical panel with a circular cutout. The problem is a
generic example of modern composite aircraft components for which postbuckling
strength (i.e., fail-safety) is desired in the presence of local discontinuities such as
holes and cracked stiffeners. While the computational software does a reasonable
Job of predicting both the buckling load and the qualitative aspects of postbuckling
(compared both with experiment and another code) there are some discrepancies due
to (1) uncertainties in the nominal layer material properties, (2) structural sensitivity
to initial imperfections, and (3) the neglect of dynamic and local material delamina-
tion effects in the numerical model. Corresponding refinements are suggested for the
realistic continuation of this type of analysis.

§1. INTRODUCTION

Advanced composite materials, due to their superior strength-to-weight ratios
and stiffness tailorability, have become key ingredients in the design of modern
aerospace vehicles. However, the complex structural response associated with such
materials coupled with the intricacy of their fabrication creates harsh requirements
for numerical simulation.

Specifically, a problem that is of current interest to NASA/LaRC is the determina-
tion of the postbuckling strength of thin laminated composite shells comprising
the “skin” of stiffened air-transport fuselages [1]. These shells are required to
maintain safe load-carrying capability substantially beyond the point at which
skin buckling (i.e., wrinkling) occurs. To complicate matters, aircraft fuselages
typically feature local discontinuites, such as fasteners, stiffeners and cutouts,
which can induce high local stress gradients that tend to delaminate the compos-
ite material. In the presence of buckling, these local delaminations can propagate
throughout — and hence fail — a composite structure.

It is NASA’s ultimate goal to be able to predict such phenomena analytically.
To this end, they have asked us to match some experimental data obtained for a
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representative test specimen [1].* We have completed the first phase of the global
analysis, which is described in the following sections. It employs a recently devel-
oped finite-element shell analysis capability, featuring the use of three-dimensional
constitutive equations within an efficient resultant-oriented framework, to deter-
mine the buckling load and explore the postbuckling regime of an elastically in-tact
composite model. The more ambitious global/local analysis, which involves the
prediction of local material delamination and its interaction with global structural

response to determine postbuckling strength, is still in the planning phase.

§2. PROBLEM DESCRIPTION
§2.1 Setup

The focal problem mentioned above is depicted in Figure 1. Shown is a moder-
ately deep (55.6 deg) cylindrical panel with a circular cutout. The panel has a
14 in. square planform, a 15 in. radius of curvature and a radius-to-thickness ratio
of 150. The hole is centrally located and measures 2 in. in diameter. The compos-

ite shell wall consists of 16 layers of unidirectional graphite fibers in epoxy-resin.
Each layer is .0056 in. thick (for a total of .086 in.) and the layers are arranged
in the symmetric, quasi-isotropic** stacking sequence: {1+45/90/0/0/90/ ¥ 45}
degrees — repeated twice. The orthotropic-elastic material properties for each
layer are listed in the figure. Note that these properties represent nominal values
and will require some adjustment in the sequel (see §5).

Surrounded by a metallic test frame, the appropriate boundary conditions for the
cylindrical panel are (i) fully clamped on the bottom edge, (ii) clamped except for

axial motion on the top edge and (iii) simply supported on the vertical edges.

§2.2 Experimental Results

The test conducted by NASA consisted of statically imposing a uniform end-
shortening, 6, to determine the load-carrying capability of the panel beyond the

initial buckling load. Experimental results are shown in Figure 2.

Figure 2a represents a normalized “load versus end-shortening” curve. Note that

buckling occurs abruptly, followed by a rapid drop in the axial load. Somewhere

* This problem was first suggested by Dr. Norman F. Knight, Jr. at NASA Langley
Research Center. We amusingly refer to it as “Knight’s problem” both as an ac-
knowledgment to the originator and as a reminder of the many pitfalls obstructing
its numerical solution.

** The term quasi-istropic refers to the fact that the resultant constitutive matrix is es-

sentially isotropic, due to a balanced sequence of fiber angles through the thickness.
However, in contrast to truly isotropic materials, there is some additional coupling
between bending and twisting deformations.



between the top and bottom of this vertical branch, which spans a period of mill:-
seconds in the experiment, delamination occurs near the hole (Fig. 2b). Although
the delamination gets progressively worse and eventually distorts the hole, there
is a secondary (postbuckling) stiffening branch in the load/displacement curve.
The test was stopped at the point on this secondary branch labeled “collapse”, at

which point extensive delamination is evident (see |1] for details).

§3. COMPUTATIONAL APPROACH
§3.1 Formulation

The formulation of the governing equations and associated solution algorithms
used to analyze the above problem is outlined in Figure 3. A detailed description
of this approach may be found in {2|. Briefly, it employs continuum-based (CB)
shell elements, similar to the Ahmad element [3], but extended to the nonlinear
regime and reduced to an economical resultant form in which element stiffness and

force operators are pre-integrated through the thickness.

Shell Equations

Thickness pre-integration of the CB shell equations is achieved by augmenting the
standard, Mindlin-type [4] hypotheses of straight normals and zero normal stress
with two additional hypotheses, namely: small transverse-shear strains and maild
taper. As argued in [2], these additional hypotheses do not significantly alter the
range of applicability of the original formulation. The resulting theory, which is
expressed in terms of stress-resultants rather than pointwise (continuum) stresses,

is referred to as a continuum-based resultant (CBR) shell formulation.

Note that unlike earlier efforts to pre-integrate the CB shell equations, which typi-
cally assume a constant through-thickness variation of the surface metric (e.g., [5]),
the present CBR formulation bypasses this assumption and hence is not restricted
to very thin shells.

Shell Elements

To spatially discretize the CBR shell equations, a variety of shell finite elements
have been implemented within the above framework. However, on the basis of the
numerical evaluation conducted in [2], only the following two shell elements were
considered for the present analysis: (i) the nine-node Heterosis (HET) element [6],
and (ii) a new nine-node assumed natural strain (ANS) shell-element [7]. While
both elements are parabolically curved (Fig. 3) and use standard isoparametric
interpolation as a starting point, each departs from the basic recipe in order to

properly represent inextensional bending deformation for thin shells.
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In particular, the 9 HET element selectively under-integrates all stiffness and force
terms involving membrane strains to avoid membrane “locking”, and uses a mix-
ture of Lagrange shape functions (for rotations) and Serendipity shape functions

(for translations) to avoid “spurious modes” otherwise evoked by reduced integra-
tion.

In contrast, the 9_ANS element assumes an appropriate (inextensionally accurate)
strain field from the outset, using a modified set of Lagrange shape functions and
employing full numerical integration throughout. Due to the fact that the strains
are assumed in the generally non-orthogonal isoparametric coordinate basis, an
apparent advantage of the ANS approach is its decreased sensitivity to element
mesh distortion.

Nonlinear Solution Procedures

After performing an updated-Lagrange linearization of the equilibrium equations,
a modified Newton-Raphson (NR) version of the Riks-Crisfield (RC) arc-length
control algorithm |[8] is used to trace incrementally the load-displacement curve.
The RC procedure was adopted as a convenient means of statically traversing the
bifurcation points that arise in shell postbuckling analysis. However, such methods
are not foolproof, and special attention by the analyst (e.g., in the selection of
imperfections, step-sizes and error tolerances) is often required in the vicinity of

closely spaced or multiple bifurcation points.

Two kinds of update procedure are required to advance the solution of the discrete
nonlinear shell equations from one load-step to the next: (i) a kinematic update
that “accumulates” incremental nodal displacement — both translational and ro-
tational components; and (ii) a constitutive update that generates new element

stresses from the corresponding displacement field.

Only the rotational part of the kinematic update is non-trivial.* In the present
approach, the rotation increments are used to update orthogonal triads defined at
each shell node. The triad-update algorithm involves no trigonometric functions,
maintains orthogonality at each step and provides a shell-oriented coordinate sys-
tem in which the normal rotational degree of freedom may be eliminated at all shell
nodes (except at junctures). Furthermore, once the nodal triads and reference-
surface coordinates have been so updated, the current element configuration is
completely and uniquely defined (see [2] and [9] for details).

The stress update is handled via an incrementally objective algorithm [10] that

* Since the translational components of displacement are vectorial, translation incre-

ments are simply added to obtain total displacements and hence update the nodal
coordinates.



features a midpoint-rule numerical integration of rate-type constitutive equations.
For finite-strain analysis, the constitutive algorithm additionally involves shell
thickness updates that account for large Poisson effects. These are computed (as
in [11]) by recovering the normal strain increments from the constitutive equations
via the zero normal stress (ZNS) hypothesis.

Summary of Computational Features

The computational features of the above approach may be summarized as follows:

e Applicable to Both Thin and Moderately Thick Shells
¢ Rotations May Be Arbitrarily Large

e Strains May Be Large ( Except Transverse Shears )

e Resultant Format Yields | Cost Savings o Number of Layers

o Shell Elements Are Fairly Robust
— No Locking
— No Spurious Mechanisms

— Low Sensitivity to Mesh Distortion (Especially ANS Elements)

Finally, note that while the formulation allows for finite strains and inelastic ma-
terial behavior, the present analysis simply employs orthotropic linear-elasticity
within each layer and does not account for the material delamination (z.e., dam-
age) observed in the NASA experiment.

§3.2 Implementation (NICE Software Architecture)

The shell-element capabilities mentioned above have been implemented in a mod-
ular fashion to facilitate research and transferral to other finite element codes.
Some of the specific shell-element functions that are available via independent
FORTRANT77 subroutine calls are shown in Figure 4a. A complete description of
the shell-element software (including listings) is given in Appendix S of reference
12].

The host finite-element program used by the authors is actually a network of in-
dependently executable programs (or processors) which are coordinated via high-
level procedures written in a mathematically oriented command-language (Fig.
4b). In such an environment, the shell-element software is embedded in a sin-

gle processor and the global solution algorithms are implemented as procedures;
examples are given in [12].
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The software architecture (i.e., utilities) used to construct this particular analysis
system is known as NICE (for Network of Interactive Computational Elements,
[12,13]). Due to the flexibility provided by the NICE architecture and its suitability
for nonlinear and coupled-field problems, it is currently being explored by NASA
as the basis for a standard generic testbed system for Computational Structural
Mechanics (sce [14] and other presentations therein). One of the motivating factors
for developing such a system is the implementational complexity associated with

a comprehensive global/local analysis of the present composite-shell problem.

§4. FINITE-ELEMENT MODELS

Due to the physics of the problem, a full numerical model of the test specimen is
required (Fig. 5). The slight anisotropy emanating from the composite material
stacking sequence is only partly responsible for the lack of available symmetry.*
As will become apparent, the nonlinear postbuckling response is inherently non-
symmetric due to the presence of the hole and the participation of many diverse

mode shapes.

Several combinations of shell-element type and mesh density were employed during
the course of the linear (pre-buckling), stability (buckling eigenvalue) and nonlin-
ear (postbuckling) analyses. Figure 5 shows three representative grids, involving
300, 1500 and 5000 degrees-of-freedom, respectively. These grids correspond to
16, 80 and 256 nine-node elements (or alternatively to 64, 320 and 1024 four-node
elements), respectively. Note that there is intrinsic element mesh-distortion in
these models — both in-plane and out-of-plane — due to the focus on the hole
and the curvature of the shell. However, the elements nearest the hole (where it

counts most) have the most regular shapes.

The coarsest grid (1) was used to verify the modeling procedure, the finest grid
(3) was used exclusively to check convergence of the linear and eigen solutions,
and the intermediate grid (2) became the workhorse for nonlinear analysis. Fur-
thermore, as little difference was observed between the 9_HET and 9.ANS elements
(§3.1) during the early stages of analysis, the 9. HET element (which is slightly less
expensive) is featured in the analytical results that follow.

Boundary conditions were imposed as described in Section 2 and illustrated in
Figure 5. To simulate end-shortening, an axial force was applied in conjunction
with a degree-of-freedom equivalence among all axial displacements on the loaded
edge. This was done to avoid the use of specified displacements, which tend to

complicate the adaptive, arc-length-based nonlinear solution algorithm.

* We have confirmed this via numerical experiments with an isotropic model.



§5. LINEAR (PRE-BUCKLING) ANALYSIS

Results for the linear pre-buckling analysis are shown in Figure 6. The defor-
mations due to an applied axial compressive load of 22480 lbs (1 kN) are shown
magnified by a factor of 10 in the top half of the figure — for grid 2. The corre-
sponding distribution of the axial stress resultant, N, along the panel circumfer-
ence at mid-span is shown in the bottom half of the figure — for both grids 2 and
3.

Regarding the displacement solution, convergence of the axial end-shortening,
6, was achieved with grid 2. (Grid 3 yielded less than a 1% increase in end-
shortening.) However, the converged end-shortening solution, § = .0316, is ap-
proximately 15% lower than the experimental value; as deduced from the linear
portion of the experimental load-displacement curve (Fig. 2). 1t is presumed that
this over-estimation of the axial stiffness is due to the uncertainty in the nominal
material properties, a conclusion that is reinforced in §8. Thus, to compensate
for the mismatch, the lamina principle elastic modulus (E;) is reduced by a cor-

responding factor in the subsequent nonlinear analysis (§7).

From a qualitative perspective, the solution shows substantial bending deformation
in the vicinity of the hole (Fig. 6a). This suggests that geometric nonlinearity
may be important even at relatively low load levels and diminishes the credibility

of linear response and buckling-eigenvalue analyses.

Regarding the linear stress solution, note that the compressive axial resultant,
N, is distributed evenly along most of the panel circumference except for a very
localized region near the hole. While grid 2 was adequate for the displacement
solution, grid 3 provides much more accurate resolution of this stress concentration.

In particular, grid 2 yielded a peak stress concentration factor (SCF) of 2.8; about
14% less than the SCF obtained with grid 3.

As experimental data were not available for verification of the computed stresses,
the convergence of the grid 3 stress solution was inferred by comparison with
a closed-form (asymptotic) solution due to C.R. Steele (private communication,
Stanford University, 1985). While the closed-form solution pertained to a purely
1sotropic panel, the linear finite-element stress solutions for isotropic and quasi-
isotropic panels were found to be quite similar. It is also interesting that the SCF's
for both the isotropic model (3.1) and the quasi-isotropic model (3.25) are not
very different from the classical SCF for a flat plate with a circular hole (3.0).

Finally, note that by strongly biasing the mesh towards the hole, it was possible
to obtain grid-3 accuracy with grid 2 for the local stress gradients. Such biasing,
however, was found to be unnecessary in the subsequent, globally oriented buckling

and postbuckling analyses.
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§6. STABILITY (BUCKLING) ANALYSIS

Figure 7 shows the first 5 buckling eigenmodes for grid 2. These results represent
perturbations about the linear pre-buckling solution described. The eigenvalues,
A = 1.084,1.106,1.181,1.432,1.582, are the ratios of the corresponding buckling
loads to the axial load applied in the linear pre-buckling analysis. As before, grid
2 seems to provide adequate resolution, with grid 3 giving only a 2% reduction in

the first two eigenvalues, and a 4% reduction in the remaining three.

The following observations are important for subsequent computational purposes:
(i) the eigenvalues are closely spaced; (ii) the eigenmodes are vastly different in
character; (iii) there is no single form of symmetry to be exploited computation-
ally; (iv) the first buckling mode is symmetric and bears the most resemblance
to the linear pre-buckling solution; (iv) the second and third modes possess skew
symmetries; (v) the fourth and fifth modes are symmetric; the latter mode fea-
turing practically no distortion of the circular hole; and (vi) higher modes (not
shown) look much like those for a cylindrical panel without a hole, though the
values remain closely spaced.

Finally, it was found that the first (¢.e., critical) buckling load is approximately
25% lower than that of an identical cylindrical panel without a hole. Hence, while
the influence of the hole on the buckling load is only moderate (i.e., relative to the
stress concentration factor), its influence on the buckling modes is profound. As

we shall see, the hole has an even stronger influence on the pdstbuckling response.

§7. NONLINEAR (POSTBUCKLING) ANALYSIS

In practice, more than just a linearly converged model and an adaptive solution
strategy were necessary to obtain a reasonable nonlinear solution. One additional
pre-requisite was a 15% reduction in the nominal elastic modulus, E; (from 19.6 x
10° to 17.1 x 10%), to match the linear branch of the load versus end-shortening
curve (as explained in §5). Another important ingredient was the specification of
initial imperfections. In this regard, three versions of the analysis were run: (1)
one involving no imperfections; (2) one with an imperfection amplitude of 1% of
the thickness applied to each of the first 4 buckling modes (see Fig. 7); and (3)
one with an imperfection amplitude of 10% of the thickness applied to each of the

first 4 buckling modes. A discussion of the results for these three cases follows.
§7.1 No Imperfections

One would think that the out-of-plane “imperfections” introduced by the linear
pre-buckling solution (Fig. 6) would be sufficient to trigger a realistic buckling
response. However, this was not the case. With no imperfections, the computed

solution path resembled the experiment only up to the descending part of the



load-displacement curve (Fig. 8a). The computed curve then rolled back onto
itself with the stiffening branch of the postbuckling curve practically aligned with
the pre-buckling curve.

To gain further insight, it is useful to look at the deformation and stress histories
portrayed in Figure 8b. Shown is a sequence of computational “snapshots” taken
at various points (i.e., load steps) on the nonlinear load-displacement curve.* The
variation of the axial stress resultant along the mid-span circumference is plotted

below each frame.

Note that the deformation starts out (at load step.10) much like the first linear
buckling mode (Fig. 7), with inward dimples both fore and aft of the hole, then
articulates through the second and third modes during the initial postbuckling
phase (steps 15-20). This rotation of the two dimples about the hole is probably
triggered by the bending/twisting coupling inherent in the composite stacking
sequence. The dimples continue to rotate and broaden until, at step 40, the
pattern begins to resemble the fifth linear buckling mode. Evidently, it is this
“locking” into mode 5 that is responsible for the excessive secondary stiffening
in the load-displacement curve (Fig. 8a). Clearly, mode 5 is an unrealistically
stiff one, resembling what might occur if a ring stiffener had been placed around
the hole. This is also evident in the axial stress distribution, where the stress

concentration has practically been shed by step 40.
§7.2 Large Imperfections

To avoid the unrealistic mode-5 locking observed in the preceding analysis, a fairly
large initial imperfection was introduced in the numerical model. This was accom-
plished by adding an equal measure of each of the first 4 buckling modes to the
initial geometry, such that the maximum radial (i.e., shell-normal) displacement
in each mode was equal to 10% of the panel thickness. Thus, the magnitude of
the combined radial imperfection approached 40% of the thickness at some points.
It is emphasized that this rather arbitrary choice of imperfections was designed

primarily to minimize the influence of mode 5.

The computed nonlinear response for the imperfect panel is shown in Figure 9.
Note that the secondary stiffening branch bears more resemblance to the exper-
iment than did the imperfection-less analysis. Unfortunately, it is also true that
the buckling (:.e., peak) load has dropped by about 15%, and now underestimates
the ezperimental buckling load by more than 20%. A heuristic explanation is

* Note that the pre-buckling phase of the analysis appears linear with respect to the
arial displacement, §. However, due to the rapid growth in radial displacements
(not shown), the analysis is actually quite nonlinear from the outset; which explains
the relatively large number of load-steps required on the “linear” branch of Fig. 8.
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provided by considering the deformation and stress histories.

In Figure 9b, we see that with the 10%-h imperfections, the buckling pattern leaves
mode 1 almost immediately and develops an intensified inward dimple on one side
of the panel. Consequently, the full axial load is re-distributed to the other side
of the panel (see N, plots in Fig. 9b), accounting for the reduction in both the
buckling load and the postbuckling stiffness (fig. 9a).

§7.3 Small Imperfections (the “Bottom Line”)

Finally, the “best of both worlds” was obtained with a 1%-h imperfection in each
of the first 4 modes. Compared with the previous analysis, the computed load-
displacement curve (Fig. 10) shows both an increase in the maximum load and
a decrease in the minimum load, thus bringing the solution more in line with
experiment.

The improved performance, obtained by reducing the imperfections, may again
be related to the deformation history (Fig. 10b). Here, as in the case without
imperfections, two inward dimples develop and proceed to rotate about the hole.
Just after buckling, however, one dimple tends to deepen while the other dimin-
ishes, and eventually there is a double snap-through. This accounts for the double
dip in the load-displacement curve (Fig. 10a) and seems to explain why a lower
minimum load is obtained with the smaller imperfection.

Still, there are some serious descrepancies between analysis and experiment,
namely: (i) a 7% under-estimation of the buckling load, (ii) a 25% over-estimation
of the minimum load, (iii) a 30% under-estimation of the postbuckling end-

shortening, and (iv) a 10% over-estimation in the postbuckling stiffness. These
will be addressed in §9.

§8. CORROBORATION WITH ANOTHER CODE

To support the above results, obtained via the computational procedures described
in Section 3, parallel analyses were performed with another finite-element com-
puter code. For this purpose, we employed the STAGS code [15], which has been
used for more than a decade by varous government agencies and industrial firms
(e.g., NASA and Lockheed) to analyze difficult nonlinear shell problems. Another
reason for using STAGS is that it features finite-element computational proce-
dures that are substantially different from those used in the present approach,

thus adding strength to an analytical comparison.

For the linear (pre-buckling and buckling) analysis, excellent agreement was ob-
tained between the STAGS and NICE-based solutions. For completeness, the
STAGS runs were performed with two radically different shell-element types, which
both converged to the same solution as the NICE/9_HET element, albeit at slower



rates and from below in stiffness. (Note that while the axial pre-buckling stiffness
of the STAGS elements converged from below, the buckling loads converged from
above).

In particular, the comparison included: (i) the commonly used STAGS/410 el-
ement — a flat quadrilateral plate element based on Kirchhoff-Love theory and
cubic membrane/bending displacement interpolation; and (ii) the less frequently
used STAGS/422 element — a quadrilateral composed of two Kirchhoff-based tri-
angular plate sub-elements with cubic bending interpolation and quadratic mem-
brane interpolation. It is believed that the relatively slow convergence “from
below” of the STAGS /410 element is due to warping sensitivity, while that of the
STAGS/422 element is probably due to the incompatibility between membrane

and bending displacement fields for non-flat quadrilateral element shapes.*

For the nonlinear comparisons with NICE/9_HET, the STAGS/410 element was
used exclusively. The resulting load-displacement curves (for 1%-h and 10%-h
imperfections) are summarized in Figure 11. The dashed curves represent the
NICE/9 HET solutions and the dotted curves represent the STAGS /410 solutions;
both were obtained with Grid 2 (Fig. 5).

Note that although the STAGS and NICE-based solutions use different finite-
element types, large-rotation update procedures and nonlinear solution strategies,
the correlation is remarkable - especially during the postbuckling phase. Even
the STAGS zero-imperfection analysis (not shown) resulted in the same exces-
sive postbuckling stiffness as displayed in Figure 8a. One other point: While
the STAGS/410 element consistently shows about a 5% higher buckling load
than the NICE/9 HET element, thus coming closer to the experimental peak;
STAGS/410 is actually less accurate -- with respect to discretization errors
— than NICE/9 HET. This follows from the fact that both STAGS/410 and
NICE/9_HET converge from above in the buckling load. This was confirmed by
running the NICE/9 HET element with a coarser grid, for which it too showed a
5% higher peak. That non-converged solutions compare better with experiment
than converged ones suggests that spatial discretization is not the only source of
error here (e.g., see §9).

* It is interesting to note that the STAGS/422 element was used in the related study
conducted in 1], where it yielded a 17% more flexible linear solution, and thus agreed
better with the linear portion of the experiment. Nevertheless, it has since been
found that the boundary conditions were not consistently applied to the element’s
mid-side freedoms in that analysis. By correcting this implementation error, the
17% discrepancy with the other elements has been completely eliminated. Thus, it
appears that the “accuracy” obtained in [1] with the STAGS/422 element is due to
compensating errors in the nominal material properties.
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§9. CONCLUSIONS
§9.1 Summary

The present study may be summarized as follows:

e PURPOSE:

— Validate continuum-based resultant (CBR) shell formulation

— Evaluate new shell elements

— Gain experience with composite-shell postbuckling analysis
e RESULTS:

— Good agreement in pre-buckling/buckling range

— Good gqualitative agreement in postbuckling range

— Discrepancies due to:

—— Material properties

—— Imperfection sensitivity

—— Dynamic effects

—— Delamination

The “good” agreement obtained between the present shell-element formulation
and experiment in the pre-buckling and buckling range was possible only after
adjusting the nominal material properties so that the linear axial stiffnesses coa-
lesced. The material-property modification was further justified via corroboration
with the STAGS finite-element code, which features a substantially different com-
putational approach.

The “best” solution for the nonlinear response was obtained by introducing small
(1%-thickness) imperfections corresponding to each of the first four buckling
modes. The computed load-displacement curve (Fig. 10a), which again compared
well with STAGS (Fig. 11), still showed major discrepancies with the experi-
ment: The discrepancy in the buckling load (which is relatively small) may be
due to the inadequacy of adjusting only the principal layer elastic modulus, E;,
rather than the complete set of orthotropic material constants. The discrepancy in
the unloading phase of postbuckling (i.e., the computed end-shortening reversal)
is attributed to the quasi-static approximation of what is, in reality, a dynamic
phenomenon. Finally, the discrepancy in the stiffening phase of postbuckling is
clearly dominated by damage, 1.e., delamination observed in the experiment but
not represented in the model.



§9.2 Recommendations

The goal is to eliminate the discrepancies listed with a minimum of computational

cost and complexity. To this end, the following steps are recommended:

1) PERFORM ADDITIONAL EXPERIMENTS. First, more experimental data
are required to verify existing computational capabilities for composite shell post-
buckling. For example, panel imperfections should be carefully measured and
selected strains and overall deformation patterns should be monitored at frequent
intervals. Additionally, an isotropic panel should be tested in order to eliminate
the material identification problem and also to provide a standard benchmark for
shell-element evaluation. The isotropic problem would be valuable for screening
out geometrically sensitive elements.

2) REFINE NONLINEAR GRID. The nonlinear analysis should be repeated
with a finer grid (e.g., Grid 3), as convergence in the linear regime is no guarantee
of convergence in the nonlinear regime. Moreover, a study of modal participa-
tion both in the imperfections and in the nonlinear response may help establish

modeling guidelines for future analysis.

3) INCLUDE DYNAMIC EFFECTS. Dynamic effects, which are relatively
straightforward to incorporate, should be assessed at the first opportunity. The
analysis could be started in a quasi-static mode, switched to an ezxplicit transient
response algorithm during the unstable phase, and switched again to an implicit

algorithm during the stable postbuckling phase.

4) REPRESENT LOCAL FAILURE (DELAMINATION). To account for the
composite delamination mechanism, appropriate faitlure criteria and progressive-
failure modeling procedures need to be developed, implemented and evaluated.
For shell-based failure criteria, accurate stress recovery is essential. Improved
stress resolution is required both along the surface (e.g., via stress/displacement
iterations and adaptive refinement) and through-the-thickness, as both normal and
transverse-shear stresses can play a dominant role in delamination. Progressive
failure may then be simulated by methods ranging from a simplified shell model
that seleclively degrades layer properlies, Lo a [ull SD analysis near the hole with an
evolving 2D /3D transition. An intermediate approach is to “split” shell elements
along delaminating boundaries. (See Fig. 12.) The simplest approach, however,
has obvious implementational advantages.

5) DEVELOP EFFICIENT GLOBAL/LOCAL ALGORITHMS. Finally, there is
a need to reduce the cost of nonlinear analysis for such problems. The cost of the
global analysis is dominated by the large number of iterations/steps in the linear-
to-postbuckling transition regime. Possible approaches include the reduced-basis
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technique [16,17], Thurston’s method |18}, and improved extrapolators. For the
combined global/local problem, where material “properties” are changing rapidly
during postbuckling, additional features such as line-searches [19], quasi-Newton

stifiness updates [20] and nonlinear substructuring may greatly improve effi-
ciency.

We are presently acting on recommendations (2)-(3) and will report the outcome
in a forthcoming paper.
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Figure 1. Knight's problem, NASA test specimen.
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Continuum-based (CB) shell equations
- 3-D Continuum equations (equilibrium/constitutive)

- Embed sheil hypotheses (straight normals, zero normal stress)

Reduce to "resultant" (CBR) form
— Assume: small transverse-shear strains, mild taper

-~ Preintegrate through-the thickness

Discretize via curved "isoparametric" elements
— Selective/reduced integration {SRI)

- Assumed natural strain (ANS)

Solve nonlinear matrix equations via:
— Linearization w.r.t. currrent configuration (UL}
— Modified NR algorithm with adaptive (RC) strategy

~ Nodal triad updates for large rotations

(]

Solve rate constitutive equations via;
— "Midpoint rule" incremental algorithm

— INS recovery of normal strains (thickness updates)

Figure 3. Computational approach.

USER

/ PROCEDURE \
PROCESSORS :

GLOBAL DATABASE

a. NICE {Network of Interactive Computational Elements)

b. Shell Element Processor

© 060 66

S |

Figure 4. Implementation.

83



5 x 16 NODES 300 DOF

] =
(u,v,w,dx, V,t)z) =0

17 x 64 NODES 5000 DOF

c. Grid 3 (Refined)

Figure 5. Finite-element models.

X {axial)

a. Linear Displacement Solution
{Magnified by 10}

-5000} : =—GRID 3
; { PEAK:5020lb/inJ
GRID 2 H ] (SCF=3.25)
—4000+PEAK: 4312 Ib/in,
(SCF=2.8)

£ _3000
a
2% -2000
_1000- AVERAGE: 1583 Ib/in.
0 . A ; . .
o 2 4 3 8 10 12 1%

DISTANCE, Y (in.)

b. tLinear Stress-Resultant Solution:
NX versus Y (X=L/2}

Figure 6. Linear (prebuckling) analysis.



Figure 7.
3.0
x10_3
0
LINEAR BUCKLING 19
LOAD A
_.-',d" 'Pr
N
2.0 QENR
é @
a
s
<
o
-
1.0
0.0 ] ] l
0.0 1.0 2.0 3.0 4.0
END-SHORTENING, 6/L
—— EXPERIMENTAL
“*e-+ FINITE-ELEMENT
(O LOAD-STEP NUMBER
a. Load versus End-Shortening
Figure 8.

[BUCKLING MODE 4]

Stability (buckling eigenvalue) analysis.

STEP 10

STEP 30

STEP 35
g R

2 ET

b. Deformations and Stresses

Nonlinear (postbuckling) analysis; no imperfections.




3.0
x 10

2.0

LOAD, P/EA

86

.0 1.0 2.0 3.0 4.0

3.0
xlO_3
| LINEAR BUCKLING _
LOAD
2.0
a
a
<
(o}
2
1.0
EXPERIMENTAL
-+ FINITE-ELEMENT
O LOAD-STEP NUMBER
0.0 | I I L
0.0 1.0 2.0 3.0 4.0 x1073
END-SHORTENING, é&/L
a., Load Versus End Shortening
Figure 9.

STEP 8

STEP 16

STEP 28

b. Deformations and Stresses

Nonlinear (postbuckling) analysis; 10%-h imperfections.

STEP 10 STEP 30

Rl
Y _1ProPs. /IMPS.
| LINEAR BUCKLING LOAD ‘S:f
/. 6~
."..- 0 B
L 4 o
o i N
.. ' x
DAMAGE

¥ |
!
/
DYNAMICS L

L | i

END- SHORTENING, &/L

EXPERIMENTAL
‘o0 FINITE-ELEMENT

(O LOAD-STEP NUMBER

a. Load versus End-Shortening

Figure 10.

b. Deformations and Stresses

Nonlinear (postbuckling) analysis; 1%-h imperfections.



x 10

LOAD, P/EA

3.0

3
- 7 A
) z
2.0 //Zi/ b / P
— L8
&—"
L - i _
—— EXPERIMENT —— EXPERIMENT
——— STAGS /410 ELEMENT ——= STAGS/410 ELEMENT
—-— NICE/9-HET ELEMENT —~— NICE/9-HET ELEMENT
0.0 | 1 ! | l 1 ! 1
0.0 1.0 2.0 3.0 4.0 5.0 0.0 1.0 2.0 3.0 4.0
END SHORTENING, 6/L END SHORTENING, ¢/L
a. 10%-h Imperfections b. 1%-h Imperfections

Figure 11. Corroboration with the STAGS code, postbuckling analyses.
T < Gy c -y
C< Gy T=C,
SHELL ELEMENT SHELL ELEMENT
a. Simple: Shell-Element Material-Property Degradation
C
SHELL ELEMENTS SHELL ELEMENT
b. Intermediate: Sheil-Element "Splitting"
SOLID ELEMENTS SHELL ELEMENT
CONSTRAINED
INTERFACE
c. Complex: 3D/2D Transition
Figure 12. Composite failure-progression models.

5.0x10

87

3



N89-24643

A REVIEW OF SOME PROBLEMS IN GLOBAL-LOCAL
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INTRODUCTION

The continually increasing power and economy of computers provides the
structural engineering and mechanics community with an opportunity and chal-
lenge to make major advances in computer intensive areas of analysis, design
and nondestructive evaluation of complex structural systems. Certainly the
availability of modern computers is making it possible to consider increas-
ingly larger and more complex structural analyses. State-of-the-art commer-
cial grade software is generally available to use for analyzing a variety of
linear and nonlinear problems on large mini or mainframe computers. At the
same time, structural analysis programs are being "down sized" for use on per-
sonal computers.

Yet, given all of these advances, some important and perhaps even criti-
cal problems are developing which must be resolved if the remarkable improve-
ments in computer-based analysis and design over the past 10 years are to
continue and the structural engineering community is to take full advantage of
the new computing power. Several problems should be briefly mentioned.

First, modern structural analysis software is generally a proprietary
product of an active and very competitive commercial software industry. As
such the software is beyond the control of the engineers who are almost com-
pletely dependent on it for performing structural analysis and design. Thus,
they do not directly control the computer analysis and therefore are not able
to fully understand the results they obtain. As a consequence engineers must
rely on faith and earlier experience with given software to justify their
analyses and subsequent designs.

Second, the software packages available to the engineering community are
enormously complex, so that even if source listing of the programs were avail-
able, few engineers would be able, much less willing, to learn how the program
works. Thus, the shear size and complexity of the software encourages both
the user and the software vendor to let well enough alone. Incremental
changes in software are surprisingly difficult and most software requires
almost continuous support by a technical staff.

As a result little incentive exists for either engineers or software
firms to push for major modifications in existing software or to develop fun-
damentally new and more powerful software. Unfortunately, in addition to
being hampered by size and complexity, today's software is a product developed
for yesterday's computers. For example, most programs are written using logic
designed around one~dimensional arrays to store compacted stiffnesses and
column solution techniques to solve equations in order to minimize storage
requirements. However, modern computers have almost unlimited (virtual)
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memory and array processors which would be more effectively used if the soft-
ware had a different program architecture. Thus, much of today's structural
analysis software is unable to take full advantage of the most advanced com-
puting machinery. A major revision of an existing program is a tremendous
undertaking and, if developed, may have significant short-term costs to both
the software developer and the user,

Finally, it should be recognized that a number of "research" areas in
structural mechanics have reached the development stage and are starting to be
used by the structural engineering profession. Examples are structural life
predictions using fracture mechanics, structural system identification, struc-
tural design optimization, semi~automated, adaptive computer modeling, and the
analysis of infinite domain problems. The development of these areas has
been and will continue to be slowed until the time when the necessary analysis
techniques become generally available in commercial grade programs.

If new generation software is to have maximum impact on the structural
engineering profession it must be configqured so that basic analysis can be
used as a tool in a more general comprehensive engineering program. The soft-
ware also should be as adaptable as possible to the evolution of computing
machinery.

It is the purpose of this presentation to provide some areas of struc-
tural engineering which are not well served by today's software and which
should be given serious attention by developers of future structural analysis
programs. In keeping with the theme of this workshop session, several aspects
of global-local stress analysis will be discussed, with attention drawn to
both the nature of the problem and the type of computational software which
should be developed to investigate the problem.

BASELINE MODELING CONCEPTS

Perhaps the most difficult decision the engineer analyst must make is the
choice of the proper mathematical model for use in investigating structural
behavior (fig. 1). Generally the analyst must choose first the dimensional
level of the model, e.g., 1-D (truss/beam) technical theory, 2-D technical
theory, 2-D continuum modeling, and 3-D continuum modeling or a model composed
of a mixture of some or all of the above. A major consideration in this
choice is the available computer element library (which, for most programs is
reasonably complete) and the performance of given finite elements. Also,
elements and/or procedures for interfacing different types of element types
are very important for problems where mixed element types are to be used.

The analyst must also specify the level of physics to be treated by the
computer program, especially the material constituency, the effect of initial
stress, large motion (stability), dynamical response and nonlinear effects.
The analyst should be free to investigate all these effects if necessary and
not be constrained by limits on the features of a given software package
(e.g., lack of a geometric stiffness matrix for a 3-D continuum finite ele-
ment). As may be shown with a number of systems, structural behavior may
initially be linear, elastic and even quasistatic in nature under given loads,
but given "small"” changes in configuration, such as a hole or notch in a
critical section, the problem may be fundamentally different involving



nonlinear elastoplastic response, large deformation and leading to large-scale
failure.

Thus to investigate a system thoroughly the analyst needs to have access
to a very complete analysis package involving comprehensive physics and numer-
ical modeling.

The effective use of modern finite-element software depends on the basic
skill of the analyst/engineer, who may be tempted to replace insight and basic
knowledge of structural analysis with degrees of freedom (DOF's). Such anal-
yses first of all cost more than is necessary. To make matters worse large
DOF models with excellent graphical characteristics may contain low resolution
physics. (However, three dimensional models may be much easier to present to
clients or company executives!)

Consider the cantilever beam shown in figure 2. The simple 2 DOF model
gives excellent beam deflections from which the trained engineer can obtain a
wealth of accurate stress data. The planar 96 DOF model is in many respects
less accurate. For example, the (exact) cubic lateral displacement is only
approximately modeled by a series of parabolas. The stresses near the tip and
near the left end are captured with little, if any, additional precision. The
192 DOF planar model is, if anything, less precise than the 96 DOF model since
lower precision 4 node elements are being used. Finally, the complex 3-D
model with 768 DOF is still less accurate since the plane stress assumption is
no longer built in to the model and now must be obtained (approximately)
through the solution of a large system of equations.

This example shows the efficiency that can be achieved using a well-
thought-out finite~element model but it also shows some difficulties that can
result., The deceptive ease with which software can be used invites abuse by
unwary or poorly trained users. It is the author's opinion that some
(optional) diagnostics should be available to warn or guide users in the
generation of finite-element models.

One of the most common uses of finite-element analysis is to investigate
the behavior of structures in the vicinity of sudden variations in structural
geometry or configuration in which singularities in the stress field or stress
concentrations may occur. This area of analysis will be termed near-field
modeling (fig., 3). Two different approaches for investigating the behavior of
structures in the vicinity of stress concentrations reflect basic concepts
global-local stress analysis. In the first approach, the finite-element model
of the general structure away from the area of stress concentration (a hole in
fig. 3) is coupled with an analytical solution [1]. The finite-element model
may or may not extend into the region R < Ry influenced by the analytical
solution. For the problem shown the analytic stress field is in the form of
Kirsh's solution [2] with an unknown stress factor o # O,. The interaction
between the exterior finite-element model and the interior analytical model is
used to find 0 as well as the nodal displacements and internal stresses in
the exterior grid.

The approach requires an analytical solution simple enough to be effec-
tively used in a computer analysis. This approach appears to be limited to
primarily isotropic homogeneous elastic structures with very simple stress
concentrations, and for simple loadings.
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Current software packages generally do not contain a library of analyti-
cal solutions and, if the numerical and analytical regions overlap, may not
have the capability for generating and solving the necessary equations of
equilibrium,

A different approach to solving the same problem is to simply model the
entire structure with a finite-element model using a mesh which is suffi-
ciently finely zoned near the hole to capture the stress concentration
(fig. 4). The generation of such a mesh requires a basic understanding of the
physics of the stress concentration, especially the characteristic lengths of
the decay of the stress concentration, and also a good understanding of the
capabilities of the finite elements chosen to model the structure.

An assessment of the quality of the finite-element model may be difficult
if the analyst has a limited understanding of the finite elements being used
to represent the physics, i.e.,, a problem if the analyst is using a program as
a "black box."

In order to check for a valid solution the engineer often uses a finer
mesh to re-—analyze the problem especially in the vicinity of the apparent
singularity indicated from the previous solution., This "field" application of
the patch test is commonly used to check the convergence characteristics of a
computer simulation. It would be helpful if it were necessary to generate
only the data in the revised part of the structure and the data generated for
the unchanged part could be reused. This is a simple task and yet one which
is not commonly available in commercial computer programs. This feature may
become quite important if the physics is more complicated than first believed,
such as might be the case if a central stiffener were present, which would
force the analyst to consider the stress concentration due to the hole and the
nearby shear lag problem due to the interrupted stiffener.

The problem of analyzing systems in which a part of the system involves
an infinite or semi-infinite continuum is a perplexing and difficult problem,
since an unlimited number of finite elements may be needed to model the com-
plete system. The idea of using an analytical solution for far-field behavior
together with a finite-element model of the near-field structure is a compel-
ling one and has been used by a number of authors [3,4]. In figure 5, Ry
denotes the outer radius of the finite-element model.

As in the near-field problem, an analytical solution that can be effec-
tively utilized in the context of a finite-element analysis is required. The
need for using an analytical solution has restricted the method to problems
involving elastic isotropic homogeneous media and to a relatively small class
of static or forced vibration problems. Recently efforts have been undertaken
to generalize the method to problems where the medium was orthotropic or
layered using finite-element solutions for the far-field response of layered
media in place of analytical functions.

In this approach, analytical solutions may have a number of terms, each
with some characteristic factor F; which must be related to the applied
load. As in the near-field case, the region of the analytical solution may or

may not extend into the region of the finite-element model.
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The technique is not easily applied using conventional finite-element
analysis packages since neither the definition of the far-field solution nor
the techniques for matching the finite-element grid with the far-field analyt-
ical solutions are contained in the programs.

The far-field analysis problem is often investigated by using a so-called
media island to treat structure media interaction (fig. 6). The finite-
element model typically extends as far as is economically practical from the
site of interest. On the outer boundary, some special procedure is used to
make the boundary a transmitting one, i.e., to permit outgoing waves to pass out
of the computational grid and eliminate spurious reflections that might
contaminate the solution. Typical boundary treatments are to use dampers, or
special paraxial boundary elements [5], or recently, to use a so-called boun-
dary zone superposition zone [6,7] to trap and cancel spurious waves.

The latter method appears quite promising and requires only some basic
knowledge of wave speeds in the boundary zone. The region in the interior may
behave in a linear or nonlinear fashion. An important characteristic of the
boundary zone superposition method is that it is very simple to program and
may be used in principle with any finite-element software package. Unfor-
tunately, in practice this is not the case since the analyst may be using
"black box" software over which he has no control.

The development of a practical tool for near-field/far-field analysis has
major implications for such problems as, using ultrasonics for nondestructive
testing, developing sensor/control systems on very large spacecraft, and
studying impact of large bodies, such as spacecraft and Shuttle-type transport
vehicles.

The behavior of connections in structures is a persistent problem for
structural engineers, especially on structures such as a space station which
may have hundreds or even thousands of connections. Unlike terrestrial
systems the connections on spacecraft may be very lightly loaded and therefore
play a very important role in determining structural response of the overall
system. The connection is a physical stress concentration (or substructure) in
which structural characteristics may be quite complex (fig. 7). Yet for
purposes of analyzing a very large system the highly resolved behavior of a
connection must be consistently and appropriately reduced to a level usable
for the analysis of the large-scale system.

The development of a simple substructure model which gives the essential
behavior of the substructure in a global system is a non-trivial task. Cer-
tainly "downsizing” a highly resolved model of a connection to a much simpler
model suitable for use in a global analysis should be based on a consistent
formulation in which overall internal energy under specific deformation pat-
terns is maintained, and the model should account for appropriate rigid-body
behavior.

The use of connection elements has been incorporated in a number of
finite-element programs, especially for use in piping analyses in the nuclear
power industry. However, the software for an analysis such as described for
the connection will have to have the capability of giving the user control
over the definition of the element (as compared to having access to one of
several basic connection elements in a general element library).
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A different type of substructure problem which is encountered in global-
local finite-element analysis is the case where the important physics is in a
small region of a large structure (fig. 8). This is the typical case in a
problem involving the analysis of crack growth using fracture mechanics. 1In
order to determine the rate at which the crack shown on the structure will
grow given applied cyclic loadings, the stress intensity factor at the front
of the crack must be determined for the crack as it grows during loading, or
alternatively, the strain energy release rate. This is accomplished by
analyzing the structure with a given length of crack, and then releasing the
connection between elements at the tip of the crack (allowing it to advance
for one element) and reanalyzing the structure.

This procedure amounts to a model revision; thus, the entire structural
analysis problem must be reestablished and resolved. This is only practical
on a large system involving many thousands of DOF's if the surrounding struc-
ture is treated as a substructure and the crack growth region as the primary
structure (which may be repeatedly modified to perform the strain energy
release rate calculation). This type of analysis can be done using available
commercial software, but only in a one-solution-at-a-time mode. It would be
very helpful if the procedure could be carried forward in a semiautomatic
manner that would require substantial software development,

This analysis is very important in making safe-life predictions for
critical components in aircraft and spacecraft. Of course, the problem is
much more complicated if the direction of crack growth is unknown, since the
finite~element models of the substructure and structure could not be deter-
mined prior to analysis. 1In short the finite-element model would have to be
adaptive.

Based on the comments in figure 8 it is evident that finite-element
modeling must be adaptive in order to make safe-life predictions, a process
which now involves the engineer analyst directly. In fact, considerable
research has been done to develop semi-automatic, adaptive finite-element mesh
generators [8-10]. These procedures operate in basically one of two ways,
refinement of the mesh itself, using similar finite elements the same order of
approximation within each element (H-convergence), or leaving the grid fixed
but refining the physics within each element (P-convergence). Different
strategies are used to assess the quality of a solution for a given finite-
element grid. The same information is then used to revise the model and
improve the solution.

In response to a test problem proposed by NASA as a vehicle for discus-
sion at the workshop (fig. 9) a simple highly idealized model of the structure
was prepared by Dr. Paolo Roberti and analyzed using his algorithm [10]. This
algorithm uses triangle constant strain finite elements and H-convergence.

The results are remarkable, giving almost a map of the stress concentration in
the vicinity of the hole in the stiffened panel, figure 10a-f. Of course,
this analysis was conducted only for a linear static solution. 1In reality,
the presence of the hole in the panel may lead to instability or even failure.
Nevertheless, the analysis is important in developing a finite-element model
with a specified precision.

Approaches such as this only hint at the tremendous problem solving power
that can be brought to bear on structural engineering problems if the software



available can be designed to be flexible enough to adopt new and different
concepts in analysis.

CONCLUDING REMARKS

The various types of local-global finite-element problems point out the
need to develop a new generation of software. First, this new software needs
to have a complete analysis capability, encompassing linear and nonlinear
analysis of 1-, 2-, and 3-dimensional finite-element models, as well as mixed
dimensional models. The software must be capable of treating static and
dynamic (vibration and transient response) problems, including the stability
effects of initial stress, and the software should be able to treat both
elastic and elasto-plastic materials.

The software should carry a set of optional diagnostics to assist the
program user during model generation in order to help avoid obvious structural
modeling errors. In addition, the program software should be well documented
so the user has a complete technical reference for each type of element con-
tained in the program library, including information on such topics as the
type of numerical integration, use of underintegration, and inclusion of
incompatible modes, etc. Some packaged information should also be available
to assist the user in building mixed-dimensional models.

An important advancement in finite-element software should be in the
development of program modularity, so that the user can select from a menu
various basic operations in matrix structural analysis, including matrix for-
mulation and storage, assembly (by row or column), solution (by row, column or
wave front), and method of time integration. Most important, the software
should permit the user/analyst to link to the computer program his own spe-
cialized software. User programs might include formulation of (substructure)
stiffness matrices, specialized solution packages (matrix inversion, partial
inversion), time integration and, for nonlinear problems, input of different
types of materials.,

The next generation of finite-~element software also should be developed
with the idea of analysis serving as a basic tool in design, system identi-
fication and optimization.

The implementation of adaptive finite-element modeling techniques in com-
mercial grade software will have a major impact on the structural engineering
community which now invests a significant effort on basic analysis, especially
in the modeling, solution, and remodeling cycle. A number of problems in non-
linear structural analysis will also benefit from adaptive computer modeling,
such as making safe-life predictions for structures using fracture mechanics
concepts.,

Hopefully, a new generation of software can be developed with many, if
not all, of the features described. If it is possible to do so, then struc-
tural analysis software will become a much more complete, versatile and
reliable tool for the structural engineer.
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BASELINE MODELING CONCEPTS

¢ Dimensional Level of Model

= Technical Theory
1-'D Truss/Beam
2-D Panel/Plate/Shell

= Continuum Representation
2-D Plane Stress, Plane Strain

nth order Symmetry

3-D

¢ Physical Requirements of Model
- Material (Elastic, Plastic, Anisotropic)
- Initial Stress (Stability)
- Dynamics (Vibration, Transient Analysis)

- Nonlinear (Large Deformation, Separation)

Figure 1

FINITE-ELEMENT MODELING

= Which Model is Better?
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|
‘e
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Figure 2
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NEAR-FIELD MODELING ~ Finite-Element Modeling with Mesh

Singularities/Stress Cqncentrations Refinement

- Finite-Element Model with Near-Field

Analytical Solution
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- Analytical Solution(s) Required Understanding of Characteristic Lengths of
Capable of Being Evaluated and Utilized Physical Processes Required

-~ Restricts Approach to

_ Evaluation of Model, Solution Difficuit
Isotropic, Homogeneous Elastic Systems,

Very Simple Regions, Simple Loadings, Model Refinement Capability Important

Statical Problems,or Forced Vibrations

Figure 3 Figure 4
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FAR-FIELD MODELING

Finite Structure imbedded in Infinite Continuum
- Finite Element Model with Far Field

Analytical Solution

F(t); F(w)

|

%707

Analytical Solution(s) Required

Capable of Being Evaluated and Utilized

Restricted to Isotropic Homogeneous Elastic

Far Field, Static or Forced Vibration

Figure 5

—Finite-Element Model In Continuum Island
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N

RADIATION
B.C.
Formulation Requires Special Boundary
Conditions to Insure Radiation
Dampers

Reflecting Zones

Knowledge of Wave Transmitting

Characteristics of Medium Required

Figure 6
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SUBSTRUCTURE CONCEPTS

Use of Highly Resolved Models

- Imbedded Substructures
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Figure 7
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- Surrounding Substructure

SUBSTRUCTURE

CRACK GROWTH
REGION

Figure 8



ADAPTIVE FINITE ELEMENT MODELING

BLADE-STIFFENED PANEL WITH DISCONTINUOUS STIFFENER

UNIFORM END SHORTENING
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Figure 9
RESULTS OF ROBERTI’S ALGORITHM FOR
SUCCESSIVELY REFINED MESHES TO
CAPTURE STRESS CONCENTRATIONS
IN NASA TEST PROBLEM
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ABSTRACT
The main theme of this paper concerns methods that may be classified as global
(approximate) and local (exact). Some specific applications of these methods are
found in:

(1) Fracture and fatigue analysis of structures with 3-D surface flaws

(2) Large-deformation, post-buckling analysis of large space trusses and space
frames, and their control

(3) Stresses around holes in composite laminates
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A typical engineering problem is illustrated in figure 1, which shows a corner
flaw at the intersection of a nozzle and a pressure vessel. The shape of the
surface flaw may often be approximated mathematically as quarter—elliptical or
quarter—-circular. For the problem shown in figure 1, wherein the crack is located
in the longitudinal plane of symmetry of the structure, only the so-called Mode I
conditions prevail. In figure -1, the presence of a traction—-free crack, in an
otherwise unflawed solid, alters the stress—state only locally. From a viewpoint of
fracture mechanics, however, the main quantities of interest are only the stress—
intensity factors (strengths of asymptotic stress singularities) near the crack
front. For analyzing fatigue crack growth and crack instability under thermal shock
various flaw sizes and shapes need to be considered. The primary objective of
analysis is to determine the variation of the Mode I stress-intensity factor along

the border on the surface flaw.

[ T Ty S,

Figure 1. Corner surface-flaw at the pressure-vessel-nozzle intersection.
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Figure 2 shows the schematic of a 12-bay space frame. The equations of dynamic
motion of the frame, assuming large deformations and plasticity, may be written as:

(N+1)“ (N+1)e

X+ )E,*t’S,A)E,’ _(N)R

+Q'E R

ke

where M is the mass matrix, C the matrix of passive damping, t& the tangent stiff-
ness matrix (which includes the effect of large deformation and plasticity), EC the
control—actuator.force, QE the external load, (N+1)§ the acceleration vector at

time tyyq, (N+1 X the velocity vector at tn+1s AX the incremental displacement be-

~

tween ty and ty;p, and N R the internal-force vector at ty. 1In order to implement

the control algorithms in an efficient manner, the order of the above system of
equations must be as small as possible (i.e., each frame member must be modeled by
no more than one finite element). Further, the control must be implemented for
pulse-type loading of high intensity, such that the above system of equations must
be integrated directly rather than using a modal-decomposition. Also requirements
of on-line control may necessitate that K C, and M be known explicitly (in closed
form) for arbitrary values of deformation, without the need for introducing approxi-
mate shape functions for deformation of each element and without the need for any
numerical integratiouns over each element. In figure 2, the object of inquiry is
what effect does local (member) instability have on global (system) stability? How
can we control the dynamic deformations locally to improve global behavior? Each
member may be treated as a truss member, or a 3-D beam—type member, depending on
joint design. How can local effects be accounted for simply and efficiently, so
that algorithms for control of dynamic motion may be implemented, on line, using
on—board computers in a large space structure?

A%NM\\WNMN

g/, 60X 4 =240 ” 240 J! 240

4 4
728

Figure 2. Schematic of a 12-bay space frame.
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An appraisal of the computational mechanics methods is given in figure 3.
These methods include the finite-element, boundary-element, and edge function
methods (fig. 3).

FINITE ELEMENTS:

* TRIAL AND TEST FUNCTIONS ARE BOTH APPROXIMATE

* TRIAL AND TEST FUNCTIONS ARE, IN GENERAL, ALIKE - GALERKIN
APPROACH

 IN SOME INSTANCES IT IS BEST TO HAVE TEST FUNCTIONS DIFFERENT

FROM TRIAL FUNCTIONS - PETROV-GALERKIN APPROACH

THE SOLUTION IS BOTH GLOBALLY AND LOCALLY APPROXIMATE

- VERSATILE OR ARBITRARY GEOMETRY, BOUNDARY CONDITIONS, SUITED
FOR GLOBALLY APPROXIMATE NONLINEAR SOLUTIONS

BounpDARY ELEMENTS:

- TEST FUNCTIONS ARE GLOBALLY EXACT FOR THE GIVEN LINEAR PROBLEM,
OR AT LEAST FOR THE HIGHEST-ORDER DIFFERENTIAL OPERATOR OF
THE PROBLEM

- TRIAL FUNCTIONS ARE APPROXIMATE (AT BOUNDARY ONLY FOR LINEAR
PROBLEMS, AND IN INTERIOR ALSO FOR NONLINEAR PROBLEMS)

- THE SOLUTION 1S BOTH LOCALLY AND GLOBALLY APPROXIMATE

- NOT AS VERSATILE AS THE FINITE-ELEMENT METHOD, BUT EXCELLENT
FOR SOME SPECIFIC PROBLEMS

Epce FuncTion METHOD:

* TRIAL FUNCTIONS ARE GLOBALLY EXACT

* TEST FUNCTIONS ASSUMED ONLY AT BOUNDARY

* LIMITED TO LINEAR PROBLEMS POSED BY CLASSICAL DIFFERENTIAL
EQUATIONS

Figure 3. Appraisal of computational mechanics methods.
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In the most commonly used Galerkin finite—element approach in computational
solid mechaniecs, the trial and test function spaces are identical and consist of
simple piecewise continuous algebraic polynomials over each finite element, such
that these functions and their appropriate-order derivatives (as dictated by the
problem on hand) are continuous at the interelement boundaries. For problems of
fourth or higher order, such as those of plates and shells, the development of
finite elements has long been, and continues to be, plagued by the need for C
(or higher order) continuity at the interelement boundaries. However, the success
of the finite-element method in structural mechanics is unparalleled and is mainly
due to the intuitive and 'geometric' interpretation of the method. The method is
versatile in its ability to deal with complicated structural assemblies, such as of
beams, plates, and shells, of the type used in aerospace applications. The solu-
tions obtained through the finite-element method may be classified, in general, as
being both globally as well as locally approximate.

On the other hand, in linear and nonlinear solid mechanics, it is often pos-
sible to derive certain integral representations for displacements. A key ingre-
dient which makes such derivations possible is the singular solution, in an infinite
space, of the corresponding differential equation (in certain linear problems) or of
the highest-order differential operator (in the nonlinear case, or even in the
linear case when the full linear equation cannot be conveniently solved), for a
'unit' load applied at a generic point in the infinite space. When the problem is
linear and the singular solution can be established for the complete linear dif-
ferential equation of the problem, the aforementioned integral representations for
displacements involve only boundary integrals of unknown trial functions and their
appropriate derivatives. Such an integral representation, when discretized, leads
to the so~called boundary-element method. Such pure boundary-element methods are
possible in linear, isotropic, elastostatics, and in problems of static bending of
linear elastic isotropic plates. On the other hand, as in such cases as (i) linear
problems wherein the singular solutions cannot be established for the entire dif-
ferential equations, (ii) anisotropic materials, and (iii) problems of large
deformation and material inelasticity, the integral representations (if any) for
displacements would involve not only boundary integrals but also interior-domain
integrals of the trial functions and/or their derivatives. A discretization of such
integral equations would lead not only to a simple boundary-element method but also
to a sort of hybrid boundary/interior element method.

When asymptotic solutions to the governing differential equations of the prob-
lem are used as assumed trial functions, the interior residual error is zero, and
only the boundary conditions need to be satisfied in a weighted residual method.
Such an approach is called the edge-function method, but is limited mostly to linear
problems. For further details, see references 1 through 4.
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The surface—-flow problems for current methods are noted in figure 4. Problems
for the proposed method are also shown.

A1l Present Methods: Singular stress-state near the flaw
border 1s modeled by locally approximate methods

(I) Finite-Element Methods (singular elements)

AtTuri & Kathiresan (refs. 5-10)
(Hybrid crack elements) 3-6,000 d.o.f.

Tracy, Barsoum, Newman & Raju (refs. 11-13)
(Distorted isoparametric elements and
singular shape fn.) 5-10,000 d.o.f.

These are very expensive, but accommodate
arbitrary geometries of structure and flaw.

(I1) Boundary-Element Methods (for locally approxi-
mate stress analysis and K-estimation from
stress extrapolation)

Cruse (ref. 14), Heliot et al. (ref. 15).
Not suitable for 'thin' shells with flaws.
Still very expensive.

(III) Line-Spring Method
Limited to simple geometries of structure and
flaw.

Proposed Method:

It is a GLOBALLY APPROXIMATE, but LOCALLY EXACT

METHOD
* Singular stress-state near the flaw is NOT MODELED

NUMERICALLY

It is about 30 times cheaper than the singular
finite-element method

Details (Atluri & Nishioka (refs. 16-21) - several
papers with varied examples)

Figure 4, Surface—flaw problems.
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fictifiouj
. v , .

Globally approx.
solution for
uncracked body

finite body

Globally approx.
solution for
uncracked body

Locally exact solution
for pressurized crack

Remarks: 1.

Solution D: A rather complicated analytical
solution (Atluri & Vijayakumar, Journal of
Applied Mechanics, 1981) (ref. 22)

Local solution due to crack-face traction alone
is (i.e., the Solution C) the source of singu-
larity. The stresses due to this local solution
decay very rapidly. Only one or two iterations
are sufficient to obfain K-solutions with 1%

accuracy.

About 30 times cheaper than the usual finite-
element method for a typical problem such as
flawed BWR nozzle.

Figure 5. Global (approximate) and local (exact) analyses of embedded flaws.
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Some comments concerning the solution of surface flaws in finite bodies using
the present procedure are in order (fig. 4). Since the analytical solution of an
elliptical flaw embedded in an infinite solid is used as solution D, it is necessary
to define the residual stresses over the entire crack-plane including the fictitious
portion of the crack which lies outside of the finite body containing only a surface
flaw (fig. 5). Moreover it is well known that the accuracy of the 'least-squares’
type function-interpolation inside the interpolated region can be increased with the
number of polynomial terms; however, the interpolating curve may change drastically
outside of the region of interpolation. The optimum variation of pressure on the
crack surface extended into the fictitious region should be as shown in figure 6.
For in-depth discussions of a variety of surface problems and their solutions, see
refs. 19-21, 23-28.

R — R
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(6:’). - /
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Figure 6. Postulated residual stress distributions on fictitious portions of an
elliptical flaw, in the case of semi-elliptical or quarter-elliptical
surface flaws.
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For both 3-dimensional truss and frame members, explicit (locally exact)
tangent stiffness matrices have been derived (fig. 7). Some effects of local
(member) buckling on global (structural) behavior are illustrated in figures 8
and 9.

Truss Member:
* ELach member undergoes large displacement and large
rigid rotation
* Member material is nonlinear
* Each member may buckle and become curved (what
effect does it have on global stability?)

Frame Member:

* Concepts of 3-dimensional semi-tangential rotations
employed

* Each member undergoes arbitrarily large rigid rota-
tions and rigid displacements

* Bending-stretching coupling incorporated in each
member

* Plastic-hinge method used to account for plasticity
in each member

* Member forces: axial, shear, and bending-twisting
moments

Kondoh and Atluri (refs. 29-30) and Kondoh et al. (refs. 31-32)

Figure 7. Space trusses and space frames.
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(a) Thompson's Strut

W No member buckling; no
system imperfection considered
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(b) Effect of local (member) buckling on global (struc-
tural) behavior.
Tangent stiffness of each member is exact in both the pre-buckled

and post-buckled states of member (ref. 29)

Figure 8. Thompson's strut and effect of local buckling on global behavior.
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(Ref. 33)
~ No Member Buckling
EA = 4,59%Kq ; EI = 342 Kgm®

Member Buckling
EA = 4,5%g; EI = 342 Kgm?
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(a) Load System: (i) Py: Vertical (b) Stability boundary under loads
point loads as all nodes; P1 and Py

(ii1) P,: Vertical point loads at
nodes in quadrants xj, xp > 0

Figure 9. Study of the effect of member buckling on global (system) stability.
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Examples of the efficiency of the global/local approach in analyzing frames are
illustrated in figures 10 and 11. 1In figure 10, the classical problem of a two-bar
frame is schematically illustrated. In the present approach, the tangent stiffness
matrix of each member (respresented by a single finite element) is derived from
exact solutions of governing differential equations which account for the bending-
stretching coupling. Thus, no "shape functions" are assumed in each element, and no
numerical integrations are performed in forming the tangent stiffness matrix. The
present numerical integrations are performed in forming the tangent stiffness
matrix. The present numerical results are shown to agree excellently with those of
Wood and Zienkiewicz (ref. 34), as well as the experimental results of Williams
(ref. 35). However, Wood and Zienkiewicz use five finite elements to model each

member of the frame.

In figure 11, the problem of plastic collapse of a frame is illustrated. Here
again, the tangent stiffness matrix of each member (represented by a single finite
element) is derived in closed form, accounting for large deformations, large rota-
tions, and plasticity. A plastic-hinge method is used, and the progressive develop-
ment of plastic hinges, at various load levels, is indicated in figure 1l.

07T 02430m

1
—

Q0.753(in}

-

12.943 (in)

E=1.03x!0" (1b/ind)

] —o—  Present
(1 Element per Member) /
‘ Wood & Zienki
a ewicz's
ref. 3 ?

{ref. 34
| (5 Elements per Member)

tams Experimental

1000 2000 2000 4000 5C00 6000 7000 RIS

[e3¢] [ol} 02 03 04 03 06 07 Sin)

Figure 10. Variation of load-point displacement and support reaction with applied
load in a two-bar frame. Tangent stiffness of each 3-D beam member
undergoing large deformation, large rotation, and plasticity is exact.
Locally exact solution (ref. 30).
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* TANGENT STIFFNESS OF EACH MEMBER UNDERGOING LARGE DEFORMATION, LARGE ROTATION AND
PLASTICITY IS EXPLICIT AND EXACT. PLASTIC-HINGE METHOD USED.,
* EXTENSION TO CRASH ANALYSIS OF FRAMES BEING STUDIED,

Figure 11. Plastic collapse of frame.
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Figure 12 shows a problem of current interest in the analysis of stiffened
composite plates. Issues involve the following: (1) stress concentrations near the
hole in a composite laminate, (2) local buckling of stiffeners, (3) effect of geo-
metric imperfections, (4) effect of discontinuities, and (5) three-dimensional
effects and delaminations near the hole. An efficient globally approximate and
locally exact approach could possibly include: (1) use of locally exact, laminated
hole elements with embedded three-dimensional stress state (refs. 36 and 37),

(2) use of locally exact stiffener elements as described earlier (ref. 32),
(3) techniques for proper interacting of various elements, and (4) hole elements
that can be improved by incorporating possible free-edge singularities in 031.

Focus PROBLEM

[SaMPLE MODEL: USING ORDINARY
(GLOBALLY & LOCALLY APPROXIMATE) FINITE ELEMENTS]

Figure 12, A stiffened laminated-composite panel with a hole.
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Another example of the advantages of using a global/local approach is illus-
trated here in the problem of analysis of stresses near a hole in a laminated
composite [two cases of (-45/+45); and (90/0); laminates are discussed]. Figure 13a
shows a typical finite-element model with "special-hole elements" in which a 3-D
asymptotic hole solution is embedded. Figures 13b and 13c illustrate the excellent
accuracy obtained from the present approach, in comparison with a fully 3-D finite-
element solution of Rybicki and Hopper (ref. 38). The present solution is, however,

an order of magnitude less expensive. Further details are given in references 36
and 37.
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TypicaL FEM MODEL OF A LAMINATE STRESS AROUND A HOLE STRESS AROUND A HOLE
WITH HOLE, 3-D asympToTIC "HOLE- IN (-'45/+’45)s LAMINATE IN (90/0)S LAMINATE
SOLUTIONS" EMBEDDED IN ELEMENTS

NEAR THE HOLD {Ref. 36)

Figure 13. Analysis of stress state near a hole in laminated composites.
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The following conclusions and recommendations are given.

Hybrid analytical/numerical methodologies should be explored

Simplified analysis procedures for elasto-plastic should be considered
(Dynamic response calculations should be studied (some benchmark problems
essential))

Constitutive models badly need improvement

Methods of coupling of problem—specific methodologies for use in general
purpose programs should be explored

Trends to treat structural mechanics problems as continuum mechanics
problems should be critically reviewed; the knowledge base in structural
mechanics should be fruitfully utilized

Attempts to bridge the gap between micromechanics and macromechanics of
heterogeneous (composite) media through computational mechanics should be
explored

Computational stochastic structural analysis methods should be developed
Algorithms for new computing systems (MIMD) should be explored

Expert systems, . . « o (?)

NASA's role should be to provide:

118

Increased research support to unilversities

Predoctoral NASA fellowships (up to 20K per year, tax—free) that could be
awarded to attract the best students

Long-range funding to properly plan and sustain high-quality research
efforts

Increased access to supercomputers

Frequent visits to NASA facilities by graduate students to participate in
laboratory testing. University facilities in this area are scarce;
students in computational mechanics should get some first-hand experience
In experimental mechanics
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ON COMPUTATIONAL SCHEMES FOR GLOBAL-LOCAL
STRESS ANALYSIS

J. N. Reddy
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

1. INTRODUCTION

This paper primarily deals with an overview of global-local stress analysis
methods and associated difficulties and recommendations for future research. The
phrase global-local analysis is understood to be an analysis in which some parts of
the domain or structure are identified, for reasons of accurate determination of
stresses and displacements or for more refined analysis than in the remaining parts.
The parts of refined analysis are termed local and the remaining parts are called
global. Typically local regions are small in size compared to global regions, while
the computational effort can be larger in local regions than in global regions.

2. CONTENTS
This paper is divided into the following parts:
« Motivation-Problems (problems that motivated global-local analysis)
o Common Features
« Focus Problem
o Analysis Methods
« Global-Local Approaches

. Example Problem

o {Conclusions and Recommendations

3. MOTIVATION PROBLEMS

The following stress analysis problems, among many others, motivate us to use
global-local aproaches:

+ Free-Edge Stress Concentration in Laminates
« Contact Stress Problems

. Impact

« Fracture Mechanics

« Unbounded-Domain Problems
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Almost all laminated composite structural elements have free edges at the
boundaries (including holes) of the elements. It is well known that the transverse
normal and shear stresses are very large at the edges (more precisely, the stresses
are large within a distance of the order of thickness of the laminate from the free
edge). While the classical laminate theory is adequate to describe the behavior of
the laminate everywhere except in the "boundary layer" in which the transverse normal
and shear stresses are large, a refined theory, often the 3-D elasticity theory, is
needed to describe the state of stress near the edges.

Contact stress problems (for example, bolted and bonded joints, tire contact,
and metal-forming problems) require the use of a special theory that accounts for
appropriate constitutive laws and friction and allows for slip, slide, and separation
of the mating parts in the contact regions. Elsewhere, appropriate elasticity theory
can be used.

Impact of two solid bodies can be modelled by the use of one theory in the
vicinity of contact and by another theory elsewhere. Since the stresses are much
larger in the contact region than elsewhere, more refined theory and analysis are
required in contact regions. Of course, the theory and analysis used depend on the
type of structure, loading and deformation.

Structures containing cracks, whether formed during manufacturing or service,

require special treatment of stress fields around cracks, often using 3-D stress
analyses and/or nonlinear fracture mechanics theories, while the Tinear elastic

fracture mechanics theory is adequate away from the cracks.

Problems involving unbounded regions (for example, soil mechanics and earthquake
engineering) are by their nature divided into local and global regions. Global
regions, in theory, can be infinite but in practice they are finitely large, and less
refined theory and/or analysis is used to determine the stress field and other
pertinent information.

4. COMMON FEATURES

The motivating problems listed previously share certain common physical features
that are significant from the modelling and analysis points of view. The following
1ist provides some of these features:

« Stress Concentration (large Tocal gradients)

« Three-Dimensional State of Stress

. Large Rotations/Strains

. Local Discontinuities (holes, discontinuous fibers, etc.)

. Material Nonlinearities (nonlinear elasticity, plasticity, etc.)

A global-local stress analysis should account for all features that are present
in the problem. Of course, some of those features are not to be included in the

global model.

124



5. FOCUS PROBLEM

The focus problem identified by NASA Langley Research Center is a blade-
stiffened panel with a discontinuous stiffener. The problem has the following
physical features:

o Geometric Discontinuities
« Local Stress Gradients

o Eccentric Loading

« Large Displacements

« Free Edges

We shall return to this problem later to discuss the global-local analysis
approach.

6. ANALYSIS METHODS

6.1 COMMON APPROACHES

The commonly used analysis methods for structural problems are
o Classical (or Analytical) Methods
« Classical Variational Methods
« Finite-Difference Method
o Finite-Element Method

- Boundary Element Method

Some noted advantages and disadvantages of these methods are outlined next.

6.2 CLASSICAL AND VARIATIONAL METHODS

The classical method of solving problems exactly is the best there is. However,
most practical problems (which have irregular geometries, anisotropic materials, dis-
continuities, geometric and/or material nonlinearities, etc.) do not admit exact

solutions by the classical approach.

The classical variational (e.g., Ritz, Galerkin and weighted-residual) methods
yield continuous solutions throughout the domain, giving high resolution of displace-
ments and stresses. They are computationally efficient for a given problem. For a
given order of approximation, previously computed (for lower order approximation)
matrix coefficients can be used. These methods, however, have two major short-
comings: (i) the approximation functions are not easy and are often impossible to
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construct for most practical structural problems; and (ii) the variational methods
cannot be implemented on a computer for the analysis of a class of problems because
the resulting algebraic equations depend on the approximation functions, which in

turn depend on a specific problem.

6.3 FINITE-DIFFERENCE METHOD (FDM)

The finite difference method is simple in formulation (based on the representa-
tion of derivatives of a function in terms of a finite Taylor's series expansion) and
easy to implement on the computer. The method dominated the field of numerical
methods until the sixties, when the finite-element method gained popularity, espe-
cially in solid and structural mechanics. The disadvantages of the finite-difference
method include: difficulty in representing complex geometries, inexact representation
of boundary conditions on non-straight boundaries, and difficulty in developing
higher-order approximations. Because of these difficulties the method does not lend
itself for general-purpose code development. The method is seldom used for spatial
approximations in structural mechanics problems.

6.4 FINITE-ELEMENT METHOD

The finite-element method overcomes the shortcomings of the classical varia-
tional methods. This approach is systematic (modular) and natural and allows an
accurate representation of complex geometries. Higher-order approximations are easy
to use without changing the modular structure of the approach. The method is ideally
suited for general purpose and computer program development. The disadvantages,
compared to other computing methods, are the large formulative and computational
efforts. The finite-element method is the most frequently used numerical method in
structural analysis. It is now a key component of any mechanical CAD/CAM system.

6.5 BOUNDARY ELEMENT METHOD (BEM)

The finite-difference and finite-element methods can be classified as domain
methods because they involve approximations of the entire domain. The boundary
element method, also known as the boundary integral method (BIE), seeks approxima-
tions only on the boundary of the domain by converting the governing differential
equations to integrals over the boundary of the domain. The dimensionality of the
problem is thereby effectively reduced by one. Because the interior of the domain is

not approximated, the computational time involved is less (BEM/FEM ~-%, where nxn is

the finite-element mesh). The BEM offers continuous interior modelling within the
solution domain, giving high resolution of displacements and stresses. The method is
unsuitable for problems requiring information at a large number of internal points.
Application of BEM to nonlinear problems and problems with discontinuities is not

fully established.
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6.6 CONCLUSIONS

In conclusion, the general application of the finite-element method to struc-
tural problems is unmatched to date. Structural problems, because of the modular
nature of FEM, are better modelled by FEM. A suitable combination of FEM and BEM can
be advantageous in some problems (e.g., unbounded-domain problems).

7. GLOBAL-LOCAL APPROACHES

7.1 MODELS AND METHODS

In formulating a given problem, either the same theory is used throughout or a
refined theory is used locally and a less refined theory globally.

The global-local analysis methods can be FEM throughout, FEM and classical
solution, or BEM and FEM. When the same theory and FEM are used throughout, it is
understood that locally special elements are used (e.g., friction element, interface
element with sliding, or elements which allow opening and closing along element
interfaces). Classical solutions are available, for example, for infinite plates
with holes. The solution is not valid far away from the hole if the plate is long
but not infinite. In such cases, the FEM can be used globally and the classical
solution can be used locally. For soil mechanics and earthquake engineering prob-
lems, a combination of BEM and FEM proves computationally efficient. In some situa-
tions experimental methods globally and computational methods locally are
recommended.

7.2 SOME EXAMPLES

Some example problems that require global-local analysis are listed here.
o Free-edge stress analysis of laminates

+ Contact stress problems

« Stress analysis of structures with discontinuities

o A blade-stiffened panel with a discontinuous stiffener - the focus
problem

As mentioned earlier, free-edge stress problem requires a refined theory near
free edges. For example, the classical laminate theory globally and -either quasi-3D
or full 3-D theory locally (depending on the lamination scheme, geometry and loading)
can be used to analyze the problem. The problem will be discussed in more detail

later.

In bolted joint problems, an experimental technique such as the Moire
interferometry can be used to determine the surface displacements (and hence strains
and stresses) and the finite-element method can be used to determine the interior
displacement and stress fields.
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In the stress analysis of plates with holes, one can use a laminate theory away
from holes and 3-D elasticity theory around the hole, and use the finite-element
method to model the entire problem.

In the case of the focus problem, which has all features that are present in the
examples discussed above, the global theory should be a shear deformation plate
theory (2D) with the Von Karmen geometric non-linearity and the local theory can be
the fully 3D laminate theory. The finite-element method should be used throughout.
When FEM is used locally, the fully 3D elements or 3D degenerate elements can be
used.

7.3 DIFFICULTIES

In using global-local approaches, we face some difficulties. Some of these are
. Interfacing between regions
. Interfacing between methods
« Selection of regions

« Changing regions and interfaces

When the finite-element method is used, the elements used globally and locally
can be different. Then it is important to have compatibility of the nodal degrees of
freedom at the interface of the elements. A special interface element might be
needed in some situations. When two different methods are used, the unknowns in the
two methods should be the same. Selection of the local and global regions depends on
the physical features and accuracy desired. In some cases, the regions might have to
be determined only after a preliminary analysis. The global and local regions can
change during the history of deformation/ loading. For example, in elastic-plastic
analysis, the plastic zones are unknown a priori and they change with loading.

8. EXAMPLE PROBLEM

Here we briefly discuss the free-edge stress problem in symmetric laminates.
Figure 1 shows the laminate geometry, loading, and the domain modelled. Because of
the assumed symmetry of the lamination about the midplane and the constant straining
along the x-axis, the displacement field can be approximated (ref. 1) as

u=Ux+ Uly,z)

Viy,z)
Wly,z)

v

w

where U0 is a constant, K.
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The displacement field is three dimensional but it leads, when substituted into
- the Navier equations of equilibrium, to three partial differential equations in two
independent variables, y and z.

It is well known that the transverse normal stress, o,, is very large (un-
bounded) near the free edge. To reduce its magnitude a cap is used on the free
edge. The effect of the cap on the stress distribution o, is investigated. The
finite-element method with the four-node bilinear rectangular element is used to
model the computational domain. A refined mesh is used near the free edge and in the
cap.

Figures 2 and 3 show the distribution of the transverse normal stress ¢, along
the width of the laminate for [0°/90°]¢ and [45°/-45°]¢ Taminates, respectively,

(El 137.89 GPa, Ep = E3 = 14.48 GPa, Gyp = Gy3 = Gp3 = 5.86 GPa,
vi2 = vi3 = w3 = 0.21). Results for both capped and uncapped Taminates are

presented (for k = 0.001, b = 25.4 cm, h = 2.54 cm and thickness of the cap,

t = 0.08 cm). We observe that the stress is essentially zero inside the laminate but
has quite a large magnitude within a distance of y/b = 0.1 (one-tenth of the width)
from the free edge. Hence a Taminate theory is sufficient to model the interior,
while the quasi-3D can be used to model the free-edge stress field. The effect of
the free-edge reinforcement (i.e., cap) on the stress magnitude is significant; the
magnitude is reduced to less than one-third of that without cap.

For a more detailed and complete stress distribution near the free edge of a
more general laminate (e.g., without symmetry about the midplane), a three-
dimensional model is needed.

9. CONCLUSIONS AND RECOMMENDATIONS

9.1 AREAS NEEDING SUPPORT

A review of the literature shows there are very few cases of global-local

analyses of structural problems involving the "physical features" discussed earlier.
It is recommended that the following areas of global-local approaches be
investigated:

+ Global-local analysis of problems with "common features" outlined
earlier

+ Investigation and development of interface elements

o Feasibility of BEM as a computational tool for nonlinear problems and
its interface with FEM

+ Development of adaptive mesh refinements and time-stepping algorithms

« Exploitation of the vector and parallel processor computers for
efficient structural analysis
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« Finite-element calculations
« Solution of equations

« Eigenvalue computations

The use of parallel processors can dictate the solution procedures, for
example, iterative methods over one-step methods.

9.2 NASA'S INVOLVEMENT

NASA (CSM) should be involved in the global-local analysis development because
of the tremendous impact this field has on computational mechanics applied to space
structures. In particular, NASA should undertake the following tasks in the global-

local analysis area:
« Support individual grants (as opposed to large group grants)

+ Collaborate with university faculty and graduate students by identifying
specific problem areas and providing computational time and scientific
advice

+ Give graduate student residentships, during which students spend a few
weeks (perhaps the summers) at NASA

+ Conduct workshops (say, once in two years) to bring the latest
developments for critical evaluation and to set future directions.
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GLOBAL FUNCTIONS IN GLOBAL-LOCAL FINITE-ELEMENT ANALYSIS
OF
LOCALIZED STRESSES IN PRISMATIC STRUCTURES

Stanley B. Dong
University of California
Los Angeles, California

Abstract

An important consideration in the global local finite-element method
(GLFEM) 1is the availability of global functions for the given problem.

The role and mathematical requirements of these global functions in a GLFEM

analysis of localized stress states in prismatic structures are discussed.
A method is described for determining these global functions. Underlying
this method are theorems due to Toupin and Knowles on strain energy decay
rates, which are related to a quantitative expression of Saint-Venant's
principle. It is mentioned that a mathematically complete set of global
functions can be generated, so that any arbitrary interface condition
between the finite element and global subregions can be represented.
Convergence to the true behavior can be achieved with increasing global
functions and finite-element degrees of freedom. Specific attention is
devoted to mathematically two-dimensional and three-dimensional prismatic
structures, Comments are offered on the GLFEM analysis of NASA flat panel
with a discontinuous stiffener. Methods for determining global functions
for other effects are also indicated, such as steady-state dynamics and
bodies under initial stress.
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Introduction

The finite-element method (FEM) has revolutionized structural and
stress analyses in the last quarter of this century. Its impact has been
widespread, even extending beyond the preserve of structural engineers to
other fields. Although FEM is acknowledged as an extremely powerfu)
model ing technique, the analysis community with its collective experience
will admit that it is not the quintessential technique. There are problems
not well suited to FEM that result in clumsy, ineffective and costly
mathematical models. Examples can be cited from problems involving stress
singularities and infinite domains. To obviate the difficulties,
modifications to FEM have been explored. One alternate approach which
bodes considerable pramise i1s the so-called Global-Local Finite-Element
Method (GLFEM).

GLFEM utilizes both conventional finite elements and classical Ritz
functions in the modeling process. Their respective roles are readily
apparent; finite elements work well in regions where complicated geametry
and inhomogeneous material characterizations prevail, and Ritz functions,
hereinafter referred to as global functions in GLFEM, enable the behavior
other regions to be represented accurately and efficiently. At this stage
of development, GLFEM can be assessed to be in its maturing phase. It is
of good 1ineage, has already exhibited an enhanced capability above FEM in
certain problems, and pramises effectiveness in other classes of problems
upon its full development.

Herein, GLFEM as applied to the analysis of localized stresses in
prismatic structures is discussed. First, the essence of GLFEM and
various GLFEM modeling layouts are summarized. A brief review of some
problems that have been successfully analyzed by GLFEM is given. Then,
the main theme relating to GLFEM analysis of localized stress states is
addressed. Prismatic structures that can be described mathematically
by two spatial variables are discussed first. Attention is devoted to
the global functions, their development and their roles in the present
setting. Then, three-dimensional structures are considered, with
reference to the NASA example problem, where an outline of a method of
attack is given. Last, comments on the analysis of localized stresses
involving steady-state dynamic effects as well as other conditions are
given.

Basic Concepts of GLFEM and the Various Mesh Configurations

Hamilton's principle, or alternatively the theorem of minimum
potential energy when no inertial effects are present, may be considered
as the basis for generating GLFEM equations. The theory and variational
derivation of these equations may be found in Ref. [1,pp.451-474]., Also
included therein is a survey of GLFEM contributions to the 11iterature up
to 1982.

As noted earlier, the technique utilizes finite-element modeling with
classical Ritz approximations simultaneously. It enjoys the advantages of



more versatile modeling capabilities with substantially fewer degrees of
freedom. Various global/local modeling configurations are illustrated in
Fig. 1. Figs. la and 1f represent, respectively, the classical Ritz and
finite-element configurations. The others are possible GLFEM mesh layouts.
In a given problem, the modeling may take the form of any one of these con-
figurations or a combination of two or more of them for various subregions.
An important key is the enforcement of kinematic inter-regional continuity
between various global and local subregions by means of constraint equa-
tions. In problems on localized stress states, only the Fig. lc configura-
tion will be used, where finite elements exclusively are used in one sub-
region and global functions in the other. Moreover, the global subregion
may be infinite in extent.

The governing matrix equations in a GLFEM analysis have the form:

[K,yd K, 2| €8 M1 DM, 1]l €6 {F,}
[Kged [Kggd]| 153 Mgy Mg 1]l (5) (F,}

where {8} denotes the finite-element degrees of freedom and {S} contains
the array of generalized coordinates associated with the global functions.
In Eq. (1), [Kggl » [Mggl, [Kyy1, and [Myp]refer to the global and Tocgl
stiffness and mass matr?ces of the system. The matrices [Kgql = [Kpq1

and [Mggl = [Mgq 17 represent global-local coupling from imposSing kinématic
continu?ty at 1nterface(s) between subregion(s). Details on the formation
of these matrices may be found in Ref. [1].

It is mentioned that GLFEM variants are possible, which do not lead
to the same set of governing equations as Eq. (1). These variants contain
the spirit of GLFEM and employ the modeling configurations shown in Fig. 1;
however, the method of enforcing inter-regional continuity may differ. An
application concerned with elastic wave scattering will {llustrate one such
variant,

Another key point in GLFEM is the availability of an appropriate set
of global functions for a given problem or a class of problems. The
accuracy and effectiveness of the method are dependent upon the quality
of the global functions. The choice of these global functions for the
analystis of lccalized stresses in prismatic structures and their method
of derivation will be discussed in what follows. It will become apparent
why these global functions, together with the finite-element model of
the subregion that contains the localized stresses, will lead to a
superior model.

Same Examples of Global Functions for GLFEM

Two areas ideally suited to GLFEM are fracture mechanics and 1nfinite
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and/or semi-infinite domain problems. Much has been published on various
aspects of fracture mechanics problems. Many numerical methods have been
used, many falling within a GLFEM classification or its variants. The
global subregion model usually takes the form of special crack tip
elements, where the singular stress field is incorporated into the
stiffness matrix. These elements are well known. No further elaboration
on this subject will be given here, Elastostatic analyses of half-space
problems, wherein the far field behavior is represented by global functions
(for example, Boussinesq or Cerruti solutions), have also met with
considerable success. A number of references on both of these subjects
may be found 1n Ref. [1].

Herein, two recent GLFEM applications are mentioned to emphasize the
roles of the global functions and their mathematical suitability. They are
concerned with (1) steady-state elastic wave scattering by axisymmetric
objects embedded in an infinite isotropic medium and (2) steady-state
soil-structure interaction {nvolving an axisymmetric structure occupying
some locale in a semi-infinite medium. The feature of note 1s that these
global functions constitute a complete set of eigenfunctions and have the
capability of mathematically representing an arbitrary scattered field to
any given accuracy. Hence, the true behavior in the far field can be
achieved.

In Fig. 2 1s shown an elastic, axisymmetric i1nclusion embedded in an
etastic, isotropic medium. Because finite elements are used for the object
it may have inhomogeneous, orthotropic properties. The finite-element
subregion includes this object and a portion of the surrounding medium.

For convenience in the analysis, the interface is taken to be spherical.
Outside of the finite-element subregion is the outer field, where a
complete set of outgoing spherical hamonics is used to model the scattered
field. Each component satisfies the equations of motion and the Sommerfeld
radiation conditions. The global functions have specific stress and
displacement distributions at the interface, and their undetermined
strengths are the global function coefficients or the terms in {S}. A
given incident wave illuminates this object. The scattered field is
determined by solving the finite-element equations and requiring that the
sum of incident and scattered wave fields based on the global functions
have both traction and displacement continuity with the finite-element

data at the interface. Details of this analysis may be found in Ref. [2].
Here, attention is called to the mathematical flexibility of the global
functions for accommodating interface continuity to any precision with a
sufficient number of terms.

The dynamic soil-structure interation problem under steady-state
conditions is shown in Fig. 3. The approach used here is similar to that
for elastic wave scattering by an object embedded in the entire space.

In fact, the same set of spherical harmonics for the entire space may be
applied to this half-space probiem. However, traction-free surface
conditions are not satisfied by the spherical hamonics. Thus, 1in
addition to traction and displacement continuity at the hemispherical
interface, it is necessary to enforce the traction-free surface 1n the
global subregion. In Refs. [3,41, details concerning an integral



constraint condition to meet this traction-free surface condition are

given. Again, it is noted that because a complete set of global

functions is used (that is, a set capable of modeling any arbitrary traction
and displacement conditions between various subregfions in a GLFEM layout),
the analysis procedure enjoys the opportunity of converging onto the

true behavior with increasing FEM and global degrees of freedom.

Mathematically Two-Dimensional Structures

The choice of global functions for mathematically two~-dimensional
structures will now be discussed. As {llustrations of this class of
problems and their GLFEM layouts, refer to Fig. 4, where examples of a
laminated composite plate and cylinders are given. The double lap joint
may be considered as a plane strain problem herein. The scarf joint
Joining two cylinders may be taken as an axisymmetric structure under
axisymmetric or asymmetric loads. The purpose is to study the stresses
in these joints.

Uniform stress states exist at points well away fram these localized
stress regions. If FEM were used, it 1s obvious that an awkward model
would result. In GLFEM, two-dimensional finite elements (planar or
axisymmetric toroidal elements) are used for the subregion containing the
localized stresses. If the localized stress state contains a singularity,
a global subregion within the finite-element subregion may be added. The
interface location 1s dependent on the global functions' mathematical
capability for capturing the transitional stress and displacement fields
accurately. For global functions capable of representing the true
behavior, the finite-element subregion can be quite small with the
interface(s) near to the localized stress area. An independent set of
global functions must be adopted at each interface. For the lap joint
in Fig. 4, two or three distinct systems of global functions may be
needed depending on the thickness and material properties of the plate
components. Each set of global functions is associated with its own
set of generalized coordinates or global coefficients. For the
cylindrical scarf joint, two independent sets are needed.

The global functions in these casesare based on theorems relating to
a quantitative expression of St. Venant's principle. Toupin [5] and
Knowles [6] presented upper bound estimates of strain energy decay rates
in terms of distance from a self-equilibrated stress state. Their
results can be stated in the form of a strain energy inequality:

Vix) < V(0) e &YX (2)

where Y is the inverse of the characteristic decay length, V(0) is the
total strain energy and V(x) is that portion of V(0) in the body beyond
x. Since the strain energy is quadratic, the mechanical variables such
as stress, strain and displacement are of the forms:
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wvhere Ki (i=1,2,3) are constants.

Based on these theorems, a boundary-value problem can be formulated
for a prismatic structure. Using the solution form in the prismatic
direction as e~YX, the analysis leads to an eigenvalue problem. The
eigenvalues Y's are the characteristic inverse decay lengths and the
eigenfunctions are distributions of self-equilibrated stress states.
These efigendata comprise a complete set from which any arbitrary seilf-
equilibrated stress state may be represented. These eigendata may be
used as global functions for describing the far-field behavior in a
prismatic structure. Horgan and his colleagues have solved a number
of problems on hamogeneous and sandwich plates under plane strain using
the Airy stress function as the primary dependent variable (see, for
examples, Refs. [7,8]).

For a Taminated composite structure, it is more convenient to
determine the eigendata numerically. Dong and Goetschel [9] developed
a one~dimensional finite-element analysis for extracting eigendata for
a laminated composite plate with an arbitrary number of bonded, elastic
Taminates. Finite-element discretization occurs in the thickness
direction, see Fig. 5. Applying the theorem of minimum potential energy.
a system of second-order ordinagx differential equations is obtained.
By invoking exponential decay e X, the following second-order algebraic
eigenvalue problem results:

K 3} - vk 1{a} + YZEK3]{Q} = 0 (4)

where {Q} is an ordered set of the plate's nodal displacements. This
equation is reducible to first order with a non-symmetric matrix. If a
large number of degrees of freedom are involved, a Block-Stodola {teration
technique [10] can be used to extract the eigendata efficiently. The
solution consists of a complete set of eigenvalues and corresponding
eigenvectors, which are the sel f-equilibrated displacement states for the
given composite plate. Stresses can be computed from these displacements.

Laminated cylinders may also be solved using the same finite-element
scheme, see Ref. [11]. The mechanical variables have circumferential
dependence, which may be expressed analytically by Fourier series. As
a circunferential mode number m occurs in this case, the counterpart to
Eq. (4) for each circumferential mode has the form:

K (MIQ@ - YIKmIQ + Y2[K3(m)]{0} 0 (5)

The solution to Eq. (4) or (5) provides the global function data
base for the numerical evaluation of the global stiffness matrix and the
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global-Tlocal coupiing as a prelude to a mathematically two-dimensional
GLFEM analysis of the localized stress zones. Some preliminary results
of this type have been obtained, which are contained in Refs. [12,13].
These 1imited scope studies indicate an overall feasibility for this
approach.,

The accuracy of the global functions depends on the fineness of the
one-dimensional finite-element model adopted for the eigenproblem. Since
only one-dimensional finite elements are used, a large model does not incur
an inordinate computational effort because of a very small bandwidth.

The number of global functions required in a GLFEM analysis depends
on both the nature of the localized stress and the location of the
interface. Having an interface near the localized stress zone will
require a larger number of global functions, but with a decrease in the
finite-element coordinates. Conversely, an interface far removed from
the localized zone needs fewer global functions, but is counteracted by
a greater number of finfte-element degrees of freedom,

Three~Dimensional Structures and the NASA Problem

A schematic of a three-dimensional prismatic structure and the NASA
problem of a flat stiffened composite panel with a discontinuous stiffener
are shown in Fig. 6. In this class of problems, three-dimensional finite
elements must be employed in the localized stress region. Global functions
must be used at the interface. They can be obtained from a two-dimensional
finite-element analysis of the inverse characteristic decay lengths.

The analysis to determine the global functions follows the same
methodology as that for mathematically two-dimensional structures. The
prismatic cross-section is modeled by two-dimensional finite elements.
With the dependence in the prismatic direction taken as e Y%, an
eigenproblem emerges for the extraction of eigendata that form the
global function data base for the given cross section. The other
aspects are the same as that described in the previous section., It is
obvious that,in this case, the computational effort is greater.

Some comments can be given on a GLFEM analysis of the NASA flat panel.
The set of two-dimensional global functions constitutes a complete system
of eigenfunctions, with the non-zero eigenvalues associated with inverse
characteristic decay lengths of sel f-equilibrated stress states. There
are two zero eigenvalues for two stress distributions exhibiting no decay.
They are the uniform axial deformation and pure bending states. These two
global functions are needed in a GLFEM analysis of the NASA flat panel,
since the discontinuous stiffener may produce bending in addition to its
uniform end shortening. A set of global functions with all of these
members present should permit a three-dimensional finite-element model
to be concentrated on the details of the discontinuous stiffener region.
Parametric studies wherein the hole and the gap length in the
discontinuous stiffener are varied may be conducted. Each configuration
will require a change of the three-dimensional finite-element mesh, but
the same set of global functions may be used in all cases.
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Applications to Steady-State Problems

The discussion of global functions in the two earlier sections
pertained to elastostatic analysis of the localized stress zones. Here
some remarks on steady-state dynamic effects are made. The one-dimensional
finite-element method for generating global function data bases can be
modified for steady-state inertial effects by including kinetic energy in
the problem formulation. Instead of Eqs. (4) and (5), those equations
become, respectively:

K@ = vl + Yk + ofmMl@ = o (6)

Ky (m1Q} - YIK,(mliQ} + Y2[K3(m)]{0} + oM@ = o0 7

where w is the steady-state forcing frequency. The derivations of these
equations are given in Refs. [11,14].

With these global functions, 1t i1s possible to study elastic wave
scattering in prismatic structures by discontinuities during vibration
or by some other steady-state dynamic input. GLFEM analysis of this
type of prismatic structures will be similar to problems of elastic wave
scattering by an object embedded in an infinite medium or soil-structure
interaction.

Effects of Initial Stress

Using the same methodology, prismatic structures under 1nitial
stress may also be analyzed. In this case, the global functions must
include the prestressing effect. One-dimensional finite-element
analysis of wave propagation in laminated composite plates and cylinders
under initial stress have been explored, see Refs. [15,16]. It is a
straightforward task to adapt these formulations to generate an
eigenproblem for the global functions for a prismatic structure under
initial stress. Also, no conceptual difficulties are seen 1n an
extension to three-dimensional prismatic structures under prestress.

Concluding Remarks

Considerable discussion has been devoted to the strategies of GLFEM
analyses of prismatic structures with localized stress regions and other
discontinuities. The role of the global functions has been clearly
outlined and their mathematical requirements indicated. The method
for deriving these global functions for prismatic structures, whose
cross-sectional geometries are complicated by laminated construction,
has been discussed. From the discussion of GLFEM analysis strategy,
it should be clear that GLFEM 1s feasible and effective. Oonsfiderable
economy of computational efforts over a strictly FEM approach should
be realized.
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ABSTRACT

An assessment is made of the potential of different global-local analysis
strategies for predicting the nonlinear and postbuckling responses of
structures. Two postbuckling problems of composite panels are used as bench-
marks and the application of different global-local methodologies to these
benchmarks is outlined. The key elements of each of the global-local
strategies are discussed and future research areas needed to realize the full
potential of global-local methodologies are identified.

NOMENCLATURE
EL’ Ep Elastic moduli of the individual layers in the
direction of fibers and normal to it, respectively
GLT' GTT Shear moduli in plane of fibers and normal to it,
respectively
h Thickness of panel
L1, Lo Side lengths of panel
N Total axial force acting on the edge of the panel
q Edge displacement
R Radius of curvature of the panel middle surface
r Number of global approximation vectors
U Total strain energy of the panel
ua, W Displacement components in the coordinate directions
Xa’ x3 Orthogonal curvilinear coordinate system
VLT Major Poisson's ratio of the individual layers
61 Axial strain
The range of the subscript a is 1,2.

1. INTRODUCTION

Considerable progress has recently been made in computational mechanics
which is manifested by the development of versatile and powerful finite-
element discretization methods, improved numerical algorithms and programming
techniques (see, for example, BELYTSCHKO & HUGHES [1983]; NOOR & PILKEY
[1983]; NOOR [1983]; LIU, BELYTSCHKO & PARK [1984]; and KARDESTUNCER
[1985]). Also, an explosive growth has taken place in computer technology.
In particular, the introduction of large expensive computer systems, usually
referred to as supersystems, such as CRAY X-MP, CDC CYBER 205 and Denelcor
HEP1 has made possible new levels of sophistication in the modeling of complex
structures which were not possible before (NOOR, STORAASLI & FULTON [1984]).
In spite of these advances the detailed stress analysis of complex structures
is very time consuming and, therefore, is not economically feasible. To date
the only realistic structural response simulations that have been obtained
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involve either simple structural configurations or components of complicated
configurations. Prediction of the response of future complex structures such
as those of flight vehicles is likely to require more sophisticated analysis
models than has heretcfore been done. This is because of the requirements of
high performance, light weight and economy and the associated stringent design
criteria. Also, analysis may of necessity replace tests in some mission-
critical areas.

Among the different analysis methodologies that have high potential for
the accurate prediction of detailed stress distribution in structures without
overtaxing the available computational resources are the global-local
methodologies which are basically hybrid modeling and/or analysis fechniques.
In order to put these methodologies in proper perspective, a brief summary is
given of the different approaches for reducing the cost and/or time for
solving nonlinear problems. The efforts devoted to this activity can be
grouped into three different levels.

The first level is modeling. Reductions in cost of analysis can be
achieved by using simple models that capture major effects in the responses
and by exploiting all the symmetries and quasi-symmetries in the problem (see
NOOR & PETERS [1985]; and NOOR, ANDERSEN & TANNER [1985]).

The second level is that of computational strategies. Significant re-
ductions in time can be achieved by incorporating the known physical behavior
into the computational model of the structure and by using global-local
methodologies in which different analysis methods and/or models are coupled
for predicting the nonlinear response of the structure.

The third level is that of numerical algorithms. These include fast
algorithms for solution of equations (e.g., multigrid methods, operator
splitting techniques, dynamic relaxation, and element-by-element techniques
-HACKBUSCH & TROTTENBERG [1982]; UNDERWOOD [1983]; and HUGHES, RAEFSKY,
MULLER, WINGET & LEVIT [1984]); as well as the vectorized and parallel
numerical algorithms for use on pipeline and parallel processors (SCHENDEL
[1984]; MIKLOSKO & KOTOV [1984]; and PADDON [19841]).

The present study deals with global-local methodologies which belong to
the second category. Specifically, the objectives of this paper are:

1) To review and assess the potential of a number of different global-
local analysis strategies for predicting the nonlinear and postbuckling
responses of structures

2) To identify the future directions for research required to realize
their full potential

Discussion of global-local methodologies is primarily focused on
nonlinear analysis of composite panels with discontinuities (e.g., stiffeners
and cutouts). Two benchmark problems of composite cylindrical panels with
cutouts typical of those used in modern aircraft structures are selected to
provide a focus for the discussion. However, many of the conclusions apply to
other complex structural configurations.

The paper is divided into three parts. The first part describes the two
benchmark problems, identifies their major characteristics, and lists the
difficulties encountered in analyzing them using conventional finite-~element
methods. In the second part of the paper four global-local analysis
strategies are reviewed and the potential for using these strategies in
analyzing the benchmark problems is assessed.

The third part of the paper identifies the items that pace the progress
of global-local methodologies and their application to nonlinear analysis.
These are the recommended future directions of research.
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2. BENCHMARK PROBLEMS AND THEIR CHARACTERISTICS

The two benchmark problems selected for this study are shown in Fig. 1.
They are postbuckling problems of laminated composite cylindrical panels with
central circular cutouts. The loading consists of applied axial end
displacements. One of the panels is unstiffened and the other has discrete
blade stiffeners. The two panels are generic examples of modern composite
aircraft components for which postbuckling strength is desired in the presence
of local discontinuities such as holes and cracked stiffeners. In the
conventional finite-element approach the panels are modeled using two-
dimensional shell elements and the stiffeners are modeled using two-
dimensional plate elements. The unstiffened panel was analyzed using an in-
house research program. Shear-flexible mixed finite elements were used in the
modeling (see NOOR & ANDERSEN [1982]). Also, extensive numerical solutions to
this problem using continuum-based shell elements are presented in STANLEY
{1985] in which the imperfection sensitivity of the panel is assessed. The
stiffened panel was analyzed using the EISI-EAL program and the analysis
results are given in KNIGHT, GREENE & STROUD [1985]. The characteristics of
the finite-element models used in the present study and those used in KNIGHT,
GREENE & STROUD [1985] are summarized in Table 1. The response of both panels
exhibits inversion symmetry, and therefore, only one half of each panel needs
to be analyzed (see NOOR, MATHERS & ANDERSON [1977]). The numbers between
parentheses in Table 1 refer to the number of elements and degrees of freedom
required for analyzing the full panel.

The response of the unstiffened panel is shown in Figs. 2 and 3. The
postbuckling response of the panel exhibits a sudden drop in the loading due
to delamination in the neighborhood of the cutout (see KNIGHT & STARNES
[1984]). Figure 2 shows plots of the total axial load versus axial and normal
displacements up to the maximum load reached. For the range of loading
considered, the results shown in Fig. 2 agree reasonably well with the
experimental and numerical results presented in KNIGHT & STARNES [1984].

Figure 3 shows normalized contour plots of the axial and normal displace-
ments as well as the axial strains on the top and bottom surfaces. Note the
high strain concentration at the cutout. A finer model near the cutout is
required for the accurate prediction of the strain in that region. On the
basis of the studies made, the following characteristics of the two benchmark
problems can be identified:

1. The presence of discontinuities (cutouts and stiffeners) results in
large numbers of degrees of freedom in the finite-element models.

2. The detailed stress analysis (including determination of interlaminar
stresses) near the cutout requires either a higher order two-dimensional
theory or a three-dimensional theory. Failure analysis (including prediction
of delamination) requires even more sophistication in the modeling and
analysis.

3. The postbuckling response exhibits large rotations in certain
regions.

4. The postbuckling response of the unstiffened panel is highly
sensitive to initial imperfections. Tracing the postbuckling response past
the maximum load point requires the inclusion of initial imperfections in the
model (see STANLEY [1985]).

3. GLOBAL-LOCAL ANALYSIS STRATEGIES

In this section, the application of four different global-local analysis
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strategies to the prediction of the nonlinear response of benchmark composite
panels is discussed. 1In each case, the key features of the global-local
approach and the requirements for its effective implementation are identified.

3.1 Zooming Technique

The first global-local approach considered is the zooming technique in
which a global solution is obtained using a coarse grid. Then the detailed
stress distribution near the cutout (local solution) is obtained by zooming on
that area, refining the model, and using the displacements from the coarser
model as input for the refined model (see Fig. 4). Single or multiple levels
of zooming can be made corresponding to multiple passes from coarse to fine
subdivisions (WILKINS [1983], and HIRAI, UCHIYAMA, MIZUTA & PILKEY [1985]).
Interelement compatibility can be maintained by either embedding the region of
the fine grid into a superelement or by using transition elements at the
interface between the coarse and the fine grids (ARMEN, Grumman Aircraft
Systems, Bethpage, NY, Private Communication, 1985).

A number of questions remain in connection with this technique, namely:

1. Limitations of the technique for nonlinear problems

2. Criteria for selecting the extent of the region for refining the
model and selection of the refined model

3. Treatment of the interfaces between the coarse and the fine grids and
the effect of the error on the boundary data for the refined model on the
accuracy of the stresses in that model

The early work on zooming techniques was based on heuristic and intuitive
approaches for selecting the fine model. More recent work is based on the
distribution of the strain energy density function. Currently, a variety of
adaptive refinement techniques are available. Some of these techniques will
be discussed in subsequent sections.

3.2 Simultaneous Application of Two Discretization Techniques

The early applications of this approach consisted of the simultaneous use
of the finite-element method and the global (classical) variational technique
(see MOTE [1971]). A variety of options are available depending on the extent
of using each of the two techniques in the model (DONG [1983]). The concept
has been later generalized to cover other techniques for the global
(approximate) solution and the local (detailed) solution. A list of the
common techniques used for generating these solutions is shown in Table 2.

The global solution can be obtained by using classical variational
methods (e.g., Rayleigh-Ritz or weighted-residual approaches), or any of the
discrete element methods (conventional finite elements, global elements,
boundary element method) or their combinations. In the global (or macro)
element method the structure is divided into a small number of elements and a
suitable (usually nonpolynomial) approximation is made within each element.
The continuity of the field variables across the interfaces is imposed
impliecitly in the variational functional (DELVES & HALL [1979], and DELVES &
PHILLIPS [1980]). The global element method is a compromise between classical
variational techniques and finite-element method. It combines the rapid
convergence of global variational methods with the ability to handle
complicated geometries.

The boundary element method is an effective technique for solution of
linear and materially nonlinear structural problems with high stress gradients
(or singularities). However, it is not competitive with either the finite-
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element or the global element method for geometrically nonlinear problems (see
KAMIYA & SAWAKI [1982]; and KAMIYA, SAWAKI & NAKAMURA [1984]).

Among the different techniques for local analysis are the discrete ele-
ment methods and analytical solutions (e.g., polar and/or edge functions
PATTIBIRAMAN, RAMAMURTI & REDDY {1974]). Figure 5 shows three different
combinations of discrete element methods for analyzing the unstiffened
composite panel.

The effective implementation of this global-local strategy requires:

a) criteria for selecting the proper global and local analysis techniques and
b) problem-adaptive strategies for generating global solutions and treatment
of interfaces.

3.3 Reduction Methods

These are hybrid two-step techniques which are based on the successive
application of a discrete element method (finite elements, boundary elements
or combination of finite elements and boundary elements) and classical
variational techniques (see, for example, NOOR [1982]; and NOOR & PETERS
[1983]1). The discrete element method is used to generate few global
approximation vectors (or modes). The classical variational technique is then
used to compute the amplitudes of these modes. The primary objective of using
reduction methods is to reduce considerably the number of degrees of freedom
in the initial discretization, and hence, reduce the computational effort
involved in the solution of the nonlinear problem.

The application of reduction methods to the unstiffened composite panel
problem is depicted in Figs. 6 and 7. Figure 6 shows the accuracy of the
normal displacements and total strain energy obtained by using four global
approximation vectors (generated at zero loading). Figure 7 shows contours of
the normal displacement w of the first three global approximation vectors.

Two recent applications of reduction methods deserve further examination.
In the first, only partial reduction is made. The degrees of freedom in the
region of strong nonlinearity (e.g., near the cutout) are retained; the other
degrees of freedom are reduced. In the second application, the response of a
complex structure (e.g., stiffened panel) is generated using small (or large)
perturbations from the response of a simpler system (e.g., unstiffened
panel). It is also possible to use a hierarchy of simpler structural systems
in generating the response of the original complex structure. This is
accomplished by choosing a number of perturbation parameters, and successively
applying a single-parameter reduction method with each of the parameters.
Application of this strategy to the nonlinear analysis of anisotropic panels
is described in NOOR [1985].

The wide acceptance of reduction methods and their incorporation into
commercial programs requires: a) the selection of a simple set of global
approximation vectors and b) the development of a problem-adaptive. strategy
for error sensing and control.

3.4 Hierarchy of Mathematical Models and/or Numerical Approximation
Techniques

The last global-local approach considered is that based on a hierarchy of
mathematical models for different parts of the structure. The application of
this approach to the stiffened composite panel is depicted in Fig. 8 where a
heuristic choice is made of the mathematical models. For the panel a
boundary-layer (or a higher order two-dimensional) theory is used near the
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cutout, followed by a first-order shear deformation theory, and then a
classical shell theory. For the stiffeners, a plate theory is used near the
cutout, followed by a thin-walled beam theory and then a shear deformation or
a classical beam theory. The effective implementation of this approach
requires the following:

1. Systematic procedure for generating the hierarchy of mathematical
models (e.g., the method of initial functions of V. Z. Vlasov - VLASOV &
LEONTEV [1966]; and IYENGAR, CHANDRASHEKHARAN & SEBASTIAN [1974]); or the
asymptotic integration technique - GOLDENVEIZER [1976])

2. Criteria for the adaptive refinement of the mathematical model

3. Treatment of the interfaces between the different regions

4, TREATMENT OF INTERFACES

The treatment of interfaces is one of the key elements of the global-
local analysis. The two commonly used approaches for maintaining displacement
compatibility and traction reciprocity at the interfaces are: 1) Lagrange
multiplier method; and 2) penalty function method. The second approach has
the advantage that it does not lead to any extra unknowns or equations (DELVES
& HALL [1979]). The numerical problem associated with increasing the penalty
weight, to meet constraint satisfaction tolerances can be overcome by using
the iterative procedure described in FELIPPA [1978].

5. QUALITY CONTROL OF NUMERICAL SOLUTIONS

One of the most difficult aspects of numerical modeling is the validation
of the results and ensuring that a given model is adequate for the particular
problem at hand. In general, there are three types of errors in the numerical
solution. These errors are (see UTKU & MELOSH [1984]):

1. Mathematical modeling errors, which result from the simplifications
made in abstracting the mathematical model from the real structure.

2. Discretization errors, which are caused by the numerical discreti-
zation of the continuous mathematical model.

3. Manipulation errors, which are caused by: a) the finite precision
of the computers (limitation in representing real numbers due to the finite-
ness of the computer word length); and b) the errors resulting in the process
of solving the equations of the discrete model (e.g., using iterative
methods).

In this paper only the second type, namely: discretization errors, is
considered. There are two classical approaches for estimating these errors
(KELLY, GAGO & ZIENKIEWICZ [1983]).

1. Extension methods - based on reanalysis of the structure on a
sequence of meshes of increasing refinements (h extension); with a hierarchic
set of interpolation polynomials (p extension); or using a combination of the
two (h-p extension).

2. Dual (or complementary) procedure - based on obtaining two solutions
with two different computer programs to provide bounds on global response
characteristics.

Both of these approaches are too expensive for practical implementation.

In recent years, considerable effort has been devoted to the development
of a posteriori error estimates that are based on information obtained during
the solution process itself (KELLY, GAGO & ZIENKIEWICZ [1983]; BABUSKA & GUI
[1985]; SZABO [1984]; and SPECHT [1984]). For structural mechanics problems,
all these error estimates were developed for compatible displacement models.




Among the error estimators developed to date are the following two:

1. Local energy norm error. This is the square root of the strain
energy of the error. This is a local-global measure in the sense that it
measures a global response characteristic, locally (within an individual
element). In nonlinear problems, the measure can be used by linearization
around a nonlinear solution and evaluating the energy norm of the linearized
problem.

2. Interior and boundary residuals. These represent the equilibrium
defects in the interior on the portion of the boundary where tractions are
prescribed as well as the jumps in the tractions at interelement boundaries.
For uniform grids with linear, bilinear and trilinear shape functions the
contributions of the jumps dominate the residual and, therefore, the residual
can be approximated by the traction jumps. A simple approximate method of
evaluating these residuals for elements with hierarchic shape functions was
given in KELLY, GAGO & ZIENKIEWICZ [1983].

The error estimators, in addition to providing information about the
quality of solutions, form the basis for adaptive improvement of the finite-
element solution. This can be accomplished by enriching or improving the
approximation using one of the following approaches (or possibly, their
combinations).

1. Refining the mesh

2. Moving the nodes (node relocation)

3. Increasing the local order of the approximation

4, Using the iterated defect correction method

The third approach has the advantages over the first two of being easy to
implement and of providing a simple formula for the error estimator. The
fourth approach is based on using the numerical solution obtained to con-
struct a pseudo or neighboring problem whose exact solution is known (e.g.,
polynomial or spline interpolation of the discrete numerical solution). The
pseudo problem is then solved using the same finite-element model as that used
for the original problem. The error in the pseudo problem is assumed to be a
close approximation of the error in the original problem and is used as a
correction to that solution. The technique has been successfully applied to
the numerical solution of stiff systems of ordinary differential equations and
appears to have high potential for application to finite-element boundary
value-problems (ZADUNAISKY [1976]; FRANK, HERTLING & MONNET [1983]; and BOHMER
& STETTER [19841]).

6. POSTPROCESSING AND STRESS CALCULATION

In displacement finite-element models, the strain energy of the structure
is the highest quality information that can be extracted from the finite-
element solution. The accuracy and rate of convergence of stresses depend on
how (and where) they are computed. Several approaches have been suggested for
improving the accuracy of stress calculations (see, for example, HINTON &
CAMPBELL [1974]; CAREY [1982]; ZIENKIEWICZ, XI-KUI & NAKAZAWA [1985]; and
BABUSKA & MILLER [1984]). Among these are:

1. Evaluating the stresses at numerical quadrature points and deter-
mining their values at the nodes by extrapolation

2. Computing the stresses using the discarded structural equations
(corresponding to prescribed displacement boundary conditions)

3. Averaging or smoothing based on projection techniques

4. Using influence function methods
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The first approach is by far the most commonly used. Superconvergence
(increased accuracy and improved rates of convergence) has been observed for
stresses evaluated at quadrature points. Note that the stresses cannot have a
faster convergence than the strain energy. The second approach is parti-
cularly useful for evaluating the stresses at the boundaries. The third and
fourth approaches improve the accuracy of stress predictions through the
filtering of spurious oscillations. A systematic assessment of the latter two
approaches is needed.

7. FUTURE DIRECTIONS FOR RESEARCH

Global-local analysis strategies have high potential for the reliable and
efficient prediction of the nonlinear response of complex structures subjected
to different loadings. To realize this potential the global-local strategy
must include the following seven key elements:

1. Rational selection of a hierarchy of mathematical models for
different parts of the structure and a strategy for the adaptive refinement of
these models

2. Use of global (or macro) elements for discretization whenever approp-
riate with interface conditions satisfied via exterior penalty method

3. Use of reliable failure criteria and discrete elements that account
for the progressive failure mechanisms

4, Application of operator splitting in conjunction with reduction
method for generating the response of the complex structure by using large
perturbations from the response of a simpler structure

5. Postprocessing to increase the accuracy of stress calculations

6. Quality control of numerical solutions

7. Exploiting the computational power of new multiprocessor machines
through parallelization of the problem formulation, computational strategy as
well as the numerical algorithms.

Each of the aforementioned key elements requires major development to
reach the level of maturity needed for routine inclusion in the global-local
strategy. To this end, there are pacing items that must be addressed by the
research community. Among the items that pace the progress of global-local
methodologies are the development of:

1. Criteria and control parameters for selecting the mathematical model,
as well as adaptive strategies for refining the model whenever needed. Also,
strategies for blending regions of different structural behavior (e.g.,
boundary layer, two/three dimensional models of the structure).

2. Reliable failure criteria and shell elements that account for the
composite delamination mechanisms.

3. Simple and accurate techniques for stress calculations which provide
the same accuracy as that of the strain energy.

4, Error estimation and adaptive improvement strategies. This is an
area which requires more attention by researchers. In particular, error
estimators that satisfy the following four criteria need to be developed for
nonlinear analysis:

a) provide reliable local assessment of the error with extrapolation to
global estimation

b) computationally inexpensive to evaluate

c) applicable to a wide class of discrete elements

d) easy to use in conjunction with adaptive improvement

5. Parallel computational strategies for multiprocessor computers.




These strategies include the use of: a) primitive variables (e.g., three-
field mixed formulation); b) domain decomposition (with minimization of
interfaces); and c¢) operator splitting to uncouple the algebraic equations.

In addition, the intense research effort currently under way on parallel
numerical algorithms (see, for example, NOOR [1983], and PADDON [1984]) should
be brought to bear on global-local methodologies. Due to the wide variety of
new parallel computers, the idea of developing macro algorithms which are
efficient on different parallel machines should be investigated. The
numerical tasks in these algorithms are performed by different programs which
are optimized for each of the individual machines.

CONCLUDING REMARKS

A review and an assessment were made of global-local strategies for the
nonlinear analysis of structures. To provide a focus for the discussion two
benchmark problems of postbuckling of laminated composite cylindrical panels
were selected. The major characteristics of these problems were identified.

A number of global-local analysis strategies were reviewed, their
potential for solving the benchmark problems discussed and their shortcomings
delineated. Also, error estimation and postprocessing techniques were
reviewed.

The items that pace the progress of global-local methodologies are
identified and are, therefore, recommended as future directions for
research. These include the coupling of different global-local methodologies;
postprocessing and stress calculation methods; quality control and adaptive
improvement of numerical algorithms; and effective computational strategies
for new computing systems.
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TABLE 1. CHARACTERISTICS OF THE FINITE-ELEMENT MODELS USED FOR THE BENCHMARK

PROBLEMS

Unstiffened Panel

Blade~Stiffened Panel
(Knight, Greene & Stroud [1985])

Mesh 1 Mesh 2
Type of Element Mixed, 9-Noded « Hybrid 4-Noded -
Number of 66 188 544
Elements (376) (1088)
Number of Displace~
ment Degrees of 1338 (;Zgg) (;ggg)
Freedom®

TABLE 2. PARTIAL LIST OF THE COMMONLY USED TECHNIQUES FOR GLOBAL AND LOCAL

ANALYSES

GLOBAL (APPROXIMATE) ANALYSIS

LOCAL (DETAILED) ANALYSIS

o Global variational methods

o Discrete element methods
o Conventional finite elements
o Global element method
o Boundary element method

o Analytic solutions

o Discrete element methods
o Conventional finite elements
o Special elements
o Superelements
o Boundary element method

0 Analytic solutions
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16-PLY UNSTIFFENED PANEL BLADE STIFFENED PANEL

L, =1,=0.356m

1= %

R=0.381m,
h=2.276x10" m.
£ = 13lx 101 pa
£ = 1.303x10' pa ™~ 25-PLY SKIN
Gy = 6.412% 10° Pa Boundary conditions |:45/02/;45/03/:45/03/-45103/zd5/02/.aslT
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ULT=O'392 ul=;q/2, Uy =W= o, = m2=0 WIT
Fiber orientation. At X, = & L2/2
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Figure 1. Benchmark problems considered in present study.
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Figure 2. Nonlinear response of unstiffened panel subjected to end
shortening (see fig. 1).

ORIGINAL PAGE s
. OF POOR QUAL(TY



32b— - = ST
/ €€, ! T0P SURFAGE

-ax
! ! [ |
J

0 015 0.3 0.45 0.60

~m
"
&
8

€€ | BOTTOM SURFACE

Figure 3. Normalized contour pilots for displacements
NL
and strains in untiffened panel at 3 = 126.6

(see fig. 1). ETh

N III-

Figure 4. Application of zooming technique to unstiffened panel.
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Figure 5. Simultaneous application of two discrete element methods to the
analysis of unstiffened panel.
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Figure 6. Accuracy of normal displacement w
obtained by reduction method.
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Figure 7. Normalized contour plots for the global approximation
vectors - unstiffened panel subjected to axial end shortening
(see fig. 1).
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APPLICATION OF THE P-VERSION OF THE FINITE-ELEMENT METHOD
TO GLOBAL-LOCAL PROBLEMS

Barna A. Szabé

Washington University
St. Louis, MO

1. INTRODUCTION

The following is a brief survey of some recent developments in finite-element
analysis technology which bear upon the three main research areas under consid-
eration in this workshop: (1) analysis methods; (2) software testing and quality
assurance; and (3) parallel processing.

The variational principle incorporated in a finite-element computer program,
together with a particular set of input data, determines the exact solution corre-
sponding to that input data. Most finite-element analysis computer programs are
based on the principle of virtual work. In the following we consider only programs
based on the principle of virtual work and denote the exact displacement vector
field corresponding to some specific set of input data by #zx. The exact solution
#px is independent of the design of the mesh or the choice of elements. Except for
very simple problems, or specially constructed test problems, #rx is not known.

We perform a finite-element analysis (or any other numerical analysis) because
we wish to make conclusions concerning the response of a physical system to
certain imposed conditions, as if #gx were known. We know the finite-element
solution only which we denote by @rz. The solution #rz depends not only on the
variational principle and the input data but also on the finite-element mesh and
the choice of elements. We will assume that the finite-elements are exactly and
minimally conforming and therefore the elements are completely characterized by
their polynomial degree. We therefore control @rr by mesh design and the choice
of the polynomial degree of elements.

We wish to compute @rg so that drg is close to @gx in some sense. For example,
if we are interested in determining a stress intensity factor then we wish to have
the stress intensity factor computed from #rg to be close to the stress intensity
factor computed from #gx within some prespecified level of tolerance . In general,
we wish to determine functionals ¥,(érg) (i =1, 2...,n) so that:

\Pg(ﬁEx)—qli(aFE) . 7 = n
) s li=n2en) (1

The question naturally arises: how can we tell whether ¥;(#rg) is close to ¥;(@gx)
if we do not know #rx? The answer is: by performing extensions. Both the
estimation and control of error are based on extensions.
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Extensions are systematic increases in the number of degrees of freedom either
by mesh refinement, increase in the polynomial degree of elements or a combination
of both. If the extension is by mesh refinement then the process is called h-
extension*. If the extension is by increase in the polynomial degree of elements
then the process is called p-extension**. If the extension is by a combination
of proper mesh refinement and concurrent increase in the polynomial degree of
elements then it is called h-p extension. Having performed an extension, we may
draw conclusions concerning the overall quality of the approximate solution and
the quality of any functional computed from #@rg.

2. OVERALL QUALITY

The overall quality of approximation can be judged in terms of the estimated
error in energy norm and errors in equilibrium. Estimation of error in energy
norm is outlined in some detail and an example is presented. Procedures for
assessment of the quality of approximation in terms of errors in equilibrium are
briefly discussed.

2.1. Estimation of error in energy norm.

We know that the strain energy of the error U(igx — iirp) must decrease mono-
tonically as we systematically refine the mesh or increase the polynomial degree
of elements and a well developed, elaborate theoretical basis exists for the estima-
tion of error in energy norm for the h-, p- and h—p extension processes. (See for
example, [1,2,3,4,5].) The error in energy norm is defined as:

lZex — irellg@) = VU(@Ex — UrE) (2)

where Q represents the solution domain and U represents the strain energy. |@gx —
@rE|e(a) is closely related to the root- mean-square of error in stresses [6].

In the case of h- and p-extensions the estimate is of the form:

, _ k
liex — drellg@) < NF (3)

where k and g are positive constants, N is the number of degrees of freedom. In
the case of h-p extensions the estimate is of the form:

- - k
lEex — uFE”E(n) < W (4)

where k, v and ¢ are positive constants. These estimators are ’sharp’ for large ¥
values hence the ’less than or equal’ (<) can be replaced by ’approximately equal’
(») in (3), (4) when N is large. Therefore from (3) for large N values we have:

log |#ex — @rE|E(Q) ~ logk — flog N (5)

If we plot log |ugx ~ ure| () versus log N we see a downward sloping straight line.
The absolute value of the slope is g, called the asymptotm rate of convergence.
When B8 is large then the error decreases rapidly as N is increased. When g is
small then the error decreases slowly. Of course, the error also depends on k which

* h represents the size of elements. h-Eztension involves letting hpmaz — 0.
** b represents the polynomial degree of elements. p-Eztension involves letting pmin — oo.



is generally not known a priori, but can be estimated from data obtained from
properly performed extensions. This will be discussed later. When the estimate
is of the form (3) the rate of convergence is said to be algebraic.

When the estimate is of the form (4) and we plot log||@zx — @rg| () Versus
log N then for large N values we see a downward curving line [2,3,4,5,7]. In this
case the rate of convergence is exponential:

log|l@zx — @relle@) ~ logk — 1 (loge) N° (6)

where e is the base of the natural logarithm. If we plot log ||@gx — @rzllg(q) Versus

N° (not log N as before) then we see a downward sloping straight line. It is known
that under conditions which are generally satisfied in practice 6 > 1/3 [5].

All error estimation techniques are based on extension. Because in general
the exact solution #gx is not known, the only information available to us is how
the finite-element solution #rr behaves when the number of degrees of freedom is
increased either through mesh refinement or increase in the polynomial degree of
elements. Such information, together with an estimate or hypothesis concerning
the magnitude of the error, or its rate of change with respect to N, is essential to
all error estimation. Of course, the estimate or hypothesis must be asymptotically
correct: as N — oo the estimated error must approach zero at the same rate as the
true error does. Therefore the quality of error estimators should increase with N.

P-extension makes it convenient and inexpensive to obtain information con-
cerning the rate of change of U(érg) with respect to N. In the p-version hierarchic
basis functions are used. Therefore the stiffness matrices and load vectors corre-
sponding to polynomial degree p are embedded in the stiffness matrices and load
vectors of polynomial degree p + 1. Once a solution is available for polynomial
degree pma:, all solutions corresponding to p =1, 2,...,pmaz — 1 can be readily and
inexpensively obtained. Specifically, we write:

., . . ., - ., k?
lgex — GrElE@) = Ul@ex — @re) = [U(#ex) - Ulire)| ~ N (7)
Let us assume for the moment that U(ézx) > U(&rg). In that case:
L, . k?
U(uEx)—U(u.pE)N W (8)

We have three unknowns: U(égx), k and g. If we have three values of U(drg) and
N corresponding to three different values of p, then we have three equations for
computing the unknowns. Let us denote these three values by U,, U,-1, Uy, and
Npy Np_y, Np—g and U(dgx) by U. Then from (8) we have:

- N,_
log ——-—U Up log —£— 1
U-Up1 ~ N, (9)
log U-Upr log Np—2
U—-Up-2 Ny,

Denoting the right hand side of (9) by Q, we have:

U-U, U—Up_l)q
10
U-—Upy (U—U,,_2 (10)

To obtain an estimate of the exact strain energy U, we need to solve (10). The
solution is expected in the neighborhood of U,. Because convergence of the strain
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energy is monotonic, we know that U > U, when U, > U,_,. Conversely, U < U,
when U, < U,_;. Eq.(10) would not be different if U(igx) < U(irg); therefore, the
restriction that U(@gx) > U(@rg) is not essential. Computational experience has
shown this estimate to be reliable and generally accurate, with the accuracy of the
estimate increasing with the accuracy of U,.

2.2. Example.

The following test problem is representative of plate and shell intersections
and reentrant corner problems in general. An L-shaped plane elastic body of
thickness t is loaded by tractions. The tractions are computed from a stress field
which satisfies the equilibrium and compatibility equations and the stress free
conditions along the reentrant edges. Specifically, the stress field corresponds to
the first (symmetric or 'Mode 1°) term of the asymptotic expansion of @gzx about
the reentrant corner. (See, for example, [8].) Therefore the exact solution is
known. Specifically, the components of #zx in the coordinate system shown in
Fig. 1 are:

o = %r’\ [(x — Q(A+ 1)) cos A8 — Acos(A — 2) 4] (11a)
"y = —Z—%r"[(n+Q(/\+1))sinA9+Asi11(A—2)0] (11b)

where A is a generalized stress intensity factor; X = 0.544483737; Q = 0.543075579; G is
the modulus of rigidity and « depends on Poisson’s ratio v only. For plane strain:
k =3 —4v. We assume plane strain conditions and v = 0.3, therefore in this case
k =1.28.

4
v

Fig. 1. L-shaped plane elastic body.

The stress tensor components are:

oz =AAPATH[(2— Q() + 1)) cos(A — 1) 8 — (A — 1) cos(A — 3) ] (124)
oy = AAr*"H[(2+ Q(A + 1)) cos(A — 1) § + (A — 1) cos(A — 3) 4] (120)
Toy = AAr*71[(A = 1)sin(A — 3) 6 + Q(A + 1) sin(A — 1) §]. (12¢)



Because we know the exact displacement and stress fields we can compute the
strain energy of the exact solution:

A2 2A t
Ul(dpx) = 4.15454423 =

(13)

where £ is the modulus of elasticity. The relative error in energy norm is defined

as follows:
_ [|U{#ex) — U(drEe)|
(er)E = \/ U(@nx) (14)

Using the mesh shown in Fig. 2 finite-element solutions were obtained for
p=1 to 8. The computations were performed by a new computer program, called
PROBE [9]. The number of degrees of freedom, the computed strain energy, the
estimated and true relative errors in energy norm, computed from eq. (14), are
shown in Table 1.

r=0.0225a

!

Fig. 2. Mesh design.

The results presented in Table 1 are typical of the quality of the error estimate
we can obtain by means of the procedure described in Section 2.1. When the mesh
is strongly graded toward the point of singularity then the convergence path {the
log(e,)e versus log N curve) looks like an inverted S (3,4,5,10]. For low N values
the rate of convergence is nearly exponential and the downward slope increases
with N. In this segment the estimated error is conservative. Near the inflection
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Table 1. Estimated and true relative error in energy norm.

Ulire)E Est'd True
PN e ¥ s (s
1 41 3.8860880 — - 25.42
2 119  4.1248326  — - 8.46
3 200 4.1481150 1.93  5.34 3.93
4 335 4.1526504 2.76  2.02 2.14
5 497 4.1536354 3.05  1.01 1.48
6 695 4.1539746 2.45  0.80 1.17
7 929 4.1541300 1.83 0.75 0.99
8 1199 41542378 139  0.75 0.86

oo o 4.1545442 1.09 - 0

point, (i.e. where the curvature of the convergence path changes from negative to
positive) the estimate is the least accurate and not conservative, nevertheless as
we see in this example, it remains close. The estimate then becomes progressively
more accurate as the asymptotic range of the p-extension is entered. In this case
the correct asymptotic rate of convergence is § = A = 0.5445. At p = 8 the computed
value of g is approximately 0.7 with 8 decreasing.

2.3. Equilibrium tests.

Smallness of error in energy norm is a necessary but not sufficient condition
for ensuring that the overall quality of the finite-element solution is good. It is
possible to produce examples where the estimated error in energy norm is small
(under 1 percent) yet the error in overall equilibrium is large (well over 10 percent).

Although we do not know @px we know that @px satisfies the equations of
equilibrium and the law of action and reaction. We can, therefore, assess the
quality of the finite-element solution by examining to what degree w@rp satisfies
equilibrium and the law of action and reaction. Specifically, we can perform: (1)
overall equilibrium tests; (2) element by element equilibrium tests and (3) action-
reaction tests.

In the overall equilibrium test we ’cut’ the structure from its supports and
integrate the tractions, computed from the @rg, to obtain the reactions. In this
way a free body diagram is produced. The error in equilibrium must be small in
relation to the magnitude of applied forces. For example, we can define:

F=, r? (15)

where r; are the (global) load vector components. The term F is a suitable measure
of the magnitude of the applied load.

In the element-by-element equilibrium test individual elements (or any group
of elements) are separated from the model and tested for equilibrium. Specifically,
we denote the element domain by . and its boundary by 30.. We compute:

q‘("’) =—./ (035,7 + Xi) tdzydzo +/ oin;tds (1,7 =1,2) (16)
Q.
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where o;; are the stress components computed from the finite element solution; X;
represents the applied body force components and n; represents the unit normal

to 80,. The summation convention is used. We should have |¢{| = 1/¢{?¢{? as

well as the absolute values of each component of both expressions on the right
hand side of (16) small in relation to the magnitude of the applied loads. If |qfe)| is
small but the absolute values of the integral expressions are not small then there
is a local error but, according to Saint-Venant’s principle, the effect of the local
error will not be substantial at some distance from the element in question. If
|q§°)| is large, even after p-extension was performed, then element e, and possibly
its neighbors, should be subdivided. Thus the element by element equilibrium
test provides information about the quality of mesh design. In many cases minor
local refinement (for example, dividing one element into two elements) can have a
highlydbeneﬁcial effect on the overall quality of approximation when p-extension
is used.

In the action-reaction test we compute the stress resultants along interelement
boundaries and external element boundaries where tractions are applied. Along
interelement boundaries the stress resultants computed for neighboring elements
should have nearly the same absolute value and opposite sense. Along external
boundaries the resultants of the applied tractions and the tractions computed from
the finite element solution should be nearly the same.

Examples of equilibrium tests are presented in [11].
3. LOCAL QUALITY

Having ascertained that the overall solution quality is acceptable, we are ready
to compute the quantities which are of principal interest, i.e. ¥;(@rg). Smallness of
error in energy and equilibrium does not guarantee that all functionals computed
from w#rp are accurate. It is advisable to perform convergence tests on at least
the more difficult functionals. We demonstrate the procedure by computing the
direction and magnitude of the principal stresses at a point close to the reentrant
corner. We selected the point r = 0.025a; # = 30° in the coordinate system shown in
Fig. 1. The stress components computed from the exact solution are:

o, = 3.671984a*™' o, = 7.686964a*"! r,, = 0.6983754a> "} 17
v v

Therefore the principal stresses o; and o, and the direction of the first principal
stress o, from the positive x-axis, denoted by 4,, are:

o1 =T.804Aa*"! oy = 3.5544a*"1 6, = 80.4° (18)

In general functionals, other than the strain energy, do not converge mono-
tonically, nevertheless the fact that convergence has occurred should be obvious.
Here o, and o, happen to converge monotonically but 6, does not. We see that the
state of stress is known with sufficient accuracy for engineering purposes at p=4
(335 degrees of freedom, see Table 1). Extension beyond p=4 merely confirms
that convergence has occurred to within the range of precision normally expected
in engineering computations and thereby establishes reliability of the data.

This test problem demonstrates that accurate stress data can be obtained in
the very close proximity of stress singularities. Other examples and additional
discussion of this point are presented in [10,12].
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Table 2. Principal stresses at r = 0.025q; § = 30°.

o1 o2 b1
P AT Agr1 (degrees)

1 7.096 2.854 92.1
2 7.441 3.047 84.1
3 7.532 3.294 81.6
4 7.731 3.483 80.9
5 7.754 3.525 80.6
6 7.773 3.545 80.5
7 7.786 3.551 80.5
8 7.791 3.553 80.4
oo 7.804 3.554 80.4

It is possible also to compute various functionals from @z using advanced

methods of extraction[13,14,15].For example,we may wishtodetermine the value
of the generalized stress intensity factor A [see eq.’s (1la,b), (12a,b,c)]. Such
procedures based on [13,14,15] have been implemented in PROBE [9).

(1)
(2)

4. CONCLUSIONS AND RECOMMENDATIONS

Extensions are essential for both the estimation and control of error in finite-
element computations.

We are in a much better position today than we were, even just one year
ago, from the point of view of understanding how an advanced finite element
software system should be designed so that (a) the solution is obtained at very
nearly the theoretically optimal efficiency and (b) the user is provided with the
capability to estimate and control the quality of engineering data computed
from the finite-element solution at a small marginal cost. This is because now
we understand the interplay between mesh design and the polynomial degree
of elements.

P-extension, coupled with properly graded meshes, is the most efficient method
for controlling error in finite-element computations.

The proper mesh design is such that points of singularity (and areas where the
solution changes rapidly over short distancesg are isolated by one or more layers
of small elements, with the elements graded in geometric progression toward
the points of singularity. In this way both the global and local behavior of the
solution can be represented without compromising the accuracy of either.

Implementation of advanced extraction methods for the the computation of
certain engineering data, such as stress intensity factors, will further increase
the efficiency and reliability of computations.

The p-version is well suited for implementation on parallel processors because
the data are organized in relatively few, large units. This logical organization
reduces the overhead associated with parallel processing.

The substantial increase of efficiency in finite-element computations through
the use of h-p extension and the availability of parallel and vector processing
technology make it possible and desirable to model plate and shell problems
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using hierarchic sequences of plate and shell theories in conjunction with fully
three-dimensional representation. The various plate and shell theories are
nothing more than specializations of the three-dimensional theory of elastic-
ity through restrictions imposed on the variation of the displacement field in
the direction of the normal. Such restrictions generally do not hold near sup-
ports, stiffeners, cut-outs, plate and shell intersections, etc. which are the
areas where cracking and delaminations originiate and therefore of the great-
est concern to analysts and designers. These areas can be properly modeled
by three-dimensional representation only. The use of hierarchic extensions to-
ward higher order plate and shell theories will permit us to assess and control
the quality of approximation in relation to three-dimensional theory.

Although linear theory is properly the first and most generally used approach
to structural modeling, it should be possible to ascertain by a posteriori anal-
ysis whether engineering conclusions drawn from a numerical model would be
different if geometric and material nonlinearities were considered. We can view
linear theory as the simplest of a hierarchic system of theories. Much the same
way as we estimate error by the use of extension processes within the frame-
work of linear theory, we should be able to estimate error by extension within
the hierarchic system of theories. This important area has not received much
attention in the past. Because it bears on the reliability of computed data, and
the engineering conclusions based on them, it deserves serious consideration.

In some areas our ability to compute data is already greater than the material
scientists’ ability to tell us what data should be computed. For example, it
is not fully understood what parameters govern crack initiation. The reason,
at least in part, is that the conventional finite-element method tends to yield
fuzzy’ data in areas where stresses change substantially over short distances.
Proper use of h-p extension, coupled with advanced extraction methods, per-
mits us to compute any stress field parameter with arbitrary precision. This
removes an uncertainty from the phenomenological characterization of mate-
rial response to various stress fields. Of course, such characterization can be
developed only through joint experimental-analytical investigations.
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Wednesday, June 19, 1985
LOCAL /GLOBAL NOMLINEAR STRESS ANALYSIS

Questions and Answers following: “Some Issues in Numerical Simulation of
Nonlinear Structural Response" by H. D. Hibbitt.

Nelson Bauld, Jr., Clemson University: VYou used a linear constraint, a Riks

method, for computing the limit point on the buckling load. Have you tried the
Crisfield method?

Hibbitt: We played around with a number of these methods, and Crisfield has
done quite a lot of work on Riks' algorithms. We've tried some of the things
he's mentioned. I think everybody has his own Tittle perturbation or variation
on the Riks concept. We're using one that I found out a few months ago is
exactly the same as Issac Fried published. We're pretty happy with it, in most
cases. It certainly has done as well as the alternates we've tried. The linear
constraint makes it very easy to code and deal with in a program 1ike ABAQUS.
It's critical to use some kind of automatic incrementation scheme along with

it. By and large, it seems to work well. In the problems where it fails, I've
certainly had failures with some of Crisfield's alternate algorithms as well.

Questions and Answers following: “Computerized Structural Mechanics for the
1990's" by B. F. Backman.

W. J. Stroud, NASA Langley Research Center: Bjorn, in your talk, you mentioned
computer program development and the usefulness, most often the lack of useful-
ness, of these computer programs to industry people. That is really a problem.
I'11 give you my personal opinion about some of these things. It is very diffi-
cult for MASA to develop computer programs for industry. As a result, except in
some very special cases throughout our history, we really have not had that as
our goal. On the other hand, as a part of our research, we and our grantees and

contractors develop computer programs because that is how we calculate numbers.
We try to make those codes and the supporting technology available to industry.
But it's very hard, as you well know, to develop computer programs for someone
else's use. Would you like to comment on that?
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Backman: I think NASA has a key role in this area. When I referred to second
generation programs I meant that there is a strong need for an organized inter-
face between the developers and the users, and I see NASA as having a key role
here. Maybe it's a standing commission--maybe it's an established relation for
review--1 don't know. But where the needs can be established and where the
first generation software could be used and evaluated by the industry and recom-
mendations coming back to the developers, I think there exists an interest in
this. The only question is how you stimulate this to the point where it becomes
mutually beneficial.

Questions and Answers following: “Nonlinear Response of a Blade-Stiffened
Graphite-Epoxy Panel with a Discontinuous Stiffener: Work in Progress" by N.
F. Knight.

K. C. Park, Lockheed Palo Alto Research Laboratory: MNorm, is that specimen

based on an optimized design for which the panel buckling load is about the same
as the skin buckling load?

Knight: This pqne1 was one that's been around for a number of years. It was
first built as part of one of the early studies in our composite design program
and, I believe, it was designed without the hole--as part of a wing-type
structure near the tip, so it is primarily a strength-type panel. Now with the
hole, the characteristics of the panel change.

Yung J. Chiang, Uniroyal, Inc.: By using the point-stress failure criterion,

you assume that the failure occurs when the stress at a distant d, away from
the edge of the hole reaches ultimate. What is the stress that you are
referring to?

Knight: We applied just the average inplane stress resultant. It was just an
average longitudinal stress-type measure. We were using stress resultants not
necessarily to predict failure but to guide us in defining the mesh refinement
needed near the hole in order to predict the stress distribution. The elements
that we were using do not have a transverse shear formulation, so we can't
really recover the shear stress distribution other than from classical plate
theory by taking derivatives of the moments and things.
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Chiang: Can the energy calculation be better than stress for the prediction of
the failure?

Knight: We didn't calculate the energy so I don't really know. You can calcu-
late a local energy nomm and use that to predict failure, but we did not make
that calculation. I can't answer that. '

Questions and Answers following: "“Computational Perspectives on Postbuckling of
Composite Shells" by G. M. Stanley.

Gerald Goudreau, Lawrence Livermore National Laboratory: That fifth buckling

mode that you said was nonphysical, did it vary with the different element types
that you've studied?

Stanley: No, not really, the eigenvalues moved around by a few percent here or

there. There was actually more of a discrepancy in the linear solution than in
the buckling solutions.

Goudreau: Then to what do you attribute the nonphysical basis for that mode?

Stanley: 1'm not saying that that mode is wrong. I'm saying that that mode
would not occur in practice, because any imperfection would prevent it from
occurring.

Jerrold M. Housner, NASA Langley Research Center: Gary, I noticed that it's a
pretty rough problem once you get to the buckling load. In the slide showing
experimental results, it Tooks like there was a distinct softening of the panel
just prior to its first failure--collapse.

Stanley: Before you continue, that distinction was a little sharper in this
picture than it was in practice. That was handdrawn.

Housner: But, in any case, the analysis doesn't seem to pick that up. The
softening is in the last 10 percent of the buckling load as you're coming up the
load deflection curve. Could that be--

Stanley: The analysis doesn't pick up the peak; the analysis does roll over.

181



182

Housner: It does roll over for a short way I noticed, but what I'm driving at
is that the softening that takes place--could that be what triggers the failure
and is not being duplicated in the analysis?

Stanley: The slide which shows stress contours in color would help us here.

As we move up the load-shortening curve--near, but before, the peak--the analy-
sis predicts very high (near ultimate) axial stresses in the vicinity of the
hole. So, it's very possible that delamination is already occurring up there.
This softening is due to material instability. (See figure, p. 207).* These
are the compressive axial stresses in the, I think, fourth layer--in which the
fibers are oriented along the axis--and this color scale is such that the maxi-
mum is white and the minimum is black. Everything in white here, though, is
actually beyond the nominal ultimate stress for this particular composite. So
at the buckling load we're already at ultimate stress on both sides of the hole.
This shows that as we roll around, the white region begins to rotate a little
bit,then is unloading and drops off. When we're back on the secondary path, all
the load is picked up here and it's again way beyond ultimate. You can't read
it from the scale, but as we go up the curve, it's maybe 50 percent or more
higher than ultimate. So there are a lot of things that need to be explained,
and I think that we need to try one thing at a time. I don't think we should
Jump into a 3-D analysis until we have tried some failure criteria--just degrad-
ing the material properties.

Housner: That's what your next step is going to be--putting in failure
criteria?

Stanley: I think so. I plan to use this workshop, the feedback and opinions
expressed here, to help formulate the next phase of the research, as a matter of
fact. But, that's one possible direction that we might begin next.

Questions and Answers following: “A Review of Some Problems in Global/Local
Stress Analysis" by R. B. Nelson.

Stroud: In the model that Paolo Roberti generated, what was the logic behind
the model generation and refinement?

Nelson: In words, the approach is to say: I'11 take a specific grid and then
I'11 refine it one time to see if the stresses change much. And I compare



stresses across neighboring elements. If the stress change is more than a set
tolerance (and the stress change was, by the way, a root mean square type of
stress change), then I will refine the model further in these particular areas.
There are a number of issues regarding the convergence that should be used and
how one should go about this. There are a number of authors who have written on
that topic. I'm only bringing it forward to show that it is an area which I
think merits serious research consideration.

Stroud: I aqree with you. I think that many of the things that you alluded to
are nice to have. Yet, today, it is difficult for us to get support to do some
things that might even suggest having an expert system built into it because
that's considered by many to be a diversion. \hen you have a limited amount of
energy and funds to put into something, you can't go into these diversions.

Nelson: It is true, but I think that the development of an automated technigue
for model regeneration, or adaption, or refinement, something that the engineer
really shouldn’t have to do, is appropriate. The engineer should not have to
tend the screens. So many people tend the screens, and I think they ought to be
putting their time to exploring whether or not we need to have a large deforma-
tion option being turned on, or whether or not we are worried about there being
a problem with the material model used to model a composite. Is it a mean
square of stress or a delamination stress that we should be looking at? Those
kinds of issues are engineering issues I think should be pursued.

Questions and Answers following: "“Some Comments on Global/Local Analysis" by
S. N. Atluri.

James C. Robinson, NASA Langley Research Center: I think when we start talking

about either globally or locally exact solutions, as structual engineers, we
should show proper respect for a negative force displacement curve. It looks
very nice when it's plotted up in a rigid test machine, but when it is in an
actual structure that is surrounded by other equally sensitive elements and you
don't do a dynamic solution, you have probably missed failure at the ultimate
Toad point. To look at it from there on is a fine academic exercise, but struc-
tually useless.

Atluri: 1 agree with you totally. These are illustrative examples to test the
theory that is presented. In these examples, a displacement-controlled loading
is assumed.
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K. N. Shivakumar, AS&M, Inc., Hampton. You mentioned that in a composite panel,

some theories would allow you to replace a hole by a crack. What are the
theories? To me, a crack has an entirely different model from a hole, and you

may be missing some physics in the problem.

Atluri: If you consider an isotropic plate with a hole in it, the stress
concentration is always three, if the size of the plate is roughly five times
bigger than the hole size. But in a composite laminate, there is a size depend-
ence. Even if you consider a plate five times bigger than the hole diameter,
the stress concentation still depends upon the size of the hole. And in that
sense, if you were to plot the failure stress of the laminated plate with the
hole versus the hole radius, it would vary as r@ And in fracture mechanics,
that variation is--if you were to consider r to be the length of the crack--
the failure stress for a cracked plate would vary as r"5, or something like
that. There is no great theory behind it--just an empirical relation. Mar at

MIT has taken that, and there is a theory called the Mar-Lin theory wherein the
fracture stress in a laminated hole varies as the diameter of the hole to some

power alpha. So there is some evidence that a hole in a laminate behaves like a

crack. The physics of that needs to be explored much further.

Stanley: I agree with your advice to incorporate locally exact solutions in
global analysis, but in this particular case of the composite panel with a hole,
what about the subsequent propagation of failure in which the hole begins to
distort--it's no longer a circular hole. Do you think it's actually feasible to
continue to follow the complete analysis through with Tocally exact solutions?

Atluri: 1 think so. At least these locally exact solutions could give you a
better handle on the three-dimensional stress state--1ike the transverse shear
and so forth. And when large geometric changes take place, those solutions
would not be Tocally exact, but they would be much better than the traditional
finite element basis functions you use.

Stanley: Perhaps they could be incorported as deviational basis functions on
top of the normal shape functions.



Questions and Answers following: "On Computational Schemes for Global/Local
Stress Analysis" by J. N. Reddy.

Glenn Sahrmann, PRC Kentron: In your analysis of the 2-D free edge problem,
were the stresses becoming singular--unbounded?

Reddy: Without free edge cap, yes, the analyses done by many people show that
as you refine the mesh, o, still keeps getting larger. So, it is unbounded.
But we know that ¢, must have some finite value. I did not address that
problem here. My objective was is to reduce the stress concentration by adding
a cap. We accounted for the cap in the finite element analysis. We also
modeled the cap as part of the region.

Questions and Answers following: "Global/Local Finite Element Analysis of
Localized Stresses in Prismatic Structures” by S. B. Dong.

Housner: After you compute what you feel is the position of the interface
between the local and the far field solutions, have you gone back to examine the
sensitivity of the solution to the location of that boundary--that interface?

Dong: Yes, in fact, I had a student that took the interface at different
regions. What happens is that when you have self-equilibrated stresses, those
which you subtract out from what the Bernoulli-Euler theory or Kirchoff theory
would give you in terms of a plate analysis in the far field, the self-
equilibrated stresses will decay. If you take the finite element region very
close to the localized area, you would obviously need more global functions.
But that's really not a severe penalty because when you include 10 global func-
tions, you can probably eliminate one or two layers of finite elements that
would involve many more degress of freedom. A second advantage of taking the
finite element region very close to the localized area is that you will deter-
mine on a mathematical basis how the self-equilibrated stesses diffuse as they
go into the interior rather than by letting the finite element solution--which
depends on the modeling--indicate how the self-equilibrated stresses are
diffused. If you have a complete set of global functions, then there's no
difficulty in going as close as you please to the localized region. By succes-
sively taking more and more global functions, you have a basis for evaluating
the error that's incurred in the analysis.
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Housner: I guess you could go all the way back to the inclusion itself if you
really wanted to. Years ago, I dabbled a little in wave propagation and if you
have the complete set of waves, including those that attenuate, you can
actually, theoretically, at least, go all the way back to the inclusion.

Although, in those days years ago, we didn't have the computers to actually do
that.

Dong: I think if you go back to the inclusion, E1i Sternberg would be very
happy. Then you would cut out all the finite elements, and you would be where

he was before all of us messed up his conguest of all the problems we have.

Questions and Answers following: "Global/Local Methodologies and Their Applica-
tions to Nonlinear Problems" by A. K. Noor.

Park: What was the motivation for choosing a symmetric boundary condition? We

have found that a symmetric boundary condition does not yield the physically
correct buckling solution.

Noor: Well, I think you have to qualify the type of symmetry. If you say
reflection symmetry or mirror symmetry, then I would agree with you. What we
found in these problems is that you have inversion symmetry which is typical of
the response of many anisotropic panels. I have looked at the results that were
presented by Norm Knight and Jim Starnes and we also looked at our results. The
inversion symmetry was exhibited by the response of the panel up to the maximum
load given by the experiments.

Park: Do you foresee that one may choose this boundary condition to do collapse
and also postbuckling analysis?

Noor: Let me put it this way. If you start from the beginning conducting a
nonlinear analysis, the inversion symmetry would always be preserved until and
unless you have a branching point. And you can always detect the branching
point from your equations. If you get that branching point, then there is a
possibility that you might go on a branch where that symmetry is lost. However,
as you will hear tomorrow, there are ways then to synthesize the solution of the
unsyrmetric problem from the symmetric and antisymmetric solutions, even for the



nonlinear case. Summarizing what I said, I think if you start from the begin-
ning with a nonlinear solution, the inversion symmetry properties of that
nonlinear solution will not change unless you have a branching point.

Park: How far have you carried along your solution in your example?

Noor: 1In the unstiffened panel, up to the maximum load that was given in the
experiments.

Park: We happen to disagree with that because just before the collapse there is
a bifurcation that occurs about 10 or 15 percent below the collapse load, and
that mode happens to be antisymmetric.

Noor: We did not detect bifurcation up to the level of the loading that we had,
but if you have bifurcation, you can loose the symmetry. But even then, as I
said, you can synthesize the unsymmetric solution from symmetric and
antisymmetric components. And you'll hear about this tomorrow.

Stanley: 1 think it would be good for us to compare quantitative results, but
just qualitatively, are the path derivatives more accurate than the modes in
this particular problem or has this been your general experience?

Noor: We did not try the buckling modes in this particular problem but I tried
them in several other problems--plate problems, shear-loaded plates, axially-
loaded plates--and without any exception, you get considerably higher accuracy
with the path derivatives than with equal number of buckling modes. Not to
mention also that the path derivatives are considerably less expensive

to generate than the buckling moies because if you generate them at zero
loading or zero end displacement, you need to decompose only the linear global
stiffness matrix.

Questions and Answers following: “Application of the p-version of the Finite
Element Method to Global/Local Problems" by B. A. Szabo.

Carlos A. Felippa, Lockheed Palo Alto Research Laboratory: I think your theory
depends essentially on the assumption that the elements are conforming.

Szabo: Yes.
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Felippa: Now, most production computer programs do not use conforming elements.
And if you use nonconforming elements, a funny thing can happen. You can refine
the mesh and get a worse solution because the aspect ratio of the elements may

deteriorate. How would you extend the theory to programs that use nonconforming
elements?

Szabo: To me, a very important consideration is that there is an existing proof
that the solution will converge in a certain norm. There are several methods,
such as methods involving nonconforming elements, which do not meet with the
Babuska-Brezzi criterion which guarantees the desired convergence properties.
This criterion is difficult for engineers to understand because it is based on
mathematical considerations. There are several methods in existence (methods
that do not meet the Babuska-Brezzi criterion) for which one could select a set
of input data and the methods would work well. In other words, one could design
the mesh, select the input data, etc., and the method would work. And somebody
else could select a different set of input data, and because the method does not
satisfy the Babuska-Brezzi condition, it may "blow up". Now it frequently
happens that a new method is shown to work on smooth problems, typically text-
book problems. And the researcher says, "Look, my method works because it can
solve some specific prob]ém 1ike the simply supported square plate." Any
numerical method should be able to do this. The real difficulty is when these
methods are applied to nonsmooth problems which are the important problems in
engineering. Then they may not work; they may give a completely nonsensical
result. For this reason, 1 choose to stay away from those methods. Instead, I
use a method that is based on the principle of virtual work because I know this
method satisfies the Babuska-Brezzi condition. Nonconforming methods, which do
not satisfy those conditions, may give you unpleasant surprises. For example,
you may be doing more work and getting worse results. On the other hand, if you
use a method that satisfies the Babuska-Brezzi condition and if you do more
work, (for example, use finer meshes) the analysis will give you better results.

Stroud: Because of Carlos' comments and some comments that you just made, do
you recommend that conforming elements be used exclusively?

Szabo: Yes, until proofs are developed that the other methods are robust--in

the sense that no matter what (admissible) data you select, the method should
work. And this proof is not available for the nonconforming elements, as far

€7
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as I know. Now it could be that somebody has just worked it out yesterday (or
something like that), but I have talked with mathematicians about this and they
have the view that it is dangerous to use methods which are not meeting that
criterion.

Reddy: I think that the LBB condition is not really a necessary condition, it's
a sufficient condition. And I think that there are some elements which are
proven to work even if they do not satisfy the LBB condition. I think that we
should not just throw out everything that will not pass the LBB conditon
because it is only a sufficient condition. Not necessary.

Szabo: I've heard that argument. I'm not a mathematician; I've only picked up
information on this topic by osmosis. But I believe that it is a necessary
condition. Basically, the argument is the following. If your method does not
meet the Babuska-Brezzi condition, then one can always select input data (maybe
not the kind of data that you are interested in) for which the method will not
work, and for which you were not able to say ahead of time, "Please do not make
my input data like this or that," because it is very difficult to predict which
set of input data will cause the method to fail. But please don't press me on
issues that relate to finer mathematical points; I'm not a mathematician.

Reddy: I'm only trying to let the other people here know that if they check the
LBB condition and if it fails then they should not give up on the method. The
same thing about Lax-Milgram theorem for existence. It is a sufficiency
theorem, but not necessary. It can be shown that a problem has a solution but
may not meet the same conditions as stated in the Lax-Milgram theorem or Babuska
generalized theorem.

Szabo: I just would 1ike to invert your question. If you know you have a good
method, for example the method based on the principle of virtual work, why would
you wish to select a different method which may give you unpleasant éurprises?
In other words, since we do have good methods that we know are working, what
would be the reason for using methods--nonconforming methods, for example--that
have not given satisfactory solutions at various times?

Reddy: Well, very rarely do we use methods other than those based on virtual
work principle. For example, mixed-type finite elements are used in certain
problems where we think stress is an important quantity and that should be known
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on the boundary of the element, like hybrid methods and mixed methods. Those
are the cases where you need to use mixed methods which are not based on the
virtual work principles--I should say traditional virtual work principles
because the mixed principles are also some kind of virtual work principles.

Szabo: I'm not against any particular method--or for it--all I am saying is
that I would 1ike to see a set of objective performance measures, convergence
characteristics in certain nomms, proven and demonstrated, in order for me to be
convinced I should use that method. Until that is available, I don't want to
use it. And I have not seen really detailed performance studies on the methods
that you have mentioned. It could be that they exist. All I'm saying is that I
haven’t seen them and I'm quite satisfied with the performance of virtual work
formulations.

Reddy: 1 think that history shows it works the other way around. We, as
engineers, design methods which we think indeed do work. Then mathematicians,
or people interested in mathematical aspects, explore the question of whether it
is really a right method.

Szabo: I agree. If we waited for the mathematicians, I think we would still be
living in caves. But, on the other hand, a large part of this meeting is about
concerns of the performance of the various methods, and that's what I wanted to
address. I would love to see similar performance studies presented for the
other methods as well. I haven't so far seen those.

Panel Discussion

Bjorn F. Backman, Boeing Military Airplane Company: I would like to start by
making a controversial statement. I think any product of engineering develop-
ment in the methods field is an engineering tool. And I would Tike to make the
distinction here, initially, between scientific development and engineering
development. I think science is involved in the pursuit of the truth, while
engineering is involved in the rational process of making decisions in an
environment of limited knowledge. To that extent, I would have Tiked to see one
of the two things. I would have liked the end product of computational
structual mechanics to either be a tool that directly applied to the design
process or a tool that comes with a recipe that says this is how you use it in
order to prepare the set of data to be used for the design process. That's from
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one side. On the other side I see if we want to--in an academic environment--to
pursue the scientific side of engineering to the exclusion of design
considerations, then I think NASA has an even more important role in making the
translation into the tools that can be applied to the design process. Thank
you.

W. Jefferson Stroud, NASA Langley Research Center: Yes, that was a controver-
sial statement. I want to make sure I understand what you said, Bjorn. You

feel that the CSM activity should produce products. I will even go further and
say software products.

Backman: Yes.

Stroud: Would you say that merely developing the know-how to produce the soft-
ware would be a shortfall?

Backman: Well, it reminds me of the difference between solving problems in
principle and solving problems. If you look at any solution technique that's
going to require you 3 months to come up with a number. If you want to apply
that technique to the design process where the question is not what is the
response, but the question is, what is a good design--(For instance, for this
curved panel that we have been studying, where is the optimum location of the
hole, or what is be best pad-up around the hole, or what is the sensitivity of
the design to realistic boundary conditions?)--then you see 3 months very
quickly translates into at least a hundred times that long in order to solve the
design problem. So I'm implying that if you don't ask yourself the question,
what am I going to use this technique for, or you say this is the way you can
use it in the design process, you have only solved the principle not the
problem.

Gary M. Stanley, Lockheed Palo Alto Research Laboratory: I'd just 1fke to
comment. I think that what he's saying is that the implementational aspect of

methods development is nontrivial and that we should be pursuing methods
implementation issues simultaneously with methods development--rather than
waiting till later.

David Herting, MacNeal-Schwendler Corporation: We're sort of coming in from
left field here. Let me cut in, because Universities and NASA have been
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dancing this nice 1ittle dance, and we are involved in this in several aspects.
We (at MSC) are involved in this research ourselves, and we are also involved in
developing similar code. We are now out in the business of paying for code
development ourselves, in effect, also doing what NASA’'s doing. So this is all
very interesting to us. However, I'd probably like to make a couple of
comments.

One thing I'm glad to see is NASA is getting out of the role of trying to
develop massive computer codes. I think that's a good trend. If you go into
the research mode it's going to be much more valuable to us, and much less
duplication. Also, I'm glad to see that vou have practical applications. I'm
glad to see people looking at the realistic problems and developing techniques
to solve them because we are also looking at the same problems, particularly
tires and cracks. We are also in the development mode.

However, I'm disturbed about a few things. I've kept quiet here during the
morning, and maybe I should bring up a couple of points that should stimulate
some discussion. One of the things is the lack of knowledge about the
commercial codes. 1 speak for Swanson, I speak for Hibbit. A lot of the
complaints that were com{ng up about the codes are not true. A lot of these
capabilities exist. The capability to do the localized nonlinear analysis is
implicitly in NASTRAN, or MSC NASTRAN anyway. I'm sure ABAQUS has similar
capabilities.

This brings up the previous point of the ivory tower aspect. It appears that
you are in an ivory tower if you're not aware of what's in the codes. I think
it should be a part of the academic worid to look at commercial codes. We
certainly look at the academic world as far as looking at what the research is
and what the current applications and hot methods are. Let's do it a little
more equally.

A couple of other comments: Some of these research projects are going to
develop new methods, new codes. What's going to happen to these after they’re
done? There seems to be a lot of development at NASA that just sort of goes
away and hides. We can't seem to find it. Sometimes we find it at COSMIC and

COSMIC says, "No, that's our property," and we can't use it. If you're going to

develop all these nice element routines--solvers, nonlinear methods--how do we
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get those out to the public? We'd certainly like to use them. There may be
some restrictions; we'd be glad to work around them.

Stroud: You said a couple of things that I didn't quite understand. Although
COSMIC charges for the software, 1 thought you could get any software that you
wanted. '

Herting: Well, the question occurs because we'd 1ike to put it in NASTRAN and
distribute it out to everybody in the world.

Stroud: Worldwide distribution of COSMIC software is different. If software
is developed with government funds, and if it's considered to the advantage of
the United States to have the software available only to United States compa-
nies, then there is a restriction. But as far as COSMIC restricting software
from anybody in the United States, I don't believe that's the case.

Herting: We've had some troubles just for the United States. I think the prob-
lem is, do we go out and require every customer to pay for a COSMIC code that is
incorporated in MSC/NASTRAN? Take a program like CONMIN that takes $200 or $300
to purchase from COSMIC, our legal staff tells us that we have to go collect
that $200 or $300 from every delivery we make of CONMIN and ship it off to
COSMIC. And it's really questions--details--1ike this that we haven't been able
to work out.

Stroud: I can't address that question. Your other question was something that
I was really concerned about when we were considering having software developers
at this workshop. Would the software developers say, “We can already do all
these things." I think that a sharp person with a good existing code can do a
lot of things. I would not question that one bit. A sharp person with a good
existing commercial code could do all of the local/global stuff that we've done.
But I think you agree that it would not be easy or routine. We want to begin
now to look ahead at what we ought to be able to do 5 to 10 years from now.

H. David Hibbitt, Hibbitt, Karlsson, and Sorenson, Inc.: 1'd like to address
the comment that the academics should look at commercial codes. I didn't come

here to be looked at, I came here to look. We commercial code vendors can learn
a Tot from academic work. Our job is to try and package it to make it sensible
for the guys out there who have real problems. I don't really think it's
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terribly important that the academics look at us. I came here, in fact, to look
at an issue that is becoming important and that I haven't heard discussed very
much except in very general terms. And this is the issue of parallel machines.
Langley, I think, is the'p1ace where you have the finite element machine. On
the other extreme, people at Cray tell me that the way to do parallel processing
is to get the data down into a microlevel and do a lot of local parallelism. I
hope our code is going to have a long life. So we really have to look at these
parallel architectures and we have to decide what to do. Now I haven't heard
anybody here discussing the finite element machine; I haven't heard anybody
addressing detailed issues of writing software on parallel machines. Is there
somebody here who can help me with that, and where is he, and could he address
the question?

Stroud: You are right, Dave. We are doing work in parallel processing. And
there is no paper here today that is oriented specifically towards parallel
processing. Tomorrow, Joe Padovan will talk about it. He's into tire model-
1ing. We are hoping that within the next year or so we will be able to have a
conference that will focus on parallel processing in structural analysis. We're
trying to Tearn. We're buying a new multiple processer computer that will
replace the finite element machine for parallel processing research. It's
called a FLEX/32 MultiComputer. Each one of the 20 processers is about like a
VAX 11/750. And I hope that we will be able to address some questions that you
raised. Why don't you throw the question of parallel processing to the panel
and audience right now.

Hibbitt: I think that the point that I was getting to, Jeff, if I could just
continue for a minute is it seems that the philosophy you've taken here at
Langley is to go into parallelism at the macro level, putting one finite element
on one processor, while if you talk to people, say at Cray Research, the
impression I get is that they want to do it all on a micro level. There are
some very successful finite element applications that have taken advantage of
this approach. I think Jerry Goudreau is here, and I think he knows a lot about
this. And I was hoping that he would give us some good advice here. Is there a
right and a wrong way, or are both ways successful?

Stroud: Let me comment on what our group has been doing in parallel processing.
First of all, the Finite Element Machine started out, in the mid-to-late 1970's,
with the concept of a microprocessor for each finite element. By the beginning
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of the 80's, we decided that one processor for each finite element was not the
way to go. We just got 16 processors operational on the Finite Element Machine
about a month ago. Granted it was not a high priority research item, but it was
clear that we here at Langley could not develop a computer having several
hundred processors. So we and several university grantees have been looking at
algorithms that could exploit multiple processors. For example, we are looking
at linear simultaneous equation solvers--both iterative and direct solution
techniques. Another example is eigenvalue solution technigues in which you have
eigenvalue shifts. You could assign a value of the shift to each of the
processors and let each processor get the eigenvalues near its shift parameter.
You could use some logic to insure that you've gotten all the eigenvalues. A
third example is substructuring, in which you divide the structure into pieces,
assign those pieces to different processors, let each processor calculate the
response of the substructure assigned to it, and then work the interface
problem. In each case, computational speedups can occur if several processors
are working on their assigned tasks simultaneously. But, the approach that
we've totally abandoned is the idea of a microprocessor per finite element.

Gerald Goudreau, Lawrence Livermore National Laboratory: Let me just take a
moment, not to preempt the panel, but to respond to Dave a little bit about our
experience in a Cray environment with primarily the pipeline concept of the

Cray. We also have implicit codes that concern themselves with optimization of
profile equation solvers and eigen packages, but a large portion of our finite
element applications is in dynamic impact using explicit finite element hydra
codes which don't have any matrices to deal with whatsoever. And so without
linear algebra to exploit, what are you going to do to take advantage of the
Cray environment? And the thing that we hit on, and this is John Hallquist, and
primarily in the DYMA code applications, is that a big chunk of the effort, in
fact 95 percent of the effort, is on what you would call the right hand side
evaluation, you know, f of x and t, which is really f of the stress state.
It's the element stress divergence in solid mechanics, and there are comparable
things (B-transpose sigma) in any of the structual elements as well. And rather
than try to vectorize the element, meaning that the loop over whatever degrees
of freedom are within an element, we used element chunking. In element
chunking, first you scalerize every aspect of the algorithm within the element
and then, in the innermost do-loop, you tightly code a loop over a large number
of elements. Now some of the vector machines require very large elements, and
if you turn all the scaler variables that are in the element logic into vectors
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over a set of elements, you may have a horrendous amount of storage required to
get long enough vectors. But with both 64 and 128 vector lengths and with the
memory that the Crays have provided, we've been able to chunk at that level very
very efficiently. And I think the B-transpose siama part that--and also the
strain computation--they're just about at the 1imit of what we think we can get
out of it--the Cray environment that we live in. This does present a problem
with constitutive models, or equations of state because every time a new one
comes along it immediately slows down the code by a factor of 2 to 10. It's
only after it's proven its worth that we then get in and vectorize or optimize
that element.

Now let me say a word about parallel machines which is sort of concatenat-
ing the pipeline to do more. The Cray XMP and future Cray machines are promis-
ing us more, and we have John Hallquist's protege here, Dave Benson, who has
been itching to multitask the XMP. A problem we have at Livermore is that when
the XMP is not in the hands of one research group, but in the hands of a labora-
tory with 500 to 1000 equally important researchers, what you find is that the
multitasking priority is not for individual code, but for the operating system
as a whole. And so at Livermore the operating system is trying to multitask all
these users trying to simultaneously do their work. And so, at the moment, all
we have access to is a single processor and we haven't gotten advantage of that.
Now I was up at White Oak, the Naval Weapons Center, yesterday and found out
that ABAQUS is being explored by CSPI, a small array processing company up in
Massachusettil‘and we're getting one too I guess, not in my group, but another
group at the Laboratory. So I would be interested in talking further with you
about--maybe at a smaller level than at a Cray-looking at some of these array
processing ideas and how we could proceed and then maybe influence the bigger
machines down the road.

Moktar Salama, Jet Propulsion Laboratory: I was also hoping to hear from the
speakers more about how their problems fit into the broad objective of the CSM

activity, which as stated here, is to develop advanced structural analysis tech-
nology that will exploit modern and emerging computers. I was hoping that the
speakers would give us an idea of the amount of computing that their problems
take. Because if the problems we're talking about here require little effort,
Tittle computing, then today's computers are adequate. Unless there is a great
deal of computational intensity, a large amount of data, or unless the kind of
problem that's being solved requires a real time solution then these problems
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don't fit into the category of problems that need modern computing beyond what
we have today.

Barna A. Szabo, Washington University: I had occasion to speak to many aero-
space engineers in different companies. Their general opinion is that as the
1990's come -along they foresee the use of 3-dimensional finite element tech-

nology in airframe design. The wing skins are getting thicker and more compli-
cated, and new materials are being used. There is no doubt in their minds that
the aerospace industry will be directed toward very heavy computing, very large
computational loads, very complicated geometries, many elements, new materials,
singularities, damage tolerance requirements, and the 1ike. As we look to the
1990's, I think it is clear that parallel processing is going to be increasingly
important. And I believe they are very interested in the technology I was
addressing--where we can obtain high accuracy with much fewer degrees of freedom
by properly designing the finite element spaces. There is a real need out there
for us to look at how the airframes for the 1990's will be designed.

On the other hand, I cannot really speak about parallel systems because
such systems are not accessible to us at the university. We're very happy to
find time on the VAX 11/750. Even there I have to twist the dean's arm. I
would certainly be very interested in exploring different computer systems to
find out exactly how we should design algorithms for those systems. Unless we
have access to parallel systems to experiment with them--I don't think we can
really answer your questions and Dr. Hibbitt's questions, which are very impor-
tant questions. It's not that we're not interested in parallel processing.

It's just that we first have to get access to them.

Salama: Well, I'm really not saying that the problems you discussed do not
require heavy computing. I'm not saying that. I'm saying that this fact was not
brought out, that's all.

Stroud: The CSM group is going to be having grants with universities. We are
going to make our Flex multiprocessor computer available to the universities
that we are working with. We hope that 12 to 18 months from now we ought to be
able to have a handle on several structural analysis methods that look good on
multiple processor computers.

Richard B. Nelson, U. C. L. A.: I want to second the comment that Professor
Szabo made, and that is that UCLA recently got some new computing equipment
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which did involve an array processor. And now we are all looking around, saying
to ourselves, now that we have it what are we going to do. Money is the
mother's milk of research and for us to go out and explore array processing in a
big way we need to have support for a relatively intensive program. With Ph.D.
students, one of the things we do is invest a great deal of time in having a
student generally write, almost from scratch, a finite element code, or pick up
SAP 4, which is by now quite dog-eared, or possibly NONSAP, one of the codes
which we more or less have inherited from Berkeley more than 10 years ago. I'm
speaking as a researcher in need of a kind of test bed that we across the
country could pretty much rely on and plug our research efforts into so that
people across the country could make use of our research product on a general
basis. I don't consider that to be particularly competitive with optimized
codes that are specifically designed for certain industrial applications. But
rather that it gives people both in industry and in the academic community the
opportunity to communicate across technical lines, and let's face it, the
language of communication today is through computers and software. And we have
to develop some kind of a liaison through channels of software and that's going
to require significant support to develop.

E. Thomas Moyer, Jr., The George Washington University: 1'd 1ike to make two
comments, one on the hardware aspect of parallel processing. As the technology

gets cheap enough, rather than making time available at one central location,
it's becoming feasible for universities to buy parallel processing computers.
For instance, with the new INTEL machines, you can pick up a parallel system
with 32 processors in it for under $100,000. As the prices fall, universities
should buy the computers either through a NASA program or an NSF program in a
wide way so that a lot of researchers will have access to them. As far as the
comment that was made with regard to university professors not being aware of
finite element codes capabilities and that type of thing, I think that the
universities should have a lot stronger access to the codes at either the code
level or, at least, at the executable level at a price, if not nothing, then
extremely negligible. And that I think would be productive both to the
commercial endeavor and to the research environment as a whole. And [ think
that that ought to be explored in more depth.

Stroud: My bet is that commercial software companies do provide their codes to
universities at quite reduced rates. (Agreement from audience.)
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Backman: I wanted to address the question about the needs of the aerospace
industry. I think it's quite clear that for the 1990's we have seen a number of

problems, many of which perhaps have not been very dominant before, that require
both hardware and software improvements of orders of magnitude. You look at the
optimization side, you look at the emerging technology in the damage tolerance
fields that--in composites--require delamination growth under compression, and
postbuckle states, and I see substantial development requirements. There is
very little doubt that there are a number of applications producing problem
sizes such that present software and hardware is not adequate. We still can't
get into the large optimization problems that we need to be doing. We really
need to gain additional first-hand hardware experience in order to truly
understand and develop the requirements.

Stroud: We've touched on multiple processor computers. What about the idea
that if we are going to have good structural analysis in the future, we need to
have better software architecture in order to exploit the new computers.

Leonard A. Lopez, University of I1linois: 1 think we do need to take a very
serious Jook at the architecture of computer systems for finite element

analysis. Dr. Nelson talked about testbed systems. I am a strong believer in
that approach. We have been running a testbed system at the University of
[11inois since 1975. The system uses a virtual machine concept and emphasizes
flexibiTlity, machine independence, easy addition of elements, and easy addition
of nonlinear material models. Basically these were areas of interest to
individuals in our department in the early 1970‘s, and this capability has
permitted these researchers to try new ideas without needing to deal with all of
the other problems associated with finite element technology.

The design of the POLO-FINITE testbed is based on 1970 software and hard-
ware technology. The biggest problem we are facing today is that our expecta-
tions have grown significantly, and that the kinds of problems being envisioned
by our faculty far exceed the capacity of the combined hardware/software test-
bed. I think we now must proceed to investigate and exploit the architecture of
parallel (multi-processor) computers in order to solve the next generation of
problems.

There would be many objectives for a multi-processor testbed system.
Clearly one of them must be that the testbed be flexible enough to take into
account existing multi-processing architectures, as well as architectures which
have not yet been conceived. It will take years to develop such a system and

199




put it into production. The corresponding hardware technology is changing very
rapidly, and it will be necessary to be able to move the testbed to various new
architectures as they are designed and implemented. In order to give you an
jdea about how fast things are changing, I would like to again point to our
experience at the University of I11inois. Six months ago we were confined
primarily to utilizing a Cyber/175 computer. Today we have two national centers
for supercomputers--one based on multiple Cray XMP's and the other based on

the CEDAR machine. The CEDAR machine is a research machine based on ALLIANT
computers (today). We also have a network of Apollo super-micro-computers which
can be used as a multi-processor network; it is also viable for finite element
calculations. A1l of these additions in hardware took place in six months.
Additional changes will occur within the next one to two years.

We, as individuals working in finite element software technology, must be
careful not to box ourselves in, or exclude the kinds of things which will be
happening in the near future. 1 think we can accomplish this objective by
seriously studying and redesigning the architecture of our computer systems, and
developing new testbeds that are flexible enough to meet the challenges of the
future.

K. C. Park, Lockheed Palo Alto Research Laboratory: You are opening a box of

worms. Dr. Bahram Nour-Omid and I have been exploring the Cal. Tech Hypercube
for the Tast 6 months. It took us 2-1/2 months to successfully run a
one-dimensional wave propagation problem. And then the word I just got from him
on the plane was, after struggling about 2 to 2-1/2 months, we just have been
able to run a simple 2-D plate bending problem. What this means is that it is
very difficult to implement software on parallel machines, at the moment, mainly
because the supporting system utilities aren't there. And it's going to take
about 3 to 5 years before we engineers can--in a routine manner--use a parallel
machine, either a FLEX machine or a Hypercube, or the 1ike. Right now, for
example, the FLEX people insist that they have a FORTRAN compiler. But when we
looked at it, it really doesn't have a good solid FORTRAN cross compiler and
neither does the Cal. Tech Hypercube. What this means is we have to start all
over again using the C language. And imagine the conversion labor involved in
rewriting sophisticated finite element programs into the C language. So I think
we have 3 to 5 years before we can start to see the routine uses of the paraliel
machines. |
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The other comment that I would like to make is that parallel machines are not
cheap. What that means is that only wealthy private companies, such as some of
the profit-making finite element analysis companies, 1ike Marc, or
MacNeal-Schwendler, may be able to afford parallel machines. But in the
meantime we want to minimize the time it takes to move from university research
products to practical applications--say on a parallel machine. Then the cost of
the machine has got to go down, or somebody should provide the funds. Otherwise
you will not see a wide dissemination of parallel machines.

Stroud: Today, it's not so much the cost of the multiple processor machines,
it's the lack of software. That's right, FLEX might not even have a FORTRAN
compiler--and that's a problem. But, I certainly hope it won't be 5 years
before we are routinely using the Flex computer. I think that we will be able
to begin talking about structural analysis on parallel machines in 18 months.

Vincent Godino, Bolt, Beranek, and Newman: I would 1ike to say a few words
about our experience in parallel processing. Under DARPA sponsorship, BBN has
developed a parallel processor called the Butterfly. We have a 128-node machine
currently operational. The Structural Mechanics department, which I head, has
been developing structural mechanics software on this machine including matrix
operations, Gauss elimination, etc. Based upon our experience on this
particular machine, I must take issue with some of K. C. Park's comments. In
terms of ease of implementation, our scientific programmers, with no previous
experience on any parallel processors, were able to program several extremely
effective algorithms in a short time and with minimum help from people
experienced on the machine. The Butterfly is available to DARPA contractors
through the ARPA net. Next generation parallel processors consisting of
thousands of nodes are currently under development. I guess I would like to
agree with Jeff Stroud in that I think that we're a lot closer than five years
before these machines are going to be real tools being used to solve structural
mechanics problems.

Jimmy Y. L. Ho, Lockheed, Sunnyvale: We need to realize that the material
properties and various other properties, such as joint behavior, are statistical
quantities. They do not have a precise value.
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Szabo: The realities are that we do indeed deal with stochastic differential
equations. The loading, the material properties, the thicknesses, and so on are
really stochastic variables. I'm aware of some research in this area that's
just beginning to address this fact. Monte Carlo methods are out of the
question because of the size of practical problems. We cannot perform so many
different analyses with different input data. But it is possible to study
certain bounding characteristics of the data and reflect those characteristics
in our answers in an honest way. And the point raised here could really be a
very important topic for NASA to take up as a research study--how to be more
realistic in the way we treat computed data. The number is not 10.75, but,
rather, it is a stochastic variable. Understanding the bounds within which the
answer is valid is very important. Delivering a number doesn't mean very much
unless I'm able to state the confidence level I can associate with that number.

Robert Melosh, Duke University: I see four different groups of people here, and

that's probably the basis for the conflict. 1 see a group of analysts who want
to be responsive to the demands of their employers and turn out good analyses,
and right now, as I see it, the analyst has a very heroic job to turn out
analyses that he can depend on. There is another group here represented by
program developers who are responsive to the needs of the analysts. They want
to supply programs to help the analyst do his job, but they don't have the final
responsibility for the analysis. The engineer does. The third group is the
group you represent, Jeff, the Langley group who want to do relevant research to
help the first two groups. The fourth group includes the university people who
want to do relevant research to help the first three groups. I think if you
want to center on what you should do as a group, you have to decide who you want
to satisfy in terms of setting your priorities. Do you want to satisfy the
analysts at that end of the extreme or the researcher at the other end of the
extreme? You have to settle on that in order to settle on what your objectives
will be for research.

Bahram Nour-Omid, Lockheed Palo Alto Laboratory: There are a couple of issues

that have come up in my work on the parallel processor--in particular, the one
down in Cal Tech. First of all I'd 1ike to distinguish between parallel proces-
sors. The one based on single instruction multi-data, which are Cray and Cyber
205 computers. And the next generation computers which are going to be multi-
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instruction, multi-data-stream computers. Now these computers come in a variety
of different architectures, some of them are based on message passing between
processors, and others are based on a shared memory environment. It is quite
possible to write programs--code--and get them to work on these computers. But
whether those codes are going to be efficient is a completely different story.
One can write a Gauss elimination procedure, probably in a matter of months.
However, it turns out that on concurrent processors, which are the multi-
instruction, multi-data computers, the time taken for a message to go from one
processor to another is equivalent to between 10 and 100 multiplies. Therefore,
one has to look at algorithms that utilize the given architecture of the compu-
ter. It is pointless to look at algorithms that require a lot of inter-
processor communication. One has to look at algorithms which don't do that. 1In
particular, the most promising ones that we have seen are iterative methods and
the type which are based on partitioning of a structure into substructures.

That brings up another problem which I think is quite unsolved and that is the
mapping of a finite element mesh onto a set of processors. People have done a
lot of work on partitioning meshes, regular meshes--and mapping them on the
concurrent processors. But once the mesh gets quite general, such as the ones
we have seen--finite element mesh of an aircraft--then I think it's very hard to
say how to automate the process of mapping those meshes on the computer.

Joop Nagtegaal, MARC Analysis Research Corp.: I would like to make two brief
comments on two very different subjects. One is the parallel processing. I

believe there are a lot of algorithms already around which lend themselves to
parallelizing computations. I know of Gaussian elimination equation solvers
which can be parallelized by selfcontinuous substructuring technique. Certainly
you can do all element calculations in parallel. What I see is missing at the
moment is operating software on these multiprocessor machines which we can
program such that they work. That's what I see currently as the bottleneck.

But I see that things are changing. So, a little bit of time and I see a lot of
things going on. The second comment on a whole different subject is on this
uncertainty business, stochastic analysis. I1'd like to add that MASA is spon-
soring such a project. It's a different branch of NASA, but I'd Tike to think
of NASA as one big organization. And there are certinly some promising things
going on. And I would be happy to talk about that with anyone.
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Stroud: NASA Lewis is doing that work.

Nagtegaal: And there are several people from Lewis at this workshop.

Stroud: We're all one good team.
Nagtegaal: That's what I T1ike to think, yes, thank you.

Stanley: I'm getting the impression now from listening to all the comments--
from both the panel and the audience--that people seem to view this idea of
global/local analysis as an interim measure pending the full-scale utilization
of parallel processing--that as soon as computers become fast enough, there
won't be a need to use global functions and exact solutions. We'll just go in
there with brute force with 3-D finite element analysis. I'm wondering if
that's the case, because if that is the feeling then perhaps we should retrain
in midstream here. Maybe that's a rhetorical question. O0On the other hand, if
we do continue with these global/lccal methodologies, I would 1ike to see them
become more problem oriented, I'd Tike to see them continue in this manner, 1'd
Tike these benchmark problems--the NASA problems--to be distributed among people
that are collaborating in this area. And I would 1ike to then compare the
methods used to solve these problems based on a number of criteria, such as

(1) reliability; (2) computational effort, which would include the analyst's
effort as well; (3) implementational effort, that's important because retreading
software can be a huge cost and, finally, (4) generality. If worse comes to
worst, we will have to build special purpose codes as they do in the fluids
business. But, optimally, it would be nice to hang on to the general purpose
benefits we get from the finite element method by using such techniques as
reduced basis global functions, based on finite element basis functions, in the
first place, so that we can automate this global/localization.

Ahmed K. Noor, George Washington University: Just two comments. One with

regard to the question about uncertainty and confidence in the results. Short
of doing a stochastic analysis I think we can get some confidence in the results
by carrying out a sensitivity analysis. Sensitivity of the response with
respect to the input parameters, for example. This would give us some confi-
dence in the numerical results. The second comment deals with parallel proces-
sing. Parallel processing is a system issue. Unfortunately, much of the work
that is being done has addressed certain aspects of the analysis process. In
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particular, the numerical algorithms for handling the algebraic equations. This
is very important, of course, and computer time spent in algorithms is dominant
in present-day finite element analysis, but it might not be enough to address
that alone if we want a very efficient solution procedure. 1 think we have to
address the question from a higher level starting with the formulation, looking
at the different phases of the analyses, and, as [ said in my presentation, that
we might have to move away from some of the traditional finite element analysis
processes like, for example, bypassing the assembly process. This is the most
difficult part of the solution process for vectorization or parallelization.

So, 1 think we have to look more into the overall computational strategy rather
than just the numerical algorithm.

Nelson: This comment has to do with something we haven't talked a lot about,
although we saw a lot of pictures. That was the idea of testing. I'm reminded
of an old Tinius Olsen testing motto which says that one test is worth a thou-
sand expert opinions. We want finite element analysis to be a true engineering
tool. Which means that the finite element software has to be configured to be
flexible. If, for example, we start looking at such things as a NASA test
panel, in which we begin to see failure such as delamination and things of this
nature, we want to be able to incorporate in the software new material models or
new failure laws for composites. So then we can have tight feedback between
experiment and analysis. We will all benefit from having codes that are not
Jjust bigger--the codes are just a little bit smarter, because we are.

J. N. Reddy, Virginia Polytechnic Institute: I want to make one comment in
response to the first comment made by Dr. Backman. Most of my colleagues from
universities, I hope, share at least the spirit of what I'm going to say. I
think most of the students that are coming out of the universities, I am disap-

pointed to say, are taught the recipe-type approach, formula plugging and
checking compared to my older colleagues who have a lot of ingenuity and physics
background. My older colleagues are better at modeling than, I think, the
current students. And I don't want to use the same kind of approach as proposed
or suggested by Dr. Backman. 1 want the students to know more physics than
number crunching and formula plugging. I think if they have an understanding of
the basic physics and if they have certain tools, when they get out of school I
think they can be trained on the job. I'l11 give an example of my own. After I
graduated, I took a job with Lockheed Huntsville Space Company. Before taking
that job, I only worked with Hilbert spaces and Sobolev spaces, and also, of
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course, I Tearned a great deal from Professor Oden and other people in terms of
physics and mathematical modeling. At my new job, I was asked to do a 3-D
analysis of impact, hydrodynamic approximation. One week after I got into the
job, I had a job offer to go to the University of Oklahoma, but I decided to
stay and complete the project given to me. And I did complete it in 6 months.
The point is, if you have the right background in terms of the mathematics and
physics, I think you can learn number crunching very easily. But if you train
yourself with only number crunching, you may not get the physical understanding.
So I think we should be very careful in training our students.

Stroud: My bet is that Bjorn wasn't suggesting that students be trained a
particular way. Rather, he wanted the product of our CSM efforts to be soft-
ware.

Backman: Yes. I'm not sure what I said that caused this comment. It's possi-

ble that I hinted that the level of so-called blackbox engineering has to be
increased. I think that we are slowly reaching the point where proliferation of
experts has reached a level such that we simply can't replace them fast enough ‘
in the production field. And what I'm trying to say is, of all these students
that are coming up with the proper background in science and structural
mechanics and so on, how many do you expect to be proficient in the operating
systems that exist on the machines they are using? How many do you expect to
know the details of the compilers we use on the system? How many of them do you
expect to understand, in detail, the equation solvers? And how many do you
expect to understand the inner workings of the optimizers? Somewhere in here we
are going to have to stop asking these people to become renaissance
personalities. I'm just trying to achieve some balance here where maybe things
like finite element systems ultimately fit into the same category as operating
systems. And maybe the engineering community will be dealing with the actual
design problems. I'm, by all means, in favor of a solid background in the
sciences. I1'd rather see the industry taking on some additional educational
responsibility in this area. The point is that sooner or later you either have
to require 10 years or more of higher education or you have to identify how
deeply into the problem you want to go. And, I think, a method 1ike this one
that Dr. Szabo has been advocating is probably a first step towards the ability
to heuristically understand the result of your analysis without knowing the guts
of each step of the solution. And I'l11 stop with that.

206



ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Stroud: Thank you. It's clear that we have opened up a lot of topics and we
have not resolved them. And opening them up is certainly one of the objectives
of this workshop. There will be many more workshops and conferences that will
attempt to resolve some of these questions. I want to thank you all for coming
and participating. In particular, I want to thank the speakers.

*0Original color slide shown here in black and white.

207




TIRE MODELING

PRECEDING PAGE BLANK NOT FILMED
209




N89-24649

FEATURES AND CHARACTERIZATION NEEDS OF
RUBBER COMPOSITE STRUCTURES
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Abstract

This paper outlines some of the major unique features of rubber
composite structures. The features covered are those related to
the material properties, but the analytical features are also
briefly discussed. It is essential to recognize these features
at the planning stage of any long-range analytical, experimental,
or application program.

The development of a general and comprehensive program which fully
accounts for all the important characteristics of tires, under

all the relevant modes of operation, may present a prohibitively
expensive and impractical task at the near future. There is therefore
a need to develop application methodologies which can utilize

the less general models, beyond their theoretical limitations and
yet with reasonable reliability, by proper mix of analytical,
experimental, and testing activities.

OUTLINE:
1. CORDS
2. RUBBER

3. RUBBER COMPOSITES

Single Ply
Laminate

4. ANALYTICAL AND
COMPUTATIONAL ASPECTS
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INTRODUCTION

The textile-cord-reinforced-rubber composites used in various
industrial products differ in many respects from the classical
rigid composites. There are a great number of papers, books, and
professional journals devoted to rigid composites. The literature
on rubber composites, however, is very limited as compared to
classical composites. To understand the mechanics of such composites,
it is essential to develop an in-depth understanding of the way in
which the internal variables of the constituents participate and
interact in responding to external agents, i.e., mechanical,
thermal or other environmental forces. It is, however, important
to first study the properties of each constituent before dealing
with the material properties of rubber composites.

CORDS

The textile cord reinforcements are structural members which may be
viewed as one dimensional in a microscopic sense. The cords
generally consist of several yarns twisted together. The yarns

also consist of numerous filament components organized in a
geometrical array with the view towards enhancing certain target
properties. The cord properties therefore depend on the properties
of the filaments and the geometrical organization as well as the
interfacial characteristics. The filament itself has also been known
to possess an internal structure at the microscopic level.

In view of the above consideration, the cord itself is a complex
structure which may be studied at the microscopic level (figs. 1
and 2). The way in which the cord properties are related to
filament properties, geometries (ref. 1) and other variables is
the subject of textile mechanics (fig. 3). Properties such as
strength, stiffness, and fatigue characteristics can be con-
trolled by internal variables when their relationships are well
understood.

From a higher scale of continuum mechanics we are, however,
concerned only with the phenomenological properties of the cords as
experimentally obtained without any attempt for relating such
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measured values to the micro-structure in the sense of textile

mechanics. The properties of interest at this continuum level are
therefore the effective cord properties.

Such an approach enables us to bypass the complexity of the textile
mechanics in our formulation of composite properties. The
limitation is, however, that such measured properties serve as

"averages" only and therefore the continuum elements should be at
least in the order of cord diameters.

Figure 1. Typical tire cord.

. ORJGINA_L PAGE
BLACK AND wWHITE PHOTOGRAPH

213




ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

{,1, a
WEVEas T%

Figure 2. Cross section of tire cord (2).
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Figure 3. Stress-strain characteristics of typical tire cords (2).
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The cord is the major load-bearing member of rubber composite
structures and as such should provide strength and many other
characteristics of interest. Some of the expected performance
characteristics of the tire, and for that matter any other
structure, can be directly related to cord properties. Let us
consider some of the tire performance characteristics which are
affected by cord properties. A partial list is given in Table 1.

Table 1

TIRE PERFORMANCE AFFECTED BY CORDS

(o]

o

Burst Strength

Bruise Resistance

Tire Endurance (Separations)
Power LoOsSS

Tread Wear

High-Speed Endurance

Tire Size and Shape

Groove Cracking

Flat Spotting and Non-Uniformity
Tire Cornering Force

Tire Spring Rate

Noise
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Tables 2 to 4 of reference (3) provide a list of tire
requirements and the related cord requirements. Such relations
should be viewed with caution and qualifications.

Table 2

(REF. 3)
RADIAL PASSENGER

Vehicle Trends Tire Requirements Cord Requirements
High Performance Low Aspect Ratio Modulus
(Increased Cornering Lateral Stiffness
Forces)
o L. Dimensional Stability
Downsizing Downsizing - Monoply Fatigque
Modulus
Tenacity
Front Wheel Drive Inproved Tread Wear Dimensional Stability
Lateral Stiffness
Retreading Aged Adhesion
Thermal Stability
Fatigue
Fuel Economy Rolling Resistance Tenacity
Modulus
Hysteresis
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Vehicle Trends

Increased Drive
Position Loads

Improved Fuel
Economy/New

Transportation
Act

Tire Requirements

High Deflection

Reduced Weight

Retread

Table 3
(REF. 3)
RADIAL TRUCK

Tire Requirements
Increased Durability
Lighter Weight

Low Profile
Retreading

Rolling Resistance

Table 4

(REF. 3)
RADIAL AIRCRAFT

Cord Requirements

Tenacity
Strength/Area Ratio

Tenacity

Fatigue

Aged Adhesion
Fatigue

Thermal Stability

Tenacity
Modulus
Hysteresis

Cord Requirements

Tenacity
Modulus

Thermal Stability

Tenacity

Strength/Area Ratio

Aged Adhesion
Dimensional/Thermal Stability

Fatigue
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CORD VISCOELASTICITY

The textile cords used in rubber-reinforced composites are often
nonlinear viscoelastic. The viscoelastic deformations are associated
with the loss of energy. The dissipated energy appears as heat and
leads to temperature rise which in turn affects the material properties.
The cord is therefore an important contributor to the energy loss in
rubber-composite structures such as tires (4). Figures 4 and 5 show
some of the viscoelastic properties of polyester cords.
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Figure 4. Carpet plot of 1000/2 polyester real modulus.
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Figure 5. Carpet plot of 1000/2 polyester loss modulus.
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SUMMARY ON CORDS DISCUSSION

o Cords are structures and as such their effective properties are
geometry and boundary condition dependent.

o The effective cord properties are different when cords are
embedded in the rubber matrix.

0 The calculation of the three-dimensional effective properties
by analytical homogenization is very complex and impractical.

0 The properties of some cords such as nylon are highly temper-
ature sensitive, particularly around the glass transition
temperature.

0 The properties are different in tension and compression.

o Cords are often nonlinear and viscoelastic.
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RUBBER

The physical properties of rubber compounds depend on various
processing parameters and components. Here again, we are not
concerned as how these properties are related to the molecular
structure of the rubber and the physics of rubber vulcanization.
The focus is on determination of the relevant properties by proper
experiment and within the framework of continuum physics. The most
important property is the elasticity of the rubber, which is
distinctly different from other conventional materials. The most
distinctive features of rubber elasticity are the deformability and
the rapid recovery of the deformations when loads are removed.
Rubber remains elastic at extension ratios of several hundred
percent. Such elastic characteristics make the rubber unigque in
this respect. 1In fact, the major developments in the theory of
large elastic deformations evolved around application to rubber
elasticity. The rubber elasticity is an important subject in
understanding finite-element analysis of such products.

RUBBER ELASTICITY

To understand rubber elasticity, we may first examine the
thermodynamics of reversible processes. The first and the second
laws of thermodynamics state that (5)

dE = Tds + dw

where E is the internal energy, T is the absolute temperature, S
is the entropy and w is the work done on the system. Experimental
work has shown that the rubber elasticity resides basically in the
entropy term. The rubber elasticity therefore has an entirely
different molecular origin than other elastic materials whose
elasticities are primarily associated with the increase in internal
energy through changes in molecular or atomic spaces.
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Much work has been carried out to formulate rubber elasticity.

One example of the molecular approach is one which considers the
molecular chain length having Gaussian distribution. The elasticity
parameters are calculated from such quantities as finite molecular
length and molecular weight between crosslinks. The entropy change
resulting from Gaussian theory leads to

= _1 2 2 2
AS INK (A] + A5 + A3 - 1)
in which N is t?e number of network chains per unit volume
andkl ’ X2 , and %3 are the three principal extension ratios

along the three mutually perpendicular axes of strain for pure
homogeneous strains.

The above equation provides a first order approximation to rubber
elasticity but is not adequate over a large range of deformations.
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PHENOMENOLOGICAL APPROACH

An entirely different approach (6) is the phenomenological approach
of continuum mechanics. In this approach, the existence of a strain
energy function is postulated. It has been shown that such a strain
energy function should depend on deformation gradients. The equa-
tions for isotropic incompressible elastic media are as follows:

Wo=Ww (1, I,, I)
2 2 2
I1 = Xl + 12 + 13
_ 4242 2,2 2,2
Ip = A2 + A3 + 515
_ +2,2,2
I3 = Ad523
For the incompressible case
W=W (I, Ip)
I3=l
In series form
W= ICiy (I) - (I,- )i, =0, 1, 2,....

ij
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An alternative form, suggested in (7), is as follows

The stress-strain relations in the principal directions (the
stresses are force per deformed area) are

_ W 2.2 . W 02 ,42 . 42

oy = _3_11 (2x1) + _312 2x] (A + xs) + h(O)
W 2, . OW .12 42 , .2

o2 T a1, (BAg) * 3y, 2Ap (g * Ag) + RO
_ oW 2y L W 042 42 , 42

Ogq = ﬁl (2>\3) + B—I-Z 2)&3 (Xl + Xz) + h(0O)
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The one-dimensional stress-strain relation can be obtained from
the three-dimensional relations as shown in figure 6.

1/ 3

=
=

2 3 1
c=2 % - ") (57 + =5 57 )
31, 32 91,
A
0.4 —
0.2 [—
I I | l l I l -
2.0 4.0 0.6 0.8 1.0 1.2

Figure 6. One-dimensional stress-strain relation.
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It can be seen that the tangent compressive moduli increase
significantly as the compressive strain increases. This feature
realistically describes the rubber response in compression. In the
finite-element treatment of rubber materials, the rubber is often
modeled as linear, on the ground that the strains are small and
that the linear constitutive law should then provide a reasonable
approximation. This view is very disputable. It suffices to say
that the compressive strains remain small due to stiffening of
rubber in compression. This feature can only be handled properly
by nonlinear constitutive laws. In the linear model of rubber, the
material stiffness remains unchanged and therefore moderate
compressive forces produce high compressive strains that are not
seen in the actual structure. Such exceedingly large strains result
in distortion of elements which quickly leads to severe numerical
problens.

A difficult problem, in dealing with rubber elasticity, arises from
the incompressibility constraint condition. The incompressibility
condition leads to certain simplifications in the exact analysis of
the problem, basically because of reduction in the number of
unknown parameters. Such is not, however, the case with the finite-
element approach. In the variational formulation, for example, the
Lagrange multiplier introduces an additional unknown scalar
function into the finite-element formulation. This unknown should
be accommodated at the element level. The procedure results in a
significant increase in the number of total unknowns and also may
result in an ill-conditioned stiffness matrix. A great deal of
research has been carried out to find the most suitable element for
handling incompressibility. The subject is still open but the fact
remains that the incompressibility imposes an additional burden in
numerical analysis. The incompressibility condition, aside from
being inconvenient in the finite-element analysis, is an
approximation for rubber-like materials. Such an approximation
becomes increasingly less accurate as the percentage of carbon
black increases in the rubber compound. The exact enforcement

of incompressibility is therefore not actually needed.
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NEARLY INCOMPRESSIBLE MATERIALS

The strain energy function for nearly incompressible materials can
be obtained by a series expansion of the strain energy function
about (I;_y), and retaining the leading terms of up to second order

in (I3_y), as follows

W= W1 (Il, Iz) + W2 (Il, Iz) . (13 - 1)

1, - 1] << 1

W =133 C,. (I, - 3)i (1
i3 ij 1

- 1)2 + .. ..

_ 3] - - - 1y2
, = N H Wy - (I3 - 1)+ Wy (I3 - D)7+

One special case of the above equations is when the function W

and W3 are considered constants.

follows:
W2 (Il, 12) = H1
W3 (Il’ Iz) = H2
H1 = —(C10 + 2C01)

The constants are described as
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The near incompressibility can now be enforced by assigning large
values to H. 1In fact, as H approaches infinity, (I3.7) approaches
zero so that the strain energy remains finite. The higher the

value of H, the closer the incompressibility would be satisfied.

H 1is referred to as the penalty number. In finite-element analysis,
however, the large values of H can lead to overriding stiffness
which results in numerical problems. The penalty method nevertheless
permits the satisfaction of near incompressibility without increasing
the number of unknowns in finite-element formulation. Figure 7 shows
a set of typical properties for the rubber.

0= F/a,
{kg/mm’) 3] ¥ EXPERIMENTAL POINTS
Ey =4U1+ ¥ HC o+ Cyp)
2 * ¥
*/ ;""*o
* 1
e T
*/ *‘—‘*’_—
-
'*‘
i '*‘
{ e={L-Ly)/Lo
‘ 2 A 6 8 v
Cio= 0472 (kgsrmm?)
Caqi= 0211 "
Cun= ~-.00414
Ci0=— 000262
Cio= 00112
H, = —(C,p+2Ca)
Hy = 11138 -

Figure 7. Stress-strain relation, (8).
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FRACTURE AND FATIGUE PROPERTIES

The fatigue of the rubber has been the subject of many investigations
in the past. The rubber fatigue is intimately related to the nature
of rubber fracture and cut growth. The fracture mechanics approach
for rubber was first adopted by Rivlin and Thomas (9) and Thomas (10)
who promoted the concept of the tear energy in describing the cut
growth mechanism. The tear energy approach has been applied to the
study of the crack growth problem and to the description of fatigue
behavior of rubber. We only consider the mechanically induced fatigue
and this therefore excludes the fatigue caused by or resulting from
non-mechanical sources such as aggressive environment. Some of the
non-mechanical sources, such as ozone cracking in elastomers, may,
however, be more damaging than mechanical sources.

Busse's early results (11) on NR compounds, shown in Table 5, clearly
demonstrate the unique feature of rubber fatigue.

Table 5

EFFECT OF STRAIN CYCLE

STRAIN CYCLE LIFE, MINUTE
5 - 60% Extension 10

10 - 60% " 25

15 - 60% " 90

17 - 60% " 150+

20 - 60% 00 00

Some experimental fatigue data on various compounds are shown in
Figures 8 to 11 taken from References (12-14).
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Figure 9. Imposed extension versus number of cycles to break
(from ref. 12).
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SUMMARY ON RUBBER

O Rubber remains elastic at extension ratios of several hundred.

0 Rubber is almost incompressible.

o The rubber elasticity can be most conveniently expressed
through the strain energy function.

o Rubber has unique fatigue properties. Extensive experimental
work needs to be carried out for fatigue characterization of
various rubber compounds.,

o Appropriate failure theories are needed for interpretation of
stress data from finite-element analysis.

O Properties are temperature dependent.
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CORD REINFORCED RUBBER COMPOSITE - SINGLE PLY

In the macro-mechanics approach to composites, the actual
heterogeneous medium, Figure 12, is replaced by an "equivalent"
homogeneous medium. The equivalent medium has the same geometry as
the heterogeneous medium but different material properties. The
"effective" properties of the latter may belong to a different
class of symmetry than those of the constituent materials. For
instance, for isotropic constituents, the effective properties may
be isotropic, orthotropic or anisotropic depending on the internal
geometry of the composite.

Let us consider a two-dimensional composite made of an isotropic
matrix and reinforced by doubly periodic arrays of isotropic

fibers as shown in Figure 13. A composite representation of the
problem is a homogeneous medium with the same external geometry and
boundary conditions as those of the heterogeneous case, but with
orthotropic properties. The effective orthotropic properties are
then defined for a "representative" element. It is very important
to first understand what is meant by that. Hashin (15) defined and
discussed this question and has drawn some analogies to the case of
homogeneous continua. In such continua, the hypothesis is that the
continua retain their properties even for infinitesimal elements.
Due to the discrete nature and microstructure of homogeneous media,
the infinitesimal element of continuum mechanics should be large
compared to the scales of the microstructure. The infinitesimal
element therefore exhibits properties which are some statistical
averages of the microstructure properties. On the other hand, the.
infinitesimal elements should be very small compared to the
dimensions of the continua. It then follows that the physical
quantities at a point, such as moduli, stress and strain components,
are in reality associated with averages over infinitesimal elements
and not with a geometrical point. Due to the complex nature of the
microstructure, the properties of the continuum infinitesimal
elements are determined experimentally as opposed to calculating
the averages from a microstructural theory. The same comments also
apply to the "representative" element of composite theories, that
is to say that a "representative" element is the infinitesimal
element of composite materials. It therefore should be large
compared to the dimensions of its material phases. A
"representative" element, as defined, would retain and represent
the properties of the composite continua and furthermore these
properties would be insensitive to boundary conditions.
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Figure 12.

Representative element.



A distinction must be made between a "representative" element and
unit elements or unit cells. The latter is defined as building
blocks, so that the continua can be constructed by repeated use of
such units. For example, consider the composite of Figure 13.
There are a number of unit cell configurations which can equally
serve as building blocks. Some of these possible choices are shown
in Figure 14. Figure 15 shows the boundary effects on shear.
deformations. The average properties of these units, unlike

those of a "representative" element, are highly boundary condition
dependent (16). A "representative" element, however, consists of a
large number of unit cells.

From the definition of a "representative" element, it is apparent
that the properties calculated or experimentally measured would be
rather insensitive to boundary conditions. The problem, however,
is that such a calculation would be a formidable task. Most
published works dealing with a calculation of effective properties:
use a unit cell as the basis of their computations. Even for unit
cells, the exact solutions can be obtained for only some simple
geometries and simple boundary conditions. Another approach
adopted is to determine the upper and the lower bounds for these
properties through approximate solutions of energy formulations.
These bounds are, however, far apart for composites with high
cord-to-matrix stiffness ratios, such as rubber composites, and are
therefore of little practical use.

The immediate question is, therefore, how sensitive these properties

are to boundary conditions specified over the surface of the

unit cell, and, furthermore, how the element boundary conditions are

influenced by global boundary conditions. These questions have not
been fully investigated in the literature. It can, however, be
stated that such sensitivities should depend on the relative
stiffnesses of the cord and the matrix. As the stiffness of the
matrix approaches that of the reinforcing materials, the

effective properties should become less sensitive to boundary
conditions and obviously independent of the boundary conditions in
the limiting case of identical constituents' properties. These
sensitivities are thus of greater concern in rubber composites than
conventional rigid composites. The ratio of cord to rubber
stiffness can exceed 30,000 in some composites which is far greater
than those of rigid composites.
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SUMMARY ON BASICS OF RUBBER COMPOSITES

O
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The calculation of effective properties of rubber composites
by homogenization is subject to more limitations than rigid
composites. These limitations need to be established on a
sound theoretical basis.

In experimental determination of the effective properties,
the effects of size and the boundary conditions should be
investigated.

The homogenized properties of a single ply cannot be easily
calculated since all the 3-D homogenized cord properties are
not generally available, with sufficient accuracy. Some of
the effective composite properties, however, may prove to be
somewhat insensitive to inaccuracies in cord properties.

A necessary characteristic of a composite material is
statistical homogeneity. A representative element, used for
calculation of the effective properties, should be large
compared to typical phase regions. A representative element
of a single ply does not have such a characteristic in the
thickness direction. The out of plane properties of a single
ply, therefore, are subject to question.

The effective properties are different in tension and
compression.



CHARACTERIZATION OF LAMINATED COMPOSITES

We now consider a laminated structure, composed of N layers of
cord-reinforced composite materials, as shown in Figure 16.
Each layer of heterogeneous composite may then be modeled as
homogeneous but orthotropic with respect to the proper local
coordinate of each layer. The constitutive equations of the
laminated composite, however, must be obtained with respect to
a global coordinate system XYZ, as shown in Figure 16. The
transformation relations may then be used for the appropriate
layers to carry out the required transformation. The layers
are numbered from top to bottom and no symmetry is assumed with
respect to any axis. The stress and moment resultants for the
laminated structure in terms of stresses are defined as follows:

r r
N, = [ =
. o,,dz N,=1|o,dz Ny=| o,dz

JO JO 0
. [

M. =1} o, 2dz M,=| o,zdz M, =1 o0,2dz
Jo Jo o
X M

0,=|o0.dz  Q,=|aq,ds
JO JO

Figure 16. Geometry of typical laminated composites.
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The displacement components and the resulting constitutive relations
are

u=uy(x,y) + zk (x, )
v =1vy(x, ¥) + 2k (x, 1)

w=w(x,}))
"1 T Mo T
N, A, 4, 0 0 A, B, B,, B, =2
dr,
N, {1 A 0 0 Asy Bis B., B, >
ow
Q. 0 0 A, Ay 0 0 0 0 { k,
Gy
ow
o, 1=l0 0 4, A5 0 0 0 0 5% k.
cuy  Gu,
Ny A Ay 0 0 Ao By B:o Bon PR
ok
M, By Bi: 0 0 By Dy Dy Dulf 3>
ak,
M, B, By; 0 0 By, Dy Dy Doy o
ok, Ok,
Mo LB”’ Bi 00 Byo Dio D2 Do a;_+‘(?—17_l
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where the laminate stiffnesses are related to the layer stittness by:

n

Chzdz  ij=1,2,6

k=1
. n
0
K=1
, n
Dy J EC,‘;'z:dZ i,j=126
0
k=1
\ n
Ay = [ Z(‘:f’k,]dz i.j=4,
Jo

Ao

W

No summation on igj
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SUMMARY ON LAMINATED COMPOSITES

o

Each ply may be homogenized, subject to the same limitations
as those of a single ply.

Complete homogenization is not possible since the coupling
between the forces and the moments can only be accounted for
by preserving nonhomogeneity in the thickness direction.

Classical kinematics constraints, such as the Kirchhoff
hypothesis, do not apply.

Plate/shell type stiffnesses are extremely hard to measure.

Constitutive relations are nonlinear due to angle change
between the cords of adjacent plies.
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ANALYTICAL AND COMPUTATIONAL FEATURES

KINEMATICS

The rubber composite structures undergo large strains as well as
large rotations. The major kinematic features are listed in table 6.

Table 6

KINEMATIC FEATURES

ILARGE RUBBER STRAINS
LARGE ROTATIONS
CORD ANGLE CHANGES

NEAR INCOMPRESSIBILITY CONDITION

CONSTITUTIVE RELATIONS FOR COMPOSITES

Single ply
The single-ply composites can be considered as linear orthotropic
when referred to axes of symmetry. For large displacements but
moderately small strains, the rubber and the cords can be considered
linear, but the strain-displacement gradient relations are nonlinear.
The most appropriate form of constitutive equations, in such case, is
t _t t

. 05ii = oCijkl ofkl
where ocijkl are orthotropic properties referred to coordinates
of initial material symmetry. The term tS are the components of

o"ij
the second Piolla-Kirchhoff stress tensor and ofk1 are the compo-
nents of the Lagrangian strain tensor. This form is invariant under

a rigid body motion and therefore needs to be updated due to the cord
angle change. This does not hold for constitutive equations

242



which utilize other stress and strain measures. The major drawback
-of modeling each ply separately is the increased size of the
finite-element problen.

Several plies

It is often more convenient to lump several plies together in one
element and therefore reduce the size of the problem. The preceding
equation can be utilized but not longer remains unchanged due to the
change in the angle between the minus and the plus ply. 1In such
models the orthotropic properties of the combined plies continually
change as functions of the cord angle.

Composites with nonlinear constituents

It is often necessary to account for the rubber nonlinearities in
the finite-element analysis, even for small strains. The reason
for such a need is that the typical compressive forces can produce
large rubber strains if the rubber stiffening in not properly
accounted for in the material modeling. These unrealistic large
strains may lead to element distortion and eventual loss of
numerical stability in the finite-element model. No rigorous
nonlinear composite constitutive equations have appeared in the
literature for rubber composites. This awaits further research
in this field.

Various modeling levels may be required depending on the nature
of the problem. These models and their respective features are
listed in Table 7.
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Table 7

MODELING FEATURES

ELEMENT TYPE FOR COMPQSITES FEATURES

MEMBRANE ELEMENTS REQUIRES 2-D MATERIAL PROPERTIES,
INTERPLIES MODELED INDEPENDENTLY
ONE ELEMENT PER PLY AND ONE ELEMENT
PER INTERPLY IN THE THICKNESS
DIRECTION, NO NEED FOR MATERIAL
UPDATE DUE TO THE CORD ANGLE CHANGE

TWO- AND THREE-DIMENSIONAL
ELEMENTS REPRESENTING:

SINGLE PLY REQUIRES 3-D MATERIAL PROPERTIES,
ONE ELEMENT PER PLY IN THICKNESS
DIRECTION, NO NEED FOR MATERIAL
UPDATE DUE TO THE CORD ANGLE
CHANGE

SEVERAL PLIES REQUIRES 3-D MATERIAL PROPERTIES,
LESS ELEMENTS, MATERIAL PROPERTIES
MUST BE UPDATED DUE TO THE CORD
ANGLE CHANGE, CANNOT MODEL THE
COUPLING BETWEEN THE BENDING
AND IN-PLANE FORCES

SHELL-TYPE ELEMENTS INCREASED MATERIAL PROPERTY INPUT,
LEAST NUMBER OF ELEMENTS,
CAN MODEL THE COUPLING BETWEEN THE
BENDING AND IN-PLANE FORCES,
KINEMATICS CONSTRAINTS OF THE
CORRESPONDING SHELL THEORY, MATERIAL
PROPERTIES MUST BE UPDATED DUE TO
THE CORD ANGLE CHANGE
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SUMMARY OF MAJOR ANALYTICAL AND COMPUTATIONAL NEEDS AND FEATURES
o Large elastic strains.
o Large rotations.

Incompressibility condition, natural rubber can be considered
as incompressible, but filled rubber exhibits compressibility.

o

0 Nonconservative loading.

0o Element type and aspect ratio.

o Self-adoptive schemes for load increments and step size.

0 Contact algorithms for frictional loadings.

o Finite-element formulation in rotating coordinate system.

0 Substructuring for localized analysis.

O Stresses are very erratic at regions of sudden change in
stiffness, such as cord-rubber interface. When calculated
from the finite-element displacement method, proper smoothing

algorithms must be developed for nonlinear problems.

o Sensitivity analysis for uncertain input, material properties
or other variables.
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NONLINEAR HIERARCHICAL SUBSTRUCTURAL PARALLELISM

AND COMPUTER ARCHITECTURE

Joe Padovan
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Akron, Ohio

Abstract

This paper investigates computer architecture in conjunction with the
algorithmic structures of nonlinear finite-element analysis. To help set the stage
for this goal, the development is undertaken by considering the wide-ranging needs
associated with the analysis of rolling tires which possess the full range of
kinematic, material and boundary condition induced nonlinearity in addition to gross
and local cord-matrix material properties.

1. Introduction

With the advent of the finite—element method (FEM), the analysis of large-scale
structure is finally possible. While large-scale linear finite-element simulations
are relatively economical, such is not the case for nonlinear situations involving
geometric, material and boundary induced nonlinearityl-4. There are numerous
aerospace and commercial structures which require full-scale nonlinear analysis to
enable their improved design. This includes such structural systems as gas turhines,
space structures, aircraft structure, autos, etc. Perhaps the most commonplace of
such structures is the tire, which serves as a component to a wide variety of
aerospace and auto systems.

To bypass the difficulties associated with nonlinear FE analysis, significant
work has been channeled into two main areas, namely:

5

i) The development of algorithmic improvements, element-element,” constrained

Newton/Raphson (NR),6 and hierarchical least squares,

ii) The design of new computer architecture enabling hardware speedup, i.e., as in
vector processors (Cray, Cyber 205 and true parallel machines®*”)

In the context of such thrusts, not enough effort has been undertaken to
consider how algorithmic structures might effect machine architecture or vice versa.

Based on the foregoing comments, this paper will investigate machine architec-—
ture in conjunction with algorithmic structure. To achieve this goal, the develop-
ment will be undertaken by considering the wide-ranging needs associated with the
analysis of tires. This approach was taken since, as will be seen in later sections,
the needs of tire modeling embody essentially all the requirements of nonlinear

continuum mechanics, namely
i) Material nonlinearity

ii) Inelastic behavior
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11i) Large deformation/strain kinematics
iv) Complex inertial fields
v) Nonlinear boundary conditions
vi) Microstructure
vii) Thermomechanical response
viii) Solid fluid interaction

All this leads to the development of what is called hierarchical substructural
parallelism which enables bottom-up/top-down modeling.11 Overall a nonlinear
multilevel substructuring scheme is overviewed which enables the simplification of
the data based management (DBM) of parallel-type operators while still yielding
enhanced computational speeds as well as reducing core requirements.

In the sections that follow, detailed tire modeling discussions embody the
diversity of needs of nonlinear simulations, various types of current machine
architectures, and potentials of hierarchical substructural parallelism. Examples
that define enhanced properties will also be given.

2, Shortcomings of FEM Vis-a-vis Tire Structural Analysis

Noting Figure 1, the tire possesses a very regionalized/substructural form of
construction. Overall it consists of:

i) Carcass plies, steel/glass/Kevlar cord-rubber composites
ii) Belt plies (same as above)
iii) Bead, bundled steel cords

iv) Thread configuration

v) Regionalized rubber types

vi) Belt edges, turnup plies

250



The operating environment consists of:

i) The tire-road interface which involves varying pavement textures,
flexibilities and resulting frictional characteristics ~?

ii) The tire-rim interface
iii) The tire-rim-suspension behavior

iv) Cornering, braking and accelerating maneuvers

v) Standing, steady/transient rolling10’13—15

vi) Obstacle/hole envelopment roll over eventsl3’14

vii) Pressurizationl®>17

As seen from Figures 2 and 3, the pressurization and subsequent loading into
standing contact can lead to large deformations and associated rotations. For
instance Table 1 illustrates comparisons of the deflection fields generated from
linear and nonlinear FE simulationms.

In this context, it follows that there are several sources of response
nonlinearity, namely

i) Large deformation kinematics
ii) The road-tire-rim interfaces

iii) Bimodular behavior of cord-rubber composites in transitions from
tension to compression

iv) Thermomechanical interactious
v) Material nonlinearity

vi) Local large strain levels in various regions of the tire;
belt edges, bead region, and tread

vii) Dynamic impact interactions

Each of the foregoing sources of nonlinearity initiates different forms of response
behavior.

For instance, from a kinematics point of view, the pressurization process causes
rotations and deflections which lead to an overall stiffening of the tire.
Similarly, as with Hertizian contact problems, the tire-road interface also exhibits
hardening-type properties, namely, the hub force-deflection response is stiffening in
character as noted in Figure 4.
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In addition to the foregoing modeling difficulties, in general the tire response
needs to be handled in several levels, namely

i) Cord-matrix and regionalized rubber interfaces
ii) Whole cord-rubber plies/laminae

iii) Full laminate structures, several plies as in belt and
carcass laminates

iv) Full (global) structure

As one preceeds from (i)-(iv), a "bottom-up” modelingll approach is required wherein
fine detail is handled at the lowest level while the upper level models are in-
creasingly coarser so as to reduce overall degrees of freedom in a global model.

Once the global—-level model is solved what is needed is a "top—down" scheme ~ to
provide proper mechanics information at the constituent level. Such an approach is
necessary if proper stress and strain fields are to be captured hence enabling proper
description of internal fields.

Current FE models of tires start from level {(iii) and proceed to {(iv). 1In this
way, a true local-level description of mechanical fields is not possible.

3. Types of Parallelism

Multiprocessor computers fall basically into two main categories, namely
i) Vector processors (Cray, Cyber 205)
ii) True parallel processors (Flex, Goodyear)

Compared with single processor units (IBM 3084, CDC7600), vector processors
enable quicker more efficient handling of matrix manipulations. This is achieved
through the use of multiple processors which operate simultaneously on a succession
of matrix elements. Data traunsfer for such operations is typically from a siagle
common core storage.

In true parallel processors, different functions/operations are performed in
separate processors. In such machines data transfer usually involves both a common
core as well as individual local processor cores. For such machines very high speeds
can be realized.

In the context of programming languages, vector processors typically can be
programmed in enhanced versions of FORTRAN or the like. For true parallel proces-
sors, overall programming is generally achieved at two levels. At the local pro-
cessor level, languages such as FORTRAN can be employed. At the total system level,
machine control language MCL is usually employed.
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4, Classical Solution Algorithm

The solution of large-scale FE simulations typically involves either some
variant of the Newton/Raphson scheme NR, or an explicit/implicit time integration
procedure. For the current demonstration purposes, the presentation will concentrate
on static equation solvers. The most recent improvements for such problems fall iato
several categories, namely

i) Element-by-element preconditioners (Hughes et al.?)

ii) Constrained NR procedures of Padovan and Arechaga6

iii) Constrained hierarchical least-squares algorithms of
Padovan and Lackney7

Assuming large deformation kinematics along with potential material
nonlinearity, the governing FE formulation takes the form™?

F=0+/ [B¥] Sdv (1)
PGt/ S

where S 1is the second Piola Kirchoff stress tensor, F is the nodal force vector
and G 1is the vector of body forces. Typically (1) is nonlinear and must be solved
via NR schemes. After expansion into truncated Taylor series, (1) yields the
following NR algorithm namelyl’z’ ’

_ _ % T
4G + [Ki]A¥i+l = F+4oF é[Bi] §idv (2

where [K] defines the tangent stiffness matrix, that is6’7

_ T T %
(K.} = é[[G] (s;1(G] + (B, I"(Dy, 1{B,]ldv (3)

such that [Si] is the prestress matrix and [Dp;] is the tangent material stiffness.
As noted earlier, the solution involves either the use of coanstrained procedures6 for
appropriate load increment control or a direct Gaussian—type inversion scheme.

To date such methodologies have been employed either in single processor or
vector processor machines. The shortcomings of the FEM outlined in the previous
section are essentially a direct outgrowth of the limitations of the architecture of
single and vector-processor—type machines. In the next section, the intrinsic
structure of the INR algorithm will be explored to define new computer architectures
to bypass such difficulties.
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5. Hierarchical Substructuring

From a conceptual point of view, the INR scheme defined by (2) does not confine
the FEM scheme to a particular type of computer configuration. Rather the problems
of speed and storage are essentially hardware based. Specifically the main questions
and problems evolve out of the need to define architectures which enable the use of
multiple processors so as to enhance overall machine speed as well as memory size.
While the CRAY and CYBER systems are certainly a step in the right direction, they
fall short of the ultimate requirements. Currently very large—scale FE models can
" easily outstrip the available core storage and machine CPU speeds.

In seeking to develop new computer architectures one is faced with the fact that
i) Vector processors require extensive cores as well as complex logic flows
ii) True parallel processors still await the fruition of properly organized DBM

Based on the foregoing, this paper seeks to develop what is called a hierarchical
form of substructural parallelism. Following the pioneering efforts of the NASA
Langley groups’9 specifically, a nonlinear FE simulation, say of the tire, can be
logically divided into a hierarchy of substructural groups defined by a variety of
attributes, namely

i) Material group
ii) Geometric configuration
iii) Kinematic behavior
iv) Boundary conditions
At the lowest rung of the hierarchy, items (i)-(iv) are employed to define the
specific local level substructural groups. The choice of the number of first—-order
groups is contingent on:

i) Minimizing core requirements of local level processors

ii) Minimizing number of perimeter nodes so that higher order substructural
groups also have reduced core requirements for associated processors.

As can be seen, the main thrust is to maintain in core solutions for each local
substructural processor.

Noting Figure 5, a given FE simulation can be broken up into a number of sub-
structural levels. At each level internal nodes are eliminated to enable assembly
through perimeter nodes. In terms of (2), the NR algorithm and its constrained
counterpart can be substructured to yield the following first-level algorithms, that
is:

(L) L (LI (L) (k)

~ i+l - i+l ~ i+l 4)
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k =1,2,....Number of first-level substructure such that

(1,k) _ (1,k) _ * T
AFa TP in é(l,k) (B;178,dv (5)
ac{lk) o dv (6)

T
Giv1 = é(l,k) [N]" 8F,

where ( )(l’k) denotes the first level kth substructure, ( ); the (i+1)th
i+1

iteration, Angik the nodal load increment, [Ki] the substructural tangent
(1,k) (1,k)

stiffness, AY the nodal deflection increment and &G the body force

. ~itl ~itl
increment.

To enable assembly into second-order substructural groups, (4) is partitioned
into internal and perimeter nodes yielding

(1,k) (1,k) (1,k)
8F 41~ (AFpihy 8Erie ) 7)
(LK) | g(1,K) (1,k)
aY i > (MYpidy AY1i41 ) (8)
(LK) | a(1,k) (1,k)
267541 = (881 2Grit1 ) e
(1,k) (1,k)
(K'pp "1 [Kigp ]
(10 109
(1,k).T ,(1,k)
[K'p "1 [Kpp 7]

Employing (7)-(10) we obtain the following relationships for the inner and perimeter
nodes

(1,k) _ . (1,k) (1,k) (1,k)
pisr” = Depi 1 8¥piar” * Afpi an
(1,k) _  , (1,k) (1,k) (1,k) 12
MYpser = “leprg 1 A¥psip *AIG a2
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where

tegp; 1 = Tppy1 = tppy T 1) a»

stpri = 0y 1K IR Y - alli) ¢ agfY) a4y

tepri ) = 1 g ()

sty = By ey - adtiit) (16)
Assembling (l1) yields the second-level substructural relationships, namely

S SR I S an

k = 1,2,... Number of second level substructure

By partitioning (16) into inner and perimeter degrees of freedom we yield the third-
order substructural relations after the appropriate assembly process. Continuing the
partitioning and assembly process yields the various higher order substructural
relations specifically

Gok) _ o (iok) s (k) (j,k)
M LA N S S A e (18)

wherein the associated inner and perimeter partitions take the form

(j,k) _ (j,k) (j,k) (i, k)

MFpiyr = Deipi 71 o¥pyly” + ofpihy (19)
(3.k) _ - (3,k) (j,k) (j,k)

MYy = “Ueipri il AYpiiyt tAfly (20)
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such that

- 00 - g
s - CH G - ) el
1 -
S - 0O

Based on (11)-(24), we see that the overall nonlinear hierarchical substructuring
requires a forward calculation phase as well as a backward stage. The forward phase
involves the use of (11), (13), (14), (19), (21) and (22). 1In contrast the backward
phase, which involves the definition of inner nodes, incorporates the use of (12),
(15), (16), (20), (23) and (24). 1In terms of the forward iterative algorithms, the
overall required machine architecture takes the form defined in Figure 6. Note the
common data buses linking successive substructural levels need only provide access to
perimeter data. 1In this way, significantly less data need to be accessed by the
global-level DBM. This applies throughout the forward phase of the iteration
process. Overall the steps handled by each of the succeeding levels involve
assembly, inner/perimeter partitioning, and setting up effective stiffnesses for the
forward and backward phases. In terms of (21)-(24), the stiffnesses associated with
the perimeter and inner nodes involve an inverse of the inner partition of the k
substructural stiffness. All such manipulations must be performed by processors
dedicated to each of the k 1individual substructures associated with the various
hierarchical levels.

Once the forward loop of calculations is complete, the perimeter data must be
back tracked to the inner nodes of each of the various substructures at the different
substructural levels. The overall flow of control/calculation is depicted in
Figure 7. As can be seen, the perimeter data are used to determine the inner nodal
incremental excursions. This is achieved through the use of the family of expres-
sions defined by (20). Once the back substitutions to the succeeding levels up to
and including the first are completed, the standard norm type convergence checks must
be implemented to ascertain the quality of convergence. Contingent on the conver-
gence check, the iteration process can be cycled through the forward and backward
phases of the substructural hierarchy.
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6. Discussion

To illustrate the hierarchical substructural scheme, consider the three-level
simulation defined in Figure 8. The number of nodes and substructure associated with
the example are given in Figure 9. Based on the number of inner and perimeter
variables depicted, the expressions defining the number of respective nodes are given

by:
i) Level 1
Perimeter Nodes = 2(%) + 2o + 23) (25)
Inner Nodes = (2; - 2)(& - 2) (26)
ii) Level 2
Perimeter Nodes = 2(#;n; + fny - n; = ny) (27)
Inner Nodes = nyny(2; + %) - nj(2) + 2) - ny(%y + 2) - 3nyny + 1 (28)

iii) Level 3

Perimeter Nodes = 2mn (%) = 1) + 2myn,(2, - 1) (29)

Inner Nodes = lelnl(mz - 1) + lzﬂzmz(ml - 1) - mlmz(nl + nz)

+ mln1 + mzn2 - mlm2 + 1 (30)

Employing (25-30) we see that the storage effectiveness of each of the various levels
is expressed by the relations

(1) _ Perimeter (31)
Perimeter + Inner

g

where k denotes the level number. In the context of (31), it follows that

+ -
E(l) _ 2(21 2, 2) (32)
| '1%
[
g(z) ) Z(anl + anz -ny - n2) (33)
nlll(n2 +1) + 9,2r12(nl + 1) - 3n1n2 - 4(nl + n2) + 1

(3) _ 2m1n1(9,l - 1) + 2m2n2(22 -1) (38)

2 -m,n, + 1

n 22

lelnl(m2 + 1) + !lzmznz(ml + 1) -mlmz(nl + n, +1) - mn,
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Consider the case wherein

£, =100, 2, = 50

1 2
nl =5, n2 =4
m, = 3, m, = 4

In terms of the foregoing, Table 2 gives the total number of

® degrees of freedom

® processors required at each level

® perimeter/inner nodes

as well as the storage effectiveness of each of the substructural leve}ls. Noting
that a straight solution of the given problem would require a 1.2 x 10° order
stiffness matrix, it follows from Table 2 that very significant storage savings as

well as

speed enhancements can be achieved.

In the context of the foregong development, it follows that hierarchical sub-
structural parallelism has decided advantages over vector-type processors, namely:

i)

ii)

iii)

iv)

v)

iv)

vii)

viii)

ix)

X)

Global common core is reduced in size

Substructures are handled in smaller local cores which could employ
vector processors and which are controlled by local DBM

Data transfer between succeeding levels of substructural hierarchy
are reduced thereby reducing load on DBM

Various substructures are updated, inverted, and assembled
simultaneously hence emhancing the overall speed

The overall addressing requirements are reduced since the size of
individual substructural zones is much smaller

Extensive use of cash memory (Ram Disk) can be made at the local
level thereby reducing disk I/0

Backward and forward steps follow natural formulational lines

Element-to—-element or hierarchical least-squares algorithms can
be employed at the local substructural level

Linear/nonlinear problem partitioning can be more logically handled
Overall control of the machine is more logical and less difficult

since local processors are essentially autonomous within updating
and inverting phases of the operation
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x1) The MCL can be patterned about well-defined substructuring methodology; the
transfer of control from level to level is contingent on the
monitoring status of stiffness/inversion calculations

x1i) The data base manager needs only to deal with data residing on perimeters
of the substructure; as noted earlier, this significantly reduces the amount
of data transferred between levels.

As discussed earlier, the modeling of tires in their use environment represents
perhaps one of the most comprehensive single component nonlinear structural response
problems currently available. This follows from the fact that geometric-, material-,
and boundary-induced nonlinearity all simultaneously act to define the global
response behavior. Due to their regionalized/ substructural form of construction,
tires represent a good modeling problem to help define the architecture of high-level
multiprocessor machines. 1In this context, a hierarchical form of substructural
parallelism has decided advantages over other forms of multiprocessors. As has been
seen such a procedure has several theoretical advantages for nonlinear problems.
These evolve about the simplified DBM structure, reduced data flow, smaller global
core, and reduced addressing requirements.

Overall future work in this area should

® Place qreater emphasis on algorithmic architecture and its possible effects on
machine structure

® Establish proper control configuration for hierarchical DBM

® Extend scheme to constrained incremental Newton/Raphson (INR) least-squares
algorithms as well as transient schemes

® Apply concept to available parallel processors

® Structure procedure so as to enable either direct or iterative solutions at
substructural level

e Establish criteria to enable determination of quality of convergence at
local substructural level
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TABLE 1

COMPARISON OF LINEAR AND NONLINEAR

FE SIMULATION OF PRESSURIZED TIRE

PRESSURE LINEAR (IN) NONLINEAR (IN)
(PST) MAXTMUM DEFLECTION MAXTMUM DEFLECTION
CROWN STDEWALL CROMWN SIDEWALL
5. .003 .036 .003 .027
10. .006 .073 .006 . 047
15. . 009 L1109 .009 .064
30. .018 218 018 .107

TABLE 2 COMPARISON OF

PROCESSOR SYSTEMS

HIERARCHICAL SUBSTRUCTURAL PARALLEL AND SINGLE

H 2
TERARCHICAL SUBSTRUCTURAL PARALLEL SYSTEM SINGLF
PROCESSOR
LEVEL NUMBER OF PERTMETER INNER TOTAL STORAGE
% Kk D of F
PROCESSORS D of F/P D of F/P D of F/P EFF.
1 240 296 4704 5000 .0592 -
2 20 1332 2223 4605 .3
3 12 4538 6012 10550 .3 L
GLOBAL o _ o o 1200000

XD of F/P - degrees of freedom per processor

**Total number of perimeter and inner D of F
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Figure 5 Substructural zones of tire.
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ABSTRACT

Results and methods on three different areas of contemporary research are
outlined. These include adaptive methods, the rolling contact problem for
finite deformation of a hyperelastic or viscoelastic cylinder, and non-
classical friction laws for modeling dynamic friction phenomena.
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1. INTRODUCTION

This paper addresses three subjects that impact on the computer simula-
tion of nonlinear tire behavior: adaptive methods, which represent schemes
for assessing numerical error and automatically adapting the mesh so as to
improve accuracy; the rolling contact problem, which is at the heart of tire
analysis; and new friction laws, which are essential in developing realistic
models of frictional contact. Space limitations preclude a detailed discus-
sion of these issues; but further details can be found in recent papers and
reports by the author and his colleagues [1-17].

2. ROLLING CONTACT

The general rolling contact problem as a basis for nonlinear tire anal-
ysis involves some of the most challenging and difficult problems in struc-
tural mechanics. Among the complicating features are the presence of
unilateral contact, friction, inertia effects, multi-parameter bifurcations,
the emergence of standing waves, viscoelastic and thermal effects, large
deformations, the necessity of modeling of complex materials such as fiber-
reinforced rubbers, and the presence of non-conservative pressurization
loadings. A first step toward resolving such issues is the formulation of
correct kinematics and variational principles for a special case: the steady-
state rolling of a hyperelastic or viscoelastic cylinder in contact with a
rigid foundation and in a state of plane strain.

The kinematical situation is shown in Fig. 1 where the geometry of the
reference configuration (a rigid spinning cylinder with no contact) is com—
pared to the geometry of a deformed cylinder in steady-state rolling contact
with a rough (frictional) roadbed (foundation).

Key features of the kinematic description are listed as follows:

1) Time appears only implicitly in the formulation; if (R, ®, Z,) are
material coordinates, the referential coordinates are

r=R, 8=+ wt, z =2

where w 1is the angular velocity of the rigid, reference cylinder.

2) 1If the motion is defined by the map
x; = x3 (r, 8, 2) i=1, 2,3

where x; = spatial Cartesian coordinates of particles in the current confi-
guration, then velocity and acceleration components are
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3) The unilateral contact constraint can be expressed in the form

X2 $Hon PC

where T, 1is the exterior contact surface and () is the distance from the
hub center to the foundation. This condition can also be written

(xz - H)+ =0

where (.), denotes the positive part of (.).

4) The time history of deformation can be expressed in terms of strains
of particles located on the same circular arc in the reference configuration.
For example, if E is the Green-Saint Venant strain tensor, its time history
over an internal 0 1€t satisfies:

{E (r,8,2z,1); 0 < 1<t} = {E (r,x2,t), 0K x < ut}
This property makes it possible to incorporate viscoelastic effects into the

rolling contact problem in a straightforward way.

For illustration purposes, we consider a class of rolling contact prob-
lems in which the following constitutive properties hold:

a) The material is either an isotropic hyperelastic material char-
acterized by a strain energy function

W = W(Il,12,13)

(or = W(I;,I5) if I3 = 1 - an incompressible material) in which I;,I,,14
are the principal invariants of the deformation tensor C = FT F, or the
material is a viscoelastic material characterized by a 1inear v1scoe1ast1c
perturbation of a hyperelastic material; e.g.,

W £
S = E + y f k(T,t) E(t)dt

with vy a viscosity parameter, k a material kernel, and § the second
Piola-Kirchhoff stress tensor.
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b) The normal stiffness of the contact interface obeys aconstitutive

law of the type

m
n
= - +
t cn(x2 H)+ on T

n C

where ty is the normal stress and Ch and m, are material constants.
If m, = 1 and c, = 1/e, where € 1is a positive constant, this relation
coincides with the normal contact stress associated with an exterior penalty

approximation of the unilateral constraint condition.

¢) If the cylinder is given a prescribed velocity Ve relative to
the roadway, the slip velocity on the contact surface is

Wp T Ve TXp TV, T waex

5) The friction law is (with t the frictional stress)

3y
IETI < ultnl = > Wp = 0
IETI = u!tnl =2 Wy = -XIIETI for some A 2 O

Variational principles for various rolling contact problems are summa-
rized in Figs. 2-8, beginning with the pure spinning of a cylinder without
contact and progressing to the general variational inequality for finite de-
formation rolling contact with friction. Various spaces of admissible func-
tions are defined in these figures as well as several nonlinear forms. 1In
particular,

A(x, n) = the internal virtual work produced by the Piola-Kirchhoff
- stresses T,
B(x, n) = the virtual work produced by inertia (radial acceleration)

effects per unit of angular velocity velocity w

C(x, n) = work term due to normal compliance of the interface
I(x, £, n) = a virtual work term representing the work done by the
~orr hydrostatic pressure p (present when the material is
incompressible)
jlx, n = the virtual work term due to frictional forces
f(n) = the virtual work due to external forces



A finite-element code has been developed based on this general varia-
tional principle which has the following features:

1. Biquadratic (QZ) elements are used to approximate the displacement
field and, for incompressible materials, Pl’ discontinuous linear elements arte
used to approximate hydrostatic pressures

2, The frictional functions are regularized in a standard way

3. A Riks—Crisfield method with Newton-Raphson corrections is used to
solve the nonlinear systems of equations characterizing the discrete problem

To date, an extensive set of numerical solutions has been ohtained using
these concepts and methods. Here only one example is cited, which is inter-
esting because of the slow emergence of standing waves as the angular velocity
is increased for a fixed peunetration H of a hollow rubber cylinder into a
rough roadway with coefficient of friction u = 0.03., Computed deformed
shapes and stress contours are shown in Figs. 9-13 for various values of w.
We notice the steady development of more-or—-less periodic wavelets on the ex-
terior surface which meet at points at which singularities appear to be
forming. The presence of friction on the contact surface destroys the symme-
try of this wavelet pattern. Mild viscoelastic effects, such as those in
rubbers at moderate temperatures, do not appreciably alter the structure of
these deformed geometries.

The generality of the formulation and of the methods employed here makes
it possible to study numerically a wide range of rolling contact problems.
Further work shall involve generalizations of these results to three-—
dimensional rolling contact problems which include the effects of turning,
steering forces, and tilting relative to the roadway plane.

3. ADAPTIVE METHODS

We shall now turn to the important subject of adaptive finite~element
methods. Adaptive methods should have a significant impact on not only tire
analysis but also on general computational structural mechanics in the rela-
tively near future.

In general, adaptive methods seek to change the structure of an approxi-
mate method to improve the quality of the solution. By structure, we mean the
mesh density, locations of nodes, and order of the local polynomials. By
quality of an approximation, we generally mean the error in approximation in
some appropriate norm. There are, thus, two primary aspects of any adaptive
finite—-element method:

1) The estimation of the error
2) The adaptive strategy
In the first of these, it is assumed that an initial approximation of the

solution is known, perhaps from a computation on a coarse mesh, and that this
rough solution can be used to obtain an a posteriori estimate of the local
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error over each finite element. Once an estimate of the local error is known,
one must call upon some technique to reduce the local error and thereby im-
prove the quality of the solution.

There are two general types of methods we have studied for a posteriori
error estimation of the local error over each finite element. Once an esti-
mate of the local error is known, one must call upon some technique to reduce
the local errvor and thereby improve the quality of the solution.

There are two general types of methods we have studied for a posteriori
error estimation:

l. Residual methods
2. Interpolation (or a priori) methods

As the name implies, residual methods make use of element residuals -~ the
residual or unbalance left over when the approximate solution is substituted
into the governing equations and edge conditions on each element.

The residual itself (e.g., the equilibrium unbalance in element forces)
is not necessarily a good indication of local error. Indeed, the local
residual can be nearly zero while the error can be quite large. For this
reason, it is generally necessary to calculate certain local error indicators
¢, which bound the error above and below in appropriate norms. The calcula-
tion of error indicators generally requires the solution of special local
problems over each element in which the element residuals enter as data. For
example, in the model elliptic problem,

A = f in Q CZIR2
u = on af

(with A the Laplacian and f given), the finite-element solution u
satisfies

fg Vuh . Vvh dxdy = fQ fvhdxdy

for arbitrary test function v, and over each element K of a mesh, the
residual is

ry = - Auh - f



Over element K, an error indicator ¢k is computed which satisfies
auh
f V¢k e Vv dxdy = f Ty vdxdy + ¢ U vds
K K oK

for v in HI(K). One can show that the error ey = u - u, in the energy norm

(HehHl’Q = {fQ|Veh|2 dxdy }1/2) satisfies the bound

2 2
Hegl17,0 6 1 Heel17 ¢

Various residual methods differ in the way these error indicators are
defined and calculated. There are some residual techniques which can produce
sharp local error estimates in virtually any norm for certain classes of prob-
lems. (See Demkowicz and Oden [4, 5]). These methods are not restricted to
linear problems and have been used to produce error estimates in highly non-
linear problems (see [7, 16]).

The interpolation methods make use of the fact that the interpolation

error over an element K of diameter hy over an element on which poly-
nomials of degree p are used is

2 2 | 42
lu = Mul] ¢ Som” luly ¢

where u 1is a given smooth function, nhu is its interpolant,

2 2
lull,K = fK |Vu| dxdy

2 2 2 2
|u|2’K = fK (uXX + uXy + uyy)dxdy

and C is a constant independenf of hy and u. The idea behind interpola-
tion methods is to estimate ]ulz g using results of a coarse-mesh approxima-
tion (e.g., using finite-differenée methods or extraction methods [6]). The
constant C cannot, in general, be determined, so such interpolation methods
can only be used to assess relative error in various finite elements.

Once an estimate of the error is obtained, the local error is reduced
adaptively using one of the following techniques:
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1. h-methods: the mesh size h is reduced and the number of elements
is increased in regions of high error.

2. p-methods: the mesh is fixed, but the local order p of the
polynomial shape functions is increased.

3. Moving mesh methods: the nodes in a finite—element mesh are moved
and concentrated in areas of high error.

4., Combined methods: these involve combinations of the above three
techniques.

We have developed test codes which employ all of these methods. The
results of some tests are given in Figs. 14-20, and specific comments follow.

1. In Fig. 14 we see a distorted mesh obtained using a moving mesh
strategy on the driven cavity problem for an incompressible viscous fluid (see

[71).

2. Figures 15, 16, and 17 contain computed results in adaptive schemes
based on residual methods devised by Demkowicz and Oden [4, 5]. The results
shown here are for transient heat conduction problems with dominate convection
effects and for nonlinear Burgers' equation vector—valued solutions which
simulate the Navier—-Stokes equations. A special h-method is used here which
employs a fine grid and a coarse-grid approximation to estimate error.

3. Results of a new p—method for Navier-Stokes equations in two-
dimensions are illustrated in Figs. 18, 19 (see [1l, 16]). Here a rather
coarse mesh is used and errors are reduced by increasing local polynomial
degrees from 1 to 2 to 3, Different shading in these figures indicates dif-
ferent levels of local L2 error, with black cells indicating an error of less
than 5 percent, grey an error of less than 10 percent, and white an error of
over 20 percent. Such large local errors are reduced before the solution is
allowed to advance in time. Remarkably, the so-called effectivity index 8
for this problem (which representg the ratio of the estimated local error to
the actual local error) for an L“ - norm varied from around 1.001 to 0.860
for the time ranges considered in a test example. This suggests that
residual-type error estimates based on p-type strategies can be very accurate,
even for transient nonlinear problems on coarse meshes.

Figure 20 shows refined mesh patterns for a class of linear elliptic
problems in which a very fast vectorizable h-method is used in conjunction
with an interpolation—type error estimator (see [6]). One interesting aspect
of this work, indicated by different shadings of elements in the figure, is
that the distinction between "optimal" meshes determined using a very sophis-
ticated error estimator (see [17]) and very crude estimates ([6]) is negligi-
ble whenever strong singularities are present.

4, NON-CLASSICAL FRICTION LAWS

In our most recent calculations of rolling contact, we have employed
special interface constitutive equations for the normal compliance of the
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interface and the tangential frictional forces. Some of these laws are men—
tioned in Section 2 of this paper (see also Fig. 6). The physical interpreta-
tion and the motivation of such models are discussed in references [14, 15, and

18].
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EXPANDED ABSTRACT

Two algorithms for obtaining static contact solutions are described in this
presentation. Although they were derived for contact problems involving specific
structures (a tire and a solid rubber cylinder), they are sufficiently general to
be applied to other shell-of~revolution and solid-body contact problems.

The shell-of-revolution contact algorithm is a method of obtaining a point
load influence coefficient matrix for the portion of shell surface that is ex-
pected to carry a contact load. If the shell is sufficiently linear with respect to
contact loading, a single influence coefficient matrix can be used to obtain a good
approximation of the contact pressure distribution. Otherwise, the matrix will be
updated to reflect nonlinear load-deflection behavior.

The solid-body contact algorithm utilizes a Lagrange multiplier to include the
contact constraint in a potential energy functional. The solution is found by
applying the principle of minimum potential energy. The Lagrange multiplier is
identified as the contact load resultant for a specific deflection.

At present, only frictionless contact solutions have been obtained with these
algorithms. A sliding tread element has been developed to calculate friction shear
force in the contact region of the rolling shell-of-revolution tire model. This
element allows a relatively general, non-Coulomb, friction law to be specified for
the contact interface. It has the added advantage of allowing friction to be cal-
culated in the continuous interface and, when coupled with the solid-body contact
algorithm, will permit analytic investigation of various continuum friction theories
that have been proposed.

The outline of future directions for the development of contact solution
algorithms is:

I. SHELL-OF-REVOLUTION CONTACT ALGORITHM
II. SOLID-BODY CONTACT ALGORITHM
IIT. STATIC AND ROLLING CONTACT FRICTION
IV. FUTURE DIRECTIONS FOR CONTACT SOLUTION ALGORITHMS

PRECEDING PAGE BLANK NOT FILMED
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I. SHELL-OF-REVOLUTION CONTACT ALGORITHM

A shell whose geometry and material properties are axisymmetric can be eco-
nomically modeled by shell-of-revolution finite elements. The SAMMSOR/SNASOR pro-
grams (refs. 1,2), for example, permit nonlinear behavior of orthotropic shells of
revolution to be calculated, including response to nonaxisymmetric loads. The
algorithm described here was developed to calculate the shell deflection in response
to a nodal point load, utilizing the calculated response to a sequence of harmoni-
cally varying ring loads on the node. The point load solution is then used to con-
struct an influence coefficient matrix, from which the shell contact solution is
obtained.
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FINITE-ELEMENT TIRE MODEL

The tire is modeled here by an assembly of axisymmetric shell elements con-
nected to form a meridian of arbitrary curvature and following the carcass mid-
surface. The elements are homogeneous orthotropic, with moduli determined by the
ply structure of a particular tire. Detalils of this model are given in reference 3.
If the deformation is symmetric about the wheel plane only one-half of the meridian
is modeled, as shown in figure 1. The finite elements are joined at nodal circles,
referred to here as nodes. Node 12 in figure 1 is located at the tire bead and is
given in built-in end condition.

Figure 1
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SINGLE HARMONIC RING LOADS

The finite-element tire model will respond to single harmonic ring loads on
the nodal circles in addition to a uniform inflation pressure load. An approxi-
mately linear ring load-deflection response is obtained when an individual ring load
is applied to any node of the pressurized tire model. An example ring load-
deflection calculation for a passenger tire model is shown in figure 2. A harmonic
sequence of stiffness matrices is obtained by applying a sequence of single harmonic
ring loads to each of the nodes that may be in the tire-pavement contact region.

TOTAL 3000 ~

RADIAL
RING
LOAD (1b)
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INFLATION
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P=32psi
1000 |—
] 1 |
0 05 1.0 15

RADIAL DEFLECTION (in)

CROWN LOAD-DEFLECTION DATA CALCULATED WITH A UNIFORM RING LOAD APPLIED TO THE CROWN NODE

SINGLE HARMONIC RING LOADS APPLIED TO A FINITE-ELEMENT NODE

Figure 2
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TRANSFER FUNCTION DEFINITION

As a consequence of the linearity of the ring load-deflection response, the
application of a single harmonic ring load produces a displacement field that
varies circumferentially in the same harmonic as the applied ring load. The defini-
tion of the transfer function T, as the ratio of theoutput and input amplitudes
is given below (ref. 4). Since each node responds differently, a transfer function
matrix T4y |, is used to store the stiffness information generated by the ring loads.
The partitions of this matrix are determined by the direction of the ring load. (Fig. 3).

Single Harmonic Ring Load A, cos ne (input)
Single Harmonic Displacement B cos ne (output)
B
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n
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POINT LOAD VECTOR {p} AND THE DISCRETE FOURIER TRANSFORM (DFT)

This application of the discrete Fourier transform uses an even number of
points (N), equally spaced around the circumference. The example shown in figure
4 uses N=8 points. A unit load is applied at any point, say point 0. The DFT
of the load vector yields a set of N coefficients, G., which are approximate values
of the coefficients of the conventional Fourier series defined on the continuous
interval 0 < 6 < 27 and representing the unit point load. The point load is
applied, sequentially, in the radial, axial, and circumferential directions.

INFLUENCE COEFFICIENT GENERATION

{p}=11,0,0,0,0,0,0, 0} 1load vector

N-1 . .
= l k - ‘12'"/N
DFT Gj N Eg% gkwg W o=e

g = {P}. &g T 0T, N

Figure 4
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INVERSE DISCRETE FOURIER TRANSFORM (IDFT) AND THE INFLUENCE COEFFICIENTS

Having the unit point load represented by a conventional Fourier series, whose
coefficients a, are approximately given by the DFT coefficients, the transfer
functions Tjk|n are applied, on each harmonic, to obtain the coefficients b
Fourier series representing the response of the nodal circle to the unit point
load. The inverse discrete Fourier transform is then used to evaluate the dis-
placements, u_, at the N points. These displacements are the elements of the

influence coe?ficient matrix [Aijkﬂ]' (Fig. 5).

of the
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The influence coefficient matrix relates the radial, axial, and circumferen-

INFLUENCE COEFFICIENT MATRIX

tial components of the displacement of points on the tire surface to the radial,

axial, and circumferential components of load at these points.
partition, shown in figure 6, is used to obtain a solution for frictionless con-

The radial response

tact, in which the axial and circumferential force components are known to be zero.
The matrix here covers 3 points on each of 5 nodes. The point separation with this

matrix is 11.25 degrees.
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TOROIDAL SHELL CONTACT SCHEMATIC

A cylindrical coordinate system is used to locate points on the toroidal
surface. The coordinates r, 6, and z indicate the radial, circumferential, and
axial directions, respectively. The tire equator lies in the r-6 plane (wheel
plane) and a tire meridian is in an r-z plane.

After the inflation solution has been obtained, the tire model is deflected
against a frictionless, flat surface. The contacting surface is perpendicular
to the wheel plane and positioned at the specified loaded radius Rp, as shown
in figure 7. The vertical load and the contact pressure distribution are unknown,
a priori.

Figure 7
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DEFLECTED MERIDIAN

The deflected shape of the meridian passing through the center of contact is
shown in figure 8. This shape is calculated by the finite-element tire model for
the specified tire deflection of one inch. The tire load that will produce a one
inch tire deflection is calculated to be 10,590 1b. Figure 8 also shows the
meridian prior to inflation and the calculated shape of the meridian of the inflated
tire, prior to contact loading. These finite-element meridians follow the carcass
midsurface, as indicated in figure 1. Geometric and material property data on the
Space Shuttle nose gear tire wereused for the calculated results shown in figures

8, 9, and 10.
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CONTACT PRESSURE DISTRIBUTIONS

The static contact pressure values (psi) calculated for two different loads
on the Shuttle nose gear tire are shown in figure 9. The number of finite-element
points in the contact region increases as the tire load increases. A rough esti-
mate of the contact boundary is obtained by extrapolation of the pressure distri-
bution. Integration of the pressure distribution gives the tire load.

NOSE GEAR TIRE CONTACT PRESSURE DISTRIBUTIONS
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Figure 9

301




TIRE LOAD VERSUS TIRE DEFLECTION

An important test of a tire model is its ability to calculate a static

load-deflection curve.

Figure 10 compares the load-deflection curve calculated

for the Shuttle nose gear tire with measured data for a similiar aircraft tire.
Although these are both 32 x 8.8 Type VII tires, constructional details can
alter the load-deflection curve (and many other aspects of tire behavior). The
cord used in the test tire is unknown and may be quite different from the nylon
cord in the Space Shuttle tire.
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ITI. SOLID-BODY CONTACT ALGORITHM

A solid body with a cylindrical surface is often loaded in contact against a
rigid surface. The contact load may revolve around the body, as in the case of
a roller or a solid tire, or may remain stationary if the cylinder is used as a
support cushion.

Interfacial friction, present in all contact problems, is currently an active
field of research. The study of frictional behavior is facilitated if the contact
region is relatively large, as is produced when the body is highly deformable.
This makes it easier to calculate distributions of normal pressure and tangential
motion (slip) in the interface. 1In the case of rubber contact, the behavior
deviates sufficiently from the Coulomb friction law that other, more physically
realistic laws, can be easily tested. Since friction is a microscopic phenomenon,
a contact solution giving continuous distributions of interfacial pressure and
slip is desirable for analytic purposes. The contact algorithm described here
provides a continuum solution for frictionless contact, the first step toward
analysis of friction in the continuous contact interface.
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A PLANE STRAIN CONTACT PROBLEM

An elastic semicylinder of radius R is bonded to a fixed surface, figure
11(a). A contact load is applied by a rigid plate that deflects the semicylinder
as shown in figure 11(b).

The problem is formulated in terms of cylindrical material coordinates
(r,0,z) which identify points in the undeformed body, B,. A point P, in B, is
located by Cartesian coordinates x, and x, axes shown in figure 11(a) and

x1= r cos B X, =r sin 6 X,= z

The contact load is assumed to produce a plane strain deformation. Point P,
moves to position P in the deformed body, B. Point P is located by the Cartesian
coordinates - With plane strain, y, = y,(r,08), y, = y,(r,0), and v, = Az
where A, = 1 is a specified constant extension ratio.

A x2

6=0 x;
(a)

Rigid
(8

(b) M

Figure 11

304



GEOMETRIC DESCRIPTION

The metric tensors g:. and G;s, given below, completely describe the elastic
ij 1]

semicylinder before and after deformation. Since y, is known a priori, the
problem is solved by finding the functions y, (r,0) and y (r,8) which determine
Gij. The displacement field is not utilized in this formulation but it can, of
course, be found when X, and y; are known. (Fig. 12).

1 0 0 1 0
- 2 ij _ -2
gij 0 g 0 T
1 0 1
ya,l ya,l ya,l ya,z 0
G,. = y y vy v (implied sum
ij a,2 “a,l Os2 70l 2 0 with o = 1,2)
2
0 0 A3
L‘ Sl

The Green/Saint-Venant strain tensor components are defined as

= 4(G.. -
Bo B
Undeformed Deformed

Metric [gij] Metric [Gij]

Figure 12
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MATERTIAL DESCRIPTION

The material is assumed to be hyperelastic so that its constitutive properties
are contained in a strain energy density, W. Isotropy is also assumed. For
plane strain of an isotropic material, the strain energy is known to be a function
of only the first and third strain invarients, I, and I3 (ref. 5)

W= W(II,I3)

For general deformation, the strain invarients are given by
I.=gc, . I,= G/g
2
where g = det [gij] = r for the semicylinder and G = det [Gij].

When the material is also assumed to be incompressible (I; = 1) the constitutive
behavior is not completely determined by the strain energy density. Hydrostatic
pressure becomes an additional unknown, which can be determined as a Lagrange
multiplier (ref. 6). This difficulty is avoided if a compressible material model
is used.

The material description selected for the contact problem solved here is the
compressible neo-Hookean model developed for continuum rubber by Blatz and Ko
(ref. 7). The Blatz-Ko model may be expressed as

I%(l—k)
% 1 L k 3
W(I,T3) =%u (I, - 30y) + K| 5 -y + o1

where U is the classical shear modulus, K is the bulk modulus, and k is a parameter
related to atomic repulsion. When I, = 1, the Blatz-Ko model reduces to the
neo-Hookean model for incompressible material. For small strains it reduces to

the energy density giving Hooke's law for compressible isotropic material.
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CONTACT CONSTRAINT

The assumption of frictionless contact with a rigid surface, positioned per-
pendicular to the y, axis (see fig. 11(b)), implies a geometric constraint only on
the solution function y_(r,0). Within the contact region, whose extent is not
known a priori, the deformed surface is flat and it is known that y, = R
where Ry is the specified location of the contact surface. Outside the contact
region, and in the interior of B, the solution must satisfy y, < Rg. This in-
equality constrainton y_ is converted to an equality constraint by introducing a
new function s(r,0), de%ined by the following equation

y2-+ s = Rz (constraint equation)
which is valid everywhere on the boundary and in the interior of B. The function
s(r,0), called a slack variable, has been used previously in optimization problems
with an inequality constraint. Reference 8 gives several examples of the use of
slack variables.

The contact problem is solved by minimizing the strain energy in B, subject
to the constraint equation given above. Since plane strain is assumed, the energy
is uniform along the axis of the semicylinder. Using symmetry, integration of the
energy density is taken over one-half of the r-8 plane contained in Bo'

The constraint equation is brought into the energy density functional by

means of a Lagrange multiplier function A(r,0). The contact problem is then
governed by the following functional

I(yl’ yZ’ S, >\) =[/F(r’ e’ yl’ yz’ S’ )\) drde

F=i(y, o) +X(y, + s - Ry)

where

Although rW is positive definite, F is not positive definite due to the addi-
tion of the constraint. Therefore, I may only be regarded as being made sta-
tionary instead of minimized by equilibrium solution functions. The integral
of W, however, is minimized by the equilibrium solution and this is used as a
check during the solution finding process.

Through additional analysis (J. T. Tielking, Texas A and M University,
unpublished data) the Lagrange multiplier function is shown to be an unknown
constant, identified as the resultant load in the contact region. The constraint
condition may then be removed from the integral, the slack variable is no longer
needed, and the contact problem is now governed by

I(ya ,k) = /frW(ya ,B) drdd + X (y, (R,'IT/2)—R£)

The solution is obtained by finding ya(r,e) and the constant )\ which make
I(y,» A) stationary. (Fig. 13).
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Approximate l
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Exact | I yo (R,m/2) - R,
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A
{
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Example: M= N = 2

2
y>(R,m/2) = R + (by; = byo) R + (by; = b22)R

Figure 13
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SOLUTION FUNCTIONS

The numerical solution is obtained by application of the principle of
stationary potential energy (ref. 6), using the functional I(ya, A) in which X is
an unknown constant. The solution functions y, are taken as two-dimensional

finite series
M N
_ 9 ij 0)
y, (r,8) =x,(r,6) + 255 7, (r,

i-1 j=1

M N
- 0) + b B (r,0)
y, (r,8) =x (r,0) TR AR
i=1  j=1

where a,, and b,, are unknown coefficients. The symmetry and geometric boundary
L. 1 . i . -
conditidds evidedt in figure 11 are met by

r' sin (236)

.vl” (r,6)

1]
y, (.8

ri sin [(23-1)6]

The above functions allow the energy density to be integrated, thereby re-
ducing the functional I to an algebraic function of the 2 XM x N + 1 unknown
constants a..,, b.., and A

1] 1]

I =1 (aij H bij D)

The functional I is made stationary by the constants obtained from the following
set of simultaneous nonlinear equations:

oI ol . s

5a~ =0 and ——— =10 for i=1,2,...,M and = 1,2, ..., N
ij ij

1

Y y, (R, m/2) - R.2 =0

This system is solved in an iterative manner by the Newton-Raphson method. Using
the starting values a,, = b,, = A = 0, five or six iterations (which give successive
corrections to these %&nstaégs) are usually sufficient. The iterations are con-
tinued until the corrections appear to have negligible effect on the solution

functions y, (r,0). The energy density is evaluated after each iteration to
check for minimization.
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DEFORMATION SOLUTION

Numerical results have been obtained using material comnstants p = 75 psi
(shear modulus), K = 475,000 psi (bulk modulus), and k = 13.3 in the Blatz-Ko
model. The values of K and k are taken from reference 7 where they are shown to
give a good fit to hydrostatic compression data on Butyl tread rubber (polyiso-
butylene). The shear modulus is believed to be a realistic estimate, based on
Treloar's statement (ref. 9) that the shear modulus of rubber is lower than the
bulk modulus by a factor of about 10~.

The computer-generated drawing below shows coordinate circles and radii

before deformation (x, and x,, dashed lines) and the deformed configuration

(y1 and Yy solid lines) of these circles and radii. The deformation is pro-

duced by a 10-percent deflection of the contacting surface (shown dashed). The

deformation solution, y, (r,6) and y, (r,0), is obtained in a lé6-term series

| for each function; the strain energy is minimized by the coefficients a . and

bij for i=1,2,3,4 and j=1,2,3,4, found after six Newton-Raphson iteratioﬂs.
This computation took 30 seconds of CPU time on a mainframe computer (Amdahl
470/v8). The Lagrange multiplier obtained in this solution is A=93.1, inter-
preted as a 93.1 1b load needed for a 10-percent deflection if the semicylinder
extends 1 inch in the z-direction. (Fig. 14).

X, Yo ———=~— Undeflected

10% Deflection

Figure 14
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IIT. STATIC AND ROLLING CONTACT FRICTION

Statie Contact Friction. A body is brought into static contact by motion
perpendicular to the contact plane. During this motion, the contact boundary
expands until the resultant of the normal contact pressure reaches equilibrium
with the external load applied to the body. As the contact region is formed, shear
forces are generated by tangential motion of contacting surface points. These
shear forces are frictional and transient, reaching equilibrium levels when the
body itself comes into equilibrium. Although the body may be assumed elastic, and
thus conservative, the frictional shear forces are not conservative.

The formidable problem of calculating a static contact solution including the
effect of friction is alleviated somewhat by assuming Coulomb's law of friction
is valid in the contact region. An algorithm for including Coulomb friction in
a static contact problem has been developed by Rothert et al. (ref. 10). Although
Coulomb friction may be taken for an approximate analysis of frictional contact,
mathematical and physical uncertainties arise when it is assumed. Nonclassical
friction laws have been proposed by Oden and his coworkers (e.g., ref. 11). Al-
though these appear to have been developed mainly for metals, they may be applic-
able to more deformable material such as rubber.

Rolling Contact Friction. This discussion is limited to steady rolling
under a constant load. Neglecting hysteretic effects in the body, the power in-
put to maintain steady rolling is balanced by the work rate of the friction forces
in the contact region. In steady rolling, a contact region, whose boundary is
fixed by the load, is continuously generated. The normal pressure and sliding
velocity at a given location within the contact boundary do not change with time
so steady-state frictional behavior is maintained. The rolling contact problem
with friction is therefore much easier to analyze and provides a mechanism for
the study of nonclassical friction theories. An algorithm for calculating friction
in the contact region of a tire rolling at constant velocity will be described
next.
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SLIDING TREAD MODEL

This is a tread element model developed to convert a frictionless rolling
contact solution into a solution for rolling contact with friction. The element
passes through the contact region with the velocity found for frictionless contact.
This is termed the carcass velocity, V., whose distribution is symmetric about the
center of the footprint as sketched below

entry exit

entry —> VC exit

7/ /7 /7 rd 7/ Vd

For a free-rolling tire, the amplitude of the footprint sliding velocity is
very small. At 60 mph (1056 ips), the peak V., is calculated (by the author) to
be about 50 ips in a frictionless footprint.

In free-rolling, the normal contact pressure distribution, p, is essentially
unchanged by friction. The sliding velocity distribution, however, is signifi-
cally altered in an interactive manner. A hysteretic theory of tire-pavement
friction proposed by Schapery (ref. 12) gives the dependence of the friction
force, Fg, on the actual sliding velocity, Vg, and normal pressure, p, at a
point in the contact region. This is expressed as

F.=-B sgn(Vs)!VS!a x Pb (hysteretic theory)
where a, b, and B are material friction properties. The sliding tread element
model, shown in figure 15(a), is viscoelastic with stiffness and damping parameters
K and c¢. Sliding friction, Fs, causes the element to deform, thereby influencing
the sliding velocity V. The following nonlinear differential equation is
integrated to calculate V.

st ) K(VC—VS) + CVc
dt dF
c +—2
av

In this equation, dFS/dVS is the rate of change of sliding friction with sliding
velocity. This can be obtained by differentiating the hysteretic theory given
above or measured experimentally. Footprint transit time, t, is taken as the

independent variable. The time is equivalent to location in the footprint for
steady rolling.
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Figure 15(b) shows a schematic diagram of the sliding tread model and its
function in converting a frictionless sliding velocity distribution into sliding
velocity influenced by friction.

Tire Carcass

C
SLIDING
TREAD I
MODEL (o |
' Vo Ve = Ve
|
| .
- Vs |
———— o |
S ‘._t_1

/ 7/ 7 V4 7/ 7 7 7 7 7

FS = -B sgn(Vs) |v5| a

(a)
N =
|
| |
L

(b)
Figure 15
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IV. FUTURE DIRECTIONS FOR CONTACT SOLUTION ALGORITHMS

As in other areas of solid mechanics, future research on contact problems
will be directed towards obtaining solutions valid for large deformations. The
finite-element method seems particularly well suited for application to contact
problems and special elements have already been developed for this purpose. Con-
tinuum mechanics research on contact problems should not be neglected, however.

A large-deformation contact solution in terms of continuous functions will prove
valuable in the analysis of contact with friction and the assessment of friction
laws now being proposed for deformable bodies.

A true contact problem is one in which the contact boundary and interfacial
pressure distributions are unknown a priori. At present, it appears that such
problems will be displacement prescribed: Deflection of the body toward the
contact surface is specified and integration of the calculated normal component
of the contact pressure gives the resultant load. Some effort should be directed
towards a load-specified contact problem, perhaps utilizing the principle of
stationary complementary energy to calculate the interfacial pressure distribu-
tion subject to the prescribed load constraint. Validated solutions for fric-
tionless contact are essential prior to including the effect of friction on the
contact solution.

In the analysis of friction, it seems that the study of rolling contact as
a steady-state problem has much to offer. As friction is an interactive phe-
nomenon, at least in regard to sliding velocity, sophisticated algorithms are
needed to generate the frictional contact solution from the solution for fric-
tionless contact (which will undoubtably be the starting point).

The following schematic, figure 16, outlines a progression of research on
contact problems. Linear sliding contact is excluded from the outline as this
is usually a transient situation leading to accelerated wear and abrasion.
Much more will be gained by research focused on rolling contact which will, in
any case, include sliding.
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PROGRESSION OF RESEARCH ON FRICTIONAL CONTACT PROBLEMS

Large Deformation
Contact Problems
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Algorithms
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Figure 16
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INTRODUCTION

In recent years nonlinear analysis of static and dynamic problems has become
the focus of intense research efforts. This endeavor has prompted the development
of versatile and powerful finite-element discretization methods as well as of im-
proved numerical methods and software systems for nonlinear static and dynamic
analysis of structures and solids. One of the most challenging applications of
computational structural mechanics is the numerical simulation of the response of
aircraft tires during taxi, takeoff and landing operations. The commonly used
models for predicting the tire response are reviewed in Refs. 1 to 3. Figqure 1
lists some of the difficulties encountered in the modeling and analysis of tires and
their implications.

Finst, the tire is a composite structure composed of rubber and textile con-
stituents which exhibit anisotropic nonhomogeneous material properties. The lami-
nated carcass of the aircraft tire is thick enough to allow significant transverse
shear deformation. Second, the tire geometry is complicated and due to the presence
of unavoidable imperfections, the cross section is unsymmetric; and third, the tire
is subjected to inflation pressure and to a variety of unsymmetric mechanical and
thermal loads which can result in large structural rotations and deformation, as
well as to a variation in the characteristics of the tire constituents. Moreover,
the detailed stress and temperature distribution in the tire may require the use of
three-dimensional finite elements in certain regions of the tire.

The aforementioned difficulties make the computational expense of the numerical
simulation of the tire response prohibitive. Hence, the need for the development of
modeling techniques and analysis methods to reduce this expense. BAmong the modeling
strategies which show promise in reducing the cost is the exploitation of symmetries
and quasi-symmeiries exhibited by the tire response.

DIFFICULTY : IMPLICATION

o TIRE SHAPE
- COMPLEX GEOMETRY
- IMPERFECTIONS

o TIRE MATERIAL AND CONSTRUCTION o LARGE MODEL SIZE
- ANISOTROPY
- NONHOMOGENEITY o COMPUTATIONALLY EXPENSIVE
o TIRE LOADS
- UNSYMMETRY
Figufe 1
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OBJECTIVES AND SCOPE
The objectives of this paper are listed in Figure 2. They are
1) To review the different types of symmetry exhibited by the tire response

2) To present simple and efficient computational procedures for reducing the
size of the analysis model of tires

3) To discuss the potential of the proposed techniques and their application
to practical, quasi-symmetric tire problems

To sharpen the focus of the study, discussion is limited to two-dimensional
shell models of the tire, with elliptic cross~section and linear material response.
The analytical formulation is based on a Sanders-Budiansky-type shell theory with
transverse shear deformation, anisotropic material behavior, and geometric nonli-
nearities (moderate rotations) included (Refs. 4 and 5). Displacement finite-
element models are used for the discretization. However, the procedure presented
herein is expected to be particularly useful for the analysis of three-dimensional
tire models.

OBJECTIVES
® REVIEW SYMMETRIES PRESENT IN TIRES

® PRESENT TECHNIQUES FOR MODEL-SIZE REDUCTIONS IN QUASI-SYMMETRIC
PROBLEMS

® DISCUSS POTENTIAL APPLICATIONS OF TECHNIQUES

SCOPE
® TWO-DIMENSIONAL SHELL MODELS
@ LINEAR MATERIAL RESPONSE

@ ELLIPTIC CROSS SECTION

@ DISPLACEMENT F E. MODELS

Figure 2
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SYMMETRIES EXHIBITED BY TIRE RESPONSE

The three types of symmetry commonly exhibited by the tire response are shown
in Figs. 3 and 4. Also, the difference between the symmetries of orthotropic and
anisotropic tires are illustrated.

The first type of symmetry is the axial symmetry exhibited by tires whose
geometric, material characteristics, and loading are independent of the circumferen-
tial coordinate, i.e., axisymmetric. The response of these tires will also be axi-
symmetric. An example of this situation is that of a tire subjected to uniform
inflation pressure. For an orthotropic tire the generalized displacements u, w and
¢ 9 are axisymmetric and v and ¢, are zero. In contradistinction, the five gener-
alized displacements are nonzero for an anisotropic tire.

Reglection lor minror) Aymmetry with respect to coordinate planes is exhibited
by the response of orthotropic tires when subjected to loadings that exhibit the
same type of symmetry. Anisotropic tires, on the other hand, exhibit rotational (or
Anversion) symmetry with respect to the center of symmetry shown in Fig. 4. If
these symmetries are exploited in the finite-element analysis, the size of analysis
model for an anisotropic tire is twice that of the corresponding orthotropic tire
(see, for example, Refs. 6 and 7).

When the external loading exhibits periodic (or translational) symmetry, the
tire response also exhibits periodic symmetry. In orthotropic tires this is demon-
strated by the presence of more than two planes of reflection symmetry. In aniso-
tropic tires periodic symmetry is demonstrated by the presence of more than two
centers of rotational (inversion) symmetry. Again, the size of the analysis model
for an anisotropic tire with periodic symmetry is twice that of the corresponding
orthotropic tire (see Fig. 4).

AXIAL SYMMETRY - e.q. INFLATION PRESSURE

W

ANISOTROPIC
u v, w, ¢ ¢
1 2

ORTHOTROPIC
u, w,¢1
V'¢2 = O

ANALYSIS MODEL

TYPICAL MERIDIAN

Figure 3
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PERIODIC SYMMETRY
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QUASI-SYMMETRIC PROBLEMS

Figure 5 lists a number of quasi-symmetric problems. The three basic quasi-
symmetric problems are the ones for which either the tire material, loading, or geo-
metry are not symmetric, but the other two are symmetric. Here material anisotropy
is considered to be a source of reflection unsymmetry. The unsymmetry in geometry
can be caused by the presence of unsymmetric imperfections in the tire. 1In a prac-
tical situation combination of the three basic types of unsymmetry can exist. In the
present study, a computational procedure is presented for reducing the size of the
analysis models for quasi-symmetric problems of tires to those of the corresponding
symmetric problems.

CASE MATERIAL LOADING GEOMETRY
1 : SYMMETRIC AXTALLY SYMMETRIC
Il ORTHOTROPIC AXTALLY SYMMETRIC

111 ORTHOTROPIC SYMMETRIC UNSYMMETRIC DUE TO

IMPERFECTIONS

Figure 5
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BASIC IDEA OF MODEL-REDUCTION TECHNIQUE
FOR QUASI-SYMMETRIC PROBLEMS

Figure 6 lists the two key elements of the model reduction technique when ap-
plied to the finite-element analysis of anisotropic tires with symmetric geometry
subjected to symmetric loading. The two elements are: a) decomposition of the
stiffness matrix into the sum of an orthotropic and nonorthotropic (anisotropic)
parts; and b) successive application of the finite-element method and the classical
Rayleigh=Ritz technique. The finite-element method is first used to generate few
global approximation vectors (or modes). Then the amplitudes of these modes are
computed by using the Rayleigh=-Ritz technique.

ANISOTROPIC MATERIALS

® DECOMPOSITION OF MATRICES IN GOVERNING FINITE-ELEMENT EQUATIONS
INTO ORTHOTROPIC AND NONORTHOTROPIC PARTS

e SUCCESSIVE APPLICATION OF

- FINITE-ELEMENT ANALYSIS TO GENERATE A FEW GLOBAL APPROXIMATION
VECTORS USING SAME SIZE MODEL AS FOR THE ORTHOTROPIC CASE

- CLASSICAL RAYLEIGH-RITZ TECHNIQUE TO COMPUTE AMPLITUDES OF
APPROXIMATION VECTORS

Figure 6
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MATHEMATICAL FORMULATION

Figure 7 outlines the mathematical formulation for the proposed model-reduction
technique when applied to linear problems of anisotropic tires. The global stiff-
ness matrix [K] is decomposed into orthotropic and nonorthotropic matrices [K]0
and [K]a, respectively. The nonorthotropic matrix [K]a is multiplied by a tracing
parameter A which identifies aff the nonorthotropic material coefficients. The
original finite-element equations correspond to the case A=1.

The global approximation vectors are selected to be the solution corresponding
to A=0 (zero nonorthotropic matrix) and its various-order derivatives with respect
to A (path derivatives). The path derivatives are obtained by successive differen-
tiation of the governing finite-element equations with respect to A. Note that the
coefficient matrix appearing on the left-hand sides of the recursion formulas is
[K]o, and that the size of the analysis region used in evaluating each of the global
approximation vectors is the same as that for the orthotropic case (A=0).

The vector {X}, and its path derivatives are now chosen as approximation vec-
tors, and the vector of nodal displacements for the anisotropic tire, {X}, is ex-
pressed as a linear combination of these vectors. A Rayleigh~Ritz technique is used
to replace the original finite-element equations by a reduced system of equations in
the unknown parameters, {y}, which represent the amplitudes of the global approxi-
mation vectors.

GOVERNING FINITE-ELEMENT EQUATIONS

[k} ix} = ip)

er [k} = k], +a[x],
N = TRACING PARAMETER

BASIS REDUCTION

i o= {r]vl

WHERE
= 0X
7] = {3, )
}W} = VECTOR OF AMPLITUDES OF MODES
GLOBAL APPROXIMATION VECTORS
Ip!
{K] X = Py
0 0 OBTAINED FROM SAME SIZE MODEL

foXi _ . (o AS FOR THE ORTHOTROPIC CASE
[5]0 ) ‘o - [K]alX\O

REDUCED EQUATIONS (VIA RAYLEIGH-RITZ TECHNIQUE)

I Lt = (] el

Figure 7
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APPLICATION TO ANISOTROPIC TIRES

As a first application of the proposed model-reduction technique consider the
anisotropic tire subjected to the symmetric localized loading shown in Figure 8. As
shown in Figure 4, the tire response exhibits rotational (inversion) symmetry. It
does not exhibit reflection symmetry, and therefore, the analysis model consists of
half the tire. As can be seen from the contour plots of Figure 8, all the global
approximation vectors exhibit reflection symmetry (and antisymmetry) and therefore,
they can be obtained by analyzing only one quadrant of the tire (same size model as
that used for analyzing the corresponding orthotropic tire).

GLOBAL APPROXIMATION VECTORS ARE ALL
DOUBLY SYMMETRIC AND THE SYMMETRY
PATTERNS ARE KNOWN

Figure 8
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ACCURACY AND CONVERGENCE OF SOLUTIONS OBTAINED
BY PROPOSED TECHNIQUE

An indication of the accuracy and convergence of the solutions obtained by the
proposed model reduction technique is given in Fig. 9. The standard of comparison
is taken to be the direct finite-element solution of the anisotropic tire. As can
be seen from Fig. 9, the solutions obtained by the proposed technique are highly
accurate even when a small number of approximation vectors are used. Numerical ex-
periments have shown that for highly anisotropic tires no more than five approxi-
mation vectors are needed.

1.0 o8-
O
w
— 0.5}
YEun
1.0 5 60—6—-6
v 0.5
U= TOTAL STRAIN ENERGY U_ T
FULL
1 1 i | i J
1 2 3 4 5 6 1
NUMBER OF APPROX. VECTORS
Figure 9

325




APPLICATION OF MODEL-REDUCTION TECHNIQUE TO PREDICTING NONLINEAR
RESPONSE OF ORTHOTROPIC TIRES SUBJECTED TO ASYMMETRIC LOADING

As another application of the proposed model-reduction technique, consider the
orthotropic tire subjected to the localized loading shown in Fig. 10. The analysis
model consists of one quadrant of the tire. For linear problems, the decomposition
of the loading into symmetric and antisymmetric components and the consequent reduc-
tion of the size of the analysis model to one~octant of the tire are well known.
However, it is generally assumed that such a decomposition is not useful for non-
linear problems in which the principle of superposition is not applicable.

The foregoing model-reduction technique can be used to reduce the size of the
analysis model to one octant of the tire. This is accomplished by: 1) decomposi-
tion of the given loading into symmetric and antisymmetric components with load
parameters p, and Py respectively; and 2) use of the multiple-parameter reduction
technique described in Refs. 8 and 9. The vector of nodal displacements of the tire
is approximated by a linear combination of few global vectors or modes. These vec—
tors are selected to be the various-order derivatives of the displacment vector with
respect to load parameters p, and Py Each of these vectors is evaluated at
pP1=py=0. Figure 10 shows that the global approximation vectors exhibit periodic
symmetries (and/or antisymmetries), and therefore, each vector can be evaluated using
only one octant of the tire.

ASYMMETRIC LOADING

S S S
S and A refer to lines oI ke ?
of reflection symmetry s e L
and antisymmetry,
respectively.
Figure 10
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POTENTIAL OF PROPOSED MODEL-REDUCTION TECHNIQUE

The proposed model reduction technique appears to have high potential for anal-
ysis of practical tire problems. In particular, in the presence of combinations of
unsymmetries in the material (viz. anisotropy), the geometry or loading on the tire,
the same size model can be used as for symmetric material (viz., orthotropic), geo-
metry and loading (Fig. 11). This is accomplished by the introduction of a tracing
parameter for each of these unsymmetric effects; and the successive application of a
reduction method with each of these parameters. The global approximation vectors
are selected to be the various~order derivatives with respect to the tracing para-
meters.

® ASYMMETRIC LOADING AND ANISOTROPY

® ANISOTROPY AND INITIAL UNSYMMETRIC IMPERFECTIONS

® ASYMMETRIC LOADING AND INITIAL UNSYMMETRIC IMPERFECTIONS

® THREE-DIMENSIONAL MODELS

® MIXED FINITE-ELEMENT MODELS

Figure 11
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SUMMARY

In summary, a computational procedure is presented for reducing the size of the
analysis models of tires having unsymmetric material, geometry and/or loading. The
two key elements of the procedure when applied to anisotropic tires are: a) decom-
position of the stiffness matrix into the sum of an orthotropic and nonorthotropic
parts; and b) successive application of the finite-element method and the classical
Rayleigh-Ritz technique. The finite-element method is first used to generate few
global approximation vectors (or modes). Then the amplitudes of these modes are
computed by using the Rayleigh~Ritz technique.

The proposed technique has high potential for handling practical tire problems
with anisotropic materials, unsymmetric imperfections and asymmetric loading. It is

also particularly useful for use with three-dimensional finite-element models of
tires.

® MODEL-SIZE REDUCTION PROCEDURE PRESENTED FOR ANALYSIS OF TIRES
BASED ON

- DECOMPOSITION OF MATRICES
- SUCCESSIVE APPLICATIONS OF FINITE ELEMENTS AND
RAYLEIGH-RITZ TECHNIQUES
® PROPOSED TECHNIQUE HAS HIGH POTENTIAL FOR HANDLING
- ASYMMETRIC LOADING
- ANISOTROPIC MATERIALS
- UNSYMMETRIC IMPERFECTIONS

- THREE DIMENSIONAL MODELS

Figure 12
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PANEL DISCUSSION, Wednesday, June 19 - TIRE MODELIMG

J. A. Tanner, NASA Langley Research Center: You've heard five papers this morn-

ing in the general area of tire modeling. However, I beljeve that the content
of the papers is actually broader than tire modeling and that we are really
dealing with the more general issues associated with computational structural
mechanics. I was rushing some of the authors this morning, trying to rush them
through their presentations, and I am concerned that they may not have made all
the points they wanted to make. In an effort to make amends, I would like to
ask each author to take about 2 or 3 minutes to summarize any points that he
would like to emphasize and to address points not made in his presentation.
After the summary statements, the floor will be opened for additional questions.
I am going to start immediately to my right with Dr. Tabaddor who gave the first
paper this morning.

Farhad Tabbador, B. F. Goodrich Company: I would just 1ike to reiterate the
point on the material properties of composites. There is a great need for
efforts in characterization of composites, and I think that theories developed

over the past decade or so for rigid composites do not quite apply to soft
composites. I would recommend that maybe some sort of grant effort might be
initiated by NASA to do this basic work.

Tanner: Dr. Padovan, in your presentation you dealt with the architectural
Characteristics of the new computers that will be coming on line. I thought
maybe you would have some more things you wanted to say on that subject.

Joe Padovan, University of Akron: I think we would like to see the availability
of some real number crunching power so that we could really push models to the

1imit. Secondly, I think that we are all too interested in the local detail
information in the model and I think we are not really trying to capture the

true essence of what a tire does, and that is to provide good ride characteristics.

[ think more effort should be put towards characterizing the overall features of
the true structure and leave most of the stress analysis to the tire industry
where it belongs. Now I am speaking for myself. I think the dynamic character-
istics of the tire are most important. More effort has to be put into that kind
of modeling. Thirdly, more money has to be put into the effort in general. If
you really want major changes in the technologies that have been in place for 40
years then you have to spend a great deal of money.

PRECEDING PAGE BLANK NOT FILMED
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Tanner: Dr. Oden, in your presentation this morning you spent some time talking
about error analysis. The tire industry will not use any analysis tools unless
their solution accuracies are verified. 1 imagine that error analysis is criti-
cal to the verification of any modeling strategy. Would you care to comment
further on this subject?

J. Tinsley Oden, The Computational Mechanics Company, Inc.: It is gratifying to
see the word “"error" used more and more in meetings such as this because I

believe the users of finite element methods have finally reached a point where
they are beginning to demand some assurance as to the reliability and quality of
solutions. We have spent 10 years in developing elements, then algorithms, and
now machines to handle the algorithms, but how good are the answers? Methods
are evolving that will someday allow us to answer that question with some degree
of confidence. However, there are methods at our disposal now that are based on
estimations of errors that will allow us to incorporate adaptive strategies into
very general finite element structural calculations. I heartily support the
activity in this area. I think we are going to see some error estimation and

adaptivity become an integral part of finite element calculations in the near
future.

Tanner: Dr. Tielking, the central theme of your paper was contact algorithms
and you presented results from static contact, both with and without friction.
I was particularly interested in your last comment, however, when you indicated
that future studies ought to be concerned with rolling contact. 1 thought you
might want to expand a 1ittle on that thought.

J. T. Tielking, Texas A&M University: Yes, I would like to say a little bit
more about the study of contact with friction. Of course, all contact involves

friction. The assumption of frictionless contact is analogous to the assumption
of a rigid body--we really don't have such structures. 1 feel that the finite
element models certainly do have a place in the study of friction, but friction
forces vary continuously through the interface, they depend, of course, on the
variations of several variables, typically interfacial pressure, normal pres-
sure, and sliding velocity. It is now recognized that there is sliding velocity
everywhere in the tire contact region. The assumption of regions of adhesion
and sliding are good for approximations, but not for more accurate results. I
feel that the continuous sliding models should not be neglected. QOne of my
motivations for doing that plain strain cylinder problem was to get a large
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deformation contact solution which could be used in the study of friction.

Therefore, I am very pleased to see that you are not restricting the CSM
activity to finite element methods and that you will entertain alternative

methods of solution. Finally, I appreciate your concern for university funding.
Foreign governments have been sending their best students to our universities
for a long time and we are very happy to have them, but we would Tike to be able
to fund our own students. 1 think organizations such as NASA could certainiy do
a great deal to see that students from our own country can be funded as well as
the top students from foreign countries.

Tanner: Now I will Tet the first two authors on the last paper have their say.

A. K. Noor, George Washington University: I would like to make a few comments
about the paper. I think first of all this was really a study that aims at

developing a general computational strategy. In very general tems, when we are
confronted with a complex problem, we geherate the solution to that problem
starting from a simpler problem or perhaps even from a heirachy of simpler prob-
lems. I think this is very much an engineering-type approach. These simpler
problems will éach be associated with a control parameter. What we are doing is
essentially using a perturbation technique. What we have heard in the last
presentation was an extension of the classical perturbation technique which is
limited to small values of the perturbation parameter. The technique that we
have developed is not 1imited to small values of the perturbation parameter; it
works well even if you have very large values for the perturbation parameter.
Our example was for a highly anisotropic tire. The perturbation parameter was
indicative of the degree of anisotropy. The technique, I think, can be essen-
tially summed up as a combination of operator splitting, where we did the split-
ting on the matrices, and a multiple parameter extended perturbation. The other
comment which I would like to make is that you get the sensitivity information
free because all that information is needed in the daily use of the equations.
In other words, the sensitivity information is a by product of the solution
algorithm. The final comment is that the CPU time was reduced by a factor of
eight or more for the problems that you have seen but that reduction factor can
be much higher for dynamic problems.
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C. M. Anderson, College of William and Mary: Well, to paraphrase our paper just
one other way, if the geometry, material properties, and loading in a structure
exhibit a kind of symmetry, then you may well expect the solution will exhibit
that same symmetry. It is very easy to take that symmetry into account and
reduce your model size. What we are saying is that one can now introduce a
higher symmetry group into the problem. For nonlinear problems which do not
have that full symmetry, one can find basis functions which represent the higher
symmetry group. The solution that we are looking for will be a linear combina-
tion of those basis functions. Therefore, we can still achieve the reduced
model size even though the full symmetry is not present in the final solution
that we are looking for.

Tanner: I have a few closing comments. For the past 2 years, NASA and the U.S.
tire industry have been involved in a joint program called the National Tire
Modeling Program. The program provides a forum for technical discussions with-
out infringing on the proprietary rights of the individual tire companies. The
objective of the program is to develop tire analysis tools to help streamline
the tire design process. The number of tire industry representatives involved

in this workshop is an indication of the strong industry support for the
program.

The last point that I want to make involves the relationship between tire model-
ing studies and computational structural mechanics in general. The paper that

Dr. Tabaddor presented this morning gives an indication of the material property
concerns that exist in the tire industry. Although some of the concerns expres-

sed by Dr. Tabaddor are unique to the rubber-cord composites, I believe that
many of his material property concerns are common to both soft and rigid compos-
jtes. I think that many of the technical challenges that we face in our tire
modeling efforts are common to each of the disciplines represented here today.
This CSM workshop is a great way of getting a lot of people together to find out

what we have in common in our technical pursuits. We should do this more often.

Any questions from the audience?

Barna A. Szabo, Washinaton University: 1'd like to address my question to Prof.

Oden. You mentioned the error estimation which uses the error indicators that
you presented. I understand that you are computing the contribution of error in
the energy norm of each element to the total error of approximation. You would
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Tike to see that each element contributes about the same error if the mesh is
properly designed. We found that in some cases we can have very small errors in
the energy normm, something of less than 1 percent and, yet, have more than 20
percent error in equilibrium. For example, if you cut the structure off the
supports and recompute the reactions from the finite element solution using the
direct method, we still can have a fairly large error in equilibrium. It is
important to look at the error in energy norm but it is also important to check
other quantities of interest. Have you observed the same thing? I am particu-
Tarly fond of the equilibrium check because it can be applied to nonlinear prob-
Tems as well as to linear problems and also it is meaningful to engineers. 0ne
Tast comment, if an element or group of elements is found to be out of equilib-
rium then the possibility of pollution of that error arises, whereas if the group
of elements is in equilibrium then according to St. Venant's principle you would
expect the error to be localized. This is a qualitative view, but, neverthe-
less, it has a certain convincing flavor to it that engineers will appreciate.

Oden: The presence or absence of equilibrium globally has to do with the resid-
ual in a solution when you are talking about linear or nonlinear elliptic prob-
lems. The calcuation of the error indicator does compute a local residual. It
computes a local residual that enters the right-hand side of the equation. The
problem is that the residual by itself is not an indication of error. If your
residual is large, chances are the error is large, but the converse is not true.
You can have a system of forces in equilibrium and have an enormous error. That
is the complicating feature of these kinds of error estimation. One must select
an indication of the error that has the right asymtotic behavior such that as
the indicator goes to zero, so also does the error go to zero. The energy norm
exhibits this characteristic. The points you raise are subtle but very impor-
tant issues in calculating error estimators. These points are the complicating
feature in this particular kind of strategy because one has to design an error
indicator with the proper asymtotic properties. There are many methods for
estimating local error, but the one I am speaking of now, while expensive, is
the best in that it overcomes the very problems that you are referring to. It
produces a robust and accurate estimation of the local error which does, in
fact, vanish at a rate equal to the vanishing of the residual as the mesh is
refined.
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Gerald Goudreau, Lawrence Livermore National Laboratory: I'm new to tire model-
ing and the one thing I didn't get out of this morning was a feeling for how you
get your composite material models of a tire. 1 get a feeling that you go out
and measure rubber properties, even get finite deformation or finite strain
models of rubber, you do load deflection tests on cords and, yet, somehow this
is all put together into some kind of a model which may be orthotropic, maybe
anisotropic, but who's doing what? Anyone can respond.

Joe Padovan: Measurements of the material properties of tire constituents have
been going on for many years. The industry does not measure rubber properties
and cord properties separately but rather the aggregate cord/rubber composite.
Typically, the rule that has been used for mixtures is Halpin-Tsai, although
this does not fully apply in a nonlinear setting like the tire.

Goudreau: Are these small strain models then?

Padovan: There are not really any large deformation constitutive models except

for some very isolated materials. In the case of rubber/cord composites, there
certainly are none yet. Basically what you do is assume Halpin-Tsia or whatever
linear model you are using works and then assume large strains and repeal
Kirchhoff's assumptions on the other side of the equation.

Goudreau: How are you characterizing this anisotropy?
Padovan: The anisotropy is handled through standard laminate theory.
Goudreau: You're testing things lamina by lamina then?

Padovan: Yes, lamina by Tamina.

Marion G. Pottinger, B. F. Goodrich Company: I would like to make some

comments. Structural mechanics love to calculate the tire stresses and strains,
but tire users are concerned with performance characteristics which are very
different things. Since the cords are pretty big and you are treating the tire
as a continuum, there are some definitive limitations on what you can do. We
are worrying about being exact, but how does this exactness fit in with the
tried and proven design rules of thumb. The old design rules of thumb are very

336



important to design people and so are the methods of qualitative characteriza-
tion. Finally, I would like to mention the question of combining the analytical
and the experimental and the question of experimental verification. Not only do
you have to satisfy yourself that things really work, you also have to satisfy
Tawyers.

Richard B. Nelson, U.C.L.A.: I am a user of finite elements, but I also use

cars and tires. My experience is that heat, abuse, and, delamination are what
kill tires. I wonder if there has been attention given in the industry to the
need to develop models which are capable of predicting heat build-up and what
that does in the way of generating premature tire delaminations.

Tanner: Of course, we are all extremely interested in the thermal characteris-
tics of the tire constituents. As Dr. Tabaddor pointed out this morning, the
constituents are highly sensitive to temperature. In the area of aircraft
tires, we are very concerned about the transient temperatures that are generated
during normal taxi operations. Truck and automobile tire people have similar
concerns except that they deal with rolling for many many hundreds of miles at a
time at stabilized temperatures.

Dr. Tabaddor: With respect to Dr. Nelson's question, experimentally, of course,
there is much concern about the effect of the temperature on material proper-

ties, especially fatigue and fracture properties. There is a significant degra-
dation of these qualities with increasing temperature. The analytical model
will also be extremely complex because you have a mechanical model and rolling

contact while viscoelasticity generates heat and that heat in turn affects the
tire material properties.

Dr. Tielking: One objective of the rolling contact analysis which includes
friction and visoelasticity is to get the energy dissipation due to tire flexing

into a heat conduction analysis. There is some preliminary work already under
way in the Natioral Tire Modeling Program that's involved in transient heat con-
duction analysis for rolling tires. Sam Clark has been involved in that to a
great extent both experimentally and computationally over the last couple of
years.

Joop Nagtegaal, MARC Analysis Research Corp.: 1 have had quite a bit of experi-
ence with the tire industry. I would like to make a comment on the remarks from
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the gentleman of Goodrich. In the Tate 70's when I was dealing with several
tire industries on another continent, they would pose a simple probiem that
could be solved, but then say that that is not the whole problem. I would have
to account first for one effect and then another until, finally, the problem
would become unsolvable. Now tire problems are extremely complicated, I under-
stand that, but I think it would be extremely useful if this Mational Tire
Modeling Program could come up with a clear set of problems to solve. Maybe
this is already being done because I see a lot of positive contributions here
which are very different from many years ago.
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