
NASA Technical Memorandum 102224

The 3DGRAPE Book:
Theory, Users' Manual,
Examples
Reese L. Sorenson, Ames Research Center, Moffett Field, California

July 1989

I_IASA
National Aeronautics and

Space Administration

Ames Research Center
Moffett Field, California 94035

I°

II.

IIIo

IV.

PRECEDING

CONTENTS

Abstract ..

Introduction ..

The program: its availability and installation ..

A. Tape file 1: the 3DGRAPE program ..

B. Tape file 2: input data for example cases ...

Zoning ..

A. A primer on zoning ..

B° Zoning with 3DGRAPE ...

Input ...

A. The first two lines ...

B. Filel0 - control scalars for new start ...

o

2.

3.

4.

5.

6.

7.

8.

9.

10.

The "run-comment" lines ...

The "number-of-blocks" line ...

The "iterations" lines ..

The "f'flename-11" line ...

The "filename- 14" line ...

The "write-for-restart" line ...

The "relaxation-param" line ...

The "block-comment" line ...

The "dimension" line ...

The "handedness" line ..

PAGE BLANK NOT FILMED
iii

1

1

4

4

9

10

10

14

19

19

19

20

21

22

23

24

26

27

28

28

29

Vo

VI.

VII.

VIII.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

C. File 11 -

D. File16 -

The "polar-axis" line ..

The "face" line ...

The "norm/sect" line ..

The "lighten/tighten" line ...

The "lighten-at" line ...

The "tighten-at" line ...

The "read-in-fixed" line ...

The "plane-normal-to" lines ...

The "cylinder-about" lines ...

The "ellipsoid" line ..

The "collapsed-to-an-axis" lines ..

The "collapsed-to-a-point" lines ..

The "match-to-face" lines ..

body definition arrays ..

control scalars for re-start ..

Running 3DGRAPE and evaluating its output ...

A°

B.

C.

Example 1:

Example 2:

Example 3:

A "game plan" for running it ..

Reading the printout ...

What to do if it blows up ..

Grid about a simulated helicopter fuselage ..

C-O type grid about a wing on a wall ..

H-H type grid about a wing on a wall ..

30

31

34

36

38

38

39

40

42

44

46

47

49

50

51

56

56

57

59

61

66

72

iv

IX. Theoretical development ..

References ..

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:

Appendix F:

Appendix G:

Appendix H:

Appendix I:

Appendix J:

75

80

File10 input data for Example 1 ... 81

Program which makes file 11 data for Example 1 .. 84

Filel6 input data for Example 1 ... 87

Filel0 input data for Example 2 ... 90

Program which makes filel 1 data for Example 2 .. 93

Filel6 input data for Example 2 ... 98

Filel0 input data for first run of Example 3 ... 101

Program for file 11 for first run of Example 3 .. 105

Filel0 input data for second run of Example 3 .. 111

Program for file 11 for second run of Example 3 ... 113

ABSTRACT

Thisdocument is a users' manual for a new three-dimensional grid generator called 3DGRAPE.

The program, written in FORTRAN, is capable of making zonal (blocked) computational grids in or about

almost any shape. Grids are generated by the solution of Poisson's differential equations in three

dimensions. The program automatically finds its own values for inhomogeneous terms which give near-

orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE have been

applied to both viscous and inviscid aerodynamic problems, and to problems in other fluid-dynamic areas.

The smoothness for which elliptic methods axe known is seen here, including smoothness across zonal
boundaries.

An introduction giving the history, motivation, capabilities, and philosophy of 3DGRAPE is pre-

sented first. Then follows a chapter on the program itself. The input is then described in detail. A chapter

on reading the output and debugging follows. Three examples are then described, including sample input

data and plots of output. Last is a chapter on the theoretical development of the method.

I. INTRODUCTION

In 1977 and 1978 J. L. Steger and this author researched the generation of two-dimensional (2-D)

grids for airfoils by the solution of elliptic partial differential equations (PDE) (ref. 1). This approach was

pioneered principally by J. F. Thompson in the early 1970s (refs. 2 and 3). That work was so significant

that the entire approach of using elliptic PDEs to generate grids is sometimes referred to generically as

"Thompson's method." But the crux of the matter is in the choice of right-hand-side (RHS) or

inhomogeneous terms. It is the effect of those terms in the Poisson equations which give the user the

ability to "push and pull" points around, to control the grid, and to tailor it to particular requirements.

Thompson's RHS terms gave the user a great deal of control, but they were rather complicated. They

consisted of nested summations of terms for each point, requiting the user to supply values for many free

parameters with little guidance.

When this situation was surveyed, a need was seen for a variation on Thompson's terms which

retained as much as possible of that method's ability to control the grid, but was simpler to use. It was

reasoned that the boundaries of the grid were the most critical regions; it was there that the flow-solvers

typically encountered their highest gradients. It seemed that if the grid could be made to behave nicely in

the neighborhood of its boundaries, and be smooth in its interior, then that would constitute a reasonable

minimum of grid control and a reasonably good grid would result. It was also hoped that this simpler

control could be achieved using simpler RHS terms, defined fundamentally only along the boundaries, and

having their influence decay in some simple fashion with distance away from those boundaries toward the
interior.

The first step was to add geometric constraints to the problem, defining "well behaved at a

boundary." The constraints added were (1) that the grid lines intersecting the boundary do so at a user-

specified angle, typically 90 °, and (2) that the distance along those lines, between the boundary and the

first node in the field, be directly specified by the user. From a mathematical point of view, this was

equivalentto addingtwo newequations,theelementarymathematicalstatementsof thetwo geometrical
constraints,to thePoissonequationswhichdefinedthegrid. It washopedthatthosetwo newequations
wouldsomehowyield asolutionfor theRHSterms,whichcouldbeconsideredastwo newunknowns.
Thatlinkagebetweenthetwo newequationsandtheRHStermswasdiscovered.It workswell, although
its mathematicalderivationis notobvious.

Theresultof thiswasanewalgorithm(ref. 4) for generatinggridsby thesolutionof Poisson's

differential equations. This method has RHS terms which are simple, and are found automatically by the

algorithm as the numerical grid generation solution proceeds. The only input the user must give for the

RHS terms is a simple specification of (1) the angle with which lines are to intersect the boundary, and

(2) the desired distance out to the f'u"St node in the field. The resulting grid obeys those constraints, to the

extent that the solution of the difference equations approximates the solution to the differential equations.

The grid gives near-orthogonality at the boundaries, user-specified cell height at the boundaries, and

smoothness in the interior of the grid.

As of 1979 this grid-generation technology, in two dimensions, existed only as a rough research-

type program, coded for a limited collection of hard-wired cases. This author was urged to repackage the

technology in a neat, robust, widely applicable, well-documented, user-friendly, export-quality program.

It was completely recoded in this way, and the GRAPE airfoil grid generation program (ref. 5), now

sometimes referred to as 2DGRAPE, was the result. It has been quite successful as an export program.

Approximately 150 copies of it have been distributed by this author and COSMIC, and informal

communications suggest that there have been many subsequent transfers. It is this author's belief that the

"clean sheet of paper" recoding effort for export was a significant factor in the success of 2DGRAPE.

Work began almost immediately on the obvious extension of 2DGRAPE to three dimensions

(3-D). The mathematical extension of the equations to 3-D was straightforward. Grids were generated, and

flows were modeled, from simple ellipsoidal wing shapes (ref. 6) to realistic F-16 wing-bodies (refs. 7

and 8). That being the case, one might wonder why it has taken so long for 3DGRAPE (ref. 9) to emerge.

There are two answers to that. The second is the time required by the recoding for export. But the first

reason for the delay was the problem of topological complexity. 2DGRAPE was limited to topologies into

which a simple rectangular computational domain could be warped. The 3-D analogy to that would be

requiring that a single "computational cube" could be warped into the physical domain. ("Rectangular solid

computational domain" might be more rigorous than "computational cube," but much less euphonic.) In

3-D generally, in real-world computational fluid dynamics (CFD) problems such as flow about an airplane

or inside a turbine, one usually cannot warp one cube into the physical domain.

There are two solutions to this problem. One is to put custom modifications into the program for

each different application, such as would be required to place a wing in a slit. But the complication of that

approach increases rapidly, resulting in the code being very difficult to extend and maintain, and in the

computational domain being more complicated than a simple cube. The other approach is to use zones.

(The terms zone and block are used herein interchangeably). In a zonal approach, the physical domain is

divided into regions, each of which maps into its own computational cube. It is believed that even the most

complicated physical region can be divided into zones, with it being possible to warp a cube into each

zone. This is especially true if pathological cases are allowed wherein a face of a zone can degenerate into a

line (giving a zone which is wedge-shaped) or into a point (giving a zone which is pyramidal). So a grid

generator which is oriented to zones, allowing communication across zonal boundaries where appropriate,

2

solvestheproblemof topologicalcomplexity.3DGRAPEis suchagrid generator.Theacronymis "Three-
DimensionalGRidsaboutAnythingbyPoisson'sEquation."

The3DGRAPEcodemakesnoattemptto fit givenbodyshapesandredistributepointsthereon.
Body-fittingis aformidableproblemin itself.Theusermusteitherbeworkingwith somesimpleanalytical
bodyshape,uponwhichasimpleanalyticaldistributioncanbeeasilyeffected,ormusthaveavailable
somesophisticatedstand-alonebody-fittingsoftware.3DGRAPEexpectstoreadin already-distributed
x,y,zcoordinateson thebodiesof interest,coordinateswhich will remainfixed during theentiregrid-
generationprocess.

3DGRAPEdoesnotrequiretheuserto supplytheblock-to-blockboundaries--eithertheshapesor
thedistributionof pointsthereon.3DGRAPEwill typically supplythoseblock-to-blockboundaries,
simplyassurfacesin theelliptic grid.Thusat block-to-blockboundariesthefollowing conditionsare
obtained:(1) grid lineswill matchupastheyapproachtheblock-to-blockboundaryfrom eitherside,
(2)grid lineswill crosstheboundarywith noslopediscontinuity,(3) thespacingof pointsalongthelines
piercingtheboundarywill becontinuous,(4) theshapeof theboundarywill beconsistentwith the
surroundinggrid, and(5) thedistributionof pointson theboundarywill bereasonablein view of thesur-
roundinggrid.

This grid generatoris a low-leveltool. It offersapowerfulbuilding-blockapproachto complex
3-Dgrid generation.Usersmaybuildeachfaceof eachblock astheywish, from awidevarietyof
resources.Thusanentirecomplex3-Dgrid is constructedastheknowledgeableuserhasenvisionedit.
Thisbuilding-blockapproachis theantithesisof the"turnkey" approach,whereintheusertakesahands-
off stanceandexpectstheprogramto doall of thethinking.Theturnkeyapproachwasrejectedfor two
reasons,thefirst of which is thatwriting suchapieceof softwarewasbeyondthescopeof thiseffort.
Secondly,with aturnkeysystemusersfrequentlyfinds themselveswantingto makethesystemdoajob
outsidethedomainof problemsit is designedto handle.Thusmucheffort canbespenttrying to "trick"
sucha systeminto doingaproblemit wasnotdesignedto do,with usuallymediocreresults.

Thereareseveralfeatures3DGRAPElacks.It usespoint-sucessive-over-relaxation(point-SOR)to
solvethePoissonequations.Thismethodis slow,althoughit doesvectorizenicely. 3DGRAPElacks
interactivegraphics,althoughanynumberof sophisticatedgraphicsprogramsmaybeusedon its stored
outputfile. But oneoverridingpassionconsumedthisauthorduring thewriting of 3DGRAPE,andthat
wasversatility.Theblock structure,describedin asubsequentchapter,allowsagreatlatitudein the
problemsit cantreat.As theacronymimplies,thisprogramshouldbeableto handlejust aboutany
physicalregioninto whichacomputationalcubeor cubescanbewarped.

ACKNOWLEDGMENTS

The author gratefully acknowledges the contributions of all those who have used 3DGRAPE

during its development process and who have contributed feedback which led to improvements in the

finished product. The author is grateful to Joe Thompson for his pioneering work in elliptic grid genera-

tion, and for his gracious and encouraging example. The author will remain indebted to Joe Steger for his

creativity and leadership in the development of the foregoing 2-DGRAPE program.

II. THE PROGRAM: ITS AVAILABILITY AND INSTALLATION

As of this writing it is intended that 3DGRAPE be distributed by NASA's clearinghouse for

computer programs, the Computer Software Management and Information Center (COSMIC):

COSMIC

University of Georgia
382 East Broad Street

Athens, GA 30602

Phone (404) 542-3265

The detailed attributes of the distribution tape would have to be obtained from COSMIC, but the tape will

consist of straightforward character data (not binary data). It is expected that the tape will have two files on
it.

A. TAPE FILE 1: THE 3DGRAPE PROGRAM

The first tape file will be the FORTRAN source code for 3DGRAPE. 3DGRAPE consists of

14,043 lines of FORTRAN, containing 9,402 individual statements. The main program is fin'st. Following

it are 51 subroutines and one function subprogram, arranged in alphabetical order. Figure 1 is a chart

showing how the subroutines are called.

INP!T

I
INTERP1

INTERP

1

I
INIT

I
NEWlNIT

I
SPHIO

I
FREEZF

RESTART

(SEE FIG.

ld)

SPHCHK

I
SPHSUB

MAIN PROGRAM

I
I

(SEE FIG.

lc)

I I I
INTERP2 INTERP3 PLABD

I ! I
PLASUB

THAWF

I !
WRITEIT SPHBOX

I
I

SPHIO

BOUNDARY

I I
AXBD

I
AXSUB

CYLBD

I
CYLSUB

I
MATBD

ELIPBD

I
ELIPSUB

I
SPHCHK

I
SPHSUB

(a) Subroutines called by the main program, what they call, etc.

Figure 1.- Subroutine call chart for 3DGRAPE.

LOWER

4

_

NORMST FIXlNIT CYLINIT

INPUT

L
1

PNTINIT

T
C H KM AT

m

SPHPRE

LIGHT PLAINIT AXINIT MATINIT ELIPINIT

1
i

ELIPSUB

LOWER

(b) Subroutines called by subroutine input, what they call, etc.

I
RHSF1

I
RHSF3

SOLVE

I
i

RHSF5

RHSF2 RHSF4 RHSF6

I
DERIVS

FREEZF

1

I
I

EXPRLS

I I I I I I
POIF1 POIF2 POIF3 POIF4 POIF5 POIF6

I I I I i I
I

THAWF

(c) Subroutines called by subroutine solve, what they call, etc. Subroutine exprls called only when run on
IRIS workstation.

Figure 1.- Continued

5

I
NORMST

LIGHT

I
FIXINIT

PLAINIT

R ESTA RT

I
! E

CYLINIT PNTINIT

AXINIT

!
CHKMAT

MATINIT ELIPINIT

I
I

ELIPSUB

I
LOWE R

(d) Subroutines called by subroutine restart, what they call, etc.

Figure 1.- Concluded

A true FORTRAN-77 compiler must be used to compile the program. This point is stressed, since

there is at least one compiler in wide use today not does not meet the FORTRAN-77 standard: the CFT

compiler on the CRAY-2. One of the syntaxes that compiler is unable to process is character substring

manipulations, of which 3DGRAPE does many. 3DGRAPE does run successfully on the CRAY-2 using

its CFT77 compiler.

The version of 3DGRAPE being distributed is the one which runs on the CRAY-2. To date it has

also run on a CRAY X/MP, a VAX, and a Silicon Graphics IRIS 2500T workstation. The following

rather short list gives the modifications necessary to port it to those other computers:

X/MP: Remove all the "open" statements.

VAX: Change variable "nbits" in subroutine "input" to 32 indicating that the VAX has 32-bit

floating-point words.

IRIS: (1) Change variable "nbits" in subroutine "input" to 32.

(2)* Change all references to the "exp" function in subroutine "solve" to "exprls."

Since portability was kept firmly in mind while writing 3DGRAPE, porting it should be easy.

*The "exp" function supplied by the FORTRAN compiler on the IRIS, when linked for use with the floating-point

accelerator board, gives wrong answers.

Thecodingis structuredto thegreatestextentpossible.If-blocksanddo-loopsareindented.All
variablesaredefinedbeforeuse;nomemorypresetis assumed.Theprogramdoesnotassumethatlocal
variablesin subroutinesremaindefinedbetweencalls.The"inner loop" in subroutine"solve" vectorizes
on theCRAY-2 andCRAYX/MP withoutanycompilerdirectives.Single-dimensionaddressingis usedin
theprincipalarrays,reducingwastedstorageto almostnil.

Theprogramhas11commonblocks,all of whichappearin themainprogram.A parameter
statementappearswherevercommonblocksarefoundwhichcontainsparametersspecifyingthedimen-
sionsizes.Thusthedimensionsizesin thecodeareeasilymodified;theusershouldsimplymakea global
changeof theparameterdefinition.Theindividualparameters,their valuesin thecodeasit is supplied,and
theirmeaningsarelistedbelow:

Parameter: Supplied Meaning:
value:

limpts

limsrf

limpqr

limblk

limvec

limhis

200,000

25,000

50,000

20

300

999

Limit on thetotalnumberof pointsin thegrid,summed
overall blocks.

Limit on thenumberof pointsallowedonall six surfaces
of anyoneblock.

Limit on thenumberof surfacepointsat whichcontrolis
actuallyexercised,summedoverall blocks.

Limit on thenumberof blocks.

Limit on themaximumvalueof thefin'stindex,j, for any
block.Subroutines"solve" and"deriv" vectorizein this
direction.

Limit on thenumberof iterationswhichcanbestoredin
theconvergencehistoryarrays.

Thestoragerequirementsfor thecodeare,of course,critically dependentuponthevalueschosen
for theseparameters.By inspectingthecommonblocks,it appearsthattheapproximatestoragerequire-
mentsfor anominalN x N x N grid are

3N3 + 159N2

But thatformulais only anapproximation,andits valueis frequentlylow.To thatfigure mustbeadded
spacefor otherstoragearrays,for thecompiledandlinkedcode,for input/output(I/O) buffers,etc.

As anexample,thecodeusingthesuppliedvaluesfor theparameterswouldjust accommodatea58
x 58x 58 grid.Theaboveformulawith N=58 yieldsa storagerequirementof 1,120,212words.But the

7

programthusdimensionedwill just fit intoa2-million-wordpartitionon theCRAY X/MP. Soin this
examplea 200,000-pointgrid requires2,000,000words,for aratio of 10wordsof memoryperpoint.

Following is a list of logical unit numbers used for input and output in 3DGRAPE, whether they

are used for input or output, a statement of where they are used (main program or subroutine name), and a

brief statement of what they are used for:.

Unit Where used: What for:

no:

10

11

12

14

15

16

17

Input/

output:

input

output

input

input

output

output

output

input

input

main program, input, restart

everywhere

input, light, plainit, cylinit, axinit, pntinit,

first two lines of input

main printed output

control scalars for new start

matinit, elipinit

fixinit

fixinit

writeit

resta_

restart, light, plainit, cyhnit, axinit, pntinit,

matinit, elipinit

restart

x,y,z coordinates for fixed surfaces

debug writes of data read from unit 11

main output of finished grid

restart file

control scalars for restart

restart file

It is most strongly recommended that the users of 3DGRAPE have at their disposal a state-of-the-

m interactive graphics capability. It would be practically impossible to debug and evaluate a complicated

grid without the ability to plot surfaces of choice; color them arbitrarily; and do rotations, translations, and

zooming operations on them. 3DGRAPE was developed at NASA Ames Research Center using a Silicon

Graphics IRIS 2500T workstation, with custom graphics software called 3DECANT written for the

purpose by this author. The PLOT3D software package, also written at Ames for the IRIS, is adequate for

the purpose. Other powerful scientific workstations and software packages are available about which this

author cannot knowledgeably comment.

8

B. TAPE FILE 2: INPUT DATA FOR EXAMPLE CASES

It is expected that the second file on the tape will be exactly the same as the appendices to this

manual. Those appendices consist of some of the input data files for the three example cases and simple

FORTRAN programs which generate the remainder of the input data files for those example cases. Users

who wish to run the example cases can separate the data and programs in this second tape file using an

editor. They can run the input data generation programs, obtain the remainder of the input data files, and

then run 3DGRAPE's three example cases.

Conceivably, all input data f'des for the three example cases could have been given in the appen-

dices and reproduced on the second tape file. But for two reasons programs which generated some of

those data files are supplied instead. First, data consisting of the x,y,z coordinates of points on the given

surfaces tend to be voluminous and not very interesting, since for the most part they are page after page of

floating-point numbers. Second, users of 3DGRAPE tend to write programs to generate such data files; no

one (to this author's knowledge) has ever typed one in. Seeing such a program is more instructive than

pouring over its numerical output. There is nothing remarkable about these small programs. They should

compile and run easily on any machine.

9

HI. ZONING

A. A PRIMER ON ZONING

Chapter I introduced the concept of breaking up the physical domain into zones. As computational

fluid dynamics matures, it is being required to solve problems which are more and more of the "real

world." No longer do we solve for flow about ellipsoids. Instead, we are asked so solve for the flow

about such configurations as modem fighter aircraft with inlets, wingtip missiles, deflected control

surfaces, and external stores. It is frequently impossible to map such a complicated physical domain into

one computational cube. Instead, the physical domain is broken up into several zones, each of which maps

into its own computational cube. Just as the zones in physical space contact each other in some way, and

fluid flow passes from one zone to another, so must the flow solver allow communication between zones

in computational space.

The new user of 3DGRAPE should fhst become used to thinking of a physical domain mapping

into a computational cube. Figure 2 is a crude attempt to animate the warping of a computational cube into

a curved duct in physical space. Note the correspondence between the floor of the duct and the floor of the

cube, between the left side of the duct and the left side of the cube, etc. Just as the Cartesian computational

grid will have lines connecting opposing faces, such as the ceiling and the floor, so will the physical

domain have such connecting lines. Note that the difference between the 3-D networks of grid lines in the

two spaces is that in computational space the lines are orthogonal and uniformly distributed, whereas in

physical space they are "bent" or "warped," and the spacing is not uniform. Faces map into faces, lines

map into lines, and points map into points.

Figure 3 shows another example, this being a grid about a quadrant of a sphere (half a hemi-

sphere). The succession of views is another attempt to show in several steps how a computational cube

can be warped into some shape in the physical domain. A new complication here is that one of the faces in

the computational domain is collapsed to the spherical axis, a line, in the physical domain.

Once one has become comfortable with the concept of mapping the physical domain, no matter

how it is shaped, into a computational cube, the next step is the extension to multiple zones. Suppose, for

example, one were attempting to make an H-H type grid about a wing. The fin'st H in this terminology says

that as one views a section of the grid taken normal to the span, showing the airfoil shape, one will see one

family of grid lines running generally fore and aft and the other family of lines running generally up and

down. Hence the wing resembles the cross-bar in a letter H. The second H in this terminology says that as

one views a section of the grid taken normal to the freestream, showing a spanwise cut of the wing, one

will see one family of grid lines running generally in the spanwise direction and the other family of lines

running generally up and down. Hence the terminology H-H.

Barring the use of a "slit," which produces a computational domain more complicated than that of

the basic cube, it is not possible to solve that gridding problem with one zone. One zone could treat the

upper surface or the lower surface, but not both. Alternatively, one could wrap a one-zone grid around the

wing, but the result would not be of the H-H type. The solution to this dilemma is to use two zones--one

above the wing and one below (fig. 4). Each of the two zones in physical space maps into its own

computational cube.

10

!

Figure 2.- Composite figure showing how a cube may warp into a curved duct.

11

/

.,K

t

,\

Figure 3.- Composite figure showing how a cube may warp into a spherical quadrant.

12

ORIGINAL PAGE IS

OF POOR QUALITY

(a) Expanded view of two blocks above and below wing.

(b) Selected surfaces in assembled two-block grid, seen from root end.

Figure 4.- H-H type grid about wing.

13

Complicatedphysicalregionsaregriddedby theuse of many zones, and flow is modeled in

complicated physical regions by the use of many zones. But the zoning used in making the grid is fre-

quently not the same zoning as is used in modeling the flow. Frequently the limitations of the grid gen-

erator impose a need for a particular zoning, and that zoning is found to be not appropriate for the flow

solver. In such a case the grid is generated as many zones, and those zones are then copied together into a

few zones (e.g., one zone). Those few zones are then divided again into a different set of many zones for

use in the flow solver. That redivision is typically performed as a post-processing step by some simple

application-specific interface program.

B. ZONING WITH 3DGRAPE

3DGRAPE has the ability to locate the points on the boundaries of the zones in a variety of ways.

3DGRAPE also has the ability to cause the points just inside the zones to be generated such that near-

orthogonality and controlled grid cell height are imposed. But the user should keep firmly in mind that

these are two distinctly different matters, and they are specified differently in the input to the code.

3DGRAPE offers seven different ways to locate the points on the boundary faces of the zones.

They are

. The x,y,z locations of points on boundaries may be read in from a data file and remain fixed for the

entire grid-generation process. This boundary treatment is typically used for the "given shape,"

about which or inside of which the user wants to make a grid.

Note that 3DGRAPE has no facility to redistribute the points on that given shape. 3DGRAPE

expects to read in points which have already been distributed. Thus for all but simple analytically

defined shapes, the user must have available a surface-fitting program.

These x,y,z points on the boundary surface must be ordered with two running indices, and their

distribution should be dense or sparse as is appropriate to the problem.

, The points on the boundary may be constrained to lie on a plane normal to one of the Cartesian

coordinate axes. The actual location of the points on that plane will be dictated by and consistent

with the elliptic solution for the points inside of the block. The boundary conditions in 3DGRAPE

are explicit, meaning that some location for the boundary points is first assumed, then points inside

the block are relocated by taking one solution step, and then from that interior solution the

boundary points are relocated by extrapolation. That entire process is iterated to convergence.

Simple extrapolation to a plane, such as by passing a parabola through neighboring points, tends to

be unstable and produce unacceptable results. So a more sophisticated extrapolation procedure is

used. A parabola is passed through the three points in the interior nearest the boundary plane,

labeled 1, 2, and 3 in figure 5. From that parabola the slope of the curve at point 1 is found. That

first parabola is then discarded. Three conditions are known from which a new parabola is found.

14

SECOND

PARABOLA

FIRST
PARABOLA . _._(

3

BOUNDARY

PLANE

Figure 5.- Sketch showing extrapolation to planar boundary face.

.

.

.

.

.

They are (1) the location of point 1, (2) the slope of the curve at point 1, and (3) the slope of the

curve at the boundary plane, such that the line is perpendicular to that boundary. That new parabola

is evaluated at the boundary to get the location of the point on the boundary.

The points on the boundary may be constrained to lie on the surface of a cylinder (or a section of a

cylinder) which has its axis coincident with one of the coordinate axes. Points on the cylinder will

be extrapolated from points inside the block.

The points on the boundary may be constrained to lie on the surface of an ellipsoid which has its

axes coincident with the coordinate axes. A sphere is a special case of an ellipsoid, and thus

spherical boundaries are available. Points on the ellipsoid will be found by extrapolating from

points inside the block.

The points on the boundary may be collapsed to a line, with that line being one of the coordinate

axes. The location of the points on that line will be found by extrapolating from points in the
interior of the block.

The points on a boundary may be collapsed to a point, located anywhere, and fixed for the entire

grid-generation process.

The points on a boundary may abut the points on some other boundary. This is the facility which

allows floating block-to-block boundaries. Two boundaries are specified, either of the same block

or of different blocks. A solution step is taken to update the points inside the block(s), and then the

points on the boundary are relocated by simply taking the two nearest interior points, one on each

15

sideof thefloatingboundary,andfinding themidpointbetweenthem.Block-to-blockboundaries
arethusdouble-stored---onceaspartof eachblock.

Any of the above boundary treatments may be applied to each of the six faces of a block.

But real-world problems require even more versatility than that. Consider again the two-block grid

in figure 4. The upper surface of the lower block touches the lower surface of the upper block in front of

the wing, outboard of the wing, and behind the wing. But it also touches the lower surface of the wing

itself. So which of the seven boundary treatments is appropriate for this upper face of the lower block?

Obviously, none is appropriate by itself.

The solution to this dilemma is to divide that face of that block into sections. The lower face of the

upper block is divided into sections similarly. Then the section in front of the wing is made to abut the

corresponding section on the surface above it, the section outboard of the wing is made to abut the section

above it, the section rearward of the wing is made to abut the section above it, and the section which

touches the wing has its points read in and fixed. The abutting sections produce a floating block-to-block

boundary, while the wing shape is preserved.

This need for dividing faces into sections is provided for in 3DGRAPE. Any face may be divided

into sections. Any of the above list of boundary treatments may be applied to any section. The user should

reread the above list, substituting "the section of the boundary" for "the boundary."

For purposes of keeping things straight, the faces of each zone are numbered from 1 to 6. By the

nature of the problem, one of the three indices must be fixed on each face. For a user-specified arrange-

ment of the indices, the face numbers are hard-wired into 3DGRAPE. The following table gives those

predefined face numbers:

Face

no."

1

2

3

4

5

6

Fixed

index:

J

J

k

k

1

1

Fixed at what value?

1

its maximum (dimension)

1

its maximum (dimension)

1

its maximum (dimension)

Indices running
over the face:

k,1

k,1

j,1

j,1

j,k

j,k

16

Thustheindexj runsfrom 1to its maximumbetweenfaces1and2. Thereforefaces1 and2 mustbe
locatedsomehow"opposite"oneanother.Similarly, face3 mustopposeface4, andindexk runsbetween
them.Face5 mustbeoppositeface6, andindex1runsbetweenthem.In figure 3 thesphericalquadrant,
i.e.,the"inner boundary,"is face3, theouterboundaryis face4, andtheindexk runsbetweenthem.
Thesepredefinitionsdonot in anywayconstrainthecaseswhich3DGRAPEcantreatnorhowtheindices
mayrun.Theonly constraintis onwhatnumberwill beattachedto whatface.

It wasstatedearlierthatlocatingthepointson theboundariesof theblocksis adistinctlydifferent
matterfrom obtainingorthogonalityandcontrolof gridcell heightwithin theblocksneartheboundaries.
Theselattercapabilitiesareillustratedin figure6. Right-hand-sidetermshavebeenaddedto thegoverning
grid generationequationswhichcausethegrid to havethesequalities.Actual valuesfor thosetermsare
founditerativelyasthegrid-generationsolutionproceeds.All theuserneedsupplyis thedesiredvaluefor
theheightof thecellson theboundary;theprogramdoestherest.Thiskind of controlis availableonall
six facesof thezone.Thecontrolmaybedeactivatedatanyor all of thosefaces.TheRHStermsincludea
decayingexponentialfactorwhichcausesthemagnitudeof theterms,andthustheir influenceon thegrid,
to bereducedwith distancefrom theboundary.Thusin themiddleof thezonewhereall of thecontrol
termshavedecayedto practicallyzero,aswell asin thevicinity of anyfacewherethecontrolis turnedoff,
thegrid is locally aLaplaciangrid,which is averysmoothgrid.

Controlshouldbeusedonly on faces of zones which have boundary points located by treatment

no. 1, where the points are read in and remain unchanged for all computational time. Clustering points to a

floating boundary can produce instability in the grid-generation solution process.

Figure 6.- Sketch of grid cell on boundary surface-3DGRAPE's control terms impose near-orthogonality

and control of grid cell height(s).

17

Controlis activeor notoneachface of each zone. As the program is presently coded, it is not

possible to activate or deactivate the control by sections. This can increase the complication of the zoning

for some problems. For example, consider the H-H type grid about the wing in figure 4. That grid, as

shown, cannot actually be generated by 3DGRAPE using the two-block topology as indicated. That grid

has control on the upper and lower wing surfaces, but it does not have control on the remainder of the

planform surface, in which the wing resides. So generating that grid, using a two-block topology with the

planform surface being the block-to-block boundary, would require control to be active on one section of

that surface (the wing) and inactive on other sections (in front of the wing, behind the wing, and outboard

of the wing). That is not possible with 3DGRAPE. That grid was actually generated using a more

complicated topology with five blocks.

The problem of H-type grids for wings requires further comment. A problem arises in the distri-

bution of points on the planform surface itself. The grid spacing in the streamwise direction is fine on the

wing near its leading and trailing edges, but it can suddenly become quite coarse as one moves off of the

wing in either the upstream or downstream direction. The only solution to that problem found by this

author is to supply a properly clustered surface grid for the entire planform surface, not just the wing, as

input to 3DGRAPE. In that case, the entire planform surface would be read in and fixed, as is the wing.

Thus a reasonable distribution of points on that surface can be supplied and preserved. That properly

clustered planform surface grid could be supplied by a general-purpose, surface-gridding program.

Another solution to the problem of supplying the planform surface grid, awkward but workable, is

to use 3DGRAPE twice. This is illustrated in Example case 3. The perimeter of the wing, a line consisting

of the leading edge, the tip, and the wailing edge, is identified. Several (typically five) copies of that

perimeter are stacked one above another by adding or subtracting constant values of the vertical

coordinate. That perimeter, so replicated, becomes a vertical "wall." That wall is then considered as a

separate 3-D grid-generation problem. Points can be attracted to that wall by activating control thereon

using 3DGRAPE. One of the horizontal surfaces from the finished grid is extracted and is used as the

fixed planform surface.

Because 3DGRAPE extrapolates to most boundaries, high curvature should be avoided near cor-

ners. Imagine a comer between a "floor" and a "side wall." Consider extrapolating horizontally to points

on that side wall from various interior points. One can imagine that that process would work well, assum-

ing that the floor is fiat. But what if the floor is highly curved near the comer? In that case, the resulting

distribution of points on the side wall might be uneven, or might even have lines crossing. Thus block

boundaries should not be placed in regions having high curvature in the fixed boundaries.

18

IV. INPUT

Once the users have their intended zoning f'mrdy in mind, they are ready to prepare the input.

3DGRAPE reads its first two lines of input from the terminal and the rest of its input from stored files.

A. THE FIRST TWO LINES

The first thing 3DGRAPE does as it begins execution is to write a prompt asking whether this run

is a new start or a restart. The proper response is to type in one of two character strings, either "newstart"
or "re-start."

The user is then prompted for the name of the f'de which will be used for input on filel0 in the case

of a new start, or on filel6 in the case of a restart. Just a carriage return, preceded by no characters, will

cause the default filename "filel0" to be used in the new-start case, and "f'tlel6" to be used in the restart

case.

The preceding discussion of the first two lines of input assumes that 3DGRAPE is being run on an

interactive machine. If it is being run on a batch machine, the prompts will be written to the printout file,

along with an echo of the input. The actual input of these two lines in this case will come from the main

job input stream. Literally, they are read by the logical unit denoted in the program by an asterisk, as in

"read(*,100) "

The user should realize further that for most batch machines, such as the CRAY X/MP, the

installation of the program will require removal of all "open" statements from the code. In those cases, all

filenames read from the input will be ignored (with the partial exception of unit 12, see below). When the

program is installed without open statements, the linking of the unit numbers and the data files will be

done by job control language (JCL). So in those cases the second datum read, a file name, will be

ignored.

B. FILE10 - CONTROL SCALARS FOR NEW START

Input on filel0 is formatted, and thus is human-readable. AU data for filel0 must be in exactly the

right columns. Those column numbers will be clearly delineated below, and they must be followed

exactly. There is some consistency here: face numbers will always be read in I1 format, block numbers in

I2 format, indices in 13 format, floating-point numbers in F12 format, and file names in A15 format.

Character strings may be entered in either upper or lower case (or even a mixture of the two), with the

exception of file names. If the user's operating system is case-sensitive, as is UNIX, then the file names

must appear just as they are to be used.

There are places in the input where the user is given the option of entering either a character string

or a floating-point number. The program is smart enough to sort out that form of input. It was stated

earlier that floating-point numbers are read in F12 fields. To be precise, the format specification in

3DGRAPE is F12.0. But that does not mean that only whole numbers may be read. According to the rules

19

of FORTRAN,adecimalpointin aninputrecordoverridesanyplacementof thedecimalpoint impliedby
theformatstatement.Thustheusermayputadecimalpointanywherein thefloating-pointinput numbers.

For thesakeof experienceduserslookingfor aquick reference,thediscussionof eachinputwill
beprecededby atablegiving all relevantdata.Notethatsomeinputsrequirecontinuationlines.Reading
downthetablewill bealist of theline number(for inputswithcontinuationlines)andthedifferentfields
on theline(s).Readingacrosswill befirst therangeof columnnumbersfor thatfield. Thena letterwill
indicatewhat typeof datumthisis: "k" for keyword(acharacterstringwhichmustbeenteredexactlyas
stated,andwhich isrequiredfor readability),'T' for integer,"f" for floating-pointnumber,"n" for file
name,or "c" for acharacterstring.In someplacestheusermayput intoafield eitheracharacterstringor
afloating-pointnumber;,in thatcasethedatumtypewill begivenby"c/f." In otherplacestheusermayput
intoafield eithera characterstringor an integer,in thatcasethedatumtypewill begivenby "cA." To the
fight of thatwill appearabrief descriptionof whatthatdatumis.Thetablewill befollowedby an
example,takenfrom thefirst examplecasewhereverpossible.Immediatelybelowthatwill beacolumn
numberkey.After thatwill follow adiscussionof theindicatedinput line.

Theinput 3DGRAPEexpectsto readfrom file10is shownschematicallyin figure7. It beginswith
severallineswhichgiveinformationabouttheentiregrid andabouttheentirerunof 3DGRAPE.It then
goesintoanouterloopon blocknumber,andfor eachpassit readsinformationabouttheblock. Inside
thatisanintermediateloopon facenumberandfor eachpassit readsinformationabouttheface.Inside
thatisaninner looponsectionnumberwithin theface,readinginformationabouteachsection.At the
conclusionof thosenestedloops,it is finishedreadingfrom filel0.

1. The "run-comment" lines

Line

no.:

Field

no.:

1

2

Column

nos:

1-20

21-70

Datuln

k

c

Description:

"run-comment "

free-field comment describing this run

run-comment Example: hemisphere-cylinder-cone

run-comment simulation of helicopter fuselage.

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

The filel0 input begins with exactly two of these lines. The comments on them will annotate the

printout file, and they will help the user to remember what each filel0 dataset was used for.

20

DATA ON BLOCK #1

e.g., DIMENSION SIZES

I
DATA PERTAINING TO ENTIRE RUN I

I

e.g., ITERATION SCHEDULE 1
1

DATA ON FACE #1

1

I DATA ON FACE #4

I DATA ON FACE #5 I

I DATA ON FACE #6 I

I DATA ON BLOCK #2 Io.g., DIMENSION SIZES

I

Figure 7.- Schematic summary of filel0 input.

2. The "number-of-blocks" line

Line

no.:

Field

no.:

Column

nos:

1-17

Datum

tTpe:

k

Description:

"number-of-blocks="

21

2

3

4

18-19

20-58

59-60

i

k

i

number of blocks in this grid

"-number-of-parts-in-iteration-schedule="

number of parts in this iteration schedule

number-of-blocks=O3-number-of-parts-in-iteration-schedule=03

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

The iterations which 3DGRAPE will perform on this run are divided into parts, with varying

characteristics for each part. The maximum number of parts is 10.

3. The "iterations" lines

Line

no.:

Field

no.:

1

2

3

4

° 5

6

Column

nos:

1-11

12-14

15-23

24-25

26-38

39-44

Datum

tzpe:

k

i

k

c

k

c

Description:

"iterations="

the number of iterations in this part

"-control="

global switch on control, either "ye" or "no"

"-coarse/fine="

"coarse" or "fine"

iterations=O20-control=no-coarse/fine=coarse

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

One of these lines will be read for each part in the iteration schedule, defining that pan and its
characteristics.

It will be seen later how one goes about activating or deactivating the control terms on each face of

each block. But the character string in columns 24-25 on this input line is a global switch which overrides

all face-by-face specifications. String "ye" allows face-by-face invocation of control for this pan of the

iteration schedule; "no" turns control off at all faces for this pan.

22

A procedureto speedupconvergencehasbeenaddedto 3DGRAPE.It startswith averycoarse
grid, consistingof everythirdpoint in eachof thethreecoordinatedirections.In onepartof theiteration
schedule,thiscoarsegrid is iteratedto convergence,includingtheRHSterms.Thatcoarsesolutionis then
interpolatedto coverall grid pointsin everydirection.Thenanotherpan in theiterationschedulefollows
whereinanotheriterationto convergencetakesplace,usingtheinterpolatedgrid asinitial conditions.The
fast iterationgoesfastbecauseit doesapproximately1/27thasmucharithmeticperstepasit would
otherwise.Theseconditerationgoesfastbecauseit startswith initial conditionswhichareverycloseto
thefinal solution.

Theeffectivenessof this techniquevariesgreatlyfrom caseto case,but theusercancountona
reductionin CPUtimeof atleast50%,sometimesmuchmore.Thereis adrawback,andit is thatthe
numberof pointsin eachof thethreecoordinatedirectionsin everyblockmustbeof theform 3n+l for n
someintegergreaterthanor equalto4. In somecasesthisrequirementis foundto beburdensome,and
useof thisspeedupprocedureis notpossible.The"coarse"or "fine" in columns39-44indicatewhether
thispanof theiterationscheduleis to becoarseor fine.Any numberof coarsestepsmaybefollowedby
anynumberof fine steps,butnocoarsestepmayfollow afine step.

4. The "filename-ll" line

Line

no.:

Field

no.:

1

2

3

4

Column

nos:

1-18

19-33

34-53

54-68

filename-ll-input=filellexl

Datum

tZ_:

k

n

k

n

Description:

"filename- 11-input="

name of file for input as file 11

"-filename- 12-output="

name of file for debugging output on file 12

-filename-12-output=

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

File 11 is described in detail in the following section. The name of that file is found in col-

umns 19-33 on this line. Remember that when 3DGRAPE is installed without open statements, as is

typical on batch machines, this and all other file names (with the exception of file 12, described

immediately below) are ignored.

Columns 54-68 contain the name of the file to receive debugging output on unit 12. That file name

serves a dual purpose. First, its presence or absence serves as a switch telling 3DGRAPE whether to write

or not write (respectively) that data. Its second purpose, when 3DGRAPE is installed with open

23

statements,is to providethenameof the file which will receive that debugging output. When 3DGRAPE

is installed without open statements, the name of the file is supplied by JCL, and what appears in columns

54-68 is just a switch. This output is for debugging the input from filel 1. It is voluminous, and its output

is not recommended unless the user is desperate and has no graphical debugging aids.

5. The "filename-14" line

Line

no.:

Field

no.:

1

2

3

4

Column

nos:

1-24

25-39

40-45

46-52

filename-14-grid-output=exl.bin

k

n

k

Description:

"filename- 14-grid-output="

filename for main grid output

"-form="

"3dgrape" or "plot3d" or "charact"

-form=3dgrape

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

The main grid output may take any one of three different forms, as specified in columns 46-52.

The most compact way of describing those forms is to use the FORTRAN language, rather than to use

English. The reader's ultimate purpose in reading this section is to enable him to prepare read statements

for the grid file; that can be most expediently done by seeing the write statements which created it.

The code below is not literally excerpted from 3DGRAPE. It differs in data structure and variable

names. However, this code would produce identical results and is easy readable. In the code, maxblk is

the number of blocks. The array element jmaxa(nblk) is the maximum value of the first subscript for block

number nblk, and similarly the second and third subscripts k and 1. The x coordinate is assumed to be

stored as x(j,k,l,nblk), and similarly y and z.

If"3dgrape" is specified, the data on file14 are written in a form which this author believes to be

the simplest and most straightforward. It is a form created by this author for this program, but is easily

adaptable to other uses. It is identical to that which would be produced by the following simulated code:

open (unit=14, status=' new', form=' binary', file=' exl .bin')

write(14) maxblk

do 1 nblk=l,maxblk

24

jmax=jmaxa

kmax=kmaxa

lmax=imaxa

write (14)

write (14)

1 continue

(nblk)

(nblk)

(nblk)

jmax, kmax, imax

(((x(j, k, i, nblk) ,j=l, jmax) ,k=l, kmax) ,i=I, Imax) ,

(((y (j, k, i, nblk) ,j=l, jmax) ,k=l, kmax) ,i=i, imax) ,

(((z (j,k, i, nblk) ,j=l, jmax) ,k=l, kmax) ,I=i, imax)

close (unit=f4)

If"plot3d" is specified, the data on filel4 are written in the form required by the well-known

NASA graphics program PLOT3D (refs. 10 and 11). If there is only one block, the data are written in

PLOT3D's single-block format. If the number of blocks is greater than one, the data are written in
PLOT3D's multiple-block format. The output is identical to that which would be produced by the

following code:

open (unit=14, status=' new' ,form=' binary' ,file=' exl.p3d')

if (maxblk.gt. I) write (14) maxblk

jmaxa (nblk) ,kmaxa (nblk) ,imaxa (nblk) ,nblk=l, maxblk)write(14) (

do 1 nblk=l,maxblk

jmax=jmaxa (nblk)

kmax=kmaxa (nblk)

imax=imaxa (nblk)

write (14) (((x (j

(((Y(j

(((z(j

continue

close(unit=14)

1

2

,k, l, nblk) ,j=l, jmax) ,k=l, kmax) ,I=I, imax) ,

,k, i, nblk) ,j=l, jmax) ,k=l, kmax) ,l=l, Imax) ,

,k, i, nblk) ,j=l, jmax) ,k=l, kmax) ,i=i, imax)

If"charact" is specified, the data on file14 are written in as formatted data, or ASCII character

data. This is useful for users running on computers connected to a network which does not have the

facility to transfer binary data. A main grid output file created this way will be several times as large as if

either of the two other options had been used, and it will take several times as long to read, but for some

users this approach is unavoidable. This form is essentially the "3dgrape" form convened to formatted

output.

25

i00

I01

open (unit=14, status=' new', form=' formatted', file=' exl. asc')

write(14,100) maxblk

format (3ii 0)

do 1 nblk=l,maxblk

jmax=jmaxa (nblk)

kmax=kmaxa (nblk)

imax=imaxa (nblk)

write (14,100) jmax, kmax, lmax

1

2

write (14, I01)

format (5e15.6)

1 continue

(((x (j, k, i, nblk), j=l, jmax) ,k=l, kmax) ,i=I, imax) ,

(((y (j, k, I, nblk) ,j=l, jmax) ,k=l, kmax) ,i=I, imax) ,

(((z (j,k,l,nblk), j=l, jmax),k=l,kmax),l=l,lmax)

close(unit=14)

6. The "write-for-restart" line

Line

no.:

1

2

3

4

Colunm

nos:

1-18

19-20

21-40

41-55

Datum

tzpe:

k

c

k

Description:

"write-for-restart="

either "ye" or "no"

"-filename- 15-output="

filename for restart file

write-for-restart=no-filename-15-output=restartexl

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

3DGRAPE has a restart capability. One can run it a while, plot the results, and then decide to run it

some more, either with or without some changes. To make that possible, 3DGRAPE must write out a file

containing all it needs to continue where it left off. Filel5 is that file. It is output by 3DGRAPE in the run

26

antecedent to the restart, and then read back in on the restart run. It is a very large file, containing the

contents of most of the common arrays, and some other material as well. This author sees no reason why
the user would ever need to examine the contents of this file.

The character-string "ye" or "no" in columns 19-20 determines whether the file is written. If a

restart file is to be written, and 3DGRAPE is installed with open statements, this file name must be given

in columns 41-55. Otherwise, this file name is ignored.

7. The "relaxation-param" line

Line

no.:

Field

no.:

1

2

Column

nos:

1-17

18-29

relaxation-param=keep-default

Datum

k

c_

Description:

"relaxation-param="

either"keep-defauh" or a value for omega

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

3DGRAPE uses point-SOR to solve the Poisson equations. In that method there is a relaxation

parameter, commonly called omega, which determines whether the solution is being overrelaxed or

underrelaxed. This parameter must be between zero and two. Increasing it makes the solution converge

faster, at the possible expense of instability. Putting the character string "keep-default" in columns 18-29

invokes the default, which is 0.8. Putting a floating-point number in those columns causes that number to
be used instead.

The foregoing input data records give information about the entire grid-generation operation being

conducted by this run of 3DGRAPE. Following these lines the program goes into an outer loop on the

block numbers. For each block a group of lines must then be encountered which give characteristics of the
block.

27

8. The "block-comment" line

Line

no.:

1

2

Column

nos:

1-20

21-70

Datum

type:

k

C

Description:

"block-01-comment"

free-field comment describing this block

block-01-comment Hemispherical Nose Cap

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

The block statement, along with the face statement described below, are the two kinds of input

lines preceding which blank lines may appear. Any number of blank lines may be placed before a block or

face input line for the purpose of making the filel0 input more readable. Blank lines anywhere else in
filel0 will be errors.

The comment in the comment field of the block statement will be used to annotate the printout. The

printout, described in detail in a subsequent chapter, will include a convergence history for each block.

Those histories will be labeled with the comments from the corresponding block statements.

9. The "dimension" line

Line

no.:

Field

no."

1

,2

3

4

5

6

Column

nos:

1-12

13-15

16-28

29-31

32-44

45-47

Datum

type:

k

i

k

i

k

i

Description:

"dimension-j="

maximum value of first subscript j

"-dimension-k="

maximum value of second subscript k

"-dimension- 1="

maximum value of third subscript 1

dimension-j=019-dimension-k=031-dimension-l=022

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

28

The dimensions of each block are variable, and may be set by the user at execution time. The only

such limitation which must be set at compile time is on the total number of points summed over all blocks,

described in Chapter II Section A. The dimension sizes must in every case be at least 4. If"coarse"

iteration steps are to be performed, then the dimension sizes must be of the form 3n+l for n some integer

greater than or equal to 4.

I0. The "handedness" line

Line

no.:

Field

no.:

1

2

3

4

5

6

Column

nos:

1-11

12

13-22

23

24-33

34-42

Datum

type:

k

C

k

C

k

Description:

"handedness="

either "r" or 'T'

"-initcond="

either "j" or "k" or 'T'

"-cart/sph="

either "Cartesian" or "spherical"

handedness-r-initcond=k-cart/sph=spherical

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

The "handedness" of the grid---either right-handed or left-handed---can vary from block to block.

For Laplacian grids it is irrelevant. But for grids with control activated, it is used to choose the sign of a

square root in the computation of the RHS terms.

The handedness of a grid can be determined according to the right-hand rule, or in the following

equivalent way. Choose any point (j,k,1). A unit vector in the _ direction is a vector from that point to the

point (j+l,k,1). Similarly, a unit vector in the 11 direction is a vector from (j,k,1) to (j,k+l,l). And a unit

vector in the _ direction is from (j,k,1) to (j,k,l+l).

The three vectors will be bound tail-to-tail-to-tail at the point (j,k,1). Imagine them defining the

axes of a locally Cartesian _,rl,_ coordinate system. Imagine an ordinary screw, placed coincident with the

zeta axis. Then imagine rotating some point on the head of that screw from the positive _ axis to the

positive rl axis. If that rotation produces movement of the screw in the positive _ direction, then the grid is

right-handed. If that rotation produces movement in the negative _ direction, then the grid is left-handed.

29

Thecharacterin column12shouldindicatethathandedness:"r" for fight-handedor 'T' for left-

handed. Users frequently make mistakes on this point, producing grids with grid lines repelled from the

controlled faces rather than attracted. Rather than agonize analytically over this point, the user encoun-

tering such symptoms should simply reverse the handedness and try again.

In starting an execution of the grid generator, once points have been initialized in some way on all

six faces of the block, the need arises to initialize the points inside the block. The user will choose some

index, running between two opposing faces. The program will take corresponding points on the two faces

and linearly interpolate between them to produce an initial distribution. The user chooses which index to

use in column 23, and by so doing, chooses which pair of opposing faces to use.

It has been stated that 3DGRAPE should be able to make a grid in any region into which a cube or

cubes can be warped. This is true, but for cases having spherical topology, i.e., having a spherical axis
(such as in fig. 3), certain mathematical singularities occur and special measures must be taken. The

coordinates in such zones are transformed from Cartesian coordinates (x,y,z) into spherical coordinates

(p,0Ab). An iteration is performed on the grid in that space. Then the outermost four shells (or cubic sur-

faces) are converted back to Cartesian coordinates. Boundary conditions are applied, and the surfaces are

transformed back into spherical coordinates. This is iterated to convergence, and the entire block is

transformed back into Cartesian coordinates before being written out.

To utilize this option in any block, the user should put "spherical" into columns 34-42. Otherwise,

"cartesian" should be entered in those columns. The spherical axis must be coincident with one of the
coordinate axes.

11. The "polar-axis" line

Line

no.:

Field

nod

1

2

3

4

5

6

Column

nos:

1-11

12

13-19

20

21-28

29

Datum

type:

k

C

k

C

k

Description:

"polar-axis="

either "x" or "y" or "z"

"-along="

either "j" or "k" or 'T'

"-around="

either "j" or "k" or 'T'

30

7 30-37 k

8 38-49 f

polar-axis=x-along=k-around=l-cent er=

"-center=-"

location on polar axis of approx, spher, center

i00.

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

This line is read only if"spherical" appears on the preceding line. In that case, 3DGRAPE needs to

know which axis is the polar axis. That datum is entered in column 12. The program then needs to know

which index runs along that axis, entered in column 20, and which index runs around it, entered in

column 29. In the spherical case neither the body nor the outer boundary need be exactly spherical, but

they should be somewhat similar to a sphere, i.e., topologically equivalent to a sphere. Given that, it

should be possible to locate an approximate center to that sphere. That center would, of course, lie on the

spherical axis. The location of the approximate center is given by entering its location on the axis in
columns 38-49.

This concludes the inputs which give characteristics of the block. At this point 3DGRAPE goes

into an intermediate loop on face number. It expects to read information which applies to each face. Blank

lines may appear before a "face" line.

12. The "face" line

Line

no.:

Field

no.:

1

2

3

4

5

6

7

8

Colunm

nos:

1-5

6

7-16

17-18

19-26

27-38

39-43

44-55

Datum

t_e:

k

i

k

i

k

c/f

k

c/f

Description:

"face-"

face number

"-sections="

number of sections into which face is divided

"-normal="

"uncontrolled" or cell height or "n-i-stations"

"-abc="

"keep-default" or stretching parameter

31

9

10

56-68

69-70

k

face-l-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no
1234567890123456789012345678901234567890123456789012345678901234567890
0000000001111111111222222222233333333334444444444555555555566666666667

The face numbers should appear in numerical order, from one to six. For the purpose of locating

the points on the face, it may be divided into sections. The maximum number of sections per face is 10.

The data in columns 27-38 require some explanation. There are three different forms acceptable
here. The fast is "uncontrolled." This means that the control terms are deactivated on this face and should

be used for any boundary that is not a fixed boundary. The second form of input is to simply enter a

floating-point number. This activates the control terms on this face. The program will try to make the cells

touching this face be locally near-orthogonal, and will try to make them the height given in user units by

the floating-point number.

The third form of input in columns 27-38 was listed as "n-i-stations." The use of quotes around

that datum is questionable, since that character-string as is should never be used. In place of the "n" a

number from 2 to 9 should be substituted. In place of the "i" an index ("j" or "k" or'T') should be

substituted. For certain problems the user might require cell heights on a face which are controlled, but are

not uniform. 3DGRAPE allows the specification of cell heights which are invariant with respect to one

index but are varying as a piecewise continuous linear function of the other index. This form of input

allows that. The piecewise continuous linear function is defined by giving the desired cell height at several

values of the index, including its end points. The number in place of the "n" is the number of points at

which a value for the cell height is to be given. The index substituted for the "i" is the index at values of

which cell heights are to be given. For example, "4-k-stations" means that at k equals 1, at k equals its

maximum value, and at two intermediate values of k, cell heights will be given. The required cell heights

between those places will be found by linear interpolation.

When control on a face is activated, 3DGRAPE will attempt to make the grid cells immediately

adjacent to that face be orthogonal and of the indicated height. With distance from the face, into the interior

of the block, control of skewness and cell height decays. Thus in the middle of the block the grid is

essentially uncontrolled. That decaying control allows the distance between points on lines normal to the

face to increase in a quasi-exponential manner with distance from the face. But how fast does that control

decay with distance inward? There is a parameter, called abe, which influences the rate of decay. The

default value for that parameter is 0.45. The user may override that default by placing a floating-point

number in columns 44-55. A larger number, such as 0.60 or 0.70, will cause the control to decay more

rapidly, and will make the grid-generation convergence more stable. Decreasing that parameter to values

such as 0.40 or 0.35 will cause the control to be propagated farther into the field, at the expense of

decreasing the stability of the grid-generation convergence.

The foregoing discussion of the strength of the control assumes that it is uniform over the entire

face. But there are occasions when the user wants for it to vary. For example, suppose the user is making

32

agrid aroundthefuselageof anaircraftandthereis asharpstrakeedgeprotrudingfrom thesideof that
fuselage.Elliptic grid generatorscarryafundamentalassumptionthattheboundariesaresmooth,i.e., that
theslopeof theboundaryis continuous.But atour hypotheticalstrakeedge,theboundaryis notsmooth;
theslopeis discontinuous.If a surfacegrid line is allowed to go back along the fuselage, along the edge of

that strake, it could be said that there is a surface grid line across which the boundary's slope is discontin-

uous. Continuing with the example, seen in figure 8, if the index j goes from front to back and 1 goes

around, then it could be said that there is a value of 1 at which the slope in the 1 direction is discontinuous

for all values ofj. Since the elliptic grid generator assumes smooth boundaries, and there is a line on the

boundary across which it is not smooth, special measures must be taken along that line. If this is not done,

the grid generator will produce unacceptable results there or even fail to converge. The special measure

which solves this problem is to average the RHS terms across that strake edge. That is, computed values

of the RHS terms at 1 will be replaced by the average of the computed values at 1+1 and 1-1, and this will

be done this for all j. This procedure is called as "lightening."

Another nonuniform application of the control terms is referred to as "tightening." Herein the

control is applied only along the indicated line or lines, and is deactivated elsewhere. Tightening should

not be used on the same face as lightening. Tightening is a very powerful command, and should be used
with caution.

If neither lightening or tightening is desired, "no" should be entered in columns 69-70. If either

lightening or tightening is desired, "ye" should be placed in those columns.

Control should never be activated on a face which has coincident points. Where points are coin-

cident, certain derivatives are undefined. The calculation of the RHS terms requires all derivatives up

through second order. Division by zero will result.

Elliptic grid generation is a complicated process, which sometimes works and sometimes doesn't.

The user should have some general guidelines to predict whether a case will work or not. These guidelines

will allow the generation of a grid in a series of runs. The user should first seek to simply make the grid

Figure 8.- Surface grid on airplane fuselage with strake. Index j goes from front to back and 1 goes around

from bottom to top in this example.

33

generatorwork on a grid which bears some resemblance to the grid that is wanted. The desired grid can

then be approached by gradually adjusting the input parameters.

Two such guidelines can be given. First, for each face having control terms activated, the user

should calculate the physical distance from a typical point on that face to its correspondent point the

opposite face. That distance should then be divided by the number of intervals on the line connecting those

points, yielding what would be the spacing on that line if that spacing was uniform. The user should

compare that uniform spacing to the spacing being requested in columns 27-38 on the "face" line. For the

first try at making the grid generator work, the requested spacing should be between one-half and one-

tenth of the uniform spacing. That should work. Once that first value has worked, the user who desires

much smaller spacing at the wall can then reduce the requested spacing in increments. Just how much it

can be reduced is a very problem-dependent matter, and is impossible to predict generally. The symptom

of not working, of course, is that the iterative grid-generation process will not converge.

The second guideline requires calculating the aspect ratio of the grid cells at the face. The user

should divide the greatest dimension of a cell on the given surface grid by the height being requested. It is

recommended that that aspect ratio not be less than one. That is, cells on the wall should not be taller than

they are wide. For the first try, as in the preceding paragraph, that ratio should be no larger than about 10.

Once that has worked the user may increase that ratio in increments, by reducing the normal distance given

in columns 27-38. Grids have been generated on 64-bit machines (e.g., CRAY X/MP and CRAY-2) with

aspect ratios as large as 10,000:1.

13. The "norm/sect" line

Line

no.:

Field

no.:

1

2

3

4

5

6

7

8

9

Column

nos:

1-10

11-13

14

15-26

27

27-30

31

32-43

44

Datum

type:

k

i

k

f

k

i

k

f

k

Description:

"norm/sect="

value of the index locating first point

,,_,,

cell height at first point

,,_,,

value of the index locating second point

cell height at second point

34

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

45-47

48

49-60

1-10

11-13

4

15-26

27

28-30

31

32-43

44

45-47

48

49-60

1-10

11-13

14

15-26

27

28-30

31

32-43

k

f

k

k

f

k

k

f

k

k

f

k

k

f

k

k

f

35

valueof theindexlocatingthird point

cell heightat thirdpoint

"norm/sect="

valueof theindexlocatingfourthpoint

cell heightat fourthpoint

valueof the indexlocatingfifth point

cell heightatfifth point

valueof the indexlocatingsixthpoint

cell heightat sixthpoint

"norm/sect="

valueof the indexlocatingseventhpoint

cell heightat seventhpoint

valueof the indexlocatingeighthpoint

cell heightateighthpoint

9

10

7

8

norm/sect=O01- 3.

44

45-47

48

49-60

k

i

k

f

-020- 37.3

,, ,,

value of the index locating ninth point

cell height at ninth point

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

Whether there are other lines of input describing the face is dependent upon what values appear on

the "face" line. If a form other than "n-i-stations" is chosen for columns 27-38, the input line(s) shown in

the table above axe not needed and should not appear. If the form "n-i-stations" is used, a line or fines as

shown above should immediately follow the "face" fine, giving the values for cell height which make up

the piecewise linear function. Only the fines needed must appear. That is, if the number of stations at

which the linear function is defined is less than seven, then the third line should be deleted. If the number

of stations at which the linear function is defined is less than four, then both the second and the third lines

should be deleted.

14. The "lighten/tighten" line

Lille

no.:

Field

no.:

1

2

3

4

5

6

7

8

Column

nos:

1-2

3

4

5-13

14-15

16

17

18-26

Datum

t e:

cA

k

C

k

cA

k

C

k

Description:

"no" or the # of first sub. lightenings

,,_,,

first subscript: "j" or "k" or "1"

"-lighten-"

"no" or the # of second sub. lightenings

'__"

second subscript: "j" or "k" or 'T'

"-lighten-"

36

9

10

11

12

13

14

15

16

27-28

29

30

31-39

40-41

42

43

44-51

k

c

k

c/i

k

c

k

"no" or the # of first sub. tightenings

,,_,,

first subscript: "j" or "k" or 'T'

"-tighten-"

"no" or the # of second sub. tightenings

,, ,,

second subscript: "j" or "k" or 'T'

"-tighten-"

no-j-lighten-O3-1-1ighten-no-j-tighten-no-l-tighten

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

With this line, as well as with the the preceding "norm/sect" line, its presence or absence depends

upon what is given on the "face" line. If columns 69-70 on the face line contain "no," there will be no

"lighten/tighten" line. If, however, columns 69-70 of the face line contain "ye," then a "lighten/tighten"

line must appear.

One could be forgiven for being confused by this input line. The information it is trying to convey

is complicated. Columns 1-2 tell whether there is a value or values of the first index at which averaging of

the RHS terms in the direction of the first index is to take place, for all values of the second index.

Conversely, columns 14-15 tell whether there is a value or values of the second index at which averaging

of the RHS terms in the direction of the second index is to take place, for all values of the first index. The

example above refers to a face number three, where j and I are the running indices. It says that there is no

value ofj at which the RHS terms are to be averaged in the j direction, for all values of 1. But it says that

there are three values of 1 at which the RHS terms are to be averaged in the 1 direction, for all values ofj.

Locations of the lines along which tightening is to be applied are given similarly. The data in

columns 27-28 determine whether there are any values of the first index along which tightening is to be

applied for all values of the second index. The data in columns 40-41 determine whether there are any

values of the second index along which tightening is to be applied for all values of the first index.

37

15. The "lighten-at" line

Line

no.:

Field

no.:

1

2

3

4

Column

nos"

1-11

12

13

14-16

Datum

type:

k

c

k

i

and continuing across as per the example below:

Description:

"lighten-at-"

name index where lighten: "j" or "k" or "1"

(¢ ,1

value of index where lighten

lighten-at-j=O01-O02-O03-O04-O05-O06-O07-O08-O09-OlO

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

16. The "tighten-at" line

Line

no.:

Field

no.:

1

2

3

4

Column

nos:

1-11

12

13

14-16

Datum

type:

k

c

k

i

and continuing across as per the example below:

Description:

"lighten-at-"

name index where tighten: "j" or "k" or 'T'

((,,

value of index where tighten

tighten-at-j=O01-O02-O03-O04-O05-O06-O07-O08-O09-OlO

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

These two lines should appear only as called for in the "lighten/tighten" line.

Summarizing now, there is an outside loop on the block number, and within that there is an

intermediate loop on the face number. For each face, in numerical order, there must be a "face" line. Then,

38

dependingon whethertheyarecalledfor in the"face" line,therewill be"norm/sect" line(s)anda
"lighten/tighten"line. Thenif calledfor in the"lighten/tighten"line,therewill bea"lighten-at"or "tighten-
at" line.

At thispoint all of thedatapertainingto theentirefacehavebeenread.It is time to go into the

innermost loop on section number. For purposes of determining the x,y,z locations of the points on the

boundary faces of the block, those faces can be divided into as many as ten sections. Chapter HI listed the

seven different treatments 3DGRAPE offers for locating boundary points, and any of those treatments may

be applied to each section. But the user should keep in mind that in most problems most of the faces will

consist of only one section. Thus in what follows "section" can usually be read as "face."

The preceding input lines were given ordinal numbers in the section headings (e.g., 16. The

"tighten-at" line). There is some correspondence between those numbers and the placement of their

respective input lines, with discrepancies due to repeated or deleted lines. But here ends any semblance of

such order, since the boundary treatments listed below may be applied to any section of any face.

The following specifications for boundary treatment of sections of faces all include some indication

of the range of indices to which those treatments apply. It is the user's responsibility to check those ranges

to make sure that they add up to treatment of the entire face. It would be quite possible to divide a face into

sections by index limits and leave holes untreated or have overlapping treatments. Overlapping treatments

are inelegant, but rarely cause problems. Leaving holes untreated, however, should be avoided.

A collateral problem is treating the edges of the block, each of which is the intersection of two

faces. Here again they might be treated twice, as part of two different faces, or they might be not treated at

all. Redundant treatment is clumsy, but is rarely wrong. In such cases the treatment associated with the

face having the highest face number will take precedence. But failing to treat an edge in any way will be a
sure cause of failure.

Immediately following the input(s) pertaining to the face, there should follow one of the following

boundary treatment inputs for each section on the face, with no intervening blank lines.

17. The "read-in-fixed" line

Line

no."

Field

no.;

1

2

3

4

Column

nos:

1-18

19

20-25

26-28

Datum

type:

k

C

k

i

Description:

"read-in-fixed-xyz-"

fast index on the face: "j" or "k"

"-from-"

starting value of first index

39

5

6

7

8

9

10

11

12

29-32

33-35

36

37

38-43

44-46

47-50

51-53

k

i

k

c

k

i

k

i

"-tO-"

ending value of fin'st index

,,_,,

second index on the face: "k" or "1"

"-from-"

starting value of second index

"-tO-"

ending value of second index

read-in-fixed-xyz-j-from-OOl-to-O25-k-from-OOl-to-025

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

This treatment is used for inputting a fixed boundary surface, typically the shape or pan of the

shape about which or inside of which the user desires to make a grid. As stated previously, these points on

this surface must be distributed properly by some other device prior to input here. The points on this

surface must be distributed with two running indices, as is typical of any surface mapping into the side of

a computational cube. Those x,y,z data are not actually read from this file, filel0. Instead, upon reading

the "read-in-fixed" input line, 3DGRAPE looks to filel 1 from which it actually reads the data. Filel 1 is

described in the following section. After reading x,y,z data for this section of this face from file 11,

3DGRAPE returns to filel0 and continues reading.

18. The "plane-normal-to" lines

Line

no.:

Field

no.:

1

2

3

4

5

Column

nOS:

1-16

17

18-26

27

28

Datum

type:

k

c

k

C

k

Description:

"plane-normal-tO-"

axis to which perpendicular: "x" or "y" or "z"

"-axis-at-"

axis to which perpendicular: "x" or "y" or "z"

40

8

9

10

11

12

13

14

15

16

17

1

2

6 29-40

7 41

42

43-48

49-51

52-55

56-58

59

60

61-66

67-69

70

1-6

7-9

plane-normal-to-y-axis-at-y=

...to-031

f

k

c

k

i

k

i

k

c

k

i

k

k

i

0.

location on axis

,,_,,

first index on the face: "j" or "k"

"-from-"

starting value of fast index

_._0 __

ending value of first index

,,_,,

second index on the face: "k" or 'T'

"-from-"

starting value of second index

"...tO-"

ending value of second index

- j-from-O 02-to-O 18-k-frora-O 02-

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

The points in this section, as defined by the given indices, will be constrained to lie on a plane

normal to the indicated axis, at the indicated point on that axis. The distribution of points on that plane will

be found by extrapolating from the elliptic grid in the interior of the block. This is done in a manner such

that grid lines coming from the interior of the block and intersecting the plane do so at right angles.

The distribution of points on that plane given in the initial conditions, however, will be nonsense.

The user plotting initial conditions should ignore points on planes such as this.

41

19. The "cylinder-about" lines

Line

no.:

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

Field

no.:

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

Column

nos:

1-15

16

17-27

28

29

30-41

42-45

46

47

48-59

60

61

62-68

1-13

14-16

17-20

21-23

24

25

26-38

Datum

type:

k

C

k

C

k

f

k

C

k

f

k

C

k

k

i

k

i

k

C

k

Description:

"cylinder-about-"

name of axis: "x" or "y" or "z"

"-axis-from-"

name of axis: "x" or "y" or"z"

starting value on axis

6t_to _'_

name of axis: "x" or "y" or "z"

ending value on axis

name of index along cylinder: "j" or"k" or 'T'

"-along-"

"-axis-from-"

starting value of index along

"-tO-"

ending value of index along

name of index along cylinder: "j" or "k" or "1"

"-around-from-"

42

2

2

2

2

3

3

3

3

3

3

8

9

10

11

1

2

3

4

5

6

39-41

42-45

46-48

49-60

1-3

4-15

16-25

26-37

38-45

46-57

i

k

i

k

k

f

k

f

k

i

cylinder-about-x-axis-from-x=lO0.

starting value of index along

_'-to--''

starting value of index around

"-with-angle="

starting value of angle around (in degrees)

"-to-angle="

ending value of angle around (in degrees)

"-radius="

radius of cylinder

-to-x= 750. -j-along-

...axis-from-OO2-to-O33-l-around-from-OO2-to-O21-with-angle =

-90. -to-angle= +90. -radius= 500.

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

The points in this section, as defined by the given indices, will be constrained to lie on the surface

of a cylinder. That cylinder must have its axis coincident with one of the coordinate axes. 3DGRAPE

needs to know the limits of the cylinder in the axial direction. Note that the "starting value" on the axis

should correspond to the starting value of the index running along the axis, and the "ending value" on the

axis should correspond to the ending value of that index. The index limits should be given in increasing

fashion, i.e., the ending limit of the index should be greater than the starting value. But the physical

problem may demand that the values on the axis corresponding to those indices be given in decreasing

fashion, i.e., the ending value on the axis may be smaller than its starting value. That is acceptable.

The extrapolation to the cylinder is done in the following manner. For each point on the cylinder,

two locations are found. The first is found by striking a ray from the axis through the point nearest the

cylinder and onto the cylinder. The second location is found by linearly extrapolating from the two points

nearest the cylinder and onto the cylinder. Those two locations are then averaged.

The cylinder need not displace the entire 360". For example, in an aerodynamic application which

assumes no yaw, the grid typically covers only one side, requiring a cylindrical section of 180 °. Thus

starting and ending values of the angle around the cylinder are input. Those angles are defined according to

the increasing index convention for right-handed coordinate systems, and a decreasing index convention

for left-handed systems. An alternate explaination of that angle definition is as follows. The cylinder's axis

43

is oneof thecoordinateaxes.Theusershouldimaginehiseyefar out on thepositiveendof thataxis,
looking backtowardtheoriginat theentiregrid.Theuserwill thenbe lookingatacoordinateplanein
which lie thetwo otheraxes.Thatplaneshouldberotated,andtheentiregrid with it, aboutthecylindrical
axisuntil thepositiveendof oneof thoseothertwo axespointsto therightandtheotherpositiveend
pointsup.Theusercanthenimagineaconventional2-D polarcoordinatesystemon thatplane,with the
angleequalto zeroon theright andincreasingin counterclockwisefashion.It is with respectto thatangle
thatthestartingandendinganglesenteredin columns4-15and26-37of thethird input line aremeasured.

Theaxisvaluesandtheanglesareusedonly for locating the initial conditions. Thus great precision

is not required.

Note that the starting and ending values of the index running around the axis should be given in

increasing order, i.e., the ending value must be greater than the starting value. But the starting and ending

values of the angle need not be so ordered; the physical problem may require that they be ordered

backwards. That is acceptable.

20. The "ellipsoid" line

L_e

no.:

1

1

1

1

1

1

2

2

2

2

2

2

Field

no.:

1

2

3

4

5

6

1

2

3

4

5

6

Column

nos:

1-17

18-29

30-37

38-49

50-57

58-69

1-10

11-22

23-30

31-42

43-50

51-62

Datum

type:

k

f

k

f

k

f

k

f

k

f

k

f

Description:

"ellipsoid-x-cent="

x-coordinate of center of ellipsoid

"-y-cent="

y-coordinate of center of ellipsoid

"-z-cent="

z-coordinate of center of ellipsoid

"...x-semi="

length of semi-span in x-direction

"-y-semi="

length of semi-span in y-direction

"-z-semi="

length of semi-span in z-direction

44

2

2

2

3

3

3

3

3

3

3

3

3

3

7 63

8 64

9 65-70

1 1-3

2 4-6

3 7-10

4 11-13

5 14

6 15

7 16-21

8 22-24

9 25-28

10 29-31

ellipsoid-x-cent=lO0.

...x-semi= 500. -y-semi=

...O02-to-Ol8-l-from-OO2-to-021

k

c

k

k

i

k

i

k

c

k

i

k

i

-y-cent=

500.

,, ,,

name of first index: "j" or "k"

"-from-"

4_ ,,

o..

starting value of first index

_-to-''

ending value of first index

,,_,,

name of second index: "k" or 'T'

"-from-"

startingvalueof second index

'6_to_''

ending valueof the second index

0. -z-cent= 0.

-z-semi= 500. -j-from-

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

The points on a face, or on a section of a face, may be constrained to lie on the surface of an

ellipsoid. A sphere, of course, is a special case of an ellipsoid. The center of the ellipsoid may lie any-

where, and that location is given on the first line. The ellipsoid must, however, have its semi-axes parallel

with the coordinate axes. The shape of the ellipsoid is defined by the length of the semi-axes. The length

of the semi-axis in the x-direction, i.e., the distance from the center to the surface measured in the x-

direction, is given in columns 11-22 of the second line. The other semi-axes are given similarly.

A problem arises when the initial conditions for points on the ellipsoid are too far from what

should be their location in the converged solution. This problem can cause the grid solution to diverge.

The solution to this problem is to require, because of programming constraints, that (1) only even-

numbered faces be ellipsoids, and (2) the opposing odd-numbered face be of the "read-in-fixed" type.

Given this situation, the initial conditions on the ellipsoid are found by striking a line from the center of the

45

ellipsoidthrougheachpointon the"read-in-fixed"face,andlocatingthecorrespondingpoint on the
ellipsoidat theplacewherethatlinepiercesit.

Theextrapolationof pointsontotheellipsoid,duringthegrid-generationsolutionprocess,isdone
by asimplelinearextrapolationfrom thetwopointsnearesttheellipsoid.

21. The "collapsed-to-an-axis" lines

Line

no.:

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

Field

no.:

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

Column

nos:

1-13

14

15-25

26

27

28-39

40-43

44

45

46-57

58

59

60-66

1-13

14-16

17-20

21-23

Datum

type:

k

C

k

C

k

f

k

C

k

f

k

C

k

k

i

k

i

Description:

"collapsed-to-"

name of the axis: "x" or "y" or "z"

"-axis-from-"

name of the axis: "x" or "y" or"z"

m

starting value on the axis

¢__to __

name of the axis: "x" or "y" or "z"

ending value on the axis

name of index along axis: "j" or "k" or 'T'

"-along-"

"...axis-from-"

starting value of the index along axis

¢__to _'_

ending value of the index along axis

46

2

2

2

2

2

2

5 24

6 25

7 26-38

8 39-41

9 42-45

10 46-48

collapsed-to-x-axis-from-x =

k

c

k

i

k

i

0.

_& ,,

name of index around axis: "j" or "k" or "1"

"-around-from-"

starting value of index around axis

_-tO-"

ending value of index around axis

-to-x= -400. -k-along-

...axis-from-OO2-to-O31-1-around-from-OOl-to-022

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

Certain topologies, such as spherical or cylindrical grids, give rise to the need for a face, or a sec-

tion of a face, to be collapsed to an axis. This input option allows that treatment. Note that the points on

the axis are found by extrapolating to the axis, and so the distribution of points on the axis is that which

results from the elliptic solution. Elliptic grids tend to be uniformly distributed, absent the effect of control

terms. Thus the distribution of points on faces collapsed to axes tends to be uniform.

As faces collapsed to axes have many coincident points, control terms should not be activated

thereon.

The axis values given here are used only for locating the initial conditions. Thus great precision is

not required.

The starting and ending values of the indices should be given in increasing order, i.e., the ending

values should be larger than the starting values. This sometimes means that the corresponding starting and

ending values on the axis must be given in decreasing order, i.e., with the ending values less then the

starting values. That is acceptable.

22. The collapsed-to-a-point lines

Line

no.:

Field

no.:

1

2

Column

nos:

1-21

22-33

Datum

t_e:

k

Description:

"collapsed-to-point-x="

x-coordinate of the point

47

1

1

2

2

2

2

2

2

2

2

2

2

2

2

collapsed-to-point-x=

3

4

5

6

7

1

2

3

4

5

6

7

8

9

10

11

12

34-36

37-48

49-51

52-63

64-69

1-3

4

5-10

11-13

14-17

18-20

21

22

23-28

28-31

32-35

36-38

750. -with-

k

f

k

f

k

k

C

k

i

k

i

k

C

k

i

k

i

--y=

...j-from-OOl-to-OOl-l-from-OOl-to-022

,,_y=,,

y-coordinate of the point

_ Z-. '_

z-coordinate of the point

"-with-"

...

name of first index: "j" or "k"

"-from-"

starting value of f'trst index

__to __

ending value of first index

,,.,,

name of second index: "k" or "1"

"-from-"

starting value of second index

_-to'''

ending value of second index

O. -z= O.

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

Because all points on this section are coincident, control must not be activated here.

48

23. The "match-to-face" lines

Line

no.:

Field

no.:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

Column

nos:

1-14

15

16-22

23 -24

25-30

31

32-37

38-40

41-44

45-47

48-53

54

55-60

61-63

64-67

68-70

1-9

10

11-16

17-19

Datum

t_e:

k

i

k

i

k

C

k

i

k

i

k

C

k

i

k

i

k

C

k

i

Description:

"match-to-face-"

face number of other face

"-block-"

block number of other face

"-this-"

name of first index on this face: "j" or "k"

"-from-"

starting value of first index on this face

ending value of first index on this face

"-this-"

name of second index on this face: "k" or 'T'

"-from-"

starting value of second index on this face

''-to-''

ending value of second index on this face

"...-that-"

first index on that face: "j" or "k" or 'T'

"-from-"

starting value of first index on that face

49

5

6

7

8

9

10

11

12

20-23

24-26

27-32

33

34-39

40-42

43-46

47-49

k

i

k

C

k

i

k

i

"-tO-"

ending value of first index on that face

"-that-"

second index on that face: "j" or "k" or 'T'

"-from-"

starting value of second index on that face

'_-to'"

ending value of second index on that face

match-to-face-l-block-02-this-k-from-002-to-031-this-l-from-001-to-022

...-that-k-from-002-to-031-that-l-from-001-to-022

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

This boundary treatment allows this section of this face to be matched to (1) any other section of

this face, or (2) any section of another face of this block, or (3) any section of any face of any other block.

That match will produce a block-to-block type boundary where the surface floats with the solution of the

grid-generation equations. Grid line slope and spacing will be continuous across this surface. Note that

this surface is double-stored, i.e., it exists in memory identically as part of both coincident faces.

The range of indices defining "this" section must match with the range of indices defining "that"

section. Note that while the first index on "this" face must be j or k and its second index must be k or 1,

any index could be the first index on "that" face and any other index could be its second index. The start-

ing and ending values on "this" face must be given in increasing fashion, i.e., the ending values must be

greater than the starting values. But the corresponding indices on "that" face may run in whatever direction

is appropriate. Note that the information given here must essentially be given twice--once here in these

input lines describing "this" face of "this" block, and also in the input lines describing "that" face of "that"
block.

The initial conditions on this section of this face are nonsense, and should not be plotted.

C. FILEII - BODY DEFINITION ARRAYS

It was stated in the previous section that during its input phase 3DGRAPE reads through file 10

until it encounters a "read-in-fixed" input line. At that point it suspends reading from file 10 and begins

reading the fixed surface from filel 1. When it is finished reading that fixed surface from filel 1, it returns

to reading from filel0. This cycle will be repeated as many times as there are "read-in-fixed" input lines.

50

Thusf'del1mustcontainx,y,zcoordinatesof as many fixed surfaces as there are "read-in-fixed" input
lines.

For each fixed-surface read from file11, it must contain: (1) a header line introducing the

x-coordinates, (2) the x-coordinates, (3) a header line introducing the y-coordinates, (4) the y-coordinates,

(5) a header line introducing the z-coordinates, and (6) the z-coordinates. No intervening blank lines are

allowed. This cycle of six should be repeated for each fixed surface.

The header lines introducing the coordinates are of the form:

Line

no.:

Field

no.:

1

2

3

4

5

6

7

8

Column

nos:

1-9

10

11-23

24-25

26-34

35

36-45

46-47

Datum

type:

k

C

k

i

k

i

k

i

Description:

"complete-"

name of coordinate: "x" or "y" or "z"

"-for-section-"

section number

"-of-face-"

face number

"-of-block-"

block number

complete-x-for-section-Ol-of-face-3-of-block-Ol

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

The actual x- or y- or z-coordinates begin on the line immediately following their header. They are

read in 6F12.0 format (which means that the placement of the decimal point is at the user's discretion).

That format is repeated for subsequent lines as many times as needed. The points should be ordered with

the first subscript (see the "read-in-fixed" line in f'del0, described in Section B, Subsection 17) varying

most rapidly as the "inner loop," and the second subscript varying most slowly as the "outer loop."

D. FILE16 - CONTROL SCALARS FOR RESTART

3DGRAPE has a restart capability. The user can let the grid generator run a while, examine the

resulting grid, change some things, and then run it some more. A restart capability is simple in concept,

51

butdifficult to program.It is not trivial to decidewhatshouldberesetto its startingvalue,whatshouldbe
continuedasat theendof thepreviousrun,andwhattheusershouldbeallowedto change.

Ifa runof 3DGRAPEis to berestarted,theFast requirement is that a restart file be written as fde15

by the starting run. This is done by placing a "ye" in columns 19-20 of the "write-for-restart" input line in

filel0. This restart file, filel5, is not the same as the main grid output fde, filel4. The restart file is much

larger, since it must contain not only the x,y,z of the grid, but also other data, including the current values
of the RHS terms. For the restart run, this file is rewound and read in as filel7.

3DGRAPE restarts by reading the first two input lines, as described in Section A of this Chapter,

from either the terminal in the case of an interactive computer system or the main job input stream in the

case of a batch system. It then reads a file of input scalars, called filel6, which is very similar to filel0. It

was intended for users to create their filel6 by copying, renaming, and modifying filel0.

Input parameters can be keep the same by simply not modifying them in filel6 after the copy

operation. Some variables must always remain unchanged, and to effect that the input lines which might

have changed them must be removed. An example of this is the dimension sizes of the blocks. Storage is

allocated based upon those sizes; to change them at a restart would result in chaos.

But there are many things which may be modified at a restart. The iteration schedule may be

completely rewritten. File names may be changed. Although whether control is activated at a certain face

may not be changed, the requested cell height and all other parameters on the "face" input line may be

changed. The global switch activating or deactivating all control terms may be used. The number of sec-

tions into which a face is divided, and the index limits which determine the sizes of those sections, may be

changed. The treatments specified for locating boundary points may be changed. Although this author is

confident that the particular operations the restart capability offers are programmed correctly, it is impos-

sible to exhaustively predict the effects of all possible combinations of them in operation. The philosophy

here is to "give [the user] enough rope to hang himself." Caveat emptor.

The following table lists the input lines in filel6. As compared to filel0, one new line has been

added and it is described. One line has been modified, and it is described. An example ofa filel6 can be

seen in the chapter on the fast example problem.

Input line(s):

"run-comment"

Its (their) disposition in file l6:

These two lines are read in, and their contents will overwrite the
stored run comment.

This is a new type of input line. See below.

This line is a modification of what was the "number-

of-blocks" line in filel0. See below. It is not permitted that the

number of blocks change in a restart.

52

"iterations"

"fflename-11"

"relaxation-param"

"block-comment"

"dimension"

"handedness"

"polar-axis"

"face"

"norm/sect"

"lighten/tighten"

"lighten-at"

"tighten-at"

This line is (theselinesare)readandusedjust asin filel0. It (they)
maybechanged.

This line is readandusedjust asin filel0. Thefile11 nameor its
contentsmaybechanged.

This line is readandusedjust asin filel0. It maybechanged.

This line is readandusedasin filel0. But therestartfile whichthis
input linewill causeto bewrittenwill be for afurtherrestart,
subsequentto thisrestartrun.Thusthefilenameshouldbedifferent
thanis usedfor thisrun's filel7.

This line is read and used just as in filel0. It may be changed.

This line is read and used just as in filel0. It may be changed.

This line should be removed from filel6. No data on it are permitted

to change.

This line should be removed from filel6. No data on it are permitted

to change.

This line should be removed from filel6. No data on it are permitted

to change.

This line is read and used as in filel0. But there must not be any
modification of whether the control is activated on this face. See the

"normal" parameter. Storage is allocated based upon which faces

have active control; chaos would result from adding to or deleting

from this collection of faces. However, it is permitted to vary the

specified height of cells on faces with active control. It is permitted

to change the other parameters on this line.

This line is read and used just as in filel0. It may be added, deleted,

or changed as appropriate.

This line is read and used just as in file10. It may be added, deleted,

or changed as appropriate.

This line is read and used just as in filel0. It may be added, deleted,

or changed as appropriate.

This line is read and used just as in filel0. It may be added, deleted,

or changed as appropriate.

53

"mad-in-fLxed"

"plane-normal-to"

"cylinder-about"

"ellipsoid"

"collapsed-to-an-axis"

"coUapsed-to-a-point"

"match-to-face"

This line is readandusedjust asin file10. It maybechanged.The
boundarypointsfor this facewill berereadfrom filel 1asbefore.
Thustheactualpointson theboundaryfacemaybechangedby
modifying filel 1.

Theselinesarereadandusedjust asm file10. Theymaybe
changed.

Theselinesarereadandusedjust asm filel0. Theymaybe
changed.

Theselinesarereadandusedjust asin file10.Theymaybe
changed.

Theselinesarereadandusedjust asm filelO. Theymaybe
changed.

Theselinesarereadandusedjust asm filel0. Theymaybe
changed.

Theselinesarereadandusedjust asm file10.Theymaybe
changed.

Thenew"filename-17"line is asdescribedbelow:

Line

no.:

Field

no.:

1

2

Column

nos:

1-18

19-33

filename-17-input=restartexl

Datum

type:

k

Description:

"filename- 17-input="

filename for restart file to be read

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

The "number-of-parts" line, a modification of what is the "number-of- blocks" line in filel0, is as
described below:

54

Line

no.:

Field

no.:

1

2

Column

nos:

1-38

39-40

Datum

type:

k

Description:

"number-of-parts-in-iteration-schedule="

number of parts in the iteration schedule

number-of-parts-in-iteration-schedule=02

1234567890123456789012345678901234567890123456789012345678901234567890

0000000001111111111222222222233333333334444444444555555555566666666667

55

V. RUNNING 3DGRAPE AND EVALUATING ITS OUTPUT

A. A "GAME PLAN" FOR RUNNING 3DGRAPE

There is in all users, it seems, a tendency to want to leap immediately to the finished grid. But wise

users will save time in the long run by pursuing their goals in steps. These steps constitute a game plan for

running 3DGRAPE, and its use is most strongly recommended for all users at all times. These steps are

. Set the desired number of iterations to zero. See the "iterations" input line in file10. This will cause

3DGRAPE to simply write out the initial conditions in filel4 as though it were a finished grid.

This initial condition grid should be examined using 3-D graphics to ascertain that the user's read-

in-fixed boundary data have been entered correctly. All faces having points constrained to lie on

cylinders, ellipsoids, and lines, and collapsed to a point should be similarly checked. Some

representative interior surfaces should be plotted to see whether the initial conditions inside the

blocks axe being done fight.

Where faces have their points constrained to lie on planes, those points should lie on those planes.

But there is no guarantee that the distribution of those points on those planes will be reasonable in

the initial conditions. The distribution of points on those faces will probably be nonsense. Thus

examination of such faces in the initial condition grid should be done with caution. For similar

reasons, little credence should be given to "match-to-face" type faces in the initial condition grid.

Sample input for this zero iteration run:

number-of-blocks=O3-number-of-parts-in-iteration-schedule=Ol

iterations=OOO-control=no-coarse/fine=coarse

In this sample input, the coarse/fine parameter is ignored since no iterations are performed.

. Next, the user should obtain a converged Laplacian solution. This will validate all of the the

boundary treatments, a very desirable thing to have done when later debugging the case with

control activated. A Laplacian solution may be obtained by simply turning the global switch off in

columns 24-25 of the "iterations" input line(s). Sample input for this Laplacian solution:

number-of-blocks=O3-number-of-parts-in-iteration-schedule=02

iterations=lOO-control=no-coarse/fine=coarse

iterations=O20-control=no-coarse/fine=fine

Note that this sample input will exercise the coarse/fine procedure. The Laplacian grid should be

thoroughly examined using interactive graphics.

. Finally, the user should obtain the controlled solution. The following is sample input for that

purpose:

number-of-blocks=O3-number-of-parts-in-iteration-schedule=03

56

iterations=O20-control=no-coarse/fine=coarse
iterations=150-control=ye-coarse/fine=coarse
iterations=O75-control=ye-coarse/fine=fine.

The first part in this sample, 20 iterations with no control, is for the purpose of letting the initial

conditions, which are pretty strange for some boundary treatments, become reasonable before the

control terms are activated. If the control terms are suddenly activated on a grid which is not yet

somewhat reasonable, instability can result.

In the sample input, above, control terms are turned on for 150 more coarse steps in the second

part, which will hopefully yield a converged controlled solution over the coarse grid. The third

iteration step causes that coarse solution to be interpolated and smoothed.

The above sample input is not binding. The user may tailor the iteration count, the use or nonuse

of the coarse/fine procedure, the use or nonuse of the restart capability, etc., to any particular problem.

For difficult cases the final controlled solution might even be obtained in a series of steps. See the

discussion of guidelines for that purpose in the final three paragraphs of subsection 12 in Chapter IV, the

discussion of the "face" input line. Eugene Tu (private communication), Ames, reports that smaller values

of cell height and smaller values of the abc parameter can be achieved by a series of restarts, than by

starting initially with the desired values.

B. READING THE PRINTOUT

This author would have liked to include in this manual a sample printout, but its length made that

impossible. The printout for Example 1, the simulated helicopter fuselage case, would have required

26 pages in this form. But an attempt will be made here to describe that printout. (In the case of an

interactive computer system, these are the data which will appear on standard output, whether they come

up on a screen or are redirected to a file.)

First on the printout are the prompts for the first two lines of input, as described in Chapter IV,

along with the user's responses. Next is a banner which gives the name of the program (3DGRAPE), this

author's name and address, and the run-comment information from the first two lines of input in filel0 (or

file 16 in the case of a restart). Following that is a listing of the remainder of filel0 (or file 16), double

spaced, with line numbers. Notation is made when data are read from file 11.

Next in the printout is a simple trace of the iteration count, consisting of one line per iteration. If

the program blows up from lack of adequate CPU time, this trace can be easily used to calculate how

much time was required.

Next are convergence histories for each of the blocks, in turn. The header introducing each history

gives the information from the appropriate block-comment input line. Each history lists five pieces of data
for each iteration:

57

o The iteration count--this should simply increase to the required number, which is the sum of the

iterations specified on the "iterations" input lines. These numbers are cumulative over all new starts

and restarts. A mmcation of this series indicates that the program sensed that the solution was

blowing up.

2, Maxmovemthe greatest distance moved by any point in this block during this iteration. This datum

might rise at the start of each part in the iteration schedule, but it should eventually decay toward
zero.

o Avemove--the average of the distances moved by all moving points in this block during this

iteration. This datum also might rise at the start of each part in the iteration schedule, but it also

should eventually decay toward zero. Avemove should be significantly (typically two or more

orders of magnitude) less than Maxmove.

o Pqrmax--the maximum absolute value of any RHS term. This datum should not decay to zero.

Instead, it should increase and then level off to a constant value.

o Pqrcor--the maximum absolute value of the correction on any RHS term. This datum should

decay toward zero, and be significantly less than Pqrmax.

The printout concludes with a notation of the output and restart files which have been written.

Figure 9 shows plots of the convergence history for block 2 of Example 1, the simulated helicopter

fuselage. This case was run using the f'flel0 input data shown in Appendix A, filel 1 input data generated

by the program shown in Appendix B, and filel6 (restart) input data shown in Appendix C. Note from the

input data that breaks between parts in the iteration schedule occur at 20 iterations and at 170 iterations,

and that the restart run begins after 245 iterations. All plotted functions jump upward at 20 and 170

iterations. A jump occurs at 20 iterations because it is there that the RHS terms are "turned on," and at 170

iterations because there the coarse solution is interpolated and iteration begins on the fine grid. At 245

iterations, the start of the restart run, no jump occurs. This indicates that the restart is done correctly. Note

in figure 9a that Avemove is everywhere less than Maxmove, and that they both tend toward zero at the

right end. For the average movement of all points in that block to be reduced to less than 0.1 unit is

commendable in view of the fact that that zone has a cylindrical outer boundary 1000 units in diameter.

Note in figure 9b that for the first 20 iterations there are no values given for Pqrmax or Pqrcor, since for

those iterations the global switch of control terms is turned off. The Pqrmax curve flattens out to a

constant but nonzero value toward the right end. Pqrcor is reduced to a value two and one-half orders of

magnitude smaller than Pqrmax, indicating that the program has found the RHS terms which will yield

the desired grid behavior at the boundary. This figure shows typical behavior of these functions in a
successful run of 3DGRAPE.

3DGRAPE has no facility for creating such a plot. But this author found it a straightforward matter

to write a program to literally read the numbers off the printout file and plot them. Creation and use of

such a utility is highly recommended.

58

I-
Z
tel
1[
uJ
>
0
:E

Z

LL
Q

ul
a

<

10.0

1.0

0 50 100 150 200 250 300

ITERATION COUNT

(a) Maxmove and Avemove, the magnitude of point movement.

m
14,1
I,-

P:,
uJ

Z
CO
<
I[

10.0

1.0

10-1

10-2

10-3

10--4

10-5

0 50 100 150 200 250
ITERATION COUNT

PQRMAX

......... PQRCOR

f

................ i,'-.................................... ;

300

(b) Pqrmax and Pqrcor, the magnitude of RHS terms.

Figure 9.- Convergence history for block 2 of Example 1.

C. WHAT TO DO IF THE PROGRAM "BLOWS UP"

A program is said to blow up if it fails to run to completion--if it fails in some catastrophic way.

The first way in which 3DGRAPE might blow up is while it reads the input. If a bad input line is

encountered in filel0 (or file16 in the case of a restart) or in file11, it will print that line, then in most cases

it will print an error message, and then it will quit. Debugging a lengthy input might require fixing many

small bugs, and thus require many short runs. For that reason, it was found very convenient to port the

program to the IRIS workstation and run it there. Once the input is correct, it and the program are shipped

to a more powerful computer for "number-crunching." To correct an error in an input line, refer to the

description of that input line in Chapter IV.

59

The next reason 3DGRAPE might blow up is because it runs out of CPU time. The amount of

computer time required is dependent upon many factors, including which computer is being used, the

number of mesh points, whether spherical topology is used, whether the coarse-fine procedure is used,

how strong the required clustering is, etc. It is very difficult to predict how much CPU time a grid will

require, but one example can be given. Example 1, the simulated helicopter fuselage case, calculated on

the basis of each coarse iteration counting as 1/27th of a fine iteration, required 0.00002 sec of CPU time

per fine iteration per point on a CRAY X/MP.

As stated above, the printout gives a simple trace of the iteration count, printing one line at the

conclusion of each iteration. Using this trace, the user whose run ran out of time can easily calculate how
much more time would be needed.

3DGRAPE could blow up during the Laplacian solution (see the game plan, above). The symptom

of that failure will be Maxmove and Avemove increasing without bound. In this case the input is probably

syntactically correct but conceptually wrong. By looking at a zero-iteration solution, or at a Laplacian

solution with the iteration count reduced so that it quits before it blows up, the user will probably see that

some boundary treatment is wrong. It is very rare for 3DGRAPE to be unable to generate a Laplacian grid

with correct boundary treatments.

Last, 3DGRAPE can blow up while generating the controlled grid solution. If it blows up on the

first step which has control turned on, it is probably in the calculation of the RHS terms. Such a failure is

usually the result of having two read-in-fixed boundary points being coincident. Such a situation requires

division by zero.

If 3DGRAPE begins iterating with control turned on, and then Maxmove and Avemove increase

without bound and cause it to blow up, the user should refer to the discussion of guidelines for difficult

cases in the final three paragraphs of subsection 12 in Chapter IV.

Sometimes 3DGRAPE will run to completion and generate a grid, but graphical examination will

reveal that the grid is obviously not suitable. The user should check the the discussion of guidelines for

difficult cases discussed in subsection 12 of Chapter IV, and the "handedness" should also be checked.

The user who can't be sure of the handedness can simply reverse it and try again.

60

VI. EXAMPLE 1: GRID ABOUT A SIMULATED HELICOPTER FUSELAGE

Example 1 is referred to as a grid about a helicopter fuselage, but in reality the body is a highly

simplified analytic shape which bears some vague resemblance to a helicopter fuselage. It does, however,

share the same topology as that which might be used for a helicopter fuselage. Thus the input to

3DGRAPE for this case is very similar to what might be used for an actual helicopter fuselage. This

simplified shape has the advantage of requiring a small and simple program to generate it, a program

which can and does appear in an appendix. This is in opposition to a real helicopter shape which would

require sophisticated surface-fitting software, possibly run in an interactive mode, etc. This case has the

added advantage of exercising most of the options in 3DGRAPE, making it a valuable example.

The surface grid about this body is shown in Figure 10a. It consists of a hemisphere followed by a

cylinder followed by a cone followed by an axis. As in many aerodynamic applications bilateral symmetry

is assumed, and thus only one side (the fight side) is gridded. These body points are generated by simple

analytic means, implemented in the FORTRAN program listed in Appendix B. They are written out in
filel 1 form.

Those same body points are also written out in filel4 form, the form of the finished grid, with one

point in the radial direction. The data in this form can be viewed using the same graphics software (not

supplied as part of 3DGRAPE) as is used to view the finished grid. Thus the body can be checked

visually.

Appendix A lists the f'tlel0 input data for this case. It can be seen from this input data, and from

Figure 10b, that the grid is generated using three blocks---one for the hemispherical nose cap, one about

the cylinder and cone, and one about the axis behind. The region near the nose of the fuselage had to be

done with the spherical coordinate option because of the presence of a spherical axis. See the

"handedness" line for block 1. But it is not recommended that an entire grid be done needlessly with that

option; the spherical coordinate option should only be used near the axis. Thus a block boundary was

placed at the aft end of the nose cap, at the start of the cylinder.

(a) Fuselage.

Figure 10.-Example 1: grid about analytic shape resembling helicopter fuselage.

61

<-BLOCK 3_I_, BLOCK 2,

(b) Block structure.

Figure 10.- Continued

The second block boundary at the aft end of the cone, at the start of the axis behind, was made

necessary by the fact that control was desired on the surface of the fuselage back to the end of the cone,

but control was neither desired nor possible on the axis. Since control must be exercised or not on a face-

by-face basis, those two regions had to be two different faces. Hence the block boundary and a total of

three blocks.

It is this file10 from which most of the examples of input lines in Chapter IV were taken. The

iteration schedule, in particular, was discussed there. For all blocks the "initcond" parameter on the

"handedness" line is set to "k," since that is the index which proceeds from the body to the outer bound-

ary. No other choice for that parameter would make any sense. Note on the "polar-axis" line for block 1

that the approximate center is given as 100. Since in this case the nose of the body was chosen to be at the

origin of the coordinate system, and the hemisphere has a radius of 100 units, the actual geometric center

of the hemisphere is at x=100.

In Chapter III, section B, it was stated that the user has the freedom to choose how the indicies

run, but once that choice is made the numbering of the faces is set by 3DGRAPE. In every block of this

example, the first index, j, has been chosen to run back along the body; that means that in every block face

1 is at the upstream end (the axis for block 1), and face 2 is at the downstream end. The second index, k,

has been chosen to run from the body to the outer boundary, so face 3 is the body and face 4 is the outer

boundary for all blocks. This leaves the third index, 1, to go around, here from lower symmetry plane to

upper symmetry plane. Thus face 5 is the lower symmetry plane and face 6 is the upper symmetry plane.

62

All of thedimensionsizesused--19,31,and22 in blocks 1and3, and34,31,and22 in
block 2--are of theform 3n+l for n anintegergreaterthanor equalto 4. Thusthecoarse/finespeedup
procedurecanbeused.

The"face" input linesshowthatonly on thebody,i.e.,only on face3 of blocks 1and2,is control
activated.It isactivatedthereby settingthe"normal" parameterto 2.0.In thediscussionof the"face"
input line (Subsection12,SectionB, ChapterIV) two guidelinesweregivento helptheuserspredict
whetherthecasewill work.Thefirstwasacomparisonof the"normal" parameterto theuniform spacing
alonglinesnormalto boundaries.In thiscasethebodyhasaradiusof 50units,theouterboundaryhasa
radiusof 500units,givinga nominaldistancebetweenof 450units.Thedimensionsizeon k is 31,giving
30intervals,andauniformspacingof 15units.Theguidelineappliedindicatesthatthe"normal"
parametershouldlie between1.5and7. It does,andthecaseworks.

Thesecondguidelinecalledfor acomputationof therequestedaspectratioof thegrid cellson the
body.In thiscasethelongestcellson thebodyarefoundon thecylinderpart,andare18.8unitslong.A
cell heightof 2.0units,asrequestedby the"normal" parameter,givesanaspectratioof 9.4.This is
within theguidelinelimits of 1and10.Thereadershouldrealize,of course,thattheseguidelinesareonly
for thepurposeof helpinggetstartedwith eachcase.The"normal" parametercouldbereducedgreatlyif
this is desired.

All sevenof thetreatmentsfor locatingboundarypointsarefoundin thisexample--the"read-in-
fixed" treatment,the"plane-normal-to"treatment,the"cylinder-about"treatment,the"ellipsoid" treat-
ment,the"collapsed-to-an-axis"treatment,the"collapsed-to-a-point"treatment,andthe"match-to-face"
treatment.

Theconvergencehistory for block 2of this casewasshownin Figure9. It isdifficult to predict
apriori how manyiterationswill beneededto convergeacase.Theconvergencehistoryshowsthatthis
casewasprobablyrun longerthannecessary.Seventy-fiveor 100iterationswouldprobablyhavesufficed
for parts(of theiterationschedule)oneandtwo,andpartthreewouldhavebeenadequatewithout the
restart.Theseobservationsaremadeby simplylooking atthecurvesandseeingwheretheyflattenout.
TherestartwasaccomplishedusingtheKlel6 inputdatain AppendixC.

Thefinishedgrid is shownin Figures10c through 10e. It consists of 49,104 points, summed over

all three blocks. The grid generation required 103 sec of CPU time on a CRAY X/MP, plus another

24 sec to compile and link 3DGRAPE.

63

(c) Fuselage,symmetryplane,andselectedconstant-jsurfaces.

(d) Closeview of intersectionof uppersymmetryplane,fuselagein cylindrical region,andconstant-j
surface.

Figure10.- Continued

64

Figure 10e.- Composite view of entire grid.

Figure 10.- Concluded

65

VII. EXAMPLE 2: C-O TYPE GRID ABOUT A WING

Example 2 is a grid about an isolated wing, from a symmetry plane out toward and beyond the tip.

The wing has an NACA 0012 airfoil section and a rectangular planform with a 4:1 aspect ratio. The wing

is at 5" angle of attack. A flat sheet extends rearward from the wing for five chord lengths. The wing and

sheet are shown in figure 1 la.

The grid about it is of the C-O type. This nomenclature means that if one were to look at a slice of

the grid, taken normal to the span direction, the grid in that slice would be of the C type. If one were to

imagine the entire grid reflected about the symmetry plane, giving a grid covering both sides of the wing,

and look at a slice of the grid taken normal to the free stream, the grid in that slice would wrap all the way

around the wing from tip to tip and back, and thus be of the O type.

Another way to imagine this topology is to fin'st envision a C-type grid about a wing with a sheet

behind it (C-type if viewed looking along the span). Assume that grid is chopped off neatly at the tip, pro-

ducing a C-type grid in the end plane. Then take that end-plane surface, and scribe a line on it running

along the outboard edge of the nailing sheet, along the tip, and proceeding forward. Then fold that end

plane about the scribed line as though the line were a hinge. Fold both top and bottom halves of the end

plane outward until they meet in a horizontal plane. There is no one ideal topology for grids about wings.

But this C-O topology promises to be better able to treat blunt leading edges, along with tips which are

rounded at the front, than are some other topologies. Its principal virtue here is that it exercises many of

the options in 3DGRAPE.

As an elliptic method, 3DGRAPE requires initial conditions. This is especially true of floating

boundaries. The main solver in 3DGRAPE which finds points in the interiors of the blocks is extremely

robust, but the extrapolation from interior points to boundaries remains problematical. If reasonable initial

conditions are not found for those floating boundaries, instability can result, giving a grid which looks like

(a) Wing and sheet behind, viewed from root end. NACA 0012 airfoil section, rectangular planform, 4:1

aspect ratio, 5* angle of attack.

Figure 11.- Example 2: C-O type grid about isolated wing.

66

anexplosionin aspaghettifactory.But adilemmaappearsin thatthebetterableaprogramis to make
thoseinitial conditions,themoreinputdatait requires.An exampleof this is the"cylinder-about"input
lines.Of the 14input parameterson thosethreelines(ignoringkeywords),sevenareusedonly in setting
theinitial conditions.If thewriter of suchaprogramis notcareful,thesupplyingof suchinput datacan
becomearealburdenon theuser.Therefore,anysuchprogramis atradeoffbetweenburdensomeinput
andinstability.

For thereasonssetforth in thepreviousparagraph,thisexamplecasewasdifficult. Findingthe
controltermsandconvergingto afinal grid solutionwastheeasypart;gettingareasonable-lookingcon-
vergedLaplaciansolutionprior to thatwashard.Theobviousouterboundarytreatmentfor this topology
isanellipsoid.But asmentionedin apreviouschapter,finding initial conditionsonellipsoidalboundaries
hasprovento beaproblem.Themethodgivenfor locatingthoseouterboundarypointsinvolvesplacing
thecenterof theellipsoidsuchthatrayscanemanatefrom thatcenter,passthroughthe"inner boundary"
points,piercetheellipsoid,andthusgivetheinitial locationsfor theouterboundarypoints.For outer
boundarypointsconnectedby grid linesto thewing, thisworkedasexpected.But theinnerboundary
pointson thesheetwereunusablein thisway;all suchrayswouldhavebeenin aplaneandwouldhave
piercedtheellipsoidin a line. Soanothermethodhadto be foundfor locatingouterboundarypointscon-
nectedby grid linesto thesheet.

Thisalternatemethodwasto breakthegridinto threeblocks--number1belowthesheet,num-
ber2 wrappingaroundthewing, andnumber3abovethesheet(seefig. 11b). Thegivenmethodworked
for theellipsoidalouterboundaryin block2. But for blocks 1and3, theouterboundarywassetto bea
cylinder.Theproportionsof theellipsoidin block2 werealteredsothatit wascircular in they-z (span-
vertical)plane,andthusit matchedthecircularshapeof thecylinderattheirjuncture.A first run wasmade
in thisway,usingfilel0 inputdatashownin AppendixD.

.._..---BLOCK 3 -_--......_/_

1"---2.,

(b) Wing viewed from tip end with symmetry plane, showing block structure.

Figure 11 .- Continued

67

Thegrid generationwasthenrestartedusingfilel6 input datashownin AppendixF.Thedesired
ellipsoidalouterboundarytreatmentwasspecifiedfor all threeblocks.At thesametimetheproportionsof
theellipsoidwerechangedbackto therathereccentricvaluesoriginallydesired,reducingits heightfrom
20chordlengthsto 10.This meansthattheouterboundarywassuddenlybroughtinsidea largenumber
of theinterior grid points.This representsaratherextremeuseof therestartfacility, andshowshow
powerfulit canbe.Thefact thatthesolverdid notblow upin responseto sucha shockillustratesthatit is
robust.

In a fashion similar to the outer boundary treatment, and for the same reasons, the points on the

symmetry plane boundary were constrained to lie coincidently on several points during the first run, and

then were released to be on a "plane-normal-to" for the restart. The finished symmetry plane grid is seen in

figure 1 lb.

Later in the restart run, a part in the iteration schedule turned control "on," and caused the genera-

tion of the RHS terms. The required cell height and near-orthogonality on the wing and sheet resulted (see

figs. 1 lc-e).

This example includes a rather ambitious use of the "match-to-face" boundary treatment. Face 4 of

block 2 is that end plane surface which is folded over on itself. It is divided into two sections, and the two

sections match each other. Another option seen in this case, but not in the previous example, is specifying

the desired cell height as a piecewise continuous linear function of an index. This is done in face 5 of

blocks 1 and 3. A height of 0.04 unit was requested normal to the sheet at the outflow boundary, and

0.02 unit at the trailing edge.

A close examination of this grid will reveal two areas having problems: in the vicinity of the tip at

the leading edge, and along the outboard edge of the sheet. For that reason, this grid could not be used

exactly as it is in a flow-solver. Those problems are most likely due to the crude body-fitting done by the

program in Appendix E. A more sophisticated body-fitting would probably have eliminated the problems,

but such a body- fitting program would have been beyond the scope of what could be reproduced in an

Appendix. Regardless of those small problem areas, this case does converge, as seen in the plot of the

convergence history for block 1 in figures l lf and l lg.

This grid consists of 67,650 points, and required 246 sec of CPU time on a CRAY X/MP. A per-

formance monitor on the X/MP reported that this run, in its entirety (including I/O, setup, etc.), ran at
64.1 MFLOPS.

68

(c) Wing viewedfrom tip end,with constant-ksurfacecuttingwing, andplanformsurface.

(d) Close-upview of wingtipwith constant-ksurfacecuttingwing.Grid cellson wing surfaceareof
constantheightandarelocallyorthogonal.

Figure11.- Continued

69

(e) Outboard rear quarter view, showing ellipsoidal outer boundary and outflow boundary plane.

I- 100.0
z
I,M

=Z

_> 10.0-
O

i-
z 1.0-
i
O
_L

tL

O .1
uJ

I- .01

_ .001

MAXMOVE

_ AVEMOVE

r

0 100 200 400

ITERATION COUNT

51)0

(f) Convergence history for block 1 of example two-Maxmove and Avemove, the magnitude of point
movement.

Figure 11.- Continued

70

104.

m_103,

10 2 .

r¢-

_ 10.

_ 1.

10-1.

10-2. __

.......... PQRCOR i ___

..........--i.............................'iI.....................F.......................

100 200 300 400 500

ITE RATION COUNT

(g) Convergence history for block 1 of example two-Pqrmax and Pqrcor, the magnitude of RHS terms.

Figure 11.- Concluded

71

VIII. EXAMPLE 3: H-H TYPE GRID ABOUT A WING

Chapter HI discussed a problem which can arise in making a grid of the H-H type about a wing.

The problem is the distribution of points in the planform surface. A close examination of figure 4 will

reveal that the spacing in the streamwise direction on the wing near the leading edge is fine, as would be

expected, but the spacing just upstream of the leading edge is coarse. A discontinuity in spacing should be

avoided, but it is especially a problem near the leading edge where flow gradients are steep. Chapter III

suggested a solution to this problem which uses 3DGRAPE twice. That approach is illustrated in this

example.

The wing is the same one used in the previous example. A small program, listed in Appendix H,

writes that wing in a temporary f'de to be read by a later program. It also identifies the perimeter of the

wing, replicates it five times with different vertical biases, producing a vertical wall, and writes that wall in

filel 1 format for a first run of 3DGRAPE. The wing and its wall are shown in figure 12a. The file10 for

that run is given in Appendix I. This problem required a topology of five blocks: one directly upstream of

the wing, one directly downstream, one directly outboard, one outboard and upstream, and one outboard

and downstream. On the three faces consisting of the wall, control was activated giving the desired control

of spacing around the perimeter of the wing. The third (of five) horizontal surface of that finished grid was

extracted for use as the fixed planform surface, and is shown in figure 12b. Note that since the wing is at

an angle of attack, the planform surface is not truly a plane.

(a) Wing and walls for use in first run, viewed from root end.

Figure 12.- Example 3: H-H type grid about wing.

72

i ¸ 'l

.__/.f/, ,., Yd',?',..h " "i
__/ /,s i i LLE-i i i

t

(b) Walls and planform surface resulting from fh'st run, viewed from tip end.

The second small program for this example, given in Appendix J, reads that planform surface,

reads the entire wing from the temporary file, combines them into upper and lower planform surfaces, and

writes them out in f'flel 1 form for the second run of 3DGRAPE. Note that everywhere off the wing the

planform surface is double-stored. This grid consists of two blocks---above the planform surface and

below it. Since the planform surface is fixed during the second run, there is no communication between

the blocks; identical results would have been obtained by generating the upper and lower blocks in two

separate runs.

Figures 12c and 12d show the finished grid.

This is the first example case to use the "lightening" feature. Control is lightened along the leading

edge and the wingtip in both top and bottom blocks.

(c) Wing and surface normal to span in finished grid.

Figure 12.- Continued

73

(d) Wing and surface normal to free stream in finished grid.

Figure 12.- Concluded

74

IX. THEORETICAL DEVELOPMENT

The essence of grid generation is to find a mapping between a certain physical domain and a

computational domain. The physical domain is here described by the Cartesian coordinates x,y,z, and the

computational domain is described by the uniform orthogonal computational variables _,rl,_. By adjusting

that mapping in some appropriate way, it can be arranged that cardinal values of _,rl,_ map into the desired

values of x,y,z, producing a grid. It is not required that that mapping be given as a simple analytic

relationship; a workable situation exists when the mapping is given by equations. If a numerical solution

for those equations can be found, the mapping is obtained.

3DGRAPE generates grids by solving a coupled set of Poisson's elliptic partial differential

equations in 3-D. Those equations are well known to be

_xx + _yy + _z = P(_,rl,;) (la)

rlxx + rlyy + 'qzz = Q(_,TI,_) (lb)

qx + _yy + _z = R(_'TI'_)

But those equations in that form are not readily usable. They would require the user to supply boundary

conditions for _,'fl,_ at known values of x,y,z. Users typically want to do the opposite of that; they want

to give values for x,y,z at known values of _,rl,_. Equations (la-c) can be transformed into

where

(lc)

0_11_ _ + Ot22_lr I + 0_33_ _ + 2(0_12_rl 0_13_. + ff.23_r10 = _j2(p_ + % + R_) (2a)

= (2b)

3

O_lj =Z YmiYmj (2c)
m=l

xrl x_

Yrl Y_

zq z;

"_j is the ij th cofactor of the Jacobian matrix M where

x_

M= y_

z_

(2d)

75

andJ is thedeterminantof M.

A point-SORsolveris usedon theseequations.Thedifferencingof somefh'stderivativesis
adjustedtomaximizediagonaldominanceandthusenhancestability.

But therealareaof interestin elliptic grid generationis thechoiceof RHSterms.Heretheyareof
thefollowing form:

P(_,H,_)= Pl(rl,Oe-a_

+ P2(TI,_)e-a(_max--_)

+ V3(,Oe-a"
+ V4(_,_)e-a(rlmax-rl)

+ P5(_,rl)e-a;

+ P6(_,rl)e-a(_max _)

(3)

RHS terms Q and R have similar form, using ql' q2 q6 and r1, r2 r6. The computational variable

has its minimum value, zero, on face 1. It has its maximum value, _+nax' on face 2. _ is simply j- 1. The

computational variables rl and _, along with their maxima rlmax and _'-max are defined similarly on

faces 3-6. It can be seen that the first term in equation (3) is at its maximum on face 1, where _=0 and the

exponential equals 1, and that that first term decays toward zero with movement into the middle of the

block. The free parameter "a" in equation (3) determines the rate of that decay. In a similar fashion the

second term is at its maximum on face 2 and decays to zero with movement toward the middle of the

block. Similar behavior is seen for the remaining terms in equation (3). The factors Pl' P2 P6 could be

thought of as causing the desired clustering and orthogonality near their respective faces, with that

influence decaying exponentially with distance from those faces.

The challenge, then, is to find Pl' P2 ' P6' ql' q2 q6 and r1, r2, ..., r6. If they can be

found, the RHS terms over the entire block can be calculated by multiplying by the appropriate

exponentials. The method for finding them can best be understood by considering a representative sample,

such as P3' q3' and r3, which cause clustering and orthogonality near face 3. At face 3 the third term in

equation (3) reduces to just P3" We also assume that on face 3 all the other terms in equation (3) have

vanished, since we are at a distance from their faces and their exponentials have approached zero. We also

assume that the Poisson equations (eq. (2)), are valid on face 3. Then if all of the derivatives which make

up the left-hand side of equation (2a) can be found, equation (2a) reduces to a 3-x-3 linear system of

equations in the unknowns P3' q3' and r3.

The left-hand side of equation (2a) is made up of all possible first and second partial derivatives of

with respect to {, rl, and 4. Of those derivatives the following are known on face 3 by differencing fixed

boundary data: _, _, _{_, ?_{, and_;_. The derivatives rrl are found from the desired clustering and

orthogonality on face 3. That desired clustering and orthogonality could be specified by the three relations

76

.=0

_. _=s2

x_xn+y_y_+_zn=o

x;xn+y_y_+¾zn=o

4 +y +4

(4a)

(4b)

(4c)

where S is the height to be imposed on the cell on the boundary, illustrated in figure 6. Expansion gives

(5a)

(5b)

Rearranging terms and applying Cramer's rule gives

where

D--,_y;- x;y_

From equation (2) it can be seen that equations (6a) and (6b) become

Xq = Zq (-712)/(-'Y32)

yT1 = Zq (-Y22)/(-Y32)

Substituting equations (7a) and (7b) into equation (5c) and reducing gives

S "(32
zn=

Substituting equation (8a) into equations (Ta) and (7b) gives

s _'_2

(5c)

(6a)

(6b)

(6c)

(7a)

(7b)

(8a)

(8b)

77

S 'Y22
(8c)

Thus we now have values for the derivatives FTI"These can be differenced to obtain F_TIand FTI_" Note that

all derivatives found to here are fixed for all computational time, and thus need to be calculated only once

at the start of the run. The only derivatives lacking then in the left-hand side of equation (2a) are F_TI"

These can be found in each iteration by differencing the grid at the present time step. The differencing

molecule used for this second derivative is unusual in that it uses an analytic representation for the fh-st

derivative, but it can be derived in straightforward manner from the Taylor series. It is

+,.,,.,_-7+,+8+2- +:,_
2(At1) 2 Arl

(9)

where the numerical subscripts indicate values of the index k, running in the rl direction, with k=l being at

face 3. The values for Frl found in equation (8) are used in equation (9).

We are now ready to solve equation (2a) at face 3 as a linear system. Substituting P3 for P(_,rl,_),

shown above to be a valid substitution on face 3, and similarly q3 for Q and r3 for R, equation (2a)
becomes

P++++q++.,.,+ =h (lOa)

where

(lOb)

and

-" 2_'= (O_llF_ + Ot33r_ + 2(O_12r_r I + Otl3r_ + ot23rrl_))/(-J) (lOt)

Note that f and _22/ .12 are constant for all computational time, thus the only variable in h is rrlrl"

78

Equation (lOa) is just

M =_

Lr3J

This system can be solved by Cramer's rule, giving

P3 -- (hlY11 + h2Y--21+ h3Y31)/J

q3= (h1_'12+ h2122+ h3.V32)/J

r3 = (hl Y13 + t12Y23 + h3)'33)/J

(11)

(12a)

(12b)

(12c)

Thus values for P3' q3' and r3 have been found. RHS terms at the other faces are found similarly.

Thus the RHS terms everywhere in the block can be computed. The main iteration loop can be summarized

as:

(1) Difference the solution at the current time step to obtain second derivatives at the faces,

such as _q_l at face 3, using differencing such as in equation (9).

(2) Compute new values for h as in equation (10b). From that obtain new values for the RHS

terms everywhere in the block.

(3) Take a solution step to update the x,y,z.

(4) Update the locations of points on "floating" boundaries.

Equation (8) includes a choice of sign. That choice is made based on the "handedness" of the

block--positive for right-handed and negative for left-handed.

79

REFERENCES

.

.

.

.

.

.

.

6

.

10.

Sorenson, R. L.; and Steger, J. L.: Simplified Clustering of Nonorthogonal Grids Generated by

Elliptic Partial Differential Equations, NASA TM-73252, 1977.

Thompson, J. F.; Thames, F. C.; and Mastin, C. W.: Automated Numerical Generation of Body-

Fitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two-

Dimensional Bodies, J. Comp. Phys., vol. 15, no. 3, July 1974, pp. 299-319.

Thompson, J. F.; Thames, F. C.; and Mastin, C. W.: TOMCAT-A Code for Numerical Generation

of Boundary-Fitted Curvilinear Coordinate Systems on Fields Containing Any Number of

Arbitrary Two-Dimensional Bodies, J. Comp. Phys., vol. 24, no. 3, July 1977, pp. 274-302.

Steger, J. L.; and Sorenson, R. L.: Automatic Mesh-Point Clustering Near a Boundary in Grid

Generation with Elliptic Partial Differential Equations, J. Comp. Phys., vol. 33, no. 3, Dec.

1979, pp. 405-410.

Sorenson, R. L.: A Computer Program to Generate Two-Dimensional Grids About Airfoils and

Other Shapes by the Use of Poisson's Equation, NASA TM-81198, 1980.

Sorenson, R. L.; and Steger, J. L.: Grid Generation in Three Dimensions by Poisson Equations with

Control of Cell Size and Skewness at Boundary Surfaces, in Advances in Grid Generation-

FED-Vol. 5, K. N. Ghia, ed., ASME, 1983.

Sorenson, R. L.: Three-Dimensional Elliptic Grid Generation for an F-16, in Three Dimensional

Grid Generation for Complex Configurations-Recent Progress, AGARDograph 309, March

1988, pp. 23-28.

Flores, J.; Chaderjian, N. M.; and Sorenson, R. L.: Simulation of Transonic Viscous Flow Over a

Fighter-Like Configuration Including Inlet, AIAA Paper 87-1199, June 1987. (Also published

in J. Aircraft, vol. 26, no. 4, April 1989.)

Sorenson, R. L.: Three-Dimensional Zonal Grids About Arbitrary Shapes by Poisson's Equation,

Proc. Second Intern. Conf. Numerical Grid Generation in CFD, Miami, December, 1988

Numerical Grid Generation in Computational Fluid Mechanics, S. Sengupta, J. Hauser, P.R.

Eiseman, and C. Taylor, eds., Pineridge Press Ltd., Swansea, U.K., 1988. (Also published as

NASA TM-101018, 1988.)

Buning, P.; and Steger, J.: Graphics and Flow Visualization in Computational Fluid Dynamics,

AIAA-85-1507-CP, July 1985.

11. Walatka, P. P.; and Bunning, P. G.: PLOT3D User's Manual, NASA TM-101067, 1989.

80

APPENDIX A: FILE10 INPUT DATA FOR EXAMPLE 1

run-comment Example: hemisphere-cylinder-cone

run-comment simulation of helicopter fuselage.

number-of-blocks=03-number-of-parts-in-iteration-schedule=03

iterations=020-control=no-coarse/fine=coarse

iterations=150-control=ye-coarse/fine=coarse

iterations=O75-control=ye-coarse/fine=fine

filename-ll-input=filellexl -filename-12-output=

filename-14-grid-output=exl.bin -form=3dgrape

write-for-restart=ye-filename-15-output=restartexl

relaxation-param=keep-default

block-01-comment Hemispherical Nose Cap

dimension-j=019-dimension-k=031-dimension-l=022

handedness=r-initcond=k-cart/sph=spherical

polar-axis=x-along=k-around=l-center = I00.

face-l-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

collapsed-to-x-axis-from-x = 0. -to-x = -400. -k-along-

...axis-from-002-to-031-l-around-from-001-to-022

face-2-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-l-block-02-this-k-from-002-to-031-this-l-from-001-to-022

...-that-k-from-002-to-031-that-l-from-001-to-022

face-3-sections=01-normal= 2.000 -abc=keep-default-light/tight=no

read-in-fixed-xyz-j-from-001-to-019-l-from-001-to-022

face-4-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

ellipsoid-x-cent=100. -y-cent= 0. -z-cent= 0.

...x-semi= 500. -y-semi = 500. -z-semi= 500. -j-from-

...002-to-018-l-from-002-to-021

face-5-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 0. -j-from-002-to-018-k-from-002-

...to-031

face-6-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y = 0. -j-from-002-to-018-k-from-002-

...to-031

block-02-comment Cylinder and cone behind nose

dimension-j=034-dimension-k=031-dimension-l=022

81

handedness-r-initcond=k-cart/sph=cartesian

face-l-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-2-block-01-this-k-from-002-to-031-this-l-from-001-to-022

...-that-k-from-002-to-031-that-l-from-001-to-022

face-2-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-l-block-03-this-k-from-002-to-031-this-l-from-001-to-022

...-that-k-from-002-to-031-that-l-from-001-to-022

face-3-sections=01-normal= 2.000 -abc=keep-default-light/tight=no

read-in-fixed-xyz-j-from-001-to-034-l-from-001-to-022

face-4-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

cylinder-about-x-axis-from-x=100. -to-x = 750. -j-along-

...axis-from-002-to-033-l-around-from-002-to-021-with-angle=

...-90. -to-angle= +90. -radius= 500.

face-5-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 0. -j-from-002-to-033-k-from-002-

...to-031

face-6-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 0. -j-from-002-to-033-k-from-002-

...to-031

block-03-comment Axis downstream

dimension-j=019-dimension-k=031-dimension-l=022

handedness-r-initcond=k-cart/sph=cartesian

face-l-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-2-block-02-this-k-from-002-to-031-this-l-from-001-to-022

...-that-k-from-002-to-031-that-l-from-001-to-022

face-2-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x = 1125. -k-from-002-to-031-l-from-001-

...to-022

face-3-sections=O2-normal=uncontrolled-abc=keep-default-light/tight=no

collapsed-to-point-x= 750. -y= O. -z= O. -with-

...j-from-OOl-to-OOl-l-from-OOl-to-022

collapsed-to-x-axis-from-x= 770. -to-x= 1125. -j=along-

...axis-from-OO2-to-O19-l-around-from-OOl-to-022

face-4-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

82

cylinder-about-x-axis-from-x= 750. -to-x= 1125. -j-along-

...axis-from-OO2-to-O18-l-around-from-OO2-to-O21-with-angle =

...-90. -to-angle = +90. -radius = 500.

face-5-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= O. -j-from-OO2-to-Ol8-k-from-OO2-

...to-031

face-6-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= O. -j-from-OO2-to-O18-k-from-O02-

...to-031

83

APPENDIX B: PROGRAM WHICH MAKES FILEll DATA FOR EXAMPLE 1

c...Program to compute and write body points for the first example case, the

c..."helicopter fuselage," which is actually just a hemisphere-cylinder-cone

c... body.

c...x goes back, y goes out to the side, z goes up.

c...j goes back, k goes out radially, 1 goes around from bottom to top on the

c...right side.

c...rad is radius of hemisphere, the cylinder, and the cone at its base

c...bl is length of the cylinder

c...cl is length (height?) of the cone

c

dimension x(85,30), y(85,30), z(85,30)

c

c...Set basic parameters.

jl=19

j2a=17

j2b=18

imax=22

rad=100.

bl=300.

ci=350.

pi=3.141592653589793

c...Define the body, z(x), for negative z, on lower symmetry plane.

dth=0.5*pi/float(jl-l)

thet=-dth

do I000 j=l,jl

thet=thet+dth

x(j,l)=-rad*cos(thet)

z(j,l)=-rad*sin(thet)

1000 continue

dx=bl/float(j2a-l)

xx=0.

do I001 j=jl+l,jl+j2a-I

xx=xx+dx

x(j,l)=xx

z(j,l)=-rad

84

I001 continue

1002

dx=cl/float(j2b-l)

xx=bl

do 1002 j=jl+j2a, jl+j2a+j2b-2

xx=xx+dx

x(j,l)=xx

z(j,l)=(xx-cl)*rad/cl-(bl*rad)/cl

continue

c...Shift it in x so that the origin

do 1003 j=l,jl+j2a+j2b-2

x(j,l)=x(j,l)+rad

1003 continue

is at the nose.

c..Rotate z(x) through 180

dphi=pi/float(imax-l)

phi=0.

do 1004 1=2, imax

phi=phi+dphi

1005

1004

deg.

do 1005 j=l,jl+j2a+j2b-2

x(j,l)=x(j,l)

y(j,l)=-z(j,l)*sin(phi)

z(j,l)= z(j,l)*cos(phi)

continue

continue

(+y direction).

c...Output in 3DGRAPE's filell

91=jl

jl=jl

j2end=jl+j2a+j2b-2

format.

open(unit=ll,status='new',form='formatted',file='filellexl ')

2000

i00

2001

2002

write (II, 2000)

format (' complete-x-for-section-01-of-face-3-of-block-01')

write (II, i00) ((x (j, i) , j=l, jl) , i=i, imax)

format (6f12.4)

write (ii, 2001)

format (' complete-y-for-section-01-of-face-3-of-block-01')

write (Ii, i00) ((y (j, l) , j=l, jl) , i=i, imax)

write(ll, 2002)

format (' complete-z-for-section-01-of-face-3-of-block-01')

write (II, i00) ((z (j, i) , j=l, jl) ,i=i, imax)

write (Ii, 2003)

85

2003

2004

2005

format('complete-x-for-section-01-of-face-3-of-block-02')

write(ll,100) ((x(j,l),j=jl,j2end),l=l,lmax)

write(ll, 2004)

format('complete-y-for-section-01-of-face-3-of-block-02')

write(ll,100) ((y(j,l),j=jl,j2end),l=l,lmax)

write(ll, 2005)

format('complete-z-for-section-01-of-face-3-of-block-02')

write(ll,100) ((z(j,l),j=jl,j2end),l=l,lmax)

close (unit--i i)

c°..Output in 3DGRAPE's filel4 (main grid output) format so that

c...can be looked-at with grid display graphics.

open(unit=14,status='new',form='binary',file='lookatit')

write (14) 2

write (14)

write (14)

1

2

jl, I, lmax

((x (j, i), j=l, jl) , i=i, imax) ,

((y(j,l), j=l, jl),l=l,lmax),

((z(j,l), j=l, jl),l=l,lmax)

write (14)

write (14)

1

2

j2end-jl+l,l,lmax

((x(j,l),j=jl,j2end),l=l,lmax),

((y(j,l),j=jl,j2end),l=l,lmax),

((z(j,l),j=jl, j2end),l=l,lmax)

close (unit=14)

stop

end

the body alone

86

APPENDIX C: FILE16 INPUT DATA FOR EXAMPLE 1

run-comment Example: hemisphere-cylinder-cone

run-comment simulation of helicopter fuselage.

filename-17-input=restartexl

number-of-parts-in-iteration-schedule=01

iterations=025-control=ye-coarse/fine=fine

filename-ll-input=filellexl -filename-12-output =

filename-14-grid-output=exl.bin -form=3dgrape

write-for-restart=no-filename-15-output=restartexl

relaxation-param=keep-default

block-01-comment Hemispherical Nose Cap

face-l-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

collapsed-to-x-axis-from-x= 0. -to- -400. -k-along-

...axis-from-002-to-031-l-around-from-001-to-022

face-2-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-l-block-02-this-k-from-002-to-031-this-l-from-001-to-022

...-that-k-from-002-to-031-that-l-from-001-to-022

face-3-sections=01-normal= 2.000 -abc=keep-default-light/tight=no

read-in-fixed-xyz-j-from-001-to-019-l-from-001-to-022

face-4-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

ellipsoid-x-cent=100. -y-cent= 0. -z-cent = 0.

...x-semi= 500. -y-semi= 500. -z-semi= 500. -j-from-

...002-to-018-l-from-002-to-021

face-5-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y = 0. -j-from-002-to-018-k-from-002-

...to-031

face-6-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 0. -j-from-002-to-018-k-from-002-

...to-031

block-02-comment Cylinder and cone behind nose

face-l-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-2-block-01-this-k-from-002-to-031-this-l-from-001-to-022

...-that-k-from-002-to-031-that-l-from-001-to-022

87

face-2-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-l-block-O3-this-k-from-OO2-to-O31-this-l-from-OOl-to-022

...-that-k-from-OO2-to-O31-that-l-from-OOl-to-022

face-3-sections=01-normal= 2.000 -abc=keep-default-light/tight=no

read-in-fixed-xyz-j-from-001-to-034-l-from-001-to-022

face-4-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

cylinder-about-x-axis-from-x=100. -to-x= 750. -j-along-

...axis-from-002-to-033-l-around-from-002-to-021-with-angle=

...-90. -to-angle= +90. -radius= 500.

face-5-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y = 0. -j-from-002-to-033-k-from-002-

...to-031

face-6-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 0. -j-from-002-to-033-k-from-002-

...to-031

block-03-comment Axis downstream

face-l-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-2-block-O2-this-k-from-OO2-to-O31-this-l-from-OOl-to-022

...-that-k-from-OO2-to-O31-that-l-from-OOl-to-022

face-2-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x= 2250. -k-from-OO2-to-O31-l-from-OOl-

...to-022

face-3-sections=O2-normal=uncontrolled-abc=keep-default-light/tight=no

collapsed-to-point-x= 750. -y= O. -z = O. -with-

...j-from-OOl-to-OOl-l-from-OOl-to-022

collapsed-to-x-axis-from-x= 770. -to-x= 1125. -j=along-

...axis-from-OO2-to-O19-l-around-from-OOl-to-022

face-4-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

cylinder-about-x-axis-from-x= 750. -to-x= 2250. -j-along-

...axis-from-OO2-to-Ol8-l-around-from-OO2-to-O21-with-angle=

...-90. -to-angle= +90. -radius= 500.

face-5-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y = 0. -j-from-002-to-018-k-from-002-

...to-031

88

face-6-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 0. -j-from-OO2-to-O18-k-from-OO2-

...to-031

89

APPENDIX D: FILEI0 INPUT DATA FOR EXAMPLE 2

run-comment Example: C-O-Type grid

run-comment about isolated wing

number-of-blocks=03-number-of-parts-in-iteration-schedule=01

iterations=100-control=no-coarse/fine=coarse

filename-ll-input=filellex2 -filename-12-output=

filename-14-grid-output=ex2.bin -form=3dgrape

write-for-restart=ye-filename-15-output=restartex2

relaxation-param=keep-default

block-01-comment Behind and below wing

dimension-j=040-dimension-k=025-dimension-l=022

handedness=r-initcond=l-cart/sph=cartesian

face-l-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x= 6. -k-from-001-to-025-l-from-002-

...to-022

face-2-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=n

match-to-face-l-block-02-this-k-from-001-to-025-this-l-from-002-to-022

...-that-k-from-001-to-025-that-l-from-002-to-022

face-3-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

collapsed-to-point-x = 3. -y= 0. -z= -5. -with-

...j-from-002-to-039-l-from-002-to-022

face-4-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-4-block-03-this-j-from-002-to-039-this-l-from-002-to-022

...-that-j-from-039-to-002-that-l-from-002-to-022

face-5-sections=01-normal=2-j-stations-abc=keep-default-light/tight=no

norm/sect=001- .04 -040- .02

read-in-fixed-xyz-j-from-001-to-040-k-from-001-to-025

face-6-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

cylinder-about-x-axis-from-x= 6. -to-x = i. -j-along-

...axis-from-002-to-039-l-around-from-002-to-024-with-angle=

...-90. -to-angle = 0. -radius = i0.

block-02-comment Around the wing

dimension-j=043-dimension-k=025-dimension-l=022

handedness=r-initcond=l-cart/sph=cartesian

90

face-l-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-2-block-01-this-k-from-001-to-025-this-l-from-002-to-022

...-that-k-from-001-to-025-that-l-from-002-to-022

face-2-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-l-block-03-this-k-from-001-to-025-this-l-from-002-to-022

...-that-k-from-001-to-025-that-l-from-002-to-022

face-3-sections=04-normal=uncontrolled-abc=keep-default-light/tight=no

collapsed-to-point-x = 0. -y= 0.

...j-from-002-to-010-l-from-002-to-022

collapsed-to-point-x= -5. -y= 0.

.o.j-from-011-to-020-l-from-002-to-022

collapsed-to-point-x= -5. -y= 0.

...j-from-021-to-030-l-from-002-to-022

collapsed-to-point-x= 0. -y= 0.

...j-from-031-to-042-l-from-002-to-022

-z= -5. -with-

-z= -5. -with-

-z= 5. -with-

-z = 5. -with-

face-4-sections=02-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-4-block-02-this-j-from-002-to-022-this-l-from-002-to-022

...-that-j-from-042-to-022-that-l-from-002-to-022

match-to-face-4-block-02-this-j-from-022-to-042-this-l-from-002-to-022

...-that-j-from-022-to-002-that-l-from-002-to-022

face-5-sections=01-normal= .02 -abc=keep-default-light/tight=no

read-in-fixed-xyz-j-from-001-to-043-k-from-001-to-025

face-6-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

ellipsoid-x-cent= 1.0 -y-cent = 0. -z-cent= 0.

...x-semi = 8. -y-semi = i0. -z-semi = 10. -j-from-

...002-to-042-k-from-002-to-024

block-03-comment Behind and above wing

dimension-j=040-dimension-k=025-dimension-l=022

handedness=r-initcond=l-cart/sph=cartesian

face-l-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-2-block-02-this-k-from-001-to-025-this-l-from-002-to-022

...-that-k-from-001-to-025-that-l-from-002-to-022

face-2-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x = 6. -k-from-001-to-025-l-from-002-

...to-022

face-3-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

91

collapsed-to-point-x= 3. -y= O.

...j-from-OO2-to-O39-l-from-OO2-to-022

-z= 5o -with-

face-4-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-4-block-Ol-this-j-from-OO2-to-O39-this-l-from-OO2-to-022

...-that-j-from-O39-to-OO2-that-l-from-OO2-to-022

face-5-sections=Ol-normal=2-j-stations-abc=keep-default-light/tight=no

norm/sect=001- .02 -040- .04

read-in-fixed-xyz-j-from-OOl-to-O40-k-from-OOl-to-025

face-6-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

cylinder-about-x-axis-from-x = I. -to-x = 6. -j-along-

...axis-from-OO2-to-O39-l-around-from-OO2-to-O24-with-angle=

... O. -to-angle = 90. -radius = I0.

92

APPENDIX E: PROGRAM WHICH MAKES FILEI1 DATA FOR EXAMPLE 2

c...Program to compute and write body points for the second example case, the

c...C-O-Type grid about an isolated wing.

c...x goes back, y goes out to the side, z goes up.

c...j goes forward along lower surface, around leading-edge, rearward along

c...upper surface, k is in spanwise direction, 1 is out from wing to outer

c...boundary.

c

c

dimension x(100),y(100),ramp(100),yequ(100),

1 xu (100, i00) ,xl (i00, i00) , zu (i00,100) , zl (i00, i00)

bx=l.l

by=l.03

jmax=22

kmax=25

alpha=5.

xrot=0.5

tr=0.12

span=4.

pi=3.141592653589793

jback=40

xsheet=6.

yramp=0.94

C ¸ make x-distribution

bp=bx+l.

bm=bx-l.

cl=alog(bp/bm)

ds=0.4/float(jmax-l)

s=-ds

do 1000 j=l,jmax

s=s+ds

expa=exp(cl*(4.*s-l.))

x(j)=(bm-bp*expa)/(-4.*(expa+l.))

1000 continue

c...Now re-scale it to go from 0 to l+epsilon where epsilon is the
c...increment which will make the NACA00xx shape close at the toe.

factor=(l.+.008930411365)/x(jmax)
do i001 j=l,jmax

x(j)=x(j)*factor
1001 continue

makey-distribution

bp=by+1.
bmzby-1.
cl=alog (bp/bm)
ds=0.4/float (kmax-l)
s=0.1-ds

do 1002 k=l,kmax
s=s+ds
expa=exp(cl* (4.*S-lo))
y (k) =(bm-bp*expa)/ (-4 o * (expa+l o))

1002 continue

c...Re-scale it to go from 0 to span.

factor=span/(y(kmax)-y(1))

yshift=y(1)

do 1003 k=l,kmax

y(k)=(y(k)-yshift)*factor

1003 continue

c...equi-spaced y for outflow boundary

dy=span/float(kmax-l)

yy=-dy

do 1004 k=l,kmax

yy=yy+dy

yequ(k)=yy

1004 continue

make ramp for tip

do 1005 k=l, kmax

if (y(k) .it.span-yramp) then

ramp (k) =I.

else

ramp (k) =sqrt (I. - ((y (k) -span+yramp) **2) /yramp**2)

endif

1005 continue

94

C make the NACA 00xx profile

do 1006 j=l,jmax

xx=x (j)

zu(j,l)=5.*tr * (.2969*sqrt(xx) - .126*xx - .3516"xx*'2

1 + .2843"xx*'3 - .1015*xx**4)

zl(j,l)=-zu(j,l)

do 1007 k=2,kmax

zu(j,k)=zu(j,l)*ramp(k)

zl(j,k)=zl(j,l)*ramp(k)

1007 continue

1006 continue

C put it at angle of attack

alpha=-alpha*pi/180.

ca=cos(alpha)

sa=sin(alpha)

do 1008 k=l, kmax

do 1009 j=l, jmax

xx=x (j)

zz=zu(j, k)

xu(j,k) = (xx-xrot)*ca + zz*sa + xrot

zu(j,k) = (xx-xrot)*sa + zz*ca

zz=zl (j, k)

xl(j,k) = (xx-xrot)*ca + zz*sa + xrot

zl(j,k) = (xx-xrot)*sa + zz*ca

1009 continue

1008 continue

c write it

delx=(xsheet-l.)/float(jback-l)

jmaxmax=2*jmax-i

open(unit=ll,status='new',form='formatted',file='filellex2')

write (ii, 2000)

2000 format ('complete-x-for-section-01-of-face-5-of-block-01')

write (ll,100) ((xl (jmax,k)+float (jback-j)*delx, j=l, jback) ,

1 k=l, kmax)

I00 format (6f12.4)

write (ii, 2001)

95

2001 format ('complete-y-for-section-Ol-of-face-5-of-block-Ol')

write (Ii, i00) ((y (k) *float (j-l) /float (jback-l) +

1 yequ (k) * float (jback-j) /float (jback-l) , j=l, jback) ,k=l, kmax)

2002

write(ll, 2002)

format('complete-z-for-section-Ol-of-face-5-of-block-Ol')

write(ll,100) ((zl(jmax,k),j=l,jback),k=l,kmax)

C'

write (ii, 2003)

2003 format('complete-x-for-section-Ol-of-face-5-of-block-02')

write (II, i00) ((xl (9, k) ,9=jmax, i, -i),

1 (xu (j, k) ,9=2, jmax) ,k=l, kmax)

2004

write(ll, 2004)

format('complete-y-for-section-Ol-of-face-5-of-block-02')

write(ll,lO0) ((y(k),j=l,jmaxmax),k=l,kmax)

write(ll, 2005)

2005 format('complete-z-for-section-Ol-of-face-5-of-block-02')

write (ii, i00) ((zl (j, k) ,j=jmax, I, -I) ,

1 (zu (9, k) ,9=2, jmax) ,k=l, kmax)

C

write(ll, 2006)

2006 format('complete-x-for-section-Ol-of-face-5-of-block-03')

write(ll,lO0) ((xu(jmax,k)+float(j-l)*delx, j=l,jback),

1 k=l,kmax)

write(l

2007 format(

write(l

1 y(k)

i, 2007)

'complete-y-for-section-Ol-of-face-5-of-block-03')

i,i00) ((yequ(k)*float(j-l)/float(jback-l)+

*float(jback-j)/float(jback-l),j=l,jback),k=l,kmax)

2008

write(l

format(

write(l

i, 2008)

'complete-z-for-section-Ol-of-face-5-of-block-03')

1,100) ((zu(jmax,k),j=l,jback),k=l,kmax)

close(unit=ll)

open(unit=47,status='new',form='binary',file='lookatit ")

96

write (47) 1

write(47) jmaxmax, kmax,l

write (47)

1

2

3

4

((xl (j, k), j=jmax, i,-i),

(xu(j,k), j=2, jmax),k=l,kmax),

((y (k) , j=l, jmaxmax) ,k=l, kmax) ,

((zl(j,k),j=jmax, l,-l),

(zu(j, k) , 9=2, jmax) ,k=l, kmax)

close (unit=47)

stop

end

97

APPENDIX F: FILE16 INPUT DATA FOR EXAMPLE 2

run-comment Example: C-O-Type grid

run-comment about isolated wing. Restart.

filename-17-input=restartex2

number-of-parts-in-iteration-schedule=02

iterations=175-control=no-coarse/fine=fine

iterations=150-control=ye-coarse/fine=fine

filename-ll-input=filellex2 -filename-12-output=

filename-14-grid-output=ex2.bin -form=3dgrape

write-for-restart=ye-filename-15-output=huh?

relaxation-param=keep-default

block-01-comment Behind and below wing

face-l-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x= 6. -k-from-001-to-025-l-from-002-

...to-022

face-2-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-l-block-02-this-k-from-001-to-025-this-l-from-002-to-022

...-that-k-from-001-to-025-that-l-from-002-to-022

face-3-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 0. -j-from-002-to-039-1-from-002-

...to-022

face-4-sections=01-no_al=uncontrolled-abc=keep-default-light/tight=no

match-to-face-4-block-03-this-j-from-002-to-039-this-l-from-002-to-022

...-that-j-from-039-to-002-that-l-from-002-to-022

face-5-sections=01-normal=2-j=stations-abc=keep-default-light/tight=no

norm/sect=001- .04 -040- .02

read-in-fixed-xyz-j-from-001-to-040-k-from-001-to-025

face-6-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

ellipsoid-x-cent= 1.0 -y-cent= 0. -z-cent= 0.

...x-semi= 8. -y-semi= i0. -z-semi= 5. -j-from-

...002-to-039-k-from-002-to-024

block-02-comment Around the wing

face-l-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-2-block-01-this-k-from-001-to-025-this-l-from-002-to-022

98

...-that-k-from-001-to-025-that-l-from-002-to-022

face-2-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-l-block-03-this-k-from-001-to-025-this-l-from-002-to-022

...-that-k-from-001-to-025-that-l-from-002-to-022

face-3-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 0. -j-from-002-to-042-l-from-002-

...to-022

face-4-sections=02-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-4-block-02-this-j-from-002-to-022-this-l-from-002-to-022

...-that-j-from-042-to-022-that-l-from-002-to-022

match-to-face-4-block-02-this-j-from-022-to-042-this-l-from-002-to-022

...-that-j-from-022-to-002-that-l-from-002-to-022

face-5-sections=01-normal= .02 -abc=keep-default-light/tight=no

read-in-fixed-xyz-j-from-001-to-043-k-from-001-to-025

face-6-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

ellipsoid-x-cent = 1.0 -y-cent = 0. -z-cent = 0.

...x-semi= 8. -y-semi= i0. -z-semi= 5. -j-from-

...002-to-042-k-from-002-to-024

block-03-comment Behind and above wing

face-l-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-2-block-02-this-k-from-001-to-025-this-l-from-002-to-022

...-that-k-from-001-to-025-that-l-from-002-to-022

face-2-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x = 6. -k-from-001-to-025-1-from-002-

...to-022

face-3-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y = 0. -j-from-002-to-039-l-from-002-

...to-022

face-4-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-4-block-01-this-j-from-002-to-039-this-l-from-002-to-022

...-that-j-from-039-to-002-that-l-from-002-to-022

face-5-sections=01-normal=2-j-stations-abc=keep-default-light/tight=no

norm/sect=001- .02 -040- .04

read-in-fixed-xyz-j-from-001-to-040-k-from-001-to-025

99

face-6-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

ellipsoid-x-cent= 1.0 -y-cent = O. -z-cent= O.

...x-semi= 8. -y-semi= i0. -z-semi= 5_ -j-from-

...O02-to-O39-k-from-OO2-to-024

tO0

APPENDIX G: FILE10 INPUT DATA FOR FIRST RUN OF EXAMPLE 3

run-comment H-H type grid about wing

run-comment First run to make planform surface

number-of-blocks=05-number-of-parts-in-iteration-schedule=02

iterations=150-control=no-coarse/fine=fine

iterations=200-control=ye-coarse/fine=fine

filename-ll-input=filellex3a -filename-12-output=

filename-14-grid-output=ex3a.bin -form=3dgrape

write-for-restart=no-filename-15-output=

relaxation-param=keep-default

block-01-comment In front of wing

dimension-j=016-dimension-k=025-dimension-l=005

handedness-r-initcond=k-cart/sph=cartesian

face-l-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x= -2. -k-from-001-to-025-l-from-001-

...to-005

face-2-sections=01-normal=2-k-stations-abc = 0.7

norm/sect=001- .020 -025- .017

read-in-fixed-xyz-k-from-001-to-025-l-from-001-to-005

-light/tight=no

face-3-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= .0 -j-from-002-to-015-l-from-001-

...to-005

face-4-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-3-block-04-this-j-from-002-to-015-this-l-from-001-to-005

...-that-j-from-002-to-015-that-l-from-001-to-005

face-5-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-z-axis-at-z= -i.0 -j-from-001-to-015-k-from-002-

...to-024

face-6-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-z-axis-at-z= 1.0 -j-from-001-to-015-k-from-002-

...to-024

block-02-comment Outboard of wing

dimension-j=022-dimension-k=016-dimension-l=005

handedness-r-initcond=k-cart/sph=cartesian

101

face-l-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-2-block-O4-this-k-from-OO2-to-Ol6-this-l-from-OOl-to-O05

...-that-k-from-OO2-to-Ol6-that-l-from-OOl-to-O05

face-2-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-l-block-O5-this-k-from-OO2-to-Ol6-this-l-from-OOl-to-O05

...-that-k-from-OO2-to-Ol6-that-l-from-OOl-to-O05

face-3-sections=01-normal=2-j-stations-abc = 0.7

norm/sect=001- .017 -022- .029

read-in-fixed-xyz-j-from-001-to-022-l-from-001-to-005

-light/tight=no

face-4-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 6.0 -j-from-OO2-to-O21-l-from-OOl-

...to-O05

face-5-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-z-axis-at-z= -I.0 -j-from-OO2-to-O21-k-from-OO2-

...to-O15

face-6-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-z-axis-at-z= 1.0 -j-from-OO2-to-O21-k-from-OO2-

...to-Of5

block-03-comment Behind wing

dimension-j=016-dimension-k=025-dimension-l=005

handedness-r-initcond=k-cart/sph=cartesian

face-l-sections=01-normal=2-k-stations-abc = 0.7

norm/sect=001- .020 -025- .029

read-in-fixed-xyz-k-from-001-to-025-l-from-001-to-005

-light/tight=no

face-2-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x= 3. -k-from-OOl-to-O25-l-from-OOl-

...to-005

face-3-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= .0 -j-from-OO2-to-OlS-l-from-OOl-

...to-005

face-4-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-3-block-OS-this-j-from-OO2-to-Ol5-this-l-from-OOl-to-O05

...-that-j-from-OO2-to-OlS-that-l-from-OOl-to-O05

face-5-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

102

plane-normal-to-z-axis-at-z= -i.0

...to-024

-j-from-OO2-to-Ol6-k-from-O02-

face-6-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-z-axis-at-z = 1.0 -j-from-OO2-to-O16-k-from-OO2-

...to-024

block-04-comment In front of and outboard of wing

dimension-j=Ol6-dimension-k=Ol6-dimension-l=O05

handedness-r-initcond=k-cart/sph=cartesian

face-l-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x = -2. -k-from-OOl-to-Ol6-l-from-OOl-

...to-005

face-2-sections=O2-normal=uncontrolled-abc=keep-default-light/tight=no

read-in-fixed-xyz-k-from-OOl-to-OOl-l-from-OOl-to-O05

match-to-face-l-block-O2-this-k-from-OO2-to-O16-this-l-from-OOl-to-005

...-that-k-from-OO2-to-O16-that-l-from-OOl-to-O05

face-3-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-4-block-Ol-this-j-from-OO2-to-Ol5-this-l-from-OOl-to-O05

...-that-j-from-OO2-to-Ol5-that-l-from-OOl-to-O05

face-4-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 6.0 -j-from-OO2-to-Ol5-l-from-OOl-

...to-O05

face-5-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-z-axis-at-z= -I.0 -j-from-OO2-to-Ol5-k-from-OO2-

...to-O15

face-6-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-z-axis-at-z= 1.0 -j-from-OO2-to-Ol5-k-from-OO2-

...to-015

block-O5-comment In front of and outboard of wing

dimension-j=Ol6-dimension-k=Ol6-dimension-l=O05

handedness-r-initcond=k-cart/sph=cartesian

face-l-sections=O2-normal=uncontrolled-abc=keep-default-light/tight=no

read-in-fixed-xyz-k-from-OOl-to-OOl-l-from-OOl-to-O05

match-to-face-2-block-O2-this-k-from-OO2-to-O16-this-l-from-OOl-to-O05

...-that-k-from-OO2-to-Ol6-that-l-from-OOl-to-O05

103

face-2-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x= 3. -k-from-OO1-to-O16-l-from-OO1-

...to-O05

face-3-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

match-to-face-4-block-O3-this-j-from-OO2-to-O15-this-l-from-OOl-to-O05

...-that-j-from-OO2-to-O15-that-l-from-OOl-to-O05

face-4-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 6.0 -j-from-OO2-to-O15-l-from-OO1-

...to-O05

face-5-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-z-axis-at-z= -1.0 -j-from-OO2-to-O15-k-from-OO2-

...to-015

face-6-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-z-axis-at-z= 1.0 -j-from-OO2-to-OlS-k-from-OO2-

...to-015

104

APPENDIX H: PROGRAM FOR FILEll FOR FIRST RUN OF EXAMPLE 3

c...Program to compute and write just the wing for the third example case,

c...the H-H Type grid about an isolated wing.

c...x goes back, y goes out to the side, z goes up.

c...j goes forward along lower surface, around leading-edge, rearward along

c...upper surface, k is in spanwise direction, 1 is out from wing to outer

c...boundary.

dimension x(100),y(100),ramp(100),

1 xu (i00, I00) ,xl (i00, i00) , zu (i00, I00) , zl (i00, i00)

bx=l.l

by=l.03

jmax=22

kmax=25

alpha=5.

xrot=0.5

tr=0.12

span=4.

pi=3.141592653589793

yramp=0.94

make x-distribution

bp=bx+l.

bm=bx-l.

cl=alog(bp/bm)

ds=0.4/float(jmax-l)

s=-ds

do i000 j=l, jmax

s=s+ds

expa=exp(cl*(4.*s-l.))

x(j)=(bm-bp*expa)/(-4.*(expa+l.))

I000 continue

c...Now re-scale it to go from 0 to l+epsilon where epsilon is the

c...increment which will make the NACA 00xx shape close at the t.e.

factor=(l.+.008930411365)/x(jmax)

105

I001

do i001 j=l,jmax

x(j)=x(j)*factor

continue

make y-distribution

bp=by+ 1.

bm=by-I.

cl=alog (bp/bm)

ds=0.4/float (kmax-l)

s=0. l-ds

1002

do 1002 k=l,kmax

s=s+ds

expa=exp (cl* (4. *s-I.))

y (k) = (bm-bp*expa) / (-4. * (expa+l.))

continue

c...Re-scale it to go from 0 to span.

factor=span/(y (kmax) -y (I))

yshift=y (i)

do 1003 k=l,kmax

y (k) = (y (k) -yshift) *factor

1003 continue

c make ramp for tip

1004

do 1004 k=l,kmax

if(y(k).it.span-yramp) then

ramp(k)=l.

else

ramp(k)=sqrt(l.-((y(k)-span+yramp)**2)/yramp**2)

endif

continue

c make the NACA 00xx profile

do 1005 j=l,jmax

xx=x(j)

zu(j,l)=5.*tr* (.2969*sqrt(xx)

1 + .2843"xx*'3 - .1015*xx**4)

zl(j,l)=-zu(j,l)

do 1006 k=2,kmax

zu(j,k)=zu(j,l)*ramp(k)

zl(j,k)=zl(j,l)*ramp(k)

1006 continue

- .126*xx - .3516,xx*,2

106

1005 continue

C put it at angle of attack

alpha=-alpha*pi/180.

ca=cos (alpha)

sa=sin (alpha)

do 1007 k=l, kmax

do 1008 j=l, jmax

xx=x(j)

zz=zu (j,k)

xu(j,k) = (xx-xrot)*ca

zu(j,k) = (xx-xrot)*sa

+ zz*sa + xrot

+ zz*ca

1008

1007

zz=zl (j,k)

xl (j, k) =

zl (j,k) =

continue

continue

(xx-xrot)*ca + zz*sa + xrot

(xx-xrot)*sa + zz*ca

c write the entire wing to be read later

jmaxmax=2*jmax-I

open(unit=77,status='new',form='binary',file='ex3wing.dat ')

write (77) jmax, kmax

write(

write(

write(

77) ((xu (j, k) , j=l, jmax) ,k=l, kmax)

77) ((y (k) , j=l, jmax) , k=l, kmax)

77) ((zu (j, k) , j=l, jmax) ,k=l, kmax)

write (

write (

write (

77) ((xl (j, k) , j=l, jmax) ,k=l, kmax)

77) ((y (k) , j=l, jmax) , k=l, kmax)

77) ((zl (j, k) , j=l, jmax) ,k=l, kmax)

close(unit=77)

write just the perimiter of the wing, stacked lmax times

imax=5

delz=0.5

open(unit=78,status='new',form='formatted',file='filellex3a ')

107

2000

i00

write (78, 2000)

format (' complete-x-for-section-Ol-of-face-2-of-block-Ol')

write(78,100) ((xu(l,k) ,k=l,kmax),l=l,lmax)

format (6f12.4)

2001

write (78, 2001)

format (' complete-y-for-section-Ol-of-face-2-of-block-Ol')

write(78,100) ((y(k),k=l,kmax),l=l,lmax)

write (78, 2002)

2002 format ('complete-z-for-section-Ol-of-face-2-of-block-Ol')

write (78,100) ((float (1-3) *delz*abs (float (1-3)/2.)

1 + (float (1-3)*delz+zu(l,k))*(l.-abs(float(1-3)/2.)),

2 k=l, kmax) ,i=I, Imax)

C

2003

write(78, 2003)

format('complete-x-for-section-Ol-of-face-3-of-block-02')

write(78,100) ((xu(j,kmax),j=l,jmax),l=l,lmax)

2004

write (78, 2004)

format (' complete-y-for-section-Ol-of-face-3-of-block-02')

write (78, I00) ((y (kmax) , j=l, jmax) , i=i, imax)

write (78, 2005)

2005 format ('complete-z-for-section-Ol-of-face-3-of-block-02')

write (78,100) ((float (1-3) *delz*abs (float (1-3) /2.)

1 + (float (1-3)*delz+zu(j,kmax))*(l.-abs(float (1-3) /2.)),

2 j=l, jmax) , l=l, imax)

C

2006

wrlte(78, 2006)

format ('complete-x-for-section-Ol-of-face-l-of-block-03')

write (78, i00) ((xu (jmax, k) ,k=l, kmax) , i=i, imax)

2007

wrlte (78, 2007)

format (' complete-y-for-section-Ol-of-face-l-of-block-03')

wr_te (78, I00) ((y (k) , k=l, kmax) ,I=I, imax)

write (78, 2008)

2008 format ('complete-z-for-section-Ol-of-face-l-of-block-03")

write (78, i00) ((float (i-3) *delz*abs (float (i-3) /2.)

1 + (float (i-3) *delz+zu (jmax, k)) * (I. -abs (float (i-3) /2.)) ,

2 k=l, kmax) , i=i, Imax)

108

C

2009

wrlte (78, 2009)

format (' complete-x-for-section-Ol-of-face-2-of-block-04')

wrlte (78,100) (xu(l,kmax),l=l,lmax)

2010

wrlte(78, 2010)

format('complete-y-for-section-Ol-of-face-2-of-block-04')

write(78,100) (y(kmax),l=l,lmax)

wrlte(78, 2011)

2011 format ('complete-z-for-section-Ol-of-face-2-of-block-04')

write (78,100) (float (1-3) *delz*abs (float (1-3) /2.)

1 + (float (1-3)*delz+zu(l,kmax))*(l.-abs(float(1-3)/2.)),

2 i=I, imax)

2012

write(78, 2012)

format('complete-x-for-section-Ol-of-face-l-of-block-05')

write(78,100) (xu(jmax, kmax),l=l,lmax)

2013

write (78, 2013)

format (' complete-y-for-section-Ol-of-face-l-of-block-05')

wrlte(78,100) (y(kmax),l=l,lmax)

write (78, 2014)

2014 format ('complete-z-for-section-Ol-of-face-l-of-block-05')

wrlte (78,100) (float (1-3) *delz*abs (float (1-3) /2.)

1 + (float (i-3) *delz+zu (jmax, kmax)) * (i. -abs (float (1-3) /2.)) ,

2 i=i, imax)

close (unit=78)

write it for graphical examination

open(unit=79,status='new',form='binary',file='lookatit ')

write (79) 3

write(79) jmax, kmax,2

write (79) ((xu (j, k) , j=l, jmax) ,k=l, kmax) ,

1 ((xl (j, k) , j=l, jmax) ,k=l, kmax) ,

2 ((y (k) , j=l, jmax) , k=l, kmax) ,

109

3 ((y (k) , j=l, jmax) , k=l, kmax) ,

4 ((zu (j, k) , j=l, jmax) , k--l, kmax) ,

5 ((zl (j, k) , j=l, jmax) , k=l, kmax)

C

write (79) 2, kmax, lmax

write (79)

2

3

4

5

7

8

((xu(l,k),xu(jmax, k),k=l,kmax),l=l,lmax),

((y (k) ,y (k), k=l, kmax), i=i, imax),

((float (1-3) *delz*abs (float (1-3)/2.)

+ (float (1-3)*delz+zu(l,k))*(l.-abs(float(1-3)/2.)),

float (1-3) *delz*abs (float (1-3)/2.)

+ (float (i-3) *delz+zu (jmax, k)) * (i. -abs (float (i-3) /2.)) ,

k=l, kmax) , i=I, imax)

C

write (79) jmax, l,lmax

write(79) ((xu(j,kmax), j=l, jmax),l--l,lmax),

1 ((y (kmax) , j=l, jmax) ,i=i, imax) ,

2 ((float (1-3) *delz*abs (float (1-3)/2.)

3 + (float (i-3) *delz+zu (j, kmax)) * (i o-abs (float (i-3)/2.)) ,

4 j=l, jmax) ,i=I, imax)

close (unit=79)

stop

end

110

APPENDIX I: FILE10 INPUT DATA FOR SECOND RUN OF EXAMPLE 3

run-comment H-H type grid about wing

run-comment Second run to read planform surface and do it.

number-of-blocks=02-number-of-parts-in-iteration-schedule=03

iterations=030-control=no-coarse/fine=coarse

iterations=170-control=ye-coarse/fine=coarse

iterations=050-control=ye-coarse/fine=fine

filename-ll-input=filellex3b -filename-12-output=

filename-14-grid-output=ex3b.bin -form=3dgrape

write-for-restart=no-filename-15-output =

relaxation-param=keep-default

block-01-comment Above wing

dimension-j=052-dimension-k=040-dimension-l=025

handedness-r-initcond=k-cart/sph=cartesian

face-l-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x = -2. -k-from-002-to-039-l-from-002-

...to-024

face-2-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x= 3. -k-from-002-to-039-l-from-002-

...to-024

face-3-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= .0 -j-from-001-to-052-l-from-002-

...to-024

face-4-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 6. -j-from-001-to-052-l-from-002-

...to-024

face-5-sections=Ol-normal=4-j-stations-abc=keep-default-light/tight=ye

norm/sect=001 - .04 -016- .010 -037- .010

norm/sect=052- .04

01-j-lighten-01-k-lighten-no-j-tighten-no-k-tighten

lighten-at-j=016

lighten-at-k=025

read-in-fixed-xyz-j-from-001-to-052-k-from-001-to-040

face-6-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-z-axis-at-z= 1.0 -j-from-001-to-052-k-from-001-

...to-040

111

block-02-comment Below wing

dimension-j=052-dimension-k=040-dimension-l=025

handedness-r-initcond=k-cart/sph=cartesian

face-l-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x= -2. -k-from-OO2-to-O39-l-from-OO2-

...to-024

face-2-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-x-axis-at-x= 3. -k-from-002-to-039-l-from-002-

.°.to-024

face-3-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= .0 -j-from-001-to-052-l-from-002-

...to-024

face-4-sections=01-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-y-axis-at-y= 6. -j-from-001-to-052-l-from-002-

o..to-024

face-5-sections=Ol-normal=uncontrolled-abc=keep-default-light/tight=no

plane-normal-to-z-axis-at-z= -1.0 -j-from-001-to-052-k-from-001-

...to-040

face-6-sections=01-normal=4-j-stations-abc=keep-default-light/tight=ye

norm/sect=001- .04 -016- .010 -037- .010

norm/sect=052- .04

01-j-lighten-01-k-lighten-no-j-tighten-no-k-tighten

lighten-at-j=016

lighten-at-k=025

read-in-fixed-xyz-j-from-001-to-052-k-from-001-to-040

112

APPENDIX J: PROGRAM FOR FILEI1 FOR SECOND RUN OF EXAMPLE 3

c...Program to exerpt the planform surface from the first run for example 3,

c...read the wing surface, combine them, and output filell input for the

c...second run of example 3. The imaxs had all better be the same.

dimension xp(lOO,50),yp(lOO,50),zp(lO0,50)

dimension xl(40,40),yl (40, 40),zi (40, 40),

1 x2 (40,40) ,y2 (40,40), z2 (40,40), x3 (40, 40) ,y3 (40,40), z3 (40,40),

2 x4 (40,40) ,y4 (40,40), z4 (40, 40), x5 (40, 40) ,y5 (40,40), z5 (40, 40)

dimension xu (25, 30) ,yu (25, 30) ,zu (25, 30) ,

1 xl (25, 30) ,yl (25,30), zl (25, 30)

C

open(unit=50,status='old',form='binary',file='ex3a.bin ')

read(50) maxblk

read(50) jmaxl,kmaxl,lmaxl

iplan=(imaxl+l)/2

read(50) (

1

2 (

3 (

4

5 (

6 (

7

8 (

(dummy, j=l, jmaxl) ,k=l, kmaxl) ,i=i, iplan-l) ,

(xl(j,k), j=l, jmaxl),k=l,kmaxl),

(dummy, j=l, jmaxl) ,k=l, kmaxl) ,l=iplan+l, imaxl) ,

(dummy, j=l, jmaxl) , k=l, kmaxl) ,i=I, Iplan-l) ,

(yl(j,k), j=l, jmaxl),k=l,kmaxl),

(dummy, j=l, jmaxl) ,k=l, kmaxl) ,l=iplan+l, imaxl) ,

(dummy, j=l, jmaxl) ,k=l, kmaxl) ,i=i, iplan-l) ,

(zl(j,k),j=l,jmaxl),k=l,kmaxl),

(dummy, j=l, jmaxl) ,k=l, kmaxl) ,l=iplan+l, imaxl)

read(50) jmax2,kmax2,1max2

read(50) (

1

2 (

3 (

4

5 (

6 (

7

8 (

(dummy, j=l, jmax2) ,k=l, kmax2) ,i=I, iplan-l) ,

(x2 (j, k) , j--i, jmax2) ,k=l, kmax2) ,

(dummy, j=l, jmax2), k=l, kmax2) ,l=iplan+l, imaxl) ,

(dummy, j=l, jmax2) ,k=l, kmax2) , i=I, iplan-l) ,

(y2 (j, k) , j=l, jmax2) ,k=l, kmax2) ,

(dummy, j=l, jmax2) ,k=l, kmax2) , l=iplan+l, imaxl) ,

(dummy, j=l, jmax2) ,k=l, kmax2) , i=i, iplan-l) ,

(z2 (j,k), j=l, jmax2) ,k=l,kmax2) ,

(dummy, j=l, jmax2) ,k=l, kmax2) , l=iplan+l, imaxl)

113

read(50)

read (50)

1

2

3

4

5

6

7

8

read(50)

read(50)

1

2

3

4

5

6

7

8

read(50)

read (50)

1

2

3

4

5

6

7

8

jmax3,kmax3,1max3

(((dummy, j=l,jmax3),k=l,kmax3),l=l,lplan-l),

((x3(j,k),j=l, jmax3),k=l,kmax3),

(((dummy, j=l, jmax3),k=l,kmax3),l=Iplan+l,lmaxl),

(((dummy, j=l,jmax3),k=l,kmax3),l=l,lplan-l),

((y3(j,k),j=l,jmax3),k=l,kmax3),

(((dummy, j--l, jmax3),kzl,kmax3),l=iplan+l,lmaxl),

(((dummy, j=l,jmax3),ksl,kmax3),l=l,lplan-l),

((z3(j,k),j=l,jmax3),k=l,kmax3),

(((dummy, j=l,jmax3),k=l,kmax3),l=iplan+l,lmaxl)

jmax4,kmax4,1max4

(((dummy, j=l,jmax4),k=l,kmax4),l=l,lplan-l),

((x4(j,k),j=l, jmax4),k=l,kmax4),

(((dummy, j=l, jmax4),k=l,kmax4),l=iplan+l,lmaxl),

(((dummy,

((y4 (j,k

(((dummy,

(((dummy,

((z4 (j,k

(((dummy,

j=l, jmax4),k=l,kmax4),l=l,lplan-l),

),j=l, jmax4),k=l,kmax4),

j=l, jmax4),k=l,kmax4),l=iplan+l,lmaxl),

j=l, jmax4),k=l,kmax4),l=l,lplan-l),

),j=l,jmax4),k=l,kmax4),

j=l, jmax4),k=l,kmax4),l=iplan+l,lmaxl)

jmax5,kmax5,1max5

(((dummy, j=l, jmax5) ,k--l, kmax5) , i=i, iplan-l) ,

((x5 (j, k) , j=l, jmax5) ,k=l, kmax5) ,

(((dummy, j=l, jmax5) ,k=l, kmax5) , l=iplan+l, imaxl) ,

(((dummy, j=l, jmax5) ,k=l, kmax5) , i=i, iplan-l) ,

((y5(j,k), j=l, jmax5),k=l,kmax5),

(((dummy, j=l, jmax5) ,k=l, kmax5) , l=Iplan+l, imaxl) ,

(((dummy, j=l, jmax5) ,k=l, kmax5) , i=I, iplan-l) ,

((z5 (j, k) , j=l, jmax5) ,k=l, kmax5) ,

(((dummy, j=l, jmax5) ,k=l, kmax5) , l=iplan+l, imaxl)

close(unit=50)

open (unit=51, status=' old' , form=' binary', file=' ex3wing, dat')

read (51) jmaxw, kmaxw

read (51) ((xu (j, k) , j=l, jmaxw) , k=l, kmaxw) ,

114

((yu (j, k) , j=l, jmaxw) ,k=l, kmaxw) ,

((zu (j, k) , j=l, jmaxw) ,k=l, kmaxw)

read(51)

1

2

((xl (j, k) , j=l, jmaxw) ,k=l, kmaxw) ,

((yl (j, k) , j--l, jmaxw) ,k=l, kmaxw) ,

((zl (j, k) , j=l, 9maxw) ,k--l, kmaxw)

close (unit=51)

open(unit=52,status='new',form='formatted',file='filellex3b ')

2000

I00

write (52, 2000)

format ('complete-x-for-section-O l-of-face-5-of-block-O 1 ')

write (52, i00) ((xl (j, k) , j=l, jmaxl) , (xu (j, k) , j=2, jmaxw) ,

1 (x3 (j,k) , j=2, jmax3) , k=l, kmax3) ,

2 ((x4 (j, k) , j=l, jmax4) , (x2 (j, k) , j=2, jmax2) ,

3 (x5 (j, k) , j=2, jmax5) , k=2, kmax2)

format (6f12.4)

write (52, 2001)

2001 format ('complete-y-for-section-Ol-of-face-5-of-block-Ol')

write (52, I00) ((yl (j, k) , j=l, jmaxl) , (yu (j, k) , j=2, jmaxw) ,

1 (y3 (j,k) , j=2, jmax3) , k=l, kmax3) ,

2 ((y4 (j, k), 9=i, jmax4), (y2 (j, k), j=2, jmax2) ,

3 (y5 (j,k) , j=2, jmax5) , k=2, kmax2)

write (52, 2002)

2002 format ('complete-z-for-section-Ol-of-face-5-of-block-Ol')

write (52, i00) ((zl (j, k) , j=l, jmaxl) , (zu (j, k) , j=2, jmaxw) ,

1 (z3 (j, k) , j=2, jmax3) , k=l, kmax3) ,

2 ((z4 (j, k) , j=l, jmax4) , (z2 (j, k) , j=2, jmax2) ,

3 (z5 (j, k) , j=2, jmax5) , k=2, kmax2)

write (52, 2003)

2003 format ('complete-x-for-section-Ol-of-face-6-of-block-02')

write (52,100) ((xl (j, k) , j=l, jmaxl) , (xl (j, k) , j=2, jmaxw) ,

1 (x3 (j, k) , j=2, jmax3) , k=l, kmax3) ,

2 ((x4 (j, k) , j=l, jmax4) , (x2 (j, k) , j=2, jmax2) ,

3 x5 (j, k) , j=2, jmax5) , k=2, kmax2)

write(52, 2004)

2004 format ('complete-y-for-section-Ol-of-face-6-of-block-02')

115

write (52, I00) ((yl (j, k) , j=l, jmaxl), (yl (j, k), j=2, jmaxw),

1 (y3 (j, k) , j=2, jmax3) , k=l, kmax3),

2 ((y4 (j, k) , j--l, jmax4) , (y2 (j, k) , j=2, jmax2),

3 (y5 (j, k) , j=2, jmax5), k--2, kmax2)

write (52, 2005)

2005 format('complete-z-for-section-Ol-of-face-6-of-block-02')

write (52, I00) ((zl (j, k) , j=l, jmaxl) , (zl (j, k) , j=2, jmaxw) ,

1 (z3 (j, k) , j=2, jmax3) , k=l, kmax3) ,

2 ((z4 (j, k) , j--l, jmax4), (z2 (j, k) , j=2, jmax2) ,

3 (z5 (j, k) , j=2, jmax5) , k=2, kmax2)

close (unit=52)

write(*, 2006) jmaxl+jmaxw+jmax3-2, kmax3+kmax2-1

2006 format(/'Planform grid has jmax=',i3,3x,'kmax=',i3)

stop

end

116

Report Documentation Page
_ E_IC e _Jr_ir_strat_

1. Report No.

NASA TM- 102224

4. Title and Subtitle

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

July 1989
The 3DGRAPE Book: Theory, Users' Manual, Examples

7. Author(s)

Reese L. Sorenson

9. Performing Organization Name and Address

Ames Research Center

Moffett Field, CA 94035

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546-0001

6. Performing Organization Code

8. Performing Organization Report No.

A-89176

10. Work Unit No.

505-60

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Point of Contact: Reese L. Sorenson, Ames Research Center, MS 258-1
Moffett Field, CA 94035 (415) 694-4471 or FTS 464-4471

16. Abstract

This document is a users' manual for a new three-dimensional grid generator called 3DGRAPE.

The program, written in FORTRAN, is capable of making zonal (blocked) computational grids in or
about almost any shape. Grids are generated by the solution of Poisson's differential equations in
three dimensions. The program automatically finds its own values for inhomogeneous terms which
give near-orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE
have been applied to both viscous and inviscid aerodynamic problems, and to problems in other
fluid-dynamic areas. The smoothness for which elliptic methods are known is seen here, including
smoothness across zonal boundaries.

An introduction giving the history, motivation, capabilities, and philosophy of 3DGRAPE is pre-
sented first. Then follows a chapter on the program itself. The input is then described in detail. A
chapter on reading the output and debugging follows. Three examples are then described, including
sample input data and plots of output. Last is a chapter on the theoretical development of the method.

17. Key Words (Suggested by Author(s))

Grid generation
Mesh generation
Computational fluid dynamics
CFD

18. Distribution Statement

Unclassified-Unlimited

Subject Category - 01

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of pages 22. Price

119 A06

NASA FORM 1626 OCT 86 For sale by the National Technical Information Service, Springfield. Virginia 2216 1

