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Part II

APPLICATION OF FINITE-ELEMENT METHODS TO DYNAMIC
ANALYSIS OF FLEXIBLE SPATIAL AND CO-PLANAR
LINKAGE SYSTEMS

Steven Dubowsky

The following figures describe an approach to modeling the flexibility effects
in spatial mechanisms and manipulator systems. The method is based on finite-
element representations of the individual links in the system. However, it
should be noted that conventional FEM methods and software packages will not
handle the highly nonlinear dynamic behavior of these systems which result
from their changing geometry. In order to design high-performance lightweight
systems and their control systems, good models of their dynamic behavior which
include the effects of flexibility are required.

FOCUS

® DEVELOP PRACTICAL AND EFFICIENT METHODS WHICH
ANALYZE SPATIAL MECHANISMS AND MANIPULATORS
CONTAINING IRREGULARLY SHAPED FLEXIBLE LINKS
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The method presented here for the modeling of the dynamic behavior of manipu-
lators and machine systems with flexibility is based on using individual
finite-element link models to reduce the number of dynamic degrees of freedom.
The system gross motion is modeled using 4 by 4 matrix methods. The resulting
equations of motion contain both the full nonlinear bhehavior introduced by the
system's gross motion and the effects of link flexibility.

ANALYTICAL APPROACH

® 4 x 4 MATRIX DYNAMIC ANALYSIS TECHNIQUES

® WELL-ESTABLISHED METHOD
® APPLIED TO RIGID LINK SYSTEMS IN PREVIOUS WORK
® POSSIBLE TO EXTEND ANALYSIS TO INCLUDE FLEXIBILITY OF LINKS

® FINITE-ELEMENT METHODOLOGY
® USED EXTENSIVELY IN STRUCTURAL DYNAMICS
® STANDARD FINITE-ELEMENT PROGRAMS (NASTRAN, SAP, ETC)
ARE WIDELY AVAILABLE

® PERTURBATION COORDINATES

® COMPONENT MODE SYNTHESIS COORDINATE REDUCTION
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This figure defines the well-known 4 by 4 coordinate transformation. These
transformations contain the information that describes the kinematic con-
straints imposed by the systems joints or connections.

4 x 4 MATRIX NOTATION
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The vectors representing any point in the system can be represented to a
common frame using 4 by 4 methods. In particular, the inertial position of
any point can be described.

4 x 4 MATRIX ANALYSIS
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The position variables of the finite-element grid points must be transformed
into 4 by 4 notation.

LOCAL GRID POINT MOTION

LOCAL POSITION:

NP (i)

a ng= T Tign Pigtbig
i B=1

NOMINAL POSITION:

= v 2T
g'H GRID POINT big = [1 xig ¥ig Zig)
r. of iTH Link

SELECTION VECTOR:

X; ®ig5 = (0100 T forB= 1+6(g1)

(0010]" for B= 2+ 6(g-1)

(000117 forB= 3+ 6(g-1)

(000017 for all other g
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The inertial velocities of the grid points are calculated in 4 by 4 notation
so that the kinetic energy (next figure) required by Lagrange's Equations
(following figure) can be formulated.

GRID POINT INERTIAL VELOCITY

® INERTIAL POSITION:

- To Fig

® INERTIAL VELOCITY:
I
—Z1U--I'- 9+T'.

Vig~ j= ij ' ig o fig
aT,
WHERE Uij-— BO'j



LINK ENERGY

® KINETIC ENERGY

NG() NGl T
Ti = QE 1 Tig = g?: 1 E mig Tl’(Vig Vig)

® POTENTIAL ENERGY (ELASTIC)

1 Tr~ NP(i) NP(i) _
Vi= (K Pz, T, i Pig Piv
|

LINK DYNAMIC EQUATIONS

® LAGRANGE'S EQUATIONS

d a(Ti) a(Ti) N a(Vi) -7
dt a'.’ia iy pig ia a=1...., NP(i)

® LINK DYNAMIC EQUATIONS

m;p; + g;p; + kjp; =f;
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The number of degrees of freedom for each link is reduced using component mode
synthesis in order to achieve good computational efficiency.

COMPONENT MODE SYNTHESIS

® CMS TRANSFORMATION

P~

-

Pil

F
P;

b —

® REDUCED LINK DYNAMIC EQUATIONS
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The link dynamic equations are formulated in terms of selected global
coordinates.

GLOBAL EQUATIONS OF MOTION

® GLOBAL TRANSFORMATION

a; = B; (@ (t) q

® GLOBAL DYNAMIC EQUATIONS

M()§+Gl8.6)Gd+KI(8.8,.81q=01(9.8.8.1
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This method has been automated in a software package called SALEM (Spatial
Analysis of Linkages with Elastic Members).

SALEM ANALYSIS PROCEDURE
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A special version,

dimensional dynamic behavior of these systems.

computational structure.

NASTRAN, STARDYNE, ETC.
AL

and hence,

understanding the complex three-
This figure shows the FLEXARM

tailored for robotic manipulators,

has also heen created.
This package is called FLEXARM (FLEXible Analysis of Robotic Manipulators).
These programs include computer graphics output capabilities to assist the

designer in visualizing,
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Examples of the results which may be obtained using this technique are
presented. First, a machine system will be considered and then results for a
robotic manipulator will be presented.

This figure shows a co-planar mechanism. ®ven though its kinematic structure

is planar, it will exhibit spatial vibrations because of the off-sets in the
links.

CO-PLANAR MECHANISM




This figure shows the details of the FEM model for the coupler link.
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This is a typical plot of the displacements on the coupler link.

OUT-OF-PLANE DEFLECTION OF LINK
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The global coordinates of the mechanism are presented here.

CO-PLANAR FOUR BAR LINKAGE

-— FLEXIBLE
OUTPUT LINK

— FLEXIBLE
COUPLER

RIGID
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This figure shows different views of the deformation of the mechanism in one
of its positions. This type of plot can be overlayed to create animated
motions of the mechanisms motion.

CO-PLANAR
FOUR-BAR
DEFORMED
GEOMETRY

UNDEFORMED MECHANISM DEFORMED MECHANISM
WITH MAGNIFICATION
FACTOR OF 10

AR

(a) Front View

(b) Top View
PSCALE = 0.0 PSCALE = 10.0 .
TIME = 0.165 TIME = 0.165

{c) Rotated View



CONCLUSIONS

® A UNIFIED ANALYTICAL APPROACH FOR BOTH RIGID AND
ELASTIC LINK MECHANISMS IS POSSIBLE

® EXISTING FINITE-ELEMENT PROCESSING PROGRAMS CAN
BE FULLY UTILIZED TO REDUCE GEOMETRIC MODELING COMPLEXITY

® COMPONENT MODE SYNTHESIS COORDINATE REDUCTION
IS IDEAL FOR USE IN FLEXIBLE LINKAGE ANALYSIS

® INCREASED UNDERSTANDING OF 3D BEHAVIOR CAN BE
OBTAINED THROUGH INTERACTIVE GRAPHICS
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Part III

Shown below is an an example of the application of the method to a robotic
manipulator: the Cincinnati MILACRON T3R3.

UPPER ARM
(LINK 2)

FOREARM
(LINK 3)

SHOULDER
(LINK 1)

BASE

THREE-ROLL-WRIST
(LINK 0)
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The first step in the method is to develop a standard NASTRAN FEM model for

each link in the manipulator,
model is shown below.

including its base and the floor. The forearm

The model includes such important parameters as the
stiffness of the manipulators bearings.
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In this figure the other NASTRAN models of the other links are shown. They
have 155 grid points and 273 elements. With the degrees of freedom associated
with the control systems, this unreduced system would have approximately 1650
DOF's. The computational cost required to simulate this large nonlinear
system would be very high. However, the results obtained show that the
structural degrees of freedom can be effectively reduced by CMS, and a total

system model of less than 72 DOF's will yield high-quality results.

| P
™

N

Complete Model Model with Hidden Lines Removed

Detailed System NASTRAN Finite-element of Robotic Manipulator
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An example of the typical control for one of the T3R3 axis is shown here.
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GAIN (dB)

480

Frequency response experiments for the manipulator in a number of stationary

positions show good agreement with the FLEXARM results.
that when the manipulator is nominally stationary,

linear and classical frequency response analysis is meaningful.
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This figqure shows an example of the manipulators first mode shape for a
typical position obtained using FLEXARM,

N S
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— — == UNDEFORMED POSITION
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a — TEST POSITION b — MODE SHAPE AT 20 Hz
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The open-loop control analysis done using FLEXARM shows that the stabhility

margins of the system are greatly reduced by the link flexibility.
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The next group of figures shows the results for FLEXARM simulation of a
typical large motion manipulator move.

First, we see the manipulator in its initial position. It will start here
from rest. This figure is typical of the computer graphics output mode of
FLEXARM. It will then move to its final position with the tip traveling along
a straight line in three-dimensional space.

Rotated View of Manipulator in Workspace
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Here the several positions of the manipulator are along its straight line
path. As it is standard for many commercial systems, the manipulator tip is
commanded to move along its path at a constant acceleration until a constant
velocity is reached. It then moves at that constant velocity and then at some
point it decelerates to its final position.

FINAL
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T (0, 88, 88)
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6

INITIAL /

POSITION —__|

{40, 0, 0)



As shown here, the joint moﬁions for a simple straight line move are complex

functions of time because of the nonlinear kinematic transformations.
joint angles are required as position inputs to the manipulator control

systems.
forward signals as well.

These

The T3R3 is capable of using both velocity and acceleration feed

H
& 8

JOINT ROTATION ANGLE (DEGREES)
o

BASE (64)

SHOULDER (6)

s ELBOW (03)
— /—--- -
0~ ,/
-.\ /
| o —T l |
0 05 1.0 15 255 3.0

TIME (SECONDS)

485



The resulting error in the tip position, measured from its nominal position,
is shown here as a function of time. Both the response for a "rigid" system
and a flexible system are shown. 1In both cases there are relatively large
errors during the acceleration and deceleration phases of the manipulator's
motion. For the rigid case most of the error can be attributed to the
compressibility of the hydraulic fluid used in the system's drives. The error
of the flexible case is significantly larger than that of the rigid case. An
important aspect to be noted in this figure is that the time required for the
flexible manipulator to settle within its error specification of 0.25 mm at
the end of the motion is nearly twice that for the rigid link system. This
increased settling time can have a very substantial impact on the productivity
of the system in many practical applications. It might also be noted that the
results of the studies predict that flexibility of the floor on which the T3R3
is supported can have a very significant effect on the systems performance.

In fact, if the floor concrete is less than 4 inches thick, the system can
exhibit unstable behavior in certain manipulator positions.
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Currently, control algorithms are not available which will effectively control
the highly nonlinear dynamic behavior of flexible manipulators. Substantial
research on this problem is now being done, but it is a difficult problem.

SOLUTIONS TO FLEXIBILITY PROBLEM

SHORT TERM:

LONG

USE OF NEW MATERIALS AND DESIGN
CONFIGURATIONS TO MAKE MANIPULATORS
LIGHTER - YET MORE RIGID.

TeRM:

THE DEVELOPMENT OF CONTROL SYSTEMS

TO COMPENSATE MANIPULATOR FLEXIBILITY -
AND IDEALLY EXPLOIT IT TO ACHIEVE ULTRA-
HIGH SYSTEM PERFORMANCE.
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CONCLUSIONS

FLEXIBILITY CAN PLAY AN IMPORTANT ROLE IN THE DYNAMIC PERFORMANCE OF HIGH-
PERFORMANCE MACHINE SYSTEMS.

EFFICIENT AND ACCURATE FEM METHODS CAN BE DEVELOPED FOR THE MODELING OF
NONLINEAR MACHINE SYSTEMS, INCLUDING ROBOTIC MANIPULATORS.

THE CURRENT MANIPULATORS ARE DESIGNED TO AVOID THE PROBLEMS INTRODUCED BY
FLEXIBILITY. HOWEVER, THIS SIGNIFICANTLY LIMITS THE PERFORMANCE OF THESE
SYSTEMS.

NEW CONTROL SYSTEM ALGORITHMS ARE REQUIRED TO PERMIT THE DESIGN OF
LIGHTWEIGHT HIGH-PERFORMANCE ROBOTIC SYSTEMS. THESE CONTROL ALGORITHMS
NOT ONLY SHOULD COMPENSATE FOR SYSTEM FLEXIBILITY BUT THEY SHOULD ALSO
EXPLOIT IT!
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