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Abstract 
The linear instability of the hypersonic boundary layer on a curved wall is considered. 

As a starting point the viscosity of the fluid is taken to be a linear function of temperature 
and real-gas effects are ignored. It is shown that the flow is susceptible to Gortler vor- 
tices and that they are trapped in the logarithmically thin adjustment layer in which the 
temperature of the basic flow changes rapidly to its free stream value. The vortices decay 
exponentially in both directions away from this layer and are most unstable when their 
wavelength is comparable with the depth of the adjustment layer. The non-uniqueness 
of the neutral stability curve associated with incompressible Giirtler vortices is shown to 
disappear a t  high Mach numbers if the appropriate ‘fast’ streamwise dependence of the 
instability is built into the disturbance flow structure. It is shown that in the hypersonic 
limit wall-cooling has a negligible effect on the stability of a fluid with a given value of the 
Chapman constant. 

* This research was supported in part by the National Aeronautics and Space Admin- 
istration under NASA Contract No. NAS1-18605 while the first author was in residence 
at the Institute for Computer Applications in Science and Engineering (ICASE), NASA 
Langley Research Center, Hampton, VA 23665. 
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1. Introduction 

Our concern is with the linear development of Gijrtler vortices in hypersonic boundary 

layers. Interest in the stability properties of hypersonic boundary layers has been stimu- 

lated by recent research and development into hypersonic aircraft. In some situations it 

is envisaged that Mach numbers as high as 20-25 will be achieved; in that situation real 

gas effects will certainly be important. Here, as a starting point, we ignore such effects 

and assume that the fluid under investigation behaves as a perfect gas. The other major 

simplification which we make is that the viscosity of the fluid is given by the Chapman’s 

viscosity law. This simplification can of course be justified but at any rate it is probable 

that our analysis could be extended to deal with more realistic viscosity-temperature laws. 

We shall take into account the effect of boundary layer growth on the vortices using 

asymptotic methods related to those used for the incompressible case by Hall (1982a,b, 

1983, 1985, 1988) and Hall and Lakin (1988). The main feature of the incompressible 

case is that the growth of vortices with wavelengths comparable with the boundary layer 

thickness is dominated by non-parallel effects and can only be described self-consistently 

by integrating numerically the linear partial differential equations obtained by perturbing 

appropriately the Navier-Stokes equations. These equations were solved by Hall (1983) 

who showed that the position of neutral stability of a Giirtler vortex is a function of its 

upstream origin; this means that in this wavelength regime the concept of a unique neutral 

curve is not tenable. Thus the results of, for example, Gijrtler (1940), Hammerlin (1956) 

which were obtained by ignoring the streamwise dependence of the vortices are not valid. 
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However, at smaller vortex wavelengths the vortices only feel the local structure of 

the boundary layer and localize themselves so as to maximize their downstream growth. 

In the neutral case this position corresponds to the location where Rayleigh's criterion is 

most violated. Moreover the vortices then develop downstream in a quasi-parallel manner 

and Hall (1982a) showed how the Giirtler number could then be simply expressed as an 

asymptotic expansion in terms of the wavenumber. An asymptotic investigation of the 

equation used by the parallel flow theories shows that they give the first few terms in 

this expansion but that they are in error when non-parallel effects become important. 

Thus, in the only regime where the parallel flow theories are valid, a relatively trivial 

asymptotic expansion of the Giirtler number is available and is indeed more accurate than 

that obtained by a numerical solution of the parallel flow eigenvalue problem. 

In a recent paper Hall and Malik (1987) applied the approach of Hall (1982a) to 

compressible boundary layers at  0(1) Mach numbers. A parallel flow theory of Giirtler 

vortices in compressible boundary layers at 0(1) Mach numbers had previously been given 

by El-Hady and Verma (1981) who followed the approach of Floryan and Saric (1979). 

Here, as a first step towards an understanding of the structure of Giirtler vortices at 

hypersonic speeds, we look at the limiting form of the Hall-Malik calculation at high Mach 

numbers. 

It turns out that the "most dangerous'' location in a hypersonic boundary layer is 

the logarithmically small region where the basic state temperature field adjusts to its free 

stream value. It is in this layer that asymptotically small wavelength vortices described 

by the structure found for the incompressible case by Hall (1982a) become trapped. 
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The main result of the present calculation is that the logarithmically small layer at 

the edge of a hypersonic boundary layer can support a range of GGrtler vortex wavelengths 

other than those appropriate to the high wavenumber limit of Hall (1982a). Moreover the 

most dangerous wavelengths of Gbrtler vortices at hypersonic speeds are comparable with 

the thickness of the logarithmic layer. Furthermore, the streamwise development of the 

vortices can be taken care of by using a similarity variable and a multiple scale or WKB 

approach so that the structure of the vortices is obtained by solving ordinary differential 

equations. However, it should be stressed that the replacement of the streamwise derivative 

of the disturbance by a constant in the work of El-Hady and Verma means that their results 

are in error. Thus at hypersonic speeds G6rtler vortices have a quasi-parallel behaviour 

and a structure considerably simpler than that relevant to the 0(1) Mach number regime. 

We shall see that the neutral curve at hypersonic speeds is well-defined with left and right 

hand branches and a unique minimum Gbrtler number above which linear perturbations 

will grow. 

The procedure adopted in the rest of the paper is as follows: in $2 we formulate 

the linear stability problem for a compressible boundary layer. We then write down the 

eigenrelation found by Hall and Malik (1987) and by taking the further limit of large 

Mach number show the importance of the logarithmically thin layer at the edge of the 

boundary layer. In $3 we show that this layer can in fact support a whole range of vortex 

wavenumbers and show that there exists a unique critical Giirtler number at hypersonic 

speeds. In $4 We present results for a variety of flow properties and draw some conclusions. 
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2. Formulation of the stability equations and the small wavelength hypersonic 

limit. 

Our formulation follows closely the derivation of El-Hady and Verma (1981) who 

extended the usual incompressible approach in a straightforward manner. Suppose that 

L is a typical streamwise length scale while U,, p,, T,, poo are the free stream values 

for velocity, density, temperature and viscosity. If we take (z*, y*, z * )  to be a coordinate 

system with z* measuring distance along a rigid wall of variable curvature + IC($ )  then 

we define a curvature parameter 6 by 

L 6 = -  
A' 

and consider the lirnit 6 + 0 with the Reynolds number R defined by 

taken to be so large that the Gijrtler number 

G = 2 R i b  

is O(1). We define a Mach number M by 

Here R* is the gas constant whilst 7 is the ratio of the specific heats of the gas. The 

coordinate y* measures distance normal to the body whilst z* measures distance in the 

spanwise direction .The reader is referred to the book by Stewartson(l964) for a more 
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detailed discussion of compressible boundary layers. We assume that the basic flow corre- 

sponds to a zero pressure gradient and that the viscosity p* and temperature are related 

by Chapman's Law: 
* rnt 

Here C is a constant and T* is the temperature. We denote the Prandtl number by I', 

and define dimensionless variables x, y, z by 

(z,y,z) = (z*L-',y*R~L-',z*RiL.-'), 

whilst ( u , v , w ) ,  scaled on U,, R-*U,, and R-iU,, denote the velocity corresponding 

to (2 ,  y, z ) .  Finally we let p, T and 1.1 denote density, temperature and viscosity scaled on 

their free-stream values. The basic state is then given by 

If we define the Howarth-Dorodnitsyn variable by 

then a and B can be written as 

and 

where 
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I where F is the Blasius function. The temperature field F(v)  is then written in the form 

Here B is determined by the appropriate boundary condition to be imposed on T at  the 

wall. In the aerodynamic situation it is expected that the wall will be cooled since otherwise 

the wall temperature will become intolerably large at  high Mach numbers. However, in 

order to indicate the appropriate vortex structure at high Mach numbers we shall, in the 

first instance, assume that the Prandtl number is 1 and that the wall is adiabatic. In that 

case T reduces to  

p = 1 + -A4 7 - 1  2 (1 - y2). 
2 

(2.10) 

Next suppose ,as in Hall and Malik( 1987), that the flow is perturbed to a spanwise periodic 

stationary vortex structure with wavenumber a. The linearized stability equations for 

Gortler vortices are then found by linearizing the Navier-Stokes equations about (2.7), 

(2.9) and retaining the leading order terms in the high Reynolds number limit. We obtain 

1 1 1 1 
T T T T2 
= (au) z + pa2 u+ =ouy - (pu,) y + -4,v - [ 7 (aa, + mi,) + (Pay) ,] T- payTy = 0, (2.1 la) 

- [cFiiz + (C + 2)fiOy]Ty - cp,iaW - (C + l)iaFW, = 0, (2.116) 

jiziaU + (c + l)piaUz + ji,iaV + (c + l)piaVy - iaP + c%(a, + fly) 
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U V W Tii Tii (+ + (-) +;a(-=) - (-) - (-) = 0,(2.11d) T v  T 7'2 z T2 Y 

1 -  1 -  1 1 
--TZU - 2(7 - 1)M2piiyUY + =T,V - [ ~ ( i i T ' z  + iiTY) + (7 - 1)M2fiiii + - T T r 

1 P 2  1 1,- 1 
( f ip , )Y]T + p T z  + --a T + ( -8  - I;ILT,)T, - ~(jiT,), = 0.(2.11e) r T 

Here fi  = d p / d T  and c = ( x / p )  - 2/3 where is the bulk viscosity, whilst (U, V, W) , 

P, and T denote the vortex velocity field ,pressure and temperature respectively. In the 

calculations reported later in this paper c has the numerical value -.666666 

It was shown by Hall (1982a) that in the incompressible case the neutral curve for 

small wavelength vortices has G - u4 and the vortices are confined to a layer of depth a-3 

where the flow is locally most unstable. Hall and Malik (1987) extended this approach to 

the above system for M = 0(1) and wrote 

G = g0a4 + g1a3 + - - . (2.12) 

I In the neutral case the vortices are trapped at  the location (in y) where 

and 

< 0. a26 -- -0, - a6 * 
aY aY 

(2.13) 

(2.14) 

In fact (2.13) determines the constant go for a given value of the streamwise variable x 

such that the vortices are locally neutrally stable there. Wadey (1989) has discussed the 

I strongIy nonlinear compressible Giirtler vortex regime using the approach of Hall and Lakin 

(1988) and shows that (2.13) then determines ii such that a strongly-nonlinear vortex can 
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exist. For simplicity we take I' = 1, in which case (2.13) reduces, after some simplification, 

to 
2 1 + kpC(1  - f'2)}6 

f/f"(l+ kuc} G 2 
9 (2.15) 

go c { -= 

where (2.5) has been used and a prime denotes differentiation with respect to 7. In 

Figure 1 we have shown go/& calculated from (2.15), subject to g& = 0, g: > 0, as a 

function of Mach number with C = 1, 7 = 1.4. We see that go initially increases from its 

incompressible value, reaches a maximum at MO - 5, and then decays. The corresponding 

value of q where go satisfies (2.15) is denoted by qc and is shown as a function of M in 

Figure 2. We see that qc moves into the free stream as M increases. The precise large M 

asymptotic structure of go and v C  is found by first noting that for q >> 1 

where P = 1.2168 and c" is a constant. It then follows that the minimum value of go for 

M >> 1 occurs for 

More precisely if we define k by 

we find that (2.15) reduces to 

(2.16) 
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with N = (7 - l)Z@, so that go attains its minimum value when Neg = 5 and then 

(2.17) 

and this asymptotic prediction is shown in Figure lby the dotted curve. In fact in the 

layer where k = O(1) the temperature is given by 

T = 1 + N e c ,  (2.18) 

so that the vortices are trapped in the logarithmically thin layer where adjusts from 

its free stream value of 1 to an O(M2) temperature typical of a hypersonic boundary 

layer. Thus in the double limit a 4 00, M --+ 00 the vortices are trapped in a thin layer 

embedded within the logarithmic layer. We now show in the next section that other more 

unstable vortices persisting throughout the adjustment layer can exist. 

3. Hypersonic Gortler vortices with wavelength O{ ( d w l }  
We now investigate the possibility that the logarithmic adjustment layer a t  the edge 

of the boundary layer can support vortices with larger wavelengths than those described 

by Hall and Malik. If the nondimensional wall temperature of the basic state is Tw then 

B in (2.9) is determined by 

If we impose an adiabatic wall temperature condition then (3.1) determines the wall re- 

covery temperature Tw and B = 0. Since the Prandtl number is not necessarily unity now 

we now define a stretched variable in the adjustment zone by 
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After some manipulation we can then show from (2.9) that for j j  = 0(1)  the temperature 

T may be expressed as 

T = l + N e S  (3.3) 

where 

Thus the wall condition on T determines the constant N appearing in (3.3) which gives 

the temperature in the logarithmic adjustment zone. In fact we shall see that the critical 

Gortler number at which instability first occurs is independent of N ,  hence in a hypersonic 

boundary layer wall cooling has no effect on the onset of the Giirtler instability. 

For convenience we now define MI and M2 by 

(3.5~2, b) 

and if we are to seek a vortex structure with wavelength comparable with the depth of the 

adjustment layer we must expand the wavenumber a in the form 

M& 
a=- - -  

&+ 

Here the factor fi has been inverted in order 

(3.6) ... 

to scale x out of the eigenvalue problem 

G = G(x,  a ) ;  we are thus determining G such that the flow is locally neutral at  the position 

x. The growth or decay rates of a vortex trapped in the adjustment layer must be O(M2) in 

order to enter the zeroth order stability problem so that in the hypersonic limit the parallel 

flow approximation becomes valid. Here we concentrate on finding the neutral curve and 

therefore determine G = G(z,a) such that the vortex with wavenumber a is neutrally 
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stable at x. The previous discussion of the double limit a + 00, M + 00 suggests that 

the Giirtler number G should be expanded as 

However an examination of (2.11b) shows that the term &ikGii2T which balances with 

the term aa2V in the limit G + 00 will be comparable with the term &aii,T when 

G = O(M2).  Thus,  as pointed out by F.T.Smith (private communication) , the curvature 

of the basic state produces an effective negative Giirtler number of order M 2  in the absence 

of curvature so that instability cannot occur for G << M2. Hence we must expand G in 

such a way that the dominant contributions from the terms aDz and aGKa2 cancel in the 

adjustment layer. To achieve this we note that in this layer afj, = &QM2 + - - - where 

Q = i U + o o i w  t t  ' s" 0 VT'dy. Thus G must be expanded in the form 

1 
G =  ( 2 x ) 3 / 2  {QM2 + M:e + . . .}, (3.7) 

and the disturbance quantities expand as 

U = [ ? ? ( x , g ) + . . - ] E , V  = [ M ~ M ~ ? ( X , G ) + - - . ] E , W  = [M~M~*(X,G)+-*.]E,(~.~U-~) 

where E = e - f z M 2 0 ( z ) d z .  Thus the local growth rate of the vortex is M20(2) but here 

we restrict our attention to the situation a(z) = 0. Again the factors of 6 inserted in 

(3.8) have been introduced in order to  scale x out of the eigenvalue problem at the neutral 
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location. If the above expansions are inserted into (2.11) we find after some manipulation 

that 

i 1  
m N 2 e 2 5  } - iljrrnm?. + {p3 r - ( C  +4)  --{ 3 2  -6 - 2 f i N e g  - E N e y  + ( c  + 2 )  

4 
d2W d W  

m N e c } i i W + {  C32k2+ 7- 3 dk2 d y  - 7 + C 3 ' i 2 @ ( 3 . 9 a , b , c , d , e )  
Neg (~+2)r--}?,r--- - 2Nec 

( 7 2 3 2  - N  
- de" e -  d2e" de" + ( c  + 2)&?i"egii9 + &3F - ( c  + 1)C3ik- + CNegikB, - = -3-1 + { dk dk2 d e  r 

e c ( l +  ~- l )3- l }e"  - - -v,e = v = 13 = o , = foe. 
3 - e 

Here the function 3(c) = 1 + Neg. 

The zeroth order approximation to the z momentum equation has not been written 

down here because it decouples from the other equations and thus plays no role in the 

eigenvalue problem. A result of some importance follows immediately from (3 .9)  if we 

note that by a simple change of origin in a we can, without any loss of generality, set 

N = 1 since whenever it appears it is multiplied by ec .  Again this means that the wall 

conditions on the basic temperature field have no effect on the Giirtler number for the 

onset of Giirtler vortices in the hypersonic limit. 

The eigenvalue problem specified by (3 .9)  was solved using the compact finite differ- 

ence scheme of Malik, Chuang and Hussaini (1982). In order to apply the scheme the 

boundary conditions (3.9e) must be applied at  finite values of so it is necessary to in- 

vestigate the required decay of the disturbance quantities at k = f m  in order to derive 
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asymptotic boundary conditions. After some manipulation it is found from (3.9) that when 

where 

The constants P , Q  and are arbitrary so that as p + 00 we have three independent 

solutions of (3.9). The quantities W ,  F, F, can then be expressed in terms of P ,  Q and 

R and when the three latter constants are eliminated we obtain the asymptotic boundary 

i 
d+ de' 

conditions 

where 

When i j  --+ 00 a related set of boundary conditions can be derived using the WKB 

method. We do not give the full details here because it is a routine but tedious calculation 

to derive these boundary conditions. However in order to point out the rather abrupt 

decay of the disturbance which occurs for i j  + 00 we note that in this limit (3.9d) reduces 

to 
-- d2e" k - 2  e 2gC-  - e = - g F ,  
dc2 r 

14 



t 

and if we set = 0 the required decaying solution of this equation has 

In fact, if we do not set P = 0 and consider the limit of the other disturbance equations we 

find two further decaying solutions with a similar structure to that above. The appropriate 

boundary conditions, as p -+ +00 are then found by eliminating the constants associated 

with the three decaying solutions. However the structure of the decaying solutions for 

4 00 means that the lower boundary of the region of vortex activity will be much 

sharper than the upper one. This difference will clearly be most pronounced in the small 

wavenumber limit. 

We shall present the results of our numerical investigation in the next section. Here we 

note that in order to find the neutral Gortler number correct to the graphical accuracy of 

the figures shown in that section it was sufficient to use 200 equally spaced grid points and 

approximate (-00, +00) by (-lo., 15.0). Without the asymptotic boundary conditions at  

f m  the magnitude of the required approximation to -m must, particularly for << 1, 

be significantly increased. 

4. Results and Discussion 

We shall in the first place discuss the results of our numerical solution of the eigenvalue 

problem e = e(&). This was carried out using the scheme discussed in the previous section 

and Figure 3 shows the neutral curves for three different values of the Chapman constant C 

and r = 0.72. We see that the curves have well defined left and right hand branches typical 

of Taylor vortex problems. The critical Gortler number is seen to increase monotonically 

with the Chapman constant C. We note that for a given value of C the basic hypersonic 
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boundary layer is unstable to Gijrtler vortex disturbances if (i ,  e) is above the appropriate 

neutral curve of Figure 3. 

Thus we see that in the hypersonic limit a fluid with viscosity given by Chapman’s 

Law supports Gijrtler vortices whose growth is governed by a parallel flow theory. The 

parallel flow approach is valid in this situation because of the development of the thin 

logarithmic adjustment layer in a hypersonic boundary layer. At  0(1) Mach numbers 

there is no such adjustment region and the growth of the G6rtler vortex mechanism is 

controlled by non-parallel effects. 

The eigenfunctions associated with the C = 0.5 calculations are shown in Figures 4 

and 5 for two values of the vortex wavenumber. We note that the rate of decay of the 

vortex when 5 + 00 is much greater than when jj 4 -00. This is consistent with the 

discussion of the previous section. 

Now let us turn to a discussion of the relationship of our results with those found in 

earlier investigations of Giirtler vortices in compressible boundary layers. Firstly, we note 

that the scalings used in the present paper are those inferred by the small wavelength limit 

of Hall and Malik (1987) if the further limit M + 00 is taken. However, the fact that 

the logarithmic adjustment layer is relatively thin means that both the left and right hand 

branches of the neutral curve can be described by a quasi-parallel theory. In actual fact 

it is perhaps strictly not correct to describe the analysis of $3 as a parallel flow theory 

because the whole basic flow and disturbance structure in the adjustment layer depends 

on z. In a parallel flow theory, e.g. El Hady and Verma (1981), the operator adz + od,, 

which appears in (2.11), would be replaced by pii + 83, where p is a constant growth 
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rate. In our analysis this operator is rewritten in terms of d ,  and d ,  with the result that 

the 5 derivative in the resulting operator becomes formally O{ (Jm)-l} smaller 

than the 5 derivative and therefore negligible. In other words the disturbance has a ‘fast’ 

x dependence built in when we change variables; this structure is lost when a parallel 

acting on a flow theory of the type used by El Hady and Verma arbitrarily replaces B 

disturbance quantity in (2.11) by a constant. 

El Hady and Verma gave neutral curves for Mach numbers in the range 0 < M < 5 

and found that the critical Giirtler number increased monotonically with M .  (See Figure 

1 of El Hady and Verma (1981)). This is entirely consistent with our prediction that the 

Gijrtler number scales on (log M 2 )  f for M >> 1. However in our calculations we find that 

the critical wavenumber increases like (log M 2 )  whilst they found that , at least in the 

range 0 < M < 5 ,  it decreased with M.  

The first possible explanation for this difference is that El Hady and Verna did not 

perform computations at large enough values of M in order to see the correct large M 

dependence of the wavenumber. Alternatively, it could be that the parallel flow approx- 

imation in their calculation necessarily leads to the incorrect wavenumber behaviour for 

large M .  At 0(1) values of M their results are clearly incorrect and the disturbance growth 

must be described using the approach of Hall (1983). In any case it is clear that in the 

only Mach number regions where a parallel flow theory is valid the approach of El Hady 

and Verna effectively ignores the ‘fast’ x dependence of the disturbance in the adjustment 

1ayer.The authors acknowledge the comments made by the referees on the original form of 

this paper. 
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Legends 

Figure 1. The dependence of go/& on M calculated from (2.15) 
Figure 2. The dependence of q c ,  the value of q at which go is calculated, on M 
Figure 3. The neutral curves in the 6 - 

Figure 4. The eigenfunctions for the case C = .5,k - = .4 
Figure 5.  The eigenfunctions for the case C = .5, k = .2 
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s t r u c t u r e .  It i s  shown t h a t  i n  the  hypersonic  l i m i t  wall-cooling has a 
n e g l i g i b l e  e f f e c t  on the  s t a b i l i t y  of a f l u i d  with a given value of t he  Chapman 
cons t an t .  
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