Challenges for Future Space Power Systems

Henry W. Brandhorst, Jr.
Lewis Research Center
Cleveland, Ohio

Prepared for the
European Space Power Conference
sponsored by the European Space Agency
Madrid, Spain, October 2-6, 1989
CHALLENGES FOR FUTURE SPACE POWER SYSTEMS

Henry W. Brandhorst, Jr.
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135 U.S.A.

ABSTRACT

The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to success of these ventures is the availability of plentiful, cost effective electric power and assured, i.e. cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories—survival, self sufficiency and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs.

Keywords: space power, solar, nuclear, launch costs.

1. INTRODUCTION

One of the most vexing problems inherent in the utilization of space is to accurately forecast the amount of power necessary to perform useful tasks and to meet mission objectives. It seems that nearly every satellite launched is power short. Part of the reason for this is the limitation on the mass that launch vehicles can place in orbit. Figure 1 shows the mass-to-orbit capability of several existing U.S. launch vehicles. (Space Transportation System, Titan IV, III, and II, Atlas/Centaur and Delta.) Major new launch vehicles with capabilities to 100,000 kg to LEO are under advanced development. Similar capability exists in all spacefaring nations so these vehicles will be used as baseline examples. Given the mass-to-orbit contraints imposed by launch vehicles, the next step is to assess the power that might be available to the satellites they launch.

While each satellite is different, a general rule-of-thumb that seems to fit most cases is that the power system mass is about 25% of the satellite mass (payload mass fraction is also about 25%). Thus a simple means for estimating power available to a given satellite exists. However what is more complex is the means of estimating on-orbit power requirements.

2. POWER REQUIREMENT ESTIMATION

Because no assured methodology exists for forecasting power needs in space, useful insight can likely be drawn from terrestrial experience. From this experience, then, projections to space can be made. As a starting point in this analysis, the average annual per capita power usage was obtained from reference 1, by dividing the average annual per capita energy usage by the number of hours in one year (8760). Power was chosen for comparison as that is a more familiar quantity in space power systems even though energy is the unifying quantity. The energy data in reference 1 include oil, gas, coal, nuclear, hydro, biomass, solar, etc. Figure 2 shows these data rounded to the nearest integer. Each point represents a single country and the different shaped points represent the seven world geographical divisions. There is virtually no change in these data from 1985 to 1986 or to 1987, except the world average energy usage is increasing at about a 3% annual rate. Interestingly, the demand for electricity by developing countries is increasing about 7% annually. Three broad regions of per capita power usage can be seen. One peaks at about 300 Watts/inhabitant (W/H) and I have chosen to term this value SURVIVAL. Many African countries are typical of this power usage. A second
area centers around 2000 W/l (which is also the world average) and that will be termed SELF-
SUFFICIENT. Many countries in Europe, North
and South America are typical of these levels of power usage. Finally there is a grouping of INDUSTRIAL-
IZED nations clustered around 7000 W/l. Some coun-
tries in this category are the United States,
USSR, Japan, Australia, and West Germany. There are a few small countries with extensive energy resources (e.g. Qatar, Bahrain) that have power usages of 20-30 W/l but these have been ignored in establishing the 7
KW/l value. A variety of interesting socio-
logical implications arise from inspection of these data: however the purpose of this paper is to relate these data to human endeavors in space. The choice of human endeavors was made to emphasize that human expansion into the universe is a primary objective. Obviously, robotic exploration is a necessary precursor and support element but these power needs will not be covered. Figure 1 shows the average terrestrial per capita power usage for the three categories. In order to link these data to space, three different space station satellite were studied. The first two, the U.S. Space Station Skylab and the USSR Space Station Mir use open loop life support systems. This means air, food, and water supplies must be replenished and wastes are not recycled. The approximate power required to maintain human life for both these satellites is 1-1.5 KW/l. These satellites are placed in the SURVIVAL category because while some useful work was done, the primary objective was human survival. In long duration (up to a year) space flight. The primary power demand associated with human survival comes from the life support infrastructure. Space Station Freedom represents a partially closed life support system with some regeneration and recycling of wastes but resupply is still required. The per capita power requirement jumps to 3.5 KW/l for this case. This point is also placed in the SURVIVAL category for the same reason as above. The third step in ensuring human survival in space is to fully close the life support system. Thus foodstuffs are being produced and consumed, wastes are being recycled and breathable atmosphere is being regenerated. The power demand for this case jumps to 10-12 KW/l (2). It is clear that the demands of simply living in the space environment and doing minimal work requires a

substantial increase (almost hundred-fold) in power/
energy that is absent on earth for obvious reasons. It is important to also note that the energy used to transport astronauts and their supplies to orbit is not included in these figures. These requirements are substantial. Projection of these data to the SELF SUFFICIENT category suggests that 5-15 KW/l is not un-
reasonable. Thus rudimentary lunar base for 6 people with a fully closed life support system would ap-
pear to require up to 100 KW just to perform rudimentary work. Full industrialization will likely drive power demands to the megawatt class.

3. LAUNCH COSTS
Launch costs play a very important role in the utilization of space and strongly affect the commercial
viability of space enterprises. It is helpful to
examine present U.S. launch costs and their implica-
tions for future power systems. Figure 4 depicts
the cost in 1980 $ U.S. of delivering 1 kg of mass to various locations in the solar system. Commercial
and non-commercial U.S. launch services are shown. The Advanced Launch System (ALS) was not included. These numbers assume that the full launch mass capability of the vehicle is being used. The commercial
data points are based on published values and the non-commercial points are a mixture of published costs and projections. The solid line is a reasonable smoothed average and the cross hatch represent an estimated boundary. Typical values are:
LEO 7-9 $/kg, GEO 25-35 $/kg, Moon 80-100
$/kg and Mars 500-800 $/kg. These present
costs may place limits on our power needs in space. Projections for the future are made in a

4. POWER SYSTEM TRANSPORTATION COSTS
In order to project the costs of delivering power to orbit, a 100 KW baseline system was chosen. Such a system is believed typical of a fully closed life support system serving 4-6 astronauts with sufficient additional power for scientific enterprise. Light/dark cycles were included in sizing solar based power systems. Figure 5 depicts transportation costs for some representative systems. The 50A photovoltaic system uses 80 W/kg silicon-be-
able substrate solar arrays and 20 W/kg IPV nickel-

Figure 2 1985 Average Power Usage Per Capita

Figure 3 Inhabitant Power Requirements

ORIGINAL PAGE IS OF POOR QUALITY
hydrogen batteries. The SP-100 Nuclear System is 30 W/kg and the advanced systems line is based on an 80 W/kg SP-100 class nuclear system. The dramatic cost increase in the solar - based lunar power system is caused by the 14-day long night period. This puts extreme demand in the storage system. 100% power availability at night was also assumed. Life support requirements would not decrease during the dark period so full power delivery was felt to be a reasonable assumption. It is seen that launch costs exceed 1 B $ U.S. for power systems on Mars or for solar based power systems on the Moon. These large costs can be ameliorated by two approaches - increase in power system specific power (W/kg) and/or reduction in launch costs.

5. COST REDUCTION STRATEGIES

5.1 Technology Improvements

There can be major improvements in power system specific power (W/kg) through advanced technology. Table 1 lists advanced technologies that are reasonable candidates for future missions. Using the 1988 launch costs shown previously. Figure 6 depicts the impact that advanced technologies can have on lunar and Martian missions at the 100 kW level. Regenerative fuel cells at 1000 Wh/kg with lightweight solar arrays make a dramatic thirty-fold reduction in launch costs for lunar missions. However their cost remains about ten times greater than nuclear-based systems that use lunar mass for shielding (as assumed here). Were a full 4-pl shield to be used for the nuclear system, transportation costs for the solar would still be a factor of about 3 greater.

Nuclear systems will have preponderant mass advantage over solar based systems where long periods of darkness are present. On Mars, the night is about 12 hours duration. Figure 6 also shows that advanced photovoltaics with regenerative fuel cell storage offer a ten-fold decrease in launch costs over SOA PV and H2 batteries. The launch cost for this system is about 50% greater than for the SP-100 with native shielding and may be up to one half the cost of a fully 4-pl shielded system, even with advanced dynamic conversion systems.

5.2 Launch Cost Reductions

While it is difficult to assess what the future cost of launching payloads to orbit will be, reasonable first-order extrapolations can be made. Five general factors impact launch costs - vehicle size, launch rate, production volume, quality and operations. A sixth factor - advanced technology also has an impact but is more difficult to quantify because it is system specific. With these considerations, Figure 7 represents the trend in LEO launch costs. It can be seen that the STS derivative "Shuttle C" with payloads exceeding 50,000 kg could reduce launch costs to about one half present values. Boosting launch rate to 6 or 8 per year with commensurate production volume and high quality can reduce the cost almost another factor of two. A new launch system such as the Advanced Launch System (ALS) with payload approaching 100,000 kg will likely include new technologies that could effect another two fold reduction. While all these factors may not be achieved, it is reasonable to expect a five fold reduction in launch costs by the year 2000.

Figure 4 1988 Cost of Delivering 1 kg Payload to Orbit

Figure 5 Cost of Delivering 100 kW of Usable Power
through increased vehicle size, launch rate, production volume, quality, improved operations and new launch vehicle technologies. Overall it appears that cost of power system transportation will drop by a factor of at least 100-1000 over the next decade. This coupled with another 10 fold decrease in cost of space power systems through advanced technologies will ensure an abundance of cost effective energy for humankind's expansion into the solar system. This will begin the process that permits humankind to move from survival to self sufficiency and ultimately industrialization of the final frontier. As it has on earth, power remains the critical element that must be provided to unleash human potential.

REFERENCES
2. A. Friedlander. SAIC, private communication

Figure 6 Impact of Power Technology Advances on Transportation Costs

Figure 7 LEO Launch Cost Trends

<table>
<thead>
<tr>
<th>TABLE 1: POWER SYSTEM TECHNOLOGY OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOA</td>
</tr>
<tr>
<td>PV</td>
</tr>
<tr>
<td>SOG</td>
</tr>
<tr>
<td>BATTERY</td>
</tr>
<tr>
<td>NUCLEAR</td>
</tr>
</tbody>
</table>

Figure 8 Impact of Power Technology Advances on Transportation Costs
The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories—survival, self sufficiency and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs.