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PREFACE

This publication contains papers presented at the Second NASA/Air Force Symposium
on Recent Advances in Multidisciplinary Analysis and Optimization held September
28-30, 1988 in Hampton, Virginia. The symposium was cosponsored by NASA Langley,
NASA Lewis, and the Wright Research Development Center. The meeting was attended
by 195 participants, with 41% from industry, 35% from academia, and 24% from
government organizations.

The aim of the symposium was to provide a forum for researchers, software developers,
and practitioners of multidisciplinary analysis and optimization to learn of the
latest developments and to exchange experiences in this burgeoning field of
engineering,

Ninety-two papers were presented (83 of which are published here). Of the papers
originally presented, 58% discussed method development, 30% applications, and 12%
software development or implementation. Most (72%) of the contributions to the
symposium were strictly multidisciplinary. There were 15 papers dealing with the
combination of structures and control systems, 10 with aerocelastic problems, and 5
with aeroservoelastic problems. Eight papers dealt with generic developments in
multidisciplinary design. The keynote address was a review of the role of knowledge-
based systems in analysis and optimization.

The papers are grouped by sessions and are identified in the Contents. Papers were
edited to conform to the technical standards set by NASA for conference publications.
A list of addresses of all registered participants is included.

Jean-Frangois M. Barthelemy
Technical Program Chairman
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INTRODUCTION

ASTROS (Automated STRuctural Optimization System) is a finite-element-
based multidisciplinary structural optimization procedure developed under Air
Force sponsorship to perform automated preliminary structural design. The
design task is the determination of the structural sizes that provide an
optimal structure while satisfying numerous constraints from many disciplines.
In addition to its automated design features, ASTROS provides a general
transient and frequency response capability, as well as a special feature to
perform a transient analysis of a vehicle subjected to a nuclear blast.

The motivation for the development of a single multidisciplinary design
tool (Figure 1) is that such a tool can provide improved structural designs in
less time than is currently needed. The role of such a tool is even more
apparent as modern materials come into widespread use. Balancing conflicting
requirements for the structure'’s strength and stiffness while exploiting the
benefits of material anistropy 1is perhaps an impossible task without
assistance from an automated design tool. Finally, the use of a single tool
can bring the design task into better focus among design team members, thereby
improving their insight into the overall task.

OBJECTIVES

e AN AUTOMATED TOOL FOR
PRELIMINARY STRUCTURAL DESIGN

e EMPHASIZE INTERDISCIPLINARY FEATURES
OF THE DESIGN TASK

e PROVIDE A NATIONAL RESOURCE

PAYOFFS

e IMPROVED COMMUNICATION AMONG DESIGN TEAM MEMBERS
e IMPROVED DESIGN
e REDUCED DESIGN TIME

Figure 1
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ENGINEERING DISCIPLINES

At the core of the ASTROS engineering disciplines (Figure 2) is finite-
element structural analysis. This central analysis discipline is augmented by
steady aerodynamic loads analysis, unsteady aerodynamics and aeroelastic
stability analysis, as well as a limited control response capability. 1In
addition, the automated design features of ASTROS include an analytical
sensitivity analysis for the available design constraints and a battery of

optimization methods.

The development of the ASTROS system has been predicated on the use of
existing software resources whenever possible. The NASTRAN (Ref. 1) system
has served as the most substantial resource for the ASTROS development
although in many cases, it proved expedient to program the NASTRAN algorithm
rather than modify the NASTRAN code and, in all cases, substantial
modification of the NASTRAN software was required. USSAERO (Ref. 2) and
MICRO-DOT (Ref. 3) played a similar role for the steady aerodynamic analysis
and optimization methods, respectively, although fewer modifications were made
to integrate them. In addition to these software resources, earlier automated
design systems served to guide the design of the ASTROS system in the area of
multidisciplinary optimization. Most notable among these are the TSO (Ref. 4)
and FASTOP (Ref. 5) systems.

AEROELASTIC STABILITY

SENSITIVITY ANALYSIS
) H OPTIMIZATION TECHNIQUES

CONTROL RESPONSE

Figure 2
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STRUCTURAL ANALYSES

The structural analyses in ASTROS (Figure 3) include statics, normal
modes, transient response and frequency response using either modal or direct
coordinates. The statically applied loads can be composed of any combination
of mechanical (i.e., discrete forces, moments and pressures), gravitational or
thermal loads.

In addition to the structural analyses, the steady aerodynamic loads
capability in ASTROS is used to generate aerodynamic loads and aeroelastic
corrections which are then used to perform symmetric or antisymmetric
aeroelastic trim analyses. Finally, a pair of unsteady aerodynamics analyses
is used to provide a p-k flutter analysis capability. The subsonic unsteady
aerodynamics uses the Doublet Lattice Method (DLM) (Ref. 6) while the
supersonic aerodynamics uses the Constant Pressure Method (CPM) (Ref. 7) The
unsteady aerodynamics analyses are also used to provide harmonic gust loads
for the frequency response and to provide frequency dependent aerodynamic
forces for the nuclear blast analysis.

{
- > //-'
A~

SO

THERMAL

STATIC ANALYSIS LOADS

MAGNITUDE (dB)
1
g

9ol — L L1
0 200 400 600 800 1000

EIGENVALUE ANALYSIS FREQUENCY (Hz)
DYNAMIC ANALYSIS

Figure 3
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DESIGN PARAMETERS

The local or physical design variables in ASTROS (Figure 4) are such that
the stiffnesses and masses are linear functions of the design variable. For
the bar, this requires that the bar area and inertia be coupled by a user
specified relationship and that the bending and extensional behavior be
treated separately. ASTROS supports three methods of design variable linking,
in which the physical variables are linked to global variables that are
actually used in the redesign process. The linking schemes include unique
linking and physical linking, in which the global variable controls one or
more local variables, and shape function linking in which each local variable
is a linear combination of several global variables. 1In the latter case, the
global variables are weighting factors on a "shape" such as a linear taper or
a uniform thickness distribution.

The design constraints in ASTROS are standard for an aerospace structural
design task and include stress, strain and displacement constraints for
statics and/or static aeroelastic disciplines, modal frequency constraints for
a normal modes analysis, aeroelastic effectivenesses for the steady
aeroelastic analysis discipline and flutter constraint for the aeroelastic
stability analysis. Any or all of these constraints types and any number of
each type may be combined in a single optimization run in order to achieve an
optimal design satisfying all the required design constraints.

DESIGN VARIABLES

® ROD AREAS

® SHEAR ELEMENT THICKNESSES

® MEMBRANE ELEMENT THICKNESSES
® BARS

® CONCENTRATED MASSES

CONSTRAINTS

® STRESS-STRAIN

® DISPLACEMENT

e MODAL FREQUENCY

® AEROELASTIC EFFECTS
— LIFT EFFECTIVENESS
— AILERON EFFECTIVENESS
— DIVERGENCE SPEED

e FLUTTER RESPONSE

Figure 4
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MULTIDISCIPLINARY OPTIMIZATION

The effective application of automated optimization methods to structural
design requires the simultaneous consideration of all conditions that are
critical in determining the final design. Figure 5 presents a schematic
diagram of the ASTROS program flow for the automated design task. It
indicates that there are three phases to the design task in ASTROS. In the
first phase, the required engineering analyses are performed for the current
design. Any number of boundary conditions may be applied and within each
boundary condition any number of disciplines (i.e., statics, normal modes,
etc.) may be analyzed. Further, any number of "subcases" (e.g., load
conditions or flight conditions) may be analyzed in each discipline. As
indicated in the figure, each of these analyses generate constraints that must
be satisfied for the design to be considered acceptable.

In the second phase, those constraints that are most critical for the
current redesign are chosen and their sensitivities computed. This constraint
screening process is desirable in order that the optimization remain tractable
while still capturing the critical design constraints. An important benefit
of such a step is that entire boundary conditions or disciplines may be
eliminated from the computationally intensive sensitivity evaluation.
Finally, in the third phase, the information on the objective function (which
is the weight in ASTROS) and the active constraints and their sensitivities
are used to perform a redesign to satisfy the constraints while minimizing the

objective function.

*** Sensitivity Phase ***

Select Active Constraints

For each Active Boundary Condition Do

*** Analysis Phase *** .
Active Discipline 1

: ~\ Active Subcase 1 —# Constraint Sensitivities
r For Each Boundary Condition Do Active Subcase 2 —p Constraint Sensitivities

Discipline 1
Active Discipline 2

Subcase1 ————& Constraints
Subcase2 ——— Constraints

.

. End Do
Discipline 2 . .
: ** Optimization Phase ***
\_End Do J Re-Design Based on Current Active Constraints

and Constraint Sensitivities

Figure 5
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AN ARCHETYPICAL ASTROS APPLICATION

The ASTROS system has been delivered to the Air Force and is available
for application to "real world" preliminary structural design problems.
Figure 6 shows one such problem that may be considered archetypical of the
problem for which the ASTROS procedure was developed. Given the structural
configuration and materials represented by a finite-element model and a set of
design requirements, the ASTROS procedure will determine the structural sizes
of the designed elements to minimize the weight of the structure while
satisfying the potentially numerous multidisciplinary constraints.

One should not limit ASTROS, however, by this single example. The true
potential for an optimization system such as ASTROS lies in its ability to
generate additional information that allows a rapid assessment of the quality
of competing design concepts through the comparison of "optimal" solutions.
In addition, ASTROS enables the designer to accommodate conflicting
constraints at a much earlier stage in the design cycle, thereby avoiding
potentially serious conflicts later. Finally, the use of formal optimization
in the preliminary design enables the designer to develop nonintuitive
solutions to the complex interdisciplinary design problems that can occur in
modern aerospace structural design.
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GIVEN:
STRUCTURAL CONFIGURATION
MATERIAL PROPERTIES
DESIGN FLIGHT CONDITIONS
DESIGN ALLOWABLES

DETERMINE
THICKNESSES OF DESIGNED ELEMENTS

OPTIONALLY — MASS BALANCE VALUES

POSSIBLE DESIGN CONSIDERATIONS
MULTIPLE BOUNDARY CONDITIONS
MULTIPLE FLIGHT CONDITIONS
MULTIPLE STORE LOADINGS

Figure 6
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|
\ INTERMEDIATE COMPLEXITY WING EXAMPLE - GEOMETRY

As an example of the ASTROS system, the Intermediate Complexity Wing
(ICW) problems that were developed to test the FASTOP system were duplicated
in the ASTROS system. These tests both confirm the accuracy of the ASTROS
system and serve to highlight the differences in the treatment of

multidisciplinary constraints in these two systems.

The ICW structural model, shown in Figure 7, uses quadrilateral and
triangular membrane elements to model the composite wing skins and shear
panels to model the substructure. Rod elements are used as posts to complete

the interconnection of the upper and lower surfaces. The model is
cantilevered at the root and all rotational degrees of freedom are constrained
at each node. The substructure material is modeled as aluminum, while the

wing skins are made of a graphite/epoxy composite.

No. of Nodes No. of Elements No. of DOF’'s
88 39 Rods 294 Constrained
55 Shear Panels 234 Unconstrained
62 Quadrilateral Membrane 528 Total
2 Triangular Membrane
158 Total

o2

Figure 7
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DESIGN REQUIREMENTS FOR THE INTERMEDIATE COMPLEXITY WING (ICW)

The design problem (Figure 8) minimizes the weight of the structure
subject to the material stress allowables and gauge constraints under two
static loads representing a subsonic and a supersonic air load and subject to
a minimum required flutter speed of 925 KEAS at Mach 0.80. To examine the
behavior of different design variable linking options, two different design
models were used in ASTROS. The first was developed to emulate the FASTOP
results and links the upper and lower skin surfaces for each ply orientation
(128 design variables), treats each spar element as a separate design variable
(23 design variables) and links all the posts and rib shear panels together as
two additional design variables for a total of 153 global design variables.
In the second linking scheme, the ASTROS shape function design wvariable
linking option was utilized. The shapes for each ply orientation for the wing
skin elements were uniform, a linear spanwise taper, a quadratic spanwise
taper and a linear chordwise taper with the upper and lower surfaces linked as
before (16 design variables). A uniform and a linear spanwise taper were used
for each of the three spars (6 design variables), and the posts and ribs are
linked as before for a total of 22 shape function design variables and two

physically linked design variables.

r N\
o FLUTTER CONSTRAINTS
V¢ < 925 knots
p = .0023769 slugs/it3
M = 080
e ISOTROPIC MATERIAL IN SUBSTRUCTURE
E = 105 x 10° psi p = 0.10 Ib/in3
v = 0.30 tmin = 0.02 in
O, < 67 ksi
Oc < 57 ksi
Ty S 39 ksi
e ORTHOTROPIC MATERIAL IN SKINS
Ey = 185x 10° psi Vi = 025 P = 0.055 Ibfin°
E, = 16x105 psi Gyp = 065 x 10° psi tin = 0.00525 in
X =Xg =Y =Yg =115 x 10%ps
S < 10x10"
Y J
Figure 8
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ICW STRENGTH DESIGN RESULTS

Figure 9 presents the ply counts for the final strength design obtained
from FASTOP, ASTROS using "FASTOP" design variable linking (labeled "153" in
the figure) and ASTROS with shape function linking (labeled "ELIST" in the
figure). As expected, the final material distribution for ASTROS and FASTOP
using identical design variable linking are very similar despite the use of
mathematical programming methods in ASTROS and fully stressed design methods
in FASTOP. The final objective function values do not compare as well but the
ASTROS objective function represents a design with continuous design variables
while FASTOP rounds up to the next whole ply prior to the objective function
computation. In general, however, the agreement between ASTROS and FASTOP for
this case gives confidence that the ASTROS system is functioning properly.

The shape function results are interesting in their own right even though
it is not directly comparable to any external results. In this case, the
limitations imposed by using shape functions results in the optimizer’s
selection of all zero degree fibers to satisfy the stress constraints with all
other orientations going to minimum gauge. This result is illustrative of an
"optimal" solution given external constraints like manufacturing limits or
limits in the rates of ply drop-off. Further, compared to the FASTOP linked
result, it clearly represents a radically different method of addressing the
same set of physical constraints.

(0,90,+45,-45) FASTOP ; OBJ = 373
- ASTROS 153 ; OBJ = 322
ASTROS ELIST; OBJ = 348

Figure 9
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ICW STRENGTH/FLUTTER DESIGN RESULTS

Figure 10 presents the ply counts for the same three final designs
obtained for the combined strength and flutter optimization. Unlike the case
where the strength constraints were considered alone, there is 1little
agreement between FASTOP and ASTROS in the resultant final design. The ASTROS
result is significantly lighter even when the restrictive shape function
variables are wused. There are several possible explanations for the
differences. First, and most important, is that ASTROS treats the strength
and flutter constraints simultaneously at each iteration; whereas, the FASTOP
algorithm treats each constraint type sequentially and applies ad hoc move
limits on "flutter critical" and "strength critical" elements in between each
cycle. It is known that such an algorithm does not necessarily lead to an
optimal solution. A second important factor is that the two systems use
different methods to couple the aerodynamic and structural deflections and
may, therefore, produce different flutter results for the same model. A
necessary check that has not been made is to analyze the ASTROS result in
FASTOP to see if it meets the flutter requirement. Finally, the objective
function computations are different due to the rounding to whole plies that
takes place in FASTOP at each cycle of the optimization.

(0,90,+45,-45) FASTOP ; OBJ = 440
ASTROS 153 ; OBJ = 333
ASTROS ELIST ; OBJ = 384

6,1,11,2
13,1,3,1
17,1,1,2

Figure 10
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SOFTWARE CONTRIBUTIONS OF ASTROS

While the software development in ASTROS depended to a large degree on
existing software systems, several noteworthy software contributions (Figure
11) were made in the course of the ASTROS development. Most importantly, an
architecture was designed that is suited to multidisciplinary analysis and
design. It includes a data base management system tailored to handle the
engineering data common to matrix structural analysis methods, as well as to
the design task. Another important contribution was the design of the ASTROS
executive system and its control language, MAPOL (Matrix Abstraction Problem
Oriented Language). Together, these provide nearly limitless flexibility in
the application of the ASTROS system to tasks not explicitly designed into the
procedure. Also important to the successful development of ASTROS was the
exploitation of modern computer environments to integrate the software
components developed by a dispersed development team and to manage the
resultant system. The flexibility offered by the microcomputer to tailor the
computer environment made the software management task tractable without a
great deal of effort on the part of the developers.

e Framework For Multidisciplinary Analysis and Design
* Engineering Data Base

» High Level Executive System

» Obsolescence of Rigid Formats

¢ Unlimited Problem Size

* Exploitation of Microcomputers

e Built In Maintenance Features

e Improved Special Purpose Ultilities

e Balanced Approach to Software Design

» Integration of Dispersed Development Team

Figure 11



ENGINEERING CONTRIBUTIONS OF ASTROS

In addition to its software contributions, ASTROS has made several key
engineering contributions (Figure 12). The first and most important is the
system’s ability to perform multidisciplinary design. This means a
simultaneous consideration of an unlimited number of constraints from a set of
disparate engineering analyses to obtain an "optimal" design that meets very
general design criteria. Included in this capability is an analytical
sensitivity analysis for all the constraint forms, the incorporation of
approximation concepts in a production optimization code and a number of
design variable linking schemes. All these features result in the tractable
optimization of large problems with many constraints from many disciplines.

Other engineering contributions include an innovative approach to the
treatment of flutter constraints which does not require the expensive
computation of the flutter speed and avoids the complex problems of tracking
multiple flutter branches. ASTROS also includes a public domain quadrilateral
bending plate element, incorporates improvements to dynamic reduction
techniques and has integrated advanced aerodynamics for nuclear blast response
analysis with finite-element structural analysis methods. Finally, ASTROS has
adopted an improved supersonic unsteady aerodynamic analysis (CPM) and has
included the computation of aerodynamic influence coefficients for the static
aeroelastic analysis.

* Multidisciplinary Analysis and Design

* Analytical Sensitivity Analysis

» Approximation Concepts in a Production Code

* QUAD4 Element in the Public Domain

* Improved Supersonic Unsteady Aerodynamics

* Innovative Flutter Design Technique

* Nuclear Blast Analysis with Finite Elements and Advanced Aerodynamics
e Advanced Methods of Dynamic Reduction

* Design Variable Linking

e Aerodynamic Influence Coefficients For Static Aeroelasticity

Figure 12
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CONCLUSIONS

The ASTROS system development is complete in the sense that the basic
features desired in the system are in place and the code is available for

application to real world problems. It provides a very general tool to
perform automated preliminary structural design subject to multidisciplinary
constraints. In addition to its design features, the code has been provided

with a suite of dynamic analyses and special purpose analyses to improve its
utility as a unified tool for structural design.

At this point, however, the ASTROS system is immature from a software
standpoint and has known bugs with additional problems sure to show up with
increased use. In anticipation of these problems, the Air Force has funded an
enhancement effort that will address the quality assurance and software
maintenance issues, as well as make several enhancements to the engineering
aspects of the code. Among the enhancements are the inclusion of a triangular
bending plate element, additional steady aerodynamic analysis features,
improved aeroelastic analysis and enhanced treatment of the control system.
Also included in this effort is the inclusion of general, multidisciplinary
optimality criteria methods as an alternative to the current mathematical
programming methods for the redesign task in ASTROS.

542




REFERENCES

MacNeal, R.H., The NASTRAN Theoretical Manual, NASA SP-221(01), April
1971.

Woodward, F., "USSAERO Computer Program Development, Versions B and C,"
NASA CR 3227, 1980.

Vanderplaats, G.N., "An Efficient Feasible Directions Algorithm for Design
Synthesis," AIAA Journal, Volume 22, No. 11, November 1984, pp 1633-1640.

Lynch, R.W., Rogers, W.A., Braymen, G.W., and Hertz, T.J., "Aeroelastic
Tailoring of Advanced Composite Structures for Military Aircraft, Volume
IIT - Modifications and User's Guide for Procedure TSO," AFFDL-TR-76-100,
Vol. III, February 1978.

Markowitz, J., and Isakson, G., "FASTOP-3: A Strength, Deflection and
Flutter Optimization Program for Metallic and Composite Structures,"
AFFDL-TR-78-50, Vols. I and II, May 1978.

Giesing, J.P., Kalman, T.P., and Rodden, W.P., "Subsonic Unsteady
Aerodynamics for General Configurations: Part II, Volume I - Application
of the Doublet-Lattice Method and the Method of Images to Lifting-
Surface/Body Interference," AFFDL-TR-71-5, Part II, Volume I, August 1971,
Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base,
Ohio.

Appa, K., "Constant Pressure Panel Method for Supersonic Unsteady Airloads
Analysis," Journal of Aircraft, Volume 24, October 1987, pp 696-702.

543



N§9- 25175

A GENERALIZED SOFTWARE EXECUTIVE FOR
MULTIDISCIPLINARY COMPUTATIONAL STRUCTURAL DYNAMICS

Alex Berman
Kaman Aerospace Corporation
Bloomfield, Connecticut

PRECEDING PAGE BLANXK NOT FILMED

545



INTRODUCTION TO DYSCO

The objective of this presentation is to introduce the attendees to the DYSCO
program. The emphasis will be on the features which make it "multidisciplinary."”

DYSCO is a very general and versatile software program which couples and solves
dynamic systems. It was initiated in the late ’'70s in response to a helicopter
analysis requirement. The system development, however, resulted in an executive
which was completely separated from any particular area of technology, except that
of second order ODE. During the course of its development, it was funded by the
Army Aviation Applied Technology Directorate, the Air Force Wright Aeronautical
Laboratories, and by the Kaman Aerospace Corporation. It is completely written in
FORTRAN and 1s operational on IBM and VAX computers. The size is indicated in
figure 1.

0 DYNAMIC SYSTEM COUPLER (DYSCO)
0 INITIAL DEVELOPMENT - 1979
o FUNDED BY ARMY, AIR FORCE, KAMAN
0 PRESENTLY OPERATIONAL ON IBM AND VAX
0 SIZE - 50000+ LINES OF CODE
350+ SUBROUTINES

4+ MEGABYTES OF STORAGE

0 INSTALLATIONS INCLUDE GOVERNMENT FACILITIES AND
UNIVERSITIES

Figure 1
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DEFINITION OF DOMAIN OF DYSCO

The "domain" is the technical area in which the program is designed to operate.
The domain of DYSCO is "coupled sets of second order ordinary differential equa-
tions.” The Executive of DYSCO recognizes and manages: algorithms for computing
equation coefficients; the necessary data; coupling constraints; coupling proce-
dures; algorithms for solving the coupled equations; the resulting data.

Figure 2 illustrates the generic equation of a "component,"” the coupling con-
straints, the coupled equations of the system.

DYSCO COUPLES AND SOLVES SECOND ORDER ODE

0 M. X; + C X, + KX F. (COMPONENT 1)

I'I I

o XI = TIXs

(o] MSXs + CsXs + sts = Fs (SYSTEM)
Figure 2
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DEFINITION OF COMPONENT

A component is anything represented by second order ODEs where the coefficients

can be any computable function of present or past states of this and other compo-
nents of the "model." The degrees of freedom (dependent variables) and the indepen-
dent variable are completely arbitrary. (Figure 3.)
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"COMPONENT" IS MORE GENERAL THAN "FINITE ELEMENT"

M;» C;. K, F; = ARBITRARY FUNCTIONS OF STATE

X; = ANY GENERALIZED DOF - PHYSICAL, MODAL, OTHER

COMPONENT MAY BE

- FINITE ELEMENT

- ASSEMBLY OF FINITE ELEMENTS (SUBSYSTEM, OUTPUT OF FE
ANALYSIS)

- SPECIAL SET OF EQUATIONS (E.G., HELICOPTER ROTOR,
SPECIAL MECHANISM)

- CONTROL ALGORITHM (MIMO, NON-SYMMETRICAL MATRICES,
NONLINEAR)

- FORCE ALGORITHM (M, C, K = NULL, AERO, ELECTROMAGNETIC)

- ETC., ETC.

Figure 3



DEFINITION OF MODEL

A "model" describes a system made up of coupled components. The description of
each component includes the identification of the algorithm for computing the equa-
tion coefficients and the identification of the data to be used. In DYSCO the equa-
tions may be nonlinear but the coupling is limited to linear relationships between
degrees of freedom. (Figure 4.)

When the model is defined, the DYSCO command "RUN" assembles the equations and
prepares for the execution of any user specified solution algorithm.

0 A MODEL IS A DESCRIPTION OF A COUPLED SET OF COMPONENT
EQUATIONS

0 COMPONENT EQUATIONS ARE DEFINED BY

- NAME OF THE ALGORITHM IN "TECHNOLOGY LIBRARY"
- NAME OF DATA SET IN "MODELING DATABASE"

0 COMMAND "RUN" COUPLES EQUATIONS

] NEXT STEP IS TO SPECIFY SOLUTION ALGORITHM

Figure 4
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ILLUSTRATION OF A MODEL

In the illustration in figure 5, a truss structure is modeled with 10 "compo-
nents." The component "CTR4" defines the equations for a truss bay consisting of 4
vertical members, 4 horizontal members and up to 8 diagonal members. The component
number (NO.) represents a feature which automatically couples the components. Note
that the odd numbered (as well as the even numbered) bays are identical and thus use
the same "DATA SET." Component 9 represents a linear MIMO control algorithm and
Component 10 applies single point constraints to ground the model at the base.

COMPONENT NO. DATA SET
1 CTR4 1 ABCD1
2 CTR4 3 ABCD1
3 CTR4 5 ABCD1
4 CTR4 2 ABCD2
5 CTR4 4 ABCD2
6 CTR4 6 ABCD2
7 CSF1 TOPR
8 CSF1 TOPL
9 CSF1 CONTR
10 CLC1 GROUND

Figure 5
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DYSCO SYSTEM OVERVIEW

On the next few figures, some of the features of the design of the system will
be described. The Executive acts as an intelligent interface between the user, the
"technology library," the data. The technology library contains all the algorithms
for computing equation coefficients, forces, constraints, solution algorithms
("technology modules"). The database contains data to be used by the technology
modules. It is identified by the name of the technology module which is to use it
as well as a user supplied "data set" name. It also contains model descriptions and
other pertinent types of data. The executive coordinates all the actions of the
system: including input and editing of data, forming models, assembling models,
solving models, retrieving local state vectors and all other necessary functions to
make the system operable. (Figure 6.)

(&bDELING DATABASE)

TECHNOLOGY
EXECUTIVE MODULE

LIBRARY

USER <EXTERNAL DATABA%E)

Figure 6
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MODELING SCENARIO

Figure 7 is an illustration of the relationship between some of the modeling
commands and the operation of the system. The NEW commands allow the user to input
the data for a component, a force algorithm, or to define a model. The user speci-
fies the name of the technology modules and is then guided through the input and/or
edit process. This data is then stored on the modeling database. When defining a
model, the user inputs information such as component algorithm and data set name.
The executive validates the existence of this information before acceptance. The
model is named and also stored on the database. When the RUN command is issued, the
user supplies the model name and the executive then obtains the data, accesses the
technology modules in the library, assembles the equations and carries out all pre-
parations necessary to execute a solution module from the technology library, as
specified by the user.

USER INPUT PROCESS COMMAND RDF /UDE
oo DEFINE
COMP. -— NEW DS/C--- t::f__
,ffiﬁ/—J COMPONENT
\\
FORCE - ggaégg NEW DS/F---
DATA
— B
NAMES DEFINE
OF —  pEFIN NEW \
COMP.
FORCES B
| — . RUN J=
FORM
COUPLED
SYSTEM
soL. | DEFINE
DATA SOLUTION
EXECUTE
SOLUTION
Figure 7
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TECHNICAL MODULES

In order for the Executive to perform its functions and to simplify the instal-
lation of new components or solution, the technology modules are separated into
functional modules as defined in figure 8. The relationships between the commands
and the technical modules are shown on the following figure.

A technology module is given a 4 character name. The first character is C (for
component), F (for force), S (for solution). The technical modules which comprise
the technical modules use the same first 4 characters plus I, D, C, etc. as shown on
gi?ure 8. The specific functions of the individual modules are briefly categorized

elow.

---I INPUT. DEFINITION

---D DEFINE DEGREES OF FREEDOM

e COMPUTE CONSTANT COEFFICIENTS IN EQUATIONS
---A COMPUTE NON-CONSTANT COEFFICIENTS, FUNCTION

OF TIME AND STATE

--=0 OUTPUT

---L INTERNAL LOADS, FUNCTION OF STATE

Figure 8
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RELATIONSHIP BETWEEN MODELING SCENARIO
AND TECHNICAL MODULES

Figure 9 illustrates how the Executive accesses the appropriate technical
modules as necessary during various phases of the modeling and solution process.

MODEL ING TECHNICAL MODULES
USER INPUT PROCESS COMPONENT FORCE SOLUTION
DEFINE | _ _ | . |
INPUT COMPONENT
[ DEFINE | _ _ _ |
INPUT FORCE
_/ +
!\
PARTI- | | DEFINE
CULAR DoOE
COMP.
FORCES
NAMES
FORM C---D
COUPLED |- — — - L - F---c
| SYSTEM C---C
|
|
| ]
| SOL. DEFINE. | _ _ _ __ ] s...1
DATA SOLUTION
EXECUTE | | o L e, L] SR
SOLUTION Seon0

Figure 9
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RUN COMMAND

Figure 10 1illustrates the functions performed by the Executive after the
command RUN. The only input required from the user is the command and the name of

? parent to the user.

EXECUTIVE FUNCTION

USER INPUT
| RUN
MODEL NAME
ALL
COMPONENTS
OF MODEL
ALL
COMPONENTS
OF MODEL

READ DS/MODEL

TECH. LIBRARY

the model. A1l the operations are performed in a manner which is completely trans-

DATA LIBRARY

DS/

READ DS/COMPONENTS

IDENTIFY DOF
AND

CONSTRAINTS

FORM ALL T,  AND

SYSTEM DOF

TRANSFORM CONSTANT
COEFFICIENTS TO SYS-
TEM MM +T M T ...

|

REQUEST SOLUTION
MODULE NAME

Figure

10
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of the RUN command.

TIME HISTORY

Figure 11 is an illustration of a particular solution performed after execution

Functions such as retrieval of component state and the assembly

of the varying matrix coefficients are performed as routine procedures in the Domain
Executive.
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USER INPUT

EXECUTIVE FUNCTION

{

INPUT | XseXs(To) -
-

REQUEST SOLUTION
INPUT

T-'=To

TECH. LIBRARY

ALL
COMPONENTS
OF MODEL

RETRIEVE FOMP._STATE
x1=T1xs' xI=TIxs(T)

|

-l

TRANSFORM UPDATED
comMp. M, C, K, F,
TO SYSTEM AND SUM

AMI,ACI,AKI,AFI C_A

|
M=M +T AMT , ...

SOLVE FOR X (1)

INTFGRATE *s TO
Xg1Xg s T2T4A

XS(T)

xs,xs(T+A)

s'

Figure 11




FEATURES OF THE EXECUTIVE

The principal executive characteristics are listed on figure 12. It performs
all necessary operations without specific detailed instructions from the user. The
Executive treats generic differential equations. None of its characteristics is
related to any particular area of technology. This dependence is left to the
specific modules in the Technology Library. Since the Technology Library may be
readily expanded, any of a broad range of technologies may be treated alone or in
conjunction with other technologies.

) EXECUTIVE IS SPECIFICALLY BUILT TO MANAGE
STRUCTURAL DYNAMIC ANALYSIS

) IT UNDERSTANDS AND MANAGES

- INPUT: IDENTIFICATION, STORAGE, EDITING

- MODEL BUILDING: RETRIEVAL OF DATA, CALLS
TO TECHNOLOGY LIBRARY

- ASSEMBLY OF EQUATIONS: APPLIES MPC, SPC

- SOLUTION OF EQUATIONS: CALLS TO TECHNOLOGY
LIBRARY, RETRIEVAL OF LOCAL STATES,
INTERFACE LOADS

o EXECUTIVE INDEPENDENT OF ANY PARTICULAR AREA OF
TECHNOLOGY

- UNIFORM ABSTRACT INTERFACES TO TECHNOLOGY
LIBRARY

Figure 12
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FEATURES OF TECHNOLOGY LIBRARY

Figure 13 emphasizes many of the major features of the Technology Library.

Because of the modularity and the uniform interfaces to the Executive, it is a
simple procedure to add any capability (within the defined domain) to the program.
This new capability then may be used in conjunction with all other capabilities
which already exist in DYSCO.
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NEW TECHNOLOGY EASILY ADDED

COMPONENT, FORCE, SOLUTION
UNIFORM INTERFACES TO EXECUTIVE
FORTRAN CODING

COMPONENTS ARE ANY SECOND ORDER ODE, SUCH AS,

SINGLE SPRING, DAMPER, OR MASS
ANY FINITE ELEMENT

COMPLETE NASTRAN MODEL
HELICOPTER ROTOR

MIMO CONTROL ALGORITHM

SOLUTIONS ACT ON MODEL EQUATIONS, E.G.

EIGENANALYSIS

FREQUENCY RESPONSE

TIME HISTORY

HELICOPTER TRIM (PERIODIC SHOOTING)
PERIODIC SYSTEM STABILITY

STATE FEEDBACK OPTIMIZATION

Figure 13



OTHER FEATURES

DYSCO contains a number of valuable features which are listed in figure 14.
A1l of these make the program easy and safe to run. Safe means that data is all
validated, in correct format, and that aborts or erroneous outputs due to inconsist-
ent or missing data are not possible. The editing of both data and models allows
easy modification or correction of data, configuration changes, damage analysis.
The coupling procedures are also such that the user is relieved of much effort which
is automatically performed by the Executive.

0 VALIDATED INPUT AND EDITING
- USES KNOWLEDGE TABLE: TYPE, CHARACTERISTICS,
EXISTENCE, RANGE
- PROMPTED INPUT
- INSTANTANEQOUS VALIDATION
- ASSURED COMPLETE AND CONSISTENT DATA

0 SIMPLE EDITING OF MODEL
- CONFIGURATION CHANGES
- PARAMETER VARIATION
- DAMAGE ANALYSIS

0 INTELLIGENT COUPLING PROCEDURES
RECOGNITION OF DOF NAMES

MPC OPTIONALLY AUTOMATICALLY FORMED
GENERAL MPC SOLVED FOR DOF EQUATIONS

Figure 14
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BASIC TECHNOLOGY MODULES - COMPONENTS

Figure 15 lists a number of general purpose components which are presently
included in the Government version of DYSCO.

0 CSF1 - LINEAR FINITE ELEMENT

USER SUPPLIES: NAMES OF DOF
M, C, K, F

0 CFM3 - 3D MODAL STRUCTURE

RIGID BODY, ELASTIC MODES (ALL OPTIONAL)
DOF NAMES AUTOMATICALLY GENERATED
AUTOMATIC COUPLING AT SPECIFIED NODES

0 CSB2 - GENERAL BAR ELEMENT* (NOT AVAILABLE IN GOVT VERSION)

MAY BE USED AS A BEAM OR ROD ELEMENT
SHEAR FACTORS, CONSISTENT MASS, RAYLEIGH DAMPING
UP TO 12 DOF

0 CES1 - ELASTIC STOP

NONLINEAR SPRING, DAMPING, WITH GAP

0 CGF2 - GENERAL FORCE
- POLYNOMIAL, FOURIER SERIES, OR TABULAR
- PERIODIC

] CLCO - SINGLE POINT CONSTRAINTS

0 CLC1 - MULTIPOINT CONSTRAINTS

0 CLC2 - ADVANCED MULTIPOINT CONSTRAINT

Figure 15
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BASIC TECHNOLOGY MODULES - SOLUTION

Figure 16 lists basic, general purpose solution routines which are also pre-
sently installed.

0 SEA4 - EIGENANALYSIS, REAL
0 SEA5 - COMPLEX EIGENANALYSIS
0 STH4 - TIME HISTORY
- CONDITION CODES
0 SFD1 - FREQUENCY DOMAIN MOBILITY
- RESPONSE PER UNIT FORCE
) STCO - OPTIMIZER FOR LINEAR STATE FEEDBACK» (NOT

AVAILABLE IN GOVT VERSION)
- SOLVES MATRIX RICCATI EQUATION
- INTEGRATES SYSTEM STATE EQUATIONS

0 SII3 - INTERFACE AND INTERNAL LOADS
- RESIDUAL FORCES AT INTERFACES
- FORCES, STRAIN ENERGY, BENDING MOMENTS

Figure 16
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SPECIALIZED TECHNOLOGY MODULES

On figure 17 is a listing of technology modules which were developed and in-
stalled to perform specialized representation and solutions.

o CRR2, CRR3 - HELICOPTER ROTOR

0 CCEO, CCE1l - ROTOR CONTROL SYSTEM

0 CRD3 - ROTOR DAMAGE

0 CFM2 - HELICOPTER FUSELAGE

o CLG2 - NONLINEAR LANDING GEAR
0 CLS2 - LIFTING SURFACE

0 FRAO, FRA2, FRA3 - ROTOR AERODYNAMICS

] FFAO, FFC2 - FUSELAGE AERODYNAMICS

0 STH3 - TIME HISTORY, HELICOPTER CONTROLS
0 STR3 - HELICOPTER TRIM

o SSF3 - FLOQUET STABILITY

Figure 17
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LIST OF ILLUSTRATIVE PROBLEMS

In conclusion, figure 18 is a list of actual diverse problems which have been
modeled and solved using the DYSCO program.

0 PACOSS TOWER DYNAMIC ANALYSIS

0 TRUSS STRUCTURE WITH ACTIVE ELEMENTS - VIBRATION CONTROL

0 PIEZOELECTRIC SENSORS/ACTUATORS ON BEAM - VARY CONTROL
LAWS, ADD ELASTIC STOP, STABILITY, TIME, FREQUENCY
DOMAIN

) POINTING-TRACKING SYSTEM - MOTOR DRIVEN MIRRORS - MOVING,
ACCELERATING TARGET, VARY CONTROL GAINS

0 ROTORCRAFT TRIM - DAMAGED BLADE - INTERNAL LOADS
0 RAIL GUN PNEUMATIC ACCELERATOR - GAS PRESSURE - BOLT MOTION

0 ALGORITHM EVALUATION - REDUCED MODELS, SYSTEM IDENTIFICATION,
SIMULATE EFFECTS OF MEASUREMENT ERRORS

Figure 18
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ENGINEERING DESIGN METHODS RESEARCH LAB

To develop engineering design methods which
1) are damain-independent to a certain degree,
2) can be implemented on the camputer.

THE OPTDES.BYU PACKAGE VERSION 4.0

A collection of general design methods that have been developed
or collected by the lab and implemented as software.

1) Use in the classroom —— about 80-100 students each year
2) Use in research -—— about 12-15 graduate students each year
2) Use in industry — about 90 campany sites

'~ OPTDES.BYU / OOMMERCTIAL ANALYSIS PACKAGES

1) 0PIDE§/ACSL (MGA Associates, Concord, MA)
* simulation of dynamic systems

2) OPIDES/MECHANICAL ADVANTAGE (Cognition, Billerica, Ma)
* mechanical design software

3) opm/mm (SRAC, Santa Monica, CA)
* finite element analysis on microcamputers

4) OPIDI}S/CALIPER (Aptek, Oolorado Springs, )
* interference calculation and packing of geametric shapes

5) OPIDES/CIVILPAK (BYU)

* design of land subdivisions, water distribution networks,
steel frames, reinforced concrete systems

6) OPIDES/??? (Design Synthesis, Provo, UT)
*SBIR?hasgIAwaxdﬁ'anWright-Pattersmmtodevelopan
optimization, feature-based modeling system for the design
of mechanical parts
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STANDARD CAPABILITIES OF OPILES.BYU

1) First-class optimization algorithms:

* Powell's Sequential Quadratic Programming Algorithm

* Our Own Hybrid SQP/GRG Algorithm — an SQP that stays feasible
- uses the SQP search direction (updated hessian)
- uses the GRG line search (hemstitching)

* SIP and Method of Centers

* Goldfarb/Idnani's Dual Algorithm for QP problems

* Revised Simplex Algorithm for LP prcblems

* BFGS Variable Metric Algorithm for unconstrained problems

2) Interactive Design Utilities
* Trial-And-Error Design (Set and Display)
* History Backtrack and History Plots
* 1D, 2D, and 3D Plots of Design Space or Subspace

3) Flexible Problem Setup
* Function Designation (as abjectives or constraints)
* Many-to-One Variable and Function Mappings
* Bounds on Variables and Allowable Values on Constraints
* Iog Variables and Functions

4) Interface with Analysis
* Conventional and Generalized Interfaces
* Programming-Free Interface

NEW AND DEVEIOPING CAPABILITTES OF OPIDES.BYU

1) Mamufacturing Considerations
* Optimization with variables that are available in discrete cambinations
* Optimization in light of mamufacturing tolerances on variables

2) ILarge-Scale Prablems
* Approximations based on analyses according to statistical test plans
* Decamposition of optimization problems
3) Topological Optimization
* Use of Al heuristic search strategies
* Formal expert systems for generating topologies

567



/ OPTIMIZATION WITH DISCRETE VARIABLES
STEP 1: CONTINUCUS OPTIMIZATION WITH ENVELOPING CONSTRAINTS

In this illustrative example it is desired to find the optimm diameters and

thicknesses for three pipes. Each dot represents an available pipe. Log values
are used to make the spacing of the dots more umiform.

A corvex set of linear constraints are collapsed arourd the available pipes. This
means 7x3=21 canstraints are added to the optimization problem. Constraints may be
thromn out by the user in the order of smallest length (or area in 3D, or hyper-

area in ND). In this prcblem side #6 would be the first to be thrown out, followed
by side #2, then side #3, and so on.

The contimious optimization problem is solved, and contimuous optimm values are
indicated by asterisks.

Neighborhoods are constructed about contimuous optimm values. The user selects

the radii to be large enocugh to include a sufficient mumber of dots, but small
enough to keep the camputatiocnal search effort reasonable.

. 1 4 1 s

/ sioem2 t
(]
4
g‘\
"
04y C.0. PIPE %2 )
2
@ 0.0. PIPE # * C.0. = CONTINUOUS
z ./ OPTIMUM
S g 0.0. = DISCRETE
> \/ / OPTIMUM
< * [ *
3,3 ‘,\°<" °
¢ -067T / . A".
Z )
QO / °
: /
- [
- / hd /
2 )éc.o. PIPE #3
= / M / D.0.PIPE #3
e -0.8+ °
S /
S ( A
. A ~D.0. PIPE$1
\%‘ C.0. PIPE#1
]
\Ot.
V>
t

-0.2 o'.o 02 04 0.6 0.8 1.0
LOG o (INSIDE DIAMETER IN INCHES)

568



OPTIMIZATION WITH DISCRETE VARIAEBLES
STEP 2: DISCRETE SEARCH

In the illustrative example, the neighborhoods included 3 dots for pipe #1, 3 dots
for pipe #2, ard 4 dots for pipe #3. The mmber of possible discrete designs are
3x3x4=36. Exhaustive search would require 36 analyses. Not all these designs need
be considered if a branch-and-bound strategy is used. The first step is to
linearize the cbjective and constraints about the cantimuous optimum.

The figure shows a schematic of a branch-and-bound strategy. The circles represent
"nodes" which are mmbered in their order of generation. Nodes 1-3 represent
designs where pipe #1 is fixed to the respective three dots within its neighborhood
while pipes #2 and #3 remain contimuous.

The small numbers beside each node represent the minimm costs for these designs.
These values are fourd by optimizing contimious pipes #2 and #3 for minimm cost.
These optimizations are solved as LP problems.

Nodes 4-6 are spawned from node 3 since it had the lowest minimm cost. In these
nodes only pipe #3 remains continuous. Note that no feasible solution can be fourd
for node 6, so it is "fathomed". After spawning nodes 10-13, node 11 represents a
current best solution. Nonlinear analysis is performed at all current best
solutions to check actual feasibility. Nodes 2,7, and 8 are fathomed since their
minimm costs are greater than that of the current best solution. The strategy
continues until all possible branches are fathamed. The solution is found at node
16. Two nonlinear analyses and one gradient analysis were performed in the
process.

® INFEASIBLE === FATHOMED

pipe #1

DISCRETE
OPTIMUM
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OPTIMIZATION WITH DISCRETE VARIABLES
EXAMPLE: STEEL FRAME

The problem was to select from among the 194 standardized sections published by
AISC the optimal 16 sections for the frame shown. The 16 sections to be selected
included 8 girders (one contimuous girder for each floor) amd 8 colums (interior
and exterior columns where each column was contimuous for two stories). The AISC
cambined stress canstraints were imposed for each of the 56 members, and total
frame weight was minimized. Only in-plane deformation was considered, the K-factor
for all members was taken as 2.5, and continuocus lateral support was assumed.

There were three design variables for each of the 16 sections during continuous
optimization, namely: area, mament of inertia, and section modulus. 74 enveloping
constraints were generated about the 194 standardized sections in 3 dimensions.
Since this would add 16x74=1184 constraints to the prablem, only 24 enveloping
constraints were retained accounting for 80% of the area of the corivex hull. This
added 24x16=384 to the problem. The contimuous optimum was found, ard it had a
weight of 36,257 lbs.

Neighborhoods about the contirmuous optimm were constructed such that 3 or 4
standardized sections were included for each of the 16 sections to be selected. An
exhaustive search over the standardized sections in these neighborhoods would
require 429,981,696 analyses. The linearized branch and bound strategy required
one gradient analysis for linearization and 13 regular analyses to verify
feasibility of current best solutions. The discrete cptimum had a weight of 40,337
lbs. In going from the contimious optimm to the discrete optimm, all the areas
increased, but 13 ocut of 16 moments of inertia decreased, and 6 cut of 16 section

moduli decreased. X
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OPTIMIZATION WITH TOLERANCES
PROBLEM A: TOLERANCES SPECIFIED

In this problem, one seeks a new design as close as possible to the optimal design
such that oconstraints are not violated for any design within the specified
tolerance ranges of this new design. This means that the shaded box in the figure
must be entirely feasible, and centered as close as possible to the optimum.

The problem is solved by linearizing the oconstraints about the optimum.
BExamination of the signs of the terms in the constraint gradient wvectors indicate
which sides of the box control for each constraint. By minimizing the square of
the distance from the box center to the optimm, the problem can be solved as a

quadratic-programming problem.

X2 X3
gL =0
91 =0
g2 =0
FEASIBLE REGION FEASIBLE REGION
RN CEY nent
~ . A , A
N V// ,* / "
{ -
" 24" T2
N x
X - > - —
— \ -~
\ o - — x* ~¢- £x*)
\
£ \ £(x* "
(X*) Problem A (fuily constrained optimum)

Problem A (nonfully constrained optimum)
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OPTIMIZATION WITH TOLERANCES
PROBLEM B: TOLERANCES CCMPUTED

In this problem, one seeks the largest tolerance ranges according to same norm
about the optimm design such that any design within these tolerance ranges does
not exceed specified acceptance levels for the abjective and constraints. Thus,
the user "backs off" fram the optimm values for the cbjective and constraints by
specifying acceptance levels. The shaded box in the figure must be entirely
contained within the region bound by these acceptance levels.

Again the abjective and constraints are linearized, and the controling sides of the
box are identified for each constraint. Variocus norms of the tolerances could be
maximized. If the Ll norm is used (tolerances simply added), the problem can be

solved as a linear-programming problem.

To keep the problem well-posed, upper and lower bourds on the tolerances should be
specified. Lower bounds represent the user's estimate of the tolerance that he
must absolutely have as a minimm for each variable. Upper bourds represent his
estimate of the tolerance that, if achieved, is all he needs for a variable (at
this point the optimization should try to increase tolerances in other variables).
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Approximation of Computationally Expensive and Noisy Functions

The approximation of design functions with first or second order polynomials for
optimization has several advantages: the polynamials smooth noisy functions,
which can improve algorithm performance, 2) analysis and optimization can be Ge-
coupled so that optimization can be executed on one computer and the analysis on
another, and 3) the number of analyses required to reach an optimum, particularly
for noisy functions, can .often be: significantly reduced. Approximation is also
an important aspect of several problem decomposition schemes.

The approach taken in this research is to use statistical test plans to determine
where analysis should be run in order to make the approximation. The statistical
test plans yield approximations that can be superior to approximations made from
Taylors series expansions because the analyses are spread throughout the range of
the function being approximated, and, for each analysis, more than one variable is
changed at a time (in contrast to finite difference derivative), making it pos-
sible to use several analyses to estimate a particular model coefficient.

This advantage is demonstrated in the figure below camparing the analyses evalu-
ated with a "one at a time" test plan to the analyses evaluated with a saturated
factorial test plan. For a problem with three variables, both strategies require
a base point (variables set to -1) and three other analyses. In the “one-at-a-
time" plan, each variable is perturbed in turn while the others are left at the
base values. The effect of each variable can only be estimated fram two analyses.
In the saturated plan, however, two variables are perturbed for each analysis; as
a result, twice as much information is available to estimate the model coefficient
of each variable.

‘one-at-a-time” or finite difference

Nl %2 w3

"2 snaelysis 1
enelysis 2
analysis 3
analysis 4

effect of ul= 2vs. t (2 snealysis points)
n3 effect of u2= Jus. 1 (2 enelysis points)
effect of k3« 4vs. 1 (2 sneiysis points)

The effect of each variable is estimated from only
one other evaluation.

factorial design

ul u2 n3

snelysis 1] -t -1 -}
aneiysis 2| +1 1 -}
anolysis 31 1 -1 o1
anaiysis 4] <1 <] o}

sffect of ni= 1,4 v3. 2,3 (4 snalysis points)
effect of n2= 1,3 vs. 2,4 (4 enslysis points)
sffect of u3= 1,2 vs. 3,4 (4 aneiysis peints)

Twice as much information is available Lo estimate the
effects of each variable for the same number of
function evaluations.
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The capability to approximate functions has been integrated fully into the OPTDES
package. The user first specifies variable range limits for the approximation.
OPTDES will then generate a test plan within those limits and write the analysis
variable values in the proper file format for the user’s analysis software. After
the analysis is finished, OPIDES reads the analysis results and performs regres-
sion analysis to obtain the model, displaying the model goodness of fit. The user
can then optimize directly on the model.

An exanple of this operation is shown below. For this example, which involved
large scale thermal analysis, 57 analysis calls by OPIDES were required when
direct optimization was used. Using model approximation with statistical test
plans to determine where analysis should be performed, the number of analysis
calls was reduced to 24.

Although very efficient test plans exist for estimating models with linear coef-
ficients, statistical plans for second order models tend to be expensive, in that
they require more analyses than the number of estimated coefficients. The popular
Box-Behnken plan, for example, requires 25 analyses to estimate 15 second order
coefficients for a problem with four variables. These extra analyses are used in
part to determine the variance, or random error, of the analysis results. In a
computer model, such variance does not usually exist. The statistics department
at BYU has been testing efficient second order test plans that require the same
number of analyses as coefficients for use in approximation for optimization. We
feel that these test plans will be very useful for this application.

Without Approximation
57 calls

large analysis
avi
> routine

[ OPTDES.BYU ] o af e

With Approximation

24 calls
model
[ OPTDESBYU ] [generator]
A I A
df coefficients  af
I dv Ixcnen L
\ 4 \4
inexpensive large analysis
model rout,iney

= -~
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Electromechanical Actuator/Control System Design Using Decomposition

Advancements in robotics and computer storage media require servamechanisms that
are quick, precise, and powerful. The dynamic performance of a control system is
ultimately limited by the actuator hardware. In addition, practical design con-
siderations such as weight, volume, and power are dependent on actuator parame-
ters. Normally the design of an actuator and its control system are approached
sequentially: an actuator is selected or designed; the control system for the
actuator is then determined. The objective of this research was to integrate the
design of the actuator and control system in order to optimize the transient re-
sponse. Because the design of such a system can be camplex, decomposition methods
were studied as a means of approaching the design problem. The discrete variable
capabilities of OPTDES were also used to select an optimal motor from catalog
values.

The electromechanical actuator considered consists of a permanent magnet dc motor
coupled to a double reduction gear set with inline input and output shafts driving
a flexible arm carrying an inertial load. The objective of the design problem was
to minimize rise time of the actuator, subject to constraints on over/undershoot.
The 22 design variables included six control gains, the resistance, inductance,
time constant, torque constant, and rotor inertia of the motor, the detailed de-
sign of the gear set and the actuator arm. The problem was decomposed heuristi-
cally according to the physical makeup of the system, as given below.

Control System and General Actuator Design
Find control gains and system model parameters to:

Minimize rise time

Subject to :

constraints on peak current, peak power, and deviation

from error envelope
cumnulative constraint 1< 0
cumulative constraint 2 <0

SYSTEM
LEVEL

average power
average velocity
overall gearratio - n

gearsel mass - W8

torque
area - A
moment of inertia - [

COMPONENT
LEVEL
Gear Set Design Flexible Amm Design
Find parameters of gearset (pitches, number of teeth, Find parameters of arm(base, height, width) to:
_ . facewidths, erc)to: Minimize cumulative constraint 2
Minimize cumulative constraint 1 Subject to:
Subject to: _ . . geometric constraints on design
geometric constraints on design (stress - strength - cum. const 2) < 0
(stress - strength - cum. const. 1) < @ for each stress calculated in arm design
for each swress calculated in gear design (A, D)= (A, Dy

(n,Wg )= (n.ws )sys

Decomposition of Electromechanical Actuator.
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As the figure shows, the optimization of the system time response was assigned to
be the overall cbjective of the system. The design of the gear set and actuator
arm were designed at the component level. After decomposition, the system level
problem contained 11 system variables; the gear component design problem had 8
design variables, and the arm design problem had 3 design variables. The strategy
for solving the decomposed problem was that developed by Sobieski, using cumula-
tive constraints. However, the cumulative constraint was not formulated using the
Kresselmeier-Steinhauser function, but was formulated using the simple form,

Minimize S
subject to Constraint; ~S =< 0 forall i

Minimizing S tends to maximize the feasibility of the design.

The step response of the system before optimization is shown below. The top and
bottom response curves in the figure represent the error envelope the response
must stay within. The optimal response is given in the second figure. The "con-
tinuous" response in the figure is the optimal response with the motor variables
modeled as continuous variables. The "discrete" response is the response of the
optimal actuator with the optimal discrete values of the motor as selected from a
vendor’s catalog.

The results from this sample problem show decamposition to be a potentially valu-
able tool in the design of large scale dynamic systems.
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ONFIGURATION OR TOPOLOGICAL OPTIMIZATION
EXAMPLE: REINFORCEMENT IN A QONCRETE BEAM

four
problem here was to design the reinforcement in a concrete tee-beam over
gc;al zsgfhchsmm. The material properties and dimensions of the concrete beam
were given. The moment envelopes under possible loading conditions are given in
the figure. All constraints imposed by the ACI 318-83 Specification were applied.
The reinforcement cost was minimized, which included material cost ($.25/1b of
steel) and placement cost ($1.00 per bar).

gure shows the optimm design. Note that the mmber of bars (given in
%thaes), the discrete bar sizes (#5, #6, #3, etc.), ﬂxebarlengﬂf;s&g
inches), and the locations (top or bottam, over support or in the middle o ¢
span, and layers) are given for each gqroup of bars. The optimal moment capacity
ernvelope is also shown in the figure.

300 ‘'ky¢
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OONFIGURATION OR TOPOLOGICAL OPTIMIZATION
RULE~BASED SEARCHING STRATEGY

The problem is solved by generating reinforcement oconfigurations. The mmber of
bar groups with the location and mmber of bars for each group are needed to
specify a configuration. The configuration is then optimized via the linearized
branch-and-bound method to determine the bar sizes, bar 1lengths, and total
reinforcement cost. The figure shows boxes representing the various
configurations. The boxes contain the configuration mumbers according to the order
in which they were generated, and the total reinforcement cost.

A rule-based algoritim is used to search through configurations. Configuration #1
contains both positive and negative "primary" groups extending all the way across
the beam with encugh steel to satisfy the minimm reinforcement requirements.

"Secondary" groups are included over each support and in each span to provide
necessary moment capacity.

"child" configurations  are
spawned from the '"parent"
configurations as shown in the
figure according to one of

eight heuristic rules. These 1
rules - govern the

deletion/addition of a bar 328.06
within a group or the

deletion/addition of an entire 3 6 Z

bar group. For example, rule
#3 states that if the mumber of
bars in'a secondary group is
more than twice as many as the
mmber of bars in the primary
group, divide the secondary
group into two groups. The
algorithm stops when no more
rules apply to any children.

Note that the same child may be
spawned from more than one
parent. Note also that the
cost of configuration 7,10 was
greater than -the cost of
configurations 5,14 or 6 from
whence it came. Nevertheless
configuration 7,10 spawned 316.66 311.26 31116
configuration 13 which was the
eventual optimm.

7.10 817,18 1419

13 9.12

301.33 303.72
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Application of Knowledge-Based Systems and Optimization
for the Design of a Valve Anti-Cavitation Device

This research involves the design of a device to control cavitation for liquid
valves. Cavitation can cause erosion of valve material and premature valve fail-
ure. An approach for preventing cavitation is to force the liquid through a
series of expansion holes and contraction channels, machined into concentric cyl-
inders, as shown in the figure below. The cylinders together comprise the "anti-
cavitation retainer." A local valve company desired to develop software to auto-
mate the design of the retainer. Design of a good retainer can be complex and

requires an experienced engineer.

Initially expert system technology was applied to capture the design rules of the
expert. However, it became apparent as the expert described his design procedure,
that many of his rules were associated with how to change variables to obtain a
good design. These rules were replaced with an optimization algorithm.

The package that was developed consisted of a small expert system which applied
the true heuristic rules to the problem, setup the optimization problem, called
the algorithm, and interpreted the results. The optimization algorithm determined
the values of variables. This strategy of combining heuristic search with numeri-
cal search could apply to a broad spectrum of engineering design problems.
Knowledge-based systems and numerical optimization are complementary approaches
that span both the qualitative and quantitative aspects of design.

When completed, the software was tested on ten actual design problems that had
been previously solved by the expert. The expert verified the adequacy of the
designs produced by the package. In five cases, the software developed satisfac-
tory designs with a fewer number of cylinders--these designs would be cheaper to
produce. In two cases, the package produced designs that violated a fewer number
of customer requirements. The remaining three designs were equally satisfactory.

Pboto courtesy of Valtek Incorporated.
Anti-Cavitation Retainer
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OUTLINE

Structural optimization has been available to the structural
analysis community as a tool for many years. The popular use of
displacement method finite-element technigues to analyze linearly
elastic structures has resulted in an ability to calculate the
weight and constraint gradients inexpensively for numerical
optimization of structures.

In this presentation, recent experiences in the investigation and
use of structural optimization will be discussed. In particular,
experience with the commercially available ADS/NASOPT (Reference
1) code 1s addressed. An overview of the ADS/NASOPT procedure
and how 1it was implemented will be shown. Two example problems
will also be discussed.

¢ BACKGROUND
¢ PROGRAM FORMAT
¢ TYPICAL INPUTS

¢ BUCKLING EXAMPLE

¢ CANOPY PROBLEM

582



SOFTWARE GOAL

The goal of our structural optimization software investigation
was to develop a production level finite-element-based system for
aircraft design and resizing. The tools available from vendors
are diverse. Optimization methods range in mathematical
programming technigues and optimality criteria with various types
of sensitivity analyses, design variable - linking options,

materials capabilities and disciplines. The use of existing
finite-element models was also an important consideration. The
OPTDES-BYU (Reference 2) and GD-GIFTS, an in-house finite-

element program, were combined into an application specific
finite-element optimization package using the combined databases
from each program. Difficulty arose in making this program
generic enough in terms of sensitivity analysis and structural
geometry. The ADS/NASOPT program was selected and used in the
following applications with favorable results. Since our in-
house pre and post finite-element processors communicate with
MSC/NASTRAN (Reference 3), ADS/NASOPT minimizes <changes to
existing finite-element models. In addition, we had prior
knowledge of ADS (reference 4).

TO DEVELOP A PRODUCTION LEVEL FINITE
ELEMENT BASED STRUCTURAL OPTIMIZATION
SYSTEM FOR AIRCRAFT DESIGN AND RESIZING

TOOLS

OPTDES-BYU ADS

MSC/NASTRAN ADS-NASOPT

GD-GIFTS|
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OUTLINE OF ADS/NASOPT

The ADS/NASOPT procedure uses a structural finite-element model
as the starting point in an analysis cycle; then it translates this
into a design model through NASOPT. The program then optimizes
using the ADS optimization program and returns to the structural
model to update the data if so chosen by the user. A combination
of approximation techniques, sensitivity analysis and
optimization algorithmsallows the user to minimize his objective
function (such as weight) subject to constraints (such as stress
allowables, buckling load factors, or displacements).

STRUCTURAL MODEL

MSC/NASTRAN

ADS

DESIGN
PROBLEM




TYPICAL MODEL REQUIREMENTS

The structural finite-element model includes the MSC/NASTRAN bulk
data information such as control cards, grid points, elements,
materials, properties, loads, and boundary conditions.
ADS/NASOPT 1is 1limited in the variety of elements that can be
resized as design variables: however, the finite-element model may
contain unlimited types of elements available in the MSC/NASTRAN
element library.

MATERIAL
CARDS
P-CARDS
ELEMENTS
BOUNDARY
~\
GRIDS CONDITIONS
CONTROL p— LOADS
CARDS
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TYPICAL ADS/NASOPT INPUT

The ADS/NASOPT program requires some additional input in the form
of NASTRAN data card images. These data include design variable,
and constraint definitions, design variable upper, lower bounds,
move limits, and method of optimization. A typical input
sequence also requires NASOPT instructions or job control
language. ADS/NASOPT is run in phases each performing a specific
function in the optimization task. Phase 1 sets up the database
by reading the NASTRAN and design data. Phase 2 prepares the
NASTRAN sensitivity analysis data after screening the analysis
results. Phase 3 reads sensitivity results, prepares the
appropriate model and calls ADS to perform the optimization.
Phases S and A call MSC/NASTRAN to execute the desired solution
~sensitivity solution sequences 51,53,55 (for phase S) and
analysis solutions 24,61,63,65 (for phase A).

Generation of the extra data cards to convert a MSC/NASTRAN
finite-element model to an ADS/NASOPT design model can be tedious
for large models. Work station procedures included as a part of
the finite-element pre-processors facilitate routine use of
programs such as ADS/NASOPT.

OPTCOM

MOVLIM

DVPROP
I DESVAR

NASTRAN
JCL
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PLATE BUCKLING EXAMPLE - NASTRAN MODEL

The first example represents a typical section from an aircraft
structure. This particular section was extracted from a fuselage
keel beam and loaded with combined shear/biaxial displacements.
The hole typifies routing requirements of plumbing, electrical,

and fuel considerations.
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PLATE BUCKLING EXAMPLE - PROBLEM INPUTS

Material properties were selected for a typical aluminum alloy.
In the case of this illustration, only two design variables were
selected. Physical linking of the finite-element thicknesses was
incorporated as shown 1in the figure. Although two design
variables may be a c¢crude definition of the design space, for
manufacturing reasons, the design of such structure may often
requi.e this definition. And, the problem illustrates
interesting results.

MATERIAL PROPERTIES

E=10.0E7 POISSON'S RATIO = 0.3
DENSITY = 0.1 LB/CU INCH

DESIGN CONSTRAINTS
BUCKLING EIGENVALUE => 1.5

INITIAL_DESIGN
THICKNESS VARIABLE 1 = 0.1 DESIGN
THICKNESS VARIABLE 2 = 0.1 VARIABLE 2

OBJECTIVE FUNCTION DESIGN

VARIABLE 1 O

MINIMUM WEIGHT




DESIGN HISTORY OF PLATE BUCKLING EXAMPLE

The pertinent results from the ADS/NASOPT run are shown in both
tabular form and graphically. The table displays weight,
thickness (the two design variables), and the buckling load
factor. The procedure was run for eight optimization iterations.
The weight and buckling 1load factor are both displayed with
respect to the vertical axis of the graph.

The first observation of note is that after eight iterations, the
process failed to satisfy the buckling 1load factor constraint.
The second observation is that the buckling load factor steadily
increased along with the design thickness through iteration 3.
At iteration 4, the thicknesses began to separate, and the
buckling constraint attained its highest point. During the
remaining iterations, the thicknesses flip/flop and the buckling
constraint actually decreased.

As best as we could determine, the design process seemed to be
confused. ADS/NASOPT incorporates linear approximations, and
between the few number of design variables, nonlinearity of
buckling, and the choice of move limits, satisfactory results
were obtainable.

We attribute our lack of success in this example to problem
complexity and user inexperience.

o T ]

25

// -~ BUCKLING LOAD

200 FACTOR

16 .| <o~ WEIGHT
1.0 /74//
A

0.5 7I

0.0

ITERATION

PLATE BUCKLING PROBLEM DESIGN VARIABLE VALUES

INITIAL 1 2 3 4 5 [ ? 8
WEIGHT 203000 224480 251270 284790 302500 286680 294650 287480 297200
THICKNESS UPPER 0.10000 012500 0.15825 019531 017494 0.18883 0.15736 0.19544 0.15207
THICKNESS LOWER 0.10000 0.12500 015625 019531 024414 020345 L0 24081 020051 024105
BUCKLING LOAD FACTOR 0.282%0 044200 063080 107910 137640 116440 112200 113580 120000
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SINGLE PIECE CAST CANOPY FRAME - NASTRAN MODEL

A canopy bow frame model was optimized to test the functionality
of the ADS/NASOPT software. A modern fighter aircraft cancpy is
primarily constructed of a polycarbonate transparency mounted in
an aluminum frame. The frame is typically fabricated from various
castings, extrusions, plate and sheet stock. This design is a
labor intensive subcomponent to the canopy assembly. To replace
the design with a single piece casting would represent a cost

savings provided the additional tooling costs could be offset by
the reduced labor costs.

The finite-element model of 1140 grid points and 588 bending
elements was developed to represent the behavior of the
structure. The NASTRAN medel was adapted from the production
finite-element model of the F-16 canopy frame with changes
minimized to guarantee accnrate comparisons in results,

\
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DESIGN AND ANALYSIS MODELS - INITIAL SIZING

Eighty-eight design variables representing the canopy frame were se-
lected from the bending elements available with 84 given initial
thickness of 0.2 gauge size. The remaining 4 design variables
representing the bow hoops, external covers, transparency, and
tension ties were given "fixed sizes'" to maintain their assembly
requirements. These design variables were used mainly to allow
stress constraints related to these elements to be applied and
influence the design process. It seemed that ADS/NASOPT allows
the user to constrain element behavior only if the element is
labeled as a design wvariable. Regardless, this 1incident
highlighted the need to consider neighboring structure in an
optimization design setting.

88 VARIABLES REPRESENTING GAUGE THICKNESS FOR
VARIOUS PARTS OF THE CANOPY FRAME

SIZE CONSTRAINTS

COMPONENT SIZE_CONSTRAINTS
CANOPY FRAME 0.080 < t < 0.500 inch
EXTERNAL COVERS 0.100 < t < 0.100 inch
BOW HOOPS 0.250 < t < 0.250 inch
TRANSPARENCY 0.700 < t < 0.700 inch
TENSION TIE 0.150 < t < 0.150 inch 2
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DESIGN AND ANALYSIS MODEL - LOADING CASES

Two symmetric loading cases were selected representing ultimate
cabin pressure and a balanced ejection condition. The ejection
condition was balanced by inertia loads at the latching mechanism
location along the length of the frame. Boundary conditions of a
plane of symmetry along the aircraft were accounted for with
reaction points at the tension tie locations. These loading
cases represent typical production loading configurations.

The candidate materials used were A357 alloy for the frame which
is a high strength heat treatable Al-Si-Mg alloy that 1is

relatively inexpensive to manufacture. Other materials were kept
as the current design exists.

LOADING CONDITIONS

CASE 1 10.2 PSI CABIN PRESSURE
CASE 2 PILOT EJECTION

BOUNDARY CONDITIONS

3 HOOK LATCHES
1 PIVOT
CENTERLINE SYMMETRY

MATERIALS

FRAME, CAST A357

EXTERNAL COVERS, BOW HOOPS, Al 2024
TRANSPARENCY, POLYCARBONATE

PIVOT FITTING TENSION TIE, PH13-8 STAINLESS STEEL




SINGLE PIECE CAST CANOPY FRAME - STRESS CONSTRAINTS

The canopy frame consists of bending elements representing
flanges and webs. These elements were sized using a 26250 psi von
Mises maximum stress. The bow hoops and external covers are
loaded in tension with a required stress level between 40000 psi
and 50000 psi for principal stresses. The polycarbonate
transparency was held to a maximum 2000 psi wvon Mises stress.
Finally the tension ties are loaded in tension, and the members
were sized using 75000 psi as a maximum axial stress.

COMPONENT STRESS CONSTRAINTS
CANOPY FRAME VON MISES < 26250 PSI
BOW HOOPS, 40000 < PRINCIPAL < 50000 PSI
EXTERNAL COVERS
TRANSPARENCY VON MISES < 2000 PSI
TENSION TIE AXIAL < 75000 PSI
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SINGLE PIECE CAST CANOPY FRAME - INITIAL

STRESS
CONTOURS
(MIDDLE)

THETA= = O.

HENKY-VON MISES

0.
1350.
2700.
4050.
6400.
6750.
8100.
9450.
10800.
12150.
13600.
14860.
16200.
17860.
18900.
20250.
21600.
22960.
24300.
25650.
27000 .

CHNIOVOEZTICARARIQAWMBMOUAQWD>

The.finite-element results for the initial sizing
regions of low stress as expected.

SIZING

show

LOADING CASE 1
CANOPY FRAME INITIAL SIZES

STRESS
CONTOURS
(MIDDLE)

THETA= 0.

HENKY-VON MISES

o.
1360.
2700.
4060.
6400.
6760 .
8100.
9460.

10800.
12160.
13600.
14860.
16200.
17660.
18900.
20260.
21600.
22950.
24300.
26660.
27000.

CHNIODWOZIrARW~NIQIROQE >

LOADING CASE 2
CANOPY FRAME INITIAL SIZES

large



SINGLE PIECE CAST CANOPY FRAME - WEIGHT RESULTS

A comparison of two optimization methods was achieved for designs
derived from locad case 1, the ultimate cabin pressure case. Path
1 used 4 ADS steps using the Modified Method of Feasible
Directions algorithm, while path 2 used 1 fully stressed design
analysis and 3 ADS cycles. The FSD path also took less CPU time
when run on the CRAY.

SINGLE-PIECE CANOPY FRAME

WEIGHT HISTORY LOAD CASE 1

199.5

ADS ONLY
= = == ADS AND FSD

190 N

\
\ 183.86

180 .
\ \7":'02 176.36
\ —
\
\ 172.96 32’ 4
\ 170.16 e m———— 173.27
V7018 -
‘ -
170
INITIAL 1 2 3 4

ITERATION NUMBER
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SINGLE PIECE CAST CANOPY FRAME - STRESS RESULTS

The final stress results for load case 1 the ultimate pressure
case, show areas of high stress concentration near the tension
ties. The optimized structure was sized predominantly to minimum
gauge with the exception of the tension tie points and canopy
latch hooks.

Although, it seems in hindsight that the problem was trivial as
a built-up frame structure, the design was complex. This
exercise demonstrated the functionality of ADS/NASOPT as a
preliminary design tool because all aspects of the structure were
included simultaneously in the structural sizing.

j

STRESS

CONTOURS ’ LOADING CASE 1 i
(MIDDLE) " CANOPY FRAME FINAL SIZES

0. WY .

THETA=~
HENKY-VON MISES

0.
13860.
2700.
4080.
8400.
6780.
8100.
9460.
10800.
12160.
13600:
14880.
16200.
17880.
18900.
20250.
21600.
23960.
24300.
266680.
27000.

CHUTOVOZRICRA-RQATWOUOQD >

JOB: CANOPY
8-FEB-88
18:18:33
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STRESS
CONTOURS
(MIDDLE)

THETA=

HENKY-VON MISES

CHUNTOVOZICrALHIEOQOWROOQOD>

0.
1360.
2700.
4060.
6400.
6750 .
8100.
9450.
10800.
123150.
13600.

14860.
16200.
17660.
18800.
20360.
21600.
23980.
24300.
26650.
27000.

LOADING CASE 2
CANOPY FRAME FINAL SIZES
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SUMMARY

In summary, our studies have provided four significant lessons
learned. First it is evident that effective use of optimization
technigques in design requires a robust-expert preprocessor as part
of a basic finite-element preprocessor. Second, as in the
example of the buckling problem, the design problem must be well
posed both in a practical design sense and a numerical sense.
The third observation to be made relates back to the problem
definition. In particular, although neighboring elements to a
design model may not be subject to resizing, their behavior may
impose constraints on the design model. These constraints may be
imposed through the use of larger models or formal decomposition
methods. ADS/NASOPT provides functional use of MSC/NASTRAN as a
preliminary design optimization tool.

¢ LARGE DESIGN MODELS REQUIRE
PREPROCESSORS

® ADS/NASOPT REQUIRES EXPERIENCED USAGE
/ DESIGN MODELS

< ALGORITHM

® SENSITIVITY OF NEIGHBORHOOD STRUCTURE IS
ESSENTIAL

 DECOMPOSITION
< LARGE MODELS

® ADS/NASOPT PROVIDES FUNCTIONAL USE OF
MSC/NASTRAN
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Optimization Techniques Applied to
Design Problems

The nonlinear mathematical programming method (formal optimization) has had
many applications in engineering design (refs. 1 and 2). This figure illustrates the use of
optimization techniques in the design process. The design process begins with the
design problem, such as the classic example of the two-bar truss designed for minimum
weight as seen in the leftmost part of the figure.

If formal optimization is to be applied, the design problem must be recast in the form
of an optimization problem consisting of an objective function, design variables, and
constraint function relations. The middle part of the figure shows the two-bar truss design
Posed as an optimization problem. The total truss weight is the objective function, the

ube diameter and truss height are design variables, with stress and Euler buckling
considered as constraint function relations.

Lastli/, the designer develops or obtains analysis software containing a mathematical
model of the object being optimized, and then interfaces the analysis routine with existing
optimization software such as CONMIN, ADS, or NPSOL (refs. 3, 4, and 5). This final
stage of software development can be both tedious and error-prone.

This paper presents the Sizing and Optimization Language (SOL), a special-purpose
computer language whose goal is to make the software implementation phase of optimum
design easier and less error-prone.

Desi Pose as an implement with Computer
prgf,‘%:-. » Optimization ——) ode and Optimization

Problem Routine
E. G. Two-bar Truss Objective: e
1- - Minimum Weight Difficulties:
h @ Design Variables: ® Tedious

Tube Diameter

Truss Height ® Error-Prone

. Constraints:
Minimize Truss Welght Stress Requirements

Euler Buckling



SOL: A High-Level Computer Language

The use of a high-level computer language, as exemplified by SOL, meets the goals of
tr;1al1king the optimum-design process easier and less error-prone, as seen in the figure

elow.

In terms of analysis, SOL provides statements which can either model a design
mathematically or can model a design with subroutines and other code. In addition, a
FORTRAN block feature permits the user to incor porate existing FORTRAN routines via
subroutine calls and parameter-passing.

in terms of optimization, SOL provides an OPTIMIZE statement for describing an
optimization problem. The OPTIMIZE description is concise and parallels the
mathematical description of an optimization problem. Because the OPTIMIZE statement is
a built-in language feature, like a DO or IF/THEN/ELSE statement, the language is the
interface between optimization and analysis.

Iln terms of flexibility, SOL is quite general and can be used to code a variety of design

roblems.
P in terms of error-checking, the SOL compiler provides a vehicle for error-checking
specific to optimization problems. As the syntax of SOL statements is checked, semantic
checks on the use of the statements can also be performed. Additionally, the compiler
offers a listing which includes the SOL program indexed by line number; an optimization
summary for each optimization which lists the objective, design variables, and constraints;
and a cross-reference giving each variable and the lines on which the variable was used.

AL: Make Optimization Use  EASIERand LESS ERROR-PRONE

® Create Analysis in SOL

® Incorporate existing FORTRAN
codes via Subroutine calls

Create or Incorporate
Analysis Software

® Optimization a built-in Statement

¢ Language Integrates
Optimization & Analysis

Interface Analysis and
Optimization Software

Method for_a Variety :>

® Language is Flexible

of Design Problems

® Compiler g_angua e Translator)
Error-Checking: Saves provides Error-Checking

Time and Face .
® Source Listing, Variable Cross

Reference Options
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SOL Statements

SOL is a simple but powerful language. A brief overview of the language elements of
SOL is offered here, giving a representative list of available SOL statements. Further
details can be found in NASA Technical Memorandum 100565 (ref. 6).

SOL offers many traditional language features found in "conventional languages,"
e.g. FORTRAN or Pascal. SOL provides declaration statements such as variable and
subroutine declaration; control statements such as DO loops, IF/THEN/ELSE statements,
and subroutine calls; calculation statements (i.e. assignments, math operators and
built-in math functions); and output statements such as PRINT.

SOL has unique language features as well, such as an OPTIMIZE statement for
describing an optimization problem and an ASSEMBLAGE statement (beyond the scope
of this g%)e{) to facilitate the hierarchical modeling of systems. As mentioned earlier,
SOL's FORTRAN block allows existing FORTRAN code to appear within a SOL program.
To make SOL programs easier to write and more readable, a MACRO feature allows the
definition and use of text abbreviations within a SOL program. A single descriptive macro
call can replace many lines of SOL code. For example, SOL has a pre-defined 2INCLUDE
macro that allows entire text files to be included verbatim as part of a SOL program.

SOL's conventional features are combined with its unique features to solve design

problems.

TRADITIONAL LANGUAGE FEATURES:

~Declaration ‘Control “Calculation | Output
[Variable Declaration _ [Conditional DO loops [Assignment Print
[Subroutine Declaration |IF/THEN/ELSE Math Expressions

lterative DO loops
Subroutine Call

UNIQUE LANGUAGE FEATURES:

‘ Description Miscellaneous
OP TIMIZE Statement +OR THAN block

[ASSEMBLAGE Statement gacro Definition
acro Call

?INCLUDE macro




SOL Capabilities Used to Solve
a Design Problem

Using SOL as a tool for engineering design involves writing a sequence of SOL
statements that apply numerical optimization methods to a design problem. The process of
solving a problem using SOL is shown in the figure below. A program composed of SOL
statements is passed as input to the SOL compiler. Within the SOL program, the design
can be modeled mathematically or with subroutines and other code. In addition, existing
FORTRAN routines can be used via the FORTRAN block feature, and SOL's macro
abbreviation feature can be used. SOL's OPTIMIZE statement describes the optimization
problem, incorporating the methods of numerical optimization implemented in the ADS
optimization routine_ (ref. 4).

The SOL compiler translates the SOL program into an equivalent FORTRAN program
and does error-checking. The compiler offers approximately ninety different error
messages, and can produce listings, a variable cross-reference, and an optimization
summary which lists the objective, design variables, and constraints. However, SOL does
not provide error-checking features for FORTRAN BLOCK code fragments; SOL's
error-checking is limited to SOL statements onlg.

The FORTRAN program produced by the SOL compiler executes to solve the design
problem. This resultant FORTRAN program includes subroutine calls to the ADS software
and other detailed code.

SOL CODE SOL COMPILER

ANALYSIS:

® Math Models

@ Subroutines & Code Logic
® MACRO Abbreviations

e FORTRAN Blocks

OPTIMIZATION:

® Concise, Symbolic OPTIMIZE
description
® ADS Optimization Software

ERROR-CHECKING:
~ 90 Error Messages

LISTINGS:
Variable Cross Reference
Optimization Summary

EQUIVALENT FORTRAN CODE

® Callsto ADS
® Detailed Code
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Math and SOL Description of
Two-Bar Truss

SOL's description of an optimization problem parallels the mathematical description of
the problem as illustrated in the figure below which shows a minimum-weight, symmetric
two-bar truss problem.

The mathematical description appears on the left of the figure. The truss weight is the
objective function to be minimized as stated under the heading, "minimize." The design
variables and constraint relations appear under the heading, "subject to." The tube
diameter (d) and truss height (h) are design variables, with compressive stress and Euler
buckling constraints to insure that the truss neither yields nor buckles. A mathematical
model of the truss is given under the heading, "where,"” which includes the additional
variables for truss length (L), half-span (B), tube wall thickness (t), load (P), compressive
strength of material (6™2%), modulus (E), and material density (p). The mathematical
model defines the objective and constraint relations as functions of the design variables.

The SOL description on the right parallels the mathematics. The objective function is
represented by a single variable (weight). Design variables and constraint function
relations appear between the words USE and END USE. The lower and upper bounds on
the design variables appear in brackets following the word, IN. In addition, the optimization
software requires design variable initial values, which are given with each design variable
after tt)l?e "="symbol. Compressive stress and Euler buckling constraints follow the design
variables.

Finagy equations modeling the truss appear between the words END USE and END
OPTIMIZE. Note that the single SOL variable (buckle), representing the Euler buckling
constraint, acts identically to the constraint relation in the mathematical description.

L as
hem D ipti — SOL Description

Minimize: weight(d, h) OPTIMIZE weight

Subject to: USE

1 <d<3 d=1 IN[1,3]
10 < h< 30 h=15 IN [10, 30]

stress .It. MaxStress
buckle .It.0

ostress @n < gmax
END USE

oStress (g h) -o® (dh) < 0

Where:
weight(d,H) = 2pmndtL
oSless (g h) = (PL)/(rthd)
6€(dh) =n2 E(d + t2)/(8L2)

weight = 2*rho*pi*d*t*L

stress = (P*L)/(pi*t*h*d)

Euler =(pi**2"E*(d**2+{**2))/(8*L**2)
buckle = stress - Euler

END OPTIMIZE




SOL Error-Checking Example

A SOL program is passed as input to the SOL compiler which translates the SOL code
into an equivalent FORTRAN code, and provides the key feature of error checking for a
variety of errors. The figure below illustrates the error-checking capability of the compiler.

An intentionally erroneous SOL program for the two-bar truss problem appears on the
left of the figure. The program has been annotated with line numbers to aid the discussion.
The inset box on the right lists the actual error messages given by the SOL compiler on
receipt of this program. The first error occurs on line 11 where the word IN has been
misspelled; the compiler can usually correct the spelling of reserved words when the word
is misspelled by a single character. The next error is optimization specific, warning that the
constraint variable stated on line 14 has not been assigned a value. The error message
leads to the discovery that a typographical error on line 20 is the true culprit. Finally, an
error appears for line 17 because the variable for material density, rho, was not initialized.

Either of the last two errors would have caused incorrect optimization results if left

undetected. The last two errors are difficult to detect manually; a laborious examination of
the optimization results could reveal that the results were incorrect, but would not provide
the cause for the poor results.

It is important to note that the compiler is not clairvoyant; it cannot check the
correctness of problem formulation nor infer one's intentions. However the example here,
although not exhaustive, illustrates the general sorts of errors detected by the compiler.

__Erroneous Program Error Messages
1 :PROGRAM TwoBar 11 d=1INNT1, 3]
2 :t =01 “* ERROR -4 MISSPELLED "IN" CORRECTED
3 :P =3300
4 :B =30 14 . buckle .It.0
5 ‘E —30000000 **ERROR AOPTIMIZATION VARIABLE HAS NOT BEEN SET
6 :pi=3.141592554 17 :  weight =rho*2°pid*t'L
7 :MaxStress = 10000 “*ERROR AUNINITIALIZED IDENTIFIER
8
9 : OPTIMIZE weight
10 :USE
11 d=1INN[[1,3
12 :  h=15IN[10, 30]
13 :  stress .lt. MaxStress
14 buckle .It. 0
15 :END USE
16 : L = SQRT(B**2 + h**2)
17 weight = rho*2*pi*d*t"L
18 : stress = (P*L)/(pi*t*h*d)
19 :  E_stress= ((pi**2)"E*(d**2+t"*2))/(8*L**2)
20 : buckl = stress-E_stress
21 :END OPTIMIZE
22 :END TwoBar
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Scramjet Engine Cooling Jacket Application

The design of scramjet engine cooling jackets, in which numerical optimization is used
as a design tool, illustrates SOL's use for an engineering application.

A scramjet engine resides on the lower surface of a hypersonic vehicle, as in the
schematic below. A conceptual , two dimensional engine cross-section appears in the
middle of the figure, showing the ramp and cowl portions of the engine. The heating of the
engine surfaces wetted by the airstream is so extreme that an active cooling system is
required to maintain a survivable temperature. Only the ramp and cowl portions of the
engine are considered here, although other parts of the engine also require active cooling.
A promising active cooling system for this application is a system of hydrogen-fuel-cooled,
metallic, surface heat exchangers (cooling jackets) attached directly to the engine primary
structure.

Both channel-fin and pin-fin cooling jackets were studied, but the example in this paper
focuses on a channel-fin design. The design goal is to design cooling jackets which
minimize the required coolant flow rate for specified heating rates. The design must also
satisfy requirements such as material limits on cooling jacket temperature, fatigue life and
stress.

The cooling jacket design problem was recast in the form of an optimization problem
and implemented in SOL using SOL's OPTIMIZE statement. Existing FORTRAN routines
were incorporated for the analysis of a single ooolin? jacket panel via SOL's FORTRAN
bIockIfeature. Other SOL features were used to control the analysis and perform ancillary
calculations.

— Application Implemented with SOL

® Optimization problem posed in SOL.
® Single panel analysis with existing FORTRAN codes.

® SOL features used to control analysis routines.




Cooling Jacket Design Problem

The figure below illustrates the scramjet engine cooling jacket design problem in some
detail. As seen in the top half of the figure, a coolant flows through cooling jacket panels to
remove the incident heat flux (). Only two panels of equal dimensions are shown in the
figure, although many panels of varying sizes can be used. For more details of panel
confl?urations see reference 7.

he lower half of the figure illustrates the geometry of a channel-fin cooling jacket.
As seen on the left-hand side, a channel-fin geometry can be completely described by the
channel width (_'T‘_), the channel height (h), the channel wall thickness (w), and the outer wall
thickness (t). The right-hand side of the figure shows a top view of a channel-fin cooling
jacket, illustrating the coolant flow through the jacket channels.

When the design is recast in the form of an optimization problem, several design
variables describe the coolant flow conditions and the remainder of the design varigbles
describe the cooling jacket geometry.

Coolant Flow:
Heat Flux : q4 Heat Flux : go
|
l Coolant

Coolant y
Inlet _* Panel 1 /9/ Panelzh Outlet

Channel Fin Jacket Geometry:

Heat Flux (q)

. 5 3 /_Outer wall
VL Channel
................... 0000 ............. r Wall
[ s} Inner
o A Sum— — Wall

StEng![E?e Coolant Flow

L Cross-Section Top View
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SOL's Use for Cooling Jacket Optimization

SOL's use in the cooling jacket optimization is shown in the schematic below. SOL
code describes the optimization problem as in the left-hand part of the figure. The objective
function to be minimized is the coolant mass flow rate. Weight is 2 more common objective
function. But in this application minimizing the coolant mass flow rate can decrease the
coolant needed, effectively reducing the total vehicle weight. The design variables consist
of variables describing the coolant mass flow rate, the coolant inlet pressure, and several
variables to describe cooling jacket geometry.

In addition, constraints nn the coolant and jacket conditions are required. As stated
earlier, existing FORTRAN routines calculate the constraint function relations. The
constraint routines are called from the SOL program by subroutine calls. Design variable
values are passed as parameters to the constraint routines, which return constraint function
values, also via parameter-passing.

The SOL program for the oooﬁng jacket application is passed as input to the SOL
compiler, which produces an equivalent FORTRAN program as output. The compiler also
performs program analysis and error-checking on the SOL code.

The output FORTRAN code contains calls to the ADS optimization software which
provide's SOL's optimization capability, as well as calls to the constraint modeling routines.
The output code also contains detailed code such as variable declarations and so forth.

The FORTRAN code output by the SOL compiler is compiled and linked using the
FORTRAN compiler and linker. The resulting executable code is run to perform the cooling
jacket optimization.

-SOL CODE FORTRAN CODE
OBJECTIVE: CALLS TO ADS
DETAILED CODE
COOLANTMASSFIOWRATE} = b r e e
CALLS TO CONSTRAINT
MODELS
DESIGN VARIABLES;
JACKET GEOMETRY
COQLANT INLET PRESSURE
SOL COMPILER FORTRAN
CONSTRAINTS: ERROR CHECKING COMPILE and
PROGRAM ANALYSIS LINK
JACKET TEMPERATURE
COOLANT MACH NUMBER
COOLANT PRESSURE DROP
JACKET STRESSES
JACKET FATIGUE LIFE
FORTRAN BLOCK EXECUTABLE CODE
CONSTRAINT MODELS




Cooling Jacket Optimization Description in SOL:
An Overview

The figure below gives the SOL program for the cooling j_?cket optimization problem in
outline form with all reserved words shown in boldface type. The program begins with the
word PROGRAM followed by the name of the program. Before the optimization problem
description begins, variables and subroutines are declared, and macro definitions appear.
In the figure, the actual code has been replaced with comments, marked by exclamation
point symbols, to simplify the discussion. Subsequent figures will discuss each of the
comment sections in turn.

The optimization problem description is initiated by the word OPTIMIZE and
terminated by the words END OPTIMIZE. A single variable given after the word
OPTIMIZE states the objective function. Next, design variable, constraint relation and
optimization software option declarations appear between the words USE and END USE
In the figure below, the three declarations have been replaced with comments. The SOL
code for the cooling jacket analysis appears between the words END USE and END
OPTIMIZE, as indicated by a SOL comment in the figure.

The main body of the SOL program terminates with the word, END, followed by the
name of the program. In SOL, subroutines follow the end of the main program body. In
the cooling jacket application, SOL's ?INCLUDE macro is used to include the contents of
the file "cool_jacket.sub," which contains the subroutines for cooling jacket analysis.

PROGRAM Cool_Jacket
! Variable and Subroutine Declarations
! Macro Definitions

OPTIMIZE total_ panel_ flowrate

USE
! Design Variable Declarations

! Constraint Function Relation Declarations

! Optimization Software Options
END USE

! Cooling Jacket Analysis
END OPTIMIZE
END Cool_Jacket

?INCLUDE Cool_Jacket.sub
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Objective and Design Variable Description in SOL

The figure below details the SOL code for the design variable declaration section of
the ooolir:jg {'acket optimization as outlined previously. The objective function to be
minimized, the coolant mass flow rate, follows the word OPTIMIZE and is represented
by a single variable, "total_panel_flowrate."

Design variable declarations follow the word USE. For this application, six design
variables are used. Two variables, "panel_flowrate" and "inleh_pressure," describe
coolant conditions. Also, four design variables are needed to describe the geometry of
each cooling jacket panel. The design variables for a single panel are shown in the
figure; each of the panel geometry variables are suffixed with the panel name,

" _panel_1." If a second panel were also considered, four additional design variables for
the second panel's geometry would be required. Since design variables must have
unique names, these variables could have the suffix "_panel_2." This naming convention
provides a consistent way to handle multiple-panel optimizations.

The lower and upper bounds on the design variables appear to the right of each
design variable enclosed by brackets; the actual numbers are unimgortant for this
discussion. In addition, initial values for design variables required by the optimization
software appear with each design variable following the equals symbol.

OPTIMIZE total_panel flowrate

USE
panel_ flowrate 3.0 IN [1.000, 4.000]
inlet pressure 1000.0 IN [1000., 1500.)

aspect_ratio_panel 1
spacing panel 1

0.5641 IN [0.400, 0.800]

B 0.02 IN [0.020, 0.025]
outer_wall panel 1 0.016 IN [0.010, 0.018]

channel_wall panel 1 0.09 IN [0.060, 0.120]
! #** Constraint Relation Declarations **x*

! *** Optimization Software Options ***
END USE

! *#** Cooling Jacket Analysis ***
END OPTIMIZE




Constraint Function Relation Descriptions in SOL

The figure below details the SOL code for the constraint function relation declaration
section of the cooling jacket optimization as outlined previously.

Six constraints are used for a single cooling jacket panel optimization. A single
constraint on coolant pressure drop is represented by the variable, "pressure_drop." In
SOL, the relation "less than " is represented by .It. and the relation "ﬁreater than” is
represented by .gt. In this case, the "pressure_drop" must be less than 100 psi. Five
additional constraints are required for each panel, representing cooling jacket low cycle
fatitk;ue life, coolant Mach number at the panel exit, cooling jacket temf)erature, and cooling
jacket stresses. As with the design variables, the cooling jacket panel constraints are
suffixed with the panel name. In the figure, the name "_panel_1" is used as a suffix.

OPTIMIZE total_panel flowrate

USE
! *** Design Variable Declarations ***
pressure_drop .1t. 100
fatigue life_panel_ 1 .gt. 600
gas_mach_out _panel 1 .lt. max_coolant_mach

outer_temp panel 1~ .1lt. 2000

wall stress panel_ 1 .1lt. 1

web_stress panel_ 1 L1t. 1

! *** Optimization Software Options ***
END USE

! *** Cooling Jacket Analysis ***
END OPTIMIZE
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Optimizer Option Description in SOL

The figure below detalils the SOL code for the optimization software option declaration
section of the cooling jacket optimization as outlined previously. The ADS optimization
software used by SOL offers a variety of optimization algorithms and access to numerous
internal parameters such as convergence criteria or maximum number of iterations. The
s%tg/gn;g option declaration section provides access to these parameters from a SOL
program.

The software option declaration section appears after the deslqn varlable and
constraint function relation declarations. The software options section begins with the word
OPTIONS and ends with the words END USE. |n the figure below, a sequential quadratic
programming strategy Is selected along with a golden section method of one-dimensional
search. The modified method of feasible directions for constrained minimization is used as
the optimizer. SOL automatically supplies default option values for the new user, but the
OPTIONS sectlon permits a knowledgeable user to take full advantage of the options
offered bY the ADS software. Also, the OPTIONS saction separates the description of the
optimization problem, the objective; design variables; and constraints, from the detalils of the
particular optimization software used to solve the problem.

The word normalize indicates that des{&n variables are to be normalized between the
values 0 and 1.0. Scaling variables often make an optimization problem better conditioned
and hence easier to solve.

OPTIMIZE total_ panel flowrate
USE

! **% Design Variable Declarations **x*

I *** Constraint function relation Declarations ***
OPTIONS

strategy = sequential quadratic
optimizer = modified feasible directions

search golden section
normalize
END USE
! *** Cooling Jacket Analysis ***
END OPTIMIZE




Cooling Jacket Analysis in SOL

The figure below details the SOL code for the cooling jacket analysis, as outlined
previously. The analysis computes the values of the objective and constraints as functions
of the design variables.

The analysis code appears between the words END USE and the words END
OPTIMIZE. In the figure, the first two assignment statements define variables for the initial
coolant pressure and coolant temperature. The next statement gives the location of the first
cooling jacket panel.

A SOL macro, 2Channel_Panel, analyzes a single cooling jacket panel as shown in
the figure. The macro abbreviation hides the details of the analysis. The macro itself is
shown in boldfaced type, whereas the macro parameters supplied by the user are shown in
plain type. The first parameter, "panel_1" is the name of the panel being analyzed. The
two parameters that follow "x=" define the length of the panel, and the two parameters for
"q=" define the heat flux incident at the start of the panel and at the panel exit. The user
simply calls the 2Channel_Panel macro with the desired parameters to analyze a single
cooling jacket panel. The macro defines the necessary variables and calls the external
FORTRAN routines to perform the analysis.The user can conduct multiple panel analysis
by calling the macro once for each panel analyzed. Although the actual code for the
analysis is quite complex, the macro simplifies the complexity into a macro call with five
parameters. This discussion focuses on the use of the 2Channel_Panel macro, some
details of how the macro was defined are presented subsequently.

Two assignment statements foilow the macro call. The first assigns the objective
function a value; the variable "panel_flowrate" is a design variable. The second
assignment gives a value to the pressure drop constraint. Other constraint variables are
c(l)e';i[ll_e'zﬁn %)% Ethe macro call. The analysis and optimization ends with the words END

OPTIMIZE total panel flowrate

USE
! *** Design Variables, Constraints and Options
END USE
gas_p_in = inlet_pressure ! a design variable
gas t in = 1000

Panelstart = 0
?Channel Panel panel_1l begin x= 0 g= heatrate
end x= 75 g= heatrate
total_panel flowrate = panel flowrate
pressure drop = inlet pressure - gas_p_out
END OPTIMIZE
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Cooling Jacket Analysis:
?Channel_Panel Macro Use

The figure below shows the creation of the 2Channel_Panel macro used to conduct
cooling jacket analysis.

The box in the upper part of the figure shows how the Channel_Panel macro is
defined. The definition begins with the word, ?DEF, followed by the name of the macro.
The numbered items in plain text (#1, #2, ..., #5) are parameters to the macro. Also, SOL
allows text sboldface in the figure) to be used to separate the macro parameters. Often the
macro creator will use this delimiting text as a reminder for the parameters’ use. For
example the text, begin, was chosen to indicate that the second and third parameters are
the location (x=) and heat flux (q=) at the panel START, whereas "end" is used to indicate
that the fourth and fifth parameters are for the panel EXIT.

Macros are text abgreviations; the text that the macro abbreviates appears between
the open and close curly braces in the definition. The 2Channel_Panel text initializes all
the variables associated with a cooling jacket panel analysis. Only one initialization is
shown in the figure with the remainder represented with ellipses. The text also calls an
external FORTRAN routine which analyzes a panel, also only shown as a comment in the
figure.

When the macro is called, the macro's text is executed with the user supplied
parameters inserted. For example, the lower part of the figure shows a call to
?Channel_Panel. The effect is exactly as if the very bottom text box were typed instead of
the call; the macro merely abbreviates text. Notice that the parameter, "panel_1," is
inserted in the macro text in the place of "#1" when the macro is called.

A macro was used because the variable initializations and call to the external
FORTRAN routine, which has 23 parameters, must be repeated for every Parjel analyzed;
tedious typing if multiple panels are analyzed. The macro hides this complexity, replacing
the tedious typing with one simple macro call per panel.

Macro Definition: ?DEF ?channel Panel #1 begin x= #2 q= #3

end x= #4 g= #5

webheight = aspect_ratio #1 * spacing #1

! Call external subroutine with FORTRAN block
}

Macro Call:

I ?Channel_Panel panel 1 begin x= 0 q= 75 end x= 2000 q= 2500|

Code SUBSTITUTED for Macro Call:

webheight = aspect_ratio_panel_1 * spacing_panel_1

! Call external subroutine with FORTRAN block




Some Results from Cooling Jacket Study:
Channel Fin Versus Pin-fin Comparison

The cooling jacket study produced many results, some of which are illustrated in the
figure below. The gralgh charts optimum coolant flow for channel-fin and pin-fin jackets as a
function of heat flux. Results for a Nickel cooling jacket panel, 36 inches wide and 24
inches long with an inlet pressure limit of 3000 psi., are shown in the figure. The graph
shows several significant results.

First, a simple energr-balance for determining coolant requirements predicts a linear
relationship between coolant flow rate and heat flux. The results are clearly non-linear in
the figure.

Second, at the lower heat-flux levels, there is little difference in the value of the
ogtimum coolant flow rate for channel-fins and pin fins. But at high heat fluxes, the
channel-fins have lower coolant flow requirements than the pin fins.

Finally, each point on the graph for channel-fins or pin-fins represents an optimum
coolant flow rate. In this way, the graph can be interpreted as illustrating the optimum
sensitivity of the coolant flow requirements to heat-flux for the given cooling jacket design.
Note that smooth curves are faired through the calculated points of this fi?ure, but the
actual curves undoubtedly contain slope discontinuities whenever the sef of active design
constraints changes.

5 —
4r Nickel cooling jacket
24" x 36" panel
3000 psi inlet pressure limit
Optimum 3 |-
coolant
flow rate,
lbm/sec 2|
Channel fin
1 e
| | | | 1 1 1 H J
0 400 800 1200 1600 2000

Heat flux, Btu/ft2- sec
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SUMMARY

A special-purpose programming language, SOL, has been developed to expedite
implementation of optimization problems and to make the process less error-prone. A more
detailed discussion of SOL can be found in reference 6. Currently SOL is only available for
DEC VAX/VMS systems.

As a language, SOL provides a high-level interface to the ADS optimization software.
SOL integrates optimization and analysis within a single OPTIMIZE description, which
parallels the mathematical description of an optimization problem. In terms of analysis,
SOL provides language statements which can be used to model a design mathematically,
with subroutines and other code, or to model a design with existing FORTRAN routines and
parameter-passing. SOL also provides error checking geared to optimization problems to
make problem implementation less error-prone. Because optimization is a built-in language
statement, the language is the interface.

SOL's use is illustrated in the design of scramjet engine cooling jackets. In this
example, the cooling jacket optimization problem was posed in SOL. Existing FORTRAN
routines for panel analysis were incorporated into the SOL program using SOL's
FORTRAN block feature. Other SOL features were used to control the analysis routines,
and provide a simple method of conducting multiple panel analysis. Reference 7 provides

details of the scramjet engine cooling jacket application.

SOL, a computer language for optimization, developed.

@® NASA TM 100565 details SOL
® Available for DEC VAX/VMS Systems

High-level Interface to Optimizer Software

@® Simplifies Optimization Software use
@ Reduces Errors with Error-Checking

@ Language Integrates Optimization and Analysis

Cooling Jacket application illustrates SOL's use.

@ Existing FORTRAN codes used for analysis
@ NASA TM 100581 detalls Cooling Jacket application
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INTRODUCTION

AUTOCON is an automated computer-aided design tool for the synthesis and
optimization of linear multivariable control systems based upon user-defined control
parameter optimization. Violations in stability and performance requirements are
computed from constraints on Single Input/Single Output (SISO) open- and closed-loop
transfer function frequency responses, and from constraints on the singular-value
frequency responses of Multiple Input/Multiple Output (MIMO) transfer functions, for
all critical plant variations. Optimum nonlinear programming algorithms are used in
the search for local constrained solutions in which violations in stability and per-
formance are caused either to vanish or be minimized for a proper selection of the
control parameters, Classical control system stability and performance design can,
in this way, be combined with modern multivariable robustness methods to offer gen-
eral frequency response loop-shaping via a computer-aided design tool., Complete
Nichols, Nyquist, Bode, singular-value Bode magnitude and transient response plots
are produced, including user-defined boundary responses. AUTOCON is used to synthe-
size and optimize the lateral/directional flight control system for a typical high-
performance aircraft. (See figure 1.)

- Automated Computer-Aided Workbench Design Tool For Synthesis And
Optimization Of Linear Multivariable Control Systems

- Parameter Optimization Determines Local Constrained Optimal
Solutions In Which Violations In User-Specified Stability/Performance
Requirements Either Vanish Or Are Minimized

- Frequency-Domain Loop Shaping Via Nonlinear Mathematical Programming

- Synthesis/Optimization Considers Each Stability Loop And Constrained
Transfer Function For All Plant Variations Simultaneously.

User-Defined Control System Architecture, Parameters, Stability Loops,
Constrained Transfer Functions

Fixed and Varying Plant Dynamics
Classical Specs : Stability Margins, Bandwidth, Damping, Overshoot, etc.

Sensitivity Analysis

Figure 1
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CLASSICAL CONTROL SYSTEM SYNTHESIS AND OPTIMIZATION

The "classical" version of AUTOCON (ref. 1) performs synthesis and
optimization of linear control systems using nonlinear mathematical programming
(NMP). Stability constraints (stability margins using Nyquist single-loop-at-a-time
methods) and system performance constraints for scalar transfer functions are user-
specified as are the system architecture and control parameters. Actual system
open- and closed-loop frequency responses (airframe plus control system) are comput-
ed for the user-specified "initial system" for each stability-loop and constrained
closed-loop transfer function, and for all selected plant variations. Similarly,
desired and boundary responses are computed from the system requirements.
Violations in the actual responses when compared with the desired and boundary
responses at each frequency computed (considering all responses simultaneously) are
caused either to vanish or are minimized by a proper selection (automated) of the
control parameters (parameter optimization). A multivariable control system diagram
and stability/performance constraints are depicted in figure 2 below.

..................................................

: 5 : : Disturbances |
§ 5 AL
; . ! v i vaying | 1
% —ipf i) R Gt —— o :
: v Noise § } ) :
: v 5+ 0 Dynamics :
: b P ntog P 3
E ] st o-éo— L oA00.Beg) | 1
: HO TSN Hwmw |
R Controller Sensors Plant
x = A(K)x + B(k)u
y = H(k)x + F(kju
Measurement Constraint
Frequency Response Loop Shaping
_ b ' b Stability Margins/Forbidden Region
CLTE: L . i SENEN CL Bode Response Boundary
8 L Envelopes (Each Constrained
an o CLFR, All Pvs)
Performance o I S S 1) Analytical Third-Order (or
| STICK ' ROLLSTK Roduced) Model
Ny.B8.R 2) Table of Values
i RPEDAL {Mag, Phase vs )
\
Figure 2
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J(p)Stab

J(p) Perf

OBJECTIVE FUNCTION (CLASSICAL VERSION)

The objective function for the classical version of the program, shown in
figure 3, combines violations in stability (open-loop frequency responses (OLFR))
for each stability loop with violations in the magnitude/phase frequency responses
of selected closed-loop scalar transfer functions, for all plant variations.
Classical gain and phase margins (GM, PM) are used to define a Forbidden Region in

the Nyquist/Nichols plane. This region is an area of wuncertainty centered at
the Nyquist critical point (-1, jO) or (Odb, -180°) which the OLFR must avoid for
adequate single input/single output (SISO) stability behavior. User-specified

boundary constraints are imposed on the magnitude/phase closed-loop frequency

responses (CLFR) which the actual CLFRs must be within to provide desirable perform-
ance.

OL CL
J = JStabmty + J

Performance

L L I f(Stability Margins/Forbidden Region Violations)

Pvs OLTFs w

r £ I f(Magnitude/Phase Boundary Constraint Violations)

PVs CLTFs w

Mao

OL Nichols Mgg
Phase
[

J(p)SL.n

Figure 3
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THE SEARCH ALGORITHM (NONLINEAR MATHEMATICAL PROGRAMMING)

A constrained local minimization procedure (Search Algorithm) is wused to
search for the active control parameters yielding minimum violation in all require-
ments considered collectively. The variable metric method of Davidson, Fletcher,
and Powell (DFP Algorithm) (refs. 2,3) iteratively computes an approximation of
the 1inverse Hessian matrix, H, which is used to deflect the gradient vector,
VIi(p) = 8J/3p = AJ/Ap, at a point in parameter hyperspace. The computation of
this deflection matrix,n, (n(pl) =~ H 1(pl)) hastens convergence since it is wvery
effective in the vicinity of valleys in the hyperspace. The algorithm is also quite
fast and not storage intensive since second partials need not be computed, nor must
previous first or second derivatives be stored. The gradient is computed by a
numerical perturbation procedure. A unidimensional search with quadratic interpola-
tion is performed in the deflected gradient direction (search direction) to obtain
the minimum in this direction. A gradient projection scheme is used to constrain
the search within the feasible region. This is repeated for each search direction
until the minimum 1is located. The iterative search algorithm is shown by the
recursive equations and pictorially in figure 4.

e Constrained Local Minimization
— DFP Algorithm
— Unidimensional Search With Quadratic Interpolation

— Gradient Projection

pi+1 - pi _ *ini VJ(p’), p2

pmin < p < pmax

A= d(p' = Ny 9IEY)

AT sy

Figure 4
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MIMO TRANSFER FUNCTION MATRICES DEFINITION

Shown below in figure 5 is a block diagram of a linear multivariable control
system, subdivided into a controller, sensors and a plant. The representation here
is of a plant with varying and uncertain plant dynamics given by the system matrices
Ap(k), Bp(k), Hp(k) and Fp(k). The control system (controller and sensors) shown
in Laplace transform notation can be combined with the plant state and output
equations to form a total system state-space representation. It is convenient for
multivariable systems to define certain matrix transfer functions. The loop trans-
fer matrix, which depends upon the output node since matrix multiplication is not
commutative, sensitivity matrix and complementary sensitivity matrix are defined in
figure 5 (refs. 4,5).

---------------------------

: Sr \E : Disturbances E
; : : 9 :
E : U Varying N
Q —r’ M(S) G(S) : Sssseessassas s :’ Plant E
N NN Noise v ! , .
! NI 5 NI Dynamics N
5 b Vo Ny P 5
5 H(s) la—H S(s) 4-(%4—-— L Ak Beg |
: il P N ReRK |
T Controller Sensors ~ Plant
x= AKX+ BIU  P(K) = H(K) (s - A(K)) ' B+ F(K)
88-CSR-026-007 : y = H(k)x + F(k)u
Loop Transfer Matrix L(s) =L (o,p) & P(s) G(s) H(s) S(s) aty node

li»

G(s) H(s) S(s) P(s) atu node
Sensitivity Matrix S(s) & (/ +L(s))"
Complementary Sensitivity Matrix T(s)= /-S(s)=L(s) (/ +L (s))'1

Figure 5
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SINGULAR-VALUES DEFINITION

Nyquist stability theory, well founded and accepted for SISO systems, has
been shown to be inadequate to describe robust MIMO system stability, because the
determinant of the return difference matrix (I + L(s)) does not always provide a
good indication of the proximity to singularity. Singular-values of a matrix A,
oi{(A), however, provide a far better indication of system robustness since they
provide a useful measure of the "size" of a matrix. Singular-values can be inter-
preted as the "gains" of a matrix for input vectors in various directions, as shown
in figure 6 below. They also provide a natural extension to the familiar Bode
frequency plots via the Bode sigma plot (Singular-values vs frequency). The singu-
lar-values of a matrix are defined as the nonnegative square roots of the
eigenvalues Ai(AHA), where Al 1s the complex conjugate transpose of A, It is
useful to define the maximum and minimum singular-values, G(A) and g(A), respec-
tively. These will then form an upper and lower bound for oy(A) on the Bode-sigma
plot,

For Any Matrix A and Vector x

o (A) 2 +in A" A)
G(A) £ max o;(A)
S(A = min oA

x = A = y=Ax

Ql

T 10
(A) = min (IIAxII) = min gain of A

(A) = max ( HAXI ) = max gain of A
X

la

x \ IIxIl

Figure 6
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OBJECTIVE FUNCTION (MODERN ROBUSTNESS VERSION)

The objective function for the "modern" version of AUTOCON combines the MIMO
robustness violation function Jyghustness With the "classical" version consisting of
SISO stability and performance violation functions. The J(p)yobust term considers
violations in the user-defined singular-value constraints for each constrained
matrix transfer function and for all plant variations. This is shown in figure 7
both with equations and graphically.

oL CL
‘J - JStabnh(y + JPertormance + 'JRobusmess

Jp),, = L L L f(Stability Margins/Forbidden Region Violations)
Pvs OLTFs w
JP),,, = L L I f(Magnitude/Phase Boundary Constraint Violations)
PVs CLTFs w
JP)ee = L L I f(SingularValue Constraint Violations)
Pvs TFMs w o(TFM)
Mag Mag Iy
Phise P~ . :
] w |
E 0
Unstable\l Stable E
|
|
E o

‘J(p)m st

J(p) Sty

25400687

Figure 7
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TYPICAL SINGULAR-VALUE BODE PLOTS AND SPECIFICATIONS

Typical singular-value frequency response (Bode) plots and constraints for a
multivariable feedback control system are shown below in figure 8. The maximum
singular-value plot of the sensitivity matrix &(S) is constrained for disturbance
attenuation and bandwidth in figure 8a, whereas, gain/phase margins (resonant peak)
and unmodeled high frequency dynamics specifications are imposed on the maximum
singular-value plot of the complementary sensitivity matrix &(T) in figure 8b.
Clearly, the singular-value frequency responses and specifications shown below are
analogous to the usual SISO frequency responses and specifications. Connection
between the resonant peaks My and Mg and classical gain/phase margins can be
developed using the methods of references 6 and 7.

« Bandwidth & Disturbance Attenuation:o (S)

I+ 0"
L+ L)

~N O
e up

® (rad/sec)

 Gain/ Phase Margin & Unmodeled High Frequency Dynamics : ¢ (T)
c (db)

GM > max [(ﬁs—),(anT)]

1 1
PM 22 arcsin [max (WS' M )]

-1

O (rad/sec) ;
My =[2sin(5 PMspec)]

.igh Frequency

Roll - Off Rate

(b) Figure 8
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AUTOCON DESIGN EXAMPLE

A design problem is presented below in figure 9 in which program AUTOCON is
asked to synthesize a typical aircraft lateral/directional flight control system in
which control of roll rate, P, and lateral acceleration Ny using the roll-stick and
rudder pedal 1is effected, subject to combined MIMO robustness constraints and
classical SISO stability and performance constraints, for three different operating
points or flight conditions (plant variations). The synthesis and optimization will
involve each constrained open- and closed-loop scalar and matrix transfer function
for all plant variations, simultaneously. It is necessary for both the modern
robustness constraints and the classical constraints to be active: 1) to ensure that
the individual stability loops remain stable (closed-loop eigenvalues do not migrate
into the right-half plane) and 2) to provide desirable SISO frequency response loop-
shaping (classical specifications). The active control parameters chosen for this
example were K1, Ko, . . . Kg. In this design, Kj, Ky, K4, and K5 are scheduled
(different gain value for each plant variation), while K3, Kg, Ky, Kg, Kg are
nonscheduled (same value for each plant variation). This results in a total of 17
active control parameters.

A/F Dynamics (Plant) Vaer, Vace,
V7 7 2 3
ROLLSTK K.8+K 1573 | % Z
« 5 States v: 0.1:&1 ! . s : 0048 +1 Us
. 0 FB Compensation
b 3 Plant Vanatlons Prefitter FL Compensalion Actuator 5 [« K; . .
Y2

Controlled Outputs Vees, Ves, : AF

s Ve g 7 g p Dynamic
RPEDAL 8 K8 +K 5 Lw 11573 1z, Zie Y
* Roll Rate (P) Y, | 0iBse1 2 ! \ Ko goassT =X ; Uz
* Yaw Rate (R) Prefitar FL Compansation Acivator

« Lateral Acceleration (Ny) “ o 5

1 1 :7_,1 aly,
Inputs (Surface Deflections) =y, J
+ ROLLSTK (84 ||
s RPEDAL (5, ) _
Active Control Parameters (17) T v —:
B Compensation p=IK. .. KQ]T ¢ -—y,
Ki, Ky, K4, K5 = Scheduled = v
K, Kq, K, Kg, Kg— Nonscheduled = A B

y=Hx+Fu

Figure 9
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AUTOCON DESIGN EXAMPLE: SPECIFICATIONS

The classical SISO and modern MIMO robustness specifications for the AUTOCON
design example are presented below in figure 10. Both the roll and yaw loops are
desired to have at least 8 db of gain margin and 55 degrees of phase margin and each
open-loop frequency response should not penetrate the Forbidden Region defined by
the stability margins. It is also desired that the P/ROLLSTK response be within the
performance bounds of an analytical 2nd- order model with parameters given below,
with a steady-state value of 34 * 0.4 db; and the Ny/RPEDAL response be within the
performance bounds of a set of table values approximating a 2nd-order system with
parameters given below, with a steady-state value of 11 * 1.25 db. The robustness
specifications include at least a 2 rad/sec system bandwidth, maximum disturbance
attenuation and a &(T) resonant peak less than or equal to 0.69 db (this provides
at least 55 degrees phase margin and 8 db gain margin simultaneously in each loop).

ISO (Classical
+ Stability : Roll & Yaw Loops

GM > 8db Forbidden
PM > 55deg Region

» Performance:

P/ROLLSTK - 2nd Order Model ( { = 0.8, 4.0 < © <6.0 rad/sec)
Steady-State : 34 +0.4db

N, /RPEDAL - Table Values (£ =08, 25< w, <3.5rad/sec)
Steady-State : 11 + 1.25db

MIMO (Robustness)

¢ Bandwidth > 2 rad/sec 5(S)
« Maximize Disturbance Attentuation
« Stability Margins

M;<0.69db =) PM2>55deg( .. _ L
GM > 8db Simultaneously in each loop ¢ &(T

Figure 10
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AUTOCON DESIGN EXAMPLE: PARAMETER CONSTRAINTS AND RESULTS

The admissible parameter range (linear inequality constraints) for the
design problem is shown below in figure 1la. It is observed that the range for the
forward-loop compensator parameters (scheduled) was selected as .001 < p < 10.0,
whereas the remaining feedback parameter range (nonscheduled) was selected as -10.0
< p =< 10.0. This was done to limit the forward-loop gains to positive values
thereby preserving the sign convention, while allowing for possible feedback sign
reversals from the nominal system shown in figure 9.

The results of the search, shown in figure 11b, indicate that a local mini-
mum was found at a violation (J) of .0027. The effect of this violation is actually
too small to be observed from the frequency responses presented in figures 12-15.
The initial value chosen for all parameters was unity (no a priori information
assumed). The final computer-generated scheduled and nonscheduled parameter values
are also listed in figure 11b. It took 3.8 min on an IBM 3090 mainframe computer to
synthesize this solution.

Active Parameter Constraints Ppin < P< Ppay

Parameter Ky Kz Ks K Ks Ks K Kg Kg

P i 0.001 | 0.001 |-10.0 | 0.001 | 0.001 [-10.0 | -10.0 | -10.0 | -10.0

P max 10.0 10.0
88-CSR-028-012 (a)
Resul =.0027) CPU = 3.8 min (IBM 3090
Scheduled Parameters

Parameter Ky K, Ke Ks

PV 1 2 3 1 2 3 1 2 3 1 2 3

Initial Value 1.0 »1.0

Final Computer
Generatedp\/ame 1.030{0.501 |0.421 |1.511]1.278(0.988]0.644(0.448 [0.288 | 2.491 | 2.090 |1.217

Nonscheduled Parameters

Parameter Ki | Ke | K7 | Kg | Ko

Initial Value 1.0 1.0

Final Computer
Generated Value 0.636 | 1.541| 0.490] 0.213| 1.558

88-CSR-026-012A (b)

Figure 11
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AUTOCON DESIGN EXAMPLE: SISO NICHOLS PLOTS

The following pages contain the SISO and MIMO response plots of the
airframe/control system with the unity initial control parameter values (before) and
the system with the final computer-generated parameter values (after) for the three
plant variations superimposed. The SISO open-loop frequency responses (Nichols
plots) for the roll and yaw loops produced by AUTOCON are shown below in figure 12.
The (8db, 55°) Forbidden Region (FR) 1is plotted as the closed broken contour
(shaded). It is apparent from the initial roll loop responses in figure 12a that
there is severe penetration into the FR for all three systems, violating the (8db,
55°)FR stability specification. As shown in figure 12c,d, SISO stability is ade-
quate for the yaw loop. It is observed from figure 12b that AUTOCON has reshaped the
roll loop Nichols responses around the FR by an adjustment of the active control
parameters, the values of which are listed in Figure 11lb.
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AUTOCON DESIGN EXAMPLE: SISO PERFORMANCE BODE RESPONSES

The SISO closed-loop Bode magnitude performance responses P/ROLLSTK and
Ny/RPEDAL are presented below for the unity initial system in figure 13a,b and
after the AUTOCON synthesis in figure 13c,d, respectively. The upper, lower and
desired response boundary constraints consistent with the performance specifications
given in figure 10 are shown as broken curves, with the unacceptable region shaded
in figure 13. For this example, only the magnitude response was constrained. In
general, magnitude and phase response constraints can be imposed. It is observed
that there are severe violations for the unity initial parameter system both with
respect to the steady-state values, shaping (notice the unacceptable resonance in
the P/ROLLSTK response for two of the three plant variations), and sluggish Ny/
RPEDAL responses. After the AUTOCON synthesis, the responses were forced into their

respective boundaries, thereby satisfying the classical SISO specifications imposed
on the system.

AUTOCON
MMO LAT/DIR FCS 3PVS
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AUTOCON DESIGN EXAMPLE: MIMO SINGULAR-VALUE BODE RESPONSES

The singular-value sensitivity matrix and complementary sensitivity matrix
Bode responses, o(S) and o(T), respectively, for the system with the unity initial
parameter values and final computer-generated values are shown below in figure 14
for the three plant variations. Bandwidth, disturbance attenuation, gain/phase
margin and unmodeled high-frequency roll-off specifications are drawn in figure 14
as broken boundary constraints with the unacceptable region shaded on the re-
sponse plots. The o¢(8) and o(T) for this example are computed by AUTOCON
from the MIMO matrix closed-loop transfer functions (217, Z18,)/VREF1.VREF?2)
and (Z3, Z4)/(VRer3. VREF4) respectively. It is observed after comparing the
initial and final sets of plots that AUTOCON successfully located a solution which
satisfied the MIMO robustness specifications for all three plant variations, as
given in figure 10. Note particularly the significant improvement in the distur-
bance attenuation for the &(S) responses and the resonant peak magnitude Mr
attenuation for the o(T) responses. Satisfying the 0.69 db resonant peak magnitude
constraint ensures at least 55 degrees phase margin in each loop even when the
variations occur simultaneously in both loops. At least 8 db gain margin in each
loop is also obtained by virtue of the equations shown in figure 8b.
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AUTOCON DESIGN EXAMPLE: TRANSIENT RESPONSES

Finally, transient responses of the constrained outputs roll rate, P, and
lateral acceleration, Ny, to unit step ROLLSTK and RPEDAL input commands, respec-
tively, are produced and shown below in figure 15 before and after the AUTOCON
synthesis and optimization, for the systems with the three plant variations.
Comparing the initial and final system P responses (figure 15a,b) shows that the
poor initial responses (improper steady-state value and ringing) has been corrected
by the optimization process and now satisfies the specifications. The upper, lower
and desired transient boundary responses (broken curves) were computed from the
second-order model parameters (specification) given in figure 10 and superimposed on
the system transient responses. The shaded area indicates undesirable response
regions. Objective function violations are measured in AUTOCON in the frequency-
domain and not in the time-domain (transfer functions provide for a better more
general measure for this application since they are not input dependent). There-
fore, there may be some minor differences when comparing the two domains with
respect to excursions from the desired response region. Since sets of table values
were used to define the Ny/RPEDAL performance boundary constraints (note the sharp
break-points in the broken boundary curves in figure 13b,d) exact 2nd order parame-
ter values are unknown, and therefore, overlay boundary responses are not provided
for the Ny transient response. Notice, however, how well the sluggish initial
system Ny responses (figure llc) were improved by the program (figure 15d4). It
is important to understand that all SISO "classical" and MIMO robustness specifica-
tions and constraints imposed for this AUTOCON design problem were active simultane-
ously in the search for an optimum solution and were satisfied by the final
computer-generated values. The solution was obtained in only one computer run.
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CONCLUSION

The automated computer-aided design tool, AUTOCON, used for the synthesis
and optimization of linear control systems has been expanded to handle robust
multivariable constraints in addition to the "classical" single-input/single-output
stability and performance requirements. The synthesis and optimization can be
performed on systems with fixed plant dynamics as well as those with varying
dynamics. AUTOCON thereby enables the designer to combine classical SISO and modern
MIMO control system stability/performance specifications within a highly flexible
nonlinear programming design optimization environment.

The classical version of AUTOCON was first reviewed, followed by an intro-
duction of the new multivariable robustness version of the program. Basic multi-
variable robustness concepts involving singular-values were discussed and an auto-
mated computer design example using AUTOCON was presented.

637



638

REFERENCES

Lefkowitz, C.P.: AUTOCON Version 3.0, User’s Manual. Northrop Corp., March,
1987.

Davidon, W.C.: Variable Metric Method for Minimization. Argonne National
Laboratory Report ANL-5990, November, 1959, revised February 1966.

Fletcher, R.; and Powell, M.J.D.: A Rapidly Convergent Descent Method for
Minimization. Computer J. Vol. 6, pp. 163-168, 1963.

Safonov, M.G.; Laub, A.J.; and Hartmann, G.L.: Feedback Properties of
Multivariable Systems: The Role and Use of the Return Difference Matrix. IEEE
Trans. Auto. Contr., Vol. AC-26, pp. 47-65, February, 1981.

Doyle, J.C; and Stein, G.: Multivariable Feedback Design: Concepts for a
Classical/Modern Synthesis. IEEE Trans. Auto. Contr., Vol. AC-26, pp. 4-16,
February, 1981.

Safonov, M.G.; and Athans, M.: Gain and Phase Margin for Multiloop LQG
Regulators. IEEE Trans. Auto. Contr., Vol. AC-22, pp. 173-179, April 1977.

Lehtomaki, N.A.; Sandell, N.R., Jr.; an Athans, M.: Robustness Results in
Linear-Quadratic Gaussian Based Multivariable Control Designs. IEEE Trans
Auto. Contr., Vol, AC-26, pp. 75-92, February 1981,



N89- 25180

COMPUTERIZED DESIGN SYNTHESIS (CDS),
A DATABASE-DRIVEN MULTIDISCIPLINARY DESIGN TOOL

D. M. Anderson and A. 0. Bolukbasi
McDonnell Douglas Helicopter Company
Mesa, Arizona

639



INTRODUCTION

Few mechanical systems are subject to as severe and as varied an
aeromechanical environment as the helicopter. For instance, in each
revolution of the rotor blade airflow can vary from stall to
compressibility effects in unsteady flow. Designing control of the
vehicle by applying twist at the base of the long narrow blades is an

exercise in aeroelastic abstruseness. In no other aircraft is
structural efficiency more essential, with the structure subject to
such a severe fatigue environment. While design problems for

rotorcraft are fully as complex as for fixed wing aircraft, the
available resources and response time may be even more strictly
Timited.

Timely, responsive, and accurate concept studies are essential in
rotorcraft development. It is difficult for highly specialized
technical design support to be flexible and responsive enough to
contribute significant influence early in the design process, when fast
turnaround on multiple concepts 1is required. Supporting specialized
studies requires time and effort which parallels the design
development. Often the key analysis results for a conceptual design
are obtained only near design task completion, in time to verify the
concept but sometimes too late to significantly influence key design
decisions. Computerizing the design trade-off process is necessary in
order to enhance the availability and flow of technical information.
Teaming the technical specialist with the designer and a shared
data base will produce timely responses to customer inquiries and
improve the efficiency of the design process.

The Computerized Design Synthesis (CDS) system under development at
McDonnell Douglas Helicopter Company (MDHC) is targeted to make
revolutionary improvements in both response time and resource
efficiency in the conceptual and preliminary design of rotorcraft
systems. It makes the accumulated design data base and supporting
technology analy$is results readily available to designers and analysts

of technology, systems, and production, and makes powerful design
synthesis software available in a user friendly format.

COMPUTERIZED DESIGN SYNTHESIS
(CDS)

A SYSTEM TO PUT ACCUMULATED DESIGN DATA BASE AND
SUPPORTING TECHNOLOGY ANALYSIS RESULTS READY
AT THE HANDS OF DESIGNER AND ANALYST,

AND TO MAKE DESIGN SYNTHESIS SOFTWARE AVAILABLE

IN A USER-FRIENDLY FORMAT.
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LESSONS LEARNED

Industry experience in similarly ambitious computerized design systems
provides some lessons learned. Potential problems include: data
incompatibility, the profusion of specialized languages and codes
evolving continuously, and the not uncommon experience that global
programs, (with globe-sized promises) can consume vast resources and
take years to develop. Furthermore, when they are finally developed,
they are sometimes somewhat incomprehensible to the ordinary aircraft
designer--having become the brain-child of a team of computer systems
specialists.

LESSONS LEARNED

® GLOBAL PROGRAMS ARE COSTLY
® DATA COMPATIBILITY
® PROFUSION OF LANGUAGES

® GROWTH OF SPECIALTIES
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OVERALL APPROACH

In the T1light of observed experience, a careful development path was
defined to avoid some of the costs and difficulties, and to provide
early return on investment. The basic system was established for the
conceptual design problem, and 1is being expanded to support more and
more preliminary design tasks. Scope is carefully limited. User
friendliness is essential, with tutorial aids and built-in constraints
against misapplication. The system is data base driven, with a library
of menu-controlled vehicle and subsystem synthesis programs. Wherever
practical, existing software was adapted, using the resources of other
McDonnell Douglas Corporation components. A key policy has been to
bring each new capability on-line as soon as it is viable, and to
support operational usage during development. This provides early
feedback to influence the system toward practical utility, and brings
the earliest cost savings.

OVERALL APPROACH

0 TARGET: VEHICLE CONCEPTUAL DESIGN (RAPID VEHICLE SIZING),
CONCEPTUAL & PRELIMINARY DESIGN OF SUBSYSTEMS,
0 LIMIT SCOPE, KEEP SYSTEM USER-FRIENDLY & TUTORIAL WITH
BUILT-IN CONSTRAINTS AGAINST MISAPPLICATION.
L DATA BASE-DRIVEN SYSTEM WITH LIBRARY OF MENU-CONTROLLED
VEHICLE & SUBSYSTEM SYNTHESIS PROGRAMS.
L) ADAPT EXISTING SOFTWARE, PARTICIPATE IN MDC EXCHANGE

¢ SUPPORT OPERATIONAL USAGE DURING DEVELOPMENT

642



THE DATA BASE-DRIVEN SYSTEM

The CDS system was designed to be database-driven, as distinct from
systems which are directly dependent on current customized applications
of specialized analysis programs. Of course, such customized analyses
are essential to the final refinement of preliminary and detail
design. However, early and quick response efforts can use the data base
for approximations, with parametric data developed from previous
experience, The data base provides buffer storage between specialized
design support analysis and the cyclic design process; making the
analysis results available to the designer without the problems of
language profusion and data incompatibility.

This is significantly different from many of the systems being
developed for aerospace design support which are truly
multidisciplinary, in that such analysis programs develop concurrent
solutions from several separate disciplines. Those multi-disciplinary
analysis programs remain specialized tools for the specialized
analyst. Because familiarity with specialized theoretical mechanics is
required, they are not suitable for direct use by the general aircraft
designer--the one who 1is responsible for integrating the various
specialized results.

Oata base-Oriven Design Synthesis.
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CDS SOFTWARE ARCHITECTURE

In the CDS system existing design synthesis software, for both vehicles
and subsystems, is adapted by the addition of pre- and post-
processors. These are managed through menu controls or commands,
without the user being required to 1learn the intricacies of each
program's jargon. This enables such programs as NASA's helicopter
sizing and performance program "HESCOMP" (which contains over 14000
lines of code and requires over 4000 input parameters for operation) to
be utilized in a highly simplified manner. The design synthesis
library files include simulations of current vehicle designs. Through
the menus of the executive system, these are easily used by designers
and systems analysts to determine the effects on performance of
variations in power, weight, fuel efficiency, and aerodynamics.

A commercially available relational database management system feeds
data to the CDS executive system, which also interfaces with a
geometric data base management system. The various specialized analyses
are linked to the database through Design Synthesis Interface Modules
(DSIM). These include programs from aerodynamics, acoustics,
structures, thermodynamics, and other complex analytical disciplines;
plus programs for evaluating process control, manufacturability,
ballistic wvulnerability, durability, etc. Each DSIM is, in effect, the
data provider 1link for a highly technical supporting specialty. The
DSIM also provides built-in constraints against misuse of the
analytical data, informing the user if this difficulty should occur.

R
witheice
CDS SOFTWARE ARCHITECTURE ]
EXECUTIVE
SYSTEM
VEHICLE SUBSYSTEM INTERFACE
OESIGN DESIGN RELATIONAL 0
SYNTHESIS SYNTHESIS DBMS GEQMETRIC
LIBRARY LIBRARY 08MS
OATABASE
C0S
PREPROCESSOR ]| | DESIGN SYNTHESIS
T NTERFACE
SYNTHESIS
PROGRAM
1
C0S
POSTPROCESSOR SPECIALIST
CAE
TYPICAL ADAPTATION sl
OF PROGRAM TO LIBRARY
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USER INTERFACE/MENU SUBROUTINES

The preprocessors which interface the programs in a design synthesis
library assemble the program runstream, control parameters, and data
deck according to the menu selections. The relevant choices are
solicited and the wuser advised in the selections, and these are
displayed in terms relating to the design mechanics (rather than
relating to the program software). This process controls the program
library and run options, component selections, missions, equipment,
fuel, etc., for the model being exercised and the design requirements
being served. It is also used to select output detail and format,
plotting routines, and disposal of results, files, etc.

USER INTERFACE/MENU SUBROUTINES

OPTION CHOICES TO SET UP PRE- AND POST- PROCESSORS

PROGRAM LIBRARY OPTIONS

SOLICIT VEHICLE/COMPONENT SELECTIONS

ADVISE (ENGINES, CONFIGURATION, ETC.)
* MISSIONS, EQUIPMENT. FUEL

DISPLAY SIZING AND/OR PERFORMANCE OPTIONS

OUTPUT DETAIL

PLOTTING ROUTINES
BATCH/MULTIPLE RUN CONTROL
FILE STORAGE AND CONTROL
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SUBSYSTEMS DESIGN SYNTHESIS

A1l specialized analyses are treated autonomously by establishing an
interface module (DSIM). This includes software providing graphic
anthropometric modeling for cockpit layout and programs for design of
drivetrains, engines, environmental control systems, and mission
equipment packages. These provide the more advanced connection, to the
analyses customized for the design task in progress.

The more ready-at-hand support is from reference data and generic
simulation routines directly available through the subsystems
executive. Such reference data include vendor-supplied information
and published data collected in the data base.

Computerized Design Subsystems Synthesis.
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HARDWARE ARCHITECTURE

The CDS system is initially implemented on the VAX/VMS environment
where the bulk of the specialized CAE application programs are
installed. The CDS system will Jlater be ported to a distributed
computing environment that includes UNIX based workstations, file
servers and compute servers all networked together.

CDS Hardware Architecture.

MOHC
VAX NETWORK IBM-PC_ Y1007
1
VAX T
FILESERVER
CDS ENGINE
UGH ENGINE
UNIX WORKSTATION
oS _7—7
1M WINOOW
? CAD
WINOOW
CADD ENGINE
|
T
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CAPABILITIES DEVELOPMENT PLAN

The adaptation of powerful conceptual design synthesis software such as
NASA's HESCOMP helicopter sizing and performance program to the CDS
executive system brings an immediate payoff in productivity, which in
turn can fund further development of the system. As each new
capability 1is developed and proven, it is added on-line to the CDS
repertoire. The executive system, data base management system, and user
interfaces have been developed for the conceptual design task. They
are being expanded to incorporate the analytical support for the much
more complex preliminary design task. This figure shows the
capabilities being added, by category, with the abcissa representing
both calendar time and design application category. Currently the
basic system is in place for conceptual design, and improved in-house
modules are being added which allow considerable choice in the level of
detail to be used. The data base is being expanded to provide
structural material data required for preliminary design, and Design
Synthesis Interface Modules (DSIM) are being developed for drivetrain
and structural component design synthesis. A graphics exchange
interface will 1link graphic data from Unigraphics II and allow such
exercises as putting the anthropometric model of program MACMAN in the
cockpits being designed from the results of conceptual design trades.

CDS CAPABILITIES DEVELOPMENT PLAN

MULTH — LEVEL OPTIMIZATION

ADVANCED

DESIGN — 8Y - RULE, EXPERT SYSTEMS

INTERFACE MODULES FOR SUBSYSTEMS
AND SPECIALIZED SYNTHESIS PROGRAMS

GRAPHICS EXCHANGE - CAD INTERFACE

PROGRAMS

MOHC CONCEPTUAL
DESIGN PROGRAMS

DESIGN/ANALYSIS  APPLICATIONS

ADAPTATION OF

w MATERIAL PROPERTIES DATA BASE, STANDARDS
xz
$Q
- : NASA SIZING AND
S g PERFORMANCE PGMS
0
n 8 USER INTERFACE )
8 W DATA BASE MGMT 5YS
EXEC SYSTEM ]

CONCEPTUAL DESIGN PRELIMINARY DESIGN  DETAIL DESIGN PRODUCTION
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MACMAN: ANTHROPOMETRIC MODELING FOR CREW STATION DESIGN

Program MACMAN generates and manipulates a graphic depiction of a
three-dimensional human body composed of linked ellipsoidal components.
The default model is dimensioned to fit the 50th percentile Army man in
overall size, with body components of standard proportion.
Alternatively, size can be selected representing 25th or 5th percentile
women, and 650th or 95th percentile men, based on NASA civilian data.
Disproportionate figures can also be modeled. For example, a 50th
percentile torso can be combined with 45th percentile legs and 52nd
percentile arms. The program was used supporting conceptual design for
the MDX 1light helicopter project, determining the following:

1. Seat position: height and 1imits of fore and aft adjustment.
2. Rudder pedal position and adjustments.

3. Seat back pan size and orientation.

4. Control locations for cyclic and collective.

The figure's 1limbs are animated. The entire graphical analysis is
interactive, with 49 variables at the menu command of the operator.

PROGAAM MACMAN

MOX CREWSTATION
DEVELOPED BY:
McOONMELL DOUGLAS HELICOPTER COMPANY
COMPUTER AIDED TECHNOLOGY GROUP
OCCUPANT SIZE (25/5006) - 26
TORSO AND HEAD ANGLES - 100 00
BUTTOCK COMPRESSION FACTOR - 70
RIGHT UPPER ARM ANGLE - -230
FIGHT LOWER ARM ANGLES (PY) = 1170 00
LEFT UPPER ARM ANGLE - 380
LEFT LOWER ARM ANGLES (PY) = 00 00
FOOT ANGLE, LEG REACH INCR. = 30 00
HEEL POSITION (S W) - 40 00
CYCLIC CENTER OF ROT. (3.0.W) = 20 00
CYCLIC RAD. AND ANG. (P - 228 00
EYE REF. POGITION (S.W) - 184 20
SEAT REF. POSITION (8.W) = 158 90
SEAT PAN DIMENSIONS 0. W) - 180 170
SEAT BACK DIMENGIONS . W) - 250 170
SEAT PAN ANGLE - 140
SEAT BACK ANGLE = 180
AIGHT FOOT PEDAL POS (8.8 W) = 820 40
LEFT FOOY PEDAL POS (3.0.W) = 520 -40
COLLEC CENTER OF ROY. (S.8.W) = 100 100
COLLEC RAD. AND ANG. (% = 20 30
PLOT VIEW: FRONT SIDE TOP
VISION PLOR YES NO
AEVEASE VIDEO: YES NO
INCREMENT. "o 1 L] 10
nov st HARDCOPY Exr
TITLE: 28TH % WOMAN

MACMAN workstation Display, Side View.
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STRUCTURAL COMPONENT DESIGN SYNTHESIS

Despite the fact that the technology of formal structural optimization
has reached a state of practical applicability, the majority of
structural component design tasks are still accomplished by the
traditional draw-then-analyse procedure. If the component is not too
complex, the designer can use handy stress formulae so that his first
attempt is vreasonable and then refined analysis can be used to tune
the design. However, for most composite laminates the structural
design task becomes complex, simply because of the increased number of
design options opened up by the material and layup combinations. For
such components there are also an increased number of failure modes to
consider. A valuable step forward can be attained by putting user
friendly analysis tools in the designers hands, and using the computer,
with a small knowledge base associated with design practice, to
illuminate design options and results. By providing information on
selected bounds 1in design space, the designer can make optimal choices
on a traditional heuristic basis. The software so developed forms a
base for future expansion into applications of formal optimization.

A variety of stress analysis software is being inverted to provide
solutions to the design problem instead of the stress analysis
problem. (In the design problem stress is an allowable rather than a
result.) 0f course, when the problem is nonlinear, the relevant
equations cannot be inverted directly, but a programmed series of
forward runs can be used in mapping available design space.

COMPOSITE PANEL DESIGN TRADES

SANDWICH PANEL

BUCKLING, SHEAR, COMPRESSIVE FAILURE LIMITS PER:
* FACING LAYUP, THICKNESS
* CORE MATERIAL, THICKNESS

oo
W

FACING HYBRID MATERIAL LAMINA

STIFFENED PANEL

BUCKLING, LOCAL CRIPPLING, JOINT FAILURE LIMITS PER:
* PANEL LAYUP, THICKNESS
* STIFFENER TYPE, SIZE, SPACING
* HYBRID MATERIAL LAMIXA
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Developments in design sensitivity analysis (DSA) method have been made using two
fundamentally different approaches as shown in figure 1. In the first approach, a
discretized structural finite element model is used to carry out DSA. There are three
different methods in the discrete DSA approach: finite difference, semi-analytical, and
analytical methods. The finite difference method is a popular one due to its simplicity,
but a serious shortcoming of the method is the uncertainty in the choice of a
perturbation step size of design variables (ref. 1). In the semi-analytical method, the
derivatives of stiffness matrix is computed by finite differences (refs. 2-4) whereas in
the analytical method, the derivatives are obtained analytically. For the shape design
variable, computation of analytical derivative of stiffness matrix is quite costly (ref.
1). Because of this, the semi-analytical method is a popular choice in discrete shape DSA
approach (refs. 3 and 4). However, recently, Barthelemy and Haftka (ref. 5) presented
that the semi-analytical method can have serious accuracy problems for shape design
variables in structures modeled by beam, plate, truss, frame, and solid elements. They
found that accuracy problems occur even for a simple cantilever beam. In the second
approach, a continuum model of the structure is used to carry out DSA. For shape design
variable, the material derivative concept of continuum mechanics is used to relate
variations in structural shape to measures of structural performance (refs. 6-10).
Using continuum DSA approach, expressions for shape design sensitivity are obtained in
the form of integrals with integrands written in terms of natural physical quantities
such as displacements, stresses, strains, and domain shape changes. If exact solutions of
the continuum equilibrium equations are used to evaluate these continuum design
sensitivity expressions, the method is called continuum-continuum (C-C) method. On
the other hand, if the analysis results of the finite element or boundary element methods
are used to evaluate these terms, the method is called continuum-discrete (C-D) method.
The analytical method of discrete design sensitivity analysis approach will be called
discrete-discrete (D-D) method.

METHODS OF DESIGN SENSITIVITY ANALYSIS

FINITE DIFFERENCE METHOD
DISCRETE
APPROACH SEMI - ANALYTICAL METHOD
ANALYTICAL (DISCRETE - DISCRETE) METHOD
CONTINUUM - CONTINUUM METHOD
CONTINUUM
APPROACH
CONTINUUM - DISCRETE METHOD

Figure 1
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The D-D method starts with the finite element matrix equilibrium equation for
linear structural system as shown in figure 2, where K(b) is the reduced global
stiffness matrix, z is the reduced displacement vector, F(b) is the external load vector,
and b is a design variable vector. Differentiating both sides of the matrix equilibrium
equation with respect to b, a matrix equation for the derivative of displacement vector,
dz/db, is obtained where the tilde (~) indicates a variable that is to be held constant for
the process of partial differentiation. If the derivative dz/db is obtained by solving this
equation, the method is called direct differentiation method. If derivatives of a general
performance measure are needed, an adjoint variable method can be used (ref. 11). Even
though the direct differentiation and adjoint variable methods are different in
computational efficiency depending on situations, they are equivalent in accuracy as long
as consistent computational procedure is used for both methods. For the D-D method, the
derivative of stiffness matrix is obtained analytically, .whereas it is obtained by finite
differences for the semi-analytical method. The discrete DSA approach is applicable to
both sizing and shape design variables. For the shape design case, the design variables
are positions of the finite element grid points.

DISCRETE DSA APPROACH (DIRECT DIFFERENTIATION METHOD)
Kb)z = F(b)
KB)3Z - - 2 (Kpyz) + ED

db~ ab ob

+ Semi-analytical and analytical (D-D) methods

» For general performance measures, use the adjoint variable method.

» Accuracy of the direct differentiation and adjoint variable methods are
equivalent.

» Discrete approach is applicable to both sizing and shape design variables.

Figure 2
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For the continuum approach, using the principle of virtual work, the variational
equilibrium equation of the structural system can be obtained (ref. 11) as shown in

figure 3, where ag(-,") denotes energy bilinear form, £q(-) denotes load linear form, Q

is the shape of the structure, z is the displacement, Z is the kinematically admissible
virtual displacement, and Z is the space of kinematically admissible virtual
displacements. Note that an approximate finite element matrix equilibrium equation can
be obtained by applying the Galerkin method to the variational equilibrium equation for
an approximate solution. For shape DSA, taking the material derivative of both sides of
the variational equilibrium equation (refs. 10-12), a variational equation for the

material derivative z of the displacement is obtained where V is the design velocity field.
Expressions for a\'/(z,i)and ,2\'/( Z) can be obtained for various structural components
(refs. 10-12). For the C-D method, an approximate finite element matrix equation is

used to obtain an approximate solution of the second variational equation for z. On the
other hand, for the C-C method, the analytical solution z of the first variational equation

is used in the second variational equation to obtain the analytical solution z. As in the D-
D method, if derivatives of a general performance measure are needed, an adjoint
variable method can be used (refs. 10-12). The C-C method provides the exact design
sensitivity of the exact model, whereas the C-D method provides an approximate design
sensitivity of the exact model. On the other hand, D-D method yields the exact design
sensitivity of an approximate finite element model, and both the finite difference and
semi-analytical methods yield approximate design sensitivities of an approximate finite
element model.

CONTINUUM SHAPE DSA APPROACH (DIRECT DIFFERENTIATION METHOD)

a,(2,2) = 25(2), for all zeZ

ag(z,2) = &y(2) — a,(2,2), forall zeZ

~ FEM equation is an approximate equation of the variational equation.

~ Use material derivative concept of the continuum mechanics for shape DSA.
« For general performance measures, use the adjoint variable method of DSA.

« C-C and C-D methods

Figure 3



One question often asked is; "Are the D-D and C-D methods equivalent?” For this
question, certain conditions have to be given. First, the same discretization (shape
function) used for the finite element analysis method must be used to evaluate the
continuum design sensitivity results. Second, exact integrations (instead of numerical
integrations) must be carried out for all integrations used for generation of stiffness
matrix and evaluation of continuum design sensitivity expressions. The: third condition to be
met is that the exact solutions (not a numerical solution) of the finite element matrix
equation and adjoint equation are used to compare two methods. The fourth condition is that
movement of the finite element grid points for shape design change in the D-D method
must be consistent with the parameterization method used for the design velocity field of
the C-D method. For the sizing design variable, it is shown in reference 11 that the D-D
and C-D methods are equivalent under the conditions given in figure 4 using a beam
structural component. It has also been argued that the D-D and C-D methods are
equivalent for shape design variable under the conditions given in figure 4 (refs. 13 and
14). One point to note is that these four conditions are not easy to satisfy; in many cases,
numerical integrations are used and exact solutions of the finite element matrix
equations cannot be obtained. In this paper, equivalence study of D-D and C-D methods
for shape design variables is carried out under the conditions given in figure 4. To carry
out equivalence study of the D-D and C-D method, two simple structural components, a
truss and a cantilever beam, are used. The shape DSA results of the D-D and C-D methods
derived in the published literature are cited and used here without being derived in this

paper.

ARE THE D-D AND C-D METHODS EQUIVALENT?

Equivalence study under the following conditions:

1 The same shape function used for FEA must be used to evaluate the continuum

DSA results.
2 Exact integrations must be used to generate the stiffness matrix and evaluate

the continuum DSA results.
3 Exact solutions of the finite element and adjoint matrix equations are used to

compare two DSA methods.
4 Movement of FE grid points for the D-D method must be consistent with the

parameterization of the design velocity field for the C-D method.

Figure 4
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In figure 5, the results of equivalence study of the D-D and C-D methods for shape
design sensitivity are presented using a simple truss with one end fixed. The truss has a
uniform cross-sectional area A and its length is £ which is the shape design variable.
Three loading cases; a point load p at the tip, a uniformly distributed load f, and a
linearly varying load qx/2, are considered as shown in figure 5. For each loading case,
linear and quadratic shape functions are used for finite element models. For the linear
shape function, two element model is used whereas for the quadratic shape function, one
element model is used. For the equivalence study, design sensitivities of the nodal
displacements are considered using the adjoint variable method. In figure 5, 'same’
denotes that the D-D and C-D methods yield the same result and 'not' denotes that the two
methods do not yield the same result. Details of the equivalence study results are given in
the following figures.

RESULTS OF EQUIVALENCE STUDY OF D-D AND C-D METHODS FOR TRUSS

Loading 1 2 1 2 1 2
Condition EI::I:]—— QE -
p f , U]

Design\\  Shape qx/ A

Veloci ;

F;’zcny Function | | jnear Linear | Quad Linear | Ouad
Linear Same Same Same Same Same Same
Quadratic Same Same Not Same Not Not
Cubic Same Same Not Not Not Not

Figure 5




For the design velocity V(x) to be used in the C-D method, three parameterization
methods; linear, quadratic, and cubic polynomials are used as shown in figure 6, where

de, - 32 204 — 4¢q 18¢e, — 9¢3 + 204
oG=— Op= By= Y
2
—45¢o + 36e3 — 984 27ey - 27e5 + 954
B2= > v Ba= 3
22 22

Note that for all three parameterizations of design velocity, the perturbation of length of
the truss Is 6 £ at the tip. Moreover, for the quadratic and cublc design velocities, once
€, 1=1,2,3, are fixed, then the only one shape design variable is the length £. The

movement of the finite element grid polints for shape design changes in the D-D method
must be consistent with these parameterization methods. For the D-D method, the shape
design variables are the positions by and by of the nodal polints. If the present design is

by=£/2 and bo=£, then V(£/2)m8by=64/2 and V(£)m8by=8 2 for the linear velocity,
V(£/2)mbb=€y and V(L)mEby=82 for the quadratic velocity, and V(£/2)mbébq=
(9€0+9€3-6 £)/16 and V(L)mbbo=6 L for the cubic velocity.

PARAMETERIZATIONS OF THE DESIGN VELOCITY V(x)

€4
5L/ 2
o4 54
Y 22 £ 0 2/2 A 0 £/3 24/3 2%
Linear Quadratic Cubic
2 3 2
Vi(x) = x68/2 Vo(x) = 00X + X V3(x) = B3x™ + Box< + Byx
Figure 6
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The first case of equivalence study is the truss with the point load p at the tip. For
this, the finite element matrix equation, using linear shape function, is given in figure 7
where the stiffness matrix depends on the shape design variables bj, i=1,2. The finite

element matrix equation gives the solutions z,=z(£/2)=p£/2EA and 2,=2(L)=pA/EA at

the present design by=£/2 and by=£. Thus 2(x)=px/EA which is the exact solution of

the truss with the point load p at the tip. If the design sensitivities of displacements at
two nodal points, z4 and zp, are desired, the adjoint equations are given in figure 7 with

the adjoint solutions A!(x)=x/EA for 0<x<4£/2, A1(x)=42/2EA for £/2<x<Z, and
A2(x)=x/EA, respectively. These adjoint solutions are also exact.

FIRST CASE: TRUSS WITH THE POINT LOAD p AT THE TIP

(Linear Shape Function)

b, 1 px
EA 5.5, 57 b-F; [zj_[g] 209 = £ (exach)
1 1
-2%5[ 2 -1] A ] =[1] x1(x)={ X/EA, 0sxs}z/2} (exach)
-1 1 Al 0 R/2EA, A/2<x<h
E%A;l 2 —1]a2 =[o] 2200 = 2 (exac
-1 1 ) 7\2 1
Figure 7



Using the D-D method, design sensitivities for z4 and zp are z'1 =pb £/2EA and
z'2=p6,2/EA, respectively, for the linear velocity as shown in figure 8. On the other
hand, if the quadratic velocity is used, then z'1=p€1/EA and z'2=p6 A/EA. Also for the

cubic velocity, the D-D method yields z'1=p(9€2+9£3-6 2)/16EA and z;;péz/EA. Now,
using the C-D method, the design sensitivity expression is obtained as

2
zi'=J‘ EAzxA,i(Vx dx, i=1.2
0
Using the finite element analyses results and the linear velocity in this design
sensitivity expression, the C-D method gives z'1=p6£/2EA and z'2=p6 A£/EA which are

the same as the results of the D-D method. Moreover, the design sensitivity expression
yields z1 =p€4/EA and 22=p6 A/EA for the quadratic velocity and z'1=p( 9€,+9€3-

6 £)/16EA and z;=p6 A£/EA for the cubic velocity which are the same as the results of

the D-D method. Thus, when the linear shape function is used for finite element model of
the truss with the point load p, the D-D and C-D methods are equivalent for all
parameterizations of velocity considered as indicated in the second column of figure 5.
One point to emphasize in this case is that the original and adjoint responses of finite
element models are the exact solutions of the truss with the point load. Note that the

design sensitivity z'2=p6,8/EA is independent of the parameterizations of velocity for the
C-D method.

DESIGN SENSITIVITY OF NODAL DISPLACEMENTS (First Case)

« D-D and C-D methods yield the same result for all parameterizations of

velocity.
Linear Velocity z;=p6,£/2EA z'2=p6,2/EA
Quadratic Velocity z'1=p£1/EA z'2=p6,£/EA
Cubic Velocity z'1=p(9€2+9£3-6£)/16EA z'2=p6,2/EA

Figure 8
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The second case of study is the truss with the uniformly distributed load f along the
truss. For this, using the quadratic shape function, the finite element matrix equation is
obtained as given in figure 9. The solutions of the finite element matrix equation are

z1=2(2/2)=3fL2/8EA and zp=z(£)=f£2/2EA at the present design by=4£/2 and bpy=£.

Thus z(x)=fx(-x+2£)/2EA which is the exact solution of the truss with the uniformly
distributed load f. If the design sensitivities of z4 and zp are desired, the adjoint

equations are given in figure 9 with the adjoint solutions A1(x)=(-3x2/4.£ +5x/4)/EA

and A2(x)=x/EA, respectively. The adjoint solution A2(x) is the same as in the linear
shape function case which is the exact solution. On the other hand, the adjoint solution
Al(x) is different from the linear shape function case and not exact.

SECOND CASE: TRUSS WITH UNIFORMLY DISTRIBUTED LOAD f

(Quadratic Shape Function)

[ b3 b2 ] f b3 _
EA _..__?__._2 ___2._.2. 2y = 'GI)_—?T 2(x) = %72& (exact)
3b2(by ~ by) abyoy - b |, 1(b2 - by)
f by(2b, — 3b4)
_ b3 4b3 - 6b,by + 3b? T
3b,(bs —bp®  3by(by -b? |
% [1 6 - 8] A.} =[1] A(X) = '3X2/g+5”4 (approximate)
-8 7 1 0
A)
EA M.2] _ X
-37{1 6 -8 Al _[o] A2(x) = = (exach
-8 7 7\3 1

Figure 9
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Using the D-D method, design sensitivities for z4 and z2 are z; =3f26 L/4EA and
z'2=f.26£/EA. respectively, for the linear velocity as shown in figure 10. On the other
hand, if the quadratic velocity is used, then z; =f2(6 £+€4)/2EA and z'2=f,26£/EA. Also,
for the cubic velocity, the D-D method yields z'1=f,2(156,2+9€2+9€3)/32EA. Now,

using the C-D method, the design sensitivity expression is obtained as
2

z;=Jo (N +EAZAL) Vedx, i=1.2

Using the finite element analyses results and the linear velocity in this expression, the
C-D method gives z; =3f26 L/4EA and z'2=f,26£/EA which are the same as the results of

the D-D method. Also, using the finite element analyses results and the quadratic
velocity in the design sensitivity expression, the C-D method gives z1=f,8(6 2+€4)/2EA

and z'2=f,26£/EA. These are the same as the results of the D-D method. However, the
design sensitivity expression yields z'1=f,£(4262+36£2+9£ 3)/80EA for the cubic

velocity which is different from the result of the D-D method. Hence, it can be concluded
that the D-D and C-D methods are not equivalent in the second case of study. Notice that
the sensitivity results of the D-D method are the same as those of the C-D method up to
the linear velocity when the linear shape function is used and up to the quadratic velocity
when the quadratic shape function is used. Thus, the second case indicates the D-D and C-
D methods might be equivalent under an additional condition that the shape function used
in the finite element model is isoparametric with the discretization polynomial of the
design velocity. However, this is not triie as the results of the next case of study indicate.

DESIGN SENSITIVITY OF NODAL DISPLACEMENTS (Second Case)

D-D c-D
Linear Velocity z‘1=3m 6 2/4EA z'1=3f2 8 L/4EA
z'2=f,£ 6 L/EA z'2=f,2 8 R/EA
Quadratic Velocity z;=f,2 (6 £+€4)/2EA z;=f2 (6 £+€4)/2EA
z'2=f,£ 6 2/EA z'2=f£ 6 £/EA
Cubic Velocity z'1=f2(156,£+9£2+9£3)/32EA z'1=f,2(426£+36£2+9€3)/80EA
Figure 10
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The third case of study is the truss with the linearly varying load qx/£ along the
truss. Before carrying out design sensitivity computation, dependency of the external
load on the shape design has to be defined as shown in figure 11. That is, as the length of

the truss changes, the external load will maintain the form of qx/£. For this, using the
quadratic shape function, the finite element matrix equation is given in figure 11. The

matrix equation gives the solutions zq=2(£/2)=11q£2/48EA and z5=2(£)=q£2/3EA at
the present design by=£/2 and bo=£. Thus z(x)=qx(-3x+7 £)/12EA which is not the
exact solution of the truss with the linearly varying load. The same adjoint equations that
are given in figure 9 are applicable in this case with the solutions A (x)=(-3x2/4 8

+5x/4)/EA and A2(x)=x/EA, respectively. As mentioned before, the adjoint solution
A1(x) is not exact, whereas A2(x) is exact.

THIRD CASE: TRUSS WITH LINEARLY VARYING LOAD qx/£

(Quadratic Shape Function)

b b3 , qb3
EA : || %1]7| T2b00,- By
3b3(by - by) 3b4(by - by) 1(b2 = by

L 22
2 2 2 q b2(3b2 - 4b1)
_ b2 4b2 6b1 b2 + 3b1 12(b2 - b1)
3by(by - bp®  3by(by — by)?

_ gx(=3x+7£) :
z(x) T3EA (approximate)

Dependency of the External Load on Shape Design Variable

gx ,—1|
2 |

54

| —_—

q : q(l+ 7 )
..

0 2 £+3 2

Figure 11
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Using the D-D method, design sensitivities for z4 and zo are z'1=11q,£6,2/16EA and
z;=q,26,£/EA, respectively, for the linear velocity as shown in figure 12. On the other
hand, if the quadratic velocity is used, then z'1=q£(256£+16£1)/48EA. Also for the
cubic velocity, the D-D method yields z'2=q,86,2/EA. Now, using the C-D method, the
design sensitivity expression is obtained as

Y

z =J' [ (%)x‘w(%)ﬁvﬁ EA zxx;vx] dx, i=1,2
0

Using the finite element analyses results and the linear velocity in this expression, the

C-D method gives z'1=1 1946 £/16EA and z'2=q£6,8/EA which are the same as the results

of the D-D method. However, using the finite element analyses results and the quadratic
velocity in the design sensitivity expression, the the C-D method gives

z'1=q,8(196,£+292£1)/240EA, whereas it yields z'2=q,£(2496£+27€2-27€3)/240EA

for the cubic velocity. These are not the same as the results of the D-D method. Thus the
D-D and C-D methods are not equivalent for the truss with a linearly varying load. Based
on the equivalence study of truss problem, the D-D and C-D methods are possibly
equivalent only for linear velocity. If this is the case, then both methods will give the
exact design sensitivity information: of the finite element analysis results that may not
be acceptable at all. This is the situation for the fillet problem in reference 15 that the
design sensitivity results of the C-D method agrees up to 5 to 6 digits with the finite
difference even though the finite element model using constant stress triangular element
does not provide accurate analysis result. On the other hand, when automatic regridding
methods are employed for shape optimal design (refs. 16 and 17), parameterizations of
the design velocity field cannot be limited to be only linear functions.

DESIGN SENSITIVITY OF NODAL DISPLACEMENTS (Third Case)

D-D C-D
Linear Velocity z'1=11q,86,£/16EA z'1=11q£6,8/16EA
z'2=q,£6,£/EA z'2=q£6£/EA

Quadratic Velocity z'1=q,2(256,2+16£1)/48EA z'1=q2(196,8+292€1)/240EA

Cubic Velocity z:2=q£6,2/EA z'2=q,2(2496,2+27£2-27€3)/240EA

Figure 12
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The results of analytical equivalence study for a simple cantilever beam with
moment of inertia I and length £ are given in figure 13. Like the truss problem, three
lateral loading cases shown in figure 13 are considered. For all loading cases, Hermite
cubic shape functions are used for the finite element model with one element. Also, for
the design velocity V(x), the same linear and quadratic parameterizations as in the truss
problem are used. In addition to these, Hermitian parameterization of the velocity is
used. That is, if the beam is fixed at x=0 and changes its length by 6 £ at x=£ and the
slope of the velocity is zero at x=0 and 6 at x=£, then the parameterization of the

velocity is V4(x) as shown in figure 13 where Ysand 72 are given in terms of £, 6 £, and

6. For the equivalence study, design sensitivity of the tip displacement is considered. The
results of equivalence study are summarized in figure 13. As in the truss case, the finite
element model for the beam with the point load p at the tip yields the exact solutions of
the original and adjoint structures. Hence the D-D and C-D methods give the same design
sensitivity results for all parameterizations of velocity as shown in figure 13.

RESULTS OF EQUIVALENCE STUDY OF D-D AND C-D METHODS FOR BEAM

Loading 2
Condition P f ax/
| | [y | e
Velocity Field
Linear Same Same Same
Quadratic Same Not Not
Hermitian Same Not Not
3 2 3 2
Hermitian Velocity V4='ysx Y, X with 73=(£6-26£)/£ , 72=(-,26+36,£)/,2
Figure 13
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For the beam with the linearly varying load gqx/£ along the beam, the finite element
matrix equation is given in figure 14 with the solutions z4=11q£4/120EI and

2,=q£3/8EI at the present design b=£. Thus z(x)=q£ (18 £x2-7x3)/120EI which is an

approximate solution of the beam with linearly varying load. For the design sensitivity
of z4, the solution of the adjoint equation given in figure 14 can be used. Using the D-D

method, design sensitivity for z4 is z'1=11q,836 £/24E1 for all parameterizations of

velocity. For the C-D method, the design sensitivity expression is
y)

2 = J-o { ELU3Z0x Vi + (Zhx + Ziohx ) Vi 1 + (%)MH (g})w"} %

Using the finite element analyses results in this design sensitivity expression, the C-D
method yields z'1=1 1q£36 £/24EI1 for the linear velocity which is the same as the result

of the D-D method. However, the design sensitivity expression yields z'1=q,83( 1716 2-

12€,)/360EI for the quadratic velocity and z;=q£3(11946£-9,2 8)/2520EI for the

Hermitian velocity which are not the same as the results of the D-D method. Thus the D-
D method and C-D methods are not equivalent for the beam with linearly distributed load
as indicated in figure 13. Based on the equivalence study of the beam problem, the D-D
and C-D methods are possibly equivalent only for linear velocity.

DESIGN SENSITIVITY OF NODAL DISPLACEMENT FOR BEAM

(Linearly Varying Load qx/4)

EI -
—| 12 ~6b|z4|= 79b Z(x)=q2(18£x2 7x3) (approximate)
3 20 120EI
- 6b 4b2 2y
_gb2
20
%{12 -6bf[ A =[1] )\(x)=->-(3%)-(l (exact)
_6b 4b2 | a,| LO 6El
D-D C-D

Linear Velocity

Quadratic Velocity

Hermitian Velocity

z'1=11q,£36,£/24EI
z'1=11q,236,8/24EI

z;=11q,£36,2/24EI

Figure 14

z;=11q£36£/24EI
z;=q)23(171 6 £-12€4)/360EI

z'1=q£3(1 1946 £-9£0)/2520E1

667



668

Next, a numerical study is carried out for the C-D method using the cantilever beam
with the uniformly distributed load to see effect of accuracy of the finite element
analysis results on accuracy of the design sensitivity informations obtained. The finite
element modeis with 1, 2, and 20 elements are considered for numerical study. Node
numbering for all finite element models starts at the clamped end of the beam and the
node number of free end of the beam is (m+1) where m is the number of elements in the
model. The beam is 60 in. long and has a uniform rectangular cross-section of 0.5 in.
high and 0.25 in. wide. Young's modulus, Poisson's ratio, and uniformly distributed load

are E=30x108 psi, v=0.3, and {=0.5 £b/in., respectively. Finite element analysis is
carried out using ANSYS finite element STIF4. Three parameterizations of velocity with

1% perturbation of the length £=60 in. of the beam are used for numerical study as
shown in figure 15. Once the solutions of the original and adjoint structural system are
obtained using ANSYS, the continuum design sensitivity expression is numerically
integrated using three points Gauss quadrature.

CONTINUUM-DISCRETE METHOD FOR A CANTILEVER BEAM

i

DI 0.5 in.
20 21 [+

£ =60 in., E=30x 10° psi, v=0.3, f=0.5 £b/in.

ANSYS STIF4

Parameterizations of Velocity for Numerical Study of the C-D Method

Case \E;glsoi%;y Type Parameter Values

A Linear 6.2 =0.6 in.

B Quadratic 64 =0.6 in. and €,=10 in.
Cc Hermitian 62 =0.6in. and 8=-0.3

Figure 15



To check accuracy of the design sensitivity obtained, the results are compared with
the results obtained by finite difference as shown in figures 16 and 17. In these figures,

z(£—62) and z(£+6 2) are the displacements of selected nodal points for perturbed
backward and forward designs, respectively, Az=z(£+6£)-z(£-6 2) is the finite
difference, and z' is the difference predicted by the design sensitivity. The ratio of z' and
Az times 100 can be used as a measure of accuracy of the design sensitivity. In figures
16 and 17, for all finite element models, the case A with linear velocity yields excellent
agreement between the design sensitivity z' and the finite difference Az. This confirms
with the results of analytic study that the D-D and C-D methods may be equivalent for
linear velocity. On the other hand, for one element model, the design sensitivity z' and
the finite difference Az do not agree at all for other parameterizations (cases B and C) of

velocity as can be seen in figure 16. For cases B and C, the agreements improve
substantially for two elements model.

One Element Model

COMPARISON OF DESIGN SENSITIVITY OF THE C-D METHOD

Node (z'/Az
Case No. z(£-54) z(£+32) Az z' x100)%
A 2 0.99593E+00 0.10789E+01 0.41476E-01 0.41471E-01 100.0
B 2 0.99593E+00 0.10789E+01 0.41476E-01-0.47926E-01 -115.6
C 2 0.99593E+00 0.10789E+01 0.41476E-01 0.64970E-01 156.6

Two Elements Model
Node (z'/Az
Case No. 2(4£-34) z(2+32) Az z' x100)%
A 2 0.35273E+00 0.38210E+00 0.14689E-01 0.14688E-01 100.0
3 0.99593E+00 0.10789E+01 0.41476E-01 0.41471E-01 100.0
B 2 0.17939E+00 0.59469E+00 0.20765E+00 0.20744E+00 99.9
3 0.99593E+00 0.10789E+01 0.41476E-01 0.35880E-01 86.5
C 2 0.30947E+00 0.42955E+00 0.60040E-01 0.61126E-01 101.8
3 0.99593E+00 0.10789E+01 0.41476E-01 0.42939E-01 103.5
Figure 16
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On the other hand, for twenty elements model, agreements become excellent as
shown in figure 17. This confirms the fact that accurate design sensitivity informations
can be obtained as long as accurate finite element analysis results are used for the C-D
methods. This fact is not the case for the semi-analytic method, as demonstrated by
Barthelemy and Haftka (ref. 5). They found that the design sensitivity error of the
semi-analytic method is proportional to the square of the number of elements. This is
completely opposite behavior from the C-D method since the design sensitivity error
increases very rapidly as the finite element analysis results of the original structure
become more accurate. As demonstrated in figures 16 and 17, an essential advantage that
may accrue in the C-D method is associated with the ability to identify the effect of
numerical error associated with finite element analysis results. That is, if disagreement
arises between the design sensitivity of the C-D method and the finite difference, then
error has crept into the finite element approximation. If the D-D method is used, in
which the structure is discretized and the design variables are imbedded into the
stiffness matrix, then any error inherent in the finite element model is consistently
parameterized and will never be reported to the user. Therefore, precise design
sensitivity coefficients of the matrix model of the structure are obtained without
realizing that there may be substantial inherent error in the original model. On the
other hand, the C-D method can be used to obtain a warning that approximation error is
creeping into the finite element model.

COMPARISON OF DESIGN SENSITIVITY OF THE C-D METHOD (Cont)

Twenty Elements Model

Node (2'/Az
Case No. z(£-32) z(£+32) Az z' x100)%
A 2 0.48158E-02 0.52169E-02 0.20055E-03 0.20053E-03 100.0

6 0.10504E+00 0.11379E+00 0.43744E-02 0.43739E-02 100.0
11 0.35273E+00 0.38210E+00 0.14689E-01 0.14688E-01 100.0
16 0.66525E+00 0.72066E+00 0.27704E-01 0.27701E-01 100.0
21 0.99593E+00 0.10789E+01 0.41476E-01 0.41471E-01 100.0
B 2 0.70800E-03 0.13220E-01 0.62558E-02 0.62566E-02 100.0
6 0.29727E-01 0.22933E+00 0.99800E-01 0.10127E+00 101.5
11 0.17939E+00 0.59469E+00 0.20765E+00 0.21023E+00 101.2
16 0.50771E+00 0.89205E+00 0.19217E+00 0.19269E+00 100.3
21 0.99593E+00 0.10789E+01 0.41476E-01 0.41467E-01 100.0
C 2 0.47614E-02 0.52749E-02 0.25676E-03 0.25673E-03 100.0
6 0.95061E-01 0.12480E+00 0.14869E-01 0.14863E-01 100.0
11 0.30947E+00 0.42955E+00 0.60040E-01 0.60046E-01 100.0
16 0.60858E+00 0.78134E+00 0.86383E-01 0.86384E-01 100.0
21 0.99593E+00 0.10789E+01 0.41476E-01 0.41470E-01 100.0
Figure 17
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Parameter Sensitivity Analysis

Estimation of the sensitivity of problem functions with respect to problem variables forms the basis
for many of our modern day algorithms for engineering optimization. The most common application of
problem sensitivities has been in the calculation of objective function and constraint partial derivatives for
determining search directions and optimality conditions. A second form of sensitivity analysis, parameter
sensitivity, has also become an important topic in recent years. By parameter sensitivity, we refer to the
estimation of changes in the modeling functions and current design point due to small changes in the fixed
parameters of the formulation. Methods for calculating these derivatives have been proposed by several
authors (Armacost and Fiacco 1974, Sobieski et al 1981, Schmit and Chang 1984, and Vanderplaats and
Yoshida 1985). Two drawbacks to estimating parameter sensitivities by current methods have been: (1) the
need for second order information about the Lagrangian at the current point, and (2) the estimates assume no
change in the active set of constraints. This paper addresses the first of these two problems and proposes a
new algorithm that does not require explicit calculation of second order information.

The estimation of changes in the modeling functions and
design point due to small changes in the fixed parameters
of the formulation.
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Standard Form of NLP Parameter Sensitivity Problem

To provide a framework about which to address the problem of parameter sensitivity analysis, we
state the following standard form of the nonlinear programming problem which explicitly represents the
problem parameters.

In the formulation given, we assume that the problem functions f, g, and h can be either linear or
nonlinear functions of the design variables but we are concerned primarily with the nonlinear case. We
assume that the problem parameters p, are held fixed during the course of the optimization, and the optimal

solution point, x* , satisfies the first order Kuhn-Tucker optimality conditions.

Minimize f(x,p)

Subject to hi(x,p) =0 1=1L
gj(X,p) 20 j=1,J
Xmin £ X< Xmax
X = (X1, X2y oo ,Xn)
P = (P1, P25 «es Px)

OBJECTIVE: For a given p, find x*, that satisfies the
above problem. We are then interested in the effects of
variations in p on the optimum.

Given: pi' = pi + Api

*

Find: f(x*,p’), X new
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Required Formulas

For any change in the parameter Apj, the new optimum value of the objective function or design

variables can be estimated from the following linear extrapolations:
Extrapolations based on these equations are bounded by the assumption that the active set remains
the same.

£

dpi

f(x*,p') = f(x*old) + Api

* ok  Ox*
X new =X old + Api opi

where
df* i ohl %u. 9gj
dpi ~ 3p1 1=1 9P ;3 1 opi

df*  of ofT 9x
dpi ~ Jpi T ox opi

Derivatives to be determined:

of ox* ohl  dgj
opi’ dpi’ Ipi
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Methods for Calculating Parameter Sensitivities
The Brute Force Method

The brute force method is probably the most common method used to study the effect of problem
parameters on solutions. The method is simply to change the parameter and then reoptimize the problem
with the new value. This of course gives the truest indication of the effect of the parameter on the solution.
A variation of the brute force method was proposed by Armacost and Fiacco (1974) and McKeown (1980)
to calculate parameter sensitivities based on the central difference approximation given below.

Given the incremental change A in p; , reoptimize the
original problem at the new value of p. The sensitivity
derivatives are given by the difference formulas.

df* _f(x*,pi + Api) - f(x*,pi - Api)
dpi ~ 2Api

ox* x*(pi+ Api) - x*(pi-Api)
opi 2Api

677



Methods for Calculating Parameter Sensitivities

Kuhn-Tucker Method

A more accurate estimate of the sensitivity derivatives can be found by differentiating the Kuhn-
Tucker optimality conditions with respect to a parameter. We refer to this as the Kuhn-Tucker method. The
set of Kuhn-Tucker sensitivity equations have been derived independently by several authors (Armacost and
Fiacco 1974, McKeown 1980, Sobieski et al. 1981) and result in the following linear system of equations.

Differentiate the Kuhn-Tucker conditions wrt to p; and
solve the resulting linear system for the desired

derivatives.
2 ox aV,L
yua X

a(v,w) | * |ach,g)| = ©
Vx(h,g)T 0 opi opi
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Methods for Calculating Parameter Sensitivities

Extended Design Space Method

The final category of parameter sensitivity methods has been proposed by Vanderplaats
(1984,1987). The method, known as the extended design space (EDS) method, is based on using feasible
directions for estimating parameter sensitivity derivatives. The method extends the design space and solves
the following subproblem to obtain the sensitivity derivatives. Both first and second order estimates have
been developed for the method (Vanderplaats and Yoshida 1985).

The fixed parameter p; is added to the set of design
variables,
Xn+1 = Pi

Solve the following subproblem for s,

min V,.fT s
st. g+V,g,Ts>0 j=1,J

Calculate desired sensitivities from

0X
m = (Sl, S2, eoe ,Sn)/Sn+1

df df  IfT ax
dp  Jdp T ox op
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Assessment of Current Methods for Calculating Parameter
Sensitivities

As evidenced by their lack of extensive use, all the methods discussed above have some drawback
associated with their use. Because the problem has to be reoptimized for several different values of the
parameters, the efficiency of the Brute Force method is affected by the difficulty of the problem and the
efficiency of the method used in the reoptimization. This approach is useful in studying large variations in
parameters by plotting the response of the optimum versus the parameter, and has been used by Arbuckle
and Sliwa (1984) and Robertson and Gabriele (1987).

The Kuhn-Tucker method is also computationally expensive because it requires second derivatives
of the objective function and the active constraints. For most engineering design problems, this type of
information may be difficult to obtain. This method requires that the strict complementarity and linear
independence assumptions hold at the optimal design.

Finally, the first order ESD method is a very efficient, easy to implement method but it can provide
inaccurate estimates of dx*/dp when the problem is not fully constrained and it does not provide du/dp; .
The second order EDS method requires the calculation of second derivatives and also requires the solution
of a quadratic approximating problem for each value of the parameter that is studied. However, the second
order EDS method has the advantage of not being ‘affected by changes in the active set.

Brute Force Method: Most commonly used method,
provides accurate results, but inefficient.

Kuhn-Tucker Method: Sound mathematical basis, but
assumes no changes in the active set and requires second
order information.

Extended Design Space: Very efficient, easy to
implement, but may not produce accurate estimates of

ox/op and does not provide ou/dp
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A Proposal for a New Method

From the previous discussion, we can deduce that what is needed to improve current methods for
parameter sensitivity analysis is an algorithm that does not require second derivatives, is able to accurately
predict the sensitivity derivatives, and can calculate sensitivities at degenerate points. In this paper, we
propose using a new algorithm based on the Recursive Quadratic Programming (RQP) method for
accomplishing these goals.

Our reasoning for such a method is based on the following virtues of the RQP method. In terms of
number of function evaluations, the RQP method appears to be one of the most efficient methods available.
This has been demonstrated in any of the published comparison studies in which codes for these methods
were participants (Schittkowski, 1980 and Belegundu and Arora, 1985). Although the method is sensitive
to variable and objective function scaling, it is not sensitive to constraint scaling. Finally, the RQP method
provides an estimate of the Hessian of the Lagrangian, which can be useful for other purposes, and it is
very efficient at locating an optimum, when the starting point is close to the true optimum. Both of these
last advantages will be exploited in the development of our method for sensitivity estimation based on the
RQP method.

Proposal:

Employ the Recursive Quadratic Programming Method
(RQP) in conjunction with the Brute Force Method to
estimate the required derivatives.

Reasoning:

The RQP method is very efficient when started near the
optimum solution.

If the RQP method is used to solve the original problem,
an approximation of the Hessian of the Lagrangian will be
available.

Estimates of all derivatives, including ou/dp can be
developed.
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The Recursive Quadratic Programming Method
All RQP methods use the same basic strategy of linearizing the constraints and approximating the
Hessian of the Lagrangian to form a quadratic programming (QP) subproblem. The QP subproblem is then
solved for the search direction s and a new estimate of the Lagrange multipliers of the constraints. The
search direction s is then used to calculate a new estimate of the optimum.

The step length a is determined by minimizing a line search penalty function P of the general form

given below, where Q represents some combination of the constraints and the Lagrange multipliers. The
penalty function attempts to assure that both the objective function and the violation of the constraints are

reduced. As the method converges, the step length o which minimizes P(x,u,v,R) approaches 1.

Form the following subproblem to determine a search
direction s

Minimize 0.5 sTB s + sTVf
subject to VhTs + h = 0
VgT s+g2> 0

Using s, perform a linear search to determine a new

estimate of x* by minimizing a penalty function of the
following general form,

P(x,u,v,R) = f(x) + R*Q(h,g,u,v)
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Basic Flowchart of RQP Method
The basic flowchart of the RQP method is given below. Several good implementations of the RQP
method are available (Beltracchi and Gabriele 1987, Arora and Tseng 1987, Bartholomew-Biggs 1987, or
Gill, et al. 1986). A more complete discussion of RQP methods can be found in (Beltracchi 1985 or

Beltracchi and Gabriele 1988),

Given x9Y

An Approximation to H
and algorithm parameters

1. Define the Active Set

2. Calculate the Gradients and
update the Hessian Approximation

3. Solve the QP Subproblem

4. Find the intial step length

5. Conduct the Line Search

6. Update Penalty Parameters

Goto Step 1
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The RQP Sensitivity Algorithm

The new algorithm is based on combining the simplicity of the brute force method with the
efficiency of the RQP method. The two characteristics of the RQP method that we feel can be exploited for
determining parameter sensitivities are (1) an approximation to the Hessian of the Lagrangian is developed,
and (2) if this approximation is exact (or close) then the RQP method will quickly and efficiently solve the
perturbed problem. In other words, if we can develop good Hessian approximations, the RQP method is
equivalent to applying Newton's method to solve the Kuhn-Tucker conditions for the perturbed problem,
which may require only 1 or 2 iterations of RQP. The small number of iterations, coupled with the fact that
the RQP method should require only a one step line search, should allow the reoptimizations to occur
without the need for many function evaluations.

The end result of combining the differencing equations and the RQP method is a means to estimate
the parameter sensitivities without the need to calculate higher order derivatives, and without an excessive
number of function evaluations. Based on the above arguments, we propose the following procedure to
calculate parameter sensitivity derivatives.

Step 0. Given an optimal solution x*, f*, u*, an active
set of constraints, and an approximation to the
Hessian of the Lagrangian, all achieved by
convergence of the RQP method (using the
SR1/PD/BFS update).

Step 1. Perturb the fixed parameter p; to pi+ = pi*+ Ap,
where Ap;is some small perturbation to p;

Step 2.  Perform two complete iterations of the RQP
method. During the RQP iterations, update the
Hessian approximation., From the results of the
RQP iterations obtain f+, x+, u+, and g+ j ¢ active
set.

Step 3. Perturb the fixed parameter p; to pi- = po- Ap;
ox
Bpi P

where dx/dp;is calculated using forward
differencing approximations and x*(p,) and x+(pyo
+ Ap) from step 2.

Perform one complete iteration of the RQP

method to find f-, x-, u-, and g; j ¢ active set.

Step 4. Start from x,- = x*(po) -

Step 5. Obtain estimates for the sensitivity derivatives
from the following central difference
approximations

df*  f+ - f- oxX* x+ - x-

f = 2ap ° ap 2Ap

684



Equivalence to the Kuhn-Tucker Method

The major questions to be answered about the proposed algorithm are does it provide the desired
sensitivities, and what are the possible sources of error. An investigation of the theoretical properties of the

RQP based sensitivity algorithm reveals that in the limit, as Ap goes to zero, the new method provides an
estimate to the solution of the equations given below. These equations are equivalent to the Kuhn-Tucker
sensitivity equations with the Hessian of the Lagrangian replaced by an approximation B that is provided by
the RQP method. The details of this derivation are too lengthy to be presented here but are included in
(Beltracchi 1988). From the above, we can see that the new algorithm will provide accurate estimates of the

parameter sensitivities if B is a good approximation of Vi L, and the differencing formula is a good

approximation of the equations below.

It can be shown that the proposed method is equivalent to
the following linear set of equations,

ax ] |9VxL
[B -Vxgl|op op _ 0
VxgT 0 du [* 9 |
dp- Lop

These equations are the Kuhn-Tucker equations with the

Hessian Approximation B replacing Vi L.
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EFFICIENCY OF SENSITIVITY ALGORITHMS

As a measure of the efficiency of the new method, we present a comparison of the number of
function evaluations required by the competing algorithms. The graph below represents the number of
function evaluations required by various algorithms to find the sensitivity of the first parameter to be
studied. The results are plotted for various problem sizes where n is the number of design variables.

Most of the work associated with the Kuhn-Tucker method is incurred when the Hessian matrix is
calculated. For the first order EDS method, the work does not increase with problem size. However, as
mentioned before, the method is not always accurate and du/dp is not determined. Each of the RQP
methods is either more efficient or as efficient when compared to the Kuhn-Tucker method for small
problems (n<5), and considerably more efficient for larger problems (n>5).
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The SR1/PD/BFS Update

A major concern of the new algorithm is how well the Hessian approximation delivered from the
RQP method agrees with the true Hessian. Toward this end, considerable research was conducted to find
a variable metric update that provides good Hessian approximations without degrading the performance of
the RQP algorithm. The two leading candidates were the Broyden-Fletcher-Shanno (BFS) method, and the
Symmetric Rank One (SR1) method.

The SR1/PD/BFS (Symmetric Rank One/ Positive Definite/ Broyden Fletcher Shanno) is a hybrid
variable metric update that combines the best features of the SR1 and BFS updates (Beltracchi 1988). The
SR1 update has the advantage of not requiring exact line searches and producing good Hessian
approximations, however it has the drawbacks of being undefined or producing indefinite Hessian
approximations for some problems. The BFS update has the advantage of being self correcting; however, it
has the drawback of requiring exact line searches, and the Hessian approximation does not converge unless
fairly accurate line searches are performed. The SR1/PD/BFS update uses the BFS update when the SR1
update is undefined or likely to produce an indefinite Hessian approximation. The PD stands for a positive
definite check (implemented in step 4), used to insure the new Hessian approximation is positive definite.
Testing in Beltracchi (1988) found the SR1/PD/BFS update produced the best Hessian approximations.

(Symmetric Rank One / Positive Definite / Broyden Fletcher Shanno)

1. Calculate y7r(By - z)
2. If abs(yr(By - z)) < 10-10 goto step 7
3. Calculate ¢*, ¢:

o* = (yTz)2
(yTz)2 - zTBz yTB-1y

0=
“yTz-2z2TBz

4. If ¢ < ¢* goto step 7.

5. If yrz< 0 and yr(By - z) < 0 goto step 7.

6. Update Hessian approximation using the SR1 update
and return.

7. Update Hessian approximation using the BFS update
and return.
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PERFORMANCE OF NEW SR1/PD/BFS UPDATE

This slide shows the performance of the new SR1/PD/BFS variable metric update when
implemented within the RQP method on a set of 13 commonly used test problems. The method is compared
with the BFS and the SR1 method. We see from this plot that the new update provides the same level of
robustness and efficiency as the BFS method and is generally more efficient than the SR 1 method.
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Convergence of the Hessian Approximation for Various
Updates in Broyden's Family

This table shows the ability of the tested variable metric updates to approximate the Hessian of the
Lagrangian on a set of test problems. Analytical Hessians were developed for each test problem and
compared to the approximated Hessian returned from the RQP method. The entries in the table report the
Frobenius norms of the difference between the known optimal Hessian, and the identity matrix, and with
the final approximate Hessian. From this we see that the new SR1/PD/BFS update returned approximations
that were as good or better than the BFS method in all cases, and better than the SR1 method in all but one
case. In this instance (Woods), the scaling of the objective function affected the final result. The last two
rows demonstrate that scaling the objective allowed the new update to improve the approximation
considerably.

Problem |H*-I||F BFS SR1 SR1/PD/BFS
RTSO1 2.291 1.396 0.061 0.0008
RTS01/100 1.377 0.0183 0.974 0.00023
RTS01*100 369.12 206.7 0.243 0.243
RTSO2 st pt 1 7.384 3.00 3.0 3.0
RTSO2 st pt 2 7.384 5.430 0.0 0.0
RTSO3 15.93 7.76 0.105 0.105
RTS04 23.28 3.623 9.307 3.356
Woods 1352.46 141.3 17.17 75.38
Woods/100 13.54 1.908 0.184 0.0944
Woods/1000 1.394 0.0283 0.974 0.113
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TESTING OF RQP SENSITIVITY ALGORITHM
INITIAL TEST SET

Two phases were employed in testing the new algorithm. The first phase involved a test set of
known characteristics, whose Hessians and sensitivity derivatives could be determined analytically. The
initial test set involved 4 test problems with 3-4 parameters each. Various algorithm parameters were

studied, such as the step size Ap, as well as the effectiveness of the SR1/PD/BFS update, the number of
RQP iterations to allow for solving the perturbed problem, and the updating of the Hessian approximation
during the sensitivity analysis. The table below provides a sample of the results obtained on this initial test
set using the RQP based sensitivity algorithm. The entries represent the error in the sensitivity derivatives
obtained from the new algorithm and the known sensitivities. The errors were calculated using the formulas
established by Sandgren (1977).

The results shown here were fairly typical of the results obtained on all the test problems in the initial
test set. In general, the results are very good and certainly usable for engineering purposes.

PROBLEM 1 PROBLEM 2
p1 p2 p3 P1 p2
% .0002(10-9) 1.9(10-5) 0.126(10-6) 0.139(10-6)  0.00
exX 0.00 7.9(10-5)  3.11(10-7)  9.08(10-7) 2.00(10-7)
€u 0.00 2.66(10-3) 1.55(10-6) 9.79(10-7) 1.43(10-9)
g 6.33(10-7) 0.00
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TESTING OF RQP SENSITIVITY ALGORITHM
ENGINEERING TEST PROBLEMS

The second phase of the testing consisted of applying the new algorithm to a set of engineering test
problems where known sensttivigies and Hessians could not be developed analytically. To determine the
accuracy of the sensitivity derivatives returned by the new method, the actual sensitivities for each test
problem were developed by reoptimizing the problem over a range of values for each parameter. The results
were then fit with either a linear or quadratic curve, depending on the amount of nonlinearity present, and
the resulting curve was used to estimate the derivatives. These were then compared with the derivatives
obtained from the RQP based algorithm,

This slide describes the three engineering test problems that were used. Complete descriptions are
available in Beltracchi (1988).

Four Bar Slider Crank Problem: Design a four bar slider
crank mechanism to generate a desired coupler path.
Four parameters were studied: a movability criteria
parameter, two timing parameters, and the y position of a
precision point.

Weld Beam Problem: Design a welded beam structure for

minimum cost. Parameters studied: fixed length of beam,
load on beam, yield stress in beam, and allowable shear in
weld.

Corrugated Bulkhead: Design a ship bulkhead for

minimum weight. Parameters studied: change in position
of two stringers, and height of the free liquid.
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ENGINEERING TEST PROBLEMS: RESULTS

The following tables report on the accuracy of the parameter sensitivity derivatives returned by the
RQP based algorithm for the engineering test problems. The following general conclusions can be drawn
from these results:
. The method produces results for df/dp, dx/dp, and dg/dp that are in the range of 3-4 significant
digits of accuracy.
. The results for the four bar mechanism problem are generally worse than the other two
problems. This is due to the highly nonlinear nature of this problem and the difficulty in
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locating accurate optimal points.

Four Bar Slider Crank

P1 p2 p3 p4
(;i;- 2.0(10-5) 4.86(10-3) 2.25(10-5) 3.29(10-7)
£X 2.32(10-2) 6.38(10-3) 7.67(10-2) 2.65(10-2)
tu 3.62(10-1) 3.34(10-2) 6.14(10-2) 5.48(10-2)
eg 8.81(10-5) 1.94(10-3) 7.82(10-2) 9.36(10-3)
Welded Beam
] P1 p2 pP3 p4
f—; 1.26(10-5) 8.7(10-6) 8.62(10-6) 1.89(10-4)
£X 7.59(10-5) 4.28(10-5) 3.12(10-5) 1.26(10-4)
cu 2.45(10-4) 3:54(10-4) 1.80(10-4) 1.75(10-4)
g 8.61(10-7) 1.05(10-4) 1.27(10-18) 1 .45(10-9)
Bulkhead Problem
of P1 P2 P3
dp 3.21(10-5) 3.34(10-6) 3.51(10-5)
£X 5.21(10-5) 2.81(10-5) 1.92(10-4)
cu 7.74(10-5) 1.08(10-3) 8.11(10-5)
eg 5.12(10-5) 2.69(10-5) 3.23(10-5)
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CONCLUSIONS

In this paper, we have proposed an alternative to current methods for estimating parameter
sensitivities. The new method is based on combining the use of an RQP algorithm with differencing
formulas which provides a means to estimate the sensitivities without the need for calculating second order
derivatives. The method has been tested against two different test sets, one with analytical derivatives
available and one without, and in both cases the method was able to accurately determine the sensitivity
derivatives. The two major issues in implementing the algorithm concem the ability to formulate an accurate
approximation to the Hessian of the Lagrangian and the ability to accurately estimate the modified Kuhn-
Tucker sensitivity equations using the differencing formulas. Based on the testing performed so far, we are
led to the following conclusions:

In terms of efficiency, the method is competitive with existing methods.
Parameter sensitivity analysis can be performed using the RQP based method.

The Hessian approximation is improved if updating is allowed during the sensitivity calculations.

The SR1/PD/BFS update in general provided more accurate estimates of the Hessian of the

Lagrangian than either the BFS or SR1 updates on our test set. The initial testing of this update was
very encouraging in terms of the convergence of the Hessian approximation to the true Hessian.

The method is competitive with existing methods.
Parameter sensitivity analysis can be performed using the
RQP based method.

The Hessian approximation is improved if updating is
allowed during the sensitivity calculations.

The SR1/PD/BFS update in general provided more
accurate estimates of the Hessian of the Lagrangian than
either the BFS or SR1 methods.
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ABSTRACT

This paper presents the considerations and the resultant approach used to implement design
sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN).
The design variables are grid perturbations with a rather general linking capability. Moreover, shape and
sizing variables may be linked together. The design is general enough to facilitate geometric modeling
techniques for generating design variable linking schemes in an easy and straightforward manner.

Test cases have been run and validated by comparison with the overall finite difference method.
The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer
would give designers a powerful, automated tool to carry out practical optimization design of real life,
complicated structures.

INTRODUCTION

This paper presents the considerations and the resultant approach used to implement design
sensitivity capability for grids into MSC/NASTRAN. MSC/NASTRAN is a large-scale, general purpose
computer program which solves a wide variety of engineering problems by the finite element method. In
1983, the design sensitivity analysis (DSA) capability was installed in MSC/NASTRAN. This capability
has recently been enhanced to include a fully integrated optimization capability for sizing variables. With
the addition of shape sensitivity capability and with the increasing interest in aerospace and automotive
industries, this general capability can be used in its own right for carrying out sensitivity analysis of
complicated real life structures.

Shape optimization is still in a state where fundamental research is needed (Reference 1). The
integration of shape optimization concepts within Finite Element Methods (FEM) and Computer Aided
Designs (CAD) should help to bridge the gap between these two technologies. To be successful, the
proposed integration of software should lead to a system easy to use. From a practical point of view, the
computational tool should indeed be employed by design engineers with only a superficial knowledge of
the theoretical basis of each technique.
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The following sections will be devoted to the basic procedure for an efficient design variable linking
scheme using reduced basis concepts. These are necessary to avoid generating unrealistic designs due
to independent node movements.

The next section provides an overview of the design sensitivity capability in MSC/NASTRAN. The
design constraints can be weight, volume, frequency, buckling loads, displacements, stresses, strains or
forces. The design variables can be shape or sizing variables. The method chosen is a semianalytical
approach based on a first variation (finite difference scheme) of the system’s equilibrium equations with
respect to the design variables.

A brief description follows of the program architecture and considerations that go into implementing
such a capability into a large-scale, general-purpose computer program. The important considerations
are ease of use, generality, compatibility with the existing architecture, data organization and manage-
ment and, finally, a good restarnt capability for an active man/machine interaction.

Errors associated with shape sensitivity analysis using the semianalytical approach as shown in
Reference 2 are examined. An iterative scheme and error index are employed to minimize the errors in
the sensitivity calculations.

Two example problems were chosen {o validate the capability and to highlight some of the salient
features. The first example problem is a beam modeled by solid elements, with x-section as design
variable. The second example problem is a cantilever beam with length as design variable.

BASIC PROCEDURE

When dealing with shape optimization problems, the design variables must be selected very
carefully. The coordinates of the boundary nodes of the finite element model is a straightforward choice.
This choice, however, exhibits many severe drawbacks. The set of design variables is very large and the
cost and difficulty of the minimization process increase. It has a tendency to generate unrealistic designs
due to the independent node movement and additional constraints avoiding such designs are difficult to
cope with. Moreover, an automatic mesh generator is necessary to maintain the mesh integrity through-
out the optimization process. One obvious remedy is to avoid a one-to-one correspondence between the
finite element model and the design variables.

One way to achieve this goal is to use the concept of "design model" utilizing "reduced basis
vectors”. The general form of this relationship is (Reference 3)

{ag} = [T] {x} (1)
nx1 nxm mx1
The given design Ag define a system of n variables. We refer to columns of T as basis vectors.

Clearly the method is most useful if m << n and the method will produce a true optimum only if some
combination of basis vectors can define that optimum.
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From Equation 1, it is obvious that the reduced basis approach is simply a design variable linking
scheme where the basis vectors are columns of the coefficient matrix T. Ideally, the basis vectors could
most conveniently be generated using a graphics preprocessor.

To clarify ideas, consider the coordinate update equation given by

Xnew Xold D-cosine-x Cyx
Ynew ¢ =< Youd p + Zxe D-cosine-y » +< Cy @
Znew Zold D-cosine-z C.

The constant term vector C,, C,, C, are computed to make necessary adjustments so that x.,.
Yoow' Znew are equal to x4, Yoq, Zoq for the initial values of the design variables x supplied by the user.

Notice that in Equation 2, for the initial configuration, the values of the initial design variables x supplied
by the user need not be zero. Equation 2 may be rewritten as

Xnew Xold Cx D-cosine-x
Yoew ¢ “S Yoid ¢ -3 Cyp = Xx. D-cosine-y
Znew Zoid C; D-cosine-z
or
{Ag}i = [T]j {x};

this is the same form as shown in Equation 1. The columns of the T matrix are then the basis
vectors. The capability exists for the user to input the elements of the T matrix directly or in the future he
may generate elements of the T matrix using a preprocessor. It should be clear from the above formula-
tion that the design variables are the grid perturbations and not the grid coordinates.

DESIGN SENSITIVITY CAPABILITY IN MSC/NASTRAN

Design sensitivity analysis estimates the effects of interrelated design variables such as element
properties and materials on the structural response quantities such as displacement, stress, natural
frequency, buckling loads - and for composites lamina stresses and failure indices. Design sensitivity
coefficients are defined as the gradients of the design constraints with respect to the design variables at
the current design point. The method chosen for incorporation into MSC/NASTRAN is a semianalytical
approach, based on a first variation (finite difference scheme) of the systems equilibrium equations with
respect to the design variables.

Let v, (bj , u) be a set of design constraints which are functions of b, design variables and dis-

placements u. The design constraints are expressed as
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\yi(b,-,u) <0

The first variation in y; is given as

Vi A
Sy =| — Sb; —- Su
] [abj] { ]}+[8u] {6u}

ixj u-fixed x1 ixn b-fixed nxd

consider u as a function of bj, then
w0} = [ G ] oo
nxj jx1

and, therefore,

v = ( ab,] ][db,]){abj}

or

8\|1. A\y. @r_.]+ ﬂ] du]

The matrix % can be evaluated by taking the first variation of the systems equilibrium equation,

1

[KI{u} ={P}
which gives
[K1{au} +[aK]{u} ={aP}
solving for {Au }
{au} =[KI'({aP} -[aAK]{u})
or
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[Au] = [K]' ({AP(Abs)}, {AP(Aby)}, ..., {AP(Ab)})

- [KT' ([AK(Ab1)1{u}, [AK(Abz)]{u}, ..., [AK(Ab)]{u})

The elements of [%] matrix for an element constraint such as stress, force, or failure index can

be expressed by the relationship
{w} =[S]e{u}

or
C_’m]
[ 4 [S]
The design sensitivity coefficient matrices may thus be expressed as

[n)=({ S - {5 1) v
IS & - {5 ]) b

From this equation it is easy to see that the number of additional case control records (additional
loading cases) required for design sensitivity analysis is equal to the number of design variables for each
subcase (Design Space Technique).

A typical term of the coefficient matrix may be written as

(SB+ABUB SBUB (SBUB+AB SBUB
AMi=\"2 "B AB

where B represents the base line or original state and B + AB represents the perturbed state. The first
expression in parentheses on the right-hand side is thus the change in response quantity due to a
change in design variable for the original solution vector. The second term represents the change in
response quantity due to a change in displacement for the unperturbed design variable. For displace-
ment constraints, the first term in parentheses on the right-hand side is identically zero.

The design constraints can be weight, volume, frequency, buckling loads, displacements, stresses,
strains, forces, lamina stresses, lamina strains, failure indices or user supplied synthetic equations. The
design variables can be grid movements or properties. The shape and sizing variables may be linked
together.
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PROGRAM ARCHITECTURE

In order to understand the reasons behind how a development is introduced into a large finite
element program, a knowledge of the program architecture and technical purpose is necessary. A brief
description of MSC/NASTRAN is presented as background (Reference 4)

The cornerstone of MSC/NASTRAN's architecture is its Executive System, whose essential
functions are to establish and control the sequence of calculations, to allocate files, and to maintain a
restant capability. Engineering calculations are performed by approximately 200 Functional Modules
which communicate only with the Executive System and not with each other. Flexibility is maintained by
a macro-instruction language called DMAP, which is under user control, but which also serves to estab-
lish preformatted calculation sequences for the major types of analysis, including linear analysis, buck-
ling, vibration mode analysis, and design sensitivity.

The calculation of finite element data is concentrated exclusively in a few modules. The element
matrices for stiffness, structural damping, and differential stiffness for elements of the structural model
are generated in the Element Matrix Generator (EMG) module. These element matrices are subse-
quently assembled to form the elastic stiffness matrix, the structural damping matrix, the mass matrix, or
the differential stiffness matrix.

The element contribution to the load vector is generated in the load generator module and the
element stress and force are generated in the recovery module. In all these modules, the finite element
descriptions are defined in the Element Summary Table (EST). The EST contains the element connec-
tion, material property and sectional property information.

Taking advantage of the table driven concept used by the element modules, much of the element
dependent development can be avoided in implementing design sensitivity. The reason is that a proce-
dure could be developed which only involves building EST tables that would cause existing modules to
form the necessary element data.

How a given capability is introduced into a commercial general purpose finite element program is
as important an issue to the user as its theoretical sophistication. If the user views a capability as hard to
use, as having an insufficient capacity to solve his problem, or taking an inordinate time to comprehend
its output, the product is of little practical use. In addition, the program developer, while heeding the
user's needs, has to keep sight of the program as a whole when adding new capabilities. This involves
interfacing well with existing capabilities, maintaining program reliability and generality, and producing
software that makes effective use of computer resources.
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The user interface is a major consideration in the design of a new capability. The following issues
were considered when building up the design sensitivity analysis (DSA) capability.

1. DSA input should be straightforward, but allow flexibility to model complex structural design
concepts.

2. DSA output should be concise and easily understood.

3. Avoid arbitrary program limits which restrict the allowable element types, constraint quantities,
and problem size.

4. Provide an interface for external optimization postprocessors.

A brief discussion of the processes involved in a typical DSA STATIC analysis in MSC/NASTRAN
will help bring into perspective the work involved in the various parts of the DSA solution.

DSA in a STATICS analysis is based on solving for {Au} the first order variation of the nodal
equilibrium equation:

[K°]{au} = {aP} - [aK]{u°}

The DSA problem in this paper is considered to be the additional task required after the solution of
primary analysis. By restarting from the primary STATIC analysis, the solution of the DSA system
equation only involves the calculation of the right-hand side and the backward pass operation in the
solution of Au.

The work involved in solving the system equations (backward pass operation) is a function of the
product of the number of design variables and loading conditions. The following DSA tasks are required
in addition to solving the system equations:

1. DSA Data Organization
2. DSA Data Assembly

3. DSA Data Recovery

These tasks are functions of the triple product of the number of design variables, design constraints and
loading conditions. For large DSA problems, the data organization, assembly and recovery tasks are the
dominant users of computer resources.

Another major consideration was to support all structural finite element types in MSC/NASTRAN.
Since a large number of the elements developed are semiempirical, the determination of consistent
element derivative formulations cannot be practically accomplished. Therefore, a method was developed
to calculate element derivatives by a differencing scheme about the current design point. This method
involved the calculation of the element matrix at the design point plus or minus the user specified design
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variable increment. This element data is differenced with the data at the design point to determine the
corresponding element derivatives. For example, the following shows the change in element stiffness
due to a change in the design variable.

[aK] = [Ke..6] - [<]

An initial analysis is carried out to identify critical constraints and a data base iscreated. In the

succeeding run, information about constraints, design variables, maximum and minimum side constraints

is supplied. A special DMAP package was created which exploits the data base technology.

ERRORS ASSOCIATED WITH SEMI-ANALYTICAL APPROACH IN SHAPE SENSITIVITY

In Reference 2 it was shown that the semi-analytical approach can have serious accuracy prob-
lems for shape design variables in structures modeled by beam, plate, truss, frame and solid elements.
An error index was developed to test the accuracy of the semi-analytical approach and some methods
were proposed for improving the accuracy of the semi-analytical method. In the following section, the
interactive scheme proposed in Reference 2 is examined in greater detail.

Consider the systems equilibrium equation
(k] {u} = {P}
Taking the first variation of the systems equilibrium equation gives
[k + Ak] {u + Au} = {P + AP}
Expanding the above equation and retaining the second order terms gives
kK] {Au} = {AP} - [AK]{u} - [AK]{Au}
which can be cast as an iterative scheme

[k} {Au}; = {AP} - [AK] {u}e - [AK] {Au}i.s )

This iterative scheme can be used quite effectively with the error index as shown in Reference 3,
ie.,

m Al - [A]T
E! n _ [ ] E ] (4)
[A]
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An error index of the type described above is almost a must for a large scale system in the op-
timization context. If the sensitivity derivatives are significantly in error, the program needs to detect it
and stop the execution to save time and resources of the user.

NUMERICAL EXAMPLES

Two example problems were chosen to validate the capability and to highlight some of the salient
features.

Example 1 - Beam using solid elements

A cantilever beam is subjected to a tip loading. The model of the beam is shown in Figure 1. The
beam is modeled using solid hexahedron elements. The analysis model consists of five HEXA elements
and 24 grids.

AN

T

Figure 1. Beam using solid elements.
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The design model consists of one design variable to perturb beam cross section to maximize the
bending inertia about the y-axis. The cross-section is perturbed as shown in Figure 2 below.

P;, Pz,
_ '} ' S

L,

FYa > :-—Fy .
A Al
Plz PZ4

Figure 2. Design Varlable Linking Schemae.

Py, and Py, are perturbation vectors in the y and z direction respectively.

The perturbation vectors are given by
Py, =Py, = 0.01(07 + T + 0k)
Py, = Py, =0.01(01 -]+ 0k)
Py, = Pzy = 0.01(01 + 0] +K)

Py, = Py, =0.01(07 + 0] - k)

The sensitivity coefficient results calculated using the semi-analytical approach are compared to
the Overall Finite Difference (OFD) approach, wherein the entire problem is solved again for the per-
turbed configuration. The results are shown in Table 1. As can be seen, the correlation between he
semi-analytical approach and the OFD is excellent for this particular example problem.
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Grid-ID | Sensitivity | Sensitivity | Error
OFD SA
14 -.0313 -.0307 1.92
15 -.0861 -.0845 1.86
16 -.0166 -.0163 1.81
17 -.0235 -.0231 1.7
18 -.0397 -.0389 2.0

Table 1. Vertical displacements along beam length..

Example 2 - Cantilever beam subjected to end moment

The same cantilever beam that was considered in Reference 2 is taken as an example here. The
cantilever beam has uniform rigidity El and length L under a tip moment M as shown in Figure 3.

100 1

ﬁ\\\T\\

A

100 -1

fW

} * o '—0—+ ) 6
(1) ) (n-1)
(n)

Figure 3. Cantliever beam subjected to end moment.

The modulus of elasticity is taken equal to E = 107. The theoretical tip deflection for the above
configuration is

M 2
5=2_é| (5)

The structure has been idealized into 20 beam elements. Sensitivity coefficients have been
calculated for the tip displacement with respect to the length of the beam. The design model contains a
single design variable, i.e., the length of the beam. The grid perturbations of all the grids have been
linked together so that the perturbations vary linearly from roof to tip of the beam.
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Parametric studies have been carried out to determine the effect of the step size on the error.
From Equation 5, the exact results are available.

First the sensitivity analysis is carried out using the Overall Finite Difference (OFD) and the
semi-analytical (SA) method for step sizes of 1%, 0.5%, 0.1 % and 0.01%. The results, without using any
iterative schemes are shown in Table 2. As can be seen, the results are quite accurate for a step size of
0.01%. Whereas they progressively degrade for increasing values of the step size and become quite
unacceptable for a step size of 1%.

In Reference 2, the errors for the beam-type structure are associated with an incompatiblity of the
sensitivity field with the structural model. The error in the finite difference approximation consists of a
truncation error because of neglecting higher order terms in the Taylor series expansion and a condition
error because of the limited precision available for the computer. Thus, an optimum value of step-size
would minimize the truncation error without the condition error becoming significant. As suggested in
Reference 3, central difference scheme is an alternative to iterations.

Step-size (%) | Sensitivity Coefficient
A

1.0 -10.459

0.5 -4.716

0.1 0.010

0.01 1.08

0.001 1.1885
0.0001 1.1874
0.00001 0.914*

¢ Degrades. (Theoretical value = 1.2)

Table 2. Varlation of sensltivity coefficients with respect to step-size.

Next, we use the iterative scheme of Equation 3 to converge to the correct solution. As can be
seen from Figure 4, the smaller the value of the step size, the lesser the number of iterations required to
converge to the correct solution.
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Figure 4. Plot of number of iterations versus error in tip-displacement using SA method.



CONCLUSIONS

This paper presented the considerations and the resultant approach used to implement design
sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN).
The design variables are grid perturbations with a rather general linking capability. Moreover shape and
sizing variables may be linked together. The design is general enough to facilitate geometric modeling
techniques for generating design variable linking schemes in an easy and straightforward manner.

The errors shown to be associated with the semianalytic method for shape variables for beam type
structures can be mitigated by resorting to an iterative scheme. Examples have been presented high-
lighting the salient features of the approach.
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ABSTRACT

A numerical approach is presented for design sensitivity analysis.
The approach is based on perturbing the design variables and then using
iterative schemes to obtain the response of the perturbed structure. A
forward difference formula then yields the approximate sensitivity.
Algorithms for displacement and stress sensitivity as well for eigenvalue
and eigenvector sensitivity are developed. Results for the stress
sensitivity problem are compared with the semi-analytical method. Examples
are considered in structures and fluids.

INTRODUCTION

Iterative methods are presented for obtaining design sensitivity
coefficients (or derivatives) of implicit functions. Design derivatives
are important not only in gradient-based optimization codes, but also for
examining trade-off's, system identification, and probabilistic design.
Iterative methods are presented for both the algebraic and eigenvalue
problems; stress, eigenvalue and eigenvector derivatives are considered.
The iterative approaches provide approximate derivatives. They are very
simple to implement in a program, especially for calculation of eigenvector
derivatives. The idea of using iterative methods for a class of problems
was suggested for one dimensional problems in (ref. 1). Here, this idea is
developed to handle the matrix algebraic as well as the generalized
eigenvalue problems.

The basic idea behind the approach is as follows. Let

g = g(b,y) (1)

be a continuously differentiable function of a design variable vector b of
dimension (kx1), and a state variable vector y of dimension (nx1). The
state variables are implicitly dependent on design through the n state
equations of the form

9(b,y) =0 (2)

Let bO be the current design and y© be the associated state variable
vector. The problem of concern is to ¥1nd the sensitivity, dg/db, at the
current design. The iterative method is based on perturbing each design
variable, in turn, as

b‘?:b?m (3)

Equation (2) now becomes

8(b%,y%) = 0 (4)
Now, a modified residual-correction or Newton-Raphson technique is

applied to solve Eq. (4), treating xe as the vector of unknowns.
Then, the sensitivity vector is given approximately by

€ € 0 0
dg/dbi = [g(b , y )-g(b ,y )1/e (5)



For the eigenvalue problem, as discussed later, the system in Eq. (4)
is augmented by a certain orthogonality relation. Note that certain
coefficient matrices involving stiffness, mass, etc. have been decomposed
at the current design while solving for yO. The iterative approach
presented here can be viewed as re-analysis schemes used to solve Eq. (4),
which uses the already decomposed matrices. Since the perturbation e is
very small, the iterative schemes converge very rapidly.

DISPLACEMENT AND STRESS SENSITIVITY

A finite element model of the structure is assumed. The problem of
obtaining design derivatives of displacements and stresses {is now
considered. Consider a function

g = g(b,z) (6)

which represents a stress constraint, with b = (kx1) design vector and z =
(nx1) displacement vector which is obtained “from the finite element
equations

K(b) z = F(b) (7)

where K is an (nxn) structural stiffness matrix, and F is an (nxl) nodal
load vector. Let bO be the current design. At this Stage, the analysis
has been completed. Thus, the decomposed K(b)?® and z© are known.

The derivative of the function g with respect to the ith design
variable is given by

dg/dbj = dg/abj + dg/dz -+ dz/dbj (8)

The partial derivatives dg/db and dg/dz are readily available using the
finite element relations. The problem, therefore, is to compute the
displacement sensitivity, dz/db. An iterative approach for computing this
is now given. -

Corresponding to the ith design variable, let the perturbed design

vector, b®, be defined as

9 (9)

The perturbation € is relatively small, and a value of 1% of bj has found
to work well in practice. The choice of ¢ is based on balancing the

0 0,7

€
Q =(b b 9 ceey b_i+€, cs ey bk)

truncation and cancellation errors. The problem is to find 58, the
solution of

K(b®) z& = F(b®) (10)

using the decomposed K(b°) and z©. A modified version of the
residual-correction scheme given in (ref. 2) is given below.
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Algorithm 1 (Displacement and Stress Sensitivity)

Step (0). Zet j=0. Choose the perturbation € and the error tolerance
Define Qe as in Eq. (9).
Step (). Calculate the residual rJ from
rd - k%) 2 - FY) (11)
Step (ii). Solve for the correction el from
K(b0) el = -r] (12)
Step (iii). Update
zJtl = 2 + el (13)
Step (iv). Check the convergence criterion
|1 z3* - 23} s (14)

If (14) is satisfied, then set z° = zJ*! and compute the
displacement sensitivity as

dz / dbj ~ (25 -2°) / ¢ (15)

The stress sensitivity can be recovered from Eq. (8). If Eq.
(14) is not satisfied, set j = j+1 and re-execute steps
(i)-(iv) above.

Numerical results and comparison with the exact and semi-analytical
methods discussed in the literature are presented subsequently.
Theoretically, it can be shown that the above scheme will converge provided

[2]:

ro [ - K00k (05)] < 1 (16)

where rg(A) = spectral radius of the matrix A, which is the maximum size

of the eigenvalues of A. In the problem considered here, K(b®) and 5(26)
are roughly equal owing to € being small, and (16) can generally be
expected to hold.

EIGENVALUE AND EIGENVECTOR SENSITIVITY

Eigenvalue sensitivity is useful when resonant frequencies or critical
buckling loads need to be restricted. Exact analytical expressions for
eigenvalue sensitivity can be readily derived for the case of non-repeated
roots [3]. The problem of obtaining eigenvector sensitivity, on the other
hand, is more complicated and is an area of current interest [4-7].
Eigenvector sensitivity is useful in obtaining the design derivatives of



forced dynamic response. Here, an iterative approach is presented for
approximate derivatives of eigenvalues and eigenvectors. The approach is
particularly easy to implement in a program and provides both eigenvalue
and eigenvector derivatives simultaneously. Further, the derivative of a
particular eigenvector does not require knowledge of all eigenvectors of
the problem, as with certain analytical methods.

Consider the generalized eigenvalue problem

K(b)y = 2 M(b)y (17)

where A is a particular non-repeated eigenvalue and y is the associated
eigenvector. For the frequency problem, K and M represent the structural
stiffness and mass matrices, respectively. For the buckling problem, K and
M represent the structural stiffness and geometric stiffness matrices,
respectively. It is desired to find the sensitivities dA/db and dy/db.

Let bO be the current design vector and (1Ag, y®) be a g1ven

e1genva1ue-e1genvector pa1r at the current design. Let b be a perturbed
design vector as given in Eq. (9). The residual is given by

R = K(2%)y® -3 M(B®)y" (18)
The object is to solve the nonlinear equations R = 0 for the unknowns Aeand

ye; the Newton-Raphson technique is used for this purpose. The Jacobian J

of the system in Eq. (18) is [aRloye, dR/dA ] The Newton-Raphson equations
are consequently:

[K(b5)-) M%) MBSy ] (:f) - R (19)

Note, however, that Eq. (19) represents a system with n equations and (n+l)
unknowns; an additional equation is needed. This additional equation is
obtained by introducing the normalization condition

-y Moy =0 (20)

which states that the change in the eigenvector is orthogonal to the
original eigenvector with respect to the mass matrix., In fact, the above
scheme has been used as a re-analysis approach in (ref. 8). Here, an
additional modification is made: the Jacobian matrix in Eq. (19) is

modified by replacing K(b%) by K(b), y® by yO and A_ by Ag. The

motivation for this, as in the previous section, is tc preserve a constant
coefficient matrix in the iterative scheme. The resulting efficiency has
not been found to affect the convergence of the procedure owing to the
relatively small size of €. The above modifications lead to an iterative
scheme based on solving the system.

6 -R
o (1) - [
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where
K(b9)-AoM(bO) ~M(b9)y©

c- T (22)
-y© M(b0) 0
The coefficient matrix is symmetric and nonsingular for the case of
non-repeated roots [8]. Gaussian elimination can be used to solve Eg. (21).
The algorithm for eigenvalue-eigenvector sensitivity is now given.
Algorithm 2 (Eigenvalue-Eigenvector Sensitivity)

Step (0). Set j=0. Choose the perturbation € and the error tolerances
A; and Ao,

Define QE as in Eq. (9). Decompose the matrix C given in Eq.
(22).

Step (i). Define the residual
RI = k(b%)yd - aM(bF)yd (23)

Step (ii). Solve the algebraic equations

Sy -RJ
[c] = (24)
6A 0

for 8y and 6A.
Step (iii). Update
.y_.]'+1 = lj + 6y
Aj+1 = 2j + GA (25)
Step (iv). Check the convergence criterion

[| o6y || 41,6 <4 (26)
If (26) is satisfied, then set y* =yJ*1, A_ = ajs1 and
compute the sensitivity as
dy/db; = (y& -y0)/e
dr/dby = (M, -ho)/e



If (26) is not satisfied, set j = j+l and re-execute steps
(i)-(iv) above.

Numerical results are presented in the following section.

NUMERICAL RESULTS

Thin plate problem

Consider the plane stress problem in Fig. 1, where inverse thicknesses
are the design variables. That is, the reciprocal of the plate thickness
is chosen as a design variable. Inverse design variables are used in
optimal design literature because they linearize the stress function and
lead to improved convergence. The stress constraint function is the
von Mises failure criterion in element j, given by

gj = oym/0a-1 (28)

where oymyZ=0x2 + o6y2 = oyoy + 37,2 and oy = constant allowable stress
Timit. Constant s%ra1n tr1angu1ar elements are used. For brevity, only
the design sensitivity coefficients, dgjg9/dbjg and dgp4/dbog, are presented
in Table 1. The sensitivity vectors have been obtained using Algorithm 1
discussed earlier. In Table 1, the results obtained by the iterative
method are compared with the semi-analytical method used widely in the
Titerature, based on the formula in Eq. (8) with dz/db; obtained from

K(b®)-K(b®) o  [F(b®)-F(b%)]

K d_Z_/db_i =" z + € (29)

The results are also compared with the exact sensitivity obtained using
analytical derivatives. It is interesting to note that the semi-analytical
method yields the same result as the first iteration of the iterative
method. However, the iterative method further improves upon this and
approaches the exact sensitivity (Table 1). While all methods yield values
of acceptable accuracy, the comparison serves to illustrate the nature of
the iterative process. This aspect is shown graphically in Fig. 2. It is
noted that when us1ng direct variables (as opposed to reciprocal
variables), the semi-analytical method yields essentially exact sensitivity
owing to the fact that stiffness is a linear function of design variables.

V.,
.
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E ( Young's modulus ) = 30.E6 psi
t ( Thickness of clement) = 14 in
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Figure 1.
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Iterative 4
A Iterative 3
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/ Iterative 1
/ =Semi-analytical
f(b)
> b
0 bio bi+s i
Figure 2.
Table 1.
Method dgjg/dbig dgp4/dbog
8.7098 5.6437
Iterative 2 8.7949 5.6980
8.7957 5.6986
Semi-analytical 8.7098 5.6437
Exact 8.7969 5.7002

Plane Frame Problem

Consider the frame structure in Fig. 3. The design variables
associated with the I-section are b = (h, w, ty, tf) as shown in Fig. 3.
The current design is b = (3.0, 3.0, 0.3, 0.5) for each element. The
sensitivity of the Towest eigenvalues and corresponding eigenvector
obtained using Algorithm 2 given earlier is presented in Tables 2 and 3,
respectively. For the eigenvector, only selected sensitivity coefficients
are presented for brevity. The maximum number of ijterations required for
an error tolerance of 1077 is five. Thus, we see that convergence of the
algorithm is very rapid and simple to implement. Also, the algorithm does
not require computation of all eigenvectors to find the sensitivity of a
few specific eigenvectors. However, if the sensitivity of all eigenvectors
is required, then alternative approaches may be preferable.
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Table 2.
No. of design variable Eigenvalue sensitivity
1 4359.6
2 1746.9
3 1418.1
4 10481.0
5 807.7
6 -1077.6
7 -4369.5
8 -6465.5
9 503.2
10 -2058.8
11 ~7315.0
12 -12353.0
13 807.7
14 -1077.6
15 -4369.5
16 -6465.5
17 5957.6
18 1964.0
19 540.4
20 11784.0
21 4359.6
22 1746.9
23 1418.1
24 10481.0
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Table 3.

No. of degree of freedom dy/dbsg dy/db17
4 0.036758 0.021438
5 0.000370 0.002413
6 -0.000868 0.003890
7 -0.028564 -0.007628
8 0.000378 0.002547
9 -0.002667 -0.000389

10 -0.028327 -0.007628
11 -0.000653 -0.002547
12 0.001614 -0.000389
13 0.036339 0.021438
14 -0.000407 -0.002413
15 0.000147 0.003890

Fluid Mechanics Problem

The objective of this problem in Fig. 4 is to obtain the sensitivities
of the maximum absolute eigenvalue and eigenvector of the amplification
matrix G of the incompressible Euler equations in fluid mechanics (ref. 9).
This problem is motivated from a study of the stability of the
computational algorithm. The Euler equations are

At

€.
[1- At D+ —p (l-cos8,) Isi &5 A sing,] (I - At D)7

W1 - At D+ - (1-cos8 ) I+i At g sing.] (I - at D)7t
= = 4 y' = by = y* o= -
VI - At D+ (1-cos6.) I+i At ¢ sine ] (6 - 1)
= =g z/ =7 Az = zd 27 =
€
- Bt D ~£ [(1 - cosB )% (1 - cost, )2+ (1 - cos8 )] I

_1[rAs1ne -A—Bsme rCs1n6]

where, I is a (4x4) identity matrix.
The source Jacobian Matrix is
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(o 0 0
1/r 0 2ut2uy/r
(0] = {
0 -2u-uy/r ~uyx/r
9 0 0 0
and the flux Jacobian matrices are
o B 0 0
< 1 2uy 0 0
[A] = 0 Uy Uy 0
\ 0 Uz 0 ux)
'\
(’0 0 8 0
< 0 uy Uy 0 >
[B] = 1 0 2uy 0
0 0 Uz u
\ y
e ™
0 0 0 B
< 0 Uz 0 Uy
[C] = 0 0 uz uy
1 0 0 2ug
\. /
The time step is
At = CFL

1

AX-H[UX+ ux+8]
1 2

AYSH[ uy+ Uy+8]
1 2

\, =% [ u, |+ u,” + 8]

723



Data

Grid sizes in x, y and z directions are Ax = 1/16, Ay = /32, Az = 1/32.
Parameter of time-derivative term is 8 = 1.

Radius is r=2, angular velocity of propeller is w=2.

Parameter CFL (Courant-Friedrichs-Lewy Number) is = 5,

Fluid velocities in x, y, z directions are uy = 0.5, uy =1, u; = 1.

The implicit second-order artificial viscosity is i =" 0.

The explicit fourth-order artificial viscosity is €q = 0.

The lower boundaries of wavenumbers 6y, 6y, 6z are = 0, and the upper
boundaries are = m,

Results

The optimum values of wavenumbers Oy, 6y, 8; at which the absolute
value of maximum eigenvalue are maximum, are obtained by using the
f optimization program LINRM [10]. The results are 8y = =0, = n/2. Al
| sensitivity calculations are now done at these values ofyex, By and 6.
The sensitivity of the maximum eigenvalue, absolute maximum eigenvalue and
corresponding eigenvector are shown in Tables 4 and 5.

Rotational
y inflow
profile

Figure 4.
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Table 4. Eigenvalue Sensitivity for Fluid Mechanics

Problem

A=1x 108, ¢ =0.01

Eigenvalue Sensitivity
Design Variable

di/db dir| /d
Uy -0.03928 -0.11272 i -0.08543
uy 0.25361 -0.02037 i 0.21790
uy -0.23827 -0.36236 i -0.37489
CFL 0.13254 +0,06004 i 0.14541
€5 ~-0.12951 -0.29317 i -0.24668
€e -0.84451 -0.46701 i -0.54753
W -0.01807 +0.02823 i -0.00358
O -0.00138 -0.00002 i -0.00125
By -0.00182 -0.00010 1 -0.00167
05 -0.00204 -0.00189 1 -0.00267

bO = (0.5, 1, 1,

A0 = 0,94882 + 0.

| A9| = 1.0601

5, 0, 0, 2, n/2, n/2,
47287 i

n/2)

Table 5. Eigenvector Sensitivity for Fluid Mechanics Problem

A=1x10"8 ¢=0.01

Degree of Freedom

dy/d CFL

dy/dw

s~ D=

-0.22740 -0.27610 i
-0.34796 -0.03808 i
-0.20260 -0.10825 i
-0.19075 -0.10196 i

0.03483 +0.01911 i
0.00969 -0.00969 i
0.07636 +0.00170 i
0.03520 -0.01693 i
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SUMMARY AND CONCLUSIONS

A numerical method has been presented for design sensitivity analysis.
The idea is based on using iterative methods for re-analysis of the
structure due to a small perturbation in the design variable. A forward
difference scheme then yields the approximate sensitivity. Algorithms for
displacement and stress sensitivity as well as for eigenvalues and
eigenvector sensitivity are developed. The iterative schemes have been
modified so that the coefficient matrices are constant and hence decomposed
only once. The convergence is found to be very rapid. Further,
implementation of the algorithms is simple.
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ABSTRACT

Next generation air and space vehicle designs are being driven by increased performance
requirements, demanding a high level of design integration between traditionally separate design
disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic
aircraft and large flexible spacecraft control for instance, but the requisite integrated design
methods are only beginning to be developed. One integrated design method which has received
attention is based on hierarchical problem decompositions, optimization, and design sensitivity
analyses. This paper highlights a design sensitivity analysis method for Linear, Quadratic Cost,
Gaussian (LQG) optimal control laws, which predicts the change in the optimal control law due to
changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a
design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this
example, the sensitivity of the optimally controlled aircraft's response to various problem
formulation and physical aircraft parameters is determined. These results are used to predict the
aircraft's new optimally controlled response if the parameter was to have some other nominal value
during the control law design process. The sensitivity results are validated by recomputing the
optimal control law for discrete variations in parameters, computing the new actual aircraft
response, and comparing with the predicted response. These results show an improvement in
sensitivity accuracy for integrated design purposes over methods which do not include changes in
the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be
more efficient than finite difference methods for the computation of the equivalent sensitivity
information.



INTRODUCTION

The design of new generation air and space vehicles is increasingly becoming subject to
extensive requirements for design integration, that is, close coordination in the design of the
various systems of the vehicle. For example, many modern fighter aircraft require integration of
the flight control system and the propulsion system so that sufficient power is available at all flight
conditions possible with the flight control system. To meet the challenge of the integrated system
desigx:i requirements, design methods which tie together existing system design methods are
needed.

One such integrated design methodology currently under development at NASA Langley
Research Center is based on hierarchical problem decompositions, multilevel optimization
methods, and design sensitivity analyses [1]. This methodology depends on the decomposition of
the integrated design problem into vehicle requirements, system requirements, and subsystem
requirements. Optimization methods are used to satisfy all levels of the design requirements,
subject to the constraints that any previously satisfied design requirements remain satisfied. The
continued satisfaction of previous design requirements is achieved through the use of design
sensitivity information which relates the change in the previous design to the current design
variables. This sensitivity information is used as gradient information in the current optimization to
make sure the constraints are satisfied.

One application of the multilevel integrated design methodology is to the aeroservoelastic
design of aircraft, which is the simultaneous consideration of aircraft acrodynamics, control laws,
and structural dynamics. This application requires the incorporation of dynamic response design
requirements and a control law design method which uses the available feedback signals, both of
which required development and validation of appropriate design sensitivity information. Linear
Quadratic Gaussian (LQG) control law design methods were selected. The sensitivity
developments have recently been completed [2] and the application and validation of the sensitivity
expressions is described here. Initially, aerodynamic design would not be attempted, although
aerodynamic effects must be included in the calculation of dynamic responses.

Integrated Interdisciplinary Methods Are Needed for Advanced Air
and Space Vehicle Design

One Approach Is Hierarchically Decomposed, Optimization and Sensitivity
Analysis Based Methods

Criteria for Initial Aeroservoelastic Design Method:

- Include Dynamic Response, Stability, and Robustness Requirements
Iin Problem Formulation

- Control Law Design Method Must Use Measured Feedback Signals

- Use Existing Multilevel Structural Optimization Methods

Emphasis Here is on Sensitivity Analysis and Validation Results
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MULTILEVEL STRUCTURE/CONTROL LAW DESIGN

A multilevel, integrated structure/control law design problem for an aeroelastic aircraft can
be formulated conceptually as shown. In this formulation, the structural design problem is to
minimize the weight of the structure subject to stiffness and stress requirements, and also to control
law design requirements. Since the aircraft is aeroelastic, steady-state control actions (control
surface deflections) can change structural deflections under given loads, and so must be considered
in the structural design. The control law design problem is to minimize a quadratic performance
index in aircraft responses and control inputs. Since the structural design defines the structural
dynamic properties of the aircraft, the control law design problem is also dependent on the
structural design requirements. The multilevel optimization approach to integrated design then
treats the structural and control law design requirements as design variables, selecting those
requirements so that the dynamic response of the vehicle is improved, and so that the structural
design and the control law design are also improved. It requires the sensitivity of the optimized
structure and control law designs to stiffness and control design requirements as gradient
information at the upper level.

Analytical expressions for the sensitivity of optimized LQG control laws have previously
been developed directly from the necessary conditions of optimality for the LQG problem. These
results will be described following a statement of the LQG problem formulation.

Optimize Aircraft Dynamic
esponse and Improve
Structure and Control
(Select Stiffness and

Control Requirements)

Sensitivity of Optimized Sensitivity of Optimized
Structure to Stiffness LQG Controller to Stiffness
and Control Rgmts. and Control Rgmts.
- Stiffness .
Optimize Structural and Optimize Full-Order
Weight Using Tailored Control Comgensator (LQG)
Composite Optimization Rgmts. ontrol Law
(Select Composite Ply Select Compensator
Orientations) ains and Dynamics)

Analytical ExBressions for the Sensitivity of the Optimized LQG Control
Law Have Previously Been Developed

Sensitivity Expressions Were Derived Directly From the Necessary
Conditions of Optimality for the LQG Problem

730



LQG CONTROL LAW FORMULATION

The Linear, Quadratic Cost, Gaussian (LQG) optimal control law problem formulation is
shown below, where X is the system state vector, U is the vector of control inputs, Y is the vector
of pertinent system responses, Z is the vector of measured outputs to be used for feedback, and w
and v are uncorrelated, zero mean, Gaussian distributed "white" noise disturbance vectors. The
matrices A, B, C, D, and M are appropriately dimensioned coefficient matrices, and W and V are
intensity matrices of the white noise disturbance vectors. It is assumed that each of these matrices
is a known continuous differentiable function of one or more scalar parameters p which have some
known nominal value. The LQG problem is to find the control u(t) such that the cost function J is
a minimum, where the weighting matrices Q and R are also assumed to be known continuous
differentiable functions of p. The solution of this problem is well known and is the
interconnection of the optimal Linear Quadratic Regulator (LQR) and the optimal Kalman Filter
(KF) state estimator as shown below, where the matrices G and F are the regulator and state
estimator gain matrices respectively [3]. Clearly the gain matrices G and F are functions of the
parameter p, and it is desired to know the change in G and F due to variations in the nominal value
of the parameter p. Analytical expressions for the change (sensitivity) of G and F with respect to p
have been derived from the LQG necessary conditions of optimality, and are summarized on the
next page.

Xx=A(p)x+Bpu+DP)W  E(W)=0; E(wtw'() = W(p)3(t-1)

y = C(p)x EwtVv(1) =0

z=M(p)x+v E(v)=0;E (vt)v'(x)) = V(p)3(t-7)
Problem is to find u(t) such that J is minimized for a given p:

T,

J=lim E{%OJTYTQ“’W * uTH<p)u]dt}
Solution is the Interconnection of the Optimal Regulator and Kalman Filter

u=-GX

X = AX + Bu - F(z -Mx)

Want Analytical Expressions for the Sensitivity of the Solution to Changes
in Fixed Parameter p
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LQG CONTROL LAW SENSITIVITY

The optimal LQR and KF gain matrices G and F are computed as shown below, where S
and T are the steady-state solutions of the appropriate nonlinear matrix Riccati equations. Also
shown are expressions for the partial derivatives of G and F with respect to p. Under the
assumptions regarding the functional dependence of B, M, R, and V on p, the only unknowns in
these expressions are the partial derivatives of the Riccati equation solutions S and T with respect
to p. Analytical expressions for these partial derivatives can be derived from the necessary
conditions of optimality [2] and the final results are shown below. These expressions are valid
only when the necessary conditions of optimality are satisfied, that is when G and F are the gain
matrices which make the cost function J be a minimum. They are themselves linear Lyapunov
equations in the unknown derivatives (sensitivities) Sp and Tp, and have coefficient matrices
which are asymptotically stable by the properties of the LQR and KF solutions. The asymptotic
stability properties of the coefficient matrices guarantees that the Lyapunov equations have
solutions which exist and are unique. Additionally, the coefficient matrices are the same for every
parameter p, with only the known term in the {} brackets changing. This affords considerable
computational savings, since the coefficient matrices need only be decomposed once for the initial
solution of the Lyapunov equations, stored, and reused for the remaining parameter sensitivity
calculations.

(Note: Subscript p denotes partial derivative w.r.t. parameter p)
LQG Solution Given by:

G=R'B'S ; 0=-A'S+SA-SBR'B'S+C'QC
F=TM'V' ; 0=AT+TA"-TM'V'MT+DWD'
Sensitivity of G and F with Respect to p is:
G,=-R'RR'B'S+R'BS+R'B'S,
0=S,(A-BG) + (A-BG)'S, +{SA, + A'S + (C'QC), - S(BR"B"), S}
F=TMV + MV -TM V'V V'

0= (AFM)T_+ T(A-FM)' + {A T+ TA + (DWD") - T(M'V"'M) T}
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OPTIMAL COST SENSITIVITY

Several equivalent expressions for the optimized value of the LQG cost function in terms of
the LQR and KF gain matrices G and F and the Riccati equation solutions S and T are shown
below, where J* denotes the optimized cost function value and tr{} denotes the trace of a matrix.
By the chain rule of differentiation, the partial derivative of the optimized cost is the derivative of
the optimized cost with respect to the gain matrix (G or F) times the derivative of the gain matrix
with respect to p, plus the partial derivative products of all the other matrices in the cost function
expressions. However, since the cost function J has been optimized with respect to the gain
matrices (i.e. G and F satisfy the necessary conditions of optimality), the derivatives J'g and J'F
are identically equal to zero, which means that the sensitivity of the optimized cost J'p is
independent of changes in the optimal gain matrices G and F [2]. This makes the optimized value
of the cost function J* unattractive for use in the integrated structure/control law design algorithm
as a measure of control law performance, since the sensitivity J'p does not reflect the actual
changes in the optimal control law. For this reason, other measures of the optimally controlled
systems performance, such as time and frequency responses, system eigenvalues, and covariance
responses must be used in the integrated design methodology even though these responses have
not been optimized with respect to G and F. The sensitivities of these other performance measures
do reflect the effects of the change in the optimal gain matrices G and F due to changes in the
parameter p. Analytical expressions for the sensitivities of these other controlled system
performance measures also exist and are summarized on the next pages.

Optimized Cost Function Value
. T T T T
J =t{SFVF +TC QC} = tr{SDWD + TG RG}
Consider That
Jp = J;Fp + JSSp 4. = JGGp +JTTp+

But J'is Optimal With Respectto F and G, i.e.

So the Sensitivity of the Optimized Cost is Independent of the
Sensitivity (Changes) in the Optimal Gain Matrices
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DYNAMIC RESPONSE SENSITIVITY

Once the optimal LQG control law is computed, the regulator and Kalman Filter equations
can be interconnected to form a set of state-space equations which represent the controlled system.
This is represented below where the vector x is the controlled system state vector, y is the
controlled system outputs, and w is the combined vector of disturbance inputs. Taking the partial
derivative of the state equations with respect to the parameter p and interchanging the order of
differentiation leads to the system sensitivity equations shown. When integrated over time for a
known input time history w(t) these equations give the sensitivity of the controlled system state
vector and output vector time histories as a function of both the input and state vector time
histories. These equations can also be used to determine the sensitivity of the frequency response
of a single input/output pair by transformation of the system and sensitivity equations into the

Laplace domain and replacing the Laplace transform variable S by the complex frequency jo for
zero initial conditions. Denoting the complex response of one input/output pair at a given

frequency ® by h and the corresponding complex sensitivity result by hp, the sensitivity of
magnitude and phase of the response are computed as shown. If the interest is in more than one
input/output pair, the singular values of the complex transfer function matrix H relating the input

vector w and the output vector y are often calculated at discrete frequencies w as a means of
determining the response magnitude in all loops simultaneously. Assuming that none of the
singular values is repeated, the sensitivity of the singular values at a given frequency is' calculated
from the complex transfer function sensitivity matrix using the same unitary transformation pair as
determined in the singular value calculation [4].

X = Ax+ Dw Xp=/%x+Axp+ Dpw

y= Cx Y= Gx+ Cx,

Sensitivity Equations Depend on System Response - Can Be Solved
in Either Time or Frequency Domain

Frequency Response Sensitivities -

For a Complex Response h = a + jb and Sensitivity h,=a, +jb,

N Y- I _ 1
hl=va®+b ,|h|—ih—|(aap+bbp)

_tan1b .
(p_tana ab bap)

Ihl2

Singular Values of Complex Transfer Function Matrix H:
I=UHV ;L =UHV

(" here denotes complex conjugate transpose)
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DYNAMIC RESPONSE SENSITIVITY (CONC.)

The eigenvalues of the system dynamics matrix A of a linear state-space system are often
used as a measure of stability and performance. If the change in the matrix A with respect to a
parameter p is known and there are no repeated eigenvalues, then the sensitivity of the eigenvalues
due to a change in the parameter p can be calculated in terms of the derivative matrix Ap and the
matrix E, whose columns are the right eigenvectors of the matrix A [5].

The response of a linear system to Gaussian distributed, "white" noise random inputs is
measured in terms of covariance or mean square quantities. These are computed using the (steady-
state) covariance equations shown below, where the matrix W is the intensity matrix of the
random noise input and X is the state vector covariance to be calculated. Once X is known, other
response quantities of interest are easily computed. Differentiation of the covariance equation with
respect to the parameter p results in an equation for the sensitivity of the state vector covariance Xp
in terms of the state vector covariance X [6]. The sensitivity of the other response quantities of
interest are also easily computed.

System Eigenvalue Sensitivity

A=ETAE ; diag(A)=diag(E A E)

Covariance Response Sensitivity

0=AX+ XA +DWD' : Y=CXC : U= GXG'

T T T
0=AX, + XA + A X+ XA+ (DWD'), ; ¥,=(CXC)), ; U,=(GXG),
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NUMERICAL SENSITIVITY STUDY

The previously described analytical sensitivity expressions for the change in optimal LQG
control law designs and the optimally controlled linear system responses have been exercised on a
real aeroservoelastic aircraft example. This problem considered the DAST ARW-II (Drones for
Aerodynamic and Structural Testing, Advanced Research Wing II) aircraft, which was a Firebee
drone vehicle modified for high risk aeroelastic and aeroservoelastic stability testing [7]. A
mathematical model of the longitudinal dynamics of this vehicle including rigid-body pitch and
plunge motions, three symmetric vibration modes, and elevon and symmetric aileron control
surfaces was used. This model included unsteady aerodynamic effects for each mode. Vehicle
pitch rate and vertical acceleration at the center-of-gravity, and outboard vertical wing acceleration
measurements were available as feedback signals. An LQG optimal control law problem was
formulated for this example to stabilize a nominally unstable short period mode. The sensitivity of
the optimal control law and the dynamic responses of the controlled aircraft were computed for
twelve different problem formulation and physical parameters. The response sensitivities
computed included the sensitivity of the covariance response of the vehicle subjected to Dryden
random vertical gust environment, the sensitivity of the vehicle time response to a discrete 1-
Cosine vertical gust, and the sensitivity of the frequency response in the elevon loop of the aircraft.

25th Order State-Space Model of DAST ARW-II
- Rigid Body Plunge, Pitch, 3 Symmetric Elastic Modes, Unsteady GAF's

- Elevon and Symmetric Aileron Control Surfaces
- Pitch Rate and Acceleration at C.G., Outboard Wing Acceleration Sensors

Sensitivity Information Calculated For Twelve Design Parameters:
- Response to Random Gust Environment (Covariance)
- Time Response to Discrete 1-Cos Gust
- Frequency Response of Open Elevon Loop (Aileron Loop Closed)

Pitch Rate and

C.G. Acceleration Outboard Wing Acceleration

—Elevon

—— Aileron
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SENSITIVITY PARAMETERS

Shown below are the nominal values and descriptions of the twelve parameters for which
the sensitivity of the DAST ARW-II control law and dynamic responses were computed. All
twelve parameters influence the dynamic responses of the controlled system. The first four
parameters are elements in the weighting matrices of the cost function for the LQG problem and
directly affect the LQR regulator gain matrix G discussed previously. Parameters 5 through 8 are
elements of the noise intensity matrices in the LQG formulation and directly affect the KF gain
matrix F. The final four parameters represent physical quantities or characteristics of the vehicle
and affect the LQR gain G, the KF gain F, and the basic dynamics of the vehicle. Parameter 9is a
wing bending stiffness related parameter which was used to uniformly increase or decrease the
natural frequencies of the two wing bending modes. Parameter 10 is a wing torsion stiffness
parameter similar to parameter 9 that was used to scale the wing torsion mode natural frequency.
Parameters 11 and 12 were used to locate the wing accelerometer used for feedback longitudinally
and laterally on the wing. The results to be presented in the next several figures emphasize the
sensitivity of the aircraft responses to the four physical related parameters 9 through 12.

Parameter Nominal Value Description

1 0.01 Q Matrix Weight on Pitch Rate

2 0.01 Q Matrix Weight on Fwd. Wing. Acc.
3 1.00 R Matrix Weight on Elevon Com.

4 1.00 R Matrix Weight on Aileron Com.

5 2.00x10°3  Pitch Rate Sensor Noise Intensity

6 6.00x10™° At Wing Acc. Sensor Noise Intensity
7 1.00x 10 6 Injected Elevon Noise Intensity

8 1.00x 100 Injected Aileron Noise Intensity

9 1.00 Wing Bending Stiffness Parameter
10 1.00 Wing Torsion Stiffness Parameter
11 7.58 Aft Wing Acc. Longitudinal Location
12 2.00 Aft Wing Acc. Lateral Location
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OPTIMAL COST SENSITIVITY

The optimal LQG control law for the DAST ARW-II example problem was computed and
analyzed for sensitivity to the twelve sensitivity parameters. Shown below are the value of the
optimized cost function (J*) and the semi-relative sensitivities of the cost function value to the
sensitivity parameters. (Semi-relative sensitivity results are normalized such that the results are
directly comparable for equal percent changes in the nominal parameter values.) Two sets of
results are shown. Under the heading Design Sensitivity is the sensitivity of the optimized cost
function to the twelve parameters computed using the analytical LQG sensitivity expressions
discussed earlier. Under the heading Alternate Sensitivity is the sensitivity of the optimized cost to
the four physical parameters 9 through 12 when the change in the optimized control law (gain
matrices G and F) is ignored. These sensitivity results show only the effect of a change in basic
system dynamics and do not include the effects of a change in the control law. The results are
identical, verifying the previous assertion that the cost function sensitivity does not reflect changes
in the optimized control law. Furthermore, the current method provides sensitivity information for
a wider range of parameters than the alternate sensitivity information, since the first eight
parameters affect only the gain matrices G and F.

(Optimal Cost = 1.222, Semi-Relative Sensitivity)
Parameter Design Sensitivity ~ Alternate Sensitivity
4

5.17x10
235x10 !

7.58x10 3

490x10 1

135x10 >

25310 2

590 x 10 6

14810 ~10

157x10 | 1.57x10 ]
4.44%x10 " 444x10"
9.84x10 "3 9.84x 10 3
2.14x10°3 2.14x10 3

W ~NOO O & WNN

— - (O
- O

'S
N
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COVARIANCE RESPONSE SENSITIVITY

The covariance response of the optimally controlled DAST ARW-II aircraft was computed
for a 12 ft./sec. RMS vertical gust input using a Dryden gust spectrum. The sensitivity of the
RMS vehicle pitch rate and center-of-gravity acceleration and vertical wing acceleration were
computed for the twelve sensitivity parameters as shown. The wing acceleration result was
measured at a constant point independent of the wing.acceleration feedback signal so that the
sensitivity results for parameters 11 and 12, which actually locate the feedback sensor, are
consistent with the results for all the other parameters.

The results shown are best interpreted in terms of their sign and the magnitude of the
exponents. For example the sensitivities of the three responses to parameter 9, the wing bending
stiffness parameter, are all negative with the largest effect on wing acceleration. This means an
increase in the wing bending stiffness would largely decrease the wing acceleration while also
decreasing the pitch rate and c.g. acceleration. A positive change in parameter 10, the wing
torsional stiffness parameter, would yield a larger decrease in the wing acceleration than the
bending stiffness but would increase the pitch rate and c.g. acceleration results. A negative change
in parameter 11, which locates the wing acceleration feedback sensor longitudinally on the wing,
would decrease all three responses, while a change in parameter 12, the lateral wing feedback
sensor locating parameter, would have a negligible effect compared to parameter 11.

(12 ft/sec RMS Vertical Gust Input, Semi-Relative Sensitivity)

Pitch Rate C. G. Acceleration Wing Acceleration
Parameter (5.15 x 10 2deg/sec)  (2.65x 10 2g) (2.35x101g)
1 6.18x 10 -3 2.24x 104 6.24x 105
2 6.18x 107 -6.62x 10 4 269x100
3 -1.60 x 10 -2 2.08x 103 1.00x 101
4 4.04x 104 1.93x 103 821x100
5 5.91x10-3 9.91x 10 -4 521x10-3
6 1.22x 103 9.04x 104 7.98x 101
7 1.77x104 -477x10°6 3.75x 106
8 1.74x10°° 1.55x 10 -8 436 x 105
9 -9.84 x 10 2 -3.38x 10 3 -5.32x10 1
10 7.00 x 10 2 4.04x 102 -1.22x102
11 1.35x 103 1.16x 10 -3 2.94x 101
12 -343x10 5 -6.64x10 -6.80 x 10 2
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TIME RESPONSE SENSITIVITY

The time response of the optimally controlled DAST ARW-II aircraft was computed for a
1- cosine discrete vertical gust input with a maximum amplitude of 5 ft./sec. and a duration of 0.25
seconds. Shown below is the pitch rate response of the vehicle over one second and the sensitivity
of that pitch rate response to the four physical parameters 9 through 12. The pitch rate response is
more sensitive to the wing bending and torsion stiffness parameters than the wing acceleration
feedback sensor location parameters. Increasing either the wing bending or torsion stiffness would
tend to alleviate the peak negative pitch rate response at about 0.25 seconds. A negative change in
the wing acceleration longitudinal position would also tend to reduce the peak negative pitch rate
response at 0.25 seconds, but would increase oscillation in the response by adding an additional
peak at about 0.65 seconds. The lateral location of the wing acceleration sensor would have a
negligible effect on the pitch rate response. :

(Pitch Rate Response to 1-Cos Discrete Vertical Gust)

20.0 3 .
R A
Semi-Relative E | \ 10
on Sensitivity of 1% F \
) s PitCh Rate 50 i
00k S (Rad/Sec) 00
Pitch Rate 02 I
(Rad/Sec) e 3 5000525 05 075 10
06 E . Time (Sec)
-0.85- 0.0 -
40b— Lt 006 F 11
00 025 05 075 1.0 Semi-Relative 445k
Time (Sec) Sensitivity of "
Pitch Rate %0} N
Parameter (Rad/Sec) -0.03 12
9 - Wing Bending Stiffness 006 F
10 - Wing Torsion Stiffness 009 by 1
11 - Long. Accel. Location 00 025 05 075 1.0

12 - Lat. Accel. Location Time (Sec)
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FREQUENCY RESPONSE SENSITIVITY

The magnitude of the elevon loop frequency response, computed with the aileron loop
closed, is shown below as is the sensitivity of frequency response magnitude to the four physical
parameters 9 through 12. Any one of the three parameters 9 through 11 could be used to reduce
the peak magnitude of the response at about 2.0 rad./sec., or to decrease the bandwidth of the
control loop by reducing the response magnitude above 2.0 rad./sec. Both actions could not be
achieved using a single parameter, since the sensitivity results show that any parameter change
used to decrease the peak response at 2.0 rad./sec. would tend to increase the bandwidth by
increasing the response magnitude at higher frequencies.

(Elevon Loop Frequency Response Magnitude)
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SENSITIVITY VALIDATION

The covariance, time, and frequency response sensitivity results presented in the previous
figures were validated against actual response changes, including the optimal LQG control law
change effects, due to variations in various nominal parameter values. This was accomplished by
computing the new optimal LQG control law for up to £25% changes in nominal parameter values
in £5% increments, and then computing the actual covariance, time, or frequency response for that
parameter value. These results were then compared with predictions of the new responses
obtained by a first-order Taylor series expansion about the nominal response using the available
sensitivity data and the magnitude of the parameter change. In addition, a second set of sensitivity
data for the four physical parameters 9 through 12 was generated which ignored the changes in the
optimal LQG control law (changes in the G and F matrices). This second set of sensitivity data
was also used to predict changes in the optimally controlled response of the system due to changes
in the nominal parameter values. Percent error comparisons for the two sets of response
predictions are shown below for variations in the wing bending stiffness parameter (parameter 9).

For the covariance response predictions, the percent error in prediction of the mean square
pitch rate response to the random gust environment is shown on the left. For the current design
sensitivity method, which includes the effects of the optimal control law change, the percent error
passes through zero with no slope, indicating an exact derivative result. The alternate sensitivity
method, which does not include the control law change effects, has a nonzero slope in the error at
the nominal parameter value. For variations in the wing bending stiffness of up to +15%, the
design sensitivity method gives more accurate predictions (smaller errors) of the actual pitch rate
response. Similar types of results are shown on the right for elevon loop frequency response
magnitude predictions and the pitch rate time response predictions for the discrete vertical gust
input. In the case of these results, the percent error calculations were integrated over the frequency
range or time interval to obtain a single error number for each varied value of wing bending
stiffness parameter. As was the case for the covariance response predictions, the design sensitivity
method gives more accurate results about the nominal parameter value, up to +15% variation in the
wing bending stiffness parameter.
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% Error 400 ", Prediction 30.0F "‘-.,l s
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COMPARISON OF COMPUTATIONAL TIMES

The analytical expressions for the sensitivity of the optimal LQG control law involve the
solution of two linear Lyapunov equations for each parameter of interest. In order to assess the
computational burden associated with these calculations, a comparison of computational times to
compute the derivative information using the analytical expressions and by finite difference
methods was made. Four results are shown. The first is the CPU time required for the original
LQG optimal control law solution using a DEC MicroVax II computer and a commercially available
control analysis and design software package. The second result is the CPU time required for the
original LQG solution and the solution of the two Lyapunov equations for the sensitivity of the
gain matrices G and F and the Riccati matrices S and T for a single parameter. The third result is
the CPU time required for the original LQG solution and a second LQG solution for a perturbed
parameter value, as would be required for a one-step finite difference calculation of the change in
the gain matrices G and F. The actual finite difference calculation is not included in the CPU time.
The final result is similar to the third except two perturbed LQG solutions are computed, as would
be required for a two-step finite difference calculation. Again the actual finite difference calculation
is not included in the CPU time result. These results show that it is significantly faster to use the
analytical expressions rather than finite difference calculations for the equivalent derivative
information for a single parameter. As discussed earlier, the coefficients of the Lyapunov
equations for the Riccati sensitivities are the same for every parameter, which can lead to additional
computational savings by eliminating expensive decomposition of the coefficient matrices for each
parameter. This means the computational efficiency of the analytical approach will be even better
than shown here for the multiple parameter case.

Calculation CPU Time (Sec.)
Original LQG Solution 100.68
LQG and Analytical 133.55

Sensitivity of G, F, S, T

LQG and One Perturbed LQG 196.44
For Numerical Sensitivity of G, F
(Not Including Difference Calculation)

LQG and Two Perturbed LQG 287.39
For Numerical Sensitivity of G, F
(Not Including Difference Calculation)
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CONCLUDING REMARKS

This paper has highlighted a method for computing the sensitivity of optimal LQG control
laws to various problem parameters using analytical sensitivity expressions. The LQG sensitivity
results are used in conjunction with the sensitivity of dynamic systems responses, also calculated
using analytical expressions, to predict the changes in optimally controlled system responses due to
changes in the nominal values of the problem parameters of interest. These sensitivity results are
shown to be useful for integrated structure/control law design problems through a large
aeroservoelastic aircraft example. Sensitivities of covariance, time, and frequency responses of the
aircraft to twelve parameters were computed, and the results for four physical parameters were
emphasized. The sensitivity results were validated against actual response changes due to changes
in the nominal values of various parameters and found to be more accurate than alternate sensitivity
calculations. It was also found that it is cheaper to evaluate the analytical expressions than to
calculate the equivalent sensitivity derivatives by finite difference means.

A Control Law and Dynamic Response Sensitivity Analysis Capability Has
Been Developed

Exercised on a Large Aeroservoelastic Mathematical Model Example

- Sensitivities to Twelve Control Law and Physical Design Parameters
Calculated

- Validated Against Actual Response Changes Due to Changes in
Design Parameters

- More Accurate For Integrated Design Purposes Than Standard
Sensitivity Analysis Methods

- Analytical Expressions Cheaper To Evaluate Than Equivalent Finite
Difference Calculations
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ABSTRACT

Independent Modal Space Control (IMSC) is a technique that is often used for
the control of large order structural systems. The pertinent optimization
problem in the simultaneous design and control of structures is a min - min
problem that minimizes with respect to the structural design variables, the
minimum value of the performance index with respect to the control forces ob-
tained using the IMSC technique. The minimization process requires derivatives
of eigenvalues and eigenvectors with respect to the design variables. These
derivatives can be computed by a rather involved analytical procedure or a
relatively simple finite difference procedure. This paper examines the computer
cost effectiveness of these two procedures for the derivative calculations.

INTRODUCTION

One of the objectives of structural control is to suppress undesirable
motion resulting from some unavoidable excitation such as onboard machinery or
docking maneuvers. In active control the motion of structure is sensed and
suitable forces are applied to reduce and ultimately eliminate the undesirable
motion. In optimal control the forces are applied such that a preselected
performance index is minimized. The solution of the optimal control problem
requires the solution of the matrix Ricatti equation. Because of the difficul-
ties encountered in numerical computations, the solution of the matrix Ricatti
equation is not feasible for large order systems. For large order systems, an
alternate method known as the Independent Modal Space Control (IMSC) [1] is more
suitable.

In the IMSC method, the control forces are specified in the modal space
instead of in the physical space. Also by suitably choosing the modal control
forces, each mode of vibration is controlled independently of the other modes.
The performance index is assumed to be of the form

J = Jr (1)

2

r 1
where & is the number of modes controlled and J_ is the performance index
associated with the r-th mode and has the definition

t
f
- 2 2 2 2 2
Jp = J (wo B +wl no+Rozo )dt (2)
0
where
n =t/ w (3)
r r r 4
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w_ is the frequency of the rth mode and R_>0 is the penalty parameter imposed on
the control effort. A higher value of Rr will result in a smaller control force
in the modal space and vice versa.

The modal coordinates Eps T = 1,...2 are related to the displacement vector u,
by the relation

u = Xg (4)

where X is the modal matrix, having as its columns the eigenvectors, obtained by
the solution of the eigenvalue problem

KX = wl MX (5)

£, and e satisfy the constraint equations

S ra )=z () (6.2)
r rr cr
£, (0) = £, (6.b)
£.(0) = n (0) w, (6.c)
where Z =X'F (7)

c

is the modal control vector. Minimization of Jr in Eq. (2) with the differential
constraint equations given by Egs. (6) leads to a 2 x 2 matrix Ricatti equation
that can be solved analytically for tf B o,

For this case, the control force is given by [2]
_ - 2 -1.1/2
Zep(8) = w, (“r (mr * Ry ) ) Ep(t)

2 1z
|7 e (8)

-1
)Tt

2 -1
- [z o, (-wr + (mr . Rr)
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and the solution of the closed loop modal equations (6) for the controlled modes
gives

-alt
Er(t) = e (a1 cos 6t + 81 sin at) (9)
with
a; = A, W, (10)
8 = (wd)r (11)
ay = Ero (12)
w
. & (13)
By © CG;j: (Ero Ap Ny (0))
f
- 22
Ar‘ - Zwr (14)
_ 2 f 1/2
(wd) = (wr TN P ﬁ) (15)
, 3
- -1 _ -1
fa17 = R kyyp, f22 R"ka2 (16)
_ - 2 .2 1/2
k21 k12 w, R + ( w. Rr + Rr) (17)
N .2 02 2 .2 1/2 \1/2
k22 = (Rr ZwY‘ RY’ + Zwr RY‘ (wr RY‘ + R Y‘) ) (18)

Substitution of Egs. (9) through (18) into Eq. (2) followed by its integration
with tf = » yields

2
w
_ r
o= =5 (Bl * Flpy + 61y (19)
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with

2 2
P ¥ N P 7 S
1 2. i TR 2 n
r r r r wr' r
2 2 3/2 . .2 2 1/2
1 2 R R 2 R R
Kyq = { > + (¥ Ry 4 r) -2 Roup R, }
w r r
r
az = nr(o)
1
- fomwY-n(0) w A
82 (wd)r [Ero ( 21" ¢ ) nr( ) ©y r]
) 2 2
E=Jdyya) + Jyp oy a0
) 2 2
F=dyy By * Jpp By * Jpp By By

[
1]

2 dqp ag By ¥ 2055 oy By gy () Byt ap Bp)

1 1
I = +
11 4 a, 4a12+92
a
1 1
I = - +
22 2 2
4 ay + 9 4 a 1
0
= 1 )
12 3 al2 + e2

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(29)
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Simultaneous Design and Control

The process of simultaneous design and control of structures is a min - min
problem that minimizes with respect to the structural design variables the minimum
value of the performance index with respect to the control forces.

The minimum value of the performance index with respect to control forces is
given by Eq. (1) wherein J_ can be evaluated from Egs. (8) through (29). In the
process of minimization df this minimum value of the performance index, its
derivatives with respect to the design variables are required. These derivatives
can be evaluated explicitly by a Tlaborious, even though straightforward
differentiation of Egs. (8) through (29) with respect to the design variables
provided the derivatives of the eigenvalues w_ and the eigenvectors x_, r = 1,
2...% are available. The other alternative is'to calculate the derivatives of J
with respect to the design variables by using say the forward difference scheme.
The latter is easily programmable since no explicit derivatives of the eigenvalues
and eigenvectors with respect to the design variables are then required. The
thrust of this paper is a comparison of the computational cost and the efficiency
of the two procedures for calculating the derivatives of the performance index.

Before we elaborate on this comparison however, we will digress and discuss
the calculation of the derivatives of the eigenvalues and eigenvectors using the
well known Nelson's method [3].

Derivatives of Eigenvalues and Eigenvectors with Respect to the Design Variables

Purely from a computer programming point of view the simplest and the most
straightforward  though not necessarily the most efficient way to compute the
derivatives of eigenvalues and eigenvectors is by using finite differences in
particular the forward difference scheme with an appropriate step size [4]. The
main disadvantage of the forward difference scheme is that it requires the
solution of an eigenvalue problem once for each design variable. This could be a
computationally expensive process. Furthermore, to obtain an accurate value of
the computed derivatives, the eigenvalue problems need to be solved with a high
degree of precision.

The eigenvalue mz, and the eigenvector x_, of the previous section are obtained by
the solution of fhe eigenvalue problem.

r=1, 2...2 (30)

where M and K are the assembled mass and stiffness matrices respectively of the
finite -element model of the structure. The mode shape X is normalized with
respect to the mass matrix M as

X, Mx_ =38 (31)
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wherein § is the Kronecker delta. Differentiating Egs. &30) and (31) with
respect to "a design variable p. for a particular eigenpair (wr’xr) with distinct
eigenvalues one obtains J

dx,, duf dk 2 dM (32)
-y (2D - (D) wx - (-2 ),
( r ) .dpj dpj r dpj r dpj r
XT M .dx_r- = -1.‘-XT .q_M_x (33)
r dp. 2 "r \dp.)'r
J J
where use has been made of the symmetry of the mass matrix M.
T

To obtain the derivatives of eigenvalues, Eq. (32) is premultiplied by x

followed by the use of Eq. (31) to yield r

dw2
L T |2 dm, (34)
dpj r dpj Or dpj r

To obtain the derivatives of the eigenvector X Egs. (32) and (33) are com-
bined as i

(dL -2 ﬂ)x
K - “E M - M X, dxr/dpj - dpj r dpj r
= 1.7
- 2 -5 X, (dM_ (35)
X, M 0 dwr/dpj 2 7r (dpj)xr

Equations (35) could be solved for both the ei%envalue and the eigenvector
derivatives except that the principal minor K - w7 is singular. To circumvent
this apparent difficulty, Nelson [5] proposed a method that temporarily imposes
the normalization equation (31) by the requirement that the largest component of
the eigenvector be equal to one. If the re-normalized eigenvector is denoted by
X, and it is assumed that its largest component is the m-th one, then Eqg. (31) is
rgplaced by
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and Eq. (33) is replaced by

dxrm =0 (37)
dpj
For ;r Eq. (32) reduces to
( 2 (d;(r) (d(%r') - dK 2 dM - (38)
K - W, M ) —HEE = —HE; M Xp = ( a;; T W, a;; ) X,

Equation (37) is now used to reduce the ordfr of Egs. (38) by deleting the m-th
row and m-th column. When the eigenvalue w_ is distinct, the reduced system is
not singular and can be solved by a standard technique for the derivative vector
dx _/dp.. The required vectors x_ and dx_/dp. are then obtained from X, and

di:/dpg by the following easily vefified refatiohs

- v =T, - \1/2
Xo = X, ( X. M xr) (39)
and dx dx
(-—dp"\ A R
dx j Pj h|
dp. (=T = Y1/2 - Y3/2
J (xr M X, 2 (7 X, M xr)

In finite element computer codes that exploit the sparsity structure of the K
and M matrices, it may be inconvenient to obtain the re-normalized vector, x_ by
setting the largest component to unity. Such a scheme necessitates the recalchila-
tion of the sparsity structure. Instead, it is more convenient to obtain the
re-normalized eigenvector, X by setting

Xpp = 1 (41)

where n is the order of the matrices K and M.

As mentioned previously, the derivative of the eigenvector x_ with respect to
the design variable pj can also be calculated by the forward différence scheme

dx (Xr)pj.g.h- (XY‘)pJ

dp h

(42)
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where (x_ ) is the eigenvector calculated at p.,,. In order to assess the
r pj+h j+h

accuracy of the forward difference scheme relative to Nelson's analytical method,

an error measure is defined as

e(h)=? ; 21: (‘”‘_ri)A ("_"r.i)F 2 (43)

ap; JA op, JF
cal and the foﬁhard d1ffereﬂce scheme respectively. The error e is summed over
all the components of the eigenvector, over the mode shapes controlled and over
all the design variables.

where 4\ and (axri are the eigenvector derivatives by the analyti-

Application to a Stiffened Composite Plate

A laminated composite square plate reinforced by two stiffeners placed
symmetrically with respect to the laminate midplane along the two centerlines of
the plate is considered. As in reference [6] the plate is discretized using a
mesh of 8 noded isoparametric, shear deformable plate bending elements. Assuming
the plate is simply-supported along all its four edges, the resultingfinite-
element model has a respectable (from control engineer's point of view) 127
degrees of freedom and thirteen design variables consisting of five discrete fiber
orjentations and eight continuous stiffener cross-sectional areas.

Table 1 provides an assessment of the error € as a function of the step size h
for the finite difference derivative calculations. As expected, the error
decreases with a decrease in h and then begins to increase as a result of machine
roundoff.

A comparison was made of the computational cost for the calculation of the
eigenvector derivatives using Nelson's method and the finite difference scheme.
Using Nelson's method to compute the gradient of the three eigenvectors with
respect to the thirteen design variables the required CPU time was 17.2 seconds.
To compute the eigenvector gradients using forward differences several eigenvalue
problems need to be solved. Using subspace iteration in conjunction with the
Jacobi method [7] for the solution of the eigenvalue problem, the total time for
the required gradient calculations was 39.5 seconds. Note that the design vector
has thirteen variables, and it was necessary to solve the perturbed eigenvalue
problem thirteen times. Since the solution of the unperturbed eigenvalue problem
provides an excellent guess for the eigenvalue of the perturbed system, an inverse
jteration scheme [7] in conjunction with shifting of the stiffness matrix K can be
used to accelerate the solution process. Using such a strategy, the CPU time
required for the calculation of the eigenvector gradients using forward
differences was down to 27.6 seconds.
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Thus, in relation to the analytical method the computational cost of the finite
difference calculation of the eigenvector gradients is not at all prohibitive. On
the other hand, in spite of this modestly higher computational cost, the
simplicity of the calculation of the eigenvector gradients using forward
difference scheme is overwhelming. However some caution must be exercised when
using inverse iteration in conjunction with shi{ting of the stiffness matrix. It
should be noted that the normalization scheme Xy M x =1 fixes only the magnitude
of the eigenvector and if x_ is an eigenvector, then -x_ is also an eigenvector of
the system. Hence, when eiSenvectors of the perturbed gystem are computed, care
must be taken to choose the eigenvector (Xr) such that

p.th

J

T
(x.) (x.)
r r >0
.+h )
Pj P

This can be done very easily in practice by simply calculating the above dot
product and changing the sign of the vector Xp if the dot product is negative.

Table 1. Error € as a Function of the Step Size h

h £
0.156 x 107! 0.79 x 1078
0.781 x 1072 0.21 x 1076
0.390 x 1072 0.54 x 107/
0 195 x 1072 0.13 x 107/
0.976 x 107> 0.34 x 1078
0.488 x 1073 0.98 x 107°
0.244 x 1073 0.80 x 1072
0.122 x 1073 0.25 x 1078
0.610 x 107 0.101 x 1077
0.305 x 107% 0.404 x 107/
0.152 x 107% 0.162 x 107°
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Table 2 provides a comparison of the computational effectiveness of the two
approaches for the control of the stiffened laminated composite plate problem for
cases involving different number of design variables and different number of fre-
quencies being controlled.

Table 2. Finite Difference Versus Nelson' Approach - Normalized CPU Time

Type of Finite Difference
Design Approach Nelson's Approach
13 design
variable, 1.598 1.0
3 frequencies
13 design
variables, 1.939 1.0
8 frequencies
5 design
variables, 1.700 1.0

8 frequencies

It is clear from Table 2 that in all the cases considered the finite
difference approach requires more CPU time as compared to the Nelson's Analytic
approach. The percentage increase in CPU time increases with the number of
frequencies considered. In the finite difference approach an eigenvalue problem
needs to be solved for each design variable considered. If shifting the K matrix
in conjunction  with inverse iteration is used to calculate the
eigenvalues/eigenvectors, the finite difference approach is quite competitive with
the Nelson's analytic approach. Even though the approach may require about twice
the time of Nelson's method, the coding effort is fagKlessMin the case of the fi-

nite difference approach. Secondly, calculation of 3p ’ 3p (derivatives of stiff-
ness and mass matrices respectively) required in the case of Nelson's approach
can be quite difficult in some cases,, In_the case where the design variables are

element frame areas, calculation of ap ° %%.is fairly straightforward. However,

if p, corresponds to the number of plies with a given orientation then the calcu-
lation of %%3 %%. is fairly involved.

In conclusion, it needs to be emphasized that the finite difference scheme
for the calculation of the eigenvalue and eigenvector derivatives does not appear
to be costly enough to warrant the use of the analytical method. With the former
scheme one does not have to "tinker" with the "black box" that generates the
eigenvalues and eigenvectors for a given design variable vector. The analytical
method on the other hand needs an intimate knowledge of this "black box".
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INTRODUCTION

The inclusion of body forces has received a good deal of attention in boundary element research.
The consideration of such forces is essential in the design of high performance components such as
fan and turbine disks in a gas turbine engine. Due to their critical performance requirements, optimal
shapes are often desired for these components. The boundary element method (BEM) offers the
possibility of being an efficient method for such iterative analysis as shape optimization.

A survey of efforts in the area of sensitivity analysis in BEM was given by Mota, Soares and Choi
[1]. The shape sensitivity using a finite-difference formulation was given by Wu [2] and using the
implicit-differentiation formulation by Barone and Yang [3], Saigal et al. [4-6], and Rice and
Mukherjee.* Mukherjee and Chandra [7] presented a BEM sensitivity formulation for materially
nonlinear problems. The treatment of body forces for sensitivity analysis has not received much
attention.

In this paper, the implicit-differentiation of the boundary integral equations [8] is performed to
obtain the sensitivity equations. The body forces are accounted for by either the particular integrals
[9,10] for uniform body forces or by a surface integration [11] for non-uniform body forces. The
corresponding sensitivity equations for both these cases are presented. The validity of present
formulations is established through a close agreement with exact analytical results.

*Rice, ].S. and Mukherjee, S., "Design Sensitivity Coefficients for Axisymmetric
Elasticity Problems by Boundary Element Methods", private communication.
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BOUNDARY ELEMENT ANALYSIS EQUATIONS

Including the effect of temperature variation ¢, the stress tensor Gij is given in equation (1), and the

equation of equilibrium is given in equation (2). Starting with a weak statement of equation (2) and
using the divergence theorem twice the integral equation (3) is obtained. Assuming steady state

condition, using the divergence theorem, and applying Green's second function leads to equation (4)

where the thermal effects have been reduced to a boundary integral form.

__E . VE e — B 5
% = Ty T ozw) X (Tgy) ot (v
oyt Fi=0 (2)
u(p) = - erij(p Qu;(@)dl + erij(p Q(Qdl + jQUij(p QFi(q)dQ -
Q
15 — [ Uyped (3)

w® =~ [ Typ.Du@dr + | Uyp.ar@ar +

a(1+v) q)( aR)_ aq)} “ |
8r(1-v) { ~Ri= on iSn dF+J U;i(p,q)Fi(q)dQ (4)

E, v, and o are the modulus of elasticity, Poisson's ratio, and coefficient of thermal expansion,
respectively. Tj; and Uj; are the fundamental (Kelvin) solutions for traction and displacement,
respectively. p and q are the load point and the field point, respectively, and R is the distance
between these points. u;, t; , and F; are the components of displacement, traction and body force,

respectively.

GRAVITATIONAL AND CENTRIFUGAL FORCE SENSITIVITY

If the total displacement is written as a sum of a complementary and a particular integral component
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as in equation (5), then in the absence of temperature variation, the last two terms in equation (4)

drop out giving equation (6). Discretizing the boundary using boundary elements with

displacements and tractions interpolated as shown in equation (7), we get the matrix relationship

(8).Substituting from equation (5) into equation (8), we obtained a relationship in equation (9)

including the effect of particular solutions due to body forces. Particular solutions {uP} and {tP}

were given by Banerjee and co-workers [9-10]. at SUNY - Buffalo. Implicit differentiation of equation (9)

with respect to the design variable X| results in the sensitivity equation (10). The contribution of

the body forces is included in the vector {fP} given in equation (11).

u= uj +uP

u®) = | Ty(p.a)ui@dr + [ Uyp.a)@ar

Discretizing equation (6) using interpolation functions for displacements and tractions

u=[HNu} ; t=[HH{t}

The matrix form of equation (6) is obtained as

[Fl{u"} = [G}{t"}

Substituting equation (5) in equation (8)

[Fl{u} = [G] {t} + [F] {u"} - [G]{"}
Differentiating with respect to the design variable, X;
[Fl{u},p = [GL, {t} + [GI{t} ~[F], {u} + {f}

Where

[P} = [F1{uP},. + (F], {uP} - [GI{"},L - [G],.{t"}
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The superscripts ¢ and p refer to the complementary and particular soultions, respectively. [ H] is

a matrix of interpolation functions. (),; denotes the derivative of () with respect to the design

variable XL.

THERMOELASTIC SENSITIVITY

For the case of temperature variation ¢ and temperature gradient ¢, ., the term with volume integral

.
in equation (4) drops out. Then using the interpolation given in equation (7), we get the matrix
relationship given in the equation (12). Implicit -differentiation of equation (12) leads to an equation
similar to equation (10) but with a different definition for vector {fP}. This relationship is given in
equations(13) and (14). The matrix [V] involves thermoelastic kernels which include elliptic
integrals of the first and the second kind. The present sensitivity analysis requires derivatives of
these elliptic integrals which are easily determined through chain rule of differentiation.

[F] {u} =[G}{t} + [VI{T} (12)
[Fl{u},L =[G}, {t} + [GHt}L - [F],L{U} +{f’} (13)
{f} = [V],{T}+ [V{T},L (14)

{T} is the vector of nodal temperatures.
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764

SEMI-ANALYTICAL SENSITIVITY FORMULATION

The sensitivities can now be obtained using equations (10) and (11) for centrifugal and gravitational
body forces, and using equations (13) and (14) for thermal body forces. We, however, need to

determine sensitivity matrices such as [F},; and [G],] ; and sensitivity vectors such as {uP},; and

{tP},; . In the semi-analytical approach, the design variable X is first perturbed by an amount

AXj . The system matrices [F(X] +AX )], [G(X] +AX] )], etc., are generated based on the new

geometry. The sensitivities are then simply obtained using forward-difference relationships shown
in equations (15) and (16). It is noted that the sensitivity results will depend on the perturbation step

size AX] .However, this step will result in substantial simplification of the implementation of the

sensitivity algorithm.

 [RG+AXD)] -[FXD)]

[Fl,. = X , etc (15)
L

[up(XL+AXL)] - [Up(XL)]
,etc

L

(16)

FULL ANALYTICAL SENSITIVITY FORMULATION

For the full-analytical approach, the sensitivity matrices and vectors are directly calculated from their
analytical expressions given in equations (17) and (18). These expressions, however, need the

sensitivities of geometry quantities such as x,; , y,, , n,[, etc. The initial geometry is first used for

solution of vectors {u} and (t} in equations (8) or (12). This geometry is then changed through a



perturbation AXj of the design variable. Only the geometry sensitivities are then calculated using

forward-difference approximation. These geometry sensitivities are needed for evaluating terms in

equations (17) and (18).

N1
Fly= Y jo {ICLITHIT + (1 THI T, } &

j=1

N1
(Glo =2 [ (WIHIT + WTTH I ) e (17)

j=1

The superscripts T and * refer to the transpose of the matrix and the fundamental solutions,

respectively.

3-D Centrifugal Loading Particular Integral Sensitivities:

ul ; =( 2¢,(xx | +yy D+2¢9z2  Jx+(c) (xX+yy)+CozZ)X |
u2,1=( 2c;(xx | +yy P )H+2¢ozz 1 )yHe (xx+yy)+cozz)y 1

u3, =2c3(xx L +yy Pz+es(xx+yy)z .

1= —p @ (SA+4)/4(A+u)
Cr= —p O W/SA+21)/(A+1L)
c3= pOY/B/(A+21L) (18)

A, U are the Lame's constants. X; denotes the derivative of coordinate X with respect to the design
variable X; and y; and z; have similar definitions.The corresponding traction sensitivities can be

found using the constitutive relation.
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SINGULAR TERMS IN SYSTEM SENSITIVITY MATRIX

For determining terms in [F],; an extension of rigid body technique used for singular terms in [F]
is used. This extension is based on the fact that the sensitivities corresponding to rigid body
displacements and tractions are zero leading to a row-sum type property for [F] ;.- Thus from
equation (10), the singular terms for 3-D can be obtained as given in equation (21). For 2-D, these

terms are similarly obtained. For axisymmetric case , a rigid body motion in Z - direction and an
inflation mode in the radial direction are used.

r 1 W - O N\
0 1
1 0
{urigid}xl=< 0 ¢ 5 {urigid}x2=< 15}
1 0
\ O J L 1 ) (1 9)
{t}rigid = {0} (20)
n-1 n
Fij. =0; Z FiL =0; foreachi (21)
ji=13, j=24,
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STRESS SENSITIVITY RECOVERY

The solution of sensitivity equations yields the boundary traction sensitivities only. The stress
sensitivities at other locations can be obtained directly using differentiated elasticity equations
describing stress-Strain relationships. These relations are given in equation (22) for the

axisymmetric case.

2 2

O n, n, _annz On
2 2
Op = | Ny n, 2nrnz O
2 2
Oz nn, -—-nmn, (nr _nz) G2/ L

n,, n, are the components of the outward normal in the r and z directions, respectively.

E
Ot "_2‘(622,L+Veee,1)

O =
T (1-v°)
é == lk U + -l-u
22,L J2 2,€ J 2EL
1
€o0L = —2(u,’L r— u,r,L) (22)
r

UL denotes the mixed derivative with respect to the dimensionless coordinates & and the design

variable XL
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NUMERICAL EXAMPLES

The above formulations were applied to a series of selected examples to determine the design

sensitivities for displacements and tractions. These examples include: (a) a rotating circular disk of

constant thickness with a central hole shown in Figure 1 analyzed using two-dimensional elements,

(b) a rotating circular disk with hyperbolic varying thickness and with a central hole shown in

Figure 2 analyzed using axisymmetric elements, (c) a hollow cylinder under plane strain shown in

Figure 3 subjected to pressure and temperature change and analyzed using axisymmetric elements,

(d) a pressurized hollow cylinder under temperature variation shown in Figure 4 and analyzed using
axisymmetric elements, (¢) a solid circular bar (Figure 5)under self-weight analyzed using three-dimensional
elements, and (f) a rotating circular disk (Figure 6)analyzed using three-dimensional elements. For examples

without temperature variation the material data used were E=30x10 psi, v=0.3; and for examples

with temperature variation the material data used were E=1 psi, v=0.3, and a=0.02 /OF. The results

obtained from the present formulations were compared with the exact solutions to check these
formulations. For exact sensitivities the elasticity solutions were first expressed in terms of the
design variable and then differentiated with respect to this design variable. A good comparison of
the present results was seen from the results presented in the following pages.
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Design Sensitivity Analysis of a Rotating Circular Disk.

Sensitivity

Radial Displacement x (10-3)  Traction (x 10%)

Location” Analytical This Analytical This

Study Study

A 6.7678 6.7677 4.8061 47625

B 6.5929 6.5929 8.7301 8.6993

C 2.8329 2.8330 3.6905 3.6923

D 2.6684 2.6685 3.8066 3.8103

E 6.7678 6.7678

F 6.7678 6.7676

Location coordinates (r, z) in inches are: A(4.333, 0.), B(5.061, 0.), C(17.061, 0.), D(19.0, 0.),
E(3.864, 1.035), F(3.967, 0.522)

12 ELEMENTS
T, =U=0 8 ELEMENTS
Ty=Ty=0
12 ELEMENTS
Ty:Ty=0

D
12 ELEMENTS

™~ Ty =V=0
\
A B

® =10 RAD/SEC

Py

-y N

v

16 IN

FIGURE 1
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Design Sensitivity Analysis of a Rotating Disk
with Hyperbolic Varying Thickness

SENSITIVITY
RADIUS

(inch) DISPLACEMENT X 103 HOOP STR. X 103
Exact Mesh A Mesh B Exact Mesh B
4.00 2.05931 1.9987 1.9986 5.07485 3.9470
4.25 2.05819. - 1.9887 5.66207 5.4810
4.50 2.04760 1.9725 1.9725 5.99760 5.6433
4.75 2.02989 - 1.9522 6.16066 5.8450
5.00 2.00685 1.929 1.9294 6.20577 5.8609
5.25 1.97984 - 1.9046 6.17095 5.8355
5.50 1.94995 1.8789 1.8785 6.08307 5.7574
5.75 1.91803 - 1.8512 5.96129 5.6542
6.00 1.88478 1.8236 1.8229 5.81938 5.5318
6.25 1.85078 - 1.7940 5.66731 5.4024
6.50 1.81653 1.7653 1.7645 5.51231 5.2668
6.75 1.78246 - 1.7348 5.35968 5.1372
7.00 1.74893 1.7060 1.7052 5.21325 5.0076
7.25 1.71628 -- 1.6759 5.07583 4.8915
7.50 1.68481 1.6482 1.6474 4.94945 4.7787
7.75 1.65480 - 1.6198 4.83557 4.6831
8.00 1.62650 1.5945 1.5937 4.73521 4.5934
8.25 1.60016 - 1.5692 4.64908 4.5222
850 1.57602 1.5474 1.5466 4.57767 4.4589
3.75 1.55428 - 1.5261 4.52126 44141
9.00 1.53517 1.5089 1.5081 4.48003 4.3782
9.25 1.51889 - 1.4928 4.45403 4.359
9.50 1.50565 1.4811 1.4803 4.44327 4.3511
9.75 1.49564 - 14710 4.44769 4.3540
10.00 1.48906 1.4660 1.4652 4.46718 4.4120

Note: Exact solution is for the assumption of plane stress.
Mesh A: 15 element model; Mesh B: 30 element model

o1
fe |
| A
I
| 6 ELEM
i 1
2 ELEM D
I
i B
I loNolioONONMONONONONONONO C —
R= 4 6 ELEM 1ELEM
| N
R= 10
- o - ——— .
DESIGN VARIABLE: INNER RADIUS, Ri
FIGURE 2
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Design Sensitivity Analysis of a Plane Strain Hollow
Cylinder Under Pressure and Temperature Variation

SENSITIVITY
RADIUS RADIAL DISPLACEMENT RADIAL STRESS CIRCUMFERENTIAL
(inch) STRESS
This This This
Exact Study Exact Study Exact Study
3.0 3.6305 3.6315 0.000 0.000 0.5955 0.5956
35 3.6694 3.6712 -0.1058 -0.1074 0.6995 0.6993
4.0 3.6168 3.6174 -0.1181 -0.1186 0.7112 0.7110
4.5 3.5302 3.5309 -0.0971 -0.0975 0.6903 0.6902
5.0 3.4341 3.4350 -0.0653 -0.0654 0.6591 0.6594
5.5 3.3396 3.3402 -0.0318 -0.0318 0.6264 0.6265
6.0 3.2513 3.2523 0.000 0.000 0.5955 0.5956
Z
0
T =50°F T=30F IIN
P =1.0PSI
» R
- >e >
3.0IN 30IN

FIGURE 3
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Pressurized Hollow Sphere Under Temperature Variation

SENSITIVITY
RADIUS RADIAL DISPLACEMENT RADIAL STRESS CIRCUMFERENTIAL
(inch) STRESS

This This This

Exact Study Exact Study Exact Study
1.00 1.5126 1.4992 0.000 0.0003 1.500 1.495
1.125 1.758 1.7448 -0.754 -0.618 1.857 1.886
1.25 1.8563 1.8436 -0.901 -0.927 1.923 1.910
1.375 1.8985 1.887 -0.815 -0.791 1.879 1.876
1.50 1.9247 1.9144 -0.653 -0.642 1.801 1.796
1.625 1.9526 1.9433 -0.471 -0.466 1.715 1.709
1.75 1.9896 1.9813 -0.297 -0.290 1.634 1.630
1.875 2.0384 2.0311 -0.139 -0.128 1.562 1.561
2.00 2.0996 2.0952 0.000 0.0003 1.500 1.496

2 ELEM

T— 4 ELEM

1.0IN 2.0IN

P =5.0PSI
T=600F

A~

\J
=

FIGURE 4
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Solid Circular Bar under Self-weight

Location  Sensitivity of displacements in Z direction (103) Sensitivity of Stress in Z direction
x=3.536  Exact Full- Semi- Exact Full- Semi-
y =3.536 Analytical Analytical Analytical Analytical
Az=0.0) 00 0.0 0.0 2318.4 2320.4 2351.6
B(z=5.0) 6.7620 6.7613 6.7614 1738.8 1747.6 1758.3
C(z=10.0) 11.592 11.589 11.589 1159.2 1188.7 1189.8
D(z=15.0) 14.490 14.488 14.488 579.6 587.6 589.4
E(z=20.0) 15.456 15.448 15.448 0.0 0.0 0.0

SIN

o

Va

N

FIGURE 5

20 IN
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Three Dimensional Rotating Circular Disk

Location  Displacement Sensitivity up 1 (10 Radial Stress Sensitivity (10%)
y=0.0
z=1.5
Exact Full- Semi- Exact Full- Semi-
Analytical  Analytical Analytical  Analytical

x=4.0 0.6768 0.6775 0.6735 0.0840 0.1907 0.2023
x=15.0 0.6613 0.6610 0.6571 0.8564 0.8413 0.8511
x=6.0 0.6216 0.6212 0.6179 0.9650 0.9674 0.9644
x=7.0 0.5768 0.5765 0.5737 0.9018 0.8966 0.8945
x=8.0 0.5329 0.5326 0.5302 0.8004 0.8061 0.8032
x=16.0 0.2981 0.2978 0.2969 0.3740 0.3814 0.3800
x=17.0 0.2840 0.2838 0.2829 0.3691 0.3649 0.3635
x=18.0 0.2736 0.2733 0.2725 0.3715 0.3782 0.3770
x=19.0 0.2668 0.2667 0.2660 0.3807 0.3752 0.3740
x=20.0 0.2640 0.2639 0.2631 0.3960 0.4083 0.4083

Z

30IN
P
X
L
R=40IN 16.0 IN
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CONCLUSIONS

The treatment of body forces of the centrifugal, gravitational, and thermal types in the
implicit-differentiation formulation for the design sensitivity analysis of two-dimensional,
axisymmetric, and three-dimensional problems is presented. The particular integral sensitivity
expressions for the gravitational and centrifugal type body forces are developed. The thermoelastic
sensitivity kernels are given for the thermal type body forces. A semi-analytical and a full-analytical
approach for determining the sensitivity system matrices are used. A wide range of problems are
solved for design sensitivities due to body forces and the results are validated through comparisons

with exact analytical solutions.
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OUTLINE OF PRESENTATION

This presentation comments on the ability to reduce or condense a three dimensional model exactly,
and then iterate on this reduced size model representing the parts of the design that are allowed to
change in an optimization loop. The discussion presents the results obtained from an ongoing research
effort to exploit the concept of substructuring within the structural shape optimization context using a
Boundary Element Analysis (BEA) formulation. The first part of the talk contains a formulation for the
exact condensation of portions of the overall boundary element model designated as substructures. The
use of reduced boundary element models in shape optimization requires that structural sensitivity
analysis can be performed. A reduced sensitivity analysis formulation is then presented that allows for
the calculation of structural response sensitivities of both the substructured (reduced) and
unsubstructured parts of the model. Itis shown that this approach produces significant computational
economy in the design sensitivity analysis and reanalysis process by facilitating the block triangular
factorization and forward reduction and backward substitution of smaller matrices. The implementatior
of this formulation is discussed and timings and accuracies of representative test cases presented.

Model of the Attachment of a Compressor or Turbine Blade to its Disk.
‘The Top of the Blade Has Been Substructured.
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THE CONCEPT OF REDUCED MODELS IN SHAPE OPTIMIZATION

Kane, Saigal, et al.l"? have shown that a multi-zone approach significantly impacts the ability to
exploit the additional matrix sparsity present in the design sensitivity analysis step occurring during
shape optimization of objects with partial geometric sensitivity. They have also shown how the
multi-zone capability facilitates the effective utilization of reanalysis techniques in the shape optimization
context. In other publications!0-11 they describe a sparse blocked equation solver that incorporates a
multi-zone boundary element analysis (BEA) capability and boundary element substructuring in a
completely arbitrary fashion. The overall algorithm is described that allows for the assembly and
solution of arbitrarily connected boundary element zones that may also be arbitrarily either condensed or
maintained at their original size. The approach thus allows for both condensed and uncondensed
boundary element zones to consistently coexist in the same multi-zone problem. The development of
this capability was motivated by an application in shape optimization, where a portion of the design
remains geometrically insensitive to the design variables that control the shape. This discussion
presents the results obtained from an ongoing research effort to exploit this powerful concept of
substructuring within the structural shape optimization context using a boundary element formulation.

Only Geometrically Sensitiva
Zone

(A) Original Problem

\ Foundation to Simulate
Z1 Exactly

Exact Traction
Distribution at
22 - 73 Interface

121700422020 022077

z22

77

|

(B) Reduced Problem with Exact
Boundary Conditions to Simulate
Removed Boundary Element Zonas

Physical Interpretation of the Condensation
of Insensitive Zone Matrices
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MULTI-ZONE BOUNDARY ELEMENT ANALYSIS

Multi-zone boundary element analysis12-19 is accomplished by first breaking up an entire boundary
element model into zones as illustrated by the three zone model shown. The governing boundary
integral relationship can then be written for each zone. In elastostatics, for example, Somigliana's
identityl2-14 is the appropriate relationship. Substituting for the actual surface response an approximate
surface response interpolated from the node point values of traction and displacement using bound
element interpolation functions, one obtains the discretized boundary integral equations!2-14, By
evaluating this expression at a set of locations of the load point of the fundamental solutions occurring
in the boundary integral equation corresponding to the node point locations for the zone in question,
one can generate a matrix system of equations for each zone. The matrix relations written for each of
the individual zones can be put together for use in an overall analysis!2-14 by considering the conditions
of displacement compatibility and equilibrium of the traction components at all zone interfaces. In these
compatibility and equilibrium relations, the double subscript notation is used to convey that the vector in
question is a column vector of components entirely on the interface between zone-i and zone-j.

AW N A N/

Multi-zone boundary element analysis'®+'!"is accomplished by writing
1.) individual zone BIE's

[F] {v'} = [G'] {t}
2.) coupling them together using compatibility and equilibrium conditions

{ugl={uy}; {3 =—{d}
3.) This involves
3.1 Expanding the size of each zone matrix to the overall system size.
3.2 Renumbering, partitioning, and accounting for degrees of freedom in
blocks.

4.) The result - Speed, Sparsity, Accuracy, but programs are more complex
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MULTI-ZONE BOUNDARY ELEMENT ANALYSIS - Continued

Expanding the size of the boundary element zone matrix equations to the size of the overall
problem, bringing the unknown tractions at zone interfaces to the left hand side of the equation, and
using the compatibility and equilibrium relations, one can form the boundary element system equations
for the overall multi-zone BEA problem. For example, the equations for the three zone problem shown
are given below. It should be noted that this model has no interface between zone-1 and zone-3. In
this instance, the final multi-zone BEA system of equations can be produced by simply removing the
blocks associated with this 1-3 interface shown in the equation below.

Formal sparse blocked hypermatrix structure associated with three zone model

(Fl,) [FL) (0] -IGl,) fo1 101 o] o] o] |[{ul}]
0] [F3] [0] [G3,] [F%,] [F) [0) -[G35) (0] || {uly}
0] [0] [0 [0 [0l [F3) (0] [G3,] [F3,1||{uis}
1 14) {n)
= [G},] [0] [0) [0) [0} [0} [0) [} [0} ][4} les
u >
01 [0] [0} 10} [GZ,) [0} [0} [o] [0} ioi { iz}
3 0 uz23
[0] [0) [o] [o] [0} [o] [o) [0] [633]J 0| |
{{1%2}}> {t%z}

0
{0} .{u§3}1

{0}

L{lgs}.

Actual matrix population results by removing all '13' partitions because they are
empty
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MULTI-ZONE BOUNDARY ELEMENT MATRIX POPULATIONS

The previous example points out the basic features of multi-zone boundary element matrix
equations. The matrix equation shown above is actually a hypermatrix with matrices as its entries.
Generally these matrix entries are called blocks or partitions. Likewise, the overall vectors shown have
vectors for their entries and these entries are also referred to as blocks or partitions. The blocked
sparsity characteristic of the matrices that result from the multi-zone BEA approach is clearly evident
from the zero blocks present in the previous equation. A typical boundary element system matrix left
hand side population is shown below. This matrix population is for a slightly different model and the
smaller of the two matrix population shown results when the individual zones are condensed into
boundary element substructures as described in subsequent parts of this presentation.

Dol letete et

2%6%0% '6%4%4%4 %%

XL AR

X,

0,931,0,8 o 0 ¥

ptede] 120%e%

OJOOC

2
% - .AXJ,
3
.
g*ﬁ b) MATRIX POPULATION
KSR WHEN ALL ZONES ARE
R CONDENSED

a) MATRIX POPULATION WHEN NO
CONDENSATION IS PERFORMED

581 = BLOCK CONTAINING INFORMATION FROM [F] OR [M,] MATRIX

| = BLOCK CONTAINING INFORMATION FROM [G] OR [M, ] MATRIX

= BLOCK THAT IS INITIALLY EMPTY BUT EXPERIENCES FILL IN
DURING THE BLOCK TRIANGULAR FACTORIZATION STEP

Left hand side boundary element system matrix populations for
a four zone mesh.
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SPARSE BLOCKED SOLUTION PROCEDURES

The blocked matrix triangular factorization procedure used in this study is shown below. The
procedure starts with the triangular factorization of the first diagonal block. This is performed using a
Gauss elimination algorithm with partial pivoting. The triangular factors of this diagonal block are
stored in the same location that the original diagonal block was located. This matrix factorization is then
used to alter the second block column. This is accomplished by forward reduction and backward
substitution of the columns of the matrix block A, to form the matrix D;, (in the figure this matrix is
symbolized by D ). This matrix is then used to alter all the blocks below A, in block column two by
the matrix multiplication and subtraction step shown below. All blocks below block A3 in column
three are then processed in a similar fashion and then the fourth column and so forth until the entire
matrix has been altered. This entire process is then repeated using the submatrix consisting of all
blocks except those in block row and column one. The second major phase in the algorithm causes the
alteration of the submatrix consisting of all blocks except those in block rows and columns one and
two. At every stage of this process, checks are made concerning the sparsity of the matrix. Any block
operation that can be avoided due to the block sparsity present in the matrix, is avoided. A fundamental
characteristic of the block triangular factorization algorithm described above is that it is sequential in
nature.

START_PROC. Start block triangular factorization procedure
[=0
TOP_ DIAG_LOOP. I=1+1

IF (I1>N-1)GO TO LAST_BLOCK

Factor Aj =L, U} using Gauss elimination with partial

pivoting

J=0

TOP_ COL_LOOP. J=J+1

IF (J>N) GO TO TOP_DIAG_LOOP
IF (Aj1=0)GO TO TOP_COL_LOOP

Solve A;;D=A,; For D by forward reduction and
backward substitution of the columns of D using the
factorization of A
K=1
TOP_ROW_LOOP. K=K+1
IF (K>N)GO TO TOP_COL_LOOP
IF (Agj1=0) GO TO TOP_ROW_LOOP
Form Ay =Ay- Ay D
GO TO TOP_ROW_LOOP
LAST BLOCK. Factor A;=L; U,

END_PROC. Retum

Sparse blocked matrix triangular factorization algorithm.
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PERFORMANCE OF MULTI-ZONE ANALYSIS

In order to illustrate the advantages associated with multi-zone analysis relative to single-zone
boundary element analysis, an example geometry has been selected for study and modeled as both a
single zone and as a multi-zone model. Coresponding storage space and CPU times required for the
single and multi-zone analyses are shown in the figure below. Comparison of the resources consumed
during the equation solving step for both the single zone and the multi-zone analyses shows the
dramatic improvements that can be obtained by employing the multi-zone approach in this class of
problems. The accuracy of the boundary element method when applied to model such slender objects
is also dramatically improved when multi-zone techniques are utilized. Numerical integration times tend
to also be less for multi-zone models because only load points corresponding to nodes in the particular
zone being integrated are used in the sequence of integrations used to form coefficient matrices.
Although this particular problem was chosen to present the multi-zone approach in the most favorable

light, it is representative of the much larger class of problems that becomes tractable for boundary
element analysis when a multi-zone strategy is included.

TIMING AND STORAGE EXAMPLE

1 1 ZONE
I ] 2 ZoNE
T I T —] 4 zOone
106 UNITSOF | | ZONE
COMPUTER STORAGE /
300 T
- L7400
2 ZONE
| £ FORWARD & BACKWARD
250 T SUBSTIIUTION AND
SURFACE STRESS
RECOVERY 4 20NB
| 197 ’
200 T
69
0.6951 UNITS 0.3793 UNITS
TRIANGULAR
FACTORIZATION g%f&”cfk COMPUTER
4 STORAGE
150
- “1.44+25
o T
668 ﬂ“"' +27
ASSEMBLY 242
J 263
50
192
NUMERICAL 12.2
INTEGRATION 535
304 243
(.I.l Cl.l 15
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BOUNDARY ELEMENT SUBSTRUCTURES

Reordering the degrees of freedom and partitioning the boundary element system equation for an
individual zone into blocks that correspond to master degrees of freedom and also into blocks that
correspond to degrees of freedom that could be condensed, one can arrive at the matrix equation shown
below. In this equation, the additional right hand side vector is included to consistently account for any
body force type of loading that might be present in the analysis, such as gravity, centrifugal, or thermal
loading. In these equations the symbolism for {u} and {t} will be generalized to imply that {u}
contains the unknown values of the boundary response while {t} contains the specified values of the
boundary response, regardless of whether they are displacement or traction components. When the
specified values are displacement components, then appropriate column exchanges and negations must
be performed as explained in References [12-14]. Therefore, whenever {t-} appears in the equations
presented below, it is implied to be a column vector of known values of the specified boundary
conditions for the particular zone in question. At first inspection, the substructuring process seems to
require the inversion of the matrix block [Focl. A closer examination of the formulation, however,
reveals that this is not the case. Whenever the matrix [Fecl - -1 appears in these equations, it always
premultiplies either a column vector or a rectangular matrix. As shown below, the use of the matrix
inversion notation is purely symbolic, and in the computer implementation of this substructuring
approach, no matrix inversion is ever actually performed. Instead, the triangular factorization of the
matrix block [Fec] is performed once, and subsequently these factors are reused to solve the matrix
equations shown below by forward reduction and backward substitution of the right hand side vector or
group of vectors shown below.

Substructuring'®:'!. in BEA can be accomplished by renumbering d.o.f.,
partitioning into master and condensed blocks, and solving for {u.} in the second
block row.

{[FMM] FMCJJ { {uM}} {[GMM] [GMC]} { {tM}} + { {fM}}
[ch] Fcc] {Uc} [GCM] [Gecl {tc} {fc}
{uc} = [Foe) ' [Gelitm} + [Fec) " [Geedite} = [Feel [Fend{upd + [Fodl ' {fe}

Substitute this expansion equation into the first block row and solve for {uy} to
obtain the exactly condensed equation for the boundary element model.

[M1]{UM} = [Mz]{tM} + [M3]{tc} + M Hfc} + {fiyg}
[M,] = [Fypyl - [Fycl(Fecl ™ [Feu! ; [Ms] = [Gpcl - [Fycl[Feel (Gl
[Mz] = [GMM] - [ch][Fccl_1 [GCM] ’ [M4] = [FMC][FCC]-1

Inversion shown is symbolic. Major computational step involves the triangular
factorization of the square block [Fccl. Note this can be reused in expansion step.

[D] = [Fol ' [V] or [Fecl{D} = [V] where [D]=1[{d,},{d,}....,{d\}]
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PARTITIONS IN BOUNDARY ELEMENT ZONE CONDENSATION

The typical sizes and locations of the partitions present in boundary element zone condensation are
shown below. This figure also helps to illustrate the first assembly procedure required to form zone
partitions prior to the condensation process. It should also be noted that the condensation procedure
embodied in the equations presented above is an exact formulation, in that, no terms have been
neglected, nor has any approximation been made.

lFMMl—\ {uy,) (tu)

{te)

Assembled zone matrix showing master and condensed partitions

Detail -A- ; The 3 x 3 block of the zone matrices corresponding to singular integration

- | [(Ba]} - [Fycl

Typical matrix condensation operation with corresponding matrix sizes

Details associated with the assembly, reordering, partitioning, and condensation
of a boundary element zone matrix
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MULTI-ZONE ANALYSIS WITH SUBSTRUCTURES

Kane and Saigall! have shown that a very natural way to combine substructuring with multi-zone
boundary element analysis capability is to allow for the possible condensation of degrees of freedom
that appear exclusively in a particular boundary element zone. In this case the partitions to be eliminated
by the condensation process coincide exactly with certain partitions already present in the multi-zone
boundary element analysis procedure. This approach is also very natural from a modeling perspective,
since entire boundary element zones can be easily and arbitrarily identified for either condensation or no
condensation, and also for subsequent chansion if they are to be condensed. Utilization of this
strategy requires that a second level assembly procedure for the formation of the overall sparse blocked
system of equations must be able to assemble condensed or uncondensed zone contributions to the
overall matrix. The algorithm for the second assembly step is very similar to the assembly procedures
described in References [15-19], except for the additional complication of dealing with both condensed
and uncondensed zone contributions. This procedure takes each column of a zone matrix partition,
determines its block destination and column destination within the block, and eeds to assemble this
column. The entire overall matrix is stored in a one dimensional array wi approdplriate accounting
arrays used to indicate the locations and sizes of the individual blocks, along with indicators regarding
whether each block is full, empty, or to-be-filled-in in the subsequent block triangular factorization

step.
Arbitrary condensing, noncondensing sparse blocked equation solver!’."
1.) Natural way to combine both multi-zone and substructuring in same analysis
2.) Master and condensed d.o.f. are chosen to exactly coincide with the blocks used in
the multi-zone scheme.
2.1 condensed blocks correspond to all d.o.f. exclusively in a single zone.

2.2 master blocks correspond to all zone interface d.o.f.

3.) Condensation and subsequent expansion is optional, thus allowing full and
condensed boundary element zones to consistently coexist in the same analysis.

4,) Essentially forms an out of core solver with reduced sensitivity to zone
numbering.

5.) Has reduced sensitivity to zone numbering.
6.) Facilitates the extension of partial pivoting outside of diagonal blocks

7.) Key ingredient in the effective treatment of optimization problems for
partially insensitive three dimensional shapes via reanalysis techniques.
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BOUNDARY ELEMENT FORMULATION FOR DSA

A very concise summary of the boundary element sensitivity analysis formulation follows to
establish notation and terminology and to serve as a starting point for the discussion of the reduced
Design Sensitivity Analysis (DSA) algorithm presented below. In this discussion the concept can first
be considered in the single zone context, and then generalized to include multi-zone models. The
superscript notation for multi-zone problems is again not explicitly written but rather implied. The
implicit differentiation formulation for the boundary displacement- and traction-sensitivities, requires
that a partial derivative be taken of the already discretized boundary integral equations, with respect to
the design variable , X;. The vectors {u} and {t} will be known in the resulting equation, subsequent
to the performance of an analysis, and the equation can then be used for the solution of the sensitivity
vectors {u},; and {t},; . Itis noted here that u;,; =0 when u; is specified and, likewise, t,;, = 0
when t; is specified for any i. The [L][U] decomposition of matrix [A], done for the solution of the
analysis equations, can be saved and reused for the solution of this new equation, resulting in
considerable economy in computational effort. This is a significant advantage of the implicit
differentiation technique. However, the method relies on the ability to determine the fictitious right
hand side vector in this equation that includes contributions from the terms [Fl,; {u} and [G],_ {t}.
In the fully analytical sensitivity analysis approachZ-4.6-8 the matrices, [F],; and [G], , are formed by
numerical integration of derivatives of quantities found in the formation of [F] and [G]. It has also been
shown? that it is possible to obtain the matrices [Fl,, and [G],. by a semi-analytical finite difference
procedure.

Implicit differentiation approach'-? to design sensitivity analysis (DSA)

% {1F] {u} =[G} {0}} = [F) {u} + [F] {u},. = [Gl {6} +[G] {1}
L

or [Fl{u},.= (Gl {t} +[G] {1}, - [F],_ {u}
When symbolism is generalized, this matrix equation has the same left hand side
matrix as the analysis. Therefore this obviates the need for repeated triangular

factorizations of perturbed matrices.

Analytical approach!-35-6.8.10.12.15 for computing the required right hand side
vectors.

) E_ o E)_ E
,5X—L(u=] = Y [F] ‘Z{L [T] [h]Jda} =Y IFE
+1 +1 T +1 +1
[F1E= j TIE D Tdas j [TTn 1, da; (G = j (UL Tda+ [UI"[n] J,, da
- - - -1

Requires numerical integration of new kernels containing some familiar terms.
Many elements may be insensitive, thereby yielding sparse sensitivity matrices.
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DSA WITH SUBSTRUCTURES

When boundary element substructuring has been used, as described previously, to condense certain
zones in a multi-zone analysis, the design sensitivity analysis matrix equations shown in the previous
figure can still be used to symbolize the overall multi-zone system matrix equations. In this instance,
the block entries in this equation, contributed by the condensed zones, are assembled from the matrices
[M,] and [M,] shown in the discussion on boundary element zone condensation. It is also possible to
have boundary element zones that have not been condensed to coexist consistently with zones that have .
been condensed in the same analysis!4. For the uncondensed zones, the appropriate zone [F] and [G]
matrices are assembled in the appropriate places in the overall matrix equations. Implicit differentiation
of this equation has the same symbolic outcome except that the block entries in this matrix equation for
the condensed zones require the formation of [M,],. , [M,],.. , and [Ms],; , as shown below. In a
completely analogous fashion to the implicit differentiation DSA approach described!-? for multi-zone
models without substructuring, the terms in the condensed matrix equation can be manipulated to
produce the same left hand side matrix as that used in the analysis.

Design sensitivity analysis of substructures!! starts with the implicit
differentiation of the condensation and expansion equations.

3.% (M1} = It} + MM + IMI{Ec) + ()

9
oXL
or

({uc} = Fecl MG ey iy} + [Fec) Gl {te} = [Fecl  Fopd{up} + [Feel ™ {fe})

M1] {upd, =M,] {ty . +b; & Same L.h.s. matrix as in the analysis

where
by=- [Ml]vL {UM} + [Mz],(_ {tM} + [M3],L {tc} + [M4],[_ {fc} + [M4] {fC}’L + {fM},[_
and

{uch =([Feel ™ Gl ) {tm} + ([Feed ™ [Gem) {twhor + ([Feel ™ [Gecd ) {te?
— ((Feel ™ Byl )t {ungt = (Feel ™ Fead ) {upgdo +( Feel ™ b

and
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DSA WITH SUBSTRUCTURES - Continued

This, in turn, requires what looks like the computation of the sensitivity of the inverse of the matrix
[Fccl. This apparent requirement at first inhibited the authors from using the substructuring concept in
concert with DSA.

M1, = [Fypl —

{ [Eyic)i ([Fec] ™ [Fond) + [Pl ([Fecl ™ Fopd ) }
M,),. = [Gapal it -

{ IEyc)i ([Fecl " [Geml ) + [Fucl ([Fecl ™ [Ged ) }
M;l,L =[Gyl -

{ [Pyl ( [Fecl ™ [Geal) + [Pl ([Feel ™ [Gecl )i }

The r.h.s. vectors seem to need the sensitivity of the matrix inverse [F] -1 77?

This apparent requirement has delayed the implementation of substructuring
techniques in design sensitivity analysis for shape optimization.
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OBVIATING THE NEED FOR SENSITIVITIES OF MATRIX INVERSES

The derivation shown below, however, obviates the need to compute the sensitivity of any matrix
inverse. The reason that this can be done is because the matrix [Fc] -1, appearing in the reduced DSA
formulation, is always postmultiplied by another matrix. When the product of the two matrices is
considered together, an approach to the computation cf the sensitivity of the matrix product becomes
clear. This shows that the required term [D],; can be obtained by 'solving' the resulting equation
shown below. Thus, the formation of the matrix term [D],; can be obtained by forward reduction and
backward substitution of the columns of the right hand side matrix shown. This is extremely efficient if
the triangular factors of the matrix block [Fccl, computed during the condensation step of the analysis,
are saved and reused. The sensitivities of the other matrix products shown in the design sensitivity
analysis formulation with substructures can be obtained in an analogous fashion. The sensitivity of the
matrix [M4] is not found by itself, but rather, the product of [M,] {fc} is treated in a manner similar to
that discussed above.

Obviating the requirement of computing sensitivities of matrix inverses in DSA
of substructures is accomplished by exploiting the fundamental observation that
[Fccl! always premultiplies a vector or rectangular matrix. Notice

[Foel ™' [Fopd = [D] = premultiplying by [Fecl = [Foyd = [Fecl [D]
and differentiating
[FCM] L= [Fcc],[_ (D] + [Fcc] [D],L or [Fcc] [D],L = [FCM] L [Fcc] L (D]

Which was what was wanted !!! [D],; can be obtained from a forward reduction
and backward substitution procedure using the (already computed) triangular factors
of the [F] block and the right hand side vector shown.

This formulation has been successfully implemented in an overall package for design
sensitivity analysis.
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SENSITIVITIES AT CONDENSED DEGREES OF FREEDOM

Once traction and displacement sensitivities are known at master degrees of freedom, the
differentiated substructure expansion equation, shown above, can be used to optionally recover
sensitivities of displacement and tractions at condensed degrees of freedom in a similar fashion without
recourse to the computation of sensitivities of matrix inverses. It is thus possible to obtain complete
sensitivity information for the boundary element substructures. Again one sees that the approach for
expanding sensitivities relies on the ability to compute the sensitivities of matrix products involving
[Fccl 1. As discussed above, this computation can be done economically using the factorization of
[Fcc] which has already been computed in the reduction process.

{uC},L = [Fcc] - [GCM] )L {tM} +( [Fcc] ! [GCM] ) {tpdL +( (Fecl ! (Geel ) {(C}
- ( [Fcc] - [FCM] )vL {UM} - ( [Fcc] - [FCM] ) {UM}vL +( [Fcc] - {fC})vL
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NUMERICAL RESULTS

The problem considered was that of a hollow circular cylinder, subjected to an external normal
traction. The inner radius was selected as the design variable. This problem was chosen partly because
a closed form elasticity solution for its response is known. Using the elasticity solution, it is possible
to determine a closed form solution for the sensitivity of the response with respect to the design
variable. This is accomplished by parameterizing the sample point location and taking a material
derivative of the resulting expression. Also, this problem can be thought of as a specific manifestation
of the generic situation of a design with partial geometric sensitivity. It is therefore a candidate for the
substructuring techniques described in this paper. Two quarter symmetry models of the hollow
cylinder, shown below, were used in this study of the accuracy and computational requirements
associated with design sensitivity analysis of full size, partially condensed, and fully condensed
models. The first model is a single zone model for which no substructuring is performed.

N

a) ONE ZONE MODEL

b) TWO ZONE MODEL

One Zone and Two Zone Boundary Element Models Used as Test Cases.
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NUMERICAL RESULTS - Continued

Both this single zone boundary element mesh and the two zone mesh had the geometry of its
nodes controlled according to the two schemes shown. These two sets of geometric sensitivities are
considered to illustrate how a certain geometric feature of a boundary element mesh, (i.e. the inner
radius of the hollow cylinder), can be controlled by one design variable and yet several mesh control
strategies may be possible. These different mesh control strategies will be shown to have quite
different consequences in terms of the computational requirements of the resulting design sensitivity
analysis. In this example, the second set of geometric sensitivities cause significant sparsity in the
matrices [Fl,;, and [G],[,. For the two zone models, this second set of geometric sensitivities will
cause entire blocks in the multi-zone DSA formulation to be completely empty, thus producing
substantial reductions is the resources required to perform DSA.

0.0
1.0 SCHEME # 2

GEOMETRIC SENSITIVITY
PARTIALLY ALONG RADIAL
DIRECTION

SCHEME # 1

GEOMETRIC SENSITIVITY

ALONG ENTIRE RADIAL

DIRECTION

Two different Geometric Sensitivity Schemes Used in this Study.
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MATRIX POPULATIONS

The first comparison to be presented in this study concerns the storage required to perform an
analysis and a sensitivity analysis of the hollow cylinder employing the various options discussed in
this paper. The cases considered are listed below. Case 1.1 is a single zone model with no
condensation and its associated left hand side boundary element system matrix is fully populated and
therefore not shown. Case 1.2 is a two zone model and its left hand side boundary element system
matrix is populated as shown below in Part a. It is seen to require marginally the same amount of
computer memory as the single zone model. The Case 1.3 is a two zone model with the largest zone
condensed. The left hand side matrix population for this case is depicted in Part ¢. Case 1.4 has both
of its boundary element zones condensed and the resulting matrix population for the left hand side
system matrix is illustrated in Part b. From this example one can see that the condensation technique
discussed in this paper allows for the analysis and design sensitivity analysis to be performed in much
less computer memory. The condensation technique effectively functions as an out of core solver
reducing memory requirements to almost one third for case 1.3 and to more than one seventh for case
1.4,

case zones zonel zone2 storage (kwords)
1.1 1 ful e 261.
1.2 2 full full 260.
1.3 2 full condensed 94,
1.4 2 condensed condensed 37.

b) MATRIX POPULATION
WHEN ALL ZONES ARE
CONDENSED

a) MATRIX POPULATION WHEN NO
CONDENSATION IS PERFORMED

¢) MATRIX POPULATION WHEN
ZONE TWO IS CONDENSED AND
ZONE ONE IS LEFT FULL SIZE

@ =BLOCK CONTAINING INFORMATION FROM {F} OR {M,] MATRIX

= BLOCK CONTAINING INFORMATION FROM [G] OR (M ;] MATRIX

Left hand side boundary element system matrix populations for
the two zone mesh shown previously for various combinations
of zone condensation options.
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CAPITALIZING ON GEOMETRIC INSENSITIVITY

There are frequent occasions when portions of a design are geometrically insensitive to the design
variables that control its shape. It is also possible in many instances to enhance the amount of
geometric insensitivity that a model possesses through modeling techniques such as the one shown
above. Here the inner radius is the design variable and yet two schemes for controlling the boundary
element node point geometric sensitivity along the radial edges of the model are shown. Listed below
are a series of test cases that help to quantify the ability of the various analysis and sensitivity analysis
options discussed in this paper to exploit geometric insensitivity for computational performance
improvement. The cases 2.1 through 2.4 reveal that the single zone boundary element method is unable
to exploit the additional geometric insensitivity present in the partially geometrically sensitive model,
while the multi-zone model (case2.4) yielded analysis and sensitivity analysis results in less than 75 %
of the time used for the fully sensitive model. If one compares the time for the DSA alone, the two
zone partially sensitive model (case 2.4) can be used for sensitivity calculation in about 35 % of the time
taken by the fully sensitive two zone model (case 2.3), and in less than 45 % of the time spent using
either of the single zone models. Cases 2.4 through 2.8 demonstrate that the condensation and
expansion procedures discussed in this paper are competitive with the straightforward multi-zone
analysis and sensitivity analysis techniques that do not involve substructuring (i.e. case 2.4). These
cases also demonstrate that the cost of performing the expansion step in DSA of substructures is not
significant. Case 2.9 points out that for designs with total geometric sensitivity the substructuring
technique requires more computer time than procedures that do not involve condensation and
expansion.

geometric  condensation option expansion option

case zones sensitivity zonel zone2 zonel zone2  Analysis DSA Total

2.1 1 full full full no no 309 164 473
22 1 partial full full no no 309 163 47.2
23 2 full no no no no 26,6 19.6 46.2
24 2 partial no no no no 26.6 7.0 33.6
25 2 partial no yes no no 25.5 7.8 333
26 2 partial no yes no yes 25.5 8.4 339
27 2 partial yes yes no no 25.6 94 350
28 2 partial yes yes yes  yes 25.6 109 36.5
29 2 full yes yes yes  yes 25.6 317 573
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ACCURACY

In both the analysis and the design sensitivity analysis, there was absolutely no discernable
difference in the accuracy of the computed results that was dependent on whether condensation or
expansion was performed.

CONCLUSIONS
1.) Substructuring technique can dramatically economize shape optimization for partially sensitive
models
2.) Requires

Arbitrary condensing / noncondensing assembly and equation solving procedures
Design sensitivity analysis of substructures

3.) Formulation presented for DSA of substructures that is efficient because it obviates the need
for the computation of sensitivities of matrix inverses

4.) Accuracy is exactly the same as when no substructuring is done
5.) Procedure can be done in parallel mode

6.) Implementation currently being incorporated in the Computer Aided Engineering Center's
shape optimization system
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THE PURPOSE - AIRCRAFT ROLL EFFECTIVENESS AT REDUCED COST

The need for effective aileron power for aircraft lateral control and turning maneuvers dates back
to the Wright Brothers and their wing warping concept for active stabilization of their aircraft. Early
researchers in Great Britain, Japan, Germany and the U.S. explored ways to increase the effectiveness of
control aileron to generate a roll moment. Figure 1 illustrates the basic problem of aileron effectiveness
and the interrelationship between structural distortion and the loads applied by the control surface. A
rigid wingfaileron surface will develop the capability to generate increased roll rates as airspeed
increases. A flexible surface will become less effective as airspeed increases because of the twisting
distortion created by the aft-mounted control surface. This tendency is further worsened by bending
distortion of an aft swept wing. Tkis study focuses its attention on the ability of a combined effort
between structural redesign of a wing and sizing and placement of a control surface to create specified

roll performance with a minimum hinge moment.

Control Effectiveness

Incremental
Moment

Incremental

e ==

O O 0 o
- o
- Q) — dh)
oo - L
o o Flexible Airfoil
Velocity Velocity r-.'evers‘anX
q=q5
Figure 1
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THE OPTIMIZATION PROBLEM AND DESIGN VARIABLES

The wing planform used for this study is shown in Figure 2. The wing is composed of 10 layers
of Graphite/epoxy composite material. Three of the upper surface plies are treated as design variables
so that cross-sectional stiffness and stiffness cross-coupling can be changed to decrease the aileron
hinge moment while still maintaining the same roll-rate at a specified design airspeed. Because the
laminate must be symmetric through the thickness so as to disallow warping during the manufacturing
process, the three lower plies must also follow the reorientation of their upper surface counterparts. The
sign convention for the ply orientation is shown on the planform diagram. The aileron surface is shown
located at a distance N, outboard of the wing root. This distance is also a design variable. The
spanwise size of the aileron is fixed at 30% of the span; however, the chordwise size is allowed to
change. The combination of 3 ply orientations and the spanwise position and chordwise size of the
aileron defines the set of design variables.

30°

= 12.42"

| b = 57.96"
2

Figure 2
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THE EFFECT OF PLY ORIENTATION AND AILERON POSITION ON HINGE MOMENT

Aileron hinge moment was chosen as the cost function for optimization because the actuator size
necessary to move the aileron is a function of the power required. As a result, aircraft weight is buried
within this cost function. A matrix method representation of the wing structural stiffness and the
aerodynamic loads was used to provide the analytical representation of the wing in Figure 2. A
computer code that had been used in previous FSW work was used as the basis of the optimization code
developed at Purdue. This code has the acronym CWINGSM. Expressions for hinge moment and
aerodynamic derivatives necessary to run the code were taken from DATCOM and classical references.
The effect of aileron spanwise position and wing laminate orientation on the magnitude of the aileron
hinge moment is indicated in Figure 3. Two local minima are observed on this diagram. One local
minimum is associated with the inboard aileron position, while the other is associated with the outboard
position. While the inboard position is predictable given the experience of the last 40 years, the
outboard position is unusual. This diagram also indicates that the final outcome of any optimization
procedure that minimizes aileron hinge moment will depend upon the initial conditions given to the
program.

Topographical level surface map of hinge moment

root

inboard ——|

aileron position

|#—— outboard

A fa"// / 1 .g
90° 60° 30° 0 -30° -60° -90°
ply orientation - degrees
|¢———wash - in >l wash - out———|
Figure 3
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DESIGN CONFLICT AND COMPROMISE -
ROLLING MOMENT versus DAMPING-IN-ROLL

The aileron hinge moment depends upon the orientation of the aileron with respect to the flow.
This orientation depends upon the amount of mechanical rotation of the aileron and the wing surface
distortion due to aeroelastic effects. For a certain size aircraft operating at a specified design airspeed,
the roll rate is found by computing the ratio between the aileron rolling power and the wing damping-
in-roll. The behavior of these two parameters as a function of aileron position and laminate orientation
is shown in Figure 4. To generate this figure, all three laminate ply angles were constrained to be equal.
Large values of aileron rolling power are generated when the aileron is outboard and ply angles are
oriented in an aft swept position with respect to the swept wing center span line. Unfortunately, Figure

4(b) indicates that this wash-in laminate orientation leads to a situation for which damping-in-roll is also
magnified.
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AN OPTIMIZATION EXAMPLE PROBLEM-AILERON CHORD SIZE FIXED

To study the optimal design process itself, an example problem was developed. A series of
optimization problems were solved in which the aileron chord dimension and the position of the aileron
on the wing were held fixed. An unconstrained minimization problem was posed in which the three
laminate ply angles were design variables and the roll rate was a constraint used to remove one of these
variables. For the example cases chosen, convergence to the optimum design was rapid, as indicated in
Figure 5. The inset to this figure shows a typical design cycle history for a case in which the aileron is
in the outboard position. As anticipated, there are two local minima to be found by the procedure,
depending upon the initial design condition chosen. Figure 5 also shows a comparison between the
optimum design performance and the hinge moment for a similar, unoptimized, orthotropic laminate.
Note that in this case all 3 final laminate ply angles are nearly equal.

10
- UNCONSTRAINED MINIMIZATION
_-é QOUTBOARD AILERON POSITION
.‘5 FLAP-TO—CHORD RATIO = 10%
£
8 - z
2
=
—»— Wash—in ¢
—e— Wash—out *
6 - — — 0 Deg. Ply Angle

HINGE MOMENT (inch—Ib.)

(TIP) AILERON POSITION (ROOT)

Figure 5
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OPTIMAL PLY ORIENTATION FOR MINIMUM HINGE MOMENT

The ply orientations found to create minimum hinge moment while still allowing the specified roll
rate are shown in Figure 6. While not constrained to be equal, in this case their values are
indistinguishable from each other. The wash-in design orientation is created by sweeping the 3 plies aft
to create a bending-shear coupling effect that causes the wing sections to rotate upward as they bend
upward. This promotes aileron effectiveness and damping-in-roll (DIR), but the increase in rolling
power outweighs the increase in DIR. The wash-out design is created by sweeping the plies forward.
This couples nose-up twist with downward bending to create a less effective aileron surface. However,
the damping-in-roll is also minimized so that the trade-off is favorable.
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THE AEROSERVOELASTIC OPTIMAL DESIGN PROBLEM

When the aileron spanwise position and its chordwise dimension were included in the optimal
design problem, the optimization technique chosen was an interior penalty function method. A pseudo-
objective function was defined as the sum of the actual hinge moment and penalty functions
representing; the aileron flap-to-chord ratio (which is free to take on any values above 0.075); the
aileron spanwise position (which must lie between the wing root and tip); and the roll rate (which must
be a specified rate). Figure 7 shows the values of this performance index as a function of design cycle
history, plotted together with the value of the actual hinge moment. The Davidon-Fletcher-Powell
method, in conjunction with a cubic interpolation method was programmed to generate these results.
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PLY ANGLES (DEG.)

LAMINATE PLY ANGLE BEHAVIOR DURING OPTIMIZATION

All 3 plies began the optimization search oriented 20 degrees forward of the swept span reference
line. During the design process they acquired different orientations, but finally became nearly equal as
more design cycles occurred. The final design was a wash-in design with the design plies at about 30
degrees aft of the reference axis (Figure 8).,
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OPTIMAL SPANWISE AILERON POSITION

While the laminate plies are re-orienting themselves, the aileron is moving along the span to try to
relieve the load on the hinge, while at the same time maintaining performance. Figure 9 shows the
design history of this movement. The aileron begins near the 3/4 span position, moves inward slightly,

and then proceeds to move outward to the 8/10 span position.
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Figure 9
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FLAP-TO-CHORD RATIO DESIGN HISTORY

The history of the value of aileron flap-to-chord ratio is shown in Figure 10. Because of the
model used, this ratio tries to become as small as possible, but is not allowed to become less than 0.075.
When other initial starting point designs were input to the procedure, the final result was essentially the
same.

0.2

Flap—to—Chord Ratio
O
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Figure 10
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SUMMARY OF RESULTS AND OUTLOOK FOR THE FUTURE

This design optimization problem indicates the advantages of simultaneous consideration of
structural design and control design. The performance index, the aileron hinge moment, has appeal to
both groups, and because of the actuator weight associated with it, appeal to all. Besides the numbers
generated, the interesting aspect of the problem is that it indicates that there is a trade-off between large
values of rolling power and low damping-in-roll of the wing surface itself. The method used was made
efficient by using subroutines that computed design sensitivity derivatives directly from analytical
expressions obtained by algebraic manipulation. Present efforts have been directed towards including
wing taper ratio as a design variable to further control damping-in-roll and including wing sweep angle
itself to control aileron effectiveness and damping-in-roll.
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Why the Effort?

The trend in design indicates that future airplanes will be statically unstable in pitch, be more flexible
than current aircraft, and require highly integrated, interdisciplinary, design methodologies [1]. Fighter
aircraft will be more maneuverable and will use active flutter suppression. One application of active
flutter suppression is to provide the required margin between the maximum attainable speed in a dive and
the speed at which flutter occurs while also requiring open-loop flutter to be at or above the maximum
dive speed. A more ambitious application of flutter suppression would be to allow the normal operating
envelope to exceed the open-loop flutter speed. If active flutter suppression is to become part of the
integrated flight control system, then an integrated modeling and simulation capability is required. This
modeling and simulation capability would embrace traditional non-linear, rigid-body mechanics for
aircraft and traditional linear aeroservoelastic dynamic models. In particular, a unified set of equations
and notation should arise.

A variety of programmatic responses arose from the concern that current modeling practices needed
to be reexamined in light of anticipated applications to future aircraft. At the Langley Research Center a
Functional Integration Technology (FIT) team was established to perform dynamics integration research
using the F/A-18 as a focus vehicle. A central part of this effort has been the reexamination of the
aeroelastic equations of motion for fixed-wing aircraft [2,3] and the development of a comprehensive
simulation modeling capability [4]. At the Wright Research and Development Center, a 30-month
contract was awarded to Lockheed to develop an aeroservoelastic analysis and design software package
wherein the equations of motion are developed from first principles [5]. At the Air Force Office of
Scientific Research a contract was let to Professor Luigi Morino to develop the equations of motion ofa
maneuvering, flexible airplane with minimal simplifying assumptions [6]. The Lockheed effort [S] adapts
the method of hybrid coordinates used by Likens for space-craft applications [7] to the aircraft problem.
Morino's approach [6] is very similar to the FIT effort [2,3] and does a nice job of incorporating the total

vehicle rotational degrees-of-freedom in a Lagrangian framework by taking partial derivatives of kinetic
and potential energy with respect to the entire direction cosine matrix.

« OBSERVED TRENDS IN AIRPLANE DESIGN (FIGHTERS)

- STATIC INSTABILITY IN PITCH

- MORE FLEXIBLE

- MORE MANEUVERABLE

- HIGHLY INTEGRATED DESIGN

- ACTIVE FLUTTER SUPPRESSION TO PROVIDE MARGIN

« URGE TO "UNIFY" AND GENERALIZE NOTATION AND EQUATIONS

- TRADITIONAL, RIGID-BODY AEROMECHANICS
- TRADITIONAL, LINEAR ASE ANALYSIS

+ PROGRAMATIC RESPONSE - (1986-88)

- LARC - FIT (Functional Integration Technology)
- AFWAL - LOCKHEED ASE CONTRACT
- USAF OFFICE OF SCIENTIFIC RESEARCH - L. MORINO
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The Path Followed by FIT

When the FIT team began its investigations, no references in the aircraft literature could be found
wherein equations of motion for elastic airplanes were developed with what seemed to be sufficient
generality. The usual developments made assumptions that resulted in the absence of any inertial
coupling between angular rates and elastic deformation. Occasionally questions were raised as to the
conditions under which these simplifying assumptions might not be justified [8]. The literature for
spacecraft and rotorcraft was not examined initially.

In the FIT team development, a Lagrangian approach was used to derive the equations of motion of
an elastic airplane flexing about a rotating reference frame. As a result of retaining the coupling terms in
the kinetic energy expression, non-linear terms representing inertial coupling between angular and elastic
degrees-of-freedom were identified. Equations including these terms were implemented in a simulation
model of an F/A-18 and a number of trajectories calculated to determine the effects of these coupling
terms [2]. At the same time, a number of articles were appearing in the literature that examined the errors
that can arise in predicting centrifugal stiffening when all the nonlinear terms are retained in the kinetic
energy expression but not in the potential energy expression [9,10]. The result was that either zero
stiffening or negative stiffening is predicted in cases where positive stiffening should result. This error
was common to most of the multi-flexible body simulation codes then available and to the initial
developments of the FIT team and Lockheed [2,5]. The approach adopted by the FIT team to correct the
error in centrifugal effects was to augment the existing simulation structure with terms resulting from
retaining non-linear strain/displacement terms in the potential energy expression and mapping their effect
into the existing simulation structure. The FIT approach and its application to an example problem are
described in detail in reference [3].

- PERFORMED LITERATURE SEARCH

- VERY LITTLE IN AIRCRAFT LITERATURE ON MANEUVERING, FLEXIBLE
STRUCTURES

- SPACECRAFT AND ROTORCRAFT LITERATURE IGNORED

 REDERIVED EQUATIONS OF MOTION

- AIRPLANE FLEXING ABOUT A ROTATING FRAME

- INERTIAL COUPLING BETWEEN ANGULAR MOTION AND ELASTIC MODES
IDENTIFIED

- APPLIED TO MODEL OF F18 TO DETERMINE EFFECTS - AIAA 87-2501-CP

- THEORETICAL WEAKNESS ADDRESSED

- CENTRIFUGAL EFFECTS - [Kane], [Eke]

- APPROACH CHOSEN: NONLINEAR STRAIN/DISPLACEMENT - GEOMETRIC
STIFFENING

- APPLIED TO SIMPLE ROTATING STRUCTURE - AIAA 88-2232-CP
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The Issues

One is left with with two questions at this point: (1), Is geometrically-exact flexible body modeling
theory required for the dynamic analysis of fixed-wing aircraft, even highly-augmented, unstable ones;
and (2), how is such modeling best accomplished? Previous work [2] indicates that for most fixed-wing
aircraft in a clean-wing configuration, geometrically exact theory is probably unnecessary. Exceptions
may occur in cases of underwing-store and T-tail configurations. Nonlinear terms due to the complex
geometry can assert themselves in the form of parametrically excited oscillations. The most compelling
reason for geometrically-exact modeling theory may be just the urge to have a comprehensive theory that
works for all cases. The difficulty is establishing a non-linear theory that is sufficiently correct for the
airplane problem without resorting to full-blown computational structural dynamics. An example of the
computational structural mechanics approach is the Large Angle Transient DYNamics (LATDYN) code
[11] developed at Langley and the work of Belytschko and Hsieh on which LATDYN was based [12].
These methods [11,12] assign a separate reference frame to each finite element that translates and rotates
("convects") with each finite-element. This "convected" coordinate method has been applied to large
deformation problems such as car collisions and antenna deployment and would accommodate the
nonlinear rotational/elastic coupling of a typical airplane structure with ease. However, a theory based on
assumed modes and correct to second order may be sufficient for airplane applications and would require
less computer resources than an approach similar to that of [11] and [12].

(1) ARE GEOMETRICALLY-EXACT MODELING THEORIES REQUIRED
FOR AIRPLANE DYNAMIC ANALYSIS?
- SPACECRAFT AND HELICOPTERS - YES
- MOST AIRPLANES - NO
- REASONS FOR / POSSIBLE EXCEPTIONS:
« INERTIAL FORCES APPROACH AERODYNAMIC FORCES
« COMPLEX GEOMETRIES - STORES
« THEORETICAL PURITY

(2) IF SO, WHAT IS THE BEST WAY TO IMPLEMENT SUCH THEORY?

- MUST PROPERLY MODEL CENTRIFUGAL EFFECTS OR LEAVE THEM OUT
- MANY POSSIBLE APPROACHES
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Outline

The remainder of this paper is organized as follows. First the equations of motion are briefly
described. Since an energy approach was taken in the development of the equations of motion [2,3],
expressions for kinetic and potential energy are defined. The differences between the FIT model and the
more typical aircraft aeroelastic equations [8,13] are explained. Prior to defining the the potential energy,
a simple example [10] is presented to illustrate the notion of "geometric" stiffness. The higher order
terms in the FIT potential energy expression are explained in light of the simple example. Once the
equations are established, the effects of the including the nonlinear inertial coupling terms in the
simulation model of an F/A-18 are presented. Time responses due to a high-authority roll command are
compared for the following cases: (1), additional terms included; and (2), additional terms ignored.
Finally, conclusions and recommendations are offered.

« EQUATIONS OF MOTION
- KINETIC ENERGY
- EXAMPLE OF GEOMETRIC STIFFNESS
- POTENTIAL ENERGY

« EFFECT OF INERTIAL LOADING - F/A-18

o« CONCLUSIONS
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Modeling Assumptions

The operating assumptions in the equations of motion are listed below. Assumptions (2) through
(4) are typical for airplane applications [8,13]. Assumptions (5) through (7) are atypical and lead to the
differences between the FIT model and the more typical aeroelastic equations of motion [8,13].

The structural finite-element model obtained for the F/A-18 was a lumped mass model, which
provided the principal motivation for assumption (1). For a continuum model, summations over the
lumped masses are replaced with integrations over the entire airplane. The finite-element model had both
lumped masses and lumped inertial quantities and both were utilized in the calculations. Assumption (2)
and (3) are consistent with each other. Assumption (2) leads to a generalized Hooke's law and
assumption (3) allows the superposition of deformation modes. Assumption (4) reflects the fact that
gravity gradients are only of concern in spacecraft dynamics.

Assumption (5) acknowledges that while deformation is assumed to be small, total vehicle angular
rate may not be small. The result is that products of total angular rate and deformation rates are retained in
the kinetic energy expression. The effect of assumption (6) is that the term resulting from summing
(integrating) the cross product of deformation with deformation rates over the total vehicle is retained in
the kinetic energy expression. Assumption (7) recognizes that a transverse deformation of a beam will
result in axial strain. This effect becomes critical in correctly predicting centrifugal effects and is best
explained in the simple example that appears later. Apart from assumptions (5), (6), and (7), the
following development closely parallels other developments of the aeroelastic equations [8,13].

(1) LUMPED MASS APPROXIMATION
(2) LINEAR STRESS/STRAIN
(3) DEFORMATION IS SMALL - SUPERPOSITION

(4) GRAVITY CONSTANT OVER THE AIRPLANE

FOLLOWING ATYPICAL AEROELASTIC ASSUMPTIONS WERE MADE

(5) PRODUCTS OF ROTATION RATE AND DEFORMATION
ARE NOT NEGLIGIBLE

(6) ELASTIC DISPLACEMENT AND ELASTIC VELOCITIES
MAY NOT BE PARALLEL

(7) NON-LINEAR STRAIN / DISPLACEMENT
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Symbols and Definitions

For the purposes of calculating kinetic energy, the total vehicle is viewed as a collection of small
rigid bodies centered at the finite-element node locations. The lumped mass (dm)i and the lumped inertia

[dI] i associated with the im node can be interpreted as the result of performing integrations over the

volume of the ih rigid body using g as a variable of integration and the mass density, G, as a weighting
function. The iLh' rigid body undergoes a translational deformation 511 and a rotational deformation Ql
The assumption of small deformations allows the rotation to be described as a vector and implemented as
a cross product. The vector L locates the undeformed position of the im rigid body in the vehicle body
frame. The origin of the body frame is at the center of mass of the total vehicle when the vehicle is in the

undeformed configuration. The vector R locates an arbitrary point of the i!;h rigid body in the inertial
frame.

REFERENCE POSITION OF
THE RIGID MASS ELEMENT
CENTERED AT NODE i

AIRPLANE L.
CENTER OF 1
MASS

...........................

MASS ELEMENT
AFTER ELASTIC
DISPLACEMENT

O = MASS / UNIT VOLUME

dmi = ”chg

T e o = [ffot(s-s)1 - 55 1ds
FRAME i
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Total Kinetic Energy

The total kinetic energy is calculated in two steps. First the kinetic energy of the im rigid body
(lumped mass) is found by performing the volume integration indicated in the brackets. The inertial

velocity of an interior point is squared, multiplied by the mass density, ©, and integrated over the small
rigid body. All volume integral expressions involving the variable of integration § can be resolved into
the "known" parameters, (dm)i and [dI]i, that are defined in the previous figure .. A summaton is then

performed over the small rigid bodies indexed by i. If the deformations are described as a sum of spatial
functions' (mode shapes) and time-dependent generalized coordinates, a separation of variables is achieved
The kinetic energy becomes a summation of terms where each term is a product involving time varying
coordinates and constant mass or length terms resulting from the summation (integration) over the total
vehicle.’

+ INTEGRATE OVER THE IDEALIZED LUMPED MASS TO GET
KINETIC ENERGY FOR EACH LUMPED MASS

« SUM THE KINETIC ENERGIES ASSOCIATED WITH EACH
LUMPED MASS

T=Ls {[l] 6(4R)-(4R) g
7 2 {oyEno(dtl ) (GB) s }

1

R=P+r +d +s+6xs
1

d = ¢.n3  TRANSLATIONAL DEFORMATION
iT T IN MODAL COMPONENTS

0 = Vv nJ ROTATIONAL DEFORMATION
i ] IN MODAL COMPONENTS
d TIME RATE OF CHANGE WITH
dtI RESPECT TO THE INERTIAL FRAME
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Kinetic Energy in Modal Components

The first three terms of the expression defining kinetic energy, shown below, are found
in the standard aeroelastic equations of motion developments [8,13] and represent "rigid" translational
energy, "rigid" rotational energy, and elastic kinetic energy, respectively. The term [Jo] is the inertia

dyadic of the total undeformed airplane expressed in body-frame components and has units of mass-

lengthz. The fourth line describes coupling between translational, rotational, and elastic momenta. If the
assumed mode shapes are the modes of free vibration of an unrestrained structure, they satisfy the first-
order mean axis conditions [8,13] and the terms, gj and hj are zero. The term Qj is simply the location of

the center of mass of the th mode shape in the body frame and has units of length. The term hj is the first

moment of the jm mode shape in the body frame using mass as the weighting function and has units of

mass-lengthz. The terms in the dashed-line box result from assumptions (5) and (6). The terms [J]j and
[J].k are the first and second partial derivatives of the inertia dyadic matrix with respect to elastic modes j
and k. The term %k results from summing (integrating) the cross product of mode shape j with mode k

over the vehicle and has units of mass-lengthz. For a more complete explanation, see reference 2.

Te+mV.V . RIGID BODY TRANSLATIONAL KINETIC ENERGY
+ L[ ]-@ - RIGID BODY ROTATIONAL KINETIC ENERGY
‘¥ Mjk"ﬁk . MODAL ELASTIC KINETIC ENERGY

. 3 . 3 j
+ m_°§jTIJ + Q'!’!jn + ml'QXan « ZERO FOR UNRESTRAINED

MODES
1. 4 1 nin®.e . NONLINEARITIES
78 {["]j11 + 7l ]jkn n } = RESULTING FROM
ASSUMPTIONS (5), (6)
. .k
+ o-h n’
(0] _J.kn n
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Illustration of Geometric Stiffness

The example shown below is taken from reference {10] and provides a simple paradigm of the beam
problem. Pictured is a simple 3 degree-of-freedom, planar system. A mass, m, is located at the
outermost point and is the only mass in the system. The structure rotates freely about the point P. The

angle between rod a and an inertial reference is given by y. There is a torsional spring, ke, and a linear

spring, k . The deflection of the torsional spring is given by 6 and the linear spring by d =13, where 8 is

a nondimensional deflection. Another coordinate system (x,y) is given by an axis system located at the
zero-strain position of the mass, m. The (x,y) coordinates are analogous to those typically used in the

beam problem. The coordinates (§,n) are the non-dimensional forms of (x,y). Both the (y,5,8) and the
(w,€,n) coordinate systems are equally valid for describing this system. The (\,3,0) system leads to a
particularly simple expression for strain energy. The reason is that a change in 8 produces only a linear
distortion in the spring, ka, and similarly for 6. Thus the strain energy, U, is given by,

U =(172) (k8® +k8” )

where k8 =k dr2. The (y,&.n) system produces a complex expression for strain energy. A change in 1

produces nonlinear changes in both springs and similarly for  if there is some deflection in M. Using the
relations,

5= -1+ M2 +1+2? and 6 = Tan'(M/(1+8))},

one gets for the strain energy, U, in terms of & and 1,

U =(1/2) { kgl -1+ In* + 1+ ¥ +k { Tan ' 1481 ¥ ).

F(1+8)

) « TWO CHOICES FOR COORDINATES: (v,5,6) OR (y,&,n)
« (5,6) -> SIMPLE EXPRESSION FOR STRAIN ENERGY

* (£,n1) -> COMPLEX STRAIN ENERGY EXPRESSION
« PARADIGM OF BEAM PROBLEM
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Comparison of Resulting Linear Models
If the full nonlinear equations are derived using the (,8,0) coordinates, the W equation removed,

and the quantities y and  are treated as parameters, the remaining two equations can be linearized in 6
and & and the resulting correct linear equations are given in case 1 below. Suppose the procedure is
repeated for the (y,E,n) coordinates except that a linear approximation for strain energy given by,

U ~(12) (kn” +k &},
is used, then the resulting equations are given as case 2 below [10]. The only differences occur in the

stiffness matrix. The foremost difference is that a de-stiffening result is predicted in case 2 for the 1
degree-of-freedom due to the spin rate when a stiffening effect should be predicted.

CASE 1: ¥ AND ‘.I’ GIVEN; ¥ EQUATION REMOVED; LINEARIZED IN 5 AND 6

o0 . . .2 L g .
L OJ]e 0 1Lv|}e ke+Iar\|l (Iar+ 21) V|6 - —(Iar+ I)v

oo +2 ° . + oo .2 °2
0 Ir ) LY o ) I,V ks_lr“’ ) (Iar+Ir)\J/

2
CASE 2: (¢,n ) COORDINATES; LINEAR STRAIN / DISPLACEMENT, U = (1/2) { ke n2 + k8§ }

2 oo

same | |n SAME n k =LV I¥ n|_ SAME
AS e + 2 AS + 9 — AS
ABOVE ABOVE M oo - Y ABOVE
3 3 - IarW ks I, v £
I =mr? I =mar
r ar
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Potential Energy

Returning to the equations of motion development for an airplane, the total potential energy is
composed of a component due to the work performed by strain and a component due to the work
performed against gravity. The gravity component is straightforward since gravity is assumed constant
over the airplane. If a second order expression is used for describing strain as a function of displacement
and a linear stress / strain relationship exists, then a fourth-order strain energy expression results [3]. The
strain energy expression, however, is accurate only to third order, so the fourth-order term is dropped. A
third-order term in the strain energy expression, shown in modal components below, would lead to
second-order stiffness terms in the final equations. If the third-order strain-energy term is left in this
form, then modes with significant axial displacement need to be included in the dynamic model. As seen
from the simple example, coupling occurs between axial and transverse displacement in the strain energy
expression when beam-like coordinates are used. Since, for airplanes, axial modes are typically much
higher frequency than transverse modes, the effects of the axial modes can be residualized. This
residualization is accomplished in the FIT framework by solving for the elastic displacements that result
from combinations of unit values of rotational velocity about the airplane body-frame axes. Thus for a
unit roll rate, p, the steady state deflections are calculated for the full finite-element model. These "static"
deflections are combined with the third order stiffness tensor to produce an increment to the basic

stiffness matrix that is appropriate for unit roll rate. Thus the j,km element of an incremental stiffness
matrix, [AK], is given by,

AK'k - AKG

p
] jkp™ ss °

The j,kth element of [AK] becomes one entry into the 3x3 matrix [I]gjk. Because of symmetry, the

matrix, [J]g 1o has 6 free parameters, and each is calculated by repeating this process for different

combinations of unit roll rate, p, pitch rate, q, and yaw rate, r. This process is discussed in greater detail
in reference [3].

POTENTIAL ENERGY = STRAIN + GRAVITY CONTRIBUTION

U:Us+ Ug

STRAIN ENERGY IN TERMS OF MODAL STIFFNESS MATRICES

g p 2,9 P4y, j. k
U (1/2)[Kjk +AKjkpn+ AKjkpqnn]n n

mn

- 19 1. ink
) [Ky —o-{z M }-eln’n

HIGHER ORDER TERMS RESULT FROM NONLINEAR STRAIN /
DISPLACEMENT EQUATIONS
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Final Equations - Unrestrained Modes

The final equations in modal form are shown below. These equations apply to the case where the
assumed modes satisfy the first-order mean axis conditions, otherwise additional coupling is present.
The terms that are inside the dashed boxes result from assumptions (5), (6), and (7). The terms outside
the boxes are equivalent to the equations seen in the more traditional approaches [8,13].

TRANSLATIONAL MOMENTUM
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Inertial Effects - Time History Responses

In assessing the effects of the additional terms in the FIT equations of motion on a predicted
response, a variety of cases were calculated. While all three axes were examined, the most interesting
responses involved roll rate. The responses shown here were presented at the 1987 Flight Simulation
Technologies Conference [2] and were generated prior to the incorporation of the geometric stiffness

terms, [718 1 in the simulation model. Preliminary runs made subsequently, but not presented in this

paper, suggest that the effect of the additional stiffness terms is small for the angular rates considered and
that qualitative conclusions drawn from the data presented in reference [2] are still valid.

The time responses were generated by injecting a roll command doublet at the actuator input. A
combination of aileron and stabilator was used. The initial conditions were straight and level flight at
Mach .7 at sea level. Responses were generated with ("terms on") and without ("terms off™) the
additional angular/elastic coupling terms that are part of the FIT equations of motion.

GOAL: ACHIEVE SUFFICIENT ANGULAR RATE TO EXCITE
INERTIAL RESPONSE

ROLL DOUBLET - 1 SECOND EACH SIDE
20 DEG AILERON / 10 DEG DIFFERENTIAL STABILATOR
INITIAL CONDITIONS

- MACH=.7
- SEA LEVEL
- STRAIGHT AND LEVEL 1 G TRIM

+ COMPARE RESPONSE WITH AND WITHOUT ANGULAR/ELASTIC
INERTIAL COUPLING

- "TERMS ON" - FIT MODEL
- "TERMS OFF" - TYPICAL ASE MODEL
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Lateral / Anti-Symmetric Response

For the anti-symmetric responses to the roll command, there was no discernable difference between
"terms on" and "terms off" responses. The responses shown below, roll rate and the third anti-symmetric
mode, are typical. The third anti-symmetric mode is characterized as a wing first-torsion mode with
significant missile pitch. The finite-element model had tip missiles. The reason that no difference
occurred is that for anti-symmetric modes, the elastic modes are excited by the terms pq, pr, and gr in the
angular/elastic coupling terms. Since the roll maneuver remained well-coordinated, the pitch rate, q, and
the yaw rate, r, remained small. Thus the coupling terms, pq, pr, and qr, remained small.

5
. TERMS ON
ROLL RATE 0 /\ \ ---------- TERMS OFF
RAD/SEC X‘ /
5
0.5
MISSILE PITCH/ /VJ/\V\AA !
WING 0 /
FIRST-TORSION
ASM 3 o5
0 1 2 3

TIME SECONDS

829




Symmetric Response - Set 1

The inertial coupling terms made no effect on rigid body symmetric responses. The angle-of-attack
response is shown below. The angle-of-attack at time equal zero is due to the 1-g trim. The second
response shown below is the first symmetric mode, wing first-bending. The y-axis indicates the
deflection of the mode in feet measured at the point of maximum deflection, presumably at the wing tip.
The mode is positive for tip-down deflection, so the mode is displaced about .25 feet tip-up at time zero.
While the angle-of-attack is clearly the principal driver of symmetric wing first-bending in this maneuver,
a discernable difference has occurred between the "terms on" and the "terms off” responses. Only two
symmetric modes showed more difference in "terms on/off" responses than the first symmetric mode and
these two modes are shown in the figure on the next page.

5
o —— /\ /_\ —— TERMS ON
1) e D U e TERMS OFF
V7
DEG
-5
0.5

WING | /\\

FIRST- 0 -
BENDING
SYM 1 7

0.5
0 1 2 3
TIME SECONDS
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Symmetric Response - Set 2

Symmetric modes 4 and 7 were the only modes to show significant inertially induced response.
Symmetric mode 4 is characterized by tip-missile yawing together with fin-bending and symmetric mode
7 is a wing first-bending in the fore/aft plane. The fact that roll rate squared is the principal driver is seen
clearly in the figure. The y-axis for the elastic mode responses shown below represents strain energy
absorbed normalized by that of the first symmetric mode. In other words, a unit deflection in modes 4 or
7 represents the same strain energy absorbed as would occur with a deflection of one foot in the first
symmetric mode. Since the wing is swept backwards, a forward deflection in the the wing results in
outboard movement of mass and is therefore excited by roll rate. A natural question to ask is if these sort
of responses can be predicted from merely examining the parameters of the simulation model.

20
SQUARE OF
ROLL RATE
10
2 2
RAD / SEC
0.1

MISSILE YAW / /‘ﬂw\
FIN BENDING /fr\\‘

SYM 4

-0.1

0.1
TERMS ON

WING IN-PLANE /“ \ /‘\
LATERAL A S TERMS OFF

FIRST-BENDING o =
(FORE/AFT)
SYM 7

1 2 3
TIME SECONDS
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Modal Sensitivity Parameter

As part of determining when inertial coupling might be important in an analysis, the following
simple parameter can be calculated. The parameter R.(®) defined below is simply a first order
approximation to the steady-state response of elastic mode j to a constant angular rate represented by the

angular velocity vector, ®. The Y constant is used to scale the responses so that for different modes j,
identical Rj's represent the same strain energy.

« MODAL DISPLACEMENT NORMALIZED BY STRAIN ENERGY

« APPROXIMATES RESPONSE OF MODE "j" TO CENTRIFUGAL
LOADING FOR A GIVEN ROTATIONAL VELOCITY

« MAX DESIGN ROTATIONAL RATES ARE LIKELY INPUTS

1
2
M.
y = b1 ;
MY nd
11 1
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Modal Sensitivity at Max Roll

The parameter R.(w) is shown below for each of the 20 elastic modes included in the simulation
model. The input angular rates correspond to the max roll rate achieved at about .9 second into the
maneuver. The angular velocity vector @ = [p,q,r]T in body-frame components. The fourth and seventh
symmetric modes are clearly singled out by the Rj(@) parameter. Again, the units of Rj(g)) are strain
energy normalized to the first symmetric elastic mode.

R ()
MODE SYMMETRIC ANTISYMMETRIC

1 -.0283 .0008
2 .0048 -.0120
3 .0064 .0004
4 .0739 .0039
5 .0075 -.0001
6 -.0028 -.0090
7 .0899 -.0016
8 -.0115 -.0006
9 -.0043 .0018
10 -.0027 -.0012

® = [47,.17,.03] (RAD/SEC)
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Illustration of R Parameter

The amplitudes of the response of symmetric modes 4 and 7 are essentially equal to the
values of the R parameter calculated in the previous figure. This parameter, which is a linear
approximation to steady-state response, is far from the end of the story. In the case of the
FIT simulation model, even though symmetric modes 4 and 7 were excited by inertial effects,
these modes are essentially decoupled from the rest of the dynamic model. This occurred
because both modes 4 and 7 are dominated by in-plane bending of the wing lifting surface. A
doublet-lattice code was used to calculate the generalized aerodynamic forces and in-plane
motions produce no change in the normal washes induced at the 3/4 chord points of the
aerodynamic boxes. Thus none of the other modes are significantly affected by symmetric
modes 4 and 7.

One can imagine other cases where inertially affected modes are more coupled to the rest
of the system dynamics. One case is if such a mode contributes to a feedback signal.
Another case might occur in an underwing store configuration. As the underwing stores were
slung outboard by centrifugal forces, they would induce out-of-plane bending in the wings,
the primary lifting surfaces.

R (@) =.074 AT MAX ROLL POINT

0.1
MISSILE YAW / \ /"\\A TERMS ON
FIN BENDING 0 A — TERMS OFF
SYM MODE 4

-0.1

R7( ®W) =.090 AT MAX ROLL POINT

0.1
WING IN-PLANE \ /\
LATERAL 0 o S A
FIRST-BENDING t
(FORE/AFT)
SYM MODE 7

-0.1

0 1 2 3

TIME SECONDS
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Conclusion

An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft
has been developed. While the author realizes that the subject of modeling rotating, elastic structures is
not closed, it is believed that the equations of motion developed and applied herein are correct to second
order and are suitable for use with typical aircraft structures. The equations are not suitable for large
elastic deformation. In addition, the modeling framework generalizes both the methods and terminology
of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling.

Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing
aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must
be approached with care. In keeping with the same engineering judgment that guided the development of
the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is
expected to be small. A parameter has been presented to help in the determination of when such effects
are significant. The parameter does not tell the whole story, however, and modes flagged by the
parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e. the
inertially affected modes can influence other modes. Classically, configurations where nonlinear inertial
effects can come into play are characterized by complex geometries such as stores mounted under the
wings or the presence of a T-tail.

« INTEGRATED NONLINEAR MODEL DEVELOPED

- CORRECT TO SECOND ORDER
- SUITABLE FOR AIRPLANE STRUCTURES

o GENERALIZES CONVENTIONAL ASE MODELS AND NONLINEAR
RIGID-BODY MODELS

o« ANGULAR / ELASTIC INERTIAL COUPLING

- RIGOROUS INCLUSION PROBLEMATIC
- EFFECT NORMALLY SMALL FOR AIRPLANES
- EXCEPTIONS CHARACTERIZED BY

+ R(®) PARAMETER IS SIGNIFICANT FOR SOME MODE

AND
+ AFFECTED MODE IS COUPLED TO THE REST OF THE MODEL
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INTRODUCTION

This paper., although much more tersely written, is similar in content to
reference 1; however, additional results are presented herein.

Since the early works (refs. 2 and 3) describing the freedoms in multivariable
systems beyond eigenvalue assignment, a number of researchers have expanded
and applied the eigenspace design approach (e.g. refs. 1, and 4-9). The
contribution of reference 1 and this paper is to provide a systematic
procedure for solving for eigenspace variables such that design requirements
are met. The design requirements are expressed as inequality constraints
which must be satisfied by a constrained optimization procedure.

Results are presented which show an application of the procedure to the design
of a control law to suppress symmetric flutter on an aeroelastic vehicle. 1In
this example, the stability of the flutter mode is sensitive to change in
dynamic pressure and eigenspace methods are used to enhance the performance
properties of a "minimum energy" linear quadratic regulator (LQR) designed
controller. Results indicate that the eigenspace methods coupled with order
reduction can provide a low-order controller such that the closed-loop system
stability is relatively insensitive to changes in dynamic pressure. However,
some sacrifice of robustness with respect to error at the input occurred; this
design example thus illustrates the necessity for tradeoff of conflicting
requirements.

An outline of the material presented in the paper follows.

« EIGENSPACE FREEDOMS

« DESIGN APPROACH

« PLANT DESCRIPTION

« STATE FEEDBACK

« FULL ORDER OBSERVER

« REDUCED ORDER CONTROLLER
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EIGENSPACE DESIGN FREEDOMS

Consider a linear time invariant system with m inputs u. For the case of a
full-state controller, one can place all controllable poles. Ai: all eigen-
vectors, vi, can be modified, including those associated with uncontrollable
poles (refs. 2, 3, and 7). Each closed-loop eigenvector, vi. must, however,
lie in the subspace, Wi, that is spanned by

(AMI-A)"1B

It has been assumed here that the eigenvalues are all distinct. The basis for
Wi 1is computed using singular value decomposition techniques (refs. 10 and
11). Thus, as shown below, a designer is free to choose m variables «cj

for each real eigenvalue (2m variables for each complex conjugate pair of

*
eigenvalues). When the constraint that vijvy = 1 is imposed, the number of

free variables becomes m-1 for real eigenvalues (2(m-1) for each complex

*
conjugate pair of eigenvalues). Here vy s the conjugate transpose of vj.

SYSTEM
dx/dt = Ax + Bu uismby1

STATE FEEDBACK
u=-Kx

FREEDOMS

Aj PLACE ALL CONTROLLABLE POLES

Vi MODIFY ALL EIGENVECTORS

¢j IS mx1 AND W; IS BASIS FOR
(i -A) B

839



840

DESIGN APPROACH

Given a linear model, the design process for development of a control law to
suppress symmetric flutter begins with the assumption of the availability of
full-state feedback. A minimum energy stabilizing feedback design is obtained
using linear quadratic regulator (LQR) theory (ref. 12). The minimum energy
stabilizing solution is the solution which occurs when the performance of the
controller is measured solely by the control deflection requirements (i.e.,
the state weighting matrix is zero) (ref 12).

The second step is to utilize a subset of the eigenvector freedoms to modify
the full-state feedback design to minimize the sensitivity of the critical
closed-loop pole to variation in a system parameter. This minimization is
performed subject to design constraints.

The third step is to relax the full-state feedback assumption and develop a
full-order observer which approximately recovers the robustness character-
istics of the reduced sensitivity full-state feedback design (ref. 13).
Eigenspace techniques are employed in developing the observer (refs. 6 and 7).

The eigenspace approach to observer design (refs. 6 and 7) is an alternate
approach to that of reference 13. The two are equivalent in the limit in that
each recovers the full-state robustness characteristics for plants with no
right half plane transmission zeros. The eigenspace approach is more flexible
in the sense that one can individually approach the limit for selected
observer poles as opposed to the simultaneous approach of reference 13,

The final step is to reduce the full-order controller to an order that is low
enough to be implementable.

— LQR DESIGN (MINIMUM ENERGY STABILIZING FEEDBACK)

—— EIGENVECTOR MODIFICATION FOR REDUCED SENSITIVITY
(FULL-STATE FEEDBACK)

—— OBSERVER DESIGN FOR LOOP TRANSFER RECOVERY (FULL-
ORDER OBSERVER)

—— CONTROLLER ORDER REDUCTION



EIGENSPACE TECHNIQUES TO MEET REQUIREMENTS

The method is to choose a subset of the closed-loop eigenvectors to be
modified and then to determine values for each selected vector c¢j such that
a function of these variables is minimized. 1In this study the magnitude of
the sensitivity of the flutter mode eigenvalue to variations in dynamic
pressure is minimized subject to ng constraints. In the equations below 8u

and 815 are upper and lower bounds, respectively, on the jth constrained

variable gy (e.g. control saturation). The scalar variable, Ej 2 0, is the
violation of the jth constraint. The vector uj is a left eigenvector of the
system matrix A.

The constrained optimization process appends a weighted square of each

constraint violation, Ej. to the function to be minimized (P is a positive
definite diagonal weighting matrix). In the limit as each weight Pyj

approaches infinity, |S|%2 is minimized subject to the constraints provided
that the number of constraints on a constraint boundary in this limit is less
than the number of design variables (ref. 14). A nongradient optimizer was
employed in this study (ref. 15).

The constraints to be employed in this study are on root mean square (rms)
values for control deflections, control rates, and incremental wing root
bending moment, shear, and torque due to random gust inputs. In addition a
constraint was imposed upon robustness of the control law with respect to
error at the plant input.

—— PARAMETERIZATION OF ATTAINABLE EIGENVECTORS

Vi=WiCi ,l=1,n

—— SENSITIVITY
u"‘i (d A/dq) v;
ut v,
i
— CONSTRAINTS
. = . - -g.) , j=1,
gj= max(©,9;-9,, 9.-9) . iFing

—— AUGMENTED PERFORMANCE INDEX
Jp= IS|2+ " Pg

—— NONGRADIENT OPTIMIZATION
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CONTROL SURFACE AND SENSOR LOCATIONS
(Symmetric Full Span)

The mathematical model is based upon one that represents an actual aercelastic
drone vehicle (ref. 16). The actual vehicle has only one effective control
surface for flutter suppression (the trailing—edge outboard surface shown in
the planform view). For this study fictitious leading-edge and inboard
trailing-edge controls have been added per semispan to provide three effective
symmetric and antisymmetric flutter suppression surfaces. The surfaces are
driven by high bandwidth actuators each having transfer functions

180 (314)2
8i = 8(: i
(s + 180) (s? + 251s + (314)2)

where & is commanded deflection and &; is actual. The poles for each

€3
actuator are separated slightly in the mathematical representation to improve
numerical conditioning.

Three vertical accelerometers are located as indicated. These high bandwidth
devices have virtually no dynamics in the frequency range of interest and are,
therefore, modeled as unity gains. The sensor locations correspond to three
of the four sensors on the actual wing. The locations were chosen early in
the wing design cycle as desirable for flutter suppression sensors based upon
analytical studies (ref. 17).

\-—' LEO"

@ sensor 1
A sensor2
| sensor 3

TEO"

*Trailing-edge inboard (TEI); leading-edge inboard (LEI); trailing-edge
outboard (TEO).
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DESIGN MODEL
(Symmetric Modes)

The aircraft is designed to be symmetric about a plane perpendicular to the
wings and to intersect them at the centerline. Consequently, to a good
approximation for small perturbations from rectilinear flight, the symmetric
and antisymmetric degrees of freedom are uncoupled. Thus, symmetric and anti-
symmetric designs can be obtained separately. This study considers symmetric
modes only.

The underlying symmetric evaluation model contains 2 rigid body and 11 elastic
modes. A lower-order linear time invariant state space design model was
extracted from the evaluation model. The design model was chosen by a trial
and error truncation of modes. The effect of a candidate truncation upon
frequency responses of interest and upon the loci of eigenvalues with dynamic
pressure was observed. Modes having little impact were deleted. The modes
deleted included the rigid-body modes, predominantly fuselage and tail modes
and higher-order wing modes. If they are troublesome, rigid-body contri-
butions to the actual sensor (accelerometer) outputs can be removed either by
employing a high pass filter or by making use of measured linear and angular
accelerations at the center of mass.

The resulting design model is twenty-sixth order. The uncontrollable gust
states correspond to a Dryden filter representation with a gust scale length
of 2500 ft. The rational function approximation (ref. 18) made to the
unsteady aerodynamic forces included one lag term having a reduced frequency
of 0.13. The B matrix is independent of the dynamic pressure., q. The u
vector contains the three commanded control deflections and a white noise
input into the Dryden filter.

dx/dt= A(q) x + Bu

y = C(q) x
5 MODES (SECOND ORDER) 10
1 AERO LAG PER MODE 5
3 THIRD-ORDER ACTUATORS 9
2ND ORDER GUST 2

26 STATES
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DYNAMIC PRESSURE RQOT LOCUS
(Uncontrolled Plant)

A variation of the uncontrolled design model roots with dynamic pressure is
shown. The variation corresponds to an altitude variation at a fixed Mach
number of 0.775. With no feedback, the actuator poles are stationary near
(-180, 0) and (-120, +280).

The circle symbol corresponds to the lowest dynamic pressure. The highest
dynamic pressure point corresponds to a dynamic pressure 44 percent above that
at flutter. The 44 percent increase in flutter dynamic pressure corresponds
to what would be required if active controls were to provide the full 20
percent margin above the design dive speed for a transport aircraft.

The flutter is explosive (i.e., the time to double amplitude decreases rapidly
with increasing dynamic pressure). The interacting modes exhibit classical
frequency coalescence. The zero dynamic pressure characteristics of the
retained elastic modes in ascending frequency order are 1) wing bending, 2)
second wing bending with some torsion, 3) wing fore and aft bending with a
torsional normal component, 4) wing torsion, and 5) a higher order wing mode
exhibiting bending and torsion.

The * on the figure depicts the point for which the controller was designed.

This design point is approximately 11.5 percent above the uncontrolled flutter
dynamic pressure.
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DYNAMIC PRESSURE ROOT LOCUS
(Min Energy LQR Controller)

The locus of closed-loop roots with dynamic pressure for the minimum energy
Linear Quadratic Regulator (LQR) full-state feedback controller shows that the
closed-loop system remains stable only up to a point 20 percent above that of
open-loop flutter (7.7 percent above the design point). One could maximize
robustness with respect to error at the input by repeating the LQR design at
each dynamic pressure and scheduling the controller as a function of dynamic
pressure: however, it is of interest here to see what tradeoffs are required
to minimize the effect of dynamic pressure on the closed-loop stability
characteristics.
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DESIGN CONSTRAINTS

The constraints to be imposed on the reduced sensitivity full-state feedback
design will now be enumerated. The first two sets of constraints were that
the rms control deflections and rates not exceed 5 deg and 372 deg/sec,
respectively, when the system was forced by a vertical gust field having a 12
ft/sec rms gust velocity. The physical control limits were *15 deg and %740
deg/sec. Bending moment, shear. and torque rms incremental loads at the wing
root were also constrained to remain near their values at a stable point
(lowest dynamic pressure point on the previous root locus). Finally, the
minimum singular value of the return difference matrix was constrained to be

Omin = min o(I + K(jw)G(jw)) > 0.6
©

where G(s) is the plant transfer matrix and K(s) is the controller transfer
matrix. This singular value is a measure of robustness due to multiplicative
error at the input. Error occurrences at other points are important but are
not addressed herein. The choice of Qpin » 0.6 allows an appreciable tradeoff

to occur between Gpin and the sensitivity reduction objective. It is also
representative of robustness levels that have been achieved in implementable
designs (e.g. ref. 19).

A value for g(jw), the minimum singular value at the frequency ®, near zero
means that the nominal closed-loop system is near instability at that
frequency. Thus, even a small difference between the true plant and its
nominal representation can cause instability. For the minimum energy linear

quadratic regulator (LQR) full-state feedback design of this paper g(jw) =

0(j®) = gnin = 1 at all frequencies. (Here o(jw) is the maximum singular
value at the frequency ®.) This fact can be seen by examining the
development of the Kalman inequality (e.g. ref. 20, p. 7-3). When the state
weightings are null (minimum energy controller) and the control weightings are
unity, the equality holds.

RMS RMS RAMS RMS RMS
CONTROL CONTROL BENDING SHEAR TORQUE MiINIMUM
DEFLECTION RATE MOMENT Ib in-lb SING. VALUE
DEGREES  DEGREES/SEC in-Ib
UPPER BOUND 5 372 30,000 1,000 2,000 1.
LOWER BOUND 0 0 0 0 0 6

RMS GUST VELOCITY 12 FT/SEC
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DYNAMIC PRESSURE ROOT LOCUS
(Reduced-Sensitivity Full-State Feedback)

A full-state feedback design was obtained for which the critical eigenvalue
had reduced sensitivity to dynamic pressure variation. This design satisfied
the constraints at the design point. The design was achieved by utilizing the
eigenvector freedoms associated with the two coalescent modes. Thus, there
were 12 free variables (eight after mode normalization constraints). The

resulting control law stabilizes the system over the full range of dynamic
pressures.
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SINGULAR VALUES OF (I + K(s)G(s))
(Reduced-Sensitivity Full-State Feedback)

The locus of maximum and minimum singular values of the return difference for
the reduced sensitivity state feedback controller shows the constraint of 0.6
was met as prescribed. The figure illustrates the tradeoff that has occurred.
(for comparison, as discussed earlier, the minimum energy LQR controller with
unity control weightings has a minimum (and maximum) singular value of one at
all frequencies). Further analysis is required to assess how conservative the
unstructured singular values are; nevertheless, a minimum value of 0.6

indicates a substantial capability for rejection of input disturbances.

SINGULAR 1
VALUE .8

.6

4

10 100 1000

FREQUENCY, RAD/SEC
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OBSERVER DESIGN

Eigenspace techniques were also employed to obtain a full-order observer. The
approach was to place observer poles near the finite plant transmission zeros
and the corresponding observer eigenvectors at plant left zero directions
(refs. 6 and 7). Poles in excess of the transmission zeros were placed far
into the left half plane with arbitrary eigenvectors. The observer poles
corresponding to the six transmission zeros at zero (from the three sensors
being accelerometers) were displaced an arbitrary five units into the left
half plane to avoid problems associated with implementation of pure
integrators. In the equations H is the observer gain matrix, Kn is the
reduced-sensitivity full-state feedback gain matrix and the subscript "o"
emphasizes that the controller is developed for the design point but then
evaluated at off-design points.

SYSTEM MODEL
dx/dt = Ax + Bu

y = Cx

CONTROLLER
dz/dt = Hy + (Ag- BoKp-HCyp) 2z

U:-KMZ
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DYNAMIC PRESSURE ROOT LOCUS
(Reduced-Sensitivity Feedback Plus Full-Order Observer)

The locus of poles with dynamic pressure for reduced-sensitivity full-state
feedback plus a full-order observer to estimate the states given only three
accelerometer outputs shows that stability was also achieved for this case
over the full dynamic pressure range. One can see by comparing this figure
with the corresponding one for reduced-sensitivity full-state feedback that
controller poles are located near (-5, 0) rad/sec, (-130, 0) rad/sec, a
lightly damped complex conjugate pair near a frequency of 200 rad/sec and a
complex conjugate pair near a frequency of 340 rad/sec. If the true plant
pole/zero pair near 200 rad/sec is different than that of the design model,
the closed-loop performance in this frequency region may be substantially
degraded. Further discussion of this point is given below in the section
describing the reduced-order controller performance with respect to the
evaluation model of the plant. Other poles not shown here are further in the
left half plane than the limits of the figure. A compilation of the full set
of observer poles at the design point and a locus of all closed-loop poles
with dynamic pressure are given in reference 1.
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SINGULAR VALUES OF (I + K(s)G(s))
(Reduced-Sensitivity Feedback Plus Full-Order Observer)

A small degradation in minimum singular value resulted from adding the
observer to estimate the states. The minimum singular value in this case is

about 0.5 as compared with 0.6 in the reduced-sensitivity full-state feedback
case.

SINGULAR 1
VALUES g

FREQUENCY, RAD/SEC
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CONTROLLER ORDER REDUCTION

The full-order controller was then reduced from 26th order down to eighth
order. The process employed in the reduction was to determine which
controller states had little impact upon controller performance. The
controller was transformed to modal form, modes were truncated based upon
small residues and/or large separation from the flutter frequency, and the
resulting closed-loop root locus and minimum singular value of the return
difference matrix were examined: this allowed determination of the highest
frequency controller mode that should be retained. Relatively unimportant
modes having eigenvalues with amplitudes greater than the highest frequency
mode to be retained were temporarily included in the controller represen-
tation. The input and output controller matrices were balanced and a second
modal decomposition was performed. The temporarily included modes were then
removed by residualization. For this case nine states were removed by
truncation and nine states were removed by residualization.

The resulting eighth-order controller has six poles clustered near (-5. 0)
rad/sec and one complex conjugate pair near a frequency of 200 rad/sec.

TRUNCATION
MODAL DECOMPOSITION
TRUNCATE MODES WITH SMALL EFFECT ON CONTROL

RESIDUALIZATION
BALANCED REALIZATION
RESIDUALIZED FAST MODES

REDUCED ORDER CONTROLLER
EIGHTH ORDER
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DYNAMIC PRESSURE ROOT LOCUS
(Evaluation Plant with Reduced Order Controller)

This figure shows that stability is achieved over the full dynamic pressure
range with an eighth-order controller. In fact, the sensitivity of the
critical closed-loop pole to dynamic pressure is lower for this controller and
the evaluation model of the plant than was found for the design model with
reduced sensitivity full-state feedback. The retained controller poles were
the six poles near (-5, 0) rad/sec, and a very lightly damped complex
conjugate pair of poles at a frequency near 200 rad/sec.

The latter controller poles which have associated zeros near but to the left
of them in the left half plane are troublesome since they and the corre-
sponding plant poles are severely underdamped. From a stability standpoint
these controller poles can be removed for the nominal system; however, the
singular value measure of robustness is then degraded substantially at this
frequency. For this particular vehicle, one can argue for two reasons that
the problem is not real but arises only due to a plant modeling deficiency.

The first reason is that the vehicle has been wind tunnel tested with no
problems occurring in this frequency range. The second reason is that the
plant mode at this frequency is predominantly fore and aft bending with a
small amplitude torsional component. The doublet lattice aerodynamic compu-
tation produces no aerodynamic damping due to the fore and aft motion. Thus,
the mode should probably be further in the left half plane than is the case
for the mathematical model. In general, however, one would prefer to gain
stabilize or perhaps notch out a high-frequency underdamped pole that remains
essentially stationary.
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SINGULAR VALUES OF (I + K(s)G(s))
(Evaluation Plant Model with Reduced Order Controller)

The minimum singular value of the return difference matrix for the eighth-
order controller and the evaluation model of the plant is about 0.44 as
compared with 0.5 for the full-order controller and the design model. This is
a guaranteed margin and may be quite conservative. The spike seen at a
frequency of 92 rad/sec is due to a mode in the evaluation model that was not
accounted for in the design. The mode is a predominantly fuselage mode that
remains unchanged in frequency over the dynamic pressure range. It could be
dealt with effectively with a notch filter.

SINGULAR
VALUE
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RMS PERFORMANCE
(LQR and RSFSF)

All of these results are for a Dryden gust spectrum with rms gust input of 12
ft/sec. The rms control power performances for LQR at the design point are on
the order of 10 to 25 percent of the constraint.

For the reduced-sensitivity full-state feedback (RSFSF) design, i.e., the
eigenspace reduced sensitivity design, the rms control effort at the design
point varies from approximately 100 to 225 percent larger than for LQR for
each of the outboard surfaces. Lower usage is made of the smaller, less
effective, inboard trailing-edge control surface. An increase in rms output
with increasing dynamic pressure is evident; the sharper increase between the
last two points is due to the larger dynamic pressure difference here than for
other pairs of points and, more importantly, to the low damping in the
critical pole at the highest dynamic pressure condition. Small constraint
violations occur at the highest dynamic pressure.

Dynamic Pressure, Ib/in?

/— design point

RMS 4.417___ 4.76 5.141 5.537 _ 6.639
5, TEO .480 .475 571 2.07
deg TEI .542 .460 .494 1.62
LEO .899 .768 .831 2.74
E:, 8 TEO 49.9 56.6 71.3 248.3
—1|deg/sec | TEI 41.5 46.5 57.8 199
LEO 70.1 78.5 97.7 336
M, In-lb | Moment | 24,337 25,727 |27,146 |29,969
S, Ib Shear 455.5 479.8 505.1 582.4 | ---
T, In-Ib | Torque a648| 576 823.4| 3,470.8
T 1.45 1.20 1.11 1.47 6.11
3 TEIO .220 .205 .215 .261 .689
deg LEO 1.98 1.60 1.42 1.72 6.28
w
%) 5 TEO 158.5 164.1 174.5 196.6 | 438.8
L ’ TEI 22.7 24.5 27.4 32,5 72.3
téi deg/sec | LEO 163.5 165.5 171.2 186.9 | 400.5
M, in-lb Moment |24,158 25,479 27,042 29,010 39,587
S, Ib Shear 440.2 468.3 501.1 5416 7483
T, in-Ib | Torque 352.5 4149 542.7 779.0 | 2,647

CONSTRAINTS:

Srms < 5 deg, 3, mg < 372 deg/sec
M, g < 30K In-lb

Srms< 1000 Ib, Trms< 2000 in-ib
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RMS PERFORMANCE
(FOC and FOM/ROC)

For the full-order controller (FOC) the utilization of the TEI control is
further reduced as compared to the RSFSF results on the previous page. The
TEO rms deflection is approximately quadrupled as compared with RSFSF except
at the highest dynamic pressure; the LEO control deflection is also increased
except at the highest dynamic pressure where it is reduced by over 30 percent.
The rms rates are somewhat reduced as compared to RSFSF for the LEO surface.
Wing root torque is higher at lower dynamic pressure and lower at the highest
dynamic pressure as compared to the RSFSF results. No constraint violation
occurs for control rate but the TEO deflection constraint is violated at the
two higher dynamic pressures.

More violations occur when the eighth-order controller is coupled with the
evaluation model of the plant (FOM/ROC). Little of the increased activity is
due to controller reduction; this was found by comparing the design model
full-order controller results (FOC) with the design model reduced order
control results (not shown here). The increased activity of the FOM/ROC as
compared with the FOC is primarily a result of contributions to the output
from the modes in the evaluation model that were absent in the design model.
For the FOM/ROC case, rate violation occurs only for the TEO control at the
highest dynamic pressure. The rms deflection violations are small except for
TEO at the highest dynamic pressure.

Load rmg violations are also small except at the highest dynamic pressure.
The loads computations are only approximate for the FOM case because modal
load coefficients were only available for the five modes retained in the
design model.

design point
Dynamic Pressure, Ib/in® / an P
RMS 4.417  4.768 5.141__ 5,537 _ 6.639
5, TEO 4.04 4.38 4.78 5.29 7.41
d TEI d41 156 176 202 .269
eg LEO 2.37 2.54 2.75 3.01 4.07
ol s, Te0 | 1445 160.1 181.2 | 208.4 | 302.8
Oldeqrsec| TE! 17.1 18.9 21.2 24.1 28.9
WL {deg LEO 96.0 104.9 116.7 | 132.7 | 286.5
M, in-1b | moment |25:129 | 26,259 | 27,475 |28,648 |32,277
S, b | shear 465 488.7 513.6 540.1] 619.5
T, in-b | Torque 827.3 970.9| 1,150 1,375 2,300
5 TEO 4.72 5.21 5.84 6.66 11.05
’ TEIl .162 .183 210 243 343
o deg | LEO 2.66 2.91 3.21 162 5.74
g 5, TEO 181.3 203 231.9 | 270.3 | 416.1
=! deg/sec TEL 19.8 2 24.6 27.44 28.35
(E) 9 LEO 106.4 118 133.8 | 154.8 | 225.29
w
M, in-Ib| Moment |27,363 28,774 | 30,277 131,924 (38,013
S, Ib Shear 503.8 533 564.4 599.2 728.9
T, in-lb| Torque 962 1,155 1,398 1,718.9 | 3,423.3

CONSTRAINTS:  Bypg < 5 deg, 5,mg < 372 deg/sec

M ms < 30K in-Ib

srms < 1000 Ib, Trms< 2000 in-lb



SUMMARY

A constrained optimization methodology has been developed which allows
specific use of eigensystem freedoms to meet design requirements. A subset of
the available eigenvector freedoms was employed. The eigenvector freedoms
associated with a particular closed-loop eigenvalue are coefficients of basis
vectors which span the subspace in which that closed-loop vector must lie.
Design requirements are included as a vector of inequality constraints.

The procedure was successfully applied to develop an unscheduled controller
which stabilizes symmetric flutter of an aerocelastic vehicle to a dynamic
pressure 44 percent above the open-loop flutter point. Eigenvector freedoms,
for fixed eigenvalue locations, of the two coalescent modes were employed to
minimize the sensitivity of the critical closed-loop eigenvalue to dynamic
pressure variation subject to control power, loads, and robustness
constraints. The reduced sensitivity was achieved at the expense of reduced
robustness to errors at the input.

The design process proceeded from full-state feedback to the inclusion of a
full-order observer to the selection of an eighth-order controller which
preserved the full-state sensitivity characteristics.

Only a subset of the design freedoms was utilized (i.e., assuming full-state
feedback only four out of 26 eigenvectors were used, and no variations were

made in the closed-loop eigenvalues). Utilization of additional eigensystem
freedoms could further improve the controller.

« CONSTRAINED OPTIMIZATION METHODOLOGY DEVELOPED TO USE
EIGENSYSTEM FREEDOMS TO MEET REQUIREMENTS

« SUCCESSFULLY USED EIGENVECTOR FREEDOMS TO LOWER
SENSITIVITY TO DYNAMIC PRESSURE VARIATION

« REDUCED SENSITIVITY TO DYNAMIC PRESSURE ACHIEVED AT
EXPENSE OF ROBUSTNESS AS MEASURED BY MINIMUM SINGULAR
VALUE OF RETURN DIFFERENCE MATRIX

« EIGHTH ORDER CONTROLLER FOUND WHICH PRESERVED
REDUCED SENSITIVITY CHARACTERISTICS

« UNUSED EIGENSPACE FREEDOMS COULD FURTHER IMPROVE
CONTROLLER
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Abstract

As part of Langley Research Center's commitment to developing multidisciplinary
integration methods to improve aerospace systems, the Functional Integration Technology
(FIT) team was established to perform dynamics integration research using an existing aircraft
configuration, the F/A - 18. An essential part of this effort has been the development of a
comprehensive simulation modeling capability that includes structural, control, and propulsion
dynamics as well as steady and unsteady aerodynamics. The structural and unsteady
aerodynamics contributions come from an aeroelastic model. Some details of the aeroelastic
modeling done for the FIT team research is presented in this paper. Particular attention is
given to work done in the area of correction factors to unsteady aerodynamics data.
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Dynamics of an Actual Vehicle

The dynamics of an actual flight vehicle are always integrated. For better or worse, all the
physical elements of the vehicle and its operating environment interact to varying degrees
continually and without exception. It is only when we desire to analyze or design a complex
physical system that nature's continuum becomes discretized into specialties and segregated
into disciplines. It's recognized, of course, that real systems are not so discretized and some
"multidisciplines” have emerged and are given due consideration in analysis and design.
Aeroelasticity and its descendent, aeroservoelasticity, are examples.

Even where "multidisciplines" have not emerged to deal with complex physical interac-
tions, interdisciplinary communication is still established to analyze and design the vehicle. A
structures group will obtain force and pressure data from the aerodynamics, propulsion, and
guidance and control groups to define the operating environment and, particularly, loads to
which the structure is subjected [1]. In turn, the structures group might provide the guidance
and control group with modal dynamics and, more likely, flexible stability derivatives and
maneuver constraints.

However, the cross - disciplinary data flow is not always smooth. Each group uses models,
methods, theories, and assumptions peculiar to its own discipline. This state of affairs makes
one discipline seem remote and even incomprehensible to another discipline even though they
are all subject to the same laws of physics and may be involved in designing parts of the same
airplane. So, there is still a need for more in-depth integration of multiple disciplinary
techniques [2].

DYNAMICS

OF AN
ACTUAL VEHICLE

I inteqgrat

servo

hMuﬂdﬁy

Maneuverability

Performence ontrole

Stability
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FIT Background

In its statement of mission and goals [3], NASA's Langley Research Center lists that one of
its major goals is to "develop multidisciplinary integration methods to improve aerospace sys-
tems.” In pursuit of this goal two working groups were formed in January of 1985. One group,
known as ACIG (for Aircraft Configuration Integration Group), was to concentrate on structur-
al and aerodynamic configuration parameters. The other, known as the FIT (for Funcional In-
tegration Technology) Team, would work on the integration of vehicle dynamics.

Using an existing configuration, specifically the F/A - 18, the FIT Team has been working
toward two major objectives: improving the effectiveness of piloted simulation in the prelimin-
ary and conceptual design phases, and removing unfavorable or exploiting favorable dynamic
systems interactions. The plan is to eventually merge the activities of the two groups to pro-
duce comprehensive, integrated analysis and design methodologies.

- A NASA/LaRC Major Goal - - "Develop multidisciplinary
Integration methods to improve aerospace systems"

- Two Working Groups Formed:
- Aircratt Contiguration Integration Group ( ACIG ) - Aero & Structures

- Functlonal Integration Technology ( FIT ) - Dynamics Integration

- Improve Effectiveness of Piloted Simulation in Preliminary
and Conceptual Design Phases

{Remove Unfavorable

Dynamic Systems Interactions
Exploit Favorable
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FIT Aeroelastic Model

An essential part of the FIT effort has been the development of a comprehensive simulation
modeling capability that includes structural, control, and propulsion dynamics as well as
steady and unsteady aerodynamics [4]. The structural and unsteady aerodynamic contributions
come from the aeroelastic model. The aeroelastic model of the F/A - 18 used in the FIT
studies consists of a finite element beam model obtained from the manufacturer, and a doublet
lattice model constructed using ISAC (Interaction of Structures, Aerodynamics, and Controls,
Ref. 5). Mode shapes are determined from the structural model and used with the doublet
lattice model for the computation of generalized oscillatory aerodynamic loads. A discussion
of some modeling details follows.

ISAC* (Doublet Lattice)
Finite Element Model Model

Mode
Shapes

* Interaction of Structures,
Aerodynamics, and Controls
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Structural Modeling

In the general nonlinear equations of motion of a free-flying aeroelastic aircraft, a great
deal of coupling between the body and elastic momenta can occur unless the body reference
axes are chosen to be "mean axes" [6, 7, 8]. So, it is advantageous to use vibration modes that
satisfy the mean axis conditions. Free vibration modes theoretically satisfy these conditions
exactly and the mode shapes for this model were determined for the unrestrained structure.
However, computations showed that the conditions were not satisfied exactly [6], likely as the
result of computational error. Since the mean axis conditions are known, the mode shapes
could, in principle, be modified so as to satisfy the conditions. But the mean axis conditions
themselves are nonlinear, making it difficult to determine the modifications. Therefore, only
the linear portions of the conditions were satisfied by applying small translational and
rotational corrections to the mode shapes. This leaves small nonlinear terms coupling the body
and elastic angular momenta. These terms are retained in the nonlinear equations of motion [6,
7]. If the structure were undergoing free vibration in a gravity-free vacuum, a true mean axis
system would be observed to be perfectly stationary with respect to an inertial reference.
However, since the body frame in the present model is only approximately a mean axis system,
it would be seen to undergo small angular oscillations.

Modal load coefficients were determined by applying the mode shapes to the structural
model as unit displacement fields [6]. The internal loads within each element resulting from
the application of one mode become the load coefficients for that mode. The internal loads are
comprised of the six stress resultants: two bending moments; one torsion moment; two shears;
and one axial force. The coefficients are combined with time histories of the modal
coordinates (which are the generalized coordinates representing the structure in the integrated
model) to produce time histories of the internal loads.

As the structure deforms, the inertia tensor of the body changes since mass is being
redistributed in space. The structural model is used to compute terms reflecting this effect as
well as terms representing centrifugal stiffening, frequencies, and generalized modal masses -
all of which are supplied to the integrated simulation model. [6, 7]. Finally, as mentioned
previously, the corrected mode shapes are supplied to the doublet lattice model for computation
of generalized, unsteady aerodynamic loads.

MEAN AXE LOAD EFFICIENT:
- Translational and rotational - Mode shapes aprlled as unit
corrections to mode shapes displacement fields to obtain
modal load coefficients
- Linear part of mean axis con- iy =
ditlons satisfied L}, =8l (o},

- Combine with time responses
of modal coordinates to obtain
load time responses

Uncorrected Corrected (Lay = g {i}., n, ©
Translation St . .Sl et i=1
Rotation _swsme’ . 0O OTHER

- Nonlinear terms reflecting
centrifugal stiffeningand
variable body Inertia tensor

- Remaining nonlinear terms
retained In equations of motion - Mode shapes to doublet lattice




Unsteady Aerodynamics Modeling

In order to obtain a representation of the unsteady aerodynamic loads in state-space form
for the simulation model, a rational function approximation (RFA) is used. The form of RFA
ysed is known generally as Roger's approximation and is shown in the figure. The coefficient
A matrices are determined by a least - squares fit of the approximation to oscillatory loads
tabulated over a range of reduced frequencies [9, 10]. The approximations are only valid for a
given Mach number, so sets of coefficient matrices must be calculated to cover the Mach
number range of interest. The aerodynamic loads provide the simulation model with
incremental loads resulting from elastic and control deflections and from unsteady motion. A
total of four (4) lags (the §s) were used in the FIT F/A - 18 model.

- Unsteady aerodynamic loads in the Laplace domalin :
F,(8)=q[Q(8)]1X(3)
- Roger's Rational Function Approximation (RFA) :
A s
I

Q(5)=A.+Al§+ A2!’+§;s—:é-—

- Least-Squares fit of Q, ,4k) to tabulated Q,,(1k,) over arange
of k values for given Mach number

- Incremental loads from elastic and control deflections and from
unsteady motion
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FIT Integrated Dynamics Model

The general, nonlinear equations of motion [6, 7] are implemented in a batch simulation
model written in ACSL (Advanced Continuous Simulation Language, Ref. 11). The model
incorporates elements from an engine dynamics model, control laws and actuator dynamics,
nonlinear steady aerodynamic data, which for the present F/A - 18 model comes from the
LaRC Real-Time Simulation Facility's own F/A-18 simulation, and data from the aeroelastic
model. As described earlier, this data includes generalized masses and frequencies, nonlinear
momentum coupling terms, nonlinear terms representing centrifugal stiffening and the effects
of deformation on the body's inertia tensor, and the rational function coefficients for the
unsteady aerodynamic loads. Modal load coefficients may also be supplied to the simulation
for immediate calculation of load time histories. But since this places an additional
computational burden on the simulation, it is more efficient to send the modal coordinate time
histories back to the aeroelastic model for a comprehensive evaluation of the loads.

A time history of internal loads for the F/A - 18 model resulting from a roll doublet
maneuver was animated using colors to represent various internal load levels. A videotape of
the display was prepared and shown as part of the oral presentation of the paper. As it turns
out, the nonlinear inertial terms are not a major factor for the F/A - 18 loads and would not
likely be important for any conventional aircraft configuration. For rotorcraft, aircraft with
stores or high T - tails, or for flexible spacecraft they may become more important [6, 7].

| Propulsion |

Engine
RIAOdlal Dynlamicsl. Dynamics
onlinear Inertial \
: Integrated Vehicle
Aeroslastic | Couplings, FIT Dyna?'nlc Response,
§1 Model *1 Integrated >
Load Dynamics
Coetficients, Model
RFA's
% Control Laws
Actuator Dynamics
Aero “Nonlinear Guidance
Steady Forces &
Control
L Y




Needs

A future concern for FIT team efforts is improvement in the representation of the unsteady
aerodynamic loads. The present form of RFA being used, Roger's approximation, introduces a
large number of states into the model [6]. For a formulation including six rigid body modes,
twenty elastic modes, and four aecrodynamic lags, the number of aecrodynamic states alone is
104 [4]. Add to this the rigid body and elastic modes, altitude, quaternion, actuator, and engine
states, and the size of the simulation model becomes very large. This substantially affects the
run time of the batch simulation limiting its utility. Work is underway to incorporate an
updated form of Karpel's Minimum State Method [9, 12] into the options available in the ISAC
programs being used for the unsteady aerodynamics. Another concern is the quality of the
unsteady aerodynamic data being approximated, particularly for rigid-body motions at low
reduced frequencies and near the transonic regime. Work being done in this area with
correction factors will occupy the latter part of this paper.

Unsteady Aerodynamics

- Simpler approximation
(Minimum State Method - Karpel)

- Improved quality of unsteady aerodynamics
data near zero reduced frequency and

transonic regime (Correction Factors)
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Correction Factor Methodologies

The Doublet Lattice Method is one method used to calculate unsteady acrodynamics for a
wide variety of applications, but it has limitations. It is a linear, subsonic, and small
perturbation method [13]. One method to expand the usefulness and the accuracy of the
Doublet Lattice Method is the use of correction factors. Correction factors are modifiers of
either the pressures or the downwashes calculated with the doublet lattice method. Correction
factors can be calculated to match pressure distributions, section properties, or total loads (force
and moment derivatives) that are obtained from experiment or CFD calculation [14}. Matching
total forces requires solving an optimization problem that can be formulated in one of several
ways. One way is to minimize the difference between the experimental and analytical loads
with side constraints on the changes in the pressure or downwash distribution. Alternatively,
the change in the original pressure or downwash distribution can be minimized subject to
constraints on the differences between the experimental and analytical loads [15].

WHY - Doublet Lattice has limitations: linear, subsonic, small
perturbation

WHAT - Correctlon Factors are modifications to pressures and / or
downwashes In order to match experimental or CFD data

HOW-
Match Pressure Distributions
Match Section Properties
Match Total Loads - Force and Moment Derivatives by

Optimization
(Load error] AW, A
mln{Aw’ Ap f, subject to {Load '2,,0,}



Correction Factor Methodologies - Methodology and Results

A brief description of the methodology of matching pressure distributions is presented here.
For the purpose of explanation and example, the methodology was exercised on a Rectangular
Supercritical Wing that was tested in the NASA Langley Transonic Dynamics Tunnel [16,17].
The steps to calculating these correction factors are as follows. First, experimental pressures
are interpolated to analytical locations, which in the case of Doublet Lattice correspond to the
quarter-chord and mid-span location of each of the doublet lattice boxes. This is accomplished
using one-dimensional spline interpolation in the chordwise direction followed by the spanwise
direction. The pressures at each of the analytical locations are then interpolated using splines
as a function of angle-of-attack. The analytical first derivative of the spline interpolation curve
is evaluated at an angle-of-attack of zero degrees to obtain the quantity which will be matched
using correction factors. Correction factors are calculated to modify either the analytical
pressures or the downwashes such that the steady pressure distributions are matched. Typical
distributions of pressure and downwash correction factors are shown in the center of the slide.
These correction factors were then applied to the calculation of the unsteady pressures. The
methodology was validated by comparing corrected unsteady analytical aerodynamic data and
unsteady experimental aerodynamic data.

Matching Pressure Distributions
Comparison of Unsteady

Steady Pressure Pressure or Downwash Correcled Analysis and
Distributions Correction Factors Experimental Pressure
(M=.4) M=0.4 Distributions
(M=0.4) 15 (M=0.4, K=.309)
@ Experimental Pressures
@ Interpolated Experimental N 10 CF. O Uncorrected Analysis

O Pressure Corrections
O Downwash Correctlons

Pressures

O Original Analytical
Pressures

> \:\\‘i\" 3
SNy
W g
y/b
10

Pressure Correclion | H\8:._
Factors 6 0 | #f-n.p-08-0,
CR

y/b

. 0.
Downwask Correction =100 1 L 1 1 ,
Faclors 0. x/c 1.

Chord station (x/c)
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Doublet Lattice Modeling of F/A - 18

An aerodynamic model of the F-18 was needed to calculate Doublet Lattice aerodynamics
for the FIT integrated dynamics model. In the original aerodynamic model of the F-18, the
fuselage was modeled as a flat plate, the horizontal tail and the wing had no dihedral, and the
tip missile was not modeled. An initial attempt at calculating correction factors for this model
was unsatisfactory, primarily because the pitching moment derivative of the doublet lattice
model was of the wrong sign. The method concentrated on improving the pitching moment
derivative at the expense of the other stability derivatives, resulting in a poor overall
"corrected" model, and unrealistic values for the correction factors. Because of this problem, a
parametric study was conducted to evaluate the sensitivities of the stability derivatives to
different models of the fuselage and tip missile, the inclusion of wing dihedral, and wing
panelling. The fuselage was modeled several different ways as a flat plate or as a slender body
with interference panels. The models investigated are shown in the figure. Several tip missile
models having different sizes of slender bodies as well as cross sections of interference panels
were evaluated as shown. Dihedral was also included in the wing and horizontal tail.

« Original model

Flat plate fuselage, no tlr missile, no wing dihedral and no
horizontal tail dihedra

« Sign of CMa - wrong
« Parametric study of doublet lattice model features
1) Fuselage
81,82,83 -interfefr'enc? panels
y ) start at nose of fuselage
) . ;
S4 -interference panels start
S1 S2 S3 S4 at cockpit

2) Tip missile

g o & ¢ d 4«
T T2 T3 T4 T5 Té

3) Dihedral - Wing (-3 degrees) and horizontal tall (-2 degrees)



Sensitivities of Stability Derivatives to Modeling

Shown here are some typical comparisons of the effect of modeling the fuselage and the tip
missile on the several stability derivatives. The top half of the figure shows the effect of
modeling the fuselage. N signifies no fuselage, P signifies a flat plate fuselage, S# identifies
the slender body and interference panel model used, shown on the previous figure. Modeling
the fuselage as a slender body changes the sign of the pitching moment. Incorporating the
slender body fuselage model, however, does not greatly change the lift due to angle of
attack.The bottom of the figure shows the effect of different tip missile models. N signifies
none, P signifies a flat plate, and T# refers to the tip missile models as shown on the previous
figure. The tip missile comparison also shows that the adding a tip missile improves the
pitching moment with negligible effect on the lift coefficient due to angle of attack.

Fuselage
0.10 0.002
0.000 EXPERIMENT
-0.002 P
0.05 -0.004 S1
0 s2
-0.006 O s3
-0.008 B s4
0.00 -0.010 C
u(!
Tip Misslle
0.10 0.002 B EXPERIMENT
0.000 anN
arp
0.002 B T
0.0 . o712
0.004 O T3
0.006 B T4
g 15
0.008 B Te
Cc.0 0.010
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Sensitivities of Stability Derivatives to Modeling (cont.)

Summarized here are the results of the parametric study of the effect of modeling on the
analytical stability derivatives. Results showed that the modeling the fuselage as a slender
body resulted in improving the analytical calculation of the pitching moment due to
angle-of-attack and lift coefficient due to pitch rate. There was a small effect on the
antisymmetric loads. The tip missile modeling improved the pitching moment due to
angle-of-attack and the rolling moment coefficients with respect to the wing trailing edge
control surfaces. Implementing dihedral on the wing and the tail affected the antisymmetric
derivatives and had a small beneficial effect on the pitching moment due to angle-of-attack.
Based on this parametric study, the best starting model for calculating correction factors is one
in which the fuselage is modeled as a slender body with interference panels and the tip missile
is modeled in the simplest manner. Though the tip missile does not have a great effect on the
stability aerodynamic forces for this application, it has been shown that how the tip missile is
modeled does affect local loads and flutter [18].

FU;%'ggﬁng Modeling fusslage as slender body improves Cy, , C q

Negligible effect on antisymmetric forces and moments

Tip Missile Negligible effect except for c"'a and rolling moment
coefficients with respect to trailing edge flap and alleron

Dihedral Negligible effect on symmetrlc derivatives except for Cu_
Wing (-3 deg)
Tall (-2 deg) Small beneficial effecton Cy

Small detrimental effect on Ny and C‘B



Concluding Remarks -

This paper has presented some details of an aeroelastic model of the F/A - 18 created for
NASA LaRC's Functional Integration Technology team's research in dynamics integration.
This model was used to directly incorporate aeroelastic effects, including modal structural
dynamics, unsteady aerodynamics, and structural loads, into a comprehensive nonlinear sim-
ulation model that combines aeroelasticity, propulsion dynamics, control dynamics, and a
nonlinear steady aerodynamics data base. Data passed to the simulation model include modal
generalized mass, frequencies, nonlinear inertial coupling terms, nonlinear terms accounting for
centrifugal stiffening and variation of the body inertia tensor resulting from deformation, ra-
tional function approximation coefficients for generalized unsteady acrodynamic forces, and a
limited number of modal load coefficients. The structural model can also be used for a broader
lo(a)cciis lanalysis using output time histories of the elastic modal coordinates from the simulation
model.

As a result of experiences with the simulation model, several aeroelastic modeling needs
have been identified. These deal with the representation of unsteady aerodynamics, First, it is
felt that the Minimum State Method will provide a lower order approximation. Second, cor-
rection factor methodologies are being developed to improve the quality of the doublet lattice
data being approximated, extending its usefulness. As part of this work, some issues related to
fuselage and tip missile modeling and its effects upon efforts to calculate correction factors
have been resolved.

*  Aeroelasticity Included directly in an Integrated dynamics
model

«  Structural modal dynamics
= RFA's of modal generalized aerodynamic forces

« Have need for improvements In unsteady aerodynamics
- Lower order RFA's needed

- Correctlon Factor Methadologies developed and tested
on Rectangular Supercritical Wing

- Fuselage and tip misslle modeling Issues resolved
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ABSTRACT

Development of digital robust control laws for active control of high performance flexible
aircraft and large space structures is a research area of significant practical importance. The flexible
system is typically modeled by a large order state space system of equations in order to accurately
represent the dynamics. The active control law must satisfy multiple conflicting design
requirements and maintain certain stability margins, yet should be simple enough to be
implementable on an onboard digital computer. This paper describes an application of a generic
digital control law synthesis procedure for such a system, using optimal control theory and
constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by
updating the free parameters of the digital control law, while trying to satisfy a set of constraints on
the design loads, responses and stability margins. Analytical expressions for the gradients of the
cost function and the constraints with respect to the control law design variables are used to
facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may
be integrated into a simultaneous structure and control optimization scheme. An existing control
law as well as an estimator based full or reduced order control laws can be optimized in order to
meet the multiple design requirements. Low order, robust digital control laws were synthesized for
gust load alleviation and flutter suppression of a flexible aircraft.
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INTRODUCTION

The small perturbation dynamics of a flexible aircraft or space structure with active control
is typically modeled by a large order state space system of equations in order to accurately
represent the rigid and flexible body modes, unsteady aerodynamic forces, actuator dynamics,
antialiasing filters, computational delays and gust spectra (Ref. 1). The control law of this multi-
input multi-output (MIMO) system is expected to satisfy multiple conflicting design requirements
on the dynamic loads, root-mean-square (RMS) responses, actuator surface deflection and rate
limitations, as well as maintain certain guaranteed stability margins based in the system singular
values. Robust control laws for the linear MIMO system with modeling uncertainty can be
developed using optimal control theory, which is also known as linear quadratic Gaussian (LQG)
technique. This control law is usually of the same or higher order than the plant and is difficult to
implement on an onboard digital microprocessor. There are several model reduction techniques to
reduce the control law to a lower order but the reduced order control law may not satisfy the design
requirements. This paper describes an application of a generic control law synthesis procedure
(Ref. 2) for such a system, using optimal control theory and constrained optimization technique.
The basic multivariable system and the design problem is schematically described in Fig. 1. The
formulation and synthesis procedure is briefly described first. Application to a gust load alleviation
(GLA) of a remotely piloted flexible drone is presented. Some recent results of a flutter
suppression system (FSS) design are also presented.

MULTILOOP SYSTEM DESCRIPTION
U taint
L f /_ Model approximations

Actual system dynamics Parameter variations
Ucom actuators, sensors Unmodeled dynamics
Plant math model
Physical system T
Controller ;
Digital computer Veom
Control law D e @)
Design requirements “— Implementation
Hardware limitations Antialiasing filters
Dynamic loads Sampling, Digitization
Performance Computation delay
Stability robustness Sample hold

Gain - phase margins
FIGURE 1
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SYSTEM STATE SPACE EQUATIONS

The typical state space system of equations for a discrete system is shown in Fig. 2.
These equations represent discrete time, linear equations of motion, due to a small perturbation
from a steady state equilibrium flight condition of a flexible system. The plant equations are usually
of large order and include the effects of antialiasing filters and computational delays at each
measurement output channel. The antialiasing filters attenuate unmodeled high frequency signals
but introduce significant phase lags which must be included in the control law synthesis. The plant
and sensor measurement models also contain discrete white noise inputs wk and vk, respectively.
The design outputs are the quantities on which design constraints are imposed. The control law is
also expressed in state space form and is required to be of lower order than the plant. The discrete
control law can be obtained from a full order LQG design after suitable stable order reduction and
discretization at a specified sampling rate.

SYSTEM STATE SPACE EQUATIONS

PLANT Xk+1 =FXk+ GU Uk-l-Gka
SENSOR y, =HX+v
DESIGN Vg =H X +Eu
CONTROL Z . =AZ +By
LAW k+1 . Kk o k
Ue =C4 +Dy,
FIGURE 2
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AUGMENTED SYSTEM EQUATIONS

The closed oop system equations can be written in an augmented form as shown in Fig. 3.

The new term 1N can be considered as an input command or a fictiious input noise. Using the ‘hat’
overscript to denote each of the augmented matrices, the closed loop dynamic system looks like a
simple output gain feedback system. This type of representation simplifies the derivation of the
analytical gradient expressions. Other variations of the augmented system formulation are possible
depending upon the controller structure. The design variables are selected parameters of the control

law quadruple matrix ¢

CLOSED LOOP AUGMENTED SYSTEM

——
=%
.
+
-—bh
—
il
~ o o
290,
N<

FIGURE 3
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GRADIENTS

The analytical expressions for the gradients of the cost function and the constraints with
respect to the control law design variables are used for computation. The typical expressions for
the gradients are shown in Fig. 4. The underlined matrices are specified for each constraint and
cost function. The derivation is quite general in nature. The gradients with respect to other
parameters can also be derived in a similar manner. The use of analytical expressions for the gradients
in the optimization scheme facilitates rapid convergence of the optimization process. The gradients
can also be used for sensitivity study and can be integrated into a simultaneous structure and
control optimization scheme. The minimum singular value of the return difference matrix at the
plant input and output is' also used as additional inequality constraint, in order to improve
robustness properties in the frequency domain. These constraints are usually applied at a later stage
of the synthesis process.

GRADIENTS OF COST FUNCTION AND
CONSTRAINTS

dJ/dé and dgn/dé are known from steady state

solution of discrete Lyapunov equations

X =F XF +GR. G

K+1- '@a’K a” “a'a a
A= F;AKnFa +*Q,
where
F- B v &8A
G, < &, + GG
Qq=Q, +(EM)'Q, (Ef) + (MCH) +(CH)
FIGURE 4
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PROBLEM DEFFINITION

The constrained optimization problem is defined as shown in Fig. 5. The control law
synthesis procedure minimizes a linear quadratic Gaussian type cost function, subject to a set of
constraints on the design loads, RMS responses and stability margins. The stability margin
requirement is imposed as constraints on the minimum singular value of the system return
difference matrices at the plant input and output (Ref. 3).In a LQG design one has to find a set of
weighting matrices and noise intensity matrices in order to satisfy all the RMS response and
stability margin requirements. If this trial and error process fails to achieve the desired result, the
designer can impose the violated design requirements as RMS response constraints and singular
value constraints instead of searching for the weighting matrices.

CONSTRAINED OPTIMIZATION PROBLEM
Equations Xk+1 =%Xk+eiﬁk+ éw ﬁk
'8 =F|$(k+'fﬁk

o, =9

k k

M s Ta m] o 1
Minimize J=E l- {f‘}kILMT“JI{‘A‘}kJSS By Changing S[é]

Subject to inequality constraints on

a) RMS responses and loads

b) Min. singular value
FIGURE 5
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OPTIMIZATION SCHEME

The constrained optimization problem is solved by using the method of feasible directions
(Ref. 4). The optimization scheme block diagram is shown in Fig. 6. This procedure is the discrete
time equivalent of those presented in Refs 1,3,5 for a continuous system. Similar procedures
without the inequality constraints were also presented in Refs 6-9 in the continuous time domain.
The development of the initial stable control law required to start the optimization cycle needs some
effort and experience. This is usually done by first designing a full order optimal control law using
a continuous plant model, which includes the effects of antaliasing filters and computational delays.
The order of the control law is then reduced by block diagonalization and truncation. Advanced
methods of order reduction have recently been developed by Sofanov (Ref. 10), Meyer (Ref. 11)
and Lenz, et al (Ref. 12). The reduced order control law is then optimized in the continuous
domain and tested for performance and stability characteristics. - This control law is then discretized
in a stable manner and is reoptimized in the discrete domain using the analytical gradient
expressions which facilitate fast numerical convergence.

STATE SPACE MODEL + DATABASE

v
CONTINUOUS SYSTEM CONTROL LAW DESIGN
— OPTIMAL CONTROL LAW SYNTHESIS

CONTROL LAW ORDER REDUCTION
v
CONTINUOUS PLANT + CONTROL LAW
7 :
[comlNuousmlscmsﬂma14'_—_|__l
[REDESIGN DISCRETIZE
T NO__«TaBL>NO |
_No < BL YES
v v
SOLVE SINGULAR
UPDATE >
CONTROL LAW LYPUNrov EQ. VAL:JES
1 1
METHOD OF COST FUNCTION
_» FEASIBLE CONSTRAINTS
DIRECTION GRADIENTS
v
OPTIMIZED

CONTROL LAW

FIGURE 6
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GUST LOAD ALLEVIATION PROBLEM

A gust load alleviation scheme of a remotely piloted drone aircraft is shown in Fig. 7. The
drone is in symmetric longitudinal flight. The random vertical gust is represented by Dryden
Spectrum. (Ref. 1). The accelerations are sensed by the fuselage and wing mounted accelerometers
and are fedback through a set of antialiasing filters to a digital controller. The sampling rate is 100
Hz. The processed signal activates symmetric deflection command to the elevator and aileron.The
primary dynamic loads are generated by the wing flexing due to short period motion. A simple
gust load alleviation control law is needed to reduce the open loop RMS bending moment and
shear force at the wing root by 50% without increasing the outboard bending moment and torsion.

— outboard
aileron
accelerometer
“ elevator
50
d/a Je 32nd order plant a.a.fil S+50
__/_-—m flex. aircraft 5
P actuator sensor "W
2 rbm 3 flex. mode —___] 2
88
digital N
control law N
a/d
FIGURE 7
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GLA DESIGN OBJECTIVES

The gust load alleviation (GLA) control law design objectives and synthesis procedure is
shown in Fig. 8. The objective is to obtain a low order robust digital GLA control law which
would reduce the open loop root-mean- square values of the wing root bending moment and shear
by 50% without increasing the wing outboard bending moment and torsion The control law
should maintain certain guaranteed stability margins based on minimum singular value of 0.6 at
both the plant input and output (Ref. 3) .The control surface deflections and rates should be within
the allowable limits. First a full order LQG control law is synthesized to satisfy the design
requirements. This 32nd order control law is then reduced to a second order control law and then
discretized. This control law does not satisfy the design requirements. After unconstrained
optimization most of the requirements are satisfied except the wing outboard bending moment and
the singular values. Using constraints on the RMS wing loads and on the minimum singular values
of the return difference matrix at the plant input and output, the control law parameters are
reoptimized (Ref.2).

GUST LOAD ALLEVIATION
DESIGN REQUIREMENTS

Aileron 32nd order
Accl. airplane eqns.
sensors
/1 —
<< —
\
Elevator control law
Physical quantities Design objectives How we do it
Root bending moment 50% reduction 1. LQG design
Root shear 50% reduction 2. Control law

order reduction
Outboard bending momy No increase

Outboard torsion No increase Discretize
Elevator deflection Within max limit Optimization
. 5. Apply constraints
Elevator rate Within max limit a) on rms loads
Aileron deflection Within max limit b) on singular val.
Aileron rate Within max limit
FIGURE 8
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COMPARISON OF RMS RESPONSES

The Fig. 9 shows a comparison of RMS responses and control surface deflections for a
sequence of second order GLA control laws. The RMS values of wing root bending moment
(WRBM) , wing root shear (WRS), wing outboard bending moment (WOBM) and wing outboard
torsion (WOT) are normalized to their open loop values and control surface deflection and rates are
normalized to their maximum allowable values. The control law-1 is obtained by digitization of a
continuous control law obtained via reduction of a full order LQG design. This control law does
not satisfy any of the design requirements. After an unconstrained optimization the control law-II is
obtained which satisfies all the RMS response requirements except that on the WOBM. This is
satisfied by a constrained optimization sequence to obtain law-III. After imposing the stability
margin constraints, the control law -1V is obtained. The stability margins are improved at the cost
of increased RMS responses.

COMPARISON OF NORMALIZED RMS RESPONSES
DUE TO 1 M/S RMS DRYDEN GUST

Open loop B
aw - |
95 aw -1l 67 0.75 0.35
kgm aw - Il kg kgm kgm
law -V

WRBM WRS woBM WOT
0.16 8.0 1.0 125
deg deg/ deg deg/

sec. sec.
ELEVATOR ELV. RATE AILERON AlL. RATE
law - | Initial 2nd order digital law - Il After Opt. with RMS Constraints
law - II After Optimization law - IV After Opt. with SV Constraints

FIGURE 9
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UNCONSTRAINED AND CONSTRAINED
OPTIMIZATION

The cost function consists of weighted sum of the wing RMS loads and control surface
RMS deflections using Bryson's inverse square weighting rule.The plot of normalized cost
function versus iteration for the unconstrained optimization process used to obtain law-II is shown
in Figure 10. The convergence is obtained in one iteration starting from the initial control law-1. In
order to prevent the small increase in the wing outboard bending moment (WOBM), the control
law-II is reoptimized by treating WOBM as a constraint instead of lumping it in the cost function.
The result of this constrained optimization is also shown in Figure 10. The constraint is satisfied in
one iteration, at the expense of increased cost function, which is subsequently reduced along with
the wing outboard bending moment.

Unconstrained optimization Constrained optimization
J, = 1.937
1.0 Jo = 5.667 1.2
Cost
0.8 function 1.9
JIdg
0.6 08}
0.4 0.6
L | J L | 1 i )
0 5 10 0 5 10 15 20
0.05

No of iterations

WOBM (max) = 1.6

-0.05

0 5 10 15 20

No of iterations

FIGURE 10
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STABILITY ROBUSTNESS

[n obtaining control laws [, II and III, no constraints were applied to the minimum singular
value of the return difference matrix at the plant input and output which is a measure of the
system's stability robustness properties (Ref. 3). The minimum singular value plot of the control
laws Il and III are shown in Fig. 11 at the plant input and output. In order to maintain a guaranteed
phase and gain margins of +35, -35 degrees and +8.0 dB, - 4.0 dB respectively in each channel,
the minimum singular value plots should be above the horizontal dotted line at -4.43 dB which
corresponds to a minimum singular value of 0.60 . Figure 1 indicates that none of the control laws
satisfy these criteria although the control law-III is fairly robust compared to control law -II.
Additional constrained optimization is required to improve the stability robustness at the plant input
and output. These results are shown next.

At input
+ "
G(j w)
K(j w)
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STABILITY ROBUSTNESS IMPROVEMENT

In order to improve the stability margins at both the plant input and output, the control law-I11
was reoptimized using two additional constraints corresponding to the required minimum singular
value of (I+KG) and (I+GK) not less than (.60 or -4.43 dB. Other constraints were also retained.
The resulting control law-1V obtained after 7 iterations satisfies all the constraints. The increased
robustness is at the cost of higher RMS responses compared to law-1II. The minimum singular
value plot is shown in Fig.12. With control law-1V, the system has guaranteed simultaneous gain
margins of +5.7 dB, -17.0 dB and phase margins of +53 and -53 degrees at each channel. Thus
substantial improvement in stability robustness was obtained by using constrained optimization.

law-1V
dB
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AFW SYMMETRIC FLUTTER SUPPRESSION

Digital robust control law synthesis for the Active Flexible Wing (AFW) wind tunnel model is
presently being carried out in collaboration with Rockwell International. The basic block diagram
for a two input two output symmetric flutter suppression system is shown in Fig.13 for a sting
mounted model using leading edge outboard (LEO) and trailing edge outboard (TEQ) symmetric
actuators and colocated accelerometer sensors. The sampling rate is 200 Hz.The design takes into
account the effects of actuator dynamics, 4th order 100 Hz Butterworth filters and one cycle
computational delay at each channel. Full order and reduced order analog and discrete robust
control laws were synthesized based on an approximate 38th order system at 300 psf design
dynamic pressure. The discrete 8th order control law was able to stabilize the system over the
range 300 to 150 psf. The more detailed 80th order model was also stable at 300 and 200 psf.
Starting with these preliminary control laws, detailed analysis will be carried out using the discrete
system optimization procedure.

SYMMETRIC FLUTTER SUPPRESSION
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CONCLUSIONS

Constrained optimization technique was used to synthesize low order robust digital control
law for large order flexible systems. The methodology provides a systematic design tool for
control system synthesis where a large number of conflicting design requirements on the
performance and stability robustness must be satisfied to arrive at a compromise solution. Both
continuous and discrete control system can be synthesized and optimized. The procedure can be
used to update a classical control law as well as a Kalman estimator based full or reduced order
control law. The effects of digitization, antialiasing filters and computational delays can be included
in the synthesis process. The synthesis procedure has been successfully applied to a gust load
alleviation problem of a drone aircraft and a flutter suppression problem.of the AFW wind tunnel
aeroelastic model. Future applications include a rapid roll maneuver load control system design for
the AFW wind tunnel model. A block diagram of the control scheme is shown in Figure 14.
Control and vibration suppression of large space structures is another potential application area. The
gradient expressions derived to facilitate rapid convergence of the optimization process can also be
used for sensitivity study and integrated structure-control optimization formulation.

AFW RAPID ROLL CONTROL

Active Flexible Wing Rapid Roll Mechanization
Wind Tunnel Model Digital Control

actuator

dynamics
- E e
ke L) a2l L
0 acd A
- —
[ g [} »t m&%n& oo 2cd R
+y wo acd R
[FH™] o= s —
L
I—E'HEI-J = o o
—L e}
—{ e Je—
—_—f{
anti alising
{Jev """ J&—d fhor
FIGURE 14

894



ACKNOWLEDGMENT

The research support through NASA Langley Contract NAS- 18000 and technical discussion
with Irving Abel, Tom Noll, Mike Gilbert and Boyd Perry of Structural Dynamics Division and
Aeroservoelasticity Branch are gratefully acknowledged.

REFERENCES

1. Mukhopadhyay, V., Newsom, J. R. and Abel, L. , "A Method for Obtaining Reduced
Order Control Laws for High Order Systems Using Optimization Technique,"NASA TP
1876, August 1981.

2. Mukhopadhyay, V, "Digital Robust Active Control Law Synthesis For Large Order
Systems Using Constrained Optimization ," AIAA Paper No. 87-2588, August, 1987.

3. Mukhopadhyay, V., "Stability Robustness Improvement Using Constrained Optimization
Techniques," Journal of Guidance, Control and Dynamics , Vol. 10, No. 2, March-April
1987, pp. 172-177.

4. Vanderplatts, G. N.,"CONMIN - A Fortran Program for Constrained Function
Minimization - User Manual,”" NASA TM X 62282, August 1973.

5. Newsom, J. R. and Mukhopadhyay, V., "Application of Constrained Optimization to
Active Control of Aeroelastic Response, " NASA TM-83150, June 1981.

6. Martin, G. D. and Bryson, A. E. Jr,, "Attitude Control of Flexible Spacecraft,” Journal
of Guidance, Control, and Dynamics, Vol. 3, pp. 37-41.

7. Gangsaas, D. and Ly, Uy-Loi, "Practical Gust Load Alleviation and Flutter Suppression
Control Laws Based on LQG Methodology,” AIAA Paper 81- 0021, January 1981.

8. Mukhopadhyay, V., Newsom, J. R. and Abel, 1., "Reduced Order Optimal Feedback
Control Law Synthesis for Flutter Suppression,” Journal of Guidance, Control, and
Dynamics, Vol. 5, July-Aug. 1982, pp. 389-395.

9. Uy, Uy-Loi, "A Design Algorithm for Robust Low Order Controllers,"Department of
Aeronautics and Astronautics, Stanford University, SUDAAR Report No. 536, Nov.1982.

10.  Safonov, M. G. and Chiang, Y. A.," A Schur Method for Balanced Model Reduction,"
Proc. of 1988 American Control Conference, Atlanta, Ga., June, 1988, pp. 1036-1040.

11.  Meyer, D.G.,, "A fractional Approach to Model Reduction," Proc. of 1988 American
Control Conference, Atlanta, Ga, June, 1988, pp. 1041-1047.

12.  Lenz, K. E,, P. Khargonekar and Doyle, J. C.,"Controller Order Reduction with
Guaranteed Stability and Performance,” Proc. of 1988 ACC, June 1988, pp. 1697-1698.

895



N89-25194

AN INTEGRATED APPROACH TO THE OPTIMUM DESIGN OF
ACTIVELY CONTROLLED COMPOSITE WINGS #

E. Livne*
Mechanical, Aerospace and Nuclear Engineering Department
University of California, Los Angeles
Los Angeles, California

+ Graduate Student

# This research is supported by AFOSR Contract F 49620-87-K-0003.

PRECEDING PAGE BLANK NOT FILMED

897



INTRODUCTION AND OUTLINE OF THE PRESENTATION

The importance of interactions among the various disciplines in airplane wing design has been
recognized for quite some time. With the introduction of high gain, high authority control systems
and the design of thin, flexible, lightweight composite wings, the integrated treatment of control
systems, flight mechanics and dynamic aeroelasticity became a necessity. A research program is
underway now aimed at extending structural synthesis (Ref. 1) concepts and methods to the
integrated synthesis of lifting surfaces, spanmng the disciplines of structures, aerodynamics and
control for both analysis and design. Mathematical modeling techniques are ca:efully selected to
be accurate enough for preliminary design purposes of the “complicated, built-up lifting surfaces
of real aircraft with their multipie design criteria and tight constraints” (Ref. 2, p.17). The
presentation opens with some observations on the multidisciplinary nature of wing design. A brief
review of some available state of the art practical wing optimization programs and a brief review
of current research effort in the field serve to illuminate the motivation and support the direction
taken in our research.(These reviews are not exhaustive, and the interested reader is referred to the
review papers, Refs. 3-8.) The goals of this research effort will be presented next, followed by a
description of the analysis and behavior sensitivity techniques used. The presentation will
conclude with a status report and some forecast of upcoming progress (Figure 1.).

*  BRIEF REVIEW OF CURRENT WING OPTIMIZATION CAPABILITIES
AND RESEARCH ACTIVITY, SOME OBSERVATIONS

* GOALS FOR MULTIDISCIPLINARY WING SYNTHESIS RESEARCH AT UCLA

*  DESCRIPTION OF ANALYSIS TECHNIQUES CHOSEN

* STATUS REPORT ON THE SYNTHESIS CAPABILITY UNDER DEVELOPMENT
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THE MULTIDISCIPLINARY NATURE OF WING DESIGN

Figure 2 describes the multidisciplinary nature of wing design. Discussion is limited to wings
operating in the subsonic to low supersonic flight speeds, so that thermal effects can be neglected.
It is instructive to unite the sets of Preassigned Parameters and Design Vanables (Ref. 1) into the
set of “Design Parameters”, whose elements define a particular wing design. Which of the
parameters will be preassigned and which will be used as design variables depends on the level of
application for optimization techniques in the hierarchy described in Ref. 1, namely, whether the
design space includes sizing, configuration (geometry) or topological design variables. The set of
behavior functions, from which constraints and objectives will be selected, can be divided into two
categories. Primary (system level) Behavior Functions are those performance measures which
determine the overall quality and competitiveness of the wing. Secondary (sub-system level)
Behavior Functions are the behavior functions which must be taken into account during the
design to guarantee the prevention of failure in all possible failure modes and introduce known
constraints on subsystem performance. They are usually not the real design objectives although
sometimes there is high correlation between a secondary behavior and a primary behavior
function (e.g. mass and airplane performance).

DISCIPLINE
- STRUCTURES/ AERODYNAMICS  CONTROL
STRUCTURAL
DYNAMICS
SIZING
DESIGN PARAMETERS :
{ N
VARIABLES OR  ELEMENT SIZE CAMBER, GAINS,
PREASSIGNED) AREA, LE/TE CONTROL  TRANSFER
PARAMETERS THICKNESS) SURFACE FUNCTION
DEFLECTION COEFFICIENTS
CONFIGURATION
DESIGN
PARAMETERS
- PLANFORM SHAPE  PLANFORM SHAPE ORDER OF
(SWEEP,AR, (SWEEP,AR TRANSFER
TAPER RATIO) TAPER RATIO) FUNCTIONS
AIRFOIL CROSS AIRFOIL CROSS
SECTION, PLY SECTION
ANGLE
TOPOLOGICAL
DESIGN
PARAMETERS :
NUMBER OF RIBS,  NUMBER OF CONTROL
SPARS, PLIES LE, TE CONTROL SYSTEM
DEVICES STRUCTURE
AND
CONNECTIVITY
SECONDARY
BEHAVIOR
FUNCTIONS :
DEFLECTION/SLOPE, DRAG, DYNAMIC
STRESS,BUCKLING,  LIFT,CLMAX, STABILITY
NATURAL FREQ'S, DRAG POLAR, (INCLUDING
FATIGUE, FLUTTER,
LOAD FACTOR, BODY FREEDOM
MASS, FLUTTER),
CONTROL CONTROL HINGE MOMENTS,
EFFECTIVENESS EFFECTIVENESS  CONTROL
ACTIVITY
PRIMARY
BEHAVIOR
FUNCTIONS:
- AIRPLANE
PERFORMANCE :

(ROLL RATE, TURN RATE,
ENDURANCE, RANGE,
COST...)

Figure 2
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SOME EXISTING PROGRAMS FOR PRACTICAL WING OPTIMIZATION

Several approaches, with a varying degree of multidisciplinary capability, aimed at the synthesis of
practical composite wings were developed during the seventies (Refs. 3-8). In addition to the
constraints on stress, displacement and aeroelastic stability, performance constraints in terms of
induced drag or drag polar specification were added in the TSQ computer code (Refs. 9,10) and to
WIDOWAC (Refs. 11-13). It was reported recently that a rudimentary servoaeroelastic analysis
capability was about to be inserted into the ASTROS computer code (Ref. 14). It should be
noticed that except for the TSO code, the design space in the programs contains only structural
design variables, thus they are really multidisciplinary in analysis only. The TSO code makes it
possible to include some configuration design variables (the fiber orientation of cover skin layers)
and some aerodynamic constraints in the form of wing twist or camber distribution under load

(Figure 3.).

PROGRAMS SURVEYED :
* TSO, FASTOP, WIDOWAC, ELFINI, ASTROS

ANALYSIS PROBLEM

DISCIPLINES :
* STRUCTURES, AERODYNAMICS, AEROELASTICITY.

MODELING :

STRUCTURAL :
* EQUIVALENT PLATE (TSO)
* FINITE ELEMENTS (FASTOP,WIDOWAC,ELFINI,ASTROS)

AERODYNAMIC :
STEADY AERODYNAMICS :

* LINEAR POTENTIAL PANEL METHODS (e.g. Woodward in TSO)
UNSTEADY AERODYNAMICS

* DOUBLET LATTICE ( M < 1) (TSO, FASTOP, ASTROS)

* KERNEL FUNCTION ( M < 1) (WIDOWAC)

* MACHBOX ( M > 1 ) (FASTOP)

* POTENTIAL GRADIENT METHOD ( M> 1) (ASTROS)

* PISTON THEORY ( M> > | ) (WIDOWAC)

BEHAVIOR SENSITIVITY
* ANALYTIC (FASTOP, WIDOWAC, ELFINI, ASTROS)
* FINITE DIFFERENCES (TSO)

SYNTHESIS PROBLEM

PREASSIGNED PARAMETERS :
* PLANFORM SHAPE, CROSS SECTION, STRUCTURAL TOPOLOGY, MATERIALS

DESIGN VARIABLES :
* STRUCTURAL SIZING (TSO - ALSO FIBER ORIENTATION )

CONSTRAINTS :

* DEFLECTION, STRESS, FLUTTER, DIVERGENCE, CONTROL EFFECTIVENESS
* DRAG (TSO, WIDOWAC)

* BUCKLING (ELFINI, ADDED TO WIDOWAC IN A SIMPLIFIED FORM)

OBJECTIVE FUNCTIONS :
* MASS, DRAG, CONTROL EFFECTIVENESS

OPTIMIZATION

* MATH PROGRAMMING (TSO)

* MATH PROGRAMMING + APPROXIMATION CONCEPTS (WIDOWAC, ELFINI,
ASTROS)

* OPTIMALITY CRITERIA (FASTOP)

Figure 3



THE NEED FOR MULTIDISCIPLINARY WING OPTIMIZATION

During the last decade structural synthesis has matured. Realistic designs described by a large
number of design variables and subject to a variety of load conditions can now be efficiently
treated. However, it is still quite common to find fixes and modifications being introduced late in
the development stage of fighter aircraft, when aeroservoelastic effects, rigid body- elastic mode
coupling or static aeroelastic effects have not been properly accounted for in the design process
(Refs. 15-20). At the same time, following almost twenty years of progress in active flutter
suppression and gust alleviation (Refs. 22-26), there is a growing recognition that multidisciplinary
interactions might be hamessed to benefit modern, complex wing designs. However, a review of
the literature reveals that the application of modem optimization methods to wing design
problems involving multiple objective functions and a diverse mix of constraints based on
analyses from several discipline areas (e.g. structures, structural dynamics, controls, aerodynamics
and performance) has not yet been treated in a comprehensive and realistic manner. To
overcome the inherent complexity and address the computationally intensive nature of this
problem two approaches have been suggested in the literature. The first approach is based on the
application of multi-level decomposition techniques combined with existing tools for detailed
analysis and sensitivity analysis for each of the disciplines (Refs. 27,28). The second approach
attempts to gain some insight into the nature of the problem by using highly simplified
mathematical models or simple airplane configurations for structural, aerodynamic and control
system analysis (Refs. 29-35). Reséarch is now under way in several research centers and
universities in two main directions :

a) the addition of control system sizing type design variables to a design space spanning design
variables for structures and control (control augmented aeroelastic optimization) (Refs. 31,36)

b) expanding the wing design space by adding configuration design variables (structural and
aerodynamic shape) (Refs. 37-39) (Figure 4.).

MOTIVATION :

PROBLEMS :
* SERVOAERELASTIC INTERACTIONS

¢ INSUFFICIENT CONTROL EFFECTIVENESS

¢ BODY FREEDOM FLUTTER
HARNESS MULTIDISCIPLINARY INTERACTIONS FOR ACHIEVING BETTER
DESIGNS
CURRENT DIRECTIONS IN RESEARCH :

OPENING UP A SIZING DESIGN SPACE TO INCLUDE SIZING TYPE CONTROL
SYSTEM DESIGN VARIABLES

OPENING UP THE DESIGN SPACE TO INCLUDE STRUCTURAL AND
AERODYNAMIC SHAPE DESIGN VARIABLES

PROBLEMS :
* HEAVY COMPUTATIONAL COST OF ANALYSIS

® LACK OF INTUITION AND EXPERIENCE TO GUIDE IN CONSTRUCTING
ROBUST APPROXIMATIONS

¢ ABSENCE OF STANDARD TERMINCLOGY, CRITERIA, MODELING AND
ANALYSIS METHODS WIDELY ACCEPTED IN ALL DISCIPLINES

APPROACHES TO THE PROBLEM :

¢ SIMPLIFIED MODELING (BEAM,STRIP THEORY) OR STUDIES INVOLVING
SIMPLE CONFIGURATIONS (SAILPLANES) -

ONE LEVEL OPTIMIZATION

GAIN INSIGHT

* MULTILEVEL DECOMPOSITION BASED ON DETAILED MODELING AND
SENSITIVITY ANALYSIS

Figure 4
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RESEARCH GOALS

In Ref. 2 Ashley writes :” In the absence of experience when new technology is being tried for the
first time, the search for extremas can produce unanticipated, surprising and often very
satisfactory discoveries”. But he adds a word of caution : “Yet the counterintuitive may also be
counterproductive and even ridiculous. Very undesirable consequences can result from omission
or careless handling of constraints”.

It is one of the major goals of the present research to begin to bridge the gap between over
idealized modeling and detajled structural and aerodynamic modeling by introducing balanced
design and analysis models that capture the essential behavior characteristics, without making the
integrated multidisciplinary design optimization task intractable. This balanced approach
combines high quality, approximate, but computationally efficient analyses for the structural,
aerodynamic and aeroservoelastic behavior of realistic composite wings. Thus, the entire
optimization problem may be treated at one level without the need for multilevel decomposition.
A rich variety of constraints makes it possible to study the effect of multidisciplinary interactions
on synthesis as well as on analysis (Figure 5.).

OBJECTIVES :

DEVELOP MULTIDISCIPLINARY WING SYNTHESIS CAPABILITY WITH AN
EMPHASIS ON STRUCTURE/CONTROL/UNSTEADY AERODYNAMICS
INTERACTION

BRIDGE THE GAP IN MODELING DETAIL BETWEEN THE VERY SIMPLE AND
DETAILED ANALYSIS TECHNIQUES SO AS TO ENABLE MULTIDISCIPLINARY
SYNTHESIS OF REAL WINGS FOR PRELIMINARY DESIGN

STUDY THE CONSTRUCTION OF ROBUST APPROXIMATIONS TO BEHAVIOR
FUNCTIONS

PROVIDE A TEST CASE FOR ASSESSING DECOMPOSITION TECHNIQUES

SELECTED APPROACH

ANALYSIS :

CAREFUL SELECTION OF ANALYSIS TECHNIQUES -
GOOD ACCURACY
HIGH COMPUTATIONAL SPEED
BALANCED APPROACH

BEHAVIOR SENSITIVITY :
ANALYTIC
SYNTHESIS PROBLEM :

gTIZI{FJgT:'URAL.AERODYNAMIC AND CONTROL D.V.s PLUS ©, s
PREASSIGNED : SHAPE, TOPOLOGY

CONSTRAINTS : 8, o, SERVOAEROELASIC STABILITY, CONTROL POWER
ALTERNATIVE OBJECTIVE FUNCTIONS : MASS, PERFORMANCE MEASURES

OPTIMIZATION STRATEGY :

MATH PROGRAMMING + APPROXIMATION CONCEPTS
( 10 ANALYSES PER OPTIMIZATION - GOAL)

Figure §



ANALYSIS METHODS SELECTED

The integrated optimum design capability outlined here is based on approximate analysis
techniques for the required disciplines, which are consistent with each other in terms of accuracy
and efficiency and lead to a balanced treatment. In the structures area, an equivalent plate
analysis, as incorporated in the TSO computer code (Ref. 10) and further generalized by Giles
(Refs. 37-39), is used. Although the equivalent plate approach for structural modeling of low
aspect ratio wings has been known for many years, it was Giles who recently showed that, using
present day computers, a single high order power series can be used for approximating
displacements over wing planforms made of several trapezoidal segments to obtain accurate stress
as well as displacement information. The simplicity of manipulating simple power series leads to
analytic rather than numerical integration for the mass and stiffness expressions. With the careful
organization of computer storage space and ordering of calculations, major savings can be
achieved in terms of computation times and core storage requirements. The extended equivalent
plate approach is integrated with the PCKFM (Piecewise Continuous Kernel Function Method)
of Nissim and Lottati for lifting surface unsteady -aerodynamics (Refs. 40-43). This method
combines the power of the doublet lattice method in dealing with pressure singularities with the
accuracy and speed of the kemel function method. Extensive numerical experimentation has
demonstrated (Ref. 40) that the PCKFM method is highly accurate and converges rapidly. For
configurations involving control surfaces, it is faster and considerably more accurate than the
doublet lattice method. Thus, it is especially suited for calculating the generalized unsteady air
loads (on lifting surfaces made up of wing and control surface elements) that are needed for active
flutter suppression and gust alleviation studies.

For the finite state modeling of the unsteady air loads, the Minimum State Method of Karpel
(Ref. 44) is used to generate accurate approximations to unsteady generalized aerodynamic forces
with addition of only a small number of augmented states to the mathematical model of the
aeroservoelastic system. In comparison with other finite state modeling techniques, the number of
added states needed in the minimum state method can be smaller for the same overall accuracy of
approximation (Ref. 45). This leads to a state space model of lower order, thus reducing memory.
requirements and computation times considerably. The integrated servoaeroelastic system is
modeled as a Linear Time Invariant (L'TI) system and its stability is examined by computing the
eigenvalues of a generalized eigenvalue problem (Figure 6.).

STRUCTURE :
EQUIVALENT PLATE

AERODYNAMICS :

SUBSONIC,;SUPERSONIC LIFTING SURFACE PIECEWISE CONTINUOUS KERNEL
FUNCTION METHOD (PCKFM) (NISSIM/LOTTATH)

UNSTEADY AERODYNAMIC FINITE STATE MODELING :

MINIMUM STATE APPROXIMATION

CONTROL :
STATE SPACE LTI SYSTEM MODELING

Figure 6
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EQUIVALENT PLATE MODELLING OF AIRPLANE/ WING/ CONTROL SURFACE
ASSEMBLIES BY THE PRESENT CAPABILITY

Figure 7 shows an airplane modeled as an assembly of flexible lifting surfaces. Each lifting
surface is modeled as an equivalent plate whose stiffness is controlled by contribution from thin
cover skins (fiber composite laminates). and the internal structure (spar and nb caps). Plate
sections are connected to each other via stiff springs (to impose displacement compatibility at
attach points) and flexible springs (representing the stiffness of actuators and their backup
structure). Each wing section can be made of several trapezoidal parts continuously connected to
each other. Concentrated masses are used to model nonstructural items and balance masses.

The present equivalent plate modeling capability makes it possible to efficiently analyze
combined wing box/control surface configurations. A wing assembly and a canard or horizontal
tail may be attached to a fuselage (modeled as a flexible beam or a flexible plate) to simulate
complete airplane configurations. Modeling detail of all plate sections can be identical. Thus the
degree of detail in modeling control surfaces for analysis and synthesis is not limited, as is the case
in the TSO code.

Aileron/Wing Box

e
/ Attachment Springs-
i, . .
Composite Skin Layers

Spar Caps

Canard/Fuselage
Attachment Springs



SOME ANALYTICAL ASPECTS OF THE EQUIVALENT PLATE APPROACH

It 1s a well known fact in the numerical solution of partial differential équations that the use of
a simple polynomial series to approximate the solution in a Ritz or Galerkin analysis leads to ill
conditioning of the problem matrices when it is of an order higher than a certain degree.
However, Giles (Refs. 37,38) has shown that when a simple polynomial series is used in a Ritz
solution of anisotropic plate static and dynamic problems, accurate displacements, stresses and
natural frequencies can be obtained for practical wings before ill conditioning appear. His results
were obtained on a CDC Cyber 173 (60 bit words). Our results obtained on an IBM 3090
computer in extended precision and on a SUN 3/280 computer using double precision support his
findings. When the depth of the wing and the thickness distribution of skin layers are also
expressed as power series, it can be shown that the stiffness and mass matrices are expressed as
linear combinations of certain area and line integrals and polynomial terms calculated at points
where wing section are connected or where concentrated masses are placed. These integrals and
polynomial tables are fixed once a planform shape is given. Thus they are evaluated only once at
the beginning of an optimization task. This leads to major computation time savings along with
the fact that the relatively small number of generalized coordinates needed to accurately
approximate displacement and stresses in a wing section (about 21-30) result in small mass and
stiffness matrices(although fully populated) compared with finite element analysis (Figure 8.).

POLYNOMIAL FUNCTIONS :
THE SHAPE FUNCTIONS : f{xy)= x~ y" (m=mi), n=ni))

-]t

A TYPICAL SKIN LAYER THICKNESS DISTRIBUTION : fxg)= 3.7, x* y/
(k.| DEPEND ON i) 5

-0

WING DEPTH : Mxy)= Y H, x* y* (r.s DEPEND ON i)
-t

SPAR/RIB CROSS SECTIONAL AREA : A(x)= 4o+ A\x

FUNDAMENTAL INTEGRALS :
AREA INTEGRAL OVER A SKIN TRAPEZOIDAL SECTION : [, = [ [ x= p* dxdy

LINE INTEGRAL OVER THE LENGTH OF A RIB: /3= [ x~ dx
LINE INTEGRAL OVER THE LENGTH OF A SPAR : I = [7R () »* dy
ASSEMBLY :

MASS AND STIFFNESS MATRICES ARE LINEAR COMBINATIONS OF THESE
INTEGRAL TERMS WITH VARYING INDICES : (m,n)

DISPLACEMENT RITZ SERIES FOR TWO WING SECTIONS CONNECTED TO EACH
OTHER VIA SPRINGS :

w = (xIyt iy o] {9 wy = [ (X272 (202 ..] {42}
FUNDAMENTAL POLYNOMIAL TERM TABLES :

m.n m n m a mn
X\0N o X Xy X2

ASSEMBLY :

ATTACHMENT CONTRIBUTION TO STIFFNESS MATRIX IS A LINEAR
COMBINATION OF POLYNOMIAL TERMS TAKEN FROM THE FUNDAMENTAL
TABLES.

Figure 8
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FEATURES OF THE PRESENT EQUIVALENT PLATE MODELLING

In order to structurally analyze (statics and dynamics) wing/control surface/ canard or tail
configurations and to accelerate the generation of approximate problems for synthesis, the
equivalent plate approach of Giles was further extended to include multi-element wing
box/control surfaces plus analytic behavior sensitivity derivatives with respect to structural design
variables. Stiffness and mass matrices can now be generated using analytic integration for wing
structures made of composite skins, spars and ribs, concentrated masses and equivalent springs
which connect plate sections to each other (Figure 9.).

CONFIGURATIONS MODELLED INCLUDE :

WING; CONTROL SURFACE/ CANARD/ FUSELAGE ASSEMBLIES
FUSELAGE AND MISSILES CAN BE MODELLED AS EQUIVALENT BEAMS
DESIGN VARIABLES INCLUDE :

SKIN LAYER THICKNESS DISTRIBUTION POLYNOMIAL COEFFICIENTS,
SPAR! RIB CAP AREA DISTRIBUTION (LINEAR ALONG SPAR/RIB LINE)
CONCENTRATED MASSES

LINEAR AND ROTATIONAL SPRING STIFFNESSES

ANALYSIS CAPABILITY :

FAST STIFFNESS,MASS MATRIX GENERATION
STATIC SOLUTION FOR DISPLACEMENTS AND STRESSES UNDER GIVEN LOADS
CALCULATION OF NATURAL FREQUENCIES AND MODE SHAPES

SENSITIVITY :

ANALYTIC BEHAVIOR SENSITIVITY ANALYSIS FOR DISPLACEMENTS, SLOPE,
QUADRATIC FAILURE CRITERIA FOR STRESSES IN SKINS, STRESSES IN
SPAR/RIB CAPS

ADJOINT OR DIRECT METHOD - OPTIONAL

Figure 9



NUMERICAL TESTING

Extensive numerical tests were carried out to study the accuracy of the present equivalent plate
modeling and assess its computational efficiency. Several wings of different construction, aspect
ratio and thickness were used. Displacements, stresses in skins and spar caps as well as natural
frequencies and mode shapes were compared to finite element results and to test results where
available. As an example, Figure 10 includes a comparison between YF16 wing natural
frequencies calculated using a detailed finite element analysis, the TSO program and our present
structural module. The YF16 wing configuration includes a wing box plus a leading edge flap and
a flaperon. The results demonstrate the accuracy of the new multi-element equivalent plate
modeling capability in analyzing wing/ control surface configurations. Some ground vibration test
results available in Ref. 46 made it possible to check the accuracy of the present code when a
fuselage,wing,control surfaces and tip missile configuration is analyzed. Although the first bending
frequency of the cantilevered wing as calculated here is 6.5% below the reference result, it is
somewhat sensitive to the modeling of root structure and a better correlation can be achieved by
tuning the springs representing root and wing-fuselage attachment flexibility. Overall the
correlation is good, and further refinement of the model seems unnecessary at this stage.

EQUIVALENT PLATE CAPABILITY TESTING

NATURAL FREQUENCIES (HZ) OF THE YF16

CANTILEVERED WING/LE FLAP/

F-F A/C WITH WING TIP
MISSILES (ANTI-SYMMETRIC)

FLAPERON ASSEMBLY

No. F.EM TSO PRESENT No. GVT PRESENT

(REF.10) (REF.10) CODE (REF.46) CODE

1 10.67 10.74 9.98 1 6.5 6.30
2 33.92 35.05 34.98 (Missile
3 35.78 42.75 36.48 Pitch)
4 56.45 64.24 54.02 2 8.0 7.99
5 62.47 73.43 65.28 (Wing 1st
6 67.96 95.31 73.57 Bending)

Figure 10
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NUMERICAL TESTING (CONCLUDED)

The first six mode shapes for the cantilevered YF16 example (without tip missile), generated
by the new multi-element equivalent plate analysis, are shown in Fig. 11. These mode shapes
correlate well with finite element results reported in Ref. 10. The quality of this correlation can be
attributed to the high order of control surface displacement representation and better modeling of
elastic point attachment of the control surfaces to the wing box.

A typical computation time for the static analysis of the wing of Ref. 37 (including the calculation
of 384 displacement, slope and stress constraints and their sensitivities with respect to inner and
outer panel skin thicknesses at an array of points over the wing) is 12.6 cpu seconds on the
UCLA IBM 3090. Analysis and constraint generation for YF16 six static load cases and natural
modes take 18.9 seconds. These relatively short computation times are essential to the
construction of an efficient multidisciplinary synthesis capability.

MODE SHAPES OF THE YF16 CANTILEVERED WING

5
MIODE 1 MODE 2

MODE 3

MODE 6

MODE 3

Figure i1
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LIFTING SURFACE UNSTEADY AERODYNAMICS :THE PCKF METHOD

Along the line of improving the mathematical modeling of the servoaeroelastic wing dynamic
system, the use of lifting surface theory (Refs. 47,48) for the calculation of the unsteady
aerodynamic loads is considered a definite step forward compared with strip theories. Lifting
surface aerodynamics are still widely accepted in the aerospace industry for the flutter and gust
response analysis of airplanes in the subsonic and supersonic speed regimes. Thus including lifting
surface modeling in the analysis part of a multidisciplinary wing synthesis is important if the
synthesis of real wings is sought.

In the PCKF method for the solution of the integral equation relating downwash and pressure
distribution over a lifting surface (Refs. 40-43) an assembly of lifting surfaces is divided into a
group of trapezoidal boxes, as shown in Fig. 12 for a subsonic case.

MODELING A CONFIGURATION BY AN ASSEMBLY OF TRAPEZOIDAL BOXES :
(SUBSONIC)
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THE PCKF METHOD : SOME ANALYTICAL ASPECTS

The pressure distribution on each box is approximated by welghtmg functions representing the
known pressure singularities along the box edges multiplied by a series of polynomials orthogonal
to these weighting functions. Collocation points over the planform are chosen so as to minimize
the error in the pressure integrals needed to calculate generalized aerodynamic forces. The PCKF
method is fast, accurate and especially suited to handle wing/control surface configurations. It is
more accurate than the vortex lattice method especially when leading edge flaps or controls with
gaps around them are considered (Ref. 40). This is due to the inability of lattice methods to
impose the pressure singularities along the different boundaries of the wing. In the present
application it is integrated with the equivalent plate structural analysis to generate a set of
generalized loads for the same generalized polynomial coordinates used for structural analysis. The
number of collocation points per box and the number of integration points used are carefully
selected to be compatible with the order of displacement polynomials used (Figure 13.).

POLYNOMIAL SERIES APPROXIMATION FOR PRESSURE OVER A BOX :

nspan  nchord
Lt TS e Won pfn) W) 20

where m = (1 — Dnchord + i
W), wml)

WEIGHT FUNCTIONS REPRESENTING KNOWN PRESSURE SINGULARITY ALONG
BOX EDGES

COLLOCATION POINT PLACEMENT : OPTIMAL SO AS TO MINIMIZE ERROR IN
PRESSURE INTEGRALS ( GENERALIZED AERODYNAMIC FORCES)

ADVANTAGES :

SUBSONIC / SUPERSONIC
GENERAL NON PLANAR WING/CONTROL SURFACE CONFIGURATIONS

FAST CONVERGENCE OF GENERALIZED LOADS WITH INCREASED NUMBER OF
POLYNOMIALS - HIGH COMPUTATIONAL SPEED

GOOD ACCURACY OF CONTROL SURFACE HINGE MOMENT AND CONTROL
SURFACE DERIVATIVES (VORTEX LATTICE METHOD OVERPREDICTS HINGE
MOMENTS) - IMPORTANT FOR SERVOAEROELASTIC MODELING

EXTENSIVE NUMERICAL TESTING BY THE DEVELOPERS FOLLOWED BY
ACCURATE RESULTS IN THE FLUTTER AND SERVOAEROELASTIC ANALYSIS OF
THE F16 IN AN INDUSTRY ENVIRONMENT

A DEFINITE IMPROVEMENT OVER STRIP THEORIES

Figure 13



UNSTEADY AERODYNAMICS FINITE STATE MODELING

The generalized aerodynamic loads in the Laplace transformed small perturbation equations of
motion (for a steady level flight) given below are transcendental functions of the Laplace variable
s. The flight dynamic pressure and flight speed are ¢, U, respectively; M,C,K are the
mass,damping and stiffness matrices; {s,Mach} is the matrix of generalized aerodynamic forces in
the Laplace domain; wgs) is the Laplace transformed vertical gust velocity ; S is a reference area
and {4(s)} 1s the vector of Laplace transformed generalized displacements.

To use modern control system analysis and design techniques, it is necessary to cast them in
Linear Time Invariant (LTI) state space form. The common practice is to match rational function
approximations to generalized aerodynamic loads calculated for harmonic motion at a set of
reduced frequencies (Ref. 45). There is a resulting increase in the order of the LTI state space
model due to the addition of acrodynamic states. This increase in size can be quite significant.
With n generalized displacements, each lag term in the commonly used Roger approximation (see
Ref. 45 for further detail) adds n states to the model order. Since four lag terms are usually needed
for a reasonable approximation in this method, 4n states are added to the system. This makes it
computationally expensive to carry out any control system analysis and behavior sensitivity
analysis using state space techniques. In the Minimum State Method of Karpel (Ref. 44 ), the
functional dependence of the generalized aerodynamic force matrix on the Laplace variable, is
approximated by a rational expression of a special form so as to reduce the number of added
states needed to achieve given quality of fit.

Given the generalized aero forces in simple harmonic motion for a number of reduced
frequencies, it is possible to match the approximation exactly to the data for k=0 and one other
reduced frequency. This determines the matrices P,, P,, P,. Choosing R to be a diagonal matrix
with negative elements, the matrices D and E are determined in an iterative process so that the
approximation fits the rest of the data in a least- squares manner. (Figure 14.).

THE SMALL PERTURBATIONS LAPLACE TRANSFORMED EQ. OF MOTION OF AN
ELASTIC AIRPLANE IN LEVEL FLIGHT :
wgls)
(LM + Clr-+ LKT) (o) ~ 405 [ Mack))(9) = 408 (Qoks Mack) "2
-]
PURPOSE QF FINITE STATE MODELING : CAST EQ. OF MOTION IN LINEAR
TIME INVARIANT STATE SPACE FORM

PRINCIPLE RATIONAL FUNCTION APPROXIMATIONS OF UNSTEADY
AIRLOADS IN TERMS OF LAPLACE VARIABLE

PRICE : ADDED STATES
MINIMUM STATE APPROXIMATION FORM :

(O] = [P 152 + [PoJs + [Py]+ [DIsl — RY'(EDs

MATCHING PROCESS :

* GENERALIZED AERO FORCES ARE GIVEN FOR HARMONIC MOTION AT A SET
OF REDUCED FREQUENCIES

* A SET OF AERODYNAMIC LAG TERMS IS CHOSEN : R,
* P ISEQUATED TOQ( k=0)

* p, P, ARE EXPRESSED IN TERMS OF D.E SO AS TO ENSURE PERFECT FIT AT A
SELECTED REDUCED FREQUENCY %,

* DE ARE DETERMINED IN AN ITERATIVE LEAST-SQUARES PROCESS TO FIT
THE REST OF THE DATA

ADVANTAGE :

MINIMAL INCREASE IN MODEL ORDER

PROBLEMS :

ITERATIVE PROCESS IS TIME CONSUMING

RELATIVELY LITTLE EXPERIENCE WITH REAL CONFIGURATIONS

Figure 14
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SOME PRELIMINARY MINIMUM STATE FITS TO A LARGE MATRIX
OF UNSTEADY AERODYNAMIC GENERALIZED FORCES

Order reduction of the state space model used for servoaeroelastic stability and control analysis is
essential for synthesis purposes in order to make the analysis cycle as computationally fast as
possible. This motivates the choice of the Minimum State Approximation for finite state unsteady
aerodynamic modeling in the current research. Preliminary tests of the quality of approximation
achieved when applied to a large matrix of generalized aerodynamic forces show promising results.
A 44 x 44 matrix of generalized aero forces for the YF16 airplane with tip missiles is
approximated using only 22 lag terms. Comparison with a one lag term Roger approximation
(which will add 44 aerodynamic states to the model) shows an advantage of the minimum state
approach (Figure 15.).

SOME RECENT EXAMPLES OF QUALITY OF FIT FOR A YF16 COMPLETE A/C
CONFIGURATION :

( 44 POLYNOMIAL GENERALIZED COORDINATES )

SOME LOW ORDER SHAPE FUNCTIONS FOR THE WING BOX
filxgr= 1, fi(xg) = x, fi(xy)=x

A HIGHER ORDER SHAPE FUNCTION : f, (xy) = x*

ROGER APPROXIMATION BASED ON | LAG (44 ADDED STATES)
MINIMUM STATE BASED ON 22 LAGS (22 ADDED STATES)

1.5 4 Q.050 4
1
IMAG A(1.4) IMAG A(L1])
0.4
Al
2.2{ IMAG ALY 0.025 0.0012 4
3.04
2.2 0.000 { 0.0000 4
9.4
9.5 -0.025 { -0.0012 4
2.8
REAL A(1,2) REAL A(1,9) REAL A(1,1D)
-1.04' v v r - -0.0504' — — . —0.0025«r
-1.0 ~0.8 -0.6 -0.4 -0.2 0.¢ -0.25 -0.20 -0.1S5 -0.10 - ~0.010 -0.005
Figure |5



CONTROL SYSTEM MODELING

A block diagram of the actively controlled servoaeroelastic system is shown in figure 16. Airplane
motions (acceleration and angular rates) are sensed by a set of sensors placed at different points
on the structure. The resulting signals are used as inputs to the control law block which
commands control surface actuators. The control surface motions guarantee stability and
desirable dynamic response of the complete system.

For the control system, only sizing type design variables are considered at present to keep the
balance in our approach, and these are the coefficients of numerator and denominator
polynomials in the control law transfer functions. Control surface locations, sensot locations, the
structure of the control system and order of transfer functions are preassigned. It is assumed that
sensor and actuator transfer function are given, although the formulation is general enough to
allow treating their elements as design variables as well.

sensors control laws

) |
|
l
!

bs" + .+ bys+
"4+ dys o+ dy

——§—

|
L

|

|

|

I

(
e 1

raa—

control surface

airplane dynamics deflections

(structural dynamics/

unsteady acrodynamics) I

actuators

gust excitation

Figure 16

control commands
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LTI STATE SPACE MODEL AND STABILITY ANALYSIS

Formulations of the state space control augmented servoaeroelastic equations of motions can be
found in many works on active flutter suppression (e.g. Ref. 49). A transfer function model of an
element of the control system (whether sensor, actuator or a control law) can be transformed into
a state space model, where the A, B, C and D matnces are explicitly expressed in terms of the
transfer function numerator and denominator polynomial coefficients. Assembly of the sensor,
actuator, control law, structural dynamics, gust and unsteady aerodynamics state space models
leads to the system matrices U, V and W in a LTI state space model of the whole system. These
matrices are functions of the structural design variables through their dependence on the stiffness
and mass matrices. They depend on the control system design variables through their dependence
on the state space models of the control elements.

For given flight conditions (Mach number and altitude) the stability of the system is
determined by the real part of the eigenvalues of a generalized eigenvalue problem. Sensitivity of
a critical eigenvalue with respect to any design variable, p , is calculated using standard eigenvalue
sensitivity analysis based on the derivatives : dU[dp, 6V/ép and the left and right corresponding
eigenvectors {{/}, {¢}. It is planned to use the original Ritz functions directly as generalized
coordinates. This approach leads to an increased order model but avoids natural mode
calculation and aerodynamic force updates associated with natural mode reduced models.
Computation times and accuracy will determine whether there is a need to resort to natural
modes. Alternative approximations to system eigenvalues in terms of structural and control
system design vanables will be studied (Figure 17.).

STATE SPACE MODELS OF ACTUATORS, SENSORS AND GUST FILTER :
s{x) = [A)(x} + [B){w)

b =0G1{x}

i= ACT FOR ACTUATORS
i= SEN FOR SENSORS
i=G FOR GUST

STATE SPACE MODEL OF THE CONTROL BLOCK :
s{xpawt = [Apaw 1 xeawd + [BLawd {4paw}

Wrawt = [ Craw ] cpawt + [Prawd (uraw)

THE A,B,C,D MATRICES ARE EXPLICITLY EXPRESSED AS A FUNCTION OF THE
CONTROL SYSTEM DESIGN VARIABLES.

SYSTEM STATE VECTOR (x} = (% ;.. % ) CONTAINS :

STRUCTURAL STATES ; ACTUATOR STATES ; SENSOR STATES ; CONTROL LAW
STATES : GUST STATES ; AERODYNAMIC STATES ASSOCIATED WITH

GENERALIZED AEROC MATRIX ; AERODYNAMIC STATES ASSOCIATED WITH
GUST VECTOR .

THE CLOSED LOOP STATE SPACE EQUATIONS OF THE COMPLETE SYSTEM :
s[UY (sl = [V] (x5} + (W) uels)

STABILITY BY EIGENVALUE ANALYSIS :

AU} = VR 1{4)

EIGENVALUE SENSITIVITY WITH RESPECT TO DESIGN VARIABLE p:

a4 ap

% wue

vTra gl - e

Figure 17



STATUS OF MULTIDISCIPLINARY ANALYSIS AND
BEHAVIOR SENSITIVITY

Figure 18 presents status of research activities associated with the development of the analysis and
sensitivity capabilities for the multidisciplinary synthesis of wings. It is expected that based on
these capabilities, it will be practical to synthesize on a preliminary design level realistic
representations of control augmented wings. The generality of the approximation concepts based
mathematical programming aproach to synthesis and the realism in modeling are expected to be
of major importance in coping with complicated multidisciplinary interaction, where little
experience exists and intuition is often misleading.

ANALYSIS AND BEHAVIOR SENSITIVITY
STATUS

—————

STRUCTURE AERODYNAMICS# CONTROL

FORMULATION : ANALYSIS + + +
SENSITIVITY + + +
ANALYSIS IMPLEMENTATION : + + +
ANALYSIS TESTING : + + in progress
SENSITIVITY IMPLEMENTATION : + in progress in progress
SENSITIVITY TESTING : + - -
APPROXIMATION CONCEPTS
PERFORMANCE ASSESSED : + - -

# AERODYNAMICS INCLUDE :
* UNSTEADY AERODYNAMICS FOR SERVOAEROELASTIC ANALYSIS
* STEADY TRIM AND DRAG CALCULATIONS

915



916

REFERENCES

1. Schmit, L.A., “Structural Optimization - Some Key Ideas and Insights,” in New Directions in
Optimum_ Structural Design, edited by Atrek, E., Gallagher, R.H., Ragsdell, K.M., and
Zienkiewicz, O.C., John Wiley and Sons, 1984.

2. Ashley, H., “"On making things the best - The aeronautical uses of optimization,” Journal of
Aircraft, Vol.19,No.1,January 1982,pp. 5-28.

3. Lansing, W., Lerner, E. and Taylor, R.F., "Applications of Structural Optimization for
Strength and Aeroelastic Design Requirements,” AGARD-R-664, 1978.

4. McCullers, L.A., “Automated Design of Advanced Composite Structures,” Mechanics of
Composite Materials, Zvi Hashin(ed.),Pergamon Press,1983

5. Trplett, W.E., “Flutter Optimization in Fighter Aircraft Design,” in NASA CP-2327 Recent
Experiences in Multidisciplinary Analysis and Optimization, 1984, pp.47-63.

6. Shirk, M.H., Hertz, TJ. and Weisshaar, T.A.,, “Acroelastic Tailoring -
Theory,Practice,Promise,” Journal of Aircraft, Vol. 23,No. 1, January 1986, pp. 6-18.

7. Haftka, R.T., “Structural Optimization with Aeroelastic Constraints : A Survey of US
Applications,” International Journal of Vehicle Design, Vol.7, No.3-4, 1986, pp. 381-392.

8. Weisshaar, T.A., “Aeroelastic Tailoring - Creative Uses of Unusual Materials,” AIAA Paper
87-0976-CP, AIAA/ASME/ASCE/AHS 28th Structures, Structural Dynamics and Matenals
Conference, Monterey,California,Apnl 6-8,1987.

9. Lynch,R.W., and Rogers, W.A., “Aeroelastic Tailoring of Composite Materials to improve
Performance,” Proceedings of the 16th Structures,Structural Dynamics and Materials Conference,
1975.

10. Lynch, R.W, Rogers, W.A, and Braymen, W.W., “Aecroelastic Tailoring of Advanced
Composite Structures for Military Aircraft,” AFFDL-TR-76-100, Volume 1, Apnl 1977.

11. Haftka, R.T., “Automated Procedure For Design of Wing Structures to Satisfy Strength and
Flutter Requirements,” NASA TN D-7264, 1973.

12. Stammes Jr, J.H, and Haftka,R.T., “Preliminary Design of Composite Wings for
Buckling,Strength and Displacement Constraints,” Journal of Aircraft, Vol.16, No.2, August 1979,
pp-564-570.

13. Haftka, R.T., “Optimization of Flexible Wing Structures Subject to Strength and Induced
Drag Constraints,” AIAA Joumal, Vol. 15, pp. 1101-1106, 1977.

14. Neill, D.J, Johnson, E.H. and Canfield, R., "ASTROS - A Multidisciplinary Automated
Structural Design Tool,” AIAA Paper no. 87-0713 presented at the 28th
AIAA/ASME/ASCE/AHS Structures,Structural Dynamics and Materials Conference, Monterey,
Californmia, April 1987.

15. Peloubet, R.P., “YF16 Active Control System/Structural Dynamics Interaction Instability,”
AIAA Paper 75-823, AIAA/ASME/SAE 16th Structures, Structural Dynamics and Materals
Conference, Denver, Colorado, May 1975.

16. Felt, L.R., Huttsell, J. et al. “Aeroservoelastic Encounters,” Journal of Aircraft, Vol. 16 No.
7,July 1979,pp477-483.

17. Swaim, R.L., “Aeroelastic Interactions with Flight Control,” AIAA Paper 83-2219, in AIAA
Conference on Guidance and Control, 1983.

18. Miller,G.D., Wykes, J.H, and Bronsan,M.J., "Rigid Body/Structural Mode Coupling on a
Forward Swept Wing Aircraft,” Jounal of Aircraft, Vol. 20, Aug.1983, pp.696-702.

19. Weisshaar, T.A., and Zeiler, T.A., "Dynamic Stability of Flexible Forward Swept Wing
Aircraft,” Journal of Aircraft, Vol. 20, 1983, pp. 1014-1020.

20. Yurkovich, R., “Flutter of Wings with Leading Edge Control Surfaces,” AIAA Paper 86-0897,
Proceedings of the AIAA/ASME/SAE 27th Structures, Structural Dynamics and Materials
Conference, San Antonio, Texas ,1986.

21. Brinks, W.H., "F/A-18 Full Scale Development Test,” The Society of Experimental Test
Pilots 24th Symposium Proceedings, December 1980, p. 38.

22. Newsom, J.R., Adams, W.M., Mukhopadhyay, V., Tiffany, S.H., and Abel, 1., "Active
Controls : A look at Analytical Mcthods and Associated Tools,” ICAS paper ICAS-84-4.2.3,
Proceedings of the 14th Congress of the International Council of the Aeronautical Sciences,
Toulouse, France,1984.

23. Nissim, E., and Abel, 1., “Development and Application of an Optimization Procedure for
Flutter Suppression using the Aerodynamic Energy Concept,” NASA TP 1137, February, 1978.
24. Nissim, E., and Lottati, 1., “Active External Store Flutter Suppression in the YF-17 Flutter
Model,” Joumnal of Guidance and Control, Vol.2,No.5,Sept-Oct. 1979, pp. 395-401.




25. Liebst, B.S., Garrard, W.L., and Adams, W.M., “Design of an Active Flutter Suppression
System,” Journal of Guidance,Control and Dynamics, Vol. 9, No. 1, Jan. - Feb. 1986, pp. 64-71.
26. Rimer, M., Chipman, R., and Muniz, B., “Control of a Forward Swept Wing Configuration
Dominated by Flight Dynamics/Aeroelastic Interactions,” Joumal of Guidance,Control and
Dynamics, Vol. 9, No. 1, January-February 1986,pp.72-79.

27. Tolson, R.H., and Sobieszczanski-Sobieski, J., “ Multidisciplinary Analysis and Synthesis :
Needs and Opportunities,” AIAA Paper 85-0584.

28. Sobieszczanski-Sobieski, J., and Haftka, R.T., “Interdisciplinary and Multilevel Optimum
Design,” in Computer Aided Optimal Design : Structural and Mechanical Systems, Mota Soares,
C. A, (ed.), Springer Verlag 1987.

29. McGeer, T., “Wing Design for Minimum Drag with Practical -Constraints,” Journal of
Aircraft, Vol. 21, No. 11, November 1984, pp. 879-886.

30. Gilbert, M.G., Schmidt, D.K., and Weisshaar, T.A., “Quadratic Synthesis of Integrated Active
Controls for an Aeroelasic Forward Swept Wing Aircraft,” AIAA Paper 82-1544, Proceedings of
the 1982 AIAA Guidance and Control Conference, 1982.

31. Zeiler, T.A., and Weisshaar, T.A., “Integrated Aeroservoelasic Tailoring of Lifting Surfaces,”
Joumal of Aircraft, Vol. 25, No. 1, January 1988, pp. 76-83.

32. Weisshaar, T.A., Newsom, JR., Zeiler, T.A, and Gilbert, M.G., “Integrated
Structure/Control Design - Present Methodology and Future Opportunities,” ICAS Paper
ICAS-86-4.8.1, presented at the 1986 Conference of the International Council of the Aeronautical
Sciences, London, England.

33. Grossman, B., Strauch, G.J., Eppard, W.M., Gurdal, Z., and Haftka, R.T., “Integrated
Aerodynamic/Structural Design of a Sailplane Wing,” AIAA Paper 86-2623, AIAA Aircraft
Systems,Design & Technology Meeting, October,1986.

34. Haftka, R.T., Grossman, B., Eppard, W.M., and Kao, P.J., “Efficient Optimization of
Integrated Aerodynamic-Structural Design,” Proceedings of the International Conference on
Inverse Design Concepts and Optimization in Engineering Sciences - II, October 26-28,1987,
University Park, Pennsylvania.

35. Barthelemy, J.F.M, and Bergen, F.D., “Shape Sensitivity Analysis of Wing Static Aeroelastic
Characteristics”, paper AIAA 88-2301, presented at the AIAA/ASME/ASCE/AHS 29th
Structures,Structural Dynamics and Materials Conference, Williamsburg, Virginia, 1988.

36. Gilbert, M.G., “Sensitivity Method for Integrated Structure/Active Control Law Design,” in
NASA CP 2457, Sensitivity Analysis in Engineering, 1987.

37. Giles, G.L., “Equivalent Plate Analysis of Aircraft Wing Box Structures with General
Planform Geometry,” Journal of Aircraft, Vol.23, No.11, November 1986, pp.859-864.

38. Giles, G.L., "Further Generalization of the Equivalent Plate Representation for Aircraft
Structural  Analysis,” AIAA  Paper No. 87-0721-CP, AIAA/ASME/ASCE/AHS
Structures Structural Dynamics and Materials Conference, Monterey, California, April 1987.

39. Pittman, J.L, and Giles, G.L., “Combined Nonlinear Aerodynamic and Structural Method for
the Aeroelastic Design of Three Dimensional Wing in Supersonic Flow,” AIAA paper No.
86-1769, AIAA 4th Applied Aerodynamics Conference, San Diego,California,1986.

40. Lottati, 1., and Nissim, E., “Three Dimensional Oscillatory Piecewise Continuous Kernel
Function Method”,(in three parts), Journal of Aircraft, Vol. 18, No. 5, May 1981, pp.346-363.

41. Lottati, I. and Nissim,E., "Nonplanar,Subsonic,Three Dimensional Oscillatory Piecewise
Continuous Kemel Function Method”, Journal of Aircraft, Vol. 22,No. 12,December 1985, pp.
1043-1048.

42. Lottai, 1., “Induced Drag and Lift of Wing by the Piecewise Continuous Kernel Function
Method”, Journal of Aircraft, Vol. 21, No. 11, pp. 833-834.

43. Nissim, E., and Lottati, 1., “Supersonic Three Dimensional Oscillatory Piecewise Continuous
Kemel Function Method,” Journal of Aircraft, Vol. 20, No. 8, August 1983, pp.674-681.

44. Karpel, M., “Design for Active Flutter Suppression and Gust Alleviation using State Space
Aeroelastic Modeling,” Journal of Aircraft, Vol.19, No. 3, March 1982, pp. 221-227.

45. Tiffany, S.H., and Adams, W.M., “Nonlinear Programming Extensions to Rational Function
Approximations of Unsteady Aerodynamics,” Proceedings of the 28th Structures,Structural
Dynamics and Materials Conference, Monterey,California, 1987.

46. Moore, R.L.,. “Aeroservoelastic Stability Analysis of an .Airplane with a Control
Augmentation System”, Phd Thesis, The Ohio State University, 1978 (Available from University
Microfilms International, No. 7902191)

917



918

47. Watkins, C.E., Runyan, H.L., and Woolston, D.S., “On the Kernel Function of the Integral
Equation Relating the Lift and Downwash of Oscillating Finite Wings in Subsonic Flow,” NACA
Report 1234,1955. '

48. Rowe, W.S., “Comparison of Analysis Methods used in Lifting Surface Theory,” in
Computational Methods in Potential Aerodynamics, edited by L. Morino, Springer Verlag, 1985.
49. Mukhopadhyay, V., Newsom, J.R., and Abel, 1., “A Method for Obtaining Reduced Order
Control Laws for High Order Systems Using Optimization Techniques”, NASA Tecnical Paper
1876, 1981. '

BIBLIOGRAPHY

1. Rogers, W.A., Brayman, W.W., and Shirk, M.H., “Design, Analysis, and Model Tests of an
Acroelastically Tailored Lifting Surface,” Journal of Aircraft, Vol. 20, No. 3, March 1983, pp.
208-215. ‘

2. Wilkinson, K., Markowitz, J., Lemer, E., George, D., and Batill, S.M., “FASTOP - A Flutter
and Strength Optimization Program for Lifting Surface Structures,” Joumnal of Aircraft, Vol.14,
No.6, June 1977. ‘

3. Markowitz, J., and Isakson, G., “FASTOP3 - A Strength,Deflection and Flutter Optimization
Program for Metallic and Composite Structures,”

AFFDL - TR - 78 - 50,May 1978.

4. Isakson G., Pardo H., Lerner E. and Venkayya V.B.

ASOP3 - A Program for Optimum Structural Design to Satisfy Strength and Deflection
Constraints. Journal of Aircraft, Vol. 15, No. 7, July 1978, pp. 422-428.

5. Lerner, E.,, “The Application of Practical Optimization Techniques in the Preliminary
Structural Design of a Forward - Swept Wing,” The Second International Symposium on
Aeroelasticity and Structural Dynamics, Aachen, W.Germany, Aprl 1-3, 1985, DGLR-Bericht
85-02.

6. Lecina, G. and Petiau, C., “Advances in Optimal Design with Composite Materials,”

in : Computer Aided Optimal Design : Structural and Mechanical Systems, C.A.Mota Soares
(ed.), Springer-Verlag, 1987.




N89-25195

Control Surface Spanwise Placement In
Active Flutter Suppression Systems

E.Nissim!
NRC-NASA Research Associate
NASA Ames-Dryden Flight Research Facility

J.J.Burken
NASA-Ames-Dryden Flight Research Facility

10n leave from Technion-1.1.T.;Haifa,Israel

919



920

1 INTRODUCTION

All flutter suppression systems require sensors to detect the movement of
the lifting surface and to activate a control surface according to a synthe-
sized control law. Most of the work performed to date (refs. 1 through
5) relate to the development of control laws based on predetermined loca-
tions of sensors and control surfaces. These locations of sensors and control
surfaces are determined either arbitrarily, or by means of a trial and error
procedure (ref. 5)

The aerodynamic energy concept (ref. 6) indicates that the sensors
should be located within the activated strip. Furthermore, the best chord-
wise location of a sensor activating a T.E. control surface, is around the
65-percent chord location (ref. 7).  The best chordwise location
for a sensor activating a L.E. surface is shown to lie upstream of the wing
(around 20-percent upstream of the leading edge), or alternatively, two
sensors located along the same chord should be used.

Plan View of a Wing with Active Control Surfaces
and Recommended Sensor Locations

-Leading edge
/ sensor at
Y l — 20 percent chord

dy
dax ] |_—Trailing edge
| /l// sensor at

65 percent chord




The present work describes a method which enables one to determine the
best spanwise placement of an activated control surface without resorting to
any specific control law. The method is based on the aerodynamic energy
concept whereby the activated control surface is placed at the location
where most energy is fed into the unstable structure.

2 APPROACH

Let the pressure p(z,y) be given by eq.(1) and let the displacement z(z,y)
be given by eq.(2),where the ¢’s denote the generalized coordinates of the
system. The generalized aerodynamic forces per unit area are given by
eq.(3), or in a more condensed form by eq.(4).

q )
p(z,y) = | ;(z,y) Pa(a,y) - pn(x,wjj q » (1)
\ Gn )
([ q1 )
@) = | a@y) w@y) o ow@n {7 ()
\ gn J
21(93,!/) q1
{Q}., = Zz(f’y) | p1(z,0) pa(ey) -+ pale,y) | q:2 (3)
Zn(2,Y) dn
{Q}., =4, {¢} (4)
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The work per unit area W, , done by the system on its surroundings
per cycle of oscillation is given by (ref. 6) eq.(5), where eq.(6) provides
a definition for some of the parameters in eq.(5). If W, , > 0, energy is
dissipated by the system. If W, , < 0, energy is fed into the system. Eq.(8)
is obtained by integrating eq.(5) along the chord,and it yields the work
W, per unit span done by the system on its surroundings per cycle of
oscillation. The total work W is obtained by integrating eq.(8) along the
span, as shown in egs.(10),(11).

Wew= 3L} (~[4r+ A7) +i[An=4F] Jw}
(AL, = Arl,,, +i[Ad,, (6)

W, = /L TEE W, dz (7)

W, = 2 las) (= [dr+ A7), +i[4r - AF] ) {ao} (8)
4),= [ 14, da )

W= _'; W, dy (10)

W =2 1a) (= [Ar + A7) + i [4n - AF]) {00} (1)
= [ 14, dy (12)



Define the specific energy ratio by W4, as given by eq.(13), and note
that its integral along the span must have a unit absolute value (see eq.(14)).

= _ Wy

" Wady = +1 (14)

It is argued that the best spanwise placement of an active control surface
for flutter suppression is around the location where W4 is negative and
assumes the largest numerical values.

3 DETAILED PROCEDURE

1. Determine the flutter dynamic pressure Qr of the system

2. Increase Qp,so as to lie within the unstable region, and obtain the
eigenvector {¢go} of the unstable mode. The amount by which Qp is
increased is immaterial since only energy ratios are used.

3. Compute W (which must be negative),and W 4 for the different span-
wise locations.

4. Plot the specific energy ratio W 4 versus the span and determine the
strip where W 4 assumes the largest negative value. This strip absorbs
most energy per unit span and therefore would present the location
where an active control surface would be most effective in suppressing
flutter.
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4 NUMERICAL EXAMPLES

Three numerical examples are used.These examples relate to
1. DAST-ARW2,12 modes (2 rigid body modes),see ref. 8.
2. OBLIQUE WING,20 modes(5 rigid body modes),see ref. 9.

3. MODIFIED OBLIQUE WING (with one torsional modal frequency
reduced so as to cause wing flutter)

The relevant aerodynamic matrices were computed using Langley’s dou-
blet lattice ISAC program.The results obtained are shown in the following
figures.

Oblique Wing Model Planform View with Wing
Skewed 65°




5 Results for the DAST-ARW2 Mathemat-
ical Model

The geometrical layout of the DAST-ARW2 model is shown below. It can
be seen that out of the 24 strips allowed for the model,17 strips lie along the
wing, 4 strips lie along vertical tail and 3 strips lie along the horizontal tail.
This model yields a flutter dynamic pressure Q@r = 490psf (at M=0.85)
and a flutter frequency wr = 117rad/s. The unstable eigenvector was
computed for @ = 550psf and the matrices [A] and [A], were computed
for all the 24 strips at the reduced frequency k = 0.132 associated with the
unstable mode.

ARW2 Geometric Layout, Together with Doublet
Lattice Paneling and Strip Number Allocations

>
23
\ Note: 2
1. Numbers rep t strip locati
2. Control surface Izcatlon (b) Horizontal tail plantorm.
\
\

1
2
3

4

{c) Vertical tail sideview.
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The figure below shows a plot of the specific energy ratios W 4 for only
those 17 strips that lie along the wing. The values of W4 are negligible
for all the other strips and therefore will not be shown herein. As can
be seen, the specific energy ratio is negative for all wing strips, except for
the root strip (strip 5) where W4 is very small and positive. The largest
negative numerical value of W 4 relates to strip 18, which coincides with the
inboard portion of the aileron. Following the method described herein, this
is the location around which the aileron should be placed for best effects
regarding flutter suppression ( i.e. around the 80-percent span location).

DAST - ARW2 Model — Variation of Specific Energy

Ratio WA with Strip Locations Along the Wing

Wingtip

.005 — +
6 8 10 12 141618 20 w
5 7 9 11 131517 19 21— When W, >0, strip ls
0 Strip dissipating energy
numbers When WA< 0, strip is
-.005 — absorbing energy
Specific -.010 —
energy
ratio ¥
oot -015
w A in. L]
-020 — T B
-.025 | -
| 11 |

-.030 I N
0 20 40 60 80 100 120 140

Span Y along wing, in.
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6 Results for the Oblique Wing

The geometrical layout of the wing in a 65-degrees skew position (with right
wing forward) is shown. Note that the wing has again 17 strips along its
span,with strip 6 at the tip of the left wing and strip 22 at the tip of the
right wing,.

Oblique Wing Model — Geometric Layout Together

with Doublet Lattice Paneling and Strip Numbers
Planeform 65° Skew

Q 21

17

Note:
Numbers represent
strip locations
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The horizontal tail, the horizontal projection of the fuselage, and the
side view of the vertical tail are both shown in the figure below. There are
4 strips on each of the horizontal tails (left and right surfaces), 2 strips on
the horizontal projection of the fuselage, and 4 strips on the vertical tail.

A flutter computation at Mach 0.95 shows that a mild, 78 rad/s, vertical

tail flutter instability develops around Qr = 780psf.

Oblique Wing Model — Geometric Layout Together
with Doublet Lattice Paneling and Strip Numbers

Horizontal tail and
horizontal projection
of fuselage

Vertical tail
sideview
Numbers represent
strip locations
1
2
3
4

2 25 % 7B B g 31
23 32
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The specific energy ratio distribution was computed for Q=1600 psf.
It can be seen that most of the energy input into this fluttering system
takes place through the vertical tail and the tips of the horizontal tail. The
inboard parts of the horizontal tail, the horizontal fuselage, and practically
all of the wing,all dissipate energy and thus contribute to the mildness of
the flutter obtained. The following figures indicate that for the suppression
of this flutter mode, the active control surface should be placed around
the center of strip 3 of the vertical tail (i.e. around its 60-percent span

location).

Oblique Wing Model — Variation of Specific Energy
Ratio WA with Strip Locations

Wing

.008
.004

Specific

energy
ratio 0

W A in.”?

—.004
-.008

QG of fuselage
|
L Right
Left I gt
wingtip wingtip
— U7 9 11 13 15 17 19 21
6 8 10 12 14 16 18 20 22
Strip numbers
— I
|
| | I N I I i

-160 -120 -80 -40 O 40 80 120

Span Y along wing, in.

When WA>0, strip is
dissipating energy
When W, <0, strip is
absorbing energy
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Oblique Wing Model — Variation of Specific Energy

Ratio WA with Strip Locations
Horizontal Tail and Horizontal Fuselage

020 —

016 —
(E of fuselage

012 —’—-
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WA' in.~1 004 Horizontal
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L B
Right
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horizontat | tail tip
tail tip
—oosl L L 11y
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Span Y along horizontal tail, in.

When WA>0, strip is
dissipating energy
When W, <0, strip is
absorbing energy

Oblique Wing Model — Variation of Specific Energy

Ratio W, with Strip Locations
Vertical Tail

.004 — Vertical tail tip (Z)

/
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7 Results for the Modified Oblique Wing

The oblique wing is unique from the point of view of assymetry. The best

_ placement of an activated strip along its span could present an interesting
challenge. The mathematical model of the wing was therefore modified so as
to ‘force’ the wing to flutter. This was done by lowering one of the torsional
frequencies of the wing from 45 HZ to 12 HZ. Therefore, the following results
do not relate to the actual wing but to a synthetically modified wing. This
modified model yields,in addition to the already seen vertical tail flutter,a
wing flutter mode with Qr = 1050psf and wr = 70rad/s. The following
results relate to this wing flutter mode, with specific energy ratios computed
at Q=1300 psf.

Modified Oblique Wing Modet — Variation of
Specific Energy Ratio WA with Strip Locations

Horizontal Tail and Horlzontal Fuselage

024 — When W, >0, strip is
dissipating energy
020 — When V=VA< 0, strip Is
absorbing energy
016 — |
012 — Q of fuselage Right
Sg:gll:lgi;: | horizontal
) | ! tail tip
__ ratio ] -008 Lot Horizontal 32
W, in~ 6 fuselage
A horizontal 30
004 —tail tip l‘—’|,
+23 24 25 26 27| 28 |29 31 —» Strip
L

0 ’_I—L T : l numbers
-.004 —

|
I
I
|

— 008 [ I I
-120 -80 -40 0 40 80 120 160
Span Y along horizontal talil, in.
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Modified Oblique Wing Model — Variation of
Specific Energy Ratio WA with Strip Locations

Vertical Tail

When W, >0, strip is
dissipating energy
When WA< 0, strip Is

absorbing ener
Vertical tail tip (2) 9 o

/

2 3 —» Strip numbers

I I [ | l |

.020 —
016 —
012 —
Speecigc
energy
ratio .008 —
—_— . _1
W,, in.
A .004 —
1
0
-.004
0

40 80 120 160 200 240 280
Span Z along vertical tail, in.

Modified Oblique Wing Model — Variation of
Specific Energy Ratio WA with Strip Locations

Wing
Right
wingti =
.008 — I15 ¢ 2:; When W, >0, strip is
Left 14 18 dissipating energy
:004 | wingtip 13 17 o 2l | Stre When W, <0, strip is
1
0 Y6 789101112 ) numbers absorbing energy
|
-.004 — |
I
-.008 — I
Sgeeclllc |
ner
ratl%y -012 — (li_ol fuselage
3 _1 ]
W,, in.
A -.016 — |
L |
-020— | I
|
~024 — |
I
-.028 — |
PO s T N N N N

-160 -120 -80 -40 O 4 80 120

Span Y along wing, in.



As seen from the above 3 figures,most of the energy input into the system
takes place through the left wing. The vertical tail essentially dissipates
energy, and the horizontal tail absorbs energy through its left surface and
dissipates around the same amount of energy through its right surface.
The largest negative numerical value for W, is obtained in strip 6 which
represents the tip of the left (aft) wing. Hence, for the suppression of this
flutter mode, the activated control surface should be placed as close to the
left tip of the wing as is structurally possible. Strips 9 and 10 can also
form a reasonable alternative to the above extreme tip placement of the
activated control surface,i.e.,around the 65-percent span location of the left
wing.
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Introduction

The purpose of this study is to examine a function for approximating natural frequency constraints
during structural optimization. The nonlinearity of frequencies has posed a barrier to constructing
approximations for frequency constraints of high enough quality to facilitate efficient solutions. A new
function to represent frequency constraints, called the Rayleigh Quotient Approximation (RQA), is
presented. Its ability to represent the actual frequency constraint results in stable convergence with
effectively no move limits.

The objective of the optimization problem is to minimize structural weight subject to some minimum (or
maximum) allowable frequency and perhaps subject to other constraints such as stress, displacement, and
gage size, as well. A reason for constraining natural frequencies during design might be to avoid potential
resonant frequencies due to machinery or actuators on the structure. Another reason might be to satisfy
requirements of an aircraft or spacecraft’s control law. Whatever the structure supports may be sensitive to
a frequency band that must be avoided. Any of these situations or others may require the designer to
insure the satisfaction of frequency constraints. A further motivation for considering accurate
approximations of natural frequencies is that they are fundamental to dynamic response constraints.
Techniques for natural frequency constraints may have application to transient response and frequency
response problems.

Problem

Minimize Weight of Structure

Subject to Constraints on Structural Response (Natural Frequencies)

For a Finite Element Model (Cross-Sectional Properties as Design Variables)
With a Given Geometric Configuration.

Obstacle

Highly Nonlinear Frequency Constraints
Difficult to Approximate

Solution
Better Approximation Using Modal Energies

— e
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“Best” Choice of Intermediate Design Variables

Engineers have long used the Taylor Series Approximation (TSA) as a tool to simplify problems. In
1974 Schmit and Farshi exploited the use of TSAs to form approximate problems to the actual design
problem.! Since then much attention has been focused on finding the most appropriate intermediate design
variables to use for the best TSA. Schmit and Miura originally championed the use of reciprocal
variables.2 Starnes and Haftka3 and Fleury and Braibant4 have shown that a hybrid constraint using
mixed variables (i.e., a combination of direct and reciprocal variables) yields a more conservative
approximation. Woo generalized the concept in his Generalized Hybrid Constraint (GHC) Approximation
where a variable exponent controls how conservative is the convex approximation.S Fleury devised a
means of selecting an “optimal” intermediate variable based on second order information.6 Vanderplaats
and Salajegheh demonstrated improved quality for frequency constraint approximations in the element
property space of frame elements when the optimization design variables are cross-sectional dimensions.”
All of these approaches have sought improvement through the “best” choice of intermediate variables. Yet
all of them have used a Taylor series of some sort for the eigenvalue.

- Taylor Series Approximation (TSA)—Reciprocal Variables
-~ Schmit & Farshi, 1974
— Schmit & Miura, 1976

 Hybrid Constraint—Mixed Variables
— Starnes & Haftka, 1979
— Fleury & Braibant, 1984

« Generalized Hybrid Constraint (GHC)
— Woo, 1986 ( Frequencies)

 Cross-Sectional Property Space for Frames
— Mills-Curran, Lust & Schmit, 1983
- Vanderplaats & Salajegheh, 1988 (Frequencies)

939



Alternatives to Conventional TSA

The nonlinearity of frequencies is readily observed through the appearance of cross-sectional variables
in both the numerator and denominator of Rayleigh’s quotient. Venkayya has pointed out that in practical
structures, the denominator (kinetic energy) is typically dominated by the non-structural mass.8 In this
case, frequency eigenvalues are more nearly linear in the cross-sectional property (direct design variable)
space. Based on this assumption some researchers have preferred a Taylor series constructed in the direct
design variable space.” On the other hand, Miura and Schmit presented results that were better in the
reciprocal design space than in the direct design space.9 Nevertheless, their studies revealed that the
eigenvalues are highly nonlinear in both direct and reciprocal design variable space, requiring strict move
limits. As a result, they used a second order Taylor series. Although the second order approximation
provided stable convergence without strict move limits, they reported the total computational time was
“comparable with that required using first order approximations with move limits.”

In 1987 Vanderplaats and Salajegheh demonstrated for stress constraints that using a Taylor series to
approximate the internal loads, instead of the stresses themselves, could increase the rate of convergence
and reduce the need for move limits.10 They observed that internal loads are a more fundamental quantity
than stresses. Venkayya’s approach in formulating the optimality conditions for frequency constraints8.11
suggests that for frequencies modal energies may be a more fundamental quantity than the eigenvalue. A
frequency constraint might be better approximated by a separate Taylor series for the numerator and
denominator in the Rayleigh quotient. In fact, the concept is similar to an alternative approximation
proposed by Fox and Kapoor.12

Miura & Schmit, 1978

—~ Frequencies are Highly Nonlinear

— 2nd Order TSA

— Generous Move Limits Offset by Added Cost
Vanderplaats, 1987

— Approximate Internal Loads Instead of Stresses
— Loads—More Fundamental Quantity

Venkayya, 1983

— Modal (Strain) Energy Resizing

Rayleigh Quotient Approximation (RQA)
— Separate TSA for Modal Energies
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Mathematical Statement of Problem.

The structural optimization problem is stated mathematically as minimizing an objective function, the
weight,W, subject to constraints on response quantities, g, where x is a vector of n design variables, x/
and x* represent their lower and upper bounds, respectively, and g are the m inequality constraints. The
design variables are linked to one or more of the p physical variables, represented by the vector, d,
through a transformation matrix, T. In general the T matrix may be fully populated; however, each row of
T is limited to only one non-zero element (so-called group linking) when reciprocal variable
approximations are considered. In this case the summation in eq (4) is unnecessary. The examples below
use rod and membrane elements exclusively. Their design variables are the cross-sectional properties: rod
areas and membrane thicknesses.

Frequency constraints are formed using the eigenvalue, (square of the angular frequency, ®) normalized
by its allowable value. The positive sign is used for upper bounds and the minus sign for lower bounds.
Only lower bound frequency allowables, A}, are given in the following examples, since minimizing
structural weight drives frequencies toward zero. Other constraints are also cast in the form of eq (3) using
the positive sign and replacing the A’s with the appropriate response quantity (Von Mises stress or
displacement value).

Minimize Structural Weight

Subject to gj(x)so; j=1..,m

Frequency Constraint

Design Variable Linking
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Approximate Sub-Problem

An approximation to the actual optimization problem is constructed by approximating the constraints
using a first order Taylor series. If the approximate problem is solved in the reciprocal design variable
space (i.e., B=1/x), then the approximate constraint function is given by eq (6).

The Method of Mixed Variables uses either a direct or reciprocal variable depending on the sign of the
the constraint’s derivative for each design variable. This creates a convex and more conservative
approximation. As generalized by Woo, the equations for the GHC are given in eqs (7) where p is a real
number and n is a positive integer. When p=0 and n=1 the GHC reduces to the Method of Mixed
Variables.

The approximate sub-problem formed with eqs (5), (6), or (7) is solved by a nonlinear programming
optimization algorithm. Appropriate move limits are employed to insure that the design remains in the
vicinity of the point about which the Taylor series was made. The move limits are applied as side
constraints, eq (2), if they are more restrictive than the minimum and maximum gage constraints which are
otherwise used. Move limits are typically specified as a percentage of the current design variables.
Alternatively, a move limit factor, f, determines the upper and lower bounds.

Direct TSA g =%+ 5’5
. n
Reciprocal TSA G =%~ 2o )ﬁ(

Generalized Hybrid Constraint (GHC) Apprommatlon

n 99;
gj +Zajf(xl) r—ﬁ P |f9x20 (7)
- ag.
X" p-n, ifs <0
09 =0 = %,)(,) k i
Move Limits 47 < x < fx.- i=1...n (8)
f =N = I" ge ey
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Rayleigh Quotient

The structural system’s mass and stiffness matrices can be represented by eqs (10), where K’ and M’
are the sensitivity of the stiffness and mass, respectively, to all the elements controlled by the ith design
variable. For rod and membrane elements the element stiffness and mass matrices are linear in the design
variables, so that eqs (10) are exact. For frames the element matrices are functions of several dependent
cross-sectional properties. If cross-sectional dimensions are used as design variables instead, eqs (10) are
approximate. As Vanderplaats and Salajegheh point out, the cross-sectional dimensions are appropriate
intermediate design properties for the constraint approximation even when designing for the cross-sectional
dimensions directly.ll The RQA below is entirely compatible with their approach of constructing
constraint approximations in the cross-sectional property space.

The relationship of a natural frequency, o, to its associated eigenvector, ¢, and the system’s stiffness
and mass is expressed by Rayleigh’s quotient, eq (9), where the modal strain energy, U, and the modal
kinetic energy, T, are the sum of the strain and kinetic energies, respectively, from each of the elements.
This is expressed for modal strain energy in eq (11) and for modal kinetic energy in eq (12). Eqgs (13)
defines the element energies where u, is strain energy from undesigned elements, and 1, is the kinetic
energy due to non-structural mass and undesigned elements. The gradient of a frequency constraint, used
in eqs (5) or (6), is given by eq (14).

t n
¢ Mo T i=1
T=t+ Stx (12)

K=K, + 2K x
i:'l (10) LII = ¢tKI.¢
M=Mo+1§MiXi t. = ¢tM¢

=1

(13)
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Rayleigh Quotient Approximation (RQA)

Instead of using eqs (5) or (6), Taylor series approximations to the strain and kinetic energies can be
used to construct the approximate constraint. In deriving eqs (15) and (16) the eigenvectors were assumed
invariant with respect to changes in the design variables. In fact, Miura and Schmit recommend this
assumption as a means of reducing the computational burden of calculating the second derivative of a
frequency. The assumption is also implicit in Venkayya’s derivation of a scaling factor for frequency
constraints.13 The two approximations of eqs (15) and (16) are next combined to form a single
approximate frequency constraint, eq (17).

The same issue of an appropriate intermediate design variable is as pertinent for eqs (15) and (16) as for
constructing a Taylor series directly for the eigenvalue. Starnes and Haftka proposed that the sign of the
constraint’s derivative should determine the appropriate variable. A positive derivative indicates a direct
variable approximation, a negative derivative signals a reciprocal variable approximation. Therefore a
conservative approximation for a lower bound frequency constraint should employ reciprocal variables for
the strain energy and direct variables for the kinetic energy. The reverse is true for an upper bound
frequency constraint. For the former, more typical case eq (15) is replaced by eq (18).

For a lower bound frequency the approximate frequency’s derivative is by egs (19) and (20), where
A = U/'T. The sign of eq (19) can change as the design changes. This behavior is consistent with
intuition which says that the frequency tends toward zero as the cross-sectional properties go to zero. This
trait is not characteristic of TSAs to the eigenvalue in direct or reciprocal design space, nor for Woo’s
GHC.

Modal Strain Energy Approximation - _ U+ 3

Modal Kinetic Energy Approximation n
T=T+2Xtx- %) (16)
i=1 !
Approximate Frequency Constraint _
j=1--Y 17
g - | ( )
AT

=1
RQA gradient R ' . B
B Zoi _x )
o _ (% Y-M 19 5= o (20
&X/ T 1 1
-—_
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Special Case of High Non-Structural Mass

Structural designs with high non-structural mass constitute a limiting case for the RQA. Venkayya
introduced modal mass ratios to characterize the degree of structural versus non-structural mass. If the
mass matrix is considered as the sum of a structural mass matrix, Mg, and a constant (non-structural) mass
matrix, M, then the modal mass ratios are defined in eqs (21) and (22). By definition n+y=1. In the limit
as non-structural mass becomes dominant, ¥ =1 and 7 —0, the modal kinetic energy can be
considered constant with respect to design changes, and the second term in the derivatives of the
eigenvalue in eqs (14) and (19) can be neglected. In this case the RQA reduces to a TSA—either the
reciprocal or direct variety depending on which design space was used to approximate the modal strain
energy. Starnes and Haftka’s hybrid constraint reduces the reciprocal TSA in this case, as well. The same
reasoning for choosing the reciprocal design space indicates that it would be more successful than the
direct design space for conventional TSAs when optimizing structures with a low modal structural mass
ratio. A graphical illustration of this point is seen in a later figure for the beam problem.

COMPUTATIONAL CONSIDERATIONS.

The only computational penalty for using RQA is that the optimizer has to deal with explicit nonlinear
instead of linear constraints. The sensitivity analysis is the same except that two gradients must be stored
for each frequency constraint instead of one. Additional “bookkeeping” is required to distinguish a
frequency constraint from other types in order to apply the RQA. Otherwise the method involves no more
complexity than a conventional TSA.

Modal Mass Ratios

t
Structural , - 9 Ms9 (21)

o'Mp "M,
Non-Structural Y= ¢tM 0 (22)

RQA reduces to TSAinlas y —1

Computational Considerations

- Explicit Non-Linear Constraint
« 1st Order Information only
- 2 gradients per Frequency Constraint

- Gradient of RQA can Change Sign
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Three Bar Truss

A simple three bar truss is used to illustrate the differences among approximation techniques. A 10 /b
point mass is at the free node. All three bars have an elastic modulus of 10x106 psi, density of 0.1 Ib/in3,
initial areas of 5.0 in2, and minimum sizes of 0.001 in2, The fundamental frequency is constrained to be at
least 1300 hz. As in the remaining examples, TSAs are made in both direct and reciprocal design space.
For RQA the kinetic energy Taylor series is always made in the direct design space. In reference to RQA
“direct” and “reciprocal” distinguish the design space used for approximating the strain energy. Effectively
no move limits were imposed, i.e., /=10,000 in eq (8). Due to symmetry the two mode shapes for this
system are always the same: one horizontal and one vertical. Since a constant mode shape was the only
assumption made in deriving the RQA, when strain energy is found with direct variables, RQA calculates
the exact frequency and finds the optimum in a single iteration. Because signs of the constraint’s
derivatives are not all the same, a TSA in either space creates an infeasible design that is corrected the next
iteration. RQA with strain energy in reciprocal space is conservative, producing only feasible designs.
The initial design has ¥=0.51 and the final design, ¥=0.65.

The design can be controlled by a single variable by recognizing two simplifications: symmetry forces
the two diagonal bars to have the same area, and because the vertical bar contributes no strain energy to the
fundamental mode, it goes to minimum. The constraint functions are plotted in as a function of the single
variable controlling the two diagonal bars. Using the direct RQA, the optimum area of 3.736 in? for these
two bars can be calculated by hand. The conservative nature of approximating strain energy in the
reciprocal space is also evident. In general the reciprocal RQA will compensate for changes in the
eigenvector; however, in this instance with an invariant mode shape, it is overly conservative.

A Direct RQA
B Reciprocal RQA
C Direct TSA
D Reciprocal TSA

Frequency Constraint Functions for 3 Bar Truss
A B C D quency

1| 19.14 | 19.14| 19.14 | 19.14 .;3-’ Reciprocal RQA
2 1 057 11 50 10.36 001 5 § Reciprocal TSA
311057 |10.67| 10.56 | 141.3 g
4 10.57| 10.56 | 24.02 g 0 |
5 10.57 1 ggg = ROA (Exact)
6 . o
7 10.57 £ Direct TSA
_1 - T —r— T T T 2§ T T |
Table 1: lteration History (Weight)—3 DV 0 2 4 6 8 10

Diagonal Bar Areas

L—
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Cantilever Beam

The cantilever beam, originally used by Tumer,14 is modelled using rod and shear panel elements. It is
symmetric about the mid-plane and supports three non-structural masses, each 30 /b. Chord areas (A,
Aj, A3) and web thicknesses (¢1, fo, #3) are optimized for minimum weight subject to a minimum
fundamental frequency of 20 sz. No other constraints are applied except minimum gages of A;=0.01 in2
and £;=0.001 in. Initial values are A;=1.0 in2and £;=0.2 in. Young’s Modulus is 10.3 x 108 psi,
Poisson’s ratio is 0.3, and the density is 0.1 /b/in3.

Designs were feasible at every iteration using RQA without move limits (f=100) and the rate of
convergence was faster than for Woo’s results.

4 [ [ [ | A
1 [ ___-___[-_-_____ s t
7 i
/ 1
6!,
— 20" ——ra— () — - 20" .

- Iteration History for Cantilever Beam

= -~ ROA

E 11 - Woo

2 ] =+ Miura

o 10

1 - OC

5 )

E L

3 9

g 7- - —

C-./-)‘ 6 v T M T v T r 1

0 2 4 6 8
Number of Finite Element Analyses
—

947



Cantilever Beam Results

The final design is similar to those obtained by Turner,4 Miura,? and Woo;3 however, the weight is
slightly higher than for the latter two—entirely as a result of modelling and analysis differences. When
Miura and Woo’s final designs were analyzed in the small optimization program used for this paper, as
well as in ASTROS’,"the frequency was 19.3 hz. When the lower bound frequency was set to this value,
the final designs were more nearly the same.

In order to examine the design space, the number of variables was reduced at a point near the optimum
design. One design variable was linked to all the rod areas and one linked to the web thicknesses in the
ratios given in Table 3. Contours of the resulting constraint surfaces are plotted for the approximate
functions along with the actual constraint surface. The failure of the direct TSA reported by Miura and
Woo is evident in the poor quality of the approximating constraint surface to the actual highly nonlinear
surface. In fact since the direct TSA constitutes a linear programming problem, the optimizer always
moves to a vertex in the design space, choosing to maximize the most effective variable while minimizing
the rest. In the absence of severely restrictive move limits or other constraints to cut off the design space, a
feasible design is never achieved. Also, because the final modal non-structural mass ratio is 0.98, the
RQA closely follows the reciprocal TSA. Since the sign of both constraint derivatives is negative, Woo’s
GHC with p=0 and n=1 (equivalent to Fleury’s Method of Mixed Variables) would be identical to the
Reciprocal TSA.

A1 A2 A3 t.1 t.2 t.3 Weight  Frequency”
Turner*'l 0.91 0.485 0.14 0.037 0.034 0.023 7.27 19.8
Miura 0.871 0.441 0.108 0.044 0.041 0.026 7.00 19.3

Woo 0.866 0.442 0.109 0.046 0.041 0.025 7.01 19.3
RQA 0.875 0.466 0.129 0.035 0.031 0.020 6.92 19.3
RQA 0.955 0.484 0.140 0.038 0.034 0.022 7.44 20.0

*Freqencies calculated using CROD and CSHEAR elements (lumped mass}) in ASTROS.
**Areas for Turner's design are the average for a linearly tapered rod.

Table 2: Cantilever Beam Final Designs

Beam Frequency Constraint Contours

—— — Table 3: Cantilever Beam Intermediate Design
0.75 1.00 1.25 1.50

Normalized Rod Areas, A

q"’; 1.01 - RQA

& J

[

g Tayor ™ Exact A1 A2 A3
£ Series -+  Direct 1.0 0.56 0.125
§ 057 y=097 — Reciprocal

5 — Weight t.1 t.2 1.3
B 0.10 0.08 0.06
s ]

E 0.0+

(=]

Z

*Automated Structural Optimization System
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Cantilever Beam Single Design Variable Constraint Functions

Consider next the constraint surfaces as a function of a single variable, the tip rod’s area (A3). The first
plot shows a cut along the A3 axis through the six-dimensional design space for the constraint functions
near the same nearly optimum design point (y=0.97). Tt reflects the same comments mentioned above.
The second plot shows the same functions constructed at the initial design point (y=0.88) where the
constraint derivative with respect to As is positive instead of negative. Here the difference between the
RQA and other approximations stands out. The RQA closely follows the actual constraint surface. Its
derivative can change sign to match the curvature of the actual surface, whereas the TSA’s derivative
cannot change sign. In fact, the TSA’s derivative is constant in the design space in which it was
constructed. The advantage of Woo’s GHC is that, based on the constraint’s sign, it chooses the direct
TSA surface which is more conservative than the reciprocal TSA surface in this case. Neither TSA,
however, represents the actual constraint surface well.

Sy
Frequency Constraint Near Optimum Design Frequency Constraint Near nitial Design
o 1.07 + Fyact o 05 + Exact
g -+ ROA £ - RQA
= ) o : - ,
£ 05 =+ Reciprocal 5 001 Rgcnprocal
0 ~+ Direct S ] ™ Direct
0 0 ]
0 5
g 001 g 051 ——
g g
g ] 8 ]
u',015....,f.. — — lL.1.0 FT—rrr—1r
0.0 0.5 10 15 00 02 04 06 08 10 12
Normalized Tip Rod Area, A3 Normalized Tip Rod Area, A3
99 g
2 .0 =>0
9A, oA,
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ACOSS

The Active Control Of Space Structures (ACOSS) model IT was developed by the Charles Stark Draper
Laboratory.15 The structure consists of two subsystems: (1) the optical support structure and (2) the
equipment section. The two are connected by springs at three points to allow vibration isolation. In this
problem the equipment section at the base wasdisregarded and only the optical support structurefixed at the
three connection points was considered. The finite element model for this modified ACOSS II has 33
nodes (90 degrees of freedom), 18 concentrated masses, and 113 rod elements made of graphite epoxy
with Young’s Modulus of 18.5 x 106 psi, Weight Density of 0.055 /b/in3: and initial areas of 10.0 in2 for
the truss members.

ACOSS Figures

ACOSS Model II

3
o Lumped Mass Location

Finite Element Representation of ACOSS II
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ACOSS Results

The structural weight was minimized using all 113 elements as design variables subject to a lower
bound frequency of 2.0 Az and minimum sizes of 0.1 in2. The results show that RQA achieves a final
design significantly better than TSA or the Optimality Criteria (OC) method.12 A reciprocal TSA fails to
converge to a feasible design even with f=1.5. The results in the figure are for f=1.5 at iteration one,
exponentially reduced at each iteration to a lower limit of f=1.2. Still, the constraint is violated (g>0.1%)
in the first 11 iterations and violated by more than 1% in the first 5 iterations. For RQA the move limit
scale factor (f=2) prevented a feasible design until after the second iteration, after which all subsequent
designs were feasible. With less restrictive move limits (f=100 initially, exponentially reduced to f=2)
RQA'’s first iteration was feasible; however, some subsequent intermediate designs were violated by 1-
3%. RQA still has an infeasible design after increasing the weight in the first iteration and then
subsequent designs are feasible. Initially y=0.42 and at the final design y=0.86, showing why a

reciprocal TSA eventually becomes more conservative, producing a feasible final design.

ACOSS Iteration History
= RQA

20000 N |
@ 18000 - Reciprocal TSA
= 16000 1 OC
S 14000
()
12000 -
=
10000 1
8000 +— ¢ e
0 5 10 15

Number of Finite Element Analyses
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Conclusions.

A new function for approximating the frequency constraints during the solution of a structural
optimization’s approximate subproblem was developed. The motivation for this Rayleigh Quotient
Approximation was to approximate some quantity more fundamental than the eigenvalue itself in order to
improve the quality of the constraint approximation. Constructing approximations to the modal strain and
kinetic energies independently results in more accurate constraint evaluation without any additional
computational burden. The numerical examples demonstrate that the RQA is more conservative than other
approximations and permits stable convergence without stringent move limits. Future work should be
directed toward examining multiple frequency constraint problems, more direct comparisons to Woo’s
GHC approach, and application to space frames.

« RQA—Frequency Constraint Approximation Function
— Separate TSAs for Modal Energies

 Higher Quality Approximation
— Generous Move Limits
— Quick Convergence to Feasible Design (Conservative)
— Derivative Changes Sign to Follow Constraint Surface

« No User Supplied Parameters

« Future Work
— Multiple Frequencies
-~ Frames
— More Comparisons to GHC (Mixed Variables)

s —
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ABSTRACT

This paper presents the application of a generalized optimality criteria to framed structures. The
optimality conditions, Lagrangian multipliers, resizing algorithm, and scaling procedures are all represented
as a function of the objective and constraint functions along with their respective gradients. The optimization
of two plane frames under multiple loading conditions subject to stress, displacement, generalized stiffness,
and side constraints is presented. These results are compared to those found by optimizing the frames using
a nonlinear mathematical programming technique.

INTRODUCTION

Weight optimization of large aerospace structures requires the use of efficient optimization methods due
to the potentially excessive number of design variables and related constraints. In order for optimization to
be seriously used by the preliminary designer, the method must be able to handle multidisciplinary problems
(thousands of design variables and their related constraints) and must be efficient (produce designs in hours

not days).

In the late sixties and early seventies the optimality criteria approach to structural optimization was
developed|1]. At that time, and in subsequent work, the optimality criterion was derived for an individual
problem and although very efficient, it was criticized for its lack of generality. Recently, Venkayya|2] has
generalized the optimality criteria to apply to any structural optimization problem to which the sensitivities
of the objective and constraint functions can be computed. First, this paper will briefly state the optimality
conditions. Next, detailed descriptions of the Lagrangian multipliers, scaling formulation along with a
redesign procedure for stress, displacement, and generalized stiffness constraints applied to plane frames
will be presented. Finally, the optimization results of some plane frames using the generalized optimality
criterion will be given along with a comparison to results found by nonlinear mathematical programming.

PROBLEM STATEMENT

The optimization of a structure for minimum weight can be stated mathematically as:

Minimize the objective function

W)=Y piliA; (1)

=1
subject to the constraints
Z;(A) < Z; j=12,.n (2)
40 < <A (3)

where W(A) is the weight of the structure, p;, A;, and l; are the specific weight, the cross-sectional area,
and the length of the ith element respectively. The Z;{A}) consist of all n of the behavioral constraints and
Z; is the given allowable for Z;{A). The summation in equation (1) is over all m elements in the structure.
However, this does not imply that all the elements are required to participate in the design algorithm. In

addition to the constraints Z;, each design variable (A;) has upper bounds (AEU)) and lower bounds (A&L))
referred to as side constraints.

DESIGN VARIABLES

The design variables chosen for the plane frame are A;, I, and S;,, where A; is the cross-sectional
area, I;, is the moment of inertia about the z-axis and S, is the section modulus about the z-axis. These
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variables are not independent; therefore, A; is chosen as the primary variable with I;, and S;, expressed as
explicit nonlinear functions of A; in the form

I, = a;A".“ (4)

Siz = L A" (5)

Depending on the type of cross-section and the assumptions being made n; will vary from 1 to 3 , and v; will
vary from 1 to 2. It is important to note that this method is general and any design variable can be chosen
such as width of the section, thickness of the flange, or thickness of the web of the section. This section will
focus on relations between A;, I;,, and S;, for solid rectangular cross-sections and a three spar box section.
Three separate cases will be presented for each type of section. Each case will make varying assumptions
about the width of the section, depth of the section, thickness of the flange, thickness of the web, and ratios
of these quantities.

For the rectangular section in figure 1 having depth d and width b the following cases for the relations
between A;, I;,, and S;, are presented.

Case 1: Assume b to be constant and d is allowed to vary.

) 1

Iiz:aiA."h n; =3 ai:mg
S = AT w=2 = o (6)

iz = T i = %_ﬁb

Case 2: Assume the ratio b/d is equal to some constant C, and let b and d vary.
1,', = a.'A".“ n;, — 2 a; = ——

Siz = %A v =38/2

Il

Case 3: d is assumed to be constant while b is allowed to vary.

1"2 = a;A:" n; — 1 Qg —
(8)

Sz =AY w=1 =

Next, consider the three spar box section in figure 2. The area A;, moment of inertia /;,, and the section
modulus can be expressed as:

b/ d d
or
A; = bdC, (9)
_ bd3 tw ty\3 2ty ty\s
he = 0+ )+ ) = (1= 5= 4)°)
or bd3
Iiz = ﬁ02 (10)
_ bd? 1 tw tr\3
Siz = T{(IJr t,/d){(l +) 1+ )+
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or
CCs (11)

Following these definitions the three cases can now be presented. Casel: The ty, b, and t;/d are all held
constant.

A; = bdC,
; C,
L, = a;A:" n, =3 oy = 1952C3
. C
S'; =~ AV 5 = =
= KA wu=2 6C2Coh (12)
Case 2: b/d a constant Cy, t,/d, and t;/d a constant.
A.‘, = del
g C
. C2Cy
S'zz.'A'.)' s = 3/2 = —————Tn
L] ’7 3 v / 7 603(0104)3/2 (13)
Case 3: b allowed to vary with d, t,,/b, and t;/d held constant.
A; = bdC,
. d2C,
L, =AY ng=2 P
AT n R TTeA
; dC,
Si = 1Ay vui=3 i =
1Ay v /2 v 6C.Cs (14)

These relations for the three spar box can easily be extended to a n spar box cross-section. Also, the I-section
can be show to be a special case of the spar box with n = 1.

CONDITIONS OF OPTIMALITY

The optimization problem defined by equation (1) can be restated in Lagrangian form as
p —_—
L(4,)) =W(4) - D _X(Z; - Zy)
i=1

p = number of active constraints (15)

L is the Lagrangian function, and X; are the Lagrangian multipliers corresponding to the active constraints.
A constraint will be defined as active if Z; = Z;. Minimization of the Lagrangian function with respect to
the design variable A; gives

L W ., 9z, .
EE:a—m_ZAjaAa =0 i=12.m (16)
i=1

Equation (16) can be rewritten as

14
Yoedi=1 i=12.m (17)

j=1



where ¢;; is the ratio of constraint to objective function sensitivities and is given by

_90Z;/0A;
C‘J = W (18)
or in matrix form

where ¢ is an m X p matrix, A is an p x 1 matrix and ] is a m x 1 matrix.

LAGRANGIAN MULTIPLIERS

The Lagrangian formulation introduces more unknowns in addition to the m design variables. These
additional unknowns are the Lagrangian multipliers and there are as many Lagrangian multipliers as active
constraints p. Thus, it is necessary to solve for m + p unknowns. This section discusses some methods of
solution for the Lagrangian multipliers.

Premultiplying equation (19) by e'w yields

N

elwed = c'wl = (20)
where the weighting matrix w is an m X m positive definite diagonal matrix. Here the diagonal elements of
the w matrix are taken to be the individual weights of each element (w;; = p;l; A;) . Equation (20) can now
be stated as
H =2 (21)
Although the H matrix is non-singular, it is an implicit function of the final design variables. Thus, equation
(21) represents a non-linear set of equations. Thus, some approximate methods are used instead of trying
to actually solve for the As by some iterative scheme. The first approximate method considered consists of
using the information at the current design and solving the equation (21) for the Lagrangian multipliers by
inverting the I matrix. B
A=H'Z (22)

One of the drawbacks of this method is that there is no guarantee that all the Lagrangian multipliers will
have the appropriate sign. This causes problems when attempting to resize the design variables. The second
method considered was originally developed in 1973 by Venkayya and coworkers|3]. This method assumes
that only one constraint is active at any one time. For a multi-constraint problem the A’s simply become
weighting parameters. For a single constraint equation (21) reduces to

w
Z
In the case of multiple constraints
w
Aj == (24)
Z;
where ?j is found to be

?j = Ze.—,-w.-.- (25)

i—1

Calculating the A’s with this approximate method is computationally very efficient compared to inverting

the H matrix. This is because w;; are the weights of the individual elements and Z; is a simple function of
the given constraint. When finding the As by this approximate method it is always assured that the As will
have the necessary sign.
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RESIZING ALGORITHM
Using the optimality criterion described in equation (17) an iterative resizing algorithm can be found
by multiplying equation (17) by Af and solving for A;

1/¢

14
AT = A [Z Cij)‘:] (26)

=1

where ¢ is defined as a step size parameter and r indicates the rth iteration. For most problems ¢ = 2 is
chosen and gives a good rate of convergence.

SCALING PROCEDURE
Once a new design has been generated by the resizing algorithm the constraint surface must be found.
This is done by the use of a scaling procedure. Let A be the current design vector with the new design found
by A = A4 where A is the scale factor. If d4 is the difference between two designs, it can be written as

dA=A-4=(A-1)4 (27)

If the response of the structure is R, then performing a first order Taylor Series expansion on R about the
current design point A4 yields

— o~ OR
R=R+)_ - —daA (28)

Substituting equation (27) for dA, dividing both sides of the equation by the response R, and realizing that
R — R = dR yields

ota-y (29)

R

dR Z:n:l ,f—f,Ae
R

In equation (29) the term ™ 2R Al /R is either < 0 or > 0 depending on the type of constraint bein
q i=1 34, g

considered. For this work only stress and displacement constraints are being investigated and for these cases

[Y‘"‘ MA,«] /R is always < 0. Now defining p as

2.1 74,
s, 28
e (30)
equation (29) can be expressed as
dR
- (31)
Solving equation (31) for the inverse of the scale factor A and defining b = :;‘%R gives
1 1

By performing a binomial expansion and ignoring higher order terms equation (32) becomes

1
~=1+b 33
A (33)

Rearranging equation (33), adding 1 to both sides, and defining B as the target response ratio equation (33)

becomes

ﬂ:%«u+l (34)
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where 3 is
_ New Response ~ R+ dR

" Initial Response - R (35)

Finally, solving equation (34) for the scale factor gives

T ()

In the case of truss or membrane structures u = 1 and A reduces to 1/8 which is the exact scale factor for
stress and displacement constraints.

SPECIALIZATION TO BENDING ELEMENTS

In the following sections the e;;, A;, and A for bending elements subject to stress, displacement, and
generalized stiffness constraints will be discussed.

DISPLACEMENT CONSTRAINTS

To find the e;; for displacement constraints the gradient of the constraint with respect to the design
variable (8Z;/3A;) is required. There are several methods for finding these gradients (finite difference,
direct differentiation, virtual load method), but for this work the virtual load method was incorporated.
The virtual load method consists of expressing the active constraint Z; in terms of a virtual load vector E;
and the global displacements u. Thus, the displacement constraint Z; = «; can be written as

Z;=uj=Fju (37)
where F; is the virtual load vector in which F; = 1 for 7 = j and F; = 0 if ¢ # j. The e;; can be found
by first partitioning the element stiffness matrix K; into axial K4; and bending Kp; components. Next,
substitute the relation a; AT for I;, and note that 0W/dA; = p;l;. Then e;; for a displacement constraint
becomes

[(K s +niKp)y

C,'j = =3 (38)
pili A;

where f: is the virtual displacement vector corresponding to the virtual load vector E; and is obtained from

the relation
F = Kf, (59)

Once e;; is known the Lagrangian multiplier A; for the jth active constraint can be found by using
equation (23). The resulting A’s are
w

" Zi(pa; + us;) (40)

Aj =
where the parameters p4; and pp; are

Tim [;KA."!
BAPS T, (1)

o

t
Z:Zl n-‘[jl,\’m‘!
Ftu

~ v

(42)

UBj —

For the scaling factor of equation (36) the parameter p can be broken up into axial and bending parts
#aj, ;. Therefore,
K= pajt KBj (43)
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and the scale factor for displacement constraints becomes

- BAj 7 BBj (44)
B+ pa; +ps; —1

1/8 which is the scale factor for membrane structures originally found by Venkayyain 1971[1]. By inspection
of pa; and pp; and recalling the limits on n; for bending elements, it follows that

1< paj+pup; <3 (45)

STRESS CONSTRAINTS

For bending elements the stress in the jtA member is expressed in terms of its bending and axial
components as; 6; = 0;4 + 0jp. The gradients of the stress constraints (0Z;/0A;) are found by the adjoint
variable method which is a generalization of the virtual load method. That is, the constraints are recast in
terms of a virtual load vector I;’; and the global displacement vector u. The stress in a given member was

written by Venkayya (2] as

o; = T;Q; (46)
where the vector T; is defined as
T: = SCN o SGV 45 9 end A (47)
’ Aj 55
7t = [0 0 o0 SCN o SCN end B (48)
’ A; Si

where SGN is the sign on the entries of the element force vector QJ. and S; is the section modulus defined

as §; = v; A;’. The element force matrix can be expressed in terms of the global displacements u, the local
element stiffness k; , and a transformation matrix g; as

Q; = kja;u (49)
Now the stress 0; can be written in terms of a virtual load vector F'; and the global displacements as
o; = Fju (50)

where the virtual load vector E; = 1‘; k;a;. Unlike displacement constraints the derivative of the virtual load

vector with respect to the design variable is not equal to zero (GE;/GA.- # 0). This fact causes somewhat
more complicated expressions for €;;, A; and A. For stress constraints e;; becomes

o 6",'(1';@]- ”T;?j]_[;[}fAi+niKBiJ'! 51
€= pili A; (61}

where 6;; is the Kronecker delta and T; and _Q—j are defined as

—t aT:

~3 aAJ 2 ( 2)
in = {ka; +njkg;)a;u; (53)

Now, the Lagrangian multiplier for the jth constraint can be found as

w

— 54
Zi(naj +pBj — #5) (4]

A= -
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where p4;,pup; are the same as those for the displacement constraints. u; is a new term introduced due to
the fact that BE;/OA.- # 0 for stress constraints and it is found to be

B —
_ T;QJ . Tigj

= 55
7] E;! (55)

Finally, following the derivation of equation (36) the scale factor for bending elements subject to stress

constraints can be found to be
HAj+ BBj — K (56)

" Bt pastesi— a1

GENERALIZED STIFFNESS CONSTRAINT

If P is the generalized forces and u is the corresponding generalized displacements then the generalized
stiffness constraint can be written as

Z;(A) = %P,-'u,- 1 =1,2,...]oad cases (57)

The e;;, paj, #Bj, and A; can be found to be
%u‘[KAi-F n; K Bi|u
pili A;
da u'KA.-u
PJ?u

€i; =

BAj; =
i=1
_ T nutKpiu
poj = 2 ——P;u
w
Z;(na; + uBj)
It is worthwhile to note that the generalized stiffness constraint does not require the use of the virtual load
and displacement vector. This is because the information needed for the gradient of the constraint is already
available and no new computations are needed.

MEETING THE CONDITIONS
OF OPTIMALITY

The conditions of optimality state that the product between e;;A; summed over all active constraints
should be equal to unity at the optimum design. The e;; are the ratios of the constraint gradients to objective
gradients. These gradients are taken with respect to each active design variable A;. A design variable is
considered active if it satisfies the following criteria:

Aj = (58)

1. The variable is chosen to participate in the design iteration.
2. The variable is within the given allowable limits.

3. The sensitivity of the jth active constrain with respect to the design variable A; is negative (%i—’; < 0).
It is important to note that this third criteria is constraint dependent.

If the design variable does not satisfy the above criteria it is considered passive and the conditions of
optimality will not be satisfied for that particular design variable. That is ) e;;A; may not be equal to
unity at the optimum design. If the variable does not satisfy the first two criteria then the variable is simply
eliminated from the design for that particular iteration. However, if the variable passes the first two criteria
there is some question on how to handle the third criteria since it is constraint dependent. It is easy to
see that A; may be passive for one constraint (%ﬁ—’; > 0) but active for another constraint (agz. < 0).
This raises the question of how does one deal with the ¢;; when a member is passive relative to a particular
constraint? In this work if 3Z;8/A; > 0 then e;; for that particular constraint and design variable was set

to zero.
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MODIFYING THE RESIZING ALGORITHM

When using the resizing algorithm equation (26) as it appears (that is taking the sum of all the ¢;;};)
it was found that this tends to over constrain the problem. The converged optimum was well above the
known optimum. This was particularly true for multiple loading conditions. Here, instead of using the
entire sum for resizing the maximum value of ¢;;A; for the particular design variable was chosen. This can
be interpreted as each variable being resized based on the constraint that is most critical for that particular
element. This method was found to work well and allowed the algorithm to converge to the known optimum.

REDUCING THE ERROR
IN THE SCALE FACTORS

Due to the Taylor Series and binomial approximations the scaling factors in equations {40,58) are only
valid within certain limits. This is especially true when the structure is primarily in bending. This is because
equations (40,56) do not reduce to the exact bending scale factor (l/ﬂ)l/" if axial contributions are ignored.
It is desired that the limits on @ extend indefinitely without allowing the error in the scale factor or the
response to exceed 5%. If this can be accomplished, then no additional detailed analyses are required to
scale the design to the constraint surface. Venkayya|3]achieved this by writing an interaction formula in the
non-dimensional parameter space pu*. Since the limits on p4;, #p; and A are known this is easily accomplish.
The p4; and pp; indicate what portion of each scale factor (Aazial, Abending) must be used to generate the
scale factor for the combined axial bending case. A linear interpolation was used and the error on the scale
factor and response was found to be < 2% regardless of the 8. The scale factor can be represented by a

linear interaction formula as .
. 1 . 1 n
A=§A—’(—>+f—5—’(—) (59)
Haj B [ :71 B

where p4; ,pup; are the non-dimensional parameters found in equations (41,42), and jiy; = 1 and jig; = n.
One could also fit a higher order polynomial between the two ranges of A to totally eliminate the error, but
an error < 2% is generally sufficient. If each element in the structure has a different n then equation (59)

can be written as

1
/1 S /1\~
A=f—"—’<—) + BBi (_) (60)
Ba; \B Bg; \P
where now p; = 7 and 7t = %ﬂ with
B
= Zf':lfj-lfmy (61)
ST

SAMPLE PROBLEMS AND RESULTS

On the basis of the preceeding derivations, a computer program written in FORTRAN 77 was developed.
The frames used in these examples are steel structures with a specific weight of .283 1b/cubic inch and a
modulus of elasticity of 29ksi. The type of section used is I-sections and the values for a;, n;, v; and v,
are .2072, 3.0, .393, 2.0 respectively for all members. All problems were solved on a VAX 8600. For these
problems the resizing was based on the generalized stiffness and displacement constraints where the scaling
was done with respect to the stress and displacement constraints.

The first example optimized is a ten-story symmetric frame show in figure 3 that was reported by Tabak
and Wright[4]. In this work the distributed loads used in reference [4] were replaced by concentrated load
(figure 4), thus creating new nodes at the mid span of each floor. By doing this the thirty member plane
frame reported in reference |4] became a forty member structure. This frame was optimized with stress
constraints of 22ksi on each element and displacement constraints of two inches in the horizontal direction
for all the nodes. Figure 5 shows that the math programming method converged [5],(6],(7] in seven iterations
to a final weight of 35,051 pounds in 37.28 cpu seconds while the optimality criteria converged to 36,421
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pounds in four iterations with a cpu time of 4.33 seconds (8]. The optimality criteria final weight is slightly
higher (4%) but the cpu time is significantly less (over eight times less) than that of math programming.

The final example optimized is the 313 member frame in figure 6. This frame is subject to five loading
conditions (figure 7), along with stress and displacement constraints. The displacement constraints are 4.0
inches in the vertical and 12.0 in the horizontal direction at all nodes. The limit for the stresses in each
element was 29 ksi. In figure 8 it can be seen that math programming converges to a final weight of 120,419
pounds in fourteen iterations with a cpu time of 58 minutes. Where the optimality criteria converged to a
final weight of 125,166 pounds in twenty-five iterations using approximately 8 minutes of cpu time. Again,
the optimality criteria converges to a slightly higher weight (4% higher). The optimality criteria took a
significantly large number of iterations to converge compared to math programming. This poor convergence
is partly due to constraint switching. Even with the large number of iterations the cpu time for the optimality
criteria algorithm is much lower than that for math programming.

CONCLUSIONS

The generalized optimality criteria presented in this paper can be applied to any structural optimization
problem and related constraints provided that the constraints and their respective gradients are available.
The math programming method finds a new design by adding and subtracting gradient information to the
current design. Searching from point to point can be a very long and costly procedure. On the other
hand, in the optimality criteria a redesign is computed by multiplying (not adding) gradient information
to the current design thus, sweeping the design space instead of performing a point search. The optimality
criteria is also fairly independent of the the number of design variables, thus allowing literally thousands
of independent design variables. This is not the case with math programming where an upper limit on
the number of independent design variables is between three to four hundred. When this limit is exceeded
computer time becomes excessive and convergence is uncertain. For these problems the math programming
method although computationally heavy gave a smooth rate of convergence and overall very good results.

There are some disadvantages to using the optimality criteria which are evident in the sample problems.
The optimality criteria, with the current implementation, converges to a 2% to 4% higher weight than that
found by the mathematical programming method. Also, for the 313 member frame the optimality criteria
method took a very large number of iterations to converge to the optimum. This is very undesirable since
detailed analyses for large problems can become extremely expensive.
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5920.
5740.
5540.
5300.
5000.
4610.
4010.

x-Load(kips)

-3180.
-6230.
-6080.
-5920.
-5740.
-5540.
-5300.
-5000.
-4610.
-4010.

Load case 1

y-Load(lbs)

~6000.

-24000.
-12000.
-12000.
-12000.
-12000.
-48000.
-48000.

Load case 2

y-Load(kips)

-4500.
-18000.
-9000.
-9000.

Load case 3

y-Load(kips)

-4500.
-18000.

Loading Information For 40 Member Frame

Figure 4

Moment(inch - 1bs)

Moment(inch - Ibs)

Moment (inch - 1bs)
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STRUCTURAL WEIGHT (LBS)

40 ELEMENT STRUCTURE
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STRUCTURAL WEIGHT (LBS)

Load case 1

Node x-Load(kips) y-Load(kips) Moment(inch - kip)
15 -26.
16 -30.
88 -18.
89 -20.
Load case 2
Node x-Load(kips) y-Load(kips) Moment(inch - kip)
1 20
6 thru 65 by 5 4.0
68,75,82 4.0
90 thru 170 by 5 4.0
Load case 3
Node x-Load(kips) y-Load(kips) Moment(inch - kip)
5 -2.0
16,19 -4.0
22 thru 67 by 5 4.0
74,89 4.0
94 thru 174 by 5 -4.0

Load case 4 = Load case 1 + Load case 2

Load case 5 = Load case 1 4+ Load case 3

Loading Information For 313 Member Frame
Figure 7

313 ELEMENT STRUCTURE
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GOAL

Hypersonic vehicles operate in a hostile aerothermal environment which has a significant
impact on their aerothermostructural performance. Significant coupling occurs between the
aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary
interaction. A long term goal of the Aerothermal Loads Branch at the NASA Langley Research
Center is to develop a computational capability for integrated fluid, thermal and structural analysis
of aerodynamically heated structures. The integrated analysis capability includes the coupling
between the fluid and the structure which occurs primarily through the thermal response of the
structure, because (1) the surface temperature affects the external flow by changing the amount of
energy absorbed by the structure, and (2) the temperature gradients in the structure result in
structural deformations which alter the flow field and attendant surface pressures and heating rates.

In the integrated analysis, a finite element method is used to solve: (1) the Navier-Stokes
equations for the flow solution, (2) the energy equation of the structure for the temperature
response, and (3) the equilibrium equations of the structure for the structural deformation and
stresses. See figure 1. Recent progress in the development of the capability is described in Ref. 1.

DEVELOP CAPABILITY FOR INTEGRATED FLUID-THERMAL-STRUCTURAL
ANALYSIS FOR AERODYNAMICALLY HEATED STRUCTURES

e INCLUDE FLOW, STRUCTURAL HEAT TRANSFER AND STRUCTURAL
DEFORMATION INTERACTIONS

e USE FINITE ELEMENT METHOD:
- NAVIER-STOKES EQUATIONS FOR FLOW
- ENERGY EQUATION FOR HEAT TRANSFER
- EQUILIBRIUM EQUATIONS FOR STRUCTURAL RESPONSE

Figure 1
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BLACK AND WHITE PHOTOGRAPH

INTEGRATED FLUID-THERMAL-STRUCTURAL
ANALYSIS APPROACH

The integrated fluid-thermal-structural finite element analysis approach is illustrated in figure 2 on
an actively cooled scram jet engine structure, A general automated unstructured gridding technique
is used to discretize the aerodynamic and coolant flow field and the structure for the thermal and
structural analyses. A transient vectorized finite element algorithm is used to solve the nonlinear
disciplinary equations for the solutions of the aerodynamic flow, the acrothermal loads, and the
structural response. Simultaneous solution of all three disciplines is possible if required. Adaptive
refinement techniques based on error indicators are applied in the analysis process to minimize the
problem size and to help provide accurate and economical solutions. Several color graphic
techniques are used to display the results. This integrated approach is available in a code named
LIFTS, an acronym for Langley Integrated Fluid-Thermal-Structural analyzer.

ALL DISCIPUINES
onzeo v
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FLUID-THERMAL-STRUCTURAL FORMULATION

The aerodynamic flow equations are described by the conservation of mass, momentum,
and energy equations. These equations can be written in conservation form as shown on the left of

figure 3. The fluid unknowns are the density p, the velocity components u and v, and the total

energy €. The flux components, E and F, contain aerothermal terms such as the aerodynamic
pressure, wall shear stress , and heat flux, which are of interest to the thermal structural designer.

The thermal and structural equations are also written in conservation form as shown on the
right of figure 3. The first two terms in the brackets represent components of the structural
equilibrium equations and the last term represents components of the energy equation for the heat
transfer in the structure. Nonlinearities due to the temperature dependent material properties and
large strain-displacement relations are included. Details of these fluid, thermal, structural equations
are given in Ref. 2.

FLUID ANALYSIS THERMAL-STRUCTURAL ANALYSIS

p
ool [\ [ =)
R Acro. U= & HEI= - Ty
pe heating \ch/ \ qx /
/ pu \ Structure v
2 o
uc+
gt P P Radiation 1 txy ® cis fictitious damping constant
it \pUV / -~ *_”]r._,Gx,qx
pue +pu t Txy T ® Temperature dependent material
o ]Ej[ y' 9y properties
/C‘x \ T Oyx. Q ® |arge strain-displacement,
+ Txy 2 2
_au, 1foul” 1 fav)
U + Vixy - A 0% 2\ox] T2\5x)
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COWL AEROTHERMAL LOADS AMPLIFIED BY SHOCK-ON-LIP

Leading edges for hypersonic vehicles that experience intense stagnation point pressures and
heating rates are a significant challenge to the designer. For engine leading edges, such as the cowl
shown in figure 4, intense aerothermal loads occur when the cowl bow shock is intersected by an
oblique shock resulting in a supersonic jet that impinges on the leading edge surface. The
experimental configuration (lower left of figure), which simulates the vehicle forebody and cowl
leading edge, was used to define the aerothermal loads (see Ref. 3). The schlieren photograph
shows the supersonic jet interference pattern impinging on the surface of the cylinder. The
interference pattern produces intense local amplification of the pressure and heat transfer rate in the
vicinity of the jet impingement. The undisturbed (absence of incident oblique shock and interference
pattern) stagnation pressure and heat transfer rate can be amplified by factors from 6 to 30 depending
on the shock strength and the free stream Mach number (Ref. 3).

The intensity and localization of this phenomena offers a significant challenge to
computational fluid dynamics codes which must accurately capture the shock interference pattern and
the attendant flow gradients to accurately predict the loads. Therefore this problem and experimental
results will be used to demonstrate the integrated fluid-thermal-structural analysis method.

Vehicle schematic " S;;hliergn

—

f/

Incident shocks / o

Cowl bow shock

Experimental configuration

Bow shock ———__

Cylndrical leading edge

BN

Inoident shook -~

Figure 4

) ORICINAL PAGE
BLACK AND WHITE PHOTOGRAPH

975



OBLIQUE AND BOW SHOCK INTERACTION ON CYLINDER

The supersonic jet interference pattern occurs when an oblique shock wave intersects the
nearly normal part of the bow shock from the blunt cowl leading edge as shown schematically in
figure 5. The intersection results in further displacement of the bow shock and the formation of a
supersonic jet contained between two shear layers and submerged within the subsonic shock layer
between the body and the bow shock wave. A jet bow shock is produced when the jet impinges on
the surface, creating a small region of stagnation heating.

The computational technique and coupling between the fluid and the structure were evaluated
using experimental results (Ref. 3) from the oblique and bow shock interaction on a three inch
diameter stainless steel cylinder. The computational domain for the flow field and cylinder are
shown in figure 5. The inflow conditions above and below the oblique shock are (1) Mach 8.03

flow at an angle of attack of zero degrees (8 = 0°) and a static temperature of 200 °R, and (2) Mach

5.25 flow at an angle of attack of 12.5 degrees (8 =-12.5°) and a static temperature of 430 °R. The
supersonic jet impinges on the cylinder surface approximately 20 degrees below the cylinder
horizontal centerline.

|
™~ Flow
' domain

M =8.03

Bow shock

Impinging
shock

3" Diameter

M < 5.95 Cylinder
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ADAPTIVE UNSTRUCTURED FINITE ELEMENT MESHES

The adaptive unstructured finite element remeshing technique described in Ref. 4 is used for
the discretization of the flow domain to minimize the flow unknowns. Mesh adaptivity based on
error indicators obviates a priori knowledge of the flow physics, which is nonexistent for this
complex flow phenomena. Unstructured meshes permit adaptivity with fewer grid points than
structured adaptivity. For the problem at hand, the three finite element meshes shown in figure 6
were required to obtain an accurate solution. The solution procedure starts from the uniform mesh
(first mesh) which consists of triangles in the inviscid flow field and quadrilateral elements in the
boundary layer region to obtaining accurate aerodynamic heating rates. As the fluid analysis
proceeds, the mesh is adapted to the physics of the flow field. Elements are concentrated in the
regions with large gradients (density in this case) and are removed from the regions where the
gradients are small. In fact, the mesh density simulates the flow density gradients given by the
schlieren shown in figure 4. The base and altitude of the triangular elements are oriented in the
principal gradient directions to improve solution accuracy. The evolution of the meshes shown in the
figure demonstrates the adaptive remeshing capability which provides the best flow solution with the
least number of unknowns. This adaptive unstructured remeshing technique would provide similar
benefits for the thermal and structural analyses and are being evaluated.
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First mesh Second mesh Third mesh
Figure 6
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FLOW MACH NUMBER CONTOURS

The fluid analysis was performed using a point implicit upwinding technique described in
Refs. 5 and 6. Using the crude uniform mesh (first mesh) shown in figure 6, the essential features
of the flow were captured as indicated by the Mach number contours shown in figure 7. The Mach
number contour scale is shown on the right of the figure. Using the density gradients from this first
solution as an error indicator, the second mesh shown in figure 6 was created. The same
procedure is repeated on subsequent meshes until the converged flow solution is achieved (a total of
three meshes in this case).

The Mach number contours shown below demonstrate the improvement in the solution
quality as the mesh is adapted. The Mach number distribution obtained on the third mesh clearly
shows improved sharpness of the shock interference pattern. As described earlier the supersonic jet
is submerged with subsonic regions between the bow shock and the cylinder. The Mach number
in the supersonic jet is approximately two. The supersonic flow in the jet terminates through a
nearly normal shock prior to impinging on the cylinder surface. The accuracy of the aerothermal
loads on the cylinder surface are highly dependent on the fidelity of the shock interference pattern
which is primarily an inviscid flow feature.

First mesh

978

Y

N A /

Second mesh Third mesh

Figure 7

0.386E—12
0.402E+00
0.803E+00
0.120E+01
0.161E+01
0.201E+01
0.241E+01
0.281E+01
0.321E+01
0.361E+01
0.402E+01
0.442E+01
0.4B2E+01
0.522E+01
0.562E+01
0.602E+01
0.642E+01
0.683E+01
0.723E+01
0.763E+01



FLOW PRESSURE CONTOURS

The flow field pressure contours from the three meshes are shown in figure 8. The pressure
contour scale in psia is shown on the right of the figure. The free stream flow pressure is 0.143
psia. The pressure increases to approximately 10 psia across the bow shock but jumps abruptly to
75 psia across the jet normal shock where the supersonic jet impinges on the cylinder. The surface
pressure distribution is shown in figure 9.

First mesh

/ N
LA
A

A
A
B

A

N /
Second mesh

Figure 8

AN /

Third mesh
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SURFACE PRESSURE DISTRIBUTION

The analytically predicted surface pressure distribution from the third mesh is compared
with the experimentally measured pressures in figure 9. The predicted and experimental pressures
are normalized by the undisturbed stagnation pressure (po = 10.61 psia). The figure shows good
agreement of the pressure distributions, peak pressure ( 82 + 5 psia versus a predicted value of 75

psia) and excellent agreement of the peak pressure locations ( 0 = - 19.1° vs. a prediction of - 20°).
The predicted pressure distribution is applied as a static load on the cylinder for the structural
analysis to be presented later.

o Experiment
10 — — F.E.

Flow

Cylinder

|9 oo )

|
-90 -45 0 45 90

0,degrees
Figure 9-
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FLOW TEMPERATURE CONTOURS

The flow static temperature contours for the three meshes are shown in figure 10. The
temperature contour scale in °R is shown on the right of the figure. The flow temperature increases
abruptly from approximately 200 °R to a maximum of 3000 °R across the normal part of the bow
shock, remains almost uniform, and drops sharply through the boundary layer to the cylinder surface
temperature resulting in high aerodynamic heating rates. A more detailed view of the temperature
contours in the interaction region is presented in figure 11.
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First mesh Second mesh Third mesh
Figure 10

981



FLOW TEMPERATURE CONTOURS IN INTERACTION REGION

Details of the finite element mesh and the flow temperature in the interaction region are
shown in figure 11. On both sides of the supersonic jet, the fluid temperature increases abruptly
across the bow shocks from a relatively low temperature (200 °R and 430 °R) to approximately
2,700 °R. The temperature gradients in the shock layer (region between the bow shock and the
cylinder) are relatively small except in the thin boundary layer where the temperature drops sharply
to the cylinder surface temperature of 530 °R . Inside the supersonic jet, the fluid temperature
increases slightly from the free stream temperature to approximately 1200 °R. As the jet stream
approaches the cylinder surface, the fluid temperature increases abruptly across the jet normal shock
to approximately 3,000 °R in a small stagnation region next to the cylinder surface and drops
sharply to the cylinder temperature of 530°R. The high temperature gradients in this region result in
a high localized aerodynamic heating rate at the jet impingement location. The severity of the
temperature gradients is depicted in figure 12.

\

o

i
7
2700 R
3000 R
2700 R
530 R
430R \

Figure 11
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FLOW TEMPERATURE DISTRIBUTION

The fluid temperature distribution along a line below the supersonic jet is shown in figure 12
to highlight the severity of the temperature gradients across the shock and the thin boundary layer
next to the cylinder surface. The gradient across the shock wave and boundary layer are
approximately the same. These large temperature gradients require closely spaced elements for
accuracy particularly in the boundary layer to accurately capture the aecrodynamic heating rates.
These fine meshes place severe constraints on the computational procedure since small time steps
are normally required to assure solution stability. Therefore adaptive unstructured meshes, which
significantly reduce the number of solution unknowns, improve solution tractability.

3000 — X
r—'j \\‘/
2000 k- Shock location \
Temperature,
R
1000 —
‘—{ -=— Thermal layer
J
0
S
Figure 12
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SURFACE HEATING RATES

The analytical and experimental heating rate distributions normalized to their respective
undisturbed stagnation point heating rate are compared in figure 13. The predicted stagnation heating
rate of 41.4 Btu/ftz-scc, which was obtained from a viscous shock layer solution, is lower than the
experimental value of 61.7 Btu/ft2-sec (see Ref. 2). The difference between the predicted and
experimental stagnation point heating rates is attributed to free stream turbulence emanating into the
test stream from the turbulent boundary layer on the nozzle. Since this free stream turbulence is
present during both the undisturbed (no impinging shock) and during the shock interaction test,
normalization would tend to attenuate the effect of the free stream turbulence, hence providing a
better comparison with the analytical predictions which do not account for any turbulence.

The heating rate distributions are in reasonably good agreement; however, the peak

amplification is underpredicted as well as the heating rates between 6 = -30° and -55°. The
underprediction is attributed to turbulence in the shear layers that bound the supersonic jet and
transition of the boundary layer from laminar to turbulent. Neither of these two effects are accounted
for in the analysis which is laminar. These aerodynamic heating rates are applied to the structure in
the thermal analysis to predict the cylinder temperature distribution. The temperature distribution is
then used in the thermal stress analysis and as a boundary condition for an updated flow analysis to
account for the effect of the surface temperature on the acrodynamic heating rates.

o Experiment
— F.E.
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o
%
o

Flow

Cylinder

0 | 1% G0 ] J
-90 -45 0 45 90
6, degrees

Figure 13
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CYLINDER FINITE ELEMENT MODEL

The cylinder geometry, boundary conditions, and the finite element thermal-structural model
are shown in figure 14. The cylinder is made of AM-350 stainless steel in which the material
properties such as the thermal conductivity, specific heat, Young's modulus, thermal expansion
coefficient, etc. are temperature dependent. The cylinder outer surface is subjected to acrodynamic
pressure (figure 9) and heating rate (figure 13) obtained from the fluid analysis. The surface emits
radiant energy to the surrounding medium at a temperature of 430 °R. The same finite element
discretization is used for both thermal and structural analyses so that the difficulty in transferring data
is eliminated. The mesh is graded radially from a very fine spacing at the surface to a coarser
spacing on the inner surface. A common discretization is used circumferentially along the fluid and
the cylinder interface to eliminate the data manipulation often required between different disciplinary
analyses. Both thermal and structural analyses of the cylinder were performed using a one-step
Taylor-Galerkin finite element analysis technique ( Ref. 2).
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CYLINDER TEMPERATURE AT 0.5 SECOND

The cylinder temperature contours at 0.5 second are shown in the figure 15. The temperature
contour scale in °R is shown on the right of the figure. The maximum temperature is about 1,100°R
and occurs at the supersonic jet impingement location. The temperature away from this small
impingement region remains at the ambient temperature of 530 °R. The intense local aerodynamic

- heating rates generated by the supersonic jet stream result in these high temperatures and
temperature gradients in the jet impingement region after only a short exposure. The high
temperature and temperature gradients result in the high thermal stresses shown in figure 16.

The response of a flight weight leading edge for the National Aero-Space Plane, which is
exposed to extremely high aerodynamic heating rates during shock-on-lip conditions, is very rapid.
In fact the response time is approaching the response time of the flow field and therefore may
require a coupled fluid thermal analysis.
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CIRCUMFERENTIAL STRESS ON DEFORMED CYLINDER AT 0.5 SECOND

The circumferential stress distribution superimposed on the deformed cylinder at 0.5 second
is shown in figure 16. The stress contour scale in psia is shown on the right of the figure. The
structural analysis was performed assuming quasi-static and plane strain behavior. The structural
loads include the temperature distribution shown in figure 15 and the aerodynamic pressure shown
in figure 9. The maximum deformation of 0.001 inch is radial and occurs at the jet impingement
location. This maximum deformation is small and is assumed to have negligible effect on the flow
field. The cylinder deformations are greatly exaggerated to highlight the deformed shape. The peak
compressive circumferential stress of approximately 60 ksi occurs at the jet impingement location
where the temperature and temperature gradients are maximum. The axial stresses, which are much
larger than the circumferential stress, exceed the elastic limit. Hence, longer exposure with
attendant higher temperature and stresses could result in permanent deformations and failure of the
cylinder. Therefore a more sophisticated structural analysis, such as the capability to predict the
permanent localized deformation including time dependency effects, is needed. Currently, the
application of a unified viscoplastic theory for accurate prediction of the structural response at higher
temperature is under investigation.
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SURFACE HEATING RATES AFTER 0.5 SECOND OF EXPOSURE

The aerodynamic heating rates and hence the flow field are coupled to the thermal response of
the cylinder through the energy equation. As the cylinder surface temperature increases, the thermal
gradient through the boundary layer decreases, resulting in lower heating rates. The cylinder surface
temperature after 0.5 second of exposure was used to update the aerodynamic analysis. The peak
aerodynamic heating rate decreased nearly 50% from the initial heating rate at O second when the
cylinder wall was isothermal at 530°R. The time interval of 0.5 second was selected to highlight the
coupling effect between the aerodynamic flow and the cylinder thermal-structural response. A more
accurate coupled fluid-thermal-structural solution can be obtained by decreasing the time interval and
updating the different disciplinary analyses more frequently. Simultaneous solution of the flow field
and the thermal response of the cylinder would be ideal; however, the extremely fine grid required for
the flow analysis results in small time steps to insure solution stability. A time accurate transient
solution would require the use of these small time steps throughout the flow solution domain and
would be prohibitively expensive. The present solution avoids this dilemma by using local time
stepping ( time step for each element set by stability requirements) and marching the solution to
steady state. This process is valid as long as the structure thermal response is much slower than the
flow field response, which is usually the case.
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CONCLUDING REMARKS

An integrated fluid-thermal-structural finite element analysis approach was demonstrated for a
cylinder subjected to shock wave interference heating. A general automated unstructured gridding
was used to discretize the aecrodynamic flow field to minimize the number of unknowns and provide
an accurate and economical analytical solution. The finite element method is used in the three
disciplinary analyses to facilitate the interdisciplinary data exchange. Coupling between the
aerodynamic flow, the thermal, and structural response is included in the procedure; however, for
Mach 8 shock wave interference on a three inch diameter stainless steel cylinder the coupling is
limited to the effect of the surface temperature on the aerodynamic heating rates. The prediction of
the flow behavior and the aerodynamic pressures and heating rates are in good agreement with
experiment. The application has demonstrated the capability of this integrated fluid-thermal-
structural analysis approach to (1) provide solutions to complex aerothermostructural behavior, (2)
reduce manpower requirements, and (3) increase the computational efficiency for coupled

interdisciplinary problems.

e INTEGRATED FLUID-THERMAL-STRUCTURAL FINITE ELEMENT ANALYSIS

CAPABILITY DESCRIBED.

e AUTOMATED ADAPTIVE UNSTRUCTURED GRIDDING USED FOR MINIMUM

PROBLEM SIZE.

e FINITE ELEMENT ALGORITHM PROVIDES SOLUTION FOR ALL THREE
DISCIPLINES.

e COUPLING BETWEEN F-T-S INCLUDED FOR MULTIDISCIPLINARY
INTERACTION.

e INTEGRATED F-T-S APPROACH REDUCES MANPOWER AND INCREASES

COMPUTATIONAL EFFICIENCY. .
Figure 18
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Involute Composite Design Overview

The strong interaction between material architecture, processing and structural
performance for nozzle components was described at an earlier NASA symposium for
laminated involute composites. Since that meeting the Space Shuttle SRM nozzle has test
fired involute nozzle components and progress has been made in analyzing their
sensitivity to ply pattern design. The parameters that control ply pattern shape [1,2] also
control tooling for the manufacture of involute composite structures. In the current
CAD/CAM idiom these parameters might be called material form features and they
provide a basis for global composite design sensitivity derivatives. They are not to be
confused with laminate point design parameters that ignore ply continuity constraints
present in finite dimension structural components with curvature. We first define the
involute design problem and illustrate these commonly used approaches for composite
shell structures. Then analytic sensitivity derivatives are developed and used to analyze
test rings and cones with maximum stress failure criteria.
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N  — Number of Plies \\
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88-0228

START LINE rg(z)
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Involute Exit Cone
Ply Material Distribution

The figure below illustrates the orientation of the plies in a conical section of an
involute exit cone. The intersection of a ply with a plane defined by a constant Z
coordinate (e.g., curves AD and BC) is an involute curve. Each ply can be mapped
to an adjacent ply by a rotation of 6 degrees about the axis of symmetry, where

360°
N

0=

and N is the number of plies in the involute structure.
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Involute Design Practice

Industrial practice in the U.S. for involute ply pattern design at one time was limited to
either ID or OD start.lines partly because of the geometric complexity of the problem.
Both of these design approaches have one straight edge which also makes layup and
inspection easier. On the negative side these patterns are more difficult to form to shape
and do not insure fiber continuity in critical stress regions. An alternative approach used
by PDA places thestart line near the midsurface of the net part to insure fiber continuity.
Typically a great many patterns are examined by trial and error using CAE tools in
designing involute composite structures. Low manufacturing risk and high margins of
safety during a motor firing are the figures of merit. The shape of the component, hence
weight, is prescribed in most cases and rarely is this shape open to significant change. The
shape of the ply pattern in contrast is open to wide variations and suggests the need for
design sensitivity analyses to improve trial and error procedures and ultimately to
automate the procedure.

O.D. Start-line Ply Pattern

PDA Start-line Ply Pattern

1.D. Start-line Ply Pattern
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Involute Design Variables

The design space includes the ply count and the ply thickness product Nt, the
helix angle ¢, and up to 6 variables defining the start line, which is a ply

meridian lying in the r-z plane. These variables determine at each node three
Euler angles a,, ¥, and ¢ which rotate the reference frame into the material
frame. From these angles a strain transformation matrix is calculated and the
distribution of these matrices within a finite element is used to calculate the
element stiffness matrix. This is a global relation independent of finite
element mesh.

DESIGN VARIABLES ~ (X)
(X) = (Nt, ¢o, Rs (2))

DEPENDENT VARIABLES ~ Euler Angles o, v, ¢

= a(X)
Yy =y Xt — [D(a,y, d)]
d = ¢(X)

STIFFNESS MATRIX

K] = [ j 811 [C_JDIB] | 1] dV]
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Design Sensitivity Formulation

The direct method of design sensitivity analysis is used. The governing
equation for linear statics (equation 1) is differentiated to obtain equation 2.
Equation 3 is obtained by solving equation 2 for {dU/dX}. The remainder of
the effort is directed toward evaluating {dU/dX]}. The finite element analysis
already produces the factored stiffness matrix so it is only necessary to
evaluate the part of equation 3 in parentheses. The element stiffness matrix
in equation 4 and the element thermal load vector in equation 5 (only the
thermal load is sensitive to material geometry orientation ) may be
differentiated to obtain equation 6. The differentiation is simplified because
there is no shape sensitivity: the derivative of the strain-displacement
transformation matrix [B] is zero. The new matrices [Q] and [R] are
functions of the elasticity matrix [C], the strain transformation matrix [D]
and its inverse, and the corresponding derivatives, all given in equations 7
and 8. The integrands in equation 6 are developed in closed form. All
sensitivity calculations and all finite element analyses are performed by a test
version of the PACOMPOSITE module in PATRAN.

Differentiate [K}{U} ={F} (1)
. dK dU dF
to obtain [d_x] {u} +I[K] { d_x} ={ 53(—} (2)
dU) _ -1 [ dF) [dK

Then { d—x} - [K] ({ d_x} —[d—x]{u}) 3)
Given K] =J' (B1"icltBl |1 dv ()
and (71 = [ ®IlcHosaT5]av 5)
then { a‘-’%} . [ g{-]w} - j (BIT(QI + [R1T + [R]) {ep} |7 dV

— U BIT(RIT + R (B117] dV]{U} ©6)
where [Ql=I[cl E“Y (D1 [D] @)
and [R]=[CID]" & (IDD) (8)



Vector and Matrix Sensitivity Integration

Originally the sensitivity integration (equation 6) was performed by
inserting the {U} vector inside the second integral and making the

substitution
(e} = [B}{U}

to convert the matrix integration to a vector integration. The economy of
this approach is evident, but finite difference tests show a failure to converge
manifested by a "plateau” phenomenon for step sizes below a certain
threshold. The onset of this deviation occurs at a step size that is too large to
be attributable to round-off error. Because of this error, it was decided that
matrix integration would be used for all sensitivity calculations.

The accompanying graph was generated for the helix angle design variable in
a 439 degree of freedom test cone problem, and the error shown is typical.

COMPRARISON OF ANALYTIC AND FINITE DIFFERENCE
DERIVATIVES WITH RESPECT TO HELIX ANGLE
FOR VECTOR AND MRTRIX INTEGRATIOGN

[0 e R D L L L LR

o 10 gf
(|
u —
=
= n
o -
Ll
L
L 10-t 3
o 3
L 3
=)
- i
S 2
S 10-2 o
=2 10 a
> 7
= ]
—
= 1 LEGEND
w —&— VECTON STRAIN DERIVATIVE
=Z 10-3 3 —®— VECTOR STRESS DERIVATIVE
— 3 —O— MTRIX STRAIN DERIVATIVE
o 3 —&— MAIRIX STRESS DERIVATIVE
(] R
-
(I —
O
D H H H H

1o-4 T T TTIIT T TTT777] T T TTTTIY T T T

T I 1
10-2 10-1 100 10! 102

HELIX ANGLE INCREMENT (DEGREES)

997



998

Formulation of Optimization Problem

The objective of the optimization is to minimize risk. To this end, the shape
(and thus the weight) of the part are fixed and the optimization is used to find
the ply pattern design furthest from the constraint surfaces, subject to
manufacturing and side constraints. The mathematical formulation of the
optimization problem is given below. The objective function is a slack
variable B which represents the load margin (i.e., the distance between the
load index and unity) to be maximized. The slack variable is added to each
response constraint g;. In addition, there are manufacturing constraints hy
which do not require the buffer of the slack variable. The Method of
Feasible Directions algorithm [3] in MICRODOT is used to solve the primal
form of the optimization problem. Dual methods are not used because the
number of constraints is much greater than the number of design variables.
Approximation concepts [4, 5, and 6] are used to formulate the sequence of
approximate problems.

B — max
Subject to giX)+p<s0  j = 1,2,....m
h (X) <0 k=12,..0

<X <X! i=12,.0



Manufacturing Constraints on Design Parameters

Two of the manufacturing constraints alluded to on the previous page are
shown in the picture below. The central angle is the angle subtended by a ply
as it extends from the inner radius to the outer radius, and the arc angle is the
angle between a ply surface tangent and the circumferential direction. Good
design practice for nozzle components dictates that the central angle should
not exceed 120 degrees and the arc angle should not exceed 10-15 degrees.
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First Optimization Sequence For Involute Ring Problem

The first optimization problem is an axisymmetric carbon-carbon cylinder
having 82 degrees of freedom. The design variables are the helix angle ¢ and
the slope m. Five iterations are required to increase the margin of safety
from .708 at the starting point to 1.055 at the optimum.

FIRST BPTIMIZATIBN PATH FOR INVOLUTE RING

INTERNAL PRESSURE LORAD. MAX STRESS CRITERION

MARGIN OF SAFETY SHOWN FBR ERCH ITERATION
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Summary Table for First Optimization Path

The iteration history of the first optimization path is shown in Table 1. In the
course of the optimization the critical stress component varies from fill
tension in the outer element at the beginning to in-plane shear on the inner
radius at the optimum. As the optimization proceeds, the constraint tolerance
is reduced from .03 to the value of .001 required for convergence. The finite
difference tests on the sensitivity derivatives were used to select move limits
that would predict the response to within about 10 percent. The optimization
results indicate that this choice was conservative enough.

TABLE 1
. § &
£ 8 23
E S &
- o e el g
e E£8 MostCritical ©8 S8 28
2 ,§ = o 55 Constraint 2o X E 2 g
88 gﬂ g Design Variables Move Limits £ .2 E§ ES Evd
82 < ;‘g &, m A¢, Am OF Node Component Z< Z@ Z@
4144 7077  -20.000° .4000 13 T2
4682 .8806  -30.000° .3000 10° 1 .03 25 T2 3 3 15
.4938 9755  -30.556° .2022 100 .1 .03 4 S12 9 2 31
S100  1.0409  -30.071° .1478 10° .1 .008 3 S12 15 2 5
5127  1.0522 -30.440° .1019 10° 1 008 3 S12 9 3 4
5133 1.0547 -30.297° .1086 100 .1 001 3 S12 3 2 2
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Second Optimization Sequence For Involute Ring Problem

A different starting point is used for the same optimization problem. Here
four iterations are required to increase the margin of safety from .563 at the

starting point to 1.055 at the optimum. Note that the same optimum is
reached in both cases.

SECOND OPTIMIZATION PATH FBR INVOLUTE RING
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Summary Table for Second Optimization Path

The iteration history of the second optimization path is shown in Table 2.
Although the margin of safety shows greater improvement along this path,
fewer iterations are required. Throughout the optimization the critical
region is along the inner radius. The critical stress component varies from
fill tension at the beginning to in-plane shear at the optimum. As before, the
constraint tolerance is reduced from .03 to the value of .001 required for
convergence. Again, the move limits appear conservative enough.

TABLE 2
s §
5 & &
E8  MosCiica °§ 25 5§
o = ost Critic ) )
E .§ o 5 E Constraint 3 v B E 2 E
89 g 2 Design Variables Move Limits g3 Eg & El = E]
8¢ s :% o8 m A¢, Am O Node Component Z< <ZR Zm
3602 5629  -10.000° 0.0000 2 T2
4184 7195 -20.000°  .0390 100 .1 .03 2 T2 4 2 29
5118  1.0482  -30.000° .1390 100 .1 .03 1 T2 4 3 27
5131 1.0537  -30.247° .1144 100 .1 .001 3 S12 3 2 5
5134 1.0551 -30.324° 1057 10 .1 001 3 S12 3 2 2
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Involute Test Cone Optimization

The second optimization problem is an axisymmetric carbon-carbon test
cone tested and analyzed by Stanton and Kipp [7] and having 439 degrees of
freedom. The model is subjected to an axial load along the aft rim and is
constrained axially along the forward rim. The design variables are the
product of the ply count and the ply thickness Nt, the helix angle ¢, and four

additional variables controlling the start line. The initial design is the same
as the final design selected by Stanton and Kipp: it is therefore expected that
the initial design is close to optimal. Four iterations are, in fact, required to
increase the margin of safety from 2.653 at the starting point to 2.798 at the
optimum.
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Reference and Optimized Ply Pattern

The reference ply pattern designed by Stanton and Kipp is shown below. The
warp aligned test cone design with the start line following the midsurface of
the shell was considered radical when it was first discussed with
manufacturers. The design goal at that time was to develop the full strength
of the carbon-carbon material in the critical cone-cylinder transition under
axial load. That too was considered impractical but both are common
practice today.

It can be seen that the shape of the optimized ply pattern in the forward
region has changed considerably due to changes in the start line. In addition,
the width of the ply pattern has been uniformly reduced due to the increase in
the ply count and the ply thickness.

REFERENCE PLY PATTERN

OPTIMIZED PLY PATTERN
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Summary Table For Test Cone Optimization Path

The optimization history for the test cone problem is given below.

(Max Stress Failure Criteria)

Most
Critical
.E Constraint
Z g « Design Variables
R ;
g 2 S8 Nt 0, Y, m Y, g, 2
0 7263 2.6536 22500 0.0000° 23200 3.500x10-2 2.6225 7500 48 C1
1 .7328 2.7418 2.2446 6.0972° 2.3136 7.883x10-3  2.5725 7640 53 C1
2 7360 27884 23803 4.7420° 22636 2217x10-3 26225 .7776 48 Ci
3 7366 27970 2.3814 5.6872° 22389 1.000x10-3 2.6419 7839 53 Cl
4 7367 27983 23815 5.6538° 22382 1.000x10-3 26431 .7841 53 CI
g g
4 L 8-
b g § 2
g - 7 &
=z Move Limits - % 6 % g % g
[=1 ‘E bt by -g [T
g TR
(=i ‘a8
S ANt A6 A Am aY, A, S& Z< 2Z4 Za&
0
1 4 10° .05 .05 .05 2 .001 2 3 14
2 4 10° .05 .05 .05 2 .001 2 4 32
3 4 10° .05 .05 025 2 .001 3 2 43
4 4 10° .05 .05 025 2 0002 3 2 6




Conclusions

An optimization capability for involute structures has been developed. Its
key feature is the use of global material geometry variables which are so
chosen that all combinations of design variables within a set of lower and
upper bounds correspond to manufacturable designs. A further advantage of
global variables is that their number does not increase with increasing mesh
density. The accuracy of the sensitivity derivatives has been verified both
through finite difference tests and through the successful use of the
derivatives by an optimizer.

The state of the art in composite design today is still marked by point design
algorithms linked together using ad hoc methods not directly related to a
manufacturing procedure. The global design sensitivity approach presented
here for involutes can be applied to filament wound shells and other
composite constructions using material form features peculiar to each
construction. The present involute optimization technology is being applied
to the Space Shuttle SRM nozzle boot ring redesigns by PDA Engineering.

— A design sensitivity capability using global material
geometry variables has been developed.

— The number of global variables is insensitive to finite
element mesh density.

— The sensitivity derivatives have been used successfully in
an optimization context.

— The sensitivity integral calculations in vector form
yielded a tangible error not shared by the corresponding
calculations in matrix form.

— The global variable approach can be applied to other
composite constructions using material form features
peculiar to each construction.
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INTRODUCTION

Whether designing an automobile, aircraft, building, or ship, the structural
engineer must consider many loading conditions and meet multiple design
criteria. Arriving at a minimum weight structure which satisfies all of the
design constraints requires the integration of the results from all analyses
and loading conditions. This is a relatively straightforward process if all
of the analyses use the same analysis model. However, if each analysis
requires a separate model, each model must still vary by the same amount when
the design variables change. Typically, this optimization process is further
complicated when constraints from the different analyses drive the design
variables in opposite directions. For example, the stress constraint from a
static analysis may cause a decrease in a design variable. However, the

minimum frequency constraint from a vibration analysis may cause an increase
in the same design variable.

This paper discusses the FESOP (Finite Element Structural Optimization
Program) program's ability to perform minimum weight optimization using two
different finite element analyses and models. FESOP uses the ADS optimizer
developed by Dr. Garret Vanderplaats to solve the nonlinear constrained
optimization problem. The design optimization problem in the paper requires a
response spectrum analysis and model to evaluate the stress and displacement
constraints. However, the problem needs a frequency analysis and model to
calculate the natural frequencies used to evaluate the frequency range
constraints. The paper summarizes the results of both the successful and
unsuccessful approaches used to solve this difficult weight minimization
problem. The results show that no one ADS optimization algorithm worked in
all cases. However, the Sequential Convex Programming and Modified Method of
Feasible Directions algorithms were the most successful (Figure 1).

MININUM WEIGHT STRUCTURAL DESIGN

*Multiple Analysis Types and Models

- Static, Vibration, Response Spectrum
*Multiple Loading Conditions
*Conflicting Design Constraints
- Stress, Displacement, Frequency
*Different Functional Design Groups

- Static, Vibration
FIGURE 1
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PROBLEM

The engineer faces many conflicting requirements when designing equipment
foundations. The design requirements are conflicting because a minimum weight
response spectrum (stress) design will tend to decrease the structural
stiffness, while a minimum weight natural frequency avoidance design will tend
to increase the structural stiffness. Another problem arises from the fact
that separate response spectrum and natural frequency analysis models may be
required. A much finer finite element mesh may be needed in the vibration
analysis to accurately determine the natural frequencies of vibration. This
paper presents a multidisciplinary optimization procedure and program which has

successfully integrated these analysis methods to

(1) solve both the natural frequency and response spectrum finite

element foundation models at the same time;
(2) optimize these foundations for minimum weight while meeting both

frequency avoidance and response spectrum design criteria;
(3) arrives at.producible equipment foundation designs (Figure 2).

Thus, instead of a time consuming trial and error approach to performing
combined response spectrum and natural frequency avoidance foundation design,
an automated process, using the FESOP computer program, now exists to arrive
quickly and efficiently at producible and weight effective equipment
foundations designs. The following paragraphs describe how FESOP was used to

develop producible minimum weight designs.

FESOP
(Finite Element Structural
Optimization Program)

*Solves Both Natural Frequency and Response
Spectrum Analyses in Same Execution

*Permits Different Finite Element Models for
Each Analysis

*Optimizes For Minimum Weight Using ADS

*Satisfies Stress, Displacement, and
Frequency Avoidance Constraints

*Arrives at Producible Equipment Foundations
FIGURE 2

1011



SAMPLE PROBLEM

Figure 3a is the response spectrum (stress) finite element model and Figure 3b
is the vibration frequency finite element model. The response spectrum model
employs the minimum number of finite elements needed to accurately assess the
structure's performance, with only the equipment mass plus enough lumped
masses to accurately model the foundation mass. However, the vibration model
requires a much finer finite element discretization with an element mass
definition but no equipment mass to accurately determine the structure's
natural frequencies of vibration. Each math model, therefore, requires a
separate analysis. In the normal design situation the engineer would set up
the two models, run both analyses, evaluate two sets of results, change both
models, rerun both models, and continue this process until the "optimum"
design was established. At best this is a very time consuming and very
imprecise procedure since the engineer relies only on his experience and
intuition to modify the structure. In FESOP, an automated procedure exists:
to read in both models, to perform both analyses, to evaluate the results of
both analyses, to modify the math models as dictated by the numerical
optimization program ADS, and to arrive at a producible true minimum weight
foundation design while meeting all criteria.

SAMPLE EQUIPMENT FOUNDATIONS

a - Response Spectrum b - Vibration Model
Model

FIGURE 3
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ENGINEER'S FUNCTION

While FESOP improves and automates the normal design process, the engineer's
knowledge is still required to achieve acceptable results. Usually two or
more attempts with FESOP are required to arrive at an optimum weight equipment
foundation due to the highly complex nature of the frequency avoidance

problem. However, FESOP does provide an efficient means to arrive at this
desirable result quickly and with 1ittle or no guesswork. In addition, by
properly specifying the design constraints and variables, a truly producible
structure will result.

While at first glance this would seem to be a very expensive process, in the

long run the costs will be cheaper because the engineer will spend

considerably less time making alterations to the design and rerunning the
required analyses. He will be able to devote more cogitative effort to
?olving h;s design problem, and the design will be far superior in all aspects
Figure 4).

INPUT OUTPUT
~  FESOP -

WITHOUT ENGINEER

—— — —|ENGINEER
|
|

| l
Tt 7]

ENGINEER |—>| | | —>| Fesop |—=| [ []

WITH ENGINEER
FIGURE 4
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REQUIREMENTS

A combined response spectrum and vibration minimum weight design can be
accomplished using many different approaches with FESOP. Some of the more
important considerations for successful completion are the fineness of the
finite element model; the choice and number of design variables; the choice of
the optimization algorithm; the initial design of the FESOP analysis; and the
producibility of the resulting structure. A number of recommended procedures
have been developed to help ensure the best minimum weight design in the
quickest manner possible, (Figure 5). In the following sections these
important considerations are addressed, with samples of both good and bad
applications to emphasize the point. Finally, a summary section discusses

the successful combination of all of these features.

Fineness of Finite Element Model

Selection and Number of Design Variables

Optimization Algorithm
* - MFD, MMFD, SLP, SQP, SCP

Starting Point

- Upper or Lower Bound

- Feasible or Infeasible
Procedure

- One Step (All Constraints)

- Multiple Steps (Selected Constraints
Then All)

FIGURE 5

* Defined in Figure O,
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REQUIRED FINITE ELEMENT MODELS

In the sample problem, the vibration finite element model, Figure 3b, has
approximately two times the number of finite elements as the response spectrum

finite element model, Figure 3a. The vibration model is sufficiently complex to

demonstrate a combined response spectrum and vibration foundation design
optimization with FESOP. Although the discretization of the frequency model is
different from that of the stress model, all of the reference data (material
properties, cross-sections, eccentricities, thicknesses, etc.) must be and are
identical in the two models. The reason for this is that as a design variable
for one model's changes, it must change identically for the other model. The
important thing to stress is that the major differences between the two models
are the number of finite elements, the number of node points, and the
definition of the mass associated with each model.
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THE CHOICE AND NUMBER OF DESIGN VARIABLES

The choice and number of design variables affects the computer time it takes
to arrive at an optimum solution; the ability of FESOP to give a true minimum
weight solution; and the ability of FESOP to arrive at a producible

structure. The greater the number of design variables, the more finite
element solutions are required to determine the constraint gradients needed
for the ADS optimizer, and consequently the longer and more costly the FESOP
analysis. For example, in the sample problem every beam element box
cross-section has five shape parameters: the depth, the width, the top
thickness, the bottom thickness, and the side thickness (Figure 6). Thus, with
the response spectrum model, there could be 16 different cross-sections (16
beam elements), with 5 design variables for each cross-section, or a total of
80 design variables. However, specifying such a large number of design
variable would be ridiculous for two reasons: (1) more than 800 gradient
evaluations would be required for both the models to obtain an optimum design,
and (2) the resulting structure would clearly not be very producible. A more
reasonable scheme would be to specifiy all of the horizontal members as having
the same cross-section and all of the vertical or nearly vertical members
having another cross- section. This would leave a total of ten design
variables and only 100 gradient evaluations for a normal FESOP run. However,
even in this case the structure could be very unproducible with mismatched
cross-sections at the joints.

ALL WIDTHS AND THICKNESSES
CAN BE DESIGN VARIABLES

1
I
| BEAM RECTANGLE BOX ANGLE
—— 1
L
PIPE MODIFIED | TEE CHANNEL

Typical Beam Cross-Sections
FIGURE 6
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SELECTED CROSS-SECTIONS

A better solution would be to allow only five design variables: the depth,
width, and top thickness of the horizontal members; the top thickness of the
vertical members; and the top thickness of the inclined members (Figure 7).
The bottom and side thickness of the horizontal members; the depth, width, and
bottom and side thickness of the vertical members; and the depth, width, and
bottom and side thickness of the inclined members would all be dependent
design variables. In this case the bottom and side thicknesses of each cross-
section would equal the top thickness of the same cross-section. This would
mean each box section would have a uniform thickness. The depth and width of
the inclined members would be equal to the depth and width of the horizontal
members, and the depth and width of the vertical members would equal each
other and the width of the horizontal members. Figure 7 shows the five design
variables for this case. In addition to such design variable 1inking for the
sample foundation, the eccentricities at the joints are also 1inked to changes
in the depth and width of the members. By doing this these eccentricities
which are dependent upon the shape of the cross-section will change as the
design variables change. With such limitations, the resulting optimized
foundation will be very producibie.

Wi Wi W
-«

t. # t2 ; ts +
t: ? t: * ts *

D,

D —><—+ —-—»4—; Wi

t, ’ t2 ? ts *

HORIZONTAL INCLINED VERTICAL
MEMBERS MEMBERS MEMBERS
FIGURE 7
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UNPRODUCIBLE OPTIMIZED STRUCTURE

Figure 8 1s an example of a structure which was optimized without
consideration of its producibility. The lack of 1inking created an impossible
structure to build.

1f futher restrictions were made to the sample problem by making all widths
and depth of each cross-section equal to the depth of the horizontal members,
there would be only four design variables. And if the inclined and vertical
members had the same thicknesses, the number of design variables would be
three. However, because three design variables would allow very little
variation in the structure, obtaining a minimum weight foundation could be
very difficult. Experience has shown that with too few design variables an
optimum weight foundation which satisfies all constraints frequently cannot
be obtained. Therefore, it is simply too restrictive to make all of the box
sections square with the same width and depth, but allowing the depth and
widths to vary independently allows sufficient leeway to permit an optimum to
be found. So having too many design variables or having too few design
variables will both produce poor results. The best results are obtained by the
judicious blend of design variables, as in this case where there are five
design variables.

FIGURE 8
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THE CHOICE OF THE OPTIMIZATION ALGORITHM

The ADS optimizer in FESOP offers the analyst many different optimization
algorithms to choose from: the method of feasible directions (MFD), the
modified method of feasible directions (MMFD), sequential 1inear programming
(SLP), sequential quadratic programming (SQP), or sequential convex programming
(SCP). (See Figure 9.) In problems with 'stress and/or displacement constraints,
all of these methods will arrive at nearly the same minimum weight solution,
with the only difference being the time it takes to arrive at the minimum
weight solutions. However, with the combined response spectrum and vibration
foundation design problem, which includes frequency avoidance constraints, the
choice of the optimizer can make a significant difference. As will be shown,
starting at the same point, two different optimization algorithms can produce
two different optimum structures. In addition, both methods many not be able
to produce an optimum weight foundation which satisfies all the constraints.
Thus, no one algorithm will produce the best optimum all of the time.
Therefore, in general, at least two of the optimizers should be used to insure
the best chance of finding an optimum,

MFD - METHOD OF FEASIBLE DIRECTIONS

MMFD - MODIFIED METHOD OF FEASIBLE DIRECTIONS
SLP - SEQUENTIAL LINEAR PROGRAMMING

SQP - SEQUENTIAL QUADRATIC PROGRAMMING
SCP - SEQUENTIAL CONVEX PROGRAMMING

FIGURE 9
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For the sample problem shown in Figures 3a and 3b, two different optimizers were
selected to optimize for minimum weight and avoid frequencies from 80 to 120.
The starting point for the optimization process was choosen as the upper limit
of all design variables. Figure 10 shows the results using both the MMFD and
SCP algorithms. In each case the process was started with only frequency
avoidance constraints and no stress or displacement constraints. At points A
and B the frequency only analysis was stopped and all other constraints were
added. This is only one of the many ways to approach the problem. The SCP
method arrived at a valid solution, but the MMFD method had two frequency
constraint violations. With the MMFD method ADS simply could not find a way to
change the design variables to eliminate the frequencies (82.0 and 114.1)
within the range 80 to 120. However, Figure 10 also shows the results of using
the MMFD method to avoid the frequency range of 48 to 72. In this case, the
MMFD method was successful. Therefore, the analyst should always attempt more
than one method when trying to avoid frequency ranges. Because the SCP method
is the least expensive, I would recommend using it to start and then running
the same problem with the MMFD method.

FREQUENCY AVOIDANCE USING
DIFFERENT ADS ALGORITHMS

16000 T
14000
.._ '
v 12000 MMFD (80 - 120)
0 . 0- SCP (80 - 120)
10000
L A ‘B MMFD (48 -72)
0
8000 1 N
U 0——0 0\
1 o INVALID SOLUTION (2 FREQ.
M 6000 \o IN RANGE 82 & 114)
E >
4000 1
u A—O——0——0
T~ _¢— O—0—0—0- VALID
2000 B -~<.__./|\.__./ SOLUTIONS
0 + —t -+ + +

o 1 2 3 4 5 6 7 8 9 10
ITERATIONS
FIGURE 10
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STARTING POINT FOR RESPONSE SPECTRUM AND VIBRATION FOUNDATION DESIGN

The shock and vibration foundation design optimization process can begin in
any number of ways:
By applying all stress, displacement, b/t ratio, and frequency
avoidance constraints from the start
(2) By applying all constraints except the frequency avofdance
constraints to obtain a fully stressed design, and by then
optimizing with all constraints
(3) By applying only the frequency avoidance constraints until a
minimum weight foundation is found, and by then including the
rest of the constraints
(4) By using a minimum frequency constraint instead of a frequency
avoidance constraint, and by then applying the frequency
avoidance constraint
(5) By starting with either a feasible stress design, an
understressed design or an overstressed design in combination
with one of the above (Figure 11).
Based upon this sample problem, no one starting procedure works best all the
time, and some methods for starting almost never work and, therefore, should be
avoided. In Figure 10 an understressed design was chosen for the starting
point with all design variables at the upper 1imits. A frequency avoidance
only starting procedure for the range 80 to 120 was initiated with two
optimization algorithms, MMFD and SCP. Similarly, one was started to avoid the
range 48 to 72 using only the MMFD algorithm. In the first case, the SCP
algorithm worked and the MMFD did not, however, in the second case the MMFD
algorithm worked. Looking at Figures 12 and 13 where other starting point
procedures were tried, potentially better optimum solutions exist.

(1) Apply all stress, displacement, b/t ratio, and frequency
avoidance constraints from the start

(2) Apply all constraints except frequency avoidance (fully
stressed design), and then optimize with all constraints

(3) Apply frequency avoidance only constraint, and then
optimize with all constraints

(4) Use minimum frequency only start, and then all
constraints

(5) Vary the inital design (lower or bound, feasible or
infeasible) in conjunction with the first four procedures

FIGURE 11
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In Figure 12 the SCP algorithm was used in conjunction with three different
starting procedures in an attempt to arrive at an optimum weight foundation.
This foundation was to avoid the natural frequencies of vibration from 48 to
72 and satisfy all stress constraints. The three approaches were
(1) to first optimize with a minimum frequency constraint of either
48 or 72
(2) to first optimize with only a frequency avoidance constraint
(i.e. no stress or displacement constraints at the start)
(3) to first optimize with no frequency constraints of any type (i.e.
ignoring frequencies)

The first and second approaches were successful in producing an optimum weight
structure; however, the optimum volumes differed significantly. In the first
case, the final structure had no frequencies of vibration below 72 and a
volume of 3300. In the second case (frequency avoidance only), a minimum
weight structure with frequencies above and below the range was obtained, with
a smaller volume of 2250. Attempting to first optimize with a minimum
frequency of 48 and trying to first optimize by ignoring frequencies, both
resulted in invalid solutions. For both of these cases, the final structures
had unallowable frequencies within the range of 48 to 72. In these
unsuccessful cases, the ADS optimizer simply could not find a way to change
the design variables so as to move away from an invalid structure. This
inability to move to a valid solution clearly demonstrates the need to attempt
more than one approach when trying to obtain a minimum weight foundation with
frequency constraints.

FREQUENCY AVOIDANCE IN RANGE 48 TO 72
USING SEQUENTIAL CONVEX PROGRAMMING

6000 1 INVALID SOLUTION (3 FREQ.
IN RANGE 49,69,71)

5000 1
Q
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4000 + VALID SOLUTIONS ']
0 O—0 \ 4
u 3000 T
\ . - MINIMUM FREQUENCY - 48
M D\D~ /
o — d—o—a0o [}
2000 1 *—o—o [ “O- MINIMUM FREQUENCY - 72
E \ /"l n—s
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1000 T INVALID SOLUTION
2 FREQ. (50,69) ‘0- FREQUENCY AVOIDANCE
0 .

01 23 45 6 7 8 9 10111213 1415
ITERATIONS
FIGURE 12
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In Figure 13, two of the starting procedures employed in Figure 12 were used
when trying to avoid frequencies in the range of 80 to 120. First, the SCP
algorithm and a frequency avoidance only procedure was attempted. While this
combination successfully obtained a minimum weight foundation with no natural
frequencies in the range of 48 to 72 (Figure 12?, the method was a complete
failure when seeking to avoid the frequencies of 80 to 120. Similarly,
optimizing with only stress constraints to start was a total failure in Figure
12, but provided two valid solutions in Figure 13, one for the SCP algorithm and
one for the MMFD algorithm. The significance of this is that one starting
procedure does not work all the time.

FREQUENCY AVOIDANCE 80 TO 120

9000 1 niINVALID SOLUTION (TWO FREQ. IN RANGE 82,112)
*—o
8000 /
..- .
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U 4000 +
1 N—n—n
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o\\o:>l—=g=:l::o~_o__o_’o 0\\0——°-o.-o——o
1000
0 } } } } } ; } } { { { } { } {
01 2 3 45 6 7 8 9 1011 12 13 14 15
ITERATIONS
FIGURE 13
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By reviewing the results in Figures 11 through 13, a number of conclusions can

be drawn.

(1) An optimum weight foundation which avoids certain natural

(2)

(3)

(4)

(5)

frequencies of vibration can be found using FESOP's combined
response and vibration capability.

Because of the highly complex nature of the frequency avoidance
problem, a number of attempts with both different starting points
and different optimization algorithms should be used to find the
best optimum.

A procedure which should give a feasible optimum is to start with
all design variables at their upper bound 1imits and perform a
frequency avoidance only analysis with both the SCP and MMFD
optimizers.

Next, an attempt from a reasonable design with either a frequency
avoidance or maximum stress only starting point should be tried to
see if a better optimum is obtained.

If no valid solution is obtained, a minimum frequency constraint for
the upper bound of the allowable range should be tried. This should
be the last resort because this will always result in the heaviest
foundation.

Following these guidelines will help to insure the optimum equipment
foundation in terms of producibility and weight.

1024

TABLE - COMPARISON OF RESULTS
Frequency | Optimizer [Starting Point Initial Success | Objective
Range Constraint
FEASIBLE Fmin > 48 NO 2000
scp STRESS Fmin > 72 YES 3300
48 TO 72 DESIGN (FSD) F <48, F > 72 YES 2250
Stress Only NO 5500
MMFD |UPPERBOUND | F <48, F > 72 YES 1800*
UPPER BOUND F < 80, F > 120 YES 2800
F <80, F> 120
SCP Fsp < > NO 8300
80 TO 120 Stress Only YES 1700*
F < 80, F > 120 N
MMED UPPER BOUND < > 0 3500
FSD Stress Only YES 3300

* Best Optimum For Given Range




PRODUCIBILITY CONSIDERATIONS

Producibility (Figure 14) is a factor which must be considered at all stages
of the optimization process. The definition of the finite element model and,
more importantly,the design variables must be made with producibility in mind.
Otherwise, a foundation that is clearly unproducible, 1ike the one shown in
Figure 8, will result. The first step toward insuring a producible structure
is to set limits on design variables which will be both reasonable and
producible. However, this alone is not always enough because, during the
optimization process, combinations of design variables which were not
anticipated will probably result. Therefore, 1imits on the relationships
between design variables should be made. In the sample problem the thickness
of the box beams was limited to 25 percent of the cross-section width to
insure that unreasonably thick box beams would not result. FESOP allows limits
to be specified on the relationship between any two cross-section design
variables, thus helping to insure a producible structure. In addition, as was
mentioned on the choice of design variables, many design variables should be
linked so as to guarantee that the changes in the structure will be uniform.
This is important because it means that with design variable linking, radical
size and shape changes will not take place.

*A Primary Consideration at All Stages of the

Optimization Process

*Vital to Definition of the Design Variables

*Must Also Limit Relations Between Design

Variables

*Avoids Unproducible Structures

FIGURE 14
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RESULTS/CONCLUSIONS
Based upon the results presented, the following conclusions can be drawn:

(1) One can successfully optimize two different finite element models
and analyses with FESOP.

(2) No one ADS optimizer works best all of the time.

(3) Many starting procedures are possible, and each can produce
different "optimums".

(4) Producibility is a vital consideration.

(5) The engineer's active participation is essential.
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