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ABSTRACT

Next generation air and space vehicle designs are being
driven by increased performance requirements, demanding a high
level of design integration between traditionally separate design
disciplines. Interdisciplinary analysis capabilitics have been
developed for acroservoelastic aircraft and large flexible
spacecraft , but the requisite integrated design methods are only
beginning to be developed. One integrated design method which
has received attention is based on hierarchai problem
decompositions, optimization, and design sensitivity analyses.
This paper highlights a design sensitivity analysis method for
Linear Quadratic Gaussian (LQG) optimal control laws, enabling
the use of LQG techniques in the hierarchal design methodology.
The LQG sensitivity analysis method calculates the change in the
optimal control law and resuiting conwolled system responses
due to changes in fixed design integration parameters using
analytical sensitivity equations. Numerical results of a LQG
design sensitivity analysis for a realistic aeroservoelastic aircraft
example are presented. In this example, the sensitivity of the
optimal control law and aircraft response for various parameters
such as wing bending natural frequency is determined. The
sensitivity results computed from the analytical expressions are
used to estimate changes in response resulting from changes in
the parameters. Comparisons of the estimates with exact
calculated responses show they are reasonably accurate for +
15% changes in the parameters. It is also shown that evaluation
of the analytical expressions is computationally faster than
cquivalent finite difference calculations.

INTRODUCTION

The design of new generation air and space vehicles is
increasingly becoming subject to extensive requirements for
design integration, that is, the close coordination of the design of
the various parts of the vehicle. For example, many modemn
fighter aircraft requirc integration of the flight controls and
engines so that sufficient power is available at all flight
conditions. Similarly, the aircraft flight control and structural
designs must be integrated to avoid potential aeroservoelastic
instabilities. To meet the challenge of integrated aircraft design
requirements, methods which tie together existing acrodynamic,
structure, control, and propulsion design methods are needed.

One such integrated design methodology currently under
development at the NASA Langley Research Center is based on
hicrarchical problem decompositions, multilevel optimization
methods, and design sensitivity analyses.! This methodology
depends on the decomposition of the integrated vehicle design
problem into vehicle requirements and separate aerodynamic,
structure, control, and/or propulsion subsystem requirements.
The subsystem designs are obtained independently subject to a
set of fixed design integration parameters, using existing design
methods and tools. An iterative optimization method is used to
satisfy the integrated vehicle design requirements through
modification of the design integration parameters and repeated
subsystem designs. Subsystem design sensitivity data relative to
the design integration parameters are used as the gradient
information for the optimization procedure.

An application of the hierarchal integrated design
methodology is to the acroservoelastic design of aircraft control
laws and structure, including the effects of unsteady acrodynamic
forces due to structural and control surface motions. This
application requires the use of dynamic response requirements as
the integrated design objective and a control law design method

that uses the feedback signals actually available from the aircraft
sensors. Both of these requirements necessitated the
development and validation of appropriate design sensitivity
expressions. Linear Quadratic Gaussian (LQG) optimal control
law methods were selected for the control law design. Dynamic
response criteria considered include time responses to control
surface motions and discrete acrodynamic gusts, stochastic
responses to random gust environments, closed-loop system
cigenvalues, and open- and closed-loop frequency responses.

The sensitivity developments have recently been
completed.2 A summary of these resuits and the application and
validation of the sensitivity expressions to an acroservoclastic
aircraft example are described in this paper. Sensitivity results
have been computed and are shown for design integration
parameters related to aircraft wing bending stiffness, feedback
accelerometer location, and control law design specifications.
These parameters are typical of those which would be used to
obtain an integrated structure/control law design of an
acroservoelastic aircraft by the hierarchal design method. The
sensitivity results were also used to validate the analytical
sensitivity expressions. This was accomplished by compuring
the sensitivity result with changes in responses due to control
laws designed for different fixed values of the design integration
parameters. Finally, the relative computational effort of
computing the sensitivity information using analytical
expressions versus numerical finite difference methods was
investigated.

INTEGRATED DESIGN METHOD

A general integrated structure/control law design
tormulation based on hierarchal decompositions and multilevel
optimization is shown in Figure 1. In Figure 1, the structural
design and the control law design are independent lower level
design problems. These lower level designs are coordinated
using a set of design integration parameters. The upper level

. design optimization problem reflects the desired objectives of the

integrated aircraft structure/control law design. As a hypothetical
example, the upper level objective might be to reduce peak
wransient responses of the aircraft due to a gust encounter and to
reduce the weight of the structure. The actual peak transient
responses of the aircraft would come from analysis of the conwol
law design at the lower level, while the actual structural weight
would come from the lower level structural optimization. These
might then be combined as a weighted sum of square errors
between the actual and desired values to form a single upper level
optimization performance index. The upper level design
variables, which are the design integration parameters, would
then be selected to optimize the imegrated design.

The values of the design integration parameters at any
time are treated as fixed for the lower level designs. The
sensitivities of the lower level designs to these fixed parameters
are computed and used in tum to compute the gradient of the
related part of the upper level performance index. That is, these
sensitivities are the gradients necessary to perform the top level
optimization. In the present hypothetical example, one of the
design integration parameters may be a local structural stiffness
requirement, which appears as an equality constraint in the lower
level structural design. The sensitivity of the optimized structural
weight to this parameter is computed at the lower level and
returned for use in computing the part of the gradient of the upper
level performance index that is related to structural weight.
Another of the design intcgration parameters might be a
maximum allowable control surface deflection limit. The



sensitivity of the optimal control law design with respect to this
parameter would then be used to compute the sensitivity of the
peak transient gust response of the controlied aircraft, as required
to perform the upper level design integration optimization.

In many cases, existing nonlinear programming-based
structural optimization and design sensitivity analysis methods
can be used for the lower level structural design. These methods
may themselves be hierarchal, multilevel optimization
algorithms. 34

In the rest of this paper, the use of Linear Quadratic
Gaussian optimal control law design methods in hierarchal
integrated aircraft structure/control law design is examined in
detail. Expressions for the sensitivity of controlled system time,
frequency, and stochastic resporses in terms of state-space
coefficient sensitivity matrices arc discussed below. The
sensitivity of optimized LQG control law to fixed parameters
must be known to compute the necded statc-space coefficient
sensitivity matrices. Analytical expressions for the sensitivities
of the LQG gain matrices to fixed problem parameters are
discussed next, followed by the controlled system response
sensitivity expressions,-

LQG CONTROL LAW SENSITIVITY

The Linear Quadratic Gaussian (LQG) optimal control
law problem3-7 is to find the control u(t) for the system

X = Agxg + Bgu + Dywy (1a)

y=Cyx, (1b)

z=Mx, +v (1c)

such that the cost function

J= L'_".L% E JIyTQy + uTRu]dt (2)
0

is minimized, where E denotes expected value and t is the final
time. In equations (1), xs is the system state vector of dimension
(nx x 1), y is vector of system responses of dimension (ny X 1),
and z is a vector of measured system outputs of dimension (nz X
1). The vectors wg (nw X 1) and v (ny X 1, ny = nz) are zero
mean, Gaussian distributed, white noise disturbances with
intensity matrices Wq and V respectively, and the matrices As,
B, Cs, Ds, and M are real valued coefficient matrices of
appropriate dimensions.

It is assumed that the matrix pair (A, Bs) is stabilizable,
the pair (Mg, Ag) is detectable, and the pair (Qq, Aj) is detectable,
where Qo is defined by Qo Qo = CsTQC; and the matrices Q and
R are positive semi-definite and positive definite respectively.
The solution of the LQG optimal control law problem is then the
interconnection of the optimal Linear Quadratic Regulator and the
optimal linear siate estimator or Kalman Filter.>-7 In the Kalman
Filter, the measured outputs z are used to create estimates for the
actual system states xs. Thus, the optimal control law is

u=-Gx (3a)
ko= A+ B + Flz - Myx) (3b)
where the gain matrices Fy and G are given by

Fo=T™M V" (4a)
G, =R'B[S )

and the marrices S and T are the positive definite solutions of the
steady-state nonlinear matrix Riccat equations

0=AIS +SA, - SB,R'B!S + CTQC, (5a)
0=AT+TAl - TMIV'M,T + D,W,D} (5b)

It is assumed that the state-space model coefficient
matrices Ag, Bs, Cs, D, and My, the noise intensity matrices W,
and V. and the cost function weighting matrices Q and R are
time-invariant, continuous, differentiable functions of a number
of parameters pj, i = 1,....,np, whose nominal values arc fixed
during the solution of the L&J optimal control law problem. It is
further assumed that the functional dependence of the above
matrices on the parameters is known so that the partial derivative
of each matrix with respect to cach parameter is ... "~ known.

Analytical expressions for the sensitivity of the optimal
LQG problem solution above to the parameters p; can be obtained
by differentiation of the necessary conditions of optimality.
Since the solution of the LQG optimal control problem is the
interconnection of the optimal Linear Quadratic Regulator (LQR)
and Kalman Filter (KF), the necessary conditions for the LQG
problem are the necessary conditions for the LQR and KF
problems. Detailed derivations for the sensitivity expressions are
presented in reference 2. The results are summarized here.

Regulator Sensitivity - The sensitivity of the optimal
LQR gain matrix G with respect to the ith parameter p; is
dG, 19R o1 T -laB,T 1 T3S
3= 22 + —_ g9
» RapR B, S+R P> S+R B’ap 6)
where the subscript i is dropped for convenience throughout the
remainder of the paper except where necessary to avoid
confusion. The unknown sensitivity of the steady-state LQR
Ricatti solution S is obtained from

: T
~98(, _ ) T3S JA, 0A,. 3Q
0 ${A, B,G,) +(A,- BG,) o { St RSt

9B, .1 T 1R 10T 1B,
-S[—a—p*R Bs‘BsRa-p'R B,+B,R$S} M

Equation (7) is a linear Lyapunov equation which has a
unique solution [reference S, pg. 103, Lemma 1.5] since the
coefficient matrix Ag - BsGg 1s asymptotically stable by the
properties of the LQR solution [reference 5, pg. 237, Theorem
3.7]. This equation must be solved for each different design
parameter p;, however the coefficient mamrix (Ag - B;Gy) is the
same for every parameter. This can be used to advantage in
developing a numerical algorithm for solving equation (7) for
large numbers of parameters.

Kalman Filter Sensitivity - The sensitivity of the
Kalman Filter gain mawrix Fr with respect to p is

9F 1 OML . -

{_ T\ Ty! syt Ty, 19V

_—= V- V=V 8
3 ap M, V' +T 3p ™, ap 8)
The unknown sensitivity of steady-state KF Ricatti solution T is
obtained as the solution of

T [9A,. A
+

o=(A,-FrM,)g;r+%(A,-F,M,] {‘gp—’“ %

T
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T
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3V Mi MV ISV IM e MVISE } @

which is also a linear Lyapunov equation with a unique solution
since the coefficient matrix Aq - FgMj is asympiotically stable by
the properties of the Kalman Filter solution. The coefficient
matrix is the same for every parameter p; for this Lyapunov
equation as well. -

Optimal Controlled System Sensitivity - Defining

a state estimate error vector €, an augmented state vector x, and
an augmented noise vector w as

€= X" X, (10a)
x=e} (10b)
w= {;v,} ' (10c)

the open-loop combined system and state estimator can be written
in state-space form as ’

x = A + Bu+ Dw (11a)
y =Cx (11b)
u=0x (1)

where the matnices Ag, B, C, D, and G are defined as

e e

|BG, A-BG, FM,|
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G={-G, G,

The closed-loop system state-space equation is then
x = Ax +Dw 12)
where the matrix A is
‘-As - BsGs BsGs

L oo AcEM)

The derivative matrices of Ag, B, C, D, and G with
respect to p are ‘

Ac:

A,
dp 0
A, | 3B, 3G, 9A, 9B, 3G,
» | @O P B w0
dF, aM,
TR
98,
m_| %
% |38,
N
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EE.
o_| *
% |, %
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dp | 9 9p]

where the derivative matrices of the optimal gain matrices G and
Fr are given by equations (6) and (8) respectively. The derivative
of the closed-loop state-space dynamics matrix A with respect to
pis

aa, a8, 3G, 9B, . . G,
| B H O
R oF
0 9A, 9N M, - Fr%
dp dp dp

DYNAMIC RESPONSE SENSITIVITY

Equations for the sensitivities of a given linear state-space
dynamic system to variations in parameters which define that
system can be obtained by partial differentiation of the state-space
equations with respect to the desired parameter. For example,
consider the linear, time-invariant state-space system
x = Ax + Bw (13a)
y=Cx (13b)
where x is the system staie vector of dimension (nx X 1), w is the
system input vector of dimension (ny X 1), and y is the system
output vector of dimension (ny X 1). The matrices A, B, and C
are appropriately dimensioned coefficient matrices. Note that
equations (13) can describe either an open or a closed-loop
system and that the control input vector w is taken here to be a
general input or reference 2

The sensitivity of the system state and output response8
can be obtained from the equations

dx _0dA Jx , dB 4

—aa —-apx +A—~—ap + 3 W (14a)
y _dC Ix

—ap ——ap X + C——ap (14b)

where the order of differentiation with respect to time t and the
parameter p has been interchanged in (14a).

Equations (13) and (14) can be combined into a singie
system of equations as :

X A 0][x B
ax(=| gA {B_X}+ 9B |w (152)
o) | A 9.
y c 0]fx
B R
) |9 Cflop
or more compactly as ;
X, = Agxy + Bow : (16a)
Yo = Cpxp (16b)

where the subscript p refers to sensitivity equations, and the
definitions of the vectors and coefficient matrices follow from
equations (15).

Time Response - The sensitivity of the time response
of a state-space system o0 known parameter variations is obtained
by solving equations (16) as a function of time for a given input
w(t). The theoretical solution for systems of equations of this
type is well known? and is given by

t
xpl) = ¢ " xp(0) + J'cA"“ “UBwit)dt (172)
0

Yolt) = Cpxp(() 17

where xp(0) is the initial condition of the system defined by
equations (16).

Frequency Response - The frequency response of a
linear time-invariant state-space system can be obtained by
Laplace transformation of the state-space equations and
replacement of the Laplace transform variable s with the complex
frequency s = jw (for zero system initial conditions)>9. The
sensitivity of the frequency response can be obtained using the
same technique on the system sensitivity equations (16). The
result is

yplj) = C,f jol - Ap) " Byw(i) (18)

The frequency response h(jw) and frequency response
sensitivity hp(jw) of a given input/output pair calculated from
equation (18) are complex guantities expressed in terms of real
and imaginary components as a function of frequency . These
quantities are usually more conveniently expressed in terms of
magnitude and phase, and sensitivity of the magnitude and phase,
than in their real and imaginary components.

The magnitude Ihl and phase ¢ of a complex quantity

h(jw) = a + jb can be calculated from the real and imaginary
components as

bt =va? + b (19a)

o =tun"% (19b)

The sensitivities of the magnitude and phase are obtained by
differentiating equations (19) with respect to p

ol 1{ 3a db
Ml _ + b3l : 0
) ™ ap] ?
% _1 ;@—b-b-al] (20b)
P L P P

where da/ap and db/dp are the real and imaginary components of
Ih/dp respectively.




Singular Values - The output vector y(s) is related 1o
w(s) by a transfer function matrix of dimension ny X ny in the
multi-input, multi-output case. When the transfer function matrix
is some ny X ny or ny X ny matrix H(s) of a controlled system, it
is often desirable to compute the minimum and maximum
singular values of H(s) as a function of the complex frequency s
= jw, since these singular value quantitics have been related to
various control system design criterion!®. The singular values
and the sensitivity of the singular values to parameters as a
function of frequency @ can be obtained from H(jw) and

JH(jw)/dp using the definition of the singular value
decomposition of a complex matrix.

For the square complex matrix H of dimension ny, x ny,
the singular value decomposition of H is defined by
H=UZV’ @y
where (*) denotes complex conjugate transpose, U and V are
unitary transformation matrices, and X is
L = diag([o, g, ... onh]) 22)

where o is the ith real scalar singular value of H. For the ith
singular value, equation (21) can be written as either

Hv, =ug, : (23a)
or
Hy, =vg, (23b)

where uj and v; are the ith columns of U and V respectively.

For the case when H is a known continuous function of
the parameter p; for which the derivative dH/dp; is also known
and the o; are distinct (no repeated singular values), then the
sensitivity of the ith singuiar value oj to the parameter p is!!-13
do. «dH
-8?1 =Real| %igp .] (29

Eigenvalues - The cigenvalues and right eigenvectors of
areal ny X ng matrix A are defined by the equation®

AE =EA 25)
where E is the matrix whose columns are the right eigenvectors

and A is a diagonal matrix with the i'h diagonal clement being the

ith eigenvalue, assuming A has no repeated eigenvalues and a full
set of linearly independent eigenvectors. The left cigenvectors

are just the rows of the inverse modal matrix E-1, For the it
eigenvalue A, equation (25) can be written as either

Ae =g (26a)
UA=AL (26b)
where ¢; and }j are the ith right and left eigenvectors respectively.

The sensitivity of the it eigenvalue A; with respect to the
parameter p is!4-16

A TaA '
» o y e

Covariance Response - Often the response of an
asymptotically stable linear system to random disturbances or
inputs which can only be described in statistical terms is dpsxred.
In this case, the response of the system is computed using the
covariance equation and the noise intensity martrices which model

the random disturbance or noise3-6. Equations for the sensitivity

of the covariance response have been developed by differentiation

of the covariance equation with respect to the parameter variation
of interest.!7

The input w(1) of the linear system given by equations
(13) is assumed to be a zero mean, Gaussian distributed, "white"
noise with noise intensity matrix W. The steady-state covariance
response of the (asymptotically stable) system is given by
solution of the steady-state covariance equation

0=AX +XAT+BWB' o (28)
and the steady-state output covanance 1s

Y =C'xc (29)

Assuming the derivative matrices of A, B, C, and W with
respect to a parameter p; are known, equation (28) can be
differentiated with respect to p; to obtain

_a9X L 9X 4T, [oA AT
0=AZ2+ 22 A =X =
8p+8p +{3p + X ap

3B Wi, 5 W o, nw OB
+ =—=WB +BZ=B +BW 0
op op op } o
Equation (30) is linear Lyapunov equation which has a unique
solution by virtue of strictly stable eigenvalues of the A matrix.
The sensitvity of the output covariance is

Y _ 3C T . ~IXAT ac’
T =5XC +Cz=C +CXE&=- 31
dp Jp dp ap @b

AEROSERVOELASTIC AIRCRAFT SENSITIVITY
STUDY

Description - An aeroservoelastic control law design
sensitivity problem was formulated and analyzed for various
control law and swructural parameter variations. This was done to
numerically demonstrate the application of the sensitivity
developments of previous sections to a realistic aircraft
structure/control law design problem.

A mathematical model of the longitudinal dynamics of the
Drone for Aerodynamic and Structural Testing, Advanced
Research Wing-1I (DAST ARW-II) Firebee aircraft, Figure 2,
was developed for this example.!8-19 The open-loop state-space
model is of 25t - order incorporating rigid body plunge and pitch
modes, three elastic vibration modes, elevon and aileron control
surfaces with actuators, and a Dryden20 second-order vertical
gust input model. It has elevon and aileron commanded
deflections as inputs, pitch rate and normal acceleration at the
c.g., wing acceleration at two locations, and actual control
surface deflections and rates as outputs. At Mach 0.75 and
15,000 feet altitude, the open-loop aircraft model has two real
short period roots, one stable at -3.625/sec. and one unstable at
1.101/sec., and a lightly damped aeroelastic flutter mode with
eigenvalues at -0.162 £ j118.3/sec.

A control law design problem was formulated to stabilize
the unstable short period root of the aircraft while maintaining or
augmenting the stability of the aeroelastic mode using reasonable
control surface deflections and rates. Center-of-gravity pitch rate
and acceleration, and wing acceleration from the aft wing
accelerometer were selected as feedback measurements. These
measurements were assumed to be noisy. A random gust
environment of 5 ft./sec. (60 in./sec.) root mean square vertical
gust velocity was selected for the control law design.

The original eight mathematical model outputs were
weighted in the LQG cost function by the matix Q. The diagonal
clements of Q were selected using the "Bryson” rule [reference 6,
pg. 169] as one over the square of the desired maximum output.
The weighting matrix R on commanded control surface
deflections was selected as an identity matrix. The Dryden gust
input noise intensity was selected to give a 5 ft./sec. RMS gust
input, and the measurement noises were selected to be
approximately 10% of the expected output due 1o the gust input.
Table | summarizes the numerical values for the weighting
matrices and noise statistics.

Numerous parameters were selected to exercise the
sensitivity analysis techniques described in previous chapters.
Sensitivity results for four of these parameters are presented here.
The four parameters and their nominal values are listed in Table
2. Parameter 1 is an element of -the cost function weighting
matrix Q, affecting the regulator portion of the optimal LQG
control law solution. Parameters 2 is an element of the noise
‘ntensity matrix V, which affects the Kalman Filier portion of the
LQG solution. Parameter 3 is a factor that simulates the effects
of structural wing bending stiffness changes by uniformly scaling
the two wing bending mode natural frequencies. Parameter 4
locates the aft wing accelerometer relative to the forward
accelerometer through a scaling of the nominal longitudinal
separation distance between the accelerometers. Sensitivity
matrices of the open-loop state-space model and LQG matrices to
the four parameters were also generated.



Sensitivity - A numerical sensitivity analysis of the
aeroservocelastic example problem was conducted. This
numerical analysis consisted of the following: 1) solution of the
optimal LQG control law problem for nominal parameter values,
2) calculation of the sensitivity of the LQG solution to the four
parameters, and 3) computation of the nominal controlled system
cigenvalues, covariance response, and time and frequency
responses, and the sensitivity of those responses, to the four
parameters using the optimal control law sensitivity information.

Seasitivity results presented throughout this paper are
multiplied by the nominal value of the parameter of interest, such
that the (semi-relative) sensitivity results for every parameter can
be directly compared on a percent parameter change basis. This
type of semi-relative sensitivity data has the same units as the
response of interest in all cases.

Closed-loop system eigenvalues and their sensitivities to
¢ach of the parameters were computed using equations (26a) and
(27). The closed-loop short period and flutter mode eigenvalues
and their sensitivities are given in Table 3. Note in Table 3 that
the sign order of the sensitivity of the imaginary part is
significant. The notation * means a positive change in the
parameter will increase the magnitude of the imaginary part of the
cigenvalue, whereas the notation -/+ means a positive parameter
change will decrease the magnitude. Neither the short period nor
flutter mode cigenvalues are affected at all by parameters 2 and 4,
since these parameters affect only the Kalman Filter portion of the
LQG solution. The wing bending stiffness parameter, while
having an expected large effect on the flutter mode eigenvalues,
also has a significant effect on the aircraft short period mode
cigenvalues since the sensitivity results are of the same order of
magnitude.

Covariance responses and sensitivities of the aircraft
model to a 5 ft./sec. RMS random vertical gust environment
were computed using equations (28) - (31). Mean-square
responses and sensitivities derived from the covariance results for
aircraft pitch rate, normal c.g. acceleration, and wing acceleration
at the forward wing accelerometer are given in Table 4. Note that
an increase in wing bending stiffness would tend o decrease the
aircraft pitch rate, c.g. acceleration, and the wing tip acceleration
in the random gust environment, as would moving the aft wing
accelerometer forward (a negative change in parameter 4).
Parameter 1 could be used to tradeoff pitch rate response with
c.g. and wing acceleration since the sensitivity derivatives have
opposite signs.

Output time responses and sensitivities were computed
for the closed-loop aircraft subjected to the 1 - cosine discrete
gust

60 x (1.0 - cosine (mt/ .25)) 0.0<t<.25
w(t) = (32)
0.0 25<t210
using equations (17). Time histories of aircraft pitch rate and
c.g. acceleration are shown in Figures 3 and 4. Also shown in
these figures are the sensitivitics of the responses to parameters 3
and 4. Note here that of the two parameters, the pitch rate
response is most sensitive to the wing bending stiffness. The
sensitivity of the c.g. acceleration is largest with respect to
parameter 3, indicarting that wing bending stiffness is a significant
factor in normal accelerations due to gust encounters.

The compiex frequency response and sensitivities of the
elevon open-loop transfer function with the aileron loop closed
were calculated using equation (18). The complex (real and
imaginary) results were converted 1o magnitude and sensitivity of
the magnitude using equations (20). The magnitude resuit is
shown in Figure 5, as are the sensitivities of the magnitude to
parameters 3 and 4. The magnitude is most sensitive 10 the wing
bending stiffness at about .6 rad/sec., although the peak
sensitivity for parameter 4 coincides with the peak of the
magnitude at 1.1 rad/sec.

Sensitivity Validation - The sensitivity analysis
results were evaluated for accuracy by comparing predicted
covariance responses with covariance responses computed for
variations in the nominal values of the parameters. The four
parameters were varied + 25% from their nominal values in 5%
increments, and the new optimal control law and controlled
aircraft covariance response were computed for each parameter

variation. ‘These computed responses were compared with
sensitivity derivative-based first-order predictions of the response
computed by

fp=(n+§—;xAp 339

where f refers to the response of interest, Ap is the parameter

change, df/dp is the appropriate sensitivity derivative, and the
subscripts [ and o refer to predicted and nominal responses
respectively. Percentage errors in the covaniance response
predictions were calculated as
fe-fp
%E = X 100 (34)
c
where the subscript ¢ refers to the computed response.

Validation results for the prediction of the aircraft pitch
rate, c.g. acceleration, and aft wing accleration due to variations
in parameter 3, the wing bending stiffness parameter, are shown
in Figure 6. The percent errors in predicting pitch rate and c.g.
acceleration are reasonable even for large variations in the value
of the parameter. Further, the slope of the error curve is zero
near the zero parameter change(nominal value) point, where the
sensitivity derivative used for the prediction was originally
calculated. This indicates that the sensitivity derivative is exact at
this point, verifying the derivation of the analytical sensitivity
expressions. The percent error results for the aft wing
acceleration prediction are larger than for the other two response
predictions, however the error is less than about -30% for + 10%
vaniations in the parameter. [n an actual application of these
sensitivity methods, parameter variation magnitudes would
normally be restricted by good engineering practice to be
relatively small values, closer to the region where the sensitivity
results are nearly exact.

COMPUTATIONAL COSTS

The computational burden associated with the numerical
evaluation of the analytical LQG problem sensitivity equations
can appear to be substantial, since solution of two matrix
Lyapunov equations (equations (7) and (9)) is required to obtain
the sensitivities of the linear quadratic regulator and Kalman Filter
gain matrices to a single parameter. For this reason, a
comparison of the analytical sensitivity evaluation versus one-
and two-step finite difference calculations for the equivalent
sensitivity information was made. The meusure of comparison
for the three calculations was central processing unit time (CPU
seconds) on a Digital Equipment Corporation MicroVAX Il
computer, where the LQG sensitivity equations were
programmed as user functions to a commercially available linear
systems analysis computer code.

The one-step regulator gain matrix G finite difference
sensitivity was calculated as

G, -G
%g-s—‘m—" 35)

where G, is the perturbed LQR gain for the wing bending
stiffness parameter (parameter 3) perturbed positively by 2.5%
(1.025 times the nominal value). The KF gain matrix F finite
difference sensitivity was calculated similiarly.

The two-step regulator gain matrix G finite difference
sensitivity was calculated as
36 % 0 36)
dp -~ .05
and the wing bending stiffness parameter was perturbed by *
2.5%. G refers the LQR gain matrix obtained for parameter 3
perturbed 1o 1.025 times nominal, and G, refers to the gain
matrix for parameter 3 perturbed to .975 times nominal. The
Kalman Filter gain marrix F sensitivity was again calculated in the
same manner.

The results of the CPU time comparisons are shown in
Table 3, as is the CPU time required for solution of the LQG
problem without sensitvity calculations. These results show that
the analytical sensitivity expressions require substantially less
CPU time than cither the one- or two-step numerical finite
difference approaches for a single parameter sensitivity analysis,



and require only a 33% increase in CPU time over the nominal
LQG problem solution. Furthermore, the computational
advantage of the analytical approach is likely 1o increase when
sensitivity calculations for more than one parameter are involved,
since additional computational efficiency can be achieved by
storage of the decomposed coefficient matrices of the sensitivity
equations (7) and (9). Similar computational efficiencies are not
possible with the finite difference approaches, since they require
a solution of the LQG problem for each perturbation of thc
parameter of interest.

CONCLUSION

This paper has highlighted 2 method for computing the
sensitivity of optimal LQG control laws to various parameters
using analytical sensitivity expressions. The LQG sensitivity
results are used to predict changes in closed-loop aircraft
responses due to changes in the nominal values of the parameters
of interest. These sensitivity results are shown to be useable for
hierarchal integrated structure/control law design problems
through a large aeroservoelastic aircraft example. Sensitivities of
covanance, time, and frequency responses of the aircraft to
various parameters were computed. The sensitivity results were
validated against computed response changes due to changes in
the nominal values of various parameters and found to be
accurate for + 15% changes in the parameter values. It was also
found that it is cheaper to evaluate the analytical LQG sensitivity
expressions than to calculate the equivalent sensitivity
information by finite difference means.
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TABLES

Table |  LQG Control Law Problem Data
Svmbol  Value Descnption
Q(1,1) 0.01 Pitch Rate Weight
Q(2,2) 1.00 C.G. Acceleration Weight
Q@3.3) 0.01 Fwd. Wing Acceleration Weight
Q4.4 0.01 Aft Wing Acceleration Weight
Q(5.5) 2.04 x 102 Elevon Deflection Weight
Q(6.6) 440 x 103 Aileron Deflection Weight
Q7.7 1.56 x 10-4 Elevon Rate Weight
Q(8.8) 1.83 x 10-¢ Aileron Rate Weight
R(1,1) 1.00 Commanded Elevon Weight
R(2,2) 1.00 Commanded Aileron Weight
V(1,1)  2.00x 103 Pitch Rate Noise Intensity
V22) 1.50x 103 C.G. Accl. Noise Intensity
V(3.3) 6.00 x 1003 Aft Wing Accl. Noise Intensity.
U(L.1) 1.00 x 10-6 Input Noise Intensity (Elevon Loop)
U2.2) 1.00 x 106 Input Noise Intensity (Aileron Loop)
W 3.60 x 103 Dryden Gust Model Noise Intensity
Table 2 Integrated Aircraft Design Problem Parameters.
Number  Nomunal Value Descripnon

] 0.01 QUI.1) Pitch Rate Weight

2 2.00 x i0-3 V(1,1) Pitch Rate Noise Intensity

3 1.00 Wing Bending Stiffness Factor

4 7.58 Aft Wing Accl. Location
Table 3  Semi-Relative Closed-Loop Short Period and Flutter

Mode Eigenvalue Sensitivities to Parameters.
Short Period Mode Flutter Mode
(1/sec.) (1/sec.)
(-5.136 £ j2.742) (-5.046 *j1.178 x 102)
-4.74 x 10°1 /+j728X 101 4.69 x 103 /+,1 S0 x 105
0.00 0.00

Param.

1

2

3 472 x 10°1 £j4.04 3701;283)(10‘
4 0.00 0.00




Table 4

Semi-Relative Closed-Loop Mean-Square Response

Sensitivities to Parameters 55 ft./sec. RMS Gust).
tch Rate .G. Accl. ing Accl.

(deg./sec.) (g's) (g's)
Param. (5.15 x 10-2) (2.65 x 10-2) (2.35 x 101
1 -6.18 x 103 2.24x 104 6.24 x 1075
2 5.91x 103 9.91 x 104 5.21x 103
3 9,84 x 10-2 -3.38 x 103 -5.32x 10!
4 1.35 x 10-3 1.16 x 10-3 2.94 x 10-!1
Table 5 CPU Time Comparisons of Analytical Sensitivity
Expressions versus Finite Difference Calculations.
e ime (Sec.)
LQG Soluton Only 100.63
Analytical Sensitivity Expressions 133.55
One-Step Finite Difference 196.44
Two-Step Finite Difference 287.39
Integrated
Design
Structural /\ Control Law
Parameter Parameter
Sensitivity Sensitivity
Design
Independent Structurai ;’;‘,‘;’},’;‘{2& Independent Control
Design Law Design

Figure 1. General integrated structure/control faw design

problem formulation.
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