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Introduction 

With the evolution of advanced composites, the feasibility of designing bearingless rotor systems 
for high speed, demanding maneuver envelopes, and high aircraft gross weights has become a 
reality. These systems eliminate the need for hinges and heavily loaded bearings by incorporating 
a composite flexbeam structure which accommodates flapping, lead-lag, and feathering motions by 
bending and twisting while reacting full blade centrifugal force, Figure (1). The flight characteristics 
of a bearingless rotor system are largely dependent on hub design, and the principal element in this 
type of system is the composite flexbeam. As in any hub design, trade off studies must be performed 
in order to optimize performance, dynamics (stability), handling qualities, and stresses. However, 
since the flexbeam structure is the primary component which will determine the balance of these 
characteristics, its design and fabrication are not straightforward. Some of the considerations 
which must be addressed are as follows: 

1. Flap-Lag-Torsion deformations will be accommodated through the flexbeam. 

2. Effective flapping hinge offset has to be properly controlled for a balance between maneuver- 

3. Hub size must be kept at a minimum in order to reduce weight and hub drag. 

4. Optimum tailoring of the pitchcase, snubber/damper and inplane flexbeam deformation must 

5 .  The flexbeam must be able to endure peak loading from high g maneuvers as well as endurance 

6. Flexbeam design criteria are influenced by rotor shaft/mast/hub impedance characteristics. 

ability and dynamic vibration. 

be obtained in order to maximize inplane damping. 

flight loads. 

PITCHCASE 

& 
i 

Figure (1) 
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Model Development 

At McDonnell Douglas Helicopter Company, the previous considerations have been integrated into 
a mathmatical procedure for design and optimization of advanced composite bearingless rotor 
systems. Because of the highly coupled structural and damping requirements of the flexbeam, 
it wag critical to include a representation of the pitchcase and snubber/damper, as well as the 
flexbeam, in the math model. Various alternatives can be proposed for formulation of such a 
problem: 

1. choice of flexbeam cross section 

2. choice of composite material type and configuration 

3. choice of hub attachment configuration 

4. choice of objective function and constraints for optimization routine 

(a) minimization of peak stresses due to flap, lag and torsion with a requirement on damper 

(b) maximization of rotor damping with upper bound contraints on stresses 
motion and hence rotor inplane damping 

Flexbeam Cross Section 

Jn an effort to simplify the beam design and fabrication, a comprehensive review of candidate 
cross sections waa conducted under a company IRAD*program . Geometries studied ranged from 
rectangular, cruciform and multiple “H” closed sections to multiple element open sections and 
elastomericly connected rectangular cross sections. 

Based on this review, a simple rectangular section was selected as the best overall configuration 
for the advanced flexbeam. In addition to the efficient load carrying capability, the relatively 
straightforward rectangular configuration offered advantages of simplified fabrication resulting in 
lower production costs, superior quality control, and simplified inspectability. 

Composite Material Selection 

The composite material selected for the advanced flexbeam was S-2 fiberglass impregnated with a 
350 deg F cured “toughened resin” epoxy system. The resin system was selected based on the results 
of an extensive study of candidate systems conducted under other McDonnell Douglas Helicopter 
Company IRAD programs. 

The S-2 fiberglass provides improved compressive stress margins and reduces long term enviromen- 
tal degradation concerns associated with the previously selected Kevlar material. 

lnternal Research and Development * 
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Hub Attachment Configuration 

Flexbeam design criteria are influenced by rotor shaft/ mast/hub impedance characteristics. A 
relatively soft rotor mast mount can significantly modify a flexbeam’s effective flapping hinge offset 
and bending requirements. An inhouse analysis has indicated that a softer mount can result in an 
increased level of airframe vibration and the need for vibration suppression systems. 

The Helicopter Advanced Rotor Program (HARP) flight test program demonstrated low vibra- 
tion characteristics for the initial composite flexbeams using the McDonnell Douglas Helicopter 
Company rigid mast system with no active or passive vibration control equipment required. The 
advanced beam design approach was also based on the proven rigid mast configuration. 

Objective Function and Constraints 

Significant progress has been made both by industry and the goverment in the study of flexbeam 
design over the past ten years. McDonnell Douglas Helicopter Company has kept abreast of this 
work and has incorporated the lessons learned both by ourselves and other investigators into the 
present math model. 

The primary goal in flexbeam sizing is to achieve the required rotor blade motions without exceeding 
the allowable stresses in the composite material. Simultaneous goals are to minimize flexbeam 
length, to achieve blade flap and lead-lag hinge offsets which provide suitable dynamics properties, 
and to obtain sufficient lead-lag motion a t  the snubber/damper for satisfactory dynamic response 
to cyclic loads. The criteria for blade motions include the maximum blade cyclic flap, lead-lag, and 
feathering motions seen in the flight envelope (the one hour condition), as well as endurance limit, 
static droop and start-up conditions. 

notor blade flapping, lead-lag and feathering motions acting in combination with the blade and 
pitchcase centrifugal force cause flexbeam deformations. The flexbeam must be so designed aa to 
allow these blade motions without exceeding the allowable stresses of the fiber composite of which 
it is constructed. Because blade motions have both steady and cyclic components, fatigue loads 
prevail and the fatigue strength of the composite material is critical for design. Therefore, the one 
hour and endurance limit flap, lead-lag, and torsional motions are applied to the flexbeam. The 
cyclic stresses which the one hour motions cause should not exceed the corresponding one hour 
fatigue allowables of the composite material. Similarly, cyclic stresses due to endurance limit loads 
should not exceed endurance limit fatigue allowables. In addition, criteria for the blade motions 
include static droop and start-up torque conditions. These goals, taken together, are used in sizing 
the flexbeam in lieu of a complete fatigue life analysis covering the full operating spectrum of the 
helicopter. 

The objective function selected for the advanced beam was minimization of stresses due to a critical 
combination of flap, lead-lag and torsional deformation. In addition, a displacement constraint is 
imposed for adequate damper motion to satisfy the dynamic requirements. 
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Theoretical Background 

The conventional finite element method is not applicable in the case of an elastic structure under- 
going high angular motions. This is of interest because numerous structural configurations such 
as spinning helicopter blades, satellites, rotating flexbeams, shafts and linkages fall into this cate- 
gory. The analysis of these rotating structures differs from that of stationary structures due to the 
complexity of the accelerations which act throughout the system. In addition to the accelerations 
resulting from elastic structural deformations, contributions due to Coriolis and centripetal accel- 
eration may be of significance. Also, the stiffness characteristics of the structure may be modified 
by the internal loads induced by the centrifugal forces. The finite element formulation given in this 
section includes all these effects in a uniform general formulation. 

The variational principle useful for problems in dynamics is Hamilton's principle. The functional 
for this principle is the Lagrangian, L, defined as 

where T is the kinetic energy, U is the strain energy, and V is the potential of the applied loads. 
The strain energy density may be expressed as 

where C is the material elastic matrix. The potential of the applied loads, V ,  may be expressed as 
the sum of the potential of the body forces and surface tractions as 

where is the body force vector, u is the displacement vector, and T' is the vector of surface 
tractions. The second integral is over the surface of the body on which the surface tractions are 
prescribed. 

The total kinetic energy density is defined as 

1 
2 

dT = -pVTVdV (4) 

where p is the density of the material and V is the absolute velocity of a particle in the element as 
given by 

v = VRjg + u + Gu ( 5 )  
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Here, VRB is the velocity of the particle due to frame motion, u is the vector of elastic deformations, 
and w is the angular velocity of the element coordinate system. Substitution of equation ( 5 )  into 
(4) gives 

T - - .  1 
2 

+ - p(uTL;ru - uT&U - u wwu)dV 

The first term in equation (6) is the kinetic energy due purely to frame translation. This term will 
be deleted since frame motion is assumed to be entirely prescribed. The second term represents 
the kinetic energy due to elastic deformations only. The third term is the energy due to frame 
rotation, and the fourth term gives the forces due to coupling between frame translation, elastic 
deformations and frame rotation. 

Using equations (2), (3) and (6), the functional in equation (1) may be expressed in the following 
form: 

L = - J p (ti!"& + tiT3u - u*~iti - U~GGU)  dV 
1 
2 v  

11 aTCedV 
2 v  

The statement of Hamilton's principle is as follows: Among all possible time histories of displace- 
ment configurations which satisfy compatibility and the constraints or kinematic boundary condi- 
tions and which also satisfy conditions at  times t l  and t 2 ,  the history which is the actual solution 
makes the Lagrangian functional a minimum. This principle may be expressed mathematically as 

b l :  Ldt = 0 

Application to the Finite Element Method 

Most problems are too complex to use energy principles to obtain the exact solution directly. 
The usual technique is to guess, a priori, a trial family of solutions for the unknown quantity in 
order to construct a variational functional. We therefore choose an approximate pattern for the 
trial solution and apply the energy principles to the approximate functional to obtain the equations 
necessary to find the approximate solution. In the theory of the finite element method for structural 
analysis, once the proper variational principle has been selected for the given problem, we express 
the functional involved in terms of approximate assumed displacement functions which satisfy the 
geometric boundary conditions. We then minimize the approximate functional using equation (8) 
to obtain a set of governing equations. 
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General Displacement Models 

The basic philosophy of the finite element method is piecewise approximation. That is, we approx- 
irriate a solution to a complicated problem by subdividing the region of interest and representing 
the solution within each subdivision by a relatively simple function. In the displacement method of 
structural analysis, the structure or body is divided into finite elements. Then, simple functions are 
chosen to approximate the displacements within each element. These functions are called displace- 
ment models, displacement functions, displacement fields, or displacement patterns. A polynomial 
is the most common form of displacement model used for two principal reasons. First, it is easy to 
handle the mathematics of polynomials in formulating the desired equations for various elements 
and in performing digital computation. In particular, the use of polynomials permits us to dif- 
ferentiate and integrate with relative ease. Secondly, a polynomial of arbitrary order permits a 
recognizable approximation to the true solution; however, for practical purposes we are limited to 
one of finite order. By truncating an infinite polynomial at different orders, we clearly vary the 
degree of approximation. 

A n  exact solution for the displacement u(z )  is then approximated by various degree polynomials 
of the general form 

u(x) = CY1 1- cy22 + a3x2 + * * * + an+lzn (9) 

, The greater the number of terms included in the approximation, the more closely the exact so- 
lution is represented. In equation (9), the coefficients of the polynomial, the a ’ s ,  are known as 
gcrieralized coordinates or generalized displacement amplitudes. The number of terms retained in 
the polynomial determines the shape of the displacement model, whereas the magnitudes of the 
generalized coordinates govern the amplitude. These amplitudes are called generalized because 
they are not necessarily identified with the physical displacements of the element on a one-to-one 
basis; rather, they are linear combinations of some of the nodal displacements and perhaps of some 
of the derivatives of displacements at the nodes as well. The generalized coordinates represent the 
minimum number of parameters necessary to specify the polynomial amplitude. 

Equation (9) can be expressed in vector form as 

u(x) = t$TCY 

where 
t$ = { 1xx2x3 - - * xn}T, 

The degrees of freedom can thus be related to the generalized coordinate system by employing the 
displacement model. We can evaluate the generalized displacements at the nodes by substituting 
(,lie iiodal coordinates into the model. For example, using a model of the form given by equation 
(IO), we may write, for a single node point 

24 1 



where u is the vector of degrees of freedom for a single node; or, for the entire element, 

u(node1) 4 (nodel) 
x = (  u(n.ofe2))- [ 4( node2) ... ] a = A a  

u( nodeN,,) 4(nodeNn) 

where N,, is the total number of nodes for tohe element, being considered, x is the vector of nodal 
degrees of freedom, and the notation in parentheses indicates that the dependent variables are 
assigned their values at the particular node. We may invert equation (12) to get 

a = A-'x (13) 

where A-' is a displacement transformation matrix. Note that A is a square matrix, hence, the 
total number of generalized coordinates equals the total number of joint and internal degrees of 
freedom. Equation (13) may then be used to eliminate the generalized coordinates to obtain 

u = $A-'x = N x  (14) 

which expresses the displacements u at any point within the element in terms of the displacements 
of the nodes 5.  

Since the derivations of the element matrices are performed in the a coordinate system, we fur- 
ther develop the necessary relationships in terms of the generalized a coordinates rather than the 
physical x coordinates. 

The strains are expressed in terms of some combination of the derivatives of the displacements u. 
Since the generalized coordinates ar are not functions of the spatial coordinates, these derivatives 
must be performed in terms of the matrix 4. If E is the vector of the relevant strain components 
at an arbitrary point within the finite element, we use the strain-displacement equations and the 
displacement model to write 

It is  important to note that for geometrically nonlinear problems E and B, are functions of the 
independent space coordinates as well as functions of the generalized coordinates. Decomposing 
these quantities into linear and nonlinear parts, we have 

l and therefore, 
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If 0 is the vector of stresses corresponding to the strains e, we may use an appropriate matrix form 
of the stress strain equations and equation (15) to write the element stresses as 

u = CB,a 

where C is the matrix of material constants given by equation (3). 

Variational Formulation of Element Matrices 

As discussed above, the method used here for calculating the element matrices and load vectors is 
the application of Hamilton's principle. Therefore, we develop the Lagrangian given in equation (7) 
in terms of the CY generalized coordinates and apply equation ( 8 )  to obtain the element equations 
in terms of the generalized coordinates and shape functions. 

In order to formulate the Lagrangian in terms of the generalized coordinates, we insert equations 
(11), (15) and (18) into equation (7) to obtain 

aTBzCB,adV 

-:/ p (hTJd& + hTB2a - aTB2& - aTBla)  dV 
2 v  

-- 1 / p (VzB4iY + h T 4 T V ~ ~  + VzB&ja - CY T 4 T - v  w R B )  dV 
2 v  

- aT$TXdV - aTg5TpdS 

and 
B2 = dT&d 

Applying the variational principle given by equation (8), we obtain 
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where the matrix B, arises from the variation of the nonlinear part of the matrix B, which is a 
function of the generalized coordinates a. The Z t h  row of the matrix B, is given by 

~ 

for i = 1,2, -. - ,12. Integration of the terms in equation(22) by parts with respect to time gives 

Since the variations of the generalized displacements, 6a, are arbitrary, the sum of the expressions 
in parentheses must vanish. Therefore we obtain the equations of motion for the element as 

I where Ma is the consistent mass matrix defined by 

C" is the damping matrix due to frame motion it9 given by 

l and K" is the element stiffness matrix in terms of a coordinates as given by 

Ka = /Y(B:CB, + B,)dV + / V p ( B l +  &)dV (28) 

The first integral in the above equation is the stiffness due to strain energy and will be referred to 
as K,". The second integral is the stiffness due to frame motion to be referred to as Kk.  Recall 
from equation (17) that B,  is comprised of linear and nonlinear parts. Then the stiffness due to 
strain energy, K,", may be decomposed into linear and nonlinear parts to give 
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The stiffness matrix resulting from the first three terms in equation (30) is known as the large 
displacement matrix. The Stiffness matrix arising from Bo is dependent on the stress level and is 
known as the initial stress matrix, Ref. (1). 

Finally, the load vector, Fa, is defined by 

Displacement Models for a Beam Element 

Having formulated the expressions for the element matrices and loads in terms of the general shape 
fiinctions, the next step is to choose the displacement models that will approximate the solution 
for the problem at hand. A flexbeam is a cantilever beam under tension. For a beam element, 
axial, lateral and torsional deformations are of interest. To approximate the deformation field in 
a flexbeam, the polynomial shape function of equation (9) is truncated to obtain the approximate 
representation of the true axial, bending and torsional displacements. 

Linear and cubic shape functions are used to express the displacements of the beam in terms of the 
a generalized coordinates. For axial deformations due to axial forces, the following linear shape 
function is employed: 

This shape function satisfies rigid body motion, constant strain states conditions and the compat- 
ibili ty conditions. 

For deformations due to bending about the y and z axes, the following cubic shape functions are 
used: 

where ub is the displacement due to bending about the z axis and wb is the bending displacement 
about the y axis. These shape functions are also compatible and complete. The compatibility 
conditions at the ends of the element are met on displacements as well as the slopes. 
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For deformations due to torsion, the following linear shape function is used 

e = all + a12t (35) 

With the above shape functions, and the general expressions for the element matrices given by equa- 
tions (26) to (28) and (31), the element matrices can be easily obtained via a symbolic manipulation 
program such as SMP. 

Having the element matrices constructed, the assembly and the solution of the equations of motion 
are a routine matter. 

Simplification of Equations of Motion 

Element matrices given by equations (26) to (30) can be further simplified for the flexbeam appli- 
cation. We start with equation (28), the second integral, which represents the softening effect of 
the frame rotation on the element stiffness matrix. This term is usually small compared to the first 
integral if the rotor angular velocity is not close to one of the structural natural frequencies. For 
flexbeam design, it is small if the rotor angular velocity is not close to the first lead-lag frequency of 
the nonrotating flexbeam. Neglecting this term will make the model stiffer than the real flexbeam, 
and hence will make the prediction of stresses more conservative. 

The second set of terms which can be neglected in the flexbeam design is the first three integrals in 
equation (30). These integrals represent the effect of large rotations on the equilibrium equations 
of the flexbeam. For angles smaller than 15' this term is much smaller than the structural stiffness 
.K:( and the centrifugal stiffness B,. In a flexbeam design this term can also be neglected, resulting 
in more a conservative design. 

Finally, the calculation of the centrifugal stiffness matrix, B,, can be simplified by noting that most 
of the CF force is caused by the weight of the blade and the pitchcase. Since the weight of the 
flexbeam is negligible compared to the weight of the blade and the pitchcase, we can assume that 
the CF force remains constant throughout the length of the flexbeam. The magnitude of this force 
can then be calculated separately and used as input to the program. This will eliminate the extra 
calculations otherwise needed to compute this force and hence results in saving computational time. 



Equivalent Flex b eam Composite Properties 

The composite properties of the flexbeam in the principal material directions can be obtained using 
the Halpin-Tsai equations of Ref.(2) as follows: 

where 

El = composite Young’s modulus in fiber direction 

E2 = composite Young’s modulus pependicular to the fiber direction 

GI2 = composite shear modulus 

v12 = composite Poisson’s ratio 

E, , E, = Young’s moduli of fiber and matrix, respectively 

G, , G, = shear moduli of fiber and matrix, respectively 

uf , v, = Poissons’s ratio of fiber and matrix, respectively 

( = fiber volume fraction 

Rigid Constraint Element 

For bearingless rotor flexbeam design, a pitchcase model is required. One might attempt to use a 
stiff beam element for the pitchcase model; however, a stiff beam will result in an ill-conditioned 
stiffness matrix. Since a kinematic constraint involves a relationship between degrees of freedom, 
the correct approach is that of employing a multipoint constraint. 

For large angular motion constraints between the degrees of freedom of an element, ideally a 
nonlinear constraint relationship is required. However, in flexbeam design, the angular rotations of 
flexbeam and pitchcase are small, and hence a linear constraint is sufficient. 
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To derive the rigid constraint element which will be used to represent the pitchcase, consider two 
node points A and B ,  which are connected by a rigid link. The rotational degrees of freedom of 
nodes A and B are 8 A  and OB,  respectively. Similarly, the displacement degrees of freedom are U A  

a.nd uB. Assuming a rigid member between the two nodes, the displacements and rotations of node 
B can then be expressed in terms of the displacements and rotations of node A as 

- 
u1- 
u2 

u3 - 
81 
92 

. e 3 - E  

an d 

'1 0 0  0 L, L, - -  U1 - 
0 1 0 -L ,  0 L, u2 
0 0 1 L, -L ,  0 u3 

- 0 0 0  1 0 0  81 
0 0 0  0 1 0  8 2  
-0 o o o 0 1  - - 9 3 - A  

(42) 

where rBA is a vector from node A to node B the magnitude of which is the length of the rigid 
member. Writing the vector cross product in matrix form, we obtain 

This, then, is the constraint equation relating the degrees of freedom of the outboard end of the 
flexbeam to the degrees of freedom of the snubber/damper element. 

HUBFLEX Mat hema t ical Model 

Using the mathematical formulations presented earlier, a finite element computer program called 
IIUBFLEX was developed. This computer program is tailored specifically for the analysis of 
flexbeams with rectangular cross sect ions. 

ITUBFLEX is a finite element analysis model for a cantilevered beam under centrifugal force. The 
rxiodel permits rapid calculation of spanwise load and stress distributions for a specific geometry 
flexbeam with specified material properties, centrifugal force, and modal deflections. The analysis 
has been validated against two- and three-dimensional NASTRAN models of equivalent beams, and 
has shown excellent correlation. Spanwise stress distributions can be calculated with HUBFLEX 
in less than 10 seconds CPU time on a Digital Equipment Corporation VAX 11/785. Substantial 
economies in the study of new designs are thus realized. 

Analytically, HUBFLEX treats the flexbeam as fixed at  the inboard end of the rotor mast. At 
the outboard end, radial tension, bending moments, shears, and torque are applied. The beam 
is a sta,tically indeterminate structure in that the elastic/cross sectional properties influence the 
load distribution. When any section of the beam is modified, a complete iteration is required to 
determine the new load and stress distribution along the beam. 

248 



The IlUBFLEX model utilizes the stiffness matrix method presented earlier to solve for flexbeam 
load distributions. Tension beam effects are modeled using centrifugal stiffening terms in each 
element, Bo in equation (28). The effect of the pitchcase redundant load path is modeled by 
a rigid element, equation (42), attached to the flexbeam at the outboard end and attached to 
the flexbeam at the inboard end by a snubber/damper of given stiffnesses in the flapwise and 
chordwise directions. In the chordwise direction, the spring stiffness corresponds to the stiffness of 
the damper pads. In flap, the spring rate is equal to the stiffness of the snubber corrected for the 
pitchcase flapwise flexibility. The pitchcase is rigidly attached to the flexbeam at its outboard end. 
Inputs to the program include section element definition, flexbeam geometry, material properties, 
applied loads, and the desired deflections/rotations at the blade attachment point. The input forces 
and moments represent those applied to the flexbeam by the blade spanwise moment and shear 
distributions. The shear to moment ratios at the blade attachment have a powerful influence on 
the flexbeam deflected shape and are determined separately in an iterative procedure. They are 
coritinually updated as the configuration evolves. The spanwise load and stress distribution results 
include the effect of combined loadings associated with the relative phasing of the flap, chord, and 
torsion motions. As with the shear to moment ratios, the phasing has a powerful influence on the 
final results especially for the critical shear loads due to combined normal bending and feathering. 
The phasing relationships were defined using an aeroelastic analysis (DART) and were verified by 
the HARP flight test results. 
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HUBFLEX/ADS Computer Program 

The HUBFLEX finite element model was initially used to study flexbeam geometries that were 
established by engineering judgment. Because of the indeterminate nature of the problem and 
the millions of possible geometry variations which could be developed, engineering judgment was 
deemed inadequate to quickly define an optimum (lowest stresses) configuration. In addition, 
an optimum configuration for one specific flight condition, such as cruise flight, was significantly 
different from a configuration which would produce minimum stresses in a maneuver condition. To 
address this problem an optimization routine called ADS (Automated Design Synthesis), Ref. (3), 
was added to the HUBFLEX analysis program. The routine permitted holding certain parameters 
of the design fixed or within specified bounds while freeing other variables to achieve a minimum 
stress distribution along the length of the beam. A further enhancement was added by providing 
for the weighted optimization of several flight conditions simultaneously. A block diagram of the 
optimization procedure is provided in Figure (2). 

I 

I 

CONFIGURATION 

REQUIREMENTS 
-HUB, PITCHCASE, ETC. 

-MOTIONS, CF 

MATERIAL PROPERTIES 

INITIAL DESIGN 
-E, G, ETC. 

-WIDTH, THICKNESS 

* I FEM HUBFLEX MoDELl OPTIMUM DESIGN 

.) YES 

RESULTS I 
-SPAN W ISE STRESSES 
-HINGE OFFSETS 
-DAMPER MOTION 

-MINIMIZE MAXIMUM SPANWISE 
COMBINED STRESSES 

I CONSTRAINTS 
-EFFECTIVE HINGE OFFSETS 
-DAMPER MOTION/DEGREE LAG 
-UPPER AND LOWER BOUNDS 
ON DESIGN VARIABLES b AND t 

7 5  CONTROL 

t 
IMPROVED 

DESIGN 

OPT1 MlZER 
-SENS. ANALYSIS 

AUTOMATED DESIGN SYNTHESIS (ADS) 

Figure (2) 



I n  practice, the optimization program was used to minimize the maximum stresses (normal and 
shear) caused by maximum maneuver and endurance motions. Design variables were the dimensions 
of the beam element, with upper and lower bounds established for manufacturing feasibility. The 
required damper motion per degree lag motion was selected as a constraint in the optimization 
process. 

The results of this work led to the highly tailored design configurations established for three different 
flexbeams for three different helicopters. These are, ACH (Advanced Composite Hub), advanced 
HARP and most recently, the MDX’flexbeam. The advanced HARP flexbeam was designed in 
less than a week (the old HARP‘flexbeam took more than 6 months), while it took only half a 

for advanced HARP to half a day for the MDX flexbeam was purely due to postprocessing of the 
I day to design a flexbeam for the MDX main rotor. The reduction of design time from one week 

optimization results. The postprocessing of the advanced HARP flexbeam results was carried out 
by hand and relied upon engineering judgment, while the postproccessing of the MDX flexbeam 

I 

I 
I 

optimization results was done by computer and hence human factors and consequently excessive 
time was removed completely’ from the optimization process. 

In general, it was found that the endurance level flight condition dictated the geometry of the 
outer portion of the beam where high cycle shear stresses were most critical. The low-cycle high g 
maneuver condition dictated the beam geometry of the inboard end due to high normal stresses. 

Among the three optimized flexbeams, the advanced HARP is the only one which has been fabri- 
cated and successfully tested in fatigue as well as in the Duits Nederlandse Windtunnel (DNW). 

Optimization Results 

The finite element optimization program HUBFLEX/ ADS was used to optimize the advanced 
HARP flexbeam. The composite material selected for the advanced beam was S2-Glass fiber and 
t.he matrix waa Epoxy. The maximum combined normal and/or shear stresses for the one hour 
ftight conditionas well as endurance were selected as the objective function. To achieve at least 
3% critical damping, a damper motion of 0.1 inch per degree lag was required. Therefore a lower 
constraint was put on the damper motion. In addition to this active constraint, to insure the 
continuity of fibers, a set of constraints was put on the beam cross sectional area variation over 
the lcngth of the beam such that the area was required to either decrease or remain constant, but 
was not allowed to increase from inboard to outboard. In addition to these constraints, lower and 
upper constraints were imposed on the dimensions of the beam element, based on manufacturing 
reqiiirements. 

.k 
McDonnell Douglas (X) 

25 1 



The HUBFLEX/ADS computer program was used to optimize the advanced beam based on the 
above optimization statement. A comparison between the initial design and the optimum design for 
the advanced beam is shown in Table( I) .  As can be seen in this table, it took more than 6 months to 
design the old flexbeam with unacceptable stresses. However with the HUBFLEX/ADS program, 
an acceptable configuration was obtained in a week, with acceptable stresses. The damper motion 
per degree lag, the hinge offsets in flap and lag directions, and the corresponding first frequencies 
for both the old and the advanced beams are acceptable as shown in the table. The alternating 
angles for which the old and the advanced beams were designed are also shown in the table. 

A three-dimensional view of the advanced beam is shown in Figure (3). As seen in the figure, the 
variations of width and thickness are such that the geometric area of the beam section is always 
decreasing or is constant. This particular requirement insures the continuity of the fibers. 

Table( 1) 

PARAMETER 

Time to design 
configuration 

Normalized 
max combined 
normal stresses 

Normalized 
max combined 
shear stresses 

Damper motion 
per deg. lag 

2 x 100 

k x 100 

Yl! 

w< 
n 

D 

s 

"OLD" HARP 

6 mo. 

1.70 

0.96 

0.18 

5.3 

24.8 

1.06 

0.61 

6.8 

2.0 

11.5 

NEW HARP 

1 wk. 

1.04 

1.03 

0.16 

4.2 

15.6 

1.04 

0.50 

6.8 

2.0 

11.5 8 

.' 

, 

Figure (3) 
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HUBFLEX/NASTRAN Comparison 

In the development stage, the HUBFLEX program was validated against 2-dimensional and 3- 
dirriensional equivalent beam NASTRAN models and showed excellent correlation. 

For the advanced HARP program, an additional level of verification was obtained by creating 
a 3-dimensional nonlinear anisotropic solid element NASTRAN model of the detaile4 flexbeam 
structure. The model wm constructed using 3048 &noded (d’ctahedroi$md 8 6-noded (hexahedron) 
solid elements incorporating over 12,000 degrees of freedom, Figure (4). The snubber damper 
centering bearing waa rigidly attached to the flexbeam using constraint equations. The chordwise 
and flapwise damper stiffnesses were represented by elastic springs and attached to a rigid element 
pitchcase. The inboard end of the flexbeam waa rigidly constrained. The outboard blade attachment 
location was multipoint constrained to allow loads and the pitchcase attachment to be applied at a 
single centerline grid point. 

The detailed nonlinear model waa run for flap, lead-lag and feathering one hour flight motions 
using MSC/NASTRAN’e geometric nonlinear solution 64 (whose algorithm is an extension of the 
differential stiffness approach, Ref (4)). The CF loading waa applied in the linear elastic step 
and then combined with the corresponding flap, lead-lag and feathering loading in the following 
differential stiffness step. The combined loading was then taken through one additional nonlinear 
interation for an improved solution. Computation time for each run amounted to 8 hours of CPU 
time running on a VAX 11/785. 

The primary loading condition of interest was lead-lag where the HUBFLEX program approximates 
the chordwise stiffness of the split leg/shear web section of the flexbeam by an equivalent ‘I’ beam 
momeril of inertia. 

Figure (4) 

OR~GINAL PAGE 
BLACK AND WHITE PtjOTOGRAPH 

253 



In order to compare with the HUBFLEX output of spanwise displacements, a set of grid points 
on the centerline of the flexbeam was selected to represent the overall deformation. For the com- 
parison of spanwise normal stress distributions, element stress peak values obtained within the 
corresponding cross section location were used. 

Correlation of chordwise loading indicated that the HUBFLEX chordwise stiffness approximation 
produced a stiffer beam resulting in conservative peak stress values that were approximately 10 
percent higher than thoseof the detailed solid element model. A comparison of the chordwise 
displacement and spanwise stress distribution is provided in Figures ( 5 )  and (6). 

For the trivial flapwise and feathering loading cases, correlation was excellent as expected. Peak 
stress values were typically 3 to 5 percent higher for the HUBFLEX model. Figures (7) and (8) 

I demonstrate this correlation for the flapwise loading case. 
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Conclusions 

1. Pitchcase and snubber damper representations are required in the flexbeam model for proper 
sizing resulting from dynamic requirements. 

in an improved design. 

3. Tnclusion of multiple flight conditions and their corresponding fatigue allowables is necessary 
for the optimization procedure. 

4. A simplified beam model is adequate for flexbeam sizing. The simplified model gives excel- 
lent accuracy (compared to a detailed 3D nonlinear NASTRAN analysis) with a significant 
reduction in computational time. 

5 .  IIUBFLEX’s rapid computation capability enables design parameters to be easily modified 

2. Optimization is necessary for flexbeam design. It reduces the design iteration time and results 

and implemented. 
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