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* 

The Evolution of Energetic Particles and the Emitted 

Radiation in Solar Flares 

The evolution of accelerated particle distributions in a magnetized plasma and 

the resulting radiation are calculated, and the results are applied to solar flares. 

To study the radiation on timescales of order the particle lifetimes, the evolution 

of the particle distribution is determined by use of the Fokker-Planck equation 

including Coulomb collisions and magnetic mirroring. Analytic solutions to the 

equation are obtained for limiting cases such as homogeneous injection in a ho- 

mogeneous plasma, and for small pitch angle. These analytic solutions are then 

used to place constraints on flare parameters such as density, loop length, and 

the injection timescale for very short impulsive solar flares. For general particle 

distributions in arbitrary magnetic field and background density, the equation is 

solved numerically. Over longer timescales, the variation with X-ray spectral in- 

dex of the observed ratio of microwave to hard X-ray peak fluxes is shown to be 

consistent with the nonthermal thick target beam model, while multithermal and 

thin target models have difficulty matching the observations. The relative timing 

of microwaves and X-rays during individual flares is then investigated. The ob- 

servation that the microwaves are observed to peak - 2 s later than hard X-rays 

is interpreted as being due to an excess of microwave flux above that predicted 

by the simple thick target model. We discuss a number of possible sources for 

this excess microwave flux including a flattening in the electron spectrum above 

hard X-ray energies, thermal synchrotron emission, and trapping of electrons by 

converging magnetic field. Over shorter timescales, the Fokker-Planck equation is 

solved numerically to calculate the temporal evolution of microwaves and X-rays 

from nonthermal thick target models. It is shown that magnetic trapping will 

not account for the observed correlation of microwaves - 2 5  seconds behind X- 

rays in flares with rapid time variation, and thus higher energy electrons must be 

accelerated later than lower energy electrons. 
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CHAPTER 1. INTRODUCTION 

The general goal of this research is to see what can be learned about astro- 

physical objects from the time dependence of their emission. Many astrophysical 

objects display transient behavior and as we shall see, much information is con- 

tained in the temporal structure of the emitted radiation. Such a study is par- 

ticularly warranted in light of the development of new detectors with higher time 

resolution. 

The general problem which must be addressed is how a distribution of accel- 

erated particles evolves in a magnetized plasma, and given that, how the resulting 

radiation signature evolves. The situation of a magnetized plasma with a nonther- 

mal population of energetic particles is very common in astrophysics, occuring 

in such diverse areas as solar flares, cosmic rays, astrophysical jets, neutron star 

atmospheres, planetary and stellar magnetospheres etc. 

This thesis will concentrate on the temporal evolution of the emission from 

solar flares, since there is a large amount of observational data with good time 

resolution. Solar flares are large, explosive releases of energy on the surface of the 

sun. The total energy released in a large flare can be greater than ergs, a large 

fraction of which is in the form of energetic particles. Electrons and protons can 

be accelerated to energies exceeding 10 MeV and 1 GeV respectively. Solar flares 

have been observed for over a century, and although much is known about them, 

the detailed physics is still not well understood (see the review article by Dennis, 

19SS). Among the principle goals of solar flare research is the understanding of 

the acceleration mechanism. Since it is impossible to make in-situ measurements 

of the accelerated particle clistribution, we must rely on observations of the ra- 

diation emitted by the accelerated particles or on the few particles which escape 

to the vicinity of the Earth. One avenue which offers hope of providing a greater 

. 
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understanding of flares is the study of the time dependence of the emission. Flare 

emission is observed to vary over timescales ranging from 5 100 ms to hours. This 

thesis will be concerned mainly with the microwave and hard X-ray emission from 

flares, because they provide the most direct diagnostics of the electrons with en- 

ergies from - 25 keV to - 1 MeV, which constitute the majority of the energy 

budget in accelerated particles. In addition, there is a large amount of data avail- 

able in X-rays and microwaves with high time resolution (see e.g. Kiplinger et al 

1983, Kaufmann et a1 1983). 

It is generally agreed that the bulk of the hard x-ray emission from the im- 

pulsive phase of solar flares is due to thick target bremsstrahlung emission from 

non-thermal electrons. In these models, electrons are accelerated in the corona and 

stream downwards along magnetic field lines towards the chromosphere where they 

lose most of their energy through Coulomb collisions with the background plasma 

particles. The microwave emission on the other hand is due to synchrotron emis- 

sion by the energetic electrons in the magnetic field structure of the flare. Until 

recently, the time resolution of observing instruments has been longer than the 

typical interaction timescale of the electrons. Short timescale variations were 

therefore lost in the time integration of the instruments. Consequently, most of 

the previous calculations of flare emission have assumed steady state conditions 

(e.g. Brown 1973, Leach and Petrosian 1981, McTiernan and Petrosian 1989). In 

order to study the emission on such timescales of order the particle propagation 

and collisional times, we must be able to describe the evolution of the particle 

distribution due to its interaction with the background plasma. 

In the limit where the change in particle momentum due to individual scat- 

terings is small compared to the particle momentum, the evolution of the particle 

distribution can be described by a Fokker-Planck equation. The form of this equa- 

tion is described in chapter 2. We will use the Fokker-Planck equation to calculate 
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the distribution of noiithernial electrons in a magnetized plasma, and from this 

determine the bremsstrahlung and synchrotron emission. 

In chapter 3, analytic solutions to the Fokker-Planck equation are derived. 

These solutions are however only valid in the limiting cases of constant plasma 

density, or beams of particles moving nearly parallel to the magnetic field. We 

apply these solutions to the study of very short timescale X-ray bursts from flares. 

These bursts show spectral softening on timescales of tenths of a second which is 

of order the propagation time for electrons in a magnetic loop. 

In order to describe the evolution of an electron distribution with electrons 

moving at large pitch angles in an arbitrary magnetic field and plasma density 

distribution, we must turn to a numerical solution. In chapter 4 we outline the 

numerical solution of the Fokker-Planck equation. We will use this numerical code 

in chapter 6 to study the relative timing of microwaves and X-rays on timescales - 0.1 s. 

We then turn our attention to the relative strengths of the microwave and 

X-ray emission. Over timescales 21 s which is larger than the collisional and 

propagation times, we need not solve the time dependent kinetic equation, but can 

instead rely upon steady state relations. In chapter 5 ,  we derive relations for the 

steady state emission of microwaves and X-rays from flares, and place constraints 

upon the geometry of the flaring region based upon a statistical study of the peak 

microwave and X-ray emission from flares. These analytic relations will also be 

used in chapter 6 to describe the evolution of X-ray and microwave emission during 

individual flares on timescales of order 1 s. We show that the most likely model 

for X-ray and 

However, 

of this model 

Although the 

microwave emission is the nonthermal thick target model. 

one observation which does not seem to agree with the simplest form 

is the relative timing of the microwave and hard X-ray radiation. 

microwaves and hard X-rays exhibit a very similar time structure, 
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indicating a common origin for both, the microwave time profde seems to lag 

behind the X-ray time profile for most impulsive flares. In chapter 6 we use 

the steady state relations developed in chapter 5 along with the numerical code 

described in chapter 4 to study the relative timing of microwaves and X-rays over 

timescales ranging from tenths of a second to several seconds. From this we place 

constraints upon various solar flare physical parameters and on the acceleration 

mechanism responsible for solar flares. Chapter 7 provides a summary. 
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CHAPTER 2. THE FOKKER-PLANCK EQUATION 

In this chapter we describe the Fokker-Planck equation for the transport and 

evolution of particles in a magnetized plasma. From the solutions to this equation 

the evolution of the emitted bremmstrahlung and synchrotron radiation can be cal- 

culated. Some of the physical processes which affect the particle distribution are 

magnetic mirroring, Coulomb scattering, wave-particle interactions, synchrotron 

emission, and direct electric fields. The physical parameters of the plasma such 

as density and magnetic field strength, and the energy of the particles determine 

which of these mechanisms need be considered (see e.g. Harding, Petrosian, and 

Teegarden 1986, Table 2.1). Some areas which could be studied using this method 

include evolution of radiation spectra from solar flares, development of plasma in- 

stabilities, and particle acceleration (both stochastic and direct). In this chapter, 

we give the general form of the Fokker-Planck equation and the relevent coeffi- 

cients for the above mentioned processes. Analytic and numerical solutions to  this 

equation for a distribution of electrons evolving in a magnetized plasma including 

just Coulomb collisions and magnetic mirroring are presented in chapters 3 and 4. 

2.1 The Equation 

In many astrophysical plasmas, the gyroradius of the particles about the 

magnetic field is many orders of ma.gnitude less than other length scales in the 

problem. Thus, the charged particles are essentially tied to the magnetic field 

lines so that only one spatial variable giving the position along the field line is 

needed. The distribution function in momentum space can then be specified by 

two independent components of momentum, or equivalently by the energy and the 

cosine of the pitch angle of the particle with respect to the magnetic field. The 

particle distribution function f ( E ,  p,  s, t )  is then a function of four variables, the 

particle kinetic energy E in units of m c 2 ,  the pitch angle cosine p,  the position 

. 
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s, and the time t .  In the limit where the change in particle momentum due to 

individual scatterings is much less than the original momentum, we can make use of 

the Fokker-Planck expansion of the Boltzmann collision integral in the continuity 

equation for f (see e.g. Lifshitz and Pitaevskii 1981). The Fokker-Planck equation 

can be written in the form 

where S ( E ,  p, s, t )  is a source term. The coefficients E and ,G are the systematic 

changes in energy and pitch angle cosine due to external forces, radiation, and 

scattering while the diffusion coefficients D arise only due to scattering processes. 

Note that D is defined differently than the usual Fokker-Planck coefficients. 

In this section we give the forms of fi, b,  and D for electrons under the 

influence of Coulomb collisions, plasma wave scattering, synchrotron radiation, 

magnetic field variation, and external forces. These terms are summarized in 

Tables 2.1 and 2.2. Note that all of these terms in some form have been published 

elsewhere. We give them here simply as a useful reference. 

Coulomb Collisions: We assume the background plasma to be fully ionized 

hydrogen with kT/mc2 << E. Here 1nR M 20 is the Coulomb logarithm, n is the 

background particle density, and ro is the classical electron radius. Leach and 

Petrosian (198l), and McTiernan and Petrosian (1989) discuss the effect other 

plasma compositions and of partially ionized plasmas. The DEE and  DE^ terms 

are missing because we assume the background plasma to be cold, so that there is 

no upscattering in energy. 

Bremsstrahlung: For bremsstrahlung emission, the energy of the emitted pho- 

tons is often of order the energy of the electrons, so that the change in particle 

momentum in individual scatterings is comparable to the original momentum. 
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The Fokker-Planck equation is not valid in this case (Blumenthal and Gould 

1970). Instead one must use the full Boltzmann equation to describe such a 

situation. However, the ratio of bremsstrahlung to Coulomb energy loss rates 

is &rem/&,ul w 10-4(lnR/20)EZi, where Zi is the charge of the ions in the 

plasma. In a hydrogen plasma this ratio is less than unity for E 5 lo3.  For such 

energies, however, processes which do not conserve particle number, such as pair 

creation, also become important so that equation (1) is no longer valid. We there- 

fore limit our discussion to E << lo3 and ignore the bremmstrahlung process. 

Magnetic Mirroring: This term arises due to  inhomogeneities in the magnetic 

field B and is calculated using the adiabatic invariance of flux through particle 

orbits (see e.g. Leach and Petrosian 1981). 

Synchrotron: Here we assume classical synchrotron emission so that there are 

no diffusion terms (see e.g. Petrosian 1985). 

Inverse Compton: Inverse Compton scattering is qualitatively similar to syn- 

chrotron emission since synchrotron emission is just scattering off the virtual pho- 

tons of the magnetic field. Apart from geometric factors of order unity and factors 

involving p,  the ratio of energy loss rates due to inverse Compton scattering to 

that due to synchrotron radiation is equal to the ratio of the photon energy den- 

sity to the magnetic field energy density B2/8.1r (see e.g. Melrose 1980). The 

inverse Compton pitch angle diffusion coefficients do not have a simple pitch angle 

dependence, but have energy dependence similar to that of synchrotron emission. 

External Forces: An example of an external force is a direct electric field. 

Since we assume the electrons to be tied to the field lines, only the component of 

the force parallel to the magnetic field FII need be considered. We ignore cross 

field diffusion due to the perpendicular component of the force. 

Plasma Turbulence: The diffusion rates due to the scattering by Alfv&n waves 
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(magnetic fluctuations) and Langmuir waves (electrostatic fluctuations) are given 

in the tables. We do not consider the generation of these waves, but relate the 

changes in the distribution to the spectrum of turbulence present in the plasma. 

We do not give the rates from scattering off of other plasma waves such as whistlers. 

We note, however, that the diffusion coefficients for whistlers have the same energy 

and pitch angle dependence as the Alfvkn wave terms to first order in the phase 

velocity of the wave divided by the particle velocity. The rates tabulated for AlfvCn 

wave turbulence are those found by Schlickeiser (1989a, 1989b) for a cold plasma. 

Here IL(k)dk and IR(k)dk are the energy densities in left and right hand circularly 

polarized Alfvdn waves in wave number interval dk. An important aspect of the 

interaction with AlfvCn waves is that the ratio of the coefficients D,, : D E ,  : DEE 

is (ignoring phase space factors) 1 : V A / V  : where v is the particle velocity 

and v A  is the AlfvCn velocity. Thus, for V A  << z, the pitch angle diffusion is very 

much larger than diffusion in energy. 

The expressions given for Langmuir turbulence assume an isotropic spectrum 

of waves. Here W ( k ) d 3 k  is the differential energy density in Langmuir turbulence 

and E L  is the total energy density with wave number greater than w p / c p .  For 

relativistic and mildly relativistic electrons, diffusion in energy is much larger than 

diffusion in pitch angle. This can lead to stochastic acceleration of the electrons 

when high levels of turbulence exist in the plasma. 

An important physical situation of interest is the propagation and evolution of 

a distribution of accelerated electrons injected into a region of varying density and 

magnetic field, such as a solar flare loop, and undergoing magnetic mirroring and 

Coulomb collisions. These are the dominant processes for electrons of energy - 10 

keV to - 1 MeV, under typical solar flare conditions of rnagnetic field strength 

N 100 to - 1000 Gauss, and plasma densities - lo9  to - 1014 ~ m - ~ .  In this case, 
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we find for the Folclcer-Planck equation (see Leach 1984, Lu and Petrosian 1988) 

Here Xo(s) E cm)/n(s)lnh where n ( s )  is the background plasma density. 

The source term S(E ,  p,  s, t )  takes into account the acceleration mechanism where 

the acceleration timescale is assumed to be much faster than the magnetic mirror- 

ing or collision timescales. Given the distribution of electrons in space s, energy 

E ,  and pitch angle cosine p,  at some initial time t o ,  and given a source S, the 

distribution is found at any later time t .  In the next two chapters we outline the 

analytic and numerical solution of equation (2.2). 



Table 2.1 - Energy and Pitch Angle Rates of Change 

Process E b 

Coulomb Collisions -4rrincln A/P 0 

Magnetic Mirroring 0 - +Pc( 1 - p2)( d n  B/ds)  

AlfvCn Waves ( l / Y P 2 ) (  1 + P 2 ) D g p  (1/YP2)( 1 + P2)D;yen 

Langmuir Waves (l/rP2)( 1 + P2)D&gmUir 0 
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CHAPTER 3. ANALYTIC SOLUTIONS 

3.1 - Introduction 

In this chapter we develop analytic solutions to the time dependent Fokker- 

Planck equation (2.2), and apply these solutions to the study of short timescale 

hard X-ray bursts from flares. Recent observations from the hard x-ray burst 

spectrometer (HXRBS) on SMM have provided high time resolution spectral 

information on hard x-ray bursts (Kiplinger et a1 1983). Figure 3.1 shows an 

example of a burst with a rise time of - 2 5  s and a decay time of - .4 s reported 

by Kiplinger et al (1984). Over the course of a burst, the spectra show gradual 

softening on timescales of a tenths of a second and shorter (Kiplinger et a1 1984, 

see also Kane and Anderson 1970). Since this time is of the order of the collisional 

timescale for particles, steady state treatments of the problem are not valid. Emslie 

(1983) considered the time dependent problem but did not include the full effect 

of scattering on the distribution of electrons. We therefore make use of equation 

(2.2) to describe the evolution of energetic electrons in a solar flare. 

In section 3.2 we present analytic solutions for the case when the background 

plasma is of constant density, and for the case when the background plasma 

density is spatially varying but the electrons are moving with small pitch angles 

with respect to the magnetic field. In section 3.3 we assume a model for the x- 

ray burst region and use the solutions developed in section 3.2 to calculate the 

bremsstrahlung x-ray spectra produced as a function of time. We then compare 

these time dependent x-ray spectra to the observations, and from this place 

constraints on the length of the coronal ma.gnetic loops and on the characteristics 

of the initial injection spectrum of the electrons. Section 3.4 provides a summary 

of the analytic results. 
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3.2 - Analytic Solutions 

The Fokker-Planck equation (2.2) describing the evolution of a distribution 

f ( E , p , s , t )  of electrons injected into a cold ionized hydrogen plasma with a 

magnetic field of strength B can be written 

This is an extension of the steady state Fokker-Planck equation derived in Leach 

1984, (see also Leach and Petrosian 198l), to which we have added the time 

evolution term (Xo/cp)af /at  and the source term S representing the injected 

particle rate. Here we have defined the dimensionless column depth r as 

d r  ds/& E nds/No, where N o  = cm-2)(lnh)-1. The length scale 

Xo 3 cm)(n,/ ~rn-~)- '( ln A)-', where ne is the background electron number 

density and 1nA x 20 is the Coulomb logarithm. Note that Xo is in general a 

function of the spatial coordinate s. 

From a given distribution f ( E , p , s , t ) ,  it is a straightforward matter to 

evaluate the bremsstrahlung spectrum I(IC, 8, s, t )  as a function of the angle of 

emission 8 with respect to the local magnetic field, and the photon energy IC (in 

units of m,c2)  at each space and time point. However, the high time resolution 

x-ray observations are spatially unresolved and thus correspond to the x-ray flux 

integrated over the entire emission region, which we assume to be a closed magnetic 

loop. The spatially integrated x-ray spectrum in a direction 0 with respect to 

some fixed axis (such as the earth-sun axis) is then 

I ( k ,  t ,  0) = im dE dp LI ncPf(E,  p , t ,  + ( I C ,  0, E ,  p)ds, (3.2) 

where a(IC, 0, E ,  p )  is the bremmstrahlung cross section for emission of photons 

of energy IC in the direction 0 by electons of energy E and pitch angle cosine p. 
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In general, because of the complex geometry of the flaring loop, the angles 8, 0, 

and p are related in a complicated manner which is a function of position. At low 

energies ( I C ,  E << l), a is nearly isotropic so we can take a out of the integrals 

over s and p. As IC and E increase, this approximation becomes less and less valid. 

However, at higher energies most of the emission will come from deeper regions of 

the chromosphere where the magnetic field is approximately straight. In this case 

0 is independent of s so we ca.n again take a out of the integral over s. Then if 

we define an integrated electron flux 

equation (3.2) becomes 

If we integrate equation (3.4) over all directions of emission we obtain the total 

spectrum as a function of time. 

I ( k ,  t )  = NO 1- G( E,  t)a( I C ,  E)dE (3.5) 

Here a ( k ,  E )  is the integrated (over angles) bremsstrahlung cross section. For 

non-relativistic energies the Bethe-Heitler cross section is used. 

8 ~ ? 7 2 e C 2 1 n  (1 + (1 - E/E)1/2 
.( k, E )  = --QTo - 

3 kE 1 - (1 - k/E)I12 (3.7) 

Here Q! is the fine structure constant and T O  is the classical electron radius. 

The spectrum in a particular direction may, however, be different than the total 

spectrum. In general for energies below 100 keV we expect the difference to be 

small (Petrosian 1973), especially if we consider the effect of the photospheric 
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albedo (Bai and Ra.maty 1978, Langer and Petrosian 1977) which tends to 

isotropize the emission. More importantly however, the time evolution of both 

the mean and directional spectra will be similar so that I (  k, t )  will give us a good 

representation of the temporal evolution of the emission in a particular direction. 

For the purposes of this paper we are primarily concerned with the temporal 

evolution of the x-ray spectrum. A more detailed analysis would have to take into 

account the anisotropic emission, the photospheric albedo, and the geometry of 

the loop. Furthermore, we neglect the effects of plasma wave generation by the 

electron beam which could alter the spectral time variations we will consider. 

With the approximations of equations (3.5) and (3.7) it can be shown that 

the logarithmic part of equation (3.7) has negligible effect on the spectra at the 

level of the existing observations (Brown 1971, Petrosian 1973). In this case a 

power law integrated flux F ( E )  0: E-6 will lead to a power law x-ray spectrum 

I( k) oc Jc-~- ' .  As we shall see, for an electron injection spectrum which is a power 

law, the integrated electron flux G(E,  t )  will be an approximate power law so that 

the approximation I ( k ,  t )  oc G(k ,  t ) / k  is valid. Consequently, we shall use the 

electron spectrum G ( E ,  t )  to distinguish between models. We have however tested 

the validity of this approximation by integrating equation (3.5) and found it to be 

within the accuracy needed for this analysis. 

In other astrophysical situations, however, and for higher spatial and spectral 

resolution, knowledge of the spatial and angular dependance of the distribution 

function may be required. We therefore present first some general solutions 

explicitly showing the spatial and angular dependence of the electron distribution. 

1) General 

are constant so 

3.2.2 Hoiiiogeiieous Case 

Solution: Here we assume the plasma density and magnetic field 

that A0 is constant and cllnB/ds = 0. It is then useful to define 
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the dimensionless time variable y, 

ct t 
!I=--=- 

A0 - T' 

Integrating equation (3.1) over T and making use of the fact that there are no 

particles at r = f o o  we obtain 

Here .F is the integral over all r of PSlc. This equation also describes the situation 

where the same distribution of electrons is injected throughout an infinite and 

homogeneous plasma. We first assume instantaneous injection (S oc 6 ( t ) )  so that 

we can neglect the source term for t # 0 and solve the homogeneous equation. 

l/p3r2 so that Defining new variables 4 3 FIB2, d7j PdE, and clpldij 

and 
p = -In(-), 1 E 

2 E + 2  

equation (3.9) for t # 0 becomes 

a4aq 84 d 84 ----- - - [(l - p 2 ) - ] .  
dY dP dP dP dP 

The distribution 4 is now separable and can be written in the form 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

where Pl(p) are the Legendre polynomials, and Zl(y + q )  are functions to 

be determined from the boundary condition of the distribution of electrons at 

injection. 
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In what follows we shall assume that the accelerated (or injected) electron 

flux distribution is separable in pitch angle and energy: 

which is equivalent to the boundary condition F( i j ,p ,y  = 0) = g ( i j ) h ( p ) .  

Equating the flux obtained from equation (3.13) at y = 0 with the boundary 

condition from equation (3.14), and using the orthogonality of the P,(p) we obtain 

(3.15) 

Inserting Zl(ij + y)  back into equation (3.13) gives 

for the distribution of the flux of electrons at t > 0 for a delta function injection 

at t = 0 (as denoted by the S subscript on F ) .  

Note that the factor 

decreases rapidly with increasing 1 and time y so that only a limited number of 

terms need be considered in the sum as y increases. 

As is evident, the distribution scales with time as ij + y. In general, g(Q) 

will be a rapidly decreasing function of 11 such as a power law in energy. We can 

therefore identify y = f j  as the stopping time for electrons of energy parameter 6. 
For non-relativistic particles, i j  % E 3 l 2 ,  so the stopping time will be proportional 

to E3l2.  This is as expected since the scattering cross section decreases as E-2 

while the rate at which the electron travels through the plasma increases as 
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The general solution for an arbitrary injection time profile F ( E , p , t )  = 

g ( i j ) h ( p ) b ( y )  is found by convolving the solution for a delta function injection 

with k(y) 

(3.17) 

2) The Small Pitch Angle Solution: In the limit of small pitch angle (electrons 

moving approximately parallel to the field lines, p x l), the solution can be 

expressed in a more manageable form which involves an integral instead of an 

infinite series. This integral can be performed in closed form in certain cases. In 

addition, this solution can be extended to the inhomogeneous (7 dependent) case 

as described in the next part. 

Let a be the sine of the pitch angle 

1 
a G (1 - p2)T x pitch angle << 1 

To first order in a equation (3.9) becomes 

(3.18) 

(3.19) 

Again we have assumed a delta function in time injection. This equation is 

similar to the spatially homogeneous but time independent equation solved by 

Leach and Petrosian (1981). Following the same procedure, we expand the pitch 

angle dependence in terms of the Bessel functions Jo(wa)  instead of Legendre 

polynomials. The solution is otherwise similar to the solution of equation (3.9). 

L 

For an initial distribution which is gaussian in a,  

h (a )  = (;) e-+;, (3.21) 
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the integrals in equation (3.20) can be solved to yield a pitch angle distribution 

which remains gaussian, but with a dispersion which increases in time. 

(3.22) 

ap = a; + 4[p( q + Y) - p( $1 (3.23) 

The small pitch angle approximation breaks down at non-relativistic energies for 

times y z  E3i2 since electrons of energy E are scattered away from the small pitch 

angle regime in time of order y M E3I2. We have compared the exact solution 

(3.16) and the approximate solution (3.22) for a gaussian pitch angle injection 

with cui << 1. We find them to agree well (within - 20%), for a s . 2 ,  and for 

Y N  < E3I2 when the summation of Legendre Polynomials in equation (3.16) was 

truncated at I = 12. 

The integration over ,u of the exact solution equation (3.16) (or the solution 

(3.22)) is trivial and replaces the series in (3.16) (or the last two terms in 

(3.22)) with unity. Substituting this into equation (3.17) we obtain the general 

integrated time dependent electron spectrum G( E ,  t )  needed for the calculation of 

the bremsstrahlung spectrum. 

G(E, t )  = p2(11) g(?j + y - y')k(y')dy' 
--oo P W  + Y - 9')  

(3.24) 

This result can also be obtained directly by noting that integration of equation 

(3.12) over dp gives zero on the right hand side. Solving the resulting equation 

gives equation (3.24). 

3.2.3 - Inhoinogeneous Case 

There is no analytic solution for the general homogeneous case but turns out 

that in the small pitch angle regime a solution is possible using a method similar 

to that used for the homogeneous case in the small pitch angle limit (albeit a 
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a complicated one). This solution includes the effects of spatial variation of the 

background density and magnetic field (for a distribution integrated over pitch 

angle). Since A0 (or 2’) is now a function of 7, we no longer use the variable y. 

Making the T dependence explicit, the equation to be solved is 

Here we have assumed dln B / d s  = 0. 

I )  Uniform Magnetic Field: With a similar change of variables which led to 

equations (3.10) to (3.12), equation (3.25), valid for small pitch angles, can be 

written as 

(3.26) 

where we have dropped the source term for r # 0. Solutions to this equation take 

the form 

where the function 9 ( w ,  t ,  q, 7) satisfies the equation 

and d, is now defined to be f /P .  The variable is defined such that 

Defining new variables z and z 

1 
2 

X E -(T - ‘?I ) ,  

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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and using the chain rule 
a l a  I d  + -- a~ MX 282 ’  

l a  l a  + -- a 
a~ 2 8 ~  282’  

- = -- 

- = --- 

equation (3.28) becomes 
T d 9  8 9  -- + - = o .  p at ax 

(3.33) 

(3.34) 

(3.35) 

Solutions to this equation take the general form 

(3.37) 

where the functions A, B,  and c x e  determined by the initial conditions. The w 

dependence of Q is suppressed here. We assume a separable initial distribution of 

electron flux injected at T = 0 of the form 

This is equivalent to setting the source term S = g(V)h(a )k ( t )6 (T) / cT(r ) .  Noting 

that at T = 0, x and z are equal to -?q and f q  respectively, from equations 

(3.27), (3.36), and (3.37) we find 

1 

00 

F(T = 0) = p2 1 e w Z ” ( ~ ) A w  ( t  - Q(v, T = O))B,(q) J,(wa)dw (3.39) 

(3.40) 

Next we multiply both sides by Jo(w’cu)ada and integrate over Q using the relation 

Defining 

1 

W 
x ~ o ( u x ) ~ o ( ~ ’ ~ : ) d ~  = -&(W - w‘) .  

00 

H(w)  z 1 Jo(ua)h(o)crdcu, 

(3.41) 

(3.42) 
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we then find 

The function R ( q , r  = 0) must be equal to zero for the solution to be a product 

of a function of t and a function of q. For this integral to be zero for arbitrary 

functions T(T), the limits of integration must be equal. Thus we can identify 

We can rewrite R ( ~ , T )  in a simpler form using the substitution 

I 
T I =  z + x ,  

Reintroducing the T dependence, the flux distribution function becomes 

Integrating this over Clp = acla gives 

1 
p 2 ( v )  y ( q  + 7)k (t - R(q, 7)) J_, fdp = P2(q + 4 VV(E, 7, t )  p 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

where we have made use of equation (3.41) with w‘ = 0. 



2) Non-uniform Magnetic Field: The integrated over pitch angle solution with 

varying magnetic field follows directly from this. Integrating equation (3.1) over 

all p gives 

(3.53) 
xo aw 

cp2 at 

all p gives c 

For small pitch angle we make the approximation 

which is correct to second order in C Y .  We then find that W / p 2 B  then satisfies the 

same differential equation as 9 (equation 3.28). 

We can then immediately write 

B(T)  p2(q)  g(q + T ) k ( t  - R(v, T ) )  (3.56) 
B(' = 0) P2(q + T )  

W ( E ,  7, t )  = 

For the constant magnetic field case we now assume injection at a point, 

S cx 6 ( ~ ) ,  so we can ignore the source term for T # 0. We will handle the solution 

at T = 0 by introducing a boundary condition at T = 0 analagous to equation 

(3.14). We assume an injected particle flux distribution separable in E ,  p, and t 

of cT(T)S(E,  p, t )  = g(q)h(cr)k( t )6(  T ) ,  corresponding to the boundary condition 

at T = 0 of F ( E ,  p , ~  = 0 , t )  = g ( q ) h ( a ) k ( t ) .  For h(a) a gaussian as in equation 

(3.21) the integral over w in equation (3.51) can be performed to yield 

where CY: E CY; +4[p(77+7) -p(17)] similar to equation (3.23). The function Q(i7, T )  

has the simple physical interpretation of being the the time it takes for an electron 

having energy E(' + T - ~ ( s ' ) )  at s' to travel a distance s. This electron ha.s 
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energy E at s but started out with energy E(q + T )  at s = 0. Thus, the whole 

distribution scales with energy as E(q + T ) .  However, since the Fokker-Planck 

equation is a statistical equation and does not follow individual electrons, this does 

not describe what actually happens to a single electron but rather what happens 

to the distribution. For extremely relativistic particles, p M 1, this integral reduces 

to 
ds' s 

Sl(7,T) = 1 - = -. 
C C 

(3.58) 

Thus the solution has a time dependence k ( t  - s / c )  which means that the 

distribution propogates along the field lines with velocity c.  This is just what 

is expected for small pitch angle relativistic particles. We caution here that for 

extremely relativistic particles the equation used by Leach (1984) and here for the 

small pitch angle regime needs corrections (McTiernan and Petrosian 1989). 

The function S l ( q , ~ )  can also be expressed in closed form for the case of 

constant background density, T=constant. The time dependence will then be of 

the form 

w - ( X O / C ) [ i i ( l 7  + T )  - 71(7?)1). (3.59) 

where q(q)  is the function 71 defined in equation (3.10) written as a function of 

q defined in equation (3.30). This assertion can be readily proven by inserting 

equation (3.51) into equation (3.25). Note that just as for the homogeneous case 

the flus integrated over pitch angle can be carried out trivially. This is also possible 

for the case with non-uniform magnetic field as long as the pitch angle remains 

small. The spatial integration, however, cannot be done analytically. 

3.3 - Coinparison With Observations 

Here we present the variation in time of the x-ray spectrum assuming that 

the injected electron flux is a separable function of time, pitch angle, and energy 

as in equation (3.14). Furthermore, as described in section 3.2, for the purposes of 
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this paper we need only to consider the spatially and angularly integrated electron 

spectrum G(E, t ) .  

Figure 3.2 shows G(E,t) for the constant density case (equation 3.24), for a 

gaussian injection time profile k ( t )  = exp( - t 2 / t i ) ,  and an initial energy spectrum 

which is a power law g ( E )  cx The important aspect to note about this 

figure is that the spectrum hardens in time. As was pointed out by previous 

authors (Icane and Anderson 19'70, Petrosian 1973), spectral hardening is expected 

in a constant density background because the stopping time for non-relativistic 

electrons is proportional to E3I2. Again, this assumes the injected electron energy 

spectrum does not change in time. Since the function G(E, t )  becomes flatter in 

time, we can immediately conclude that the electrons are not collisionally stopped 

in the constant density corona. If there is no appreciable magnetic mirroring which 

traps the electrons in the corona so that the majority of electrons only traverse 

down the loop once, then an upper limit can be placed on the integrated column 

density of the loop in the corona from the acceleration region to the transition 

region, Ntr .  The absence of hardening in the spectrum shown in figure 3.3 shows 

that most of the electrons with E? .06 (i.e. 2 3 0  KeV) go through the corona and 

enter the chromosphere. Thus T~~ < q(E = .06) = 3.4 x or 

Ntr E / nds < 1.7 x 1020cm-2 
corona 

(3.60) 

For a coronal density n = 10'0cm-3, this constrains the coronal loop length to be 

less than 1.7 x lOl0cm (not a very stringent limit). 

This observation also places a limit on the convergence of the magnetic field, 

d1nBld.r. This is because a converging field will trap electrons in the uniform 

density corona and produce x-ray spectra which harden in time. Just how small 

dlnl3ld.r must be depends on the pitch a.ngle distribution since the smaller the 

pitch angles, the greater must be the magnetic convergence to trap the particles. 



Our analytic solution assumes constant B field so that for a quantitative limit on 

d n  B / d s ,  one needs numerical solutions of the Fokler-Planck equation. However, 

neglecting collisions in the low density coronal portion of the loop, we can estimate 

that the ratio of the field at the transition region to that at the injection region 

(BtrlBinj) < ai2.  

Another argument against the electrons being stopped in the corona is that 

the decay time of the burst is too long for reasonable values of density. In order 

to produce a burst decay time of order a few tenths of a second in a uniform 

background, the background density must exceed 1012cm-3. This would be an 

extremely high coronal density. In any case, this would also produce a spectrum 

which hardens markedly over the course of the burst, contrary to the observations. 

It is possible to produce a spectrum which softens in time with a background 

density which increases with distance from the injection point. This is because 

the higher energy electrons penetrate to the denser plasma faster and can thus 

decay faster than the lower energy electrons (cf Petrosian 1973). This condition 

requires the solution of the inhomogeneous equation. We can analyze this situation 

if the injected electrons have small pitch angles. The x-ray spectral evolution was 

calculated using equation (3.57) for a model where the input spectrum integrated 

over pitch angles was 

The density n was taken to be 

(3.61) 

(3.62) 

with st  the half length of the loop above the transition region and so the scale 

height below the transition region. Figure 3.3 shows the spectral evolution of 

G(k,t)/k for no = 1010cm-3, so = 10 cm, s t  = 1.4 x 109cm, S = 4.2, and 7 



t o  = .13 sec. For comparison, measured spectra from the HXRBS (from Kiplinger 

et al 1984) are also plotted on the same graphs. The calculated spectra are time 

integrated over 128 ms intervals in order to match the time resolution of the 

HXRBS. 

The value of no does not have much effect on the spectra because st and no 

are chosen so that few electrons are stopped in the corona, T ( s ~ )  << 7. We also find 

that the degree of spectral softening is not very sensitive to the injected spectral 

index S for 3 < S < 5. 

Values of the scale height SO greater than - 3 x 10'cm did not lead to 

rapid enough spectral softening to be consistent with the observations. Once so is 

reduced much below this value the degree of spectral softening remains essentially 

unchanged because the electrons are stopped rapidly compared to the 128 ms 

integration time. 

In general, the larger st is, the higher the degree of spectral softening. This 

is because the faster electrons can become more spread out from the slower 

electrons before they reach the exponentially increasing density region. Values of 

st smaller than - 5 x 10' cm did not lead to sufficiently rapid spectral softening, 

therefore ruling out a simple exponential density profile ( s t  = 0). Thus the coronal 

loop length must be longer than - 5 x 108cm, which excludes the possibility of 

acceleration occurring close to or below the transition region. We therefore have 

for the density profile parameters the following constraints: so < 3 x 10' cm and 

st > 5 x IO8 cm. 

The value of the injection width t o  has a large effect on the spectral evolution. 

The larger the value of t o ,  the smaller the amount of spectral softening because 

new particles are still being injected as the earlier particles reach the higher density 

regions. Small values of t o  (5.1 s) lead to very rapid spectral softening and rapid 

decay of the burst. With the assumption of small pitch angles, injection widths 
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t o  5.1 s are incompatible with observations. If the injection width is less than N .1 s 

then large pitch angle electrons (sin-' a ~ 3 0 ° )  are needed to spread the pulse out 

before it reaches the high density region (s > s t ) .  On the other hand, t o  2 . 2  s 

leads to a burst decay which is too slow. Thus, this model requires .1 s z t o  5 . 2  s. 

Figure 3.4 compares the calculated spectra with the data at point 4 for values 

of these parameters ( t o ,  so, and s t )  outside of the acceptable ranges. The other 

parameters were adjusted so that the calculated spectra fit the data at times 1 

and 2. As is evident, the calculated spectra at point 4 no longer fit the data. 

3.4 - Summary and Discussion 

We have solved the kinetic equation for accelerated particles undergoing 

Coulomb collisions in a background magnetized plasma. For a homogeneous 

plasma we have found an exact analytic solution describing the evolution of 

the distribution of particles in energy and pitch angles (with respect to the 

magnetic field). For an inhomogenous plasma, analytic solutions are possible only 

for particles with small pitch angles (namely, beams collimated along the field 

lines). We then compared the bremsstrahlung x-ray spectrum from a short burst 

of accelerated electrons with the high temporal resolution hard x-ray solar flare 

spectra observed by HXRBS on SMM. 

The observed softening with time of the x-ray spectra rules out the 

homogeneous solution, which means that electrons do not lose most of their 

energy in the uniform density coronal portion of the flaring loop. Most of the 

x-ray emission then occurs at the base of the loop below the transition region. 

Consequently, the deca.y time and the degree of spectral softening are primarily 

determined by the spread in arrival time of the electron beam at the base of 

the loop. The more the particles are spaced out when they reach the transition 

region, the longer the burst decay time; and the greater the spread in arrival times 



between high and low energy particles, the higher the degree of spectral softening. 

The particles are spread out by a combination of the time of flight difference from 

the acceleration region to the chromosphere, and the initial injection time width. 

The pitch angle, the energy, and the distance from the acceleration region to the 

transition region determine the time of flight to the transition region. Since the 

effect of collisions in the corona is small, the time of flight -over the distance s t  

is s t / c p p .  The difference in time of flight between electrons of different energies 

is therefore proportional to s t .  Thus, smaller st  leads to less spectral softening . 

Therefore, injection of the accelerated particles near or below the transition region 

is ruled out for such bursts. 

Furthermore, the larger the range of pitch angles, the smaller the injection 

time t o  has to be in order to reproduce the observations. The small pitch angle 

assumption basically amounts to ignoring the difference in path length between 

particles of different pitch angles. Thus the time of flight difference from the 

acceleration region to the thick target is determined solely by the difference in 

particle energies. This is why our assumption of small pitch angle requires that 

t o  be greater than .1 s. Otherwise, the decay of the burst would be too short. 

Kiplinger et al(1984) used the non-thermal beam model of Emslie (1983) to model 

the same burst. They assumed uniform pitch angle distribution over some range 

of pitch angles and a delt,a function in time input. Their model contains a range 

of large pitch angle electrons so it can acconiodate a delta function in time input. 

We have found that under the assumption that the pitch angles are small and 

that the injection distribution is seperable in time and energy, the flare parameters 

must satisfy the constraints given in Table 3.1. 

Finally, we can make some order of magnitude arguments to show that 

Let the total burst energy in x- 

If the burst energy is supplied by magnetic reconnection, then 

injection times of this length are reasonable. 

rays be E,. 
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E, = (B2/87i)VE'e. Here B is the magnitude of the magnetic field, and V is 

the volume of the accelerating region. The efficiency with which magnetic energy 

is converted into that of accelerated particles is e and the efficiency with which 

the particle energy is converted into x-rays is Y .  Typically Y is of the order 

(Petrosian 1973). The acceleration timescale will be of order t o  - L/VA 

where L N V1j3 is the characteristic length of the acceleration region and 

O A  = B/(47rp)lj2 is the Alfven velocity. For typical flare parameters, we find 

for the energy in x-rays 

The observed energy in x-rays of the flare shown in figure 3.1 is of order 10'' ergs, 

in agreement with this order of magnitude estimate. 

For a more exact analysis of the high time resolution observations, general 

solutions including spatial inhomogeneities and large pitch angles are needed. This 

will require numerical solutions of the full equation. However, as shown by Leach 

and Petrosian (1981) and here for the homogeneous case, the small pitch angle 

solution is a good representation of the general solution and gives acceptable results 

to much larger pitch angle then expected. 
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TABLE 3.1 - Limits On Model Parameters 

Flare Parameter Constraint 
injection time t o  . Is  < t o  < .2s 

electron spectral index S 4.1 < S < 4.5 

distance to transition region s t  

column depth to transition region N t p  

scale height below transition region so 

st > 5 x I P c m  

N t p  < 1.7 x lo2' cm-2 

so < 3 x lo8 cm 

B field convergence BtrlBinj < ai2  
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Chapter 3 Figure Captioiis 

Figure 3.1: An example of a short timescale hard x-ray burst (27-496 keV) 

reported by Kiplinger et d (1984). The spectra at points 1 through 4 are 

given by the circles in figure 3.3. 

Figure 3.2: Log[G( k, t ) / k ]  representing the expected bremsstrahlung spectrum 

vs photon energy k (equation 3.24) at different times for a homogeneous 

background. The injection spectrum is k ( t )  = exp(-t2/ti) and g(E) oc E-6. 

The injection width is t o  = .05s, the injected spectral index 6 = 4.2, and 

the background density is 10" ~ m - ~ .  The curves from A to G represent 

the spectrum from consecutive 128 ms time intervals. Note the spectral 

hardening with time. 

Figure 3.3: Log[G(k,t)/k] vs k equation (3.52) integrated over r at different 

times. The injection profile is given in equation (3.61) with 6 = 4.2, and t o  = 

.13s. The density profile is given in equation (3.62) with no = 10" ~ m - ~ ,  

SO = lO'cm, and st = 1.4 x 109cm. Curves 1 through 4 are seperated in 

time by 128 ms and correspond to the points 1 through 4 on figure 3.1. The 

circles are the measured spectra from the HXRBS with fl o uncertainties 

(from Kiplinger et a1 1984). 

Figure 3.4: The same as figure 3.3 except we show Graph 4 for values of t o ,  s t ,  

and SO outside of the ranges specified in section 3.4 showing how the graphs 

no longer match the observations. The remaining parameters (which turn 

out to be very close to those in figure 3) were chosen so that graphs 1 and 2 

matched the observations. i) t o  = .OS s; ii) t o  = 2 2  s; iii) st = 3.5 x 10' cm; 

iv) so = 5 x 10' cm 
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CHAPTER 4. NUMERICAL SOLUTIONS 

4.1 - Introduction 

In Chapter 3, a.nalytic solutions were derived for the time dependent kinetic 

equation for electrons undergoing Coulomb collisions in a magnetized plasma. 

However, these solutions are only valid for simplified configurations such as con- 

stant plama density and magnetic field, or electrons moving with small pitch angle 

with respect to the magnetic field. To describe an inhomogeneous plasma and mag- 

netic field with arbitrary electron angular distribution, we must turn to a numerical 

solution of the equation. In this chapter, we describe the numerical solution of the 

equation for a distribution of electrons evolving in a magnetized plasma includ- 

ing just Coulomb collisions and magnetic mirroring since these are the important 

processes for describing the evolution of the hard X-ray and microwave produc- 

ing electrons in solar flares. The numerical solution including all of the terms is 

solved in an analagous manner. In part 4.2, we demonstrate the accuracy of the 

numerical scheme by comparisons with the analytic results of Chapter 3. 

4.2 - Nuiiierical Method 

The problem we are confronted with is an initial value problem. There are a 

variety of techniques available for the numerical solution of such partial differential 

equations. We will use finite differencing, together with the powerful method of 

operator splitting (see Centrella and Wilson 1084, Hawley et a1 1984). Finite 

differencing simply approximates the values of the derivatives of f in equation 

(2.2) evaluated on a fixed grid in E ,  p,  <and s space. Operator splitting allows us 

to break up the right hand side of equation (2.2) into five terms and to deal with 

each term separately when advancing f in time. We therefore proceed as follows. 

Given the value of f at every point on the grid at time t ,  we use the finite difference 

approximations to the derivatives, along with operator splitting to calculate f at 
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every point on the grid at time t + At. The process is then repeated to give f at 

t + 2At  and so on. 

Operator splitting is a method of numerically solving a partial differential 

equation which contains a number of differential operators such as equation (2.2). 

Suppose a partial differential equation consists of k differential operators Di 
h 

d 
at --U(z, t )  = DiU(X, t ) .  

i= 1 

Furthermore, suppose the equations 

d 
at -U(x , t )  = DzU(z , t )  

have the known finite difference solutions 

where Di(At)  is the finite difference operator which advances the function U from 

time t to time t + At for each individual differential operator Di. Then the solution 

of the full equation (4.1) is given by 

U ( z , t  +At )  = D,(At )D, - l (At )  ....Dl( A t ) U ( x , t ) .  (4.4) 

In other words, we operate on U(x,t) with D , ( A t ) ,  then operate on the result of 

this with &(At), and so on for all the finite difference operators D k ( A t ) .  This 

updates U ( z ,  t )  to U ( z ,  t+At). Therefore, we need only to find the finite difference 

solutions for each operator in equation (4.1) to solve it completely. We then apply 

these operators cyclically to advance U ( x ,  t ) .  

We view the right hand side of equation (2.2) as the sum of five distinct 

components; the position operator, the energy operator, the pitch angle scattering 

operator, the magnetic mirroring operator, and the source term. The addition of 

other terms to the equation t,o take into accouiit other physical processes is thus 

straightforward. Next we give the finite difference schemes used to advance each 

term. 
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a) The Position, Energy and, Magnetic Mirror Terms 

The form of the energy, position, and mirror operators is given by 

d d 
- -V(X,  t )  = -A(x)-U(X,  t ) ,  dX at (4.5) 

where A ( x )  is some function of the general variable x .  In addition to the standard 

requirements of accuracy and stability, we seek an explicit scheme to minimize the 

computation time. We use the Lax-Wendroff method, an explicit scheme which is 

second order accurate in time, to update the energy and position terms. 

The method is based upon the Taylor series in time expansion of U .  The time 

derivatives in the expansion are replaced using Equation (4.5) to give 

[ A(x )  'I] . (4.6) 
aU( z, t )  (At)2 a 

U ( x , t + A t >  = U ( x , t ) - A t A ( x )  8 X  + ?A(X)- a f 3 X  f3X  

For the energy and mirroring terms, standard finite difference expressions are then 

used to  replace the derivatives in equation (4.6) giving us the final form for the 

energy or mirroring update. 

where U g  is the value of U ( z m ,  nAt) at time i2At and grid point x,, and Amh112 

are A ( z )  evaluated at the half grid points, (x, + zn2*1)/2. 

We handle the position term sliglitly differently however. Physically, equation 

(4.5) describes a distribution moving with velocity A(z) .  Thus, for for Am > 0, we 

expect the value of U ( x m ,  t + At) to depend only on U ( x ,  t )  for x < z,,, in other 

words on the upwind side. Note however that the approximation to the derivative 

with respect to x evaluated at x, in the second term in equation (4.6) depends 

on U evaluated at both z,-~ and z,,,+~. This makes the approximation accurate 



to second order in A x .  However, it also makes this numerical differencing scheme 

subject to transport errors. It can lead to large oscillations in U ( x )  if U ( x )  is a 

pulse which propagates a distance many times larger than the width of the pulse. 

We therefore approximate the first derivative as 

This is known as upwind differencing. We still however retain the last term in 

equation (4.7), as this term takes the form of a diffusion operator which makes 

this differencing scheme stable. See Smith (1978) for a discussion of the accuracy 

of upwind differencing schemes. 

The Lax-Wendroff scheme is numerically stable provided the familiar Courant- 

Friedrichs-Lewy condition 

is satisfied (see Press et a1 1986). Strictly speaking, this stability criterion is only 

valid for constant A, but we will adopt it here as an estimate for the maximum 

At allowed. We will choose a value of At smaller than this limit by a factor of 4 

to insure stability. 

b) The Diffusive Pitch Angle Term 

The pitch angle operator due to Coulomb scattering has the form of a diffusion 

term. By taking the outside derivative with respect to 1.1 through the diffusion term 

in equation (2.2), the pitch angle terms can be written in the form 

(4.10) 

To update these terms we use the Crank-Nicholson method, an implicit differ- 

encing scheme which is particularly well suited to solving diffusive initial value 

problems. The Crank-Nicholson method is second order accurate in time and is 
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unconditionally stable (see Press et a1 19S6). We average the right hand side at 

times t and t + At and obtain a coupled set of equations for U(x,t  + At) .  

succession to advance f ( E ,  p,  s, t )  in time. 

In many astrophysical situations, electrons have a power law energy distri- 

bution. Therefore, in order to study the energy distribution over the maximum 

number of decades without a prohibitive number of energy grid points, we use a 

logarithmic energy grid. The background plasma density also may vary by many 

orders of magnitude, so again we use varying step sizes in our position grid. The 

position grid has smaller step sizes where the density is higher since the distribu- 

tion evolves more rapidly in these locations. 

(4.11) 

Since the Ui are known, this equation can then be rewritten in the form of a 

tridiagonal matrix equation for U;+'. It is then straightforward to solve this 

tridiagonal system of equations for U:+' using a packaged routine. 

c) Numerical Solution of the Full Equation 

We have developed a computer code which solves equation (2.2) using the 

method outlined above. The main program is broken down into a number of 

subroutines so that modifications can be performed relatively easily. There are 

five subroutines which implement the finite difference operators D;( A t )  for each 

term on the right hand side of equation (2.2). These subroutines are called in 

To run the program, we first specify the ma.gnetic field B(s ) ,  the background 

density n(s ) ,  and the source term S ( E ,  p ,  s, t ) .  The energy, position, and pitch 
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angle grids are then set up and At is chosen to insure stability. At specified 

time intervals, the value of f ( E ,  p,  s, t )  at all grid points is written out to disk so 

that analysis can be performed at a later time. For example, given the electron 

distribution, ma.gnetic field, and density, one can calculate the bremsstahlung 

emission, synchrotron emission, and the growth rate of kinetic plasma inst abilities. 

4.3 - Tests and Coiiiparisoii With Aiialytic Results 

To demonstrate the accuracy of the program we compare the numerical results 

to known analytic solutions for simplified cases. The three situations we check 

are homogeneous injection in space, injection into a converging magnetic field 

configuration with low plasma density,and injection in a small physical region of 

a distribution beamed along a constant magnetic field. In the first example, the 

pitch angle scattering term and the energy loss term are nonzero. In the second 

example, the transport and magnetic mirroring terms dominate, while in the third 

example all but the magnetic mirroring is included. 

a) Homogeneous Injection 

To test the accuracy of the pitch angle scattering term and the energy loss 

term, we inject an electron distribution everywhere in space in a homogeneous 

plasma of density 10l2 cm-3 with a constant magnetic field. The initial electron 

pitch angle distribution is greatest at p = fl ,  goes to zero at p = f . 5  and has 

a local maximum at p = 0, and is a power law in energy, f(E,p,s,t = 0) = 

E-3.5(2p4 - p2 + l /S).  The analytic solution to equation (2.2) for homogeneous 

injection in a homogeneous plasma is given by equation (3.16). Both the ana- 

lytic and the numerical pitch angle distributions have been plotted in Figures 4.1 

through 4.3 for energies 20, 141, aiid 1000 keV at times 0.15 and 0.5 seconds. 

As expected, the lower energy electrons isotropize and lose energy faster than the 

higher energy electrons. Note that the results a.gree to within a few percent even 
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though the value of f decreases by several orders of magnitude from its initial 

value. 

b) Converging Magnetic Field 

The magnetic field configuration in the solar corona and in planetary magne- 

tospheres is often in the form of a loop with larger magnetic field at the footpoints 

than at the apex. The pitch angles of electrons accelerated in the loop therefore 

increase as they move toward the footpoints. Electrons having large enough pitch 

angle are trapped in the loop until they lose their energy or are scattered to lower 

pitch angle and escape. The dynamics of electrons in magnetic loops is essential 

to the study of microwave emission in solar flares and cyclotron maser emission 

from stellar coronae and planetary magnetospheres. 

In order to demonstrate the accuracy of the magnetic converging scheme used 

in our code, we inject electrons impulsively (at t=O) at the apex (s=O) of a mag- 

netic loop containg zero density plasma. The injected spectrum is monoenergetic 

(1 MeV) with a gaussian pitch a.ngle distribution peaked at 40" with a width of 

10". Therefore, no Coulomb energy losses or scattering occurs and the evolution 

of the electron distribution can be determined analytically by following the tra- 

jectories of individual electrons in phase space. We take the magnetic field of the 

loop as 

B ( s )  = Bo@ + (qn - l)s2/L:) (4.12) 

where L,  is the half length of the loop and r ,  = B(L,)/B(O) is the mirror ratio. 

This choice of ma.gnetic field corresponds to the far field of a dipole. For this 

situation the electron distribution a.t later times and positions is related to the 

injected distribution by 

(4.13) 



where p o ( p , s , t )  is the initial pitch angle cosine expressed as a function of the 

pitch angle cosine and position at a later time t of an individual electron orbit. 

An electron injected into the loop at t = 0 with velocity ,f?c and initial pitch angle 

cosine po moves along the loop according to 

The pitch angle cosine at this position is 

where the f depends on the number of bounces made by the electron. From 

equations (4.14) and (4.15) we see that the maximum distance reached is s,,, = 

poLc/d(rm - 1)(1 - p:) ,  and that the bounce period is 

Inverting these equations to find p, in terms of p,  s, and t completes the solution 

for the distribution at later times. 

In Figure 4.4, we show the distribution 

(4.16) 

at different times for the injected distribution described above calculated using 

our numerical code with L,  = lo9 cni and r ,  = 5. Since particles having different 

intial pitch angles travel at different speeds and niirror at different positions the 

initial pulse spreads out in space as it advances. Table 4.1 lists the position and 

the pitch angle at this position deteriiiined using equations (4.14) and (4.15) of 

electrons with initial pitch a.ngles of 30", 40", and 50" for the times shown in Figure 

4.4. ,4t early times, the peak of the pulse corresponds to the spatial position of 

the 40" electrons with the width given by the 10" envelope of the injected pulse. 
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By time t=0.05 seconds a fair fraction of the initial pulse has mirrored and the 

spread is substantial and not synunetric. The mirroring of particles is clearly seen 

in Figure 4.5 where the pitch angle distribution is shown at the position of the 

peaks in Figure 4.4. The pitch angle cosine decreases then goes through zero as 

the electrons are reflected. 

c) Small Pitch Angle Beam Injection 

We now compare our numerical solution with the analytic solution equation 

(3.51). The analytic solution is valid for constant magnetic field and plasma den- 

sity in the limit that the pitch angle is small. A beam of electrons centered at 

s = 108cm is injected with an angular distribution of width a0 = 20" about the 

magnetic field and a power law distribution in energy, f cx E-3.5exp(-a2/ai). 

The magnetic field and plasma density are both constant with the density equal 

to 10l1 ~ m - ~ .  The pulse of electrons propagates down the field spreading in pitch 

angle and losing energy. The distribution, f ( E ,  s, t )  obtained numerically and an- 

alytically, is shown in Figures 4.6 and 4.7 for different energies. The distributions 

are normalized to unity at the peak to provide a close comparison of the two so- 

lutions. The numerical solution propagates slightly slower and has larger spatial 

extent than the analytic solution since the analytic solution assumes p = 1 in 

the transport term which prevents the spatial dispersion of the beam. Numeri- 

cal diffusion also contributes to this spreading. The numerica.1 solution peaks at 

s - p < p >, where < p > is the average pitch angle cosine in the pulse. The 

pitch angle distributions a.t the pealis of the pulses are shown in Figures 4.8 and 

4.9 The higher energy electrons have a narrower distribution because they scat- 

ter less. The agreement is good for pitch angles less than - 20" and moderate 

spreading. The analytic solution lwxmies inaccurate at larger pitch angles and 

high degrees of spreading due to the sinall pitch angle assumption. 



4.4 - Suimnary 

The evolution of an accelerated particle distribution in a magnetized plasma 

can be described using a Fokker-Planck equation. We have outlined a technique 

for numerically solving the time dependent equation, and have written a computer 

code which solves the equation for electrons undergoing both Coulomb collisions 

and magnetic mirroring. Other terms can be added to the equation such as inverse 

Compton, direct electric field, and scattering due to turbulence such as Langmuir 

and AlfvCn waves. The Fokker-Planck terms for these processes are given in chap- 

ter 2. 

In chapter 6 ,  we use this program to investigate the relative timing of mi- 

crowaves and hard X-rays in solar flares. Other possible applications include the 

study of particle acceleration by waves, and the evolution of X-ray spectra in X-ray 

bursts on neutron stars. 
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Chapter 4 Figure Captions 

Figure 4.1. The analytic (lines) and numerical (circles) solutions evaluated at 

E = 20 keV at t = 0.15 s and t = 0.5 s for homogeneous injection in a 

plasma of density 1OI2 ~ m - ~ .  The initial distribution is f ( E ,  p ,  s , t  = 0) = 

,T3.'(2p4 - p2 + 1/8). 

Figure 4.2. Same as Figure 4.1 except E = 141 keV. 

Figure 4.3. Same as Figure 4.1 except E = 1 MeV. 

Figure 4.4. The integrated over p distribution f ( E ,  s, t )  versus position for injec- 

tion into a magnetic trap with magnetic field given by Equation (4.12). The 

initial distribution is monoenergetic ( E  = 1 MeV) and has pitch angle dis- 

tribution exp(-(a - c ~ 1 ) ~ / c r ; )  where a is the electron pitch angle, 01 = 40", 

and a0 = 10". The distribution is given at times k 0 . 0 1 ,  0.03, 0.05, 0.07, 

and 0.09 s. 

Figure 4.5. The pitch angle distribution for injection into a magnetic trap evalu- 

ated at the spatial position of the peaks in Figure 4.4. 

Figure 4.6. Small pitch angle injection into a plasma of density 10" ~ m - ~ .  Elec- 

trons are injected at s = lo8 cin with spectrum E-3.5exp(-a2/ag) with 

(YO = 20". The distribution integrated over p is shown at energy 43 keV and 

at times t =0.01, 0.03, and 0.05 s. 

Figure 4.7. Same as Figure 4.6 except evaluated at E = 1 MeV and times t =0.01, 

and 0.03 s. 

Figure 4.8. The pitch angle distribution evaluated at the spatial position of the 

peak at t =.05 in Figure 4.6. 

Figure 4.9. The pitch angle distribution evaluated at the spatial position of the 

peak at t =.03 in Figure 4.7. 
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Table 4.1 

Electron Trajectories 

 CY^ = 30" Q, = 40" Q, = 50" 

CY I1 S a I' t (sec) S a P S 

0.00 0.00 30.0 0.866 0.00 40.0 0.766 0.00 50.0 0.642 

2.41 33.7 0.832 2.11 44.3 0.716 1.76 54.3 0.554 0.01 

0.03 6.48 55.0 0.574 5.28 69.2 0.355 4.04 80.0 0.1'74 

0.05 8.55 82.0 0.139 5.79 100.6 -0.184 3.49 110.9 -0.35'7 

0.07 7.97 109.9 -0.340 3.38 129.1 -0.631 0.49 129.7 -0.639 

0.09 4.92 135.5 -0.713 -0.72 139.5 -0.760 -2.85 118.1 -0.4'71 

s is in units of 10' cm. 
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Figure 4.2 
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Figure 4.3 
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Figure  4.4 
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Figure 4.5 
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Figure 4.6 
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Figure 4.7 
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Figure 4.8 
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Figure 4.9 
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C H A P T E R  5.  THE MICROWAVE T O  X-RAY RATIO 

5.1 - Introduction 

We now turn our attention to the microwave and X-ray emission from ac- 

celerated electron distributions in flares. In this chapter we derive relations for 

the ratio of microwaves to X-rays produced by a population of electrons in thick 

target, thin target, and multithermal flare models. These calculations take into 

account the variation of the microwave to X-ray ratio with X-ray spectral index. 

We then compare the theoretical results with observed ratios of peak microwave 

and X-ray fluxes for a sample of 51 solar flares with well known spectral index. 

From this we are able to place constra.ints upon the geometry of the flaring region. 

The relations developed in this chapter will also be used in chapter 6 to describe 

the evolution of microwaves and X-rays from flares over timescales longer than the 

transport and collisional timescales. 

In section 5.2 we define the microwave to X-ray ratio R and discuss the contro- 

versy over whether or not a single population of electrons is responsible for both 

emissions. In section 5.3 we describe the three models and derive the electron 

spectrum in each model for a given observed X-ray spectrum. Then in section 5.4 

we derive the resulting synchrotron spectrum from this electron distribution and 

give analytic relations for R. Here we give some new formulae for synchrotron 

emission from semi-relativist ic electrons. Finally, in section 5.5 we compare the 

theoretical microwave to X-ray ratios from these three models with that from 

51 observed flares and discuss the implications of this comparison. Section 5.6 

provides a summary of this chapter. 

5.2 - T h e  Microwave t o  X-ray Rat io  

The similarity between the time profiles of the microwaves and X-rays from 

solar flares and the good correlation between their peak fluxes (see e.g. Cornel1 et a1 



1984, and Kai, Kosugi and Nitta 1985) are strong evidences that the two emissions 

are produced by the same or a very closely related population of electrons. 

However, ever since the first simultaneous observations of microwaves and X- 

rays from solar flares (Peterson and Winckler 1959), there has been a controversy 

over the number of non-thermal electrons required to produce the X-ray and the 

microwave burst (see e.g. Takakura and Kai 1966; Holt and- Ramaty 1969; Gary 

and Tang 1984). Several authors (Peterson and Winckler 1959; Schmahl, Kundu, 

and Dennis 1985) have claimed that the number of non-thermal electrons inferred 

from the X-ray burst is about lo3 - lo4 times larger than the number of electrons 

needed for the production of the microwaves in a given flare. More recently, how- 

ever, Gary (1985) and I<ai (1986) showed that the numbers of electrons deduced 

from the two emissions are the same. 

Some of the discrepancy can be attributed to the neglect of self absorption of 

the synchrotron radiation (Holt and Ramaty 1969), when the comparison is carried 

out at low microwave frequency (< 10 GHz). This still leaves the picture unclear 

for optically thin synchrotron emission. The problem with using the optically 

thick flux is that it is very sensitive to the area and spatial geometry of the 

source. On the other hand, the microwave flux in the optically thin regime is 

sensitive to the total number of emitting electrons and less so to the geometry of 

the source. The optically thin microwave flux should therefore be a more reliable 

source of information when trying to determine whether or not a single population 

of electrons is responsible for both the microwaves and X-rays. In this optically 

thin case most of the claims of discrepancy can be attributed to the fact that earlier 

authors had calculated the electron population from the observed X-ray spectrum 

using the thin target brenisstraldung model as opposed to the thick target model 

(Gary 1985). 

The thin target model used by these authors assumes that the high energy 



electrons responsible for the flare emit both bremsstrahlung X-rays and microwave 

synchrotron radiation in the same physical region. Thus, the same electron distri- 

bution is used when calculating both emissions. We would like to stress however 

that in a truly thin target situation the mean free path of the electrons is greater 

than the size of the region where emission takes place, which is very unlikely. 

It is now widely agreed that the accelerated electrons find themselves mostly 

on closed magnetic loops so that they are eventually stopped in the chromospheric 

plasma. If the electrons are accelerated at substantially high altitudes above the 

chromosphere, they essentially travel freely along the field lines in the corona. 

Once in or below the high density chromosphere they quickly (in a short distance) 

lose their energy. For the same reason most of the bremsstrahlung X-rays are also 

emitted from the latter region while the microwaves come primarily from coronal 

regions where the electrons spend most of their lifetime. This will not be true if the 

magnetic field increases as rapidly as the density below the chromosphere. This, 

however, is not believed to be the case. Thus, while the same electron population 

is responsible for both X-rays and microwaves, the emissions come from different 

physical regions. The microwaves are produced in the coronal portion of the loop 

by a spectrum of electrons which is essentially the same as that of the accelerated 

electrons, while X-rays originate in the chromosphere from the harder thick target 

electron spectrum. 

Multithermal models have also been proposed to esplain the hard X-ray emis- 

sion from flares (Brown 1974, Dulk and Dennis 1982). Here the X-rays come from 

thermal bremsstrahlung from a multitemperature plasma with temperatures above 

lo8 I<. The microwave emission is then tlie sum of many thermal synchrotron spec- 

tra. Dulk and Dennis (1982) have used such a. model to explain hard X-rays and 

the optically thick part of the microwave spectrum. 

In this chapter we compare tlie observed microwave and X-ray fluxes of flares 
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with the theoretical expectations of the t h e e  models mentioned above in order to 

clarify the situation and set constraints on the model parameters such as plasma 

density, magnetic field and flaring loop sizes. We make this comparison for a 

statistical sample of flares instead of a single flare, which has been carried out 

frequently in the past. More importantly however, instead of just considering 

the correlation between X-ray and microwave fluxes, we consider the observed 

variation of the ratio of the fluxes with the X-ray spectral index, and compare this 

with the predictions of the models. It turns out that the inclusion of the spectral 

index information provides strong constraints because, as we shall see, the ratio 

of the fluxes is a sensitive function of the spectral index. 

The X-ray observations we use will be the peak fluxes (all fluxes will be as 

measured at  the source, not at the Earth) and spectral indices of flares with a well 

defined power law spectrum: 

where k is the photon energy and F,(bo) is the total photon energy flux above 

energy LO. Throughout this paper, all energies are given in units of m,c2 unless 

otherwise specified. 

For each model, we invert the photon spectrum to obtain the spectrum of 

the bremsstrahlung radiating electrons. This iiiversion depends upon the angular 

distribution of the photons and the electrons. In the absence of knowledge of the 

spatial or angular distribution of the X-rays, me must assume an angular distribu- 

tion for the radiating electrons. For X.0 << 1, the X-ray flux will be approximately 

isotropic. We will also assume that the electron distribution is isotropic. In gen- 

eral, a power law photon flux implies that the effective spectrum of the electrons 

is also a power law. Assuming the sane spectrum extends to higher energies, 

we then calculate the expected optically thin synchrotron radiation at a specified 
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frequency for each model and for various values of the magnetic field B. This ex- 

trapolation needs some scrutiny, especially for low values of B because the energy 

of the electrons producing the microwaves is much larger (possibly relativistic) 

than those (non-relativistic ones) producing the X-rays. We shall return to the 

observational evidence for or a.gainst this assuinptioii and comment on its effects. 

Given the synchrotron flux S(v), we then compute the dimensionless ratio 

and compare it with observations. 

5.3 - Electron Distributioiis 

We believe, and it is widely accepted, that the most likely model for pro- 

duction of the power law impulsive X-ray flux of a flare is the non-thermal thick 

target model. The presence of the magnetic fields and their closed loop structures 

dictate this conclusion. Accelerated non-relativistic or semi-relativistic electrons 

in such a configuration will lose most of their energy via Coulomb collisions in the 

thick target high density chromosphere with a well-defined yield of bremsstrahlung 

X-rays. If the field lines are open to the interplanetary medium, electrons with 

pitch angles directed downward will behave as above. Those electrons directed 

outward will lose some energy due to collisions and radiate X-rays as in a thin 

target model, but escape with most of their energy and with their initial distri- 

bution intact. The thin target X-ra.ys will be dominate only if the majority of 

the accelerated electrons are directed outward. This seems unlikely because i) it 

necessarily implies a much lower X-ray yield and much larger total energy for the 

accelerated electrons, and ii) the numlxr of outgoing electrons observed directly 

near the Earth and that deduced from type I11 bursts is much less than those 

needed for production of the X-rays. 
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Nevertheless, for purposes of comparison we will also consider the thin target 

and thermal models. The thermal models we consider are multitemperature be- 

cause of the power law spectrum of the X-rays. We should note at the outset that 

because there are many parameters in the models, any model can be brought into 

agreement with observations with proper adjustment of these parameters. The 

question is then which set of required parameters are reasonable and acceptable 

based on other observations or theoretical arguments. As we shall see, the thick 

target model implies a more reasonable set of flare plasma parameters than the 

other two models. 

We note here that most of the equations cited below are not new and have been 

in the literature for some time now. But for completeness we present them here 

with the briefest descriptions. We will assume the electrons are non-relativistic in 

describing the X-ray emission. This is an excellent approximation as long as we 

restrict ourselves to X-ray energies less than - 100 keV. 

( a )  Non-thermal Thick Target Models 

Here we assume that the accelerated electrons are injected at the top of a 

symmetric coronal loop at a steady rate (;.e., for a time longer than their lifetime) 

with the flux 

7 (5.3) 
dJ , (E)  = F ~ ( E o ) ( "  - 1)(E/Eo)-6'-1dEs-1 

E; 
where Fe(Eo) is the total energy flux of electrons with energy greater than Eo. 

For the purpose of calculation of spatially unresolved X-rays, it is unimportant 

where the X-rays are emitted. Following Petrosian (1073) we can write for the X- 

ray flux given in equation (5.1) 

where Y ( b 0 )  is the yield of X-rays with energies > bo by electrons with energies 

> Eo. In what follows we set bo = Eo. For the power law distribution of equation 
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where 6' = y the photon spectral index, a is the fine structure constant and 

In11 22 is the Coulomb logarithm (note that our In11 here is defined to be one 

half of the definition used in Petrosiaa 1973). From equations (5.4) and (5.5), we 

find 

which along with equation (5.3) relates the electron spectrum to the observed 

spectral index y and flux F,(EO) of the X-rays. 

Electrons of energy E lose most of their energy after they have traversed 

a column depth N ( E )  = 5 x 1 0 2 2 ( E 2 / ( E  + 1))cm-2 (see Leach and Petrosian 

1981) and emit mainly X-rays of energy k 5 E. We are interested in particles with 

E z E o  = 25 keV which penetrate column depths greater than of order lo2' cm-2. 

If the column depth of the coronal portion of the loop (from the top of the loop 

to the transition region) N,, < 1020cm-2, most of the X-rays will be radiated 

below the transition region. More importantly, however, the microwave producing 

electrons will have much larger energy (even E 2 1 for low fields, see below) and 

therefore will be completely unaffected by collisions in the corona. The spectrum 

of electrons above the transition region ivill then be given by 

(5.7) 

where L is the length of the loop above the transition region and ji is the average 

pitch angle throughout the loop. Below the transition region the flux of the non- 

thermal particles decreases quickly (within a few density scale heights H,) because 

of the rapid increase in plasma density (see e.g., Leach and Petrosian 1981). 



The synchrotron flux could be related to the injected electron flux by calcu- 

lating the thick target synchrotron yield. This, however, requires a knowledge of 

the variation of magnetic field and density along the loop and the geometry of 

the loop. In the absence of such detailed information we make the approxima- 

tion that the total synchrotron flux is due to the electrons in the coronal portion 

of the loop since the number of particles above the transition region will be far 

larger than the number of particles below the transition region. Because the flux 

of particles below the transition region is less than that above it, the synchrotron 

contribution from that region will be less by a factor of - ( H n / L )  << 1. This 

assumes a uniform B field. Although the B field is expected to be higher in the 

chromosphere than in the corona, this increase is not sufficient to affect the above 

inequality. Also, for an isotropic electron distribution, the synchrotron emission 

is peaked in a direction perpendicular to the magnetic field and decreases to zero 

in the direction parallel to the magnetic field. For loops not situated near the 

solar limb, the angle between the line of sight and the local magnetic field, and 

therefore the microwave emissivity is greatest at the top of the loop and smallest 

at the base of the loop. Consequently, we will ignore the synchrotron emission 

below the transition region and we use the distribution given in equation (7) to 

calculate the synchrotron emission from this model. 

( b )  Non-thermal Thin Target Models 

In a thin target model the X-rays and microwaves are both produced by 

electrons of instantaneous energy spectrum f( E) .  We will assume an isotropic 

electron momentum distribution. Using the well known thin target formula (see 

e.g. Brown 1971, Lin and Hudson 197G) one can relate the electron spectrum to the 

observed X-ray spectrum of equation (5.1). However, we follow the same procedure 

used in Petrosian (1973, equation 29) to calculate the thick target spectrum since 
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this approximation leads to a simpler analytic expression without loss of much 

accuracy. From this we find for the thin target case in the non-relativistic limit 

where r0 is the classical electron radius and no is the background plasma density. In 

this model the same distribution of electrons also produces the microwave radiation 

via synchrotron emission in a magnetic field of strength B. It should be noted that 

these thin target calculations are also applicable to thick target situations where 

the electrons lose energy in the same region where they emit both the microwaves 

and X-rays. 

(c) Thermal Models 

As mentioned above, a single temperature plasma does not give rise to a 

power law bremsstrahlung spectrum. However, as shown by Brown (1974), a 

multi-temperature plasma can produce a power law bremsstrahlung spectrum if 

the emission measure distribution n2 (T,)V(T,)dT, has a power law dependence 

on temperature parameter T, G kgT/m,c2. Here n and V are the density and 

volume of a plasma element of temperature T and kg is the Boltzmann constant. 

By integration of the thermal bremsstrahlung spectum over all temperature it 

can be shown that the X-ray spectrum of equation (5.1) can be produced by an 

emission measure distribution 

where I? is the gamma function. The total electron energy spectrum is then the 

sum of many Maxwell-Boltzmann distributions weighted by the product nV. 

(5.10) 



It is clear that some additional assumption is needed in order to relate the elec- 

tron distribution to the observed X-ray spectrum. Two common assumptions are 

constant pressure n(T,) = noEo/T, (Brown 1974) or constant density n(T,) = no 

(Dulk and Dennis 1982). Note that in the constant pressure case n.0 is the density 

at temperature T, = Eo. n o i n  equations (5.9) and (5.10) we then obtain 

7 (5.11) 

with the (+) sign for the constant density case and the (-) sign for the constant 

pressure case. 

In summary, the total electron distribution inferred from the X-ray spectrum 

of equation (5.1) in the three models can be written as 

where 

and 

y + 3/2 thick target 

y - 1 f 1/2 
thin target 
thermal 

(5.12) 

(5.13) 

Note that for the thick target case we have used the non-relativistic approximation 

,B = (2E)lj2. We will discuss the validity of this and other approximations in 

the next sections when we calculate the expected microwave emission from these 

models and compare them with observations. 

5.4 - Microwave Einissioii 

In evaluating the microwave spectrum the non-relativistic assumptions used 

so far are no longer applicable. The simple and well known ultra-relativistic syn- 

chrotron emissivity formula are also not accurate for the semi-relativistic regime 
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we are concerned with here. We will make use of expressions derived by Petrosian 

(1981) for these energy ranges. In that paper various approximate expressions with 

varied complexity and accuracy are given for the synchrotron emissivity. These ap- 

proximations are valid for high harmonics, i.e. at frequencies v >> Vb = eB/2rmec. 

The most accurate result is obtained when the integration over the particle ener- 

gies equation (P.8) is carried out numerically (equations preceeded by P refer to 

Petrosian 1981). We have compared the results of this integration with the de- 

tailed numerical evaluations using the sums over Bessel functions (cf. e.g. Bekefi 

1966). We find excellent agreement. 

The integration can also be carried out analytically using the method of steep- 

est descent, leading to equation (P.11). This expression requires the solution of a 

transcendental equation and is too complicated for our purposes here. However, 

for high harmonics (v >> Vb) an approximation similar to the ultra-relativistic 

approximation is possible. With this approximation, the synchrotron flux in the 

optically thin regime in mec2 s-l Hz-' from an isotropic electron distribution f ( E )  

is given by 

where 8 is the angle between the magnetic field and the line of sight, y = E + 
1 is the Lorentz factor, and E1 is the energy of the electrons with the largest 

contribution to the emission at frequency v. The function X depends upon the 

electron distribution and the harmonic number, but for the power law distribution 

we will consider, it takes on a particularly simple form. Equation (P.34) evaluates 

the flux for a power law electron spectrum of spectral index S in the limit of high 

harmonics and relativistic electrons. However, it does not yield a very accurate 

expression at moderate harmonics, especially for steep spectra (62 5 )  such as are 

encountered in the present work. The principle error introduced in equation (P.34) 

GS 



is in assuming that (71 - 1) = El >> 1 when substituting into equation (5.15). 

We have found that simply by not making this assumption when substituting into 

f(E1) in equation (5.15) but otherwise using (P.34), we obtain surprisingly good 

results in this intermediate regime. We therefore set 

4v 
and, X = (1 + 6)-'12, 2 

y1 = 346sine (5.16) 

in which case we find for the power law electron distribution of equation (5.12) 

Figure 5.1 shows a comparison of this expression with the numerically inte- 

grated emissivity equation (P.8). As can be seen (5.17) provides a satisfactory 

approximation. However, for steep spectra and at large B field such that V / V b 6  

approaches unity, this approximation overestimates the emissivity. Because many 

authors have used and continue to use the empirical fits to the synchrotron emis- 

sivity by Dulk and Marsh (1982) we also plot the ratio of their expression to the 

numerical values. It is evident that even though their empirical expression pro- 

vides a satisfactory approximation within the range of parameters tested by them, 

outside this range at low V/Vb and steep spectra it diverges away from the correct 

value faster than our result. The main purpose of figure (5.1) is to indicate that 

caution is needed when using either the simplest analytic formula of Petrosian or 

the empirical fits of Dulk and Marsh (1982). 

Now finally the ratio R as defined in equation (5.2) becomes 

(5.18) 

where h(7)  and S are as given in equations (5.13) and (5.14) and 

-112 v B 4v 112 

- 1 = 9.0 ( 17 GHz )'I2 [ (-) 100 G SsinO] - 1. (5.19) 



We will use a single value of 6' when comparing expression (5.18) to the observa- 

tions. However, in reality the angle 6' will vary with position along the loop unless 

the magnetic field is straight. Thus, the value of 6' we use will correspond to an av- 

erage angle weighted by the emissivity at each point on the loop. Therefore there 

will be some 6 dependence to 6 which depends upon the geometry and orientation 

of the loop. We will not however include this dependence since the geometry of 

the loop is unknown and since the variation of the synchrotron flux due to the 

explicit dependence on S is much greater. 

5.5 - Coinparisoil W i t h  Observatioiis 

We have analyzed a sample of 53 flares with observations in both hard X- 

rays and microwaves for which the X-ray spectral index is known. The flares 

were observed in X-rays by the Hard X-ray Burst Spectrometer (HXRBS) aboard 

the SMM satellite (Dennis et al 1985). From the HXRBS observations we ob- 

tain the integrated hard X-ray flux at distance D at the Earth, F2(25 keV)/4aD2 

above 25 keV, and the photon spectral index y (which were kindly provided by 

Brian Dennis). The microwave observations were made at 17 GHz by Nobeyama 

observatory (Kosugi and Shiomi 1983). These flares are all the flares for which 

we had the X-ray spectral index and which also appeared in the listing of mi- 

crowave flares observed at Nobeyania. These data are summarized in Table 

5.1. Included in this table is the SMM flare number, the integrated X-ray flux 

F2(25 keV)/4aD2 in ergs s-l cni-2, the microwave flux S( 17 GHz)/4aD2 in SFU= 

1O-l '  ergs s-l cm-2 Hz-', and the value of the ratio R. We have plotted the ratio 

R for these flares versus the spectral index y in Figure 5.2. We have excluded from 

this and following figures two of the flares with very steep spectra (y > 9) such 

that a power law spectrum is questionable. On the same graph we have plotted 

the theoretical curves of R for magnetic field strengths of 350, 450, 550, and 650 
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G for the nonthermal thick target model with a loop length L = 2 x lo9 cm at a 

viewing angle of 6 = 70". We have assumed isotropic injection in the downward 

hemisphere so that p = 0.5. From VLA imaging observations (Schmahl, Kundu, 

and Dennis 1985) and from theoretical arguments (Lu and Petrosian 1988), a loop 

length of order lo9  cm is a reasonable value for L. As can be seen, the thick tar- 

get model explains the data very well with these parameters for a small range of 

magnetic field strengths between 350 and 650 Gauss. Note though that the data 

could also be explained with a single value of magnetic field (- 550G) but with 

varying loop length and viewing angle. 

For comparison, in figure 5.2 we have also plotted R where we have numeri- 

cally integrated equation (P.8) for the distribution given in equation (5.7). Note 

that R actually increases with y at large y and large B. This is because for 

very steep spectra the X-ray yield decreases rapidly with y since many of the 

bremsstrahlung photons will be emitted at energies below Eo. On the other hand 

for large S and B ,  the synchrotron flux becomes less dependent upon 6 because 

more of the emission comes from lower harmonics. 

We can see the effect of having replaced a factor of ,L3 in equation (5.7) by 

(2E)'I2 when calculating the electron distribution in the loop for the thick target 

model. We underestimate the value of R in equation (5.18) when the characteristic 

energy of the microwave emitting electrons El becomes relativistic. As is evident 

from equation (5.19), the value of El increases with decreasing B and y; El x 1.3 

at B = 400 G and y = 3. We therefore make an error of a factor of - 1.5 in p. As 

can be seen in figure 5.2, the analytic espression underestimates R at low values 

of spectral index. This error however, decreases for larger B and steeper spectra. 

At steeper spectra, the error is clue to the analytic approximation to the 

synchrotron emissivity we have used. -4s can be seen from figure 5.1 and figure 

5.2, our approximation overestimates the emissivity at large B and steep spectra. 
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At 650 G and S = 8, corresponding to y = 6.5, the analytic expression is too 

large by a factor of 4. However, for our purposes the analytic expression will 

suffice. As can be seen from figure 5.2, the analytic expression equation (5.18) 

provides a satisfactory approximation to R. The errors introduced are within the 

uncertainties associated with the loop length, the viewing angle, and the magnetic 

field. 

In figure 5.3, along with the sa.me observations we show the theoretical values 

of R for the thin target case with density 1x0 = 10l1 ~ m - ~ .  The curves of R for 

the multithermal constant density case are almost identical to those of the thin 

target case. This is because the thin target model and the multithermal constant 

density model both describe the same physical situation. Both models have a 

population of electrons emitting bremsstrahlung radiation in a constant density 

plasma. Not surprisingly then, they result in similar values for R. The slight 

difference in the two expressions is due to approximations made in integrating 

over the bremsstrahlung cross section in the calculation of the thin target X-ray 

spectrum. As can be seen, a large range of magnetic field strengths is required, 

ranging from less than 50 G to more than 400 G. Thus the field strengths must 

vary by an order of magnitude in order to match the observations. A problem 

with this large range of magnetic fields is that the observed values of R vary over 

only two orders of magnitude. There is a lack of flares with extremely high (> lo),  
or extremely low (< values of R which would be expected for flares with 

high field and flat spectra or for flares with low field and steep spectra. Another 

serious problem is the high density which must be assumed in order to match the 

observations. The thin target assumption breaks down for no = 10l1 cm-3 for 

source size of order lo9  cm. A more realistic density would be of order lo9 ~ m - ~ ,  

but this would lead to very large values of R which would be inconsistent with the 

observations, as earlier authors had found. 
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In figure 5.4 we plot R for the multithermal constant pressure model with 

no = nT,/Eo = 3.44 x 10f0cm-3. Tl is  corresponds to a gas pressure of 1.38 x 

IO3 dynes cm-2. Again, as in the thin target case, a large range of magnetic fields 

is required to match the observations. The constant pressure multithermal model 

however leads to even higher values of R than the thin target model for reasonable 

parameters. Note that a magnetic field of order 200 G is needed in order to 

magnetically confine such a plasma. Clearly there is a problem since the predicted 

field strength for some flares is less than 50 G. 

5.6 - Suniinary 

We therefore conclude that the observed microwave to X-ray ratios of solar 

flares are consistent with a single population of electrons producing both emissions. 

The thick target model with a reasonable set of flare parameters (350 G 5 B 5 650 G 

and L M 2 x lo9 cm) explains the data quite well. The thin target and thermal 

models, however, have more difficulty in explaining the observations. A more rigid 

criteria for inclusion of flares in the sample such as limiting it to short, impulsive 

flares may lead to a smaller dispersion in parameters. 

We will now examine the assumptions used arriving at these results. First of 

all we have assumed that the power law spectrum observed in X-rays extends to 

higher energies. There is some evidence from observations of gamma-rays (photon 

energies from 300 keV to 1 MeV) that the bremsstrahlung spectrum flattens at 

higher energies (Vestrand et a1 1987) perhaps indicating a flattening of the electron 

energy spectrum. An even more complicated spectrum which again flattens at 

higher energies has been reported by Schmahl, Kundu, and Dennis (1985). Thus, 

the assumption of a single power law electron spectrum may be suspect. If the 

spectrum does flatten such that there are more electrons at higher energies than 

expected from the X-ray observations, the value of magnetic field required to 
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match the observations decreases. This is acceptable for the thick target model 

but presents a further problem for the thin target and thermal models. However 

as pointed out above, for the thick target model the value of the critical energy 

El rarely exceeds 500 KeV. Thus, the above mentioned changes in the electron 

spectral index will not have a large effect so that the thick target result remains 

accurate to the degree discussed earlier. 

Another assumption we have made is that the synchrotron emission is opti- 

cally thin. Since we do not have microwave spectral information we cannot be 

certain that the observed emission is optically thin for each of the flares, but 

the large majority of them probably are optically thin at 17 GHz since typical 

microwave bursts have turnover frequencies of order 10 GHz. 

However from theoretical considerations, the optically thin assumption sets a 

lower limit to the area A of the microwave emitting region. Using the well known 

relativistic approximation for the optically thick part of the synchrotron spectrum 

it can be shown that 

(5.20) 

For example, an observed burst of S( 17 GHz)/4nD2 = 500 SFU, with an X-ray 

spectral index of 4 and an assumed magnetic field of 550 G, leads to the condition 

that the area be greater than 3.5 x 1017 cm2, which is a smaller area than estimates 

of the cross sections of flaring loops. Consequently, we feel the emission at 17 GHz 

will be optically thin for the majority of flares in table 1. 

Finally we have assumed that no substantial trapping occurs in the loop in 

the thick target model. The effect of t rqping would be to increase the number of 

particles in the loop and thus increase the microwave flux. The electrons in the 

loop emit microwaves and X-rays as in the thin target model since both emissions 

come from the same physical region. Thus a substantial amount of trapping the 

will give a value of R higher than that calculated for the thick target model with 
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no trapping. This would mean that the value of magnetic field needed to match 

the observations will be smaller. 
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Chapter  5 Figure Captions 

Figure 5.1 - The ratio of the analytic emissivity equation (5.17) at v=17GHz and 

at a viewing angle of 8 = 60" to the numerically calculated emissivity equa- 

tion (P.8) for B=350, 500, and 650 G (dash-dot lines). Also for comparison 

purposes the ratio of the empirical expression of Dullc and Marsh (1982) to 

(P.8) is also plotted (dashed lines). For clarity, the curves for B=500 G and 

350 G have been shifted upwards by factors of 10 and 100 respectively. 

Figure 5.2 - The microwave to X-ray ratio R versus X-ray spectral index y for the 

observed flares from Table 5.1 (squares) and theoretical curves (solid lines) 

for the thick target model, equation (5.18). The loop length L = 2 x lo9 cm, 

ji = 0.5, and the viewing angle 8 = 70". The four curves are for B=650, 550, 

450, and 350 G, from top to bottom. For comparison we also plot R (dashed 

lines) for the same parameters where we have numerically integrated (P.8) 

for the distribution in equation (5.7). 

Figure 5.3 - Same as figure 5.2 for the isotropic thin target model, equation (5.18). 

The density no = 10" cm-3 and 8 = 70". The curves are for B=450, 350, 

250, 150, and 50 G, from top to bottom. 

Figure 5.4 - Same as figure 5.2 for the multithermal constant pressure model, 

equation (5.18). The parameter n o  = 3.44 x 1010cm-3, corresponding to 

the product of density and temperature nT = lo1' cm-3 "I< or a constant 

pressure of 1.38 x l o3  dynes cm-2. The viewing angle 8 = 70". The curves 

are for 400, 250, 150, and 50 G, from top to bottom. 



Table 5.1: Flare X-ray and Microwave Data 

Y R Flare F,(25 keV) Fu (SFU) 

40 
58 
77 
85 
127 
150 
160 
165 
187 
261 
386 
428 
458 
466 
459 
634 
(551 
679 
683 
688 
716 
76 1 
766 
841 
842 
85 1 
879 
1210 
1215 
1220 
1266 
1372 
1424 
1466 
1504 
1533 
1534 
1541 
1559 
1563 
1565 
1624 
1636 
1656 
1696 
1895 
2061 
2104 
2203 
2028 
2062 
3485 
3503 

1.2 x 10-5 
1.3 x 
8.3 x lo-' 
1.0 x 10-6 
5.4 x 10-6 

5.5 x 10-7 

1.3 x 10-5 

5.0 x 10-7 

1.1 x 10-5 
3.1 x 10-5 
9.2 x 10-5 
5.6 x 10-7 - 7.7 x 10-6 
2.6 x 10-5 
1.2 x 10-4 

6.3 x 10-7 
9.8 x 10-7 

5.2 x 10-7 
1.6 x 10-5 
6.7 x 
4.2 x 10-5 
5.4 x 10-6 
9.3 x 10-6 
8.4 x 10-7 
9.0 x 10-7 
5.8 x 10-7 
1.3 x 10-5 
2.1 x 10-6 

3.2 x 10-5 

2.9 x 10-4 
4.8 x 10-7 

1.0 x 10-6 
1.9 x 10-6 
3.5 x 10-6 
1.2 x 10-6 
2.2 x 10-6  
2.6 x 

6.1 x 

5.1 x 

1.6 x 

6.9 x 
8.4 x lo-' 

5.0 x 

4.2 x 

7.0 x 

2.9 x 
4.2 x 

4.0 x 

3.2 x 10-5 
1.0 x 10-5 
9.9 x 10-6 
1.9 x 10-5 
6.5 x 10-7 

145 
53 
203 
49 
330 
208 
42 
73 
45 
19 
36 
36 
168 
124 
275 
940 
28. 
51 
549 
953 
33 
31 
46 
66 
57 
174 
47 
526 
36 
130 
39 
31 
35 
249 
77 
214 
3420 
36 
50 
2490 
18 
61 
37 
55 
1 68 
25 
33 
779 
2065 
294 
> 660 
1920 
53 
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4.4 
3.3 
3.4 
4.5 
3.9 
4.4 
3.8 
8.0 
6.9 
6.0 
4.0 
5.7 
2.7 
4.8 
4.3 
4.2 
5.3 
3.2 
3.4 
2.8 
5.4 
4.3 
3.3 
5.0 
4.1 
4.9 
4.5 
4.6 
6.2 
3.8 
3.7 
4.1 
5.5 
4.4 
4.8 
3.7 
3.9 
9.4 
10.2 
4.8 
8.0 
5.4 
8.1 
6.3 
6.0 
3.7 
2.9 
3.9 
3.5 
4.7 
3.7 
3.3 
4.1 

2.09 x 10-2 
6.94 x lo-' 
4.15 x 
8.33 x lo-' 
1.04 x lo-' 
5.80 x lo-' 
1.30 x lo-' 
2.43 x 
5.88 x 10-3 
2.02 x 10-2 
1.22 x lo-' 
8.87 x 10-3 
3.40 x 
1.92 x 
1.51 x 
1.73 x 
8.50 x lo-? 
1.13 x 
3.59 x 10-2 
1.35 x 
1.12 x 10-2 
8.3G x 
7.97 x 
2.67 x IO-? 
1.87 x lo-' 
1.85 x 
1.19 x 10-2 
2.13 x 10-2 
1.13 x 10-2 
2.38 x 
7.89 x 
5.85 x lo-? 
1.03 x lo-' 
3.26 x IO-' 
6.24 x 
5.20 x 
1.82 x 10-1 
2.11 x 10-2 
2.02 x 10-2 
1.46 x 
6.38 x 
2.60 x 
6.29 x 
4.91 x 
8.16 x 
3.54 x 10-2 
2.55 x 
5.10 x lo-' 
1.10 x lo-' 
5.00 x 
1.13 x lo-' 
1.72 x 10-1 
1.30 x 10-1 
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CHAPTER G - MICROWAVE AND X-RAY TIMING 

6.1 - Iiitroductioii 

We have now developed all the necessaxy tools to analyze the time evolution of 

microwaves and X-rays from flares. In this chapter we make use of the numerical 

Fokker-Planck code developed in chapter 4, and the analytic relations for the 

microwave to X-ray ratio developed in chapter 5 to investigate the relative timing of 

microwaves and X-rays. Although the microwaves and hard X-rays exhibit a very 

similar time structure, indicating a common origin for both, the microwave time 

profile seems to lag behind the X-ray time profile for most impulsive flares. This 

is opposite to what would be naively espected for simple nonthermal thick target 

models. In these models, high energy electrons are accelerated in the corona and 

stream downwards along a closed magnetic loop and are collisionally stopped when 

they reach the transition region. The microwaves are produced by synchrotron 

radiation while hard X-rays are produced by bremsstrahlung radiation primarily 

at the base of the loop where the plasma density is highest. For magnetic field 

strength - 300 - 700 G, the bulk of the microwave emission at 17 GHz is produced 

by electrons with energy E2200 keV, while most of the hard X-rays are produced 

by lower energy electrons ( E 5 1 0 0  1ieV). Thus, assuming all the electrons are 

energized at the same time, the microwaves would start to be produced as soon 

as the electrons are accelerated, while the X-rays would be produced about 0.1 

seconds later when the electrons reach the base of the loop (length 1 - lo9 cm). 

In addition, higher energy electrons are expected to lose energy more quickly since 

they propagate to higher density regions faster, as was shown in chapter 3 (cf 

Petrosian 1973). 

One commonly suggested 

crowaves is magnetic trapping, 

meclianisin to explain the observed delay of mi- 

which would trap electrons in a converging mag- 
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netic field in the low density corona (see e.g. Dennis 1988, Cornell et al 1984, 

Kauffman et a1 1983). The higher energy electrons responsible for the microwaves 

have a longer lifetime in the constant density trap, thus making the microwave 

emission last longer than the X-ray emission, and delaying the microwave peak 

time. Of course, the microwave emission could by delayed simply by accelerating 

the higher energy electrons later, or with greater pitch angle than the lower energy 

electrons primarily responsible for the hard X-rays. 

There are actually two different sets of observations and two different types 

of microwave delays which must be explained. In the first set of observations, 

cross correlations of the X-rays and microwaves from flares which show rapid time 

variation have a maximum at microwaves lagging X-rays by - 0.25 seconds (see 

Cornell et al 1984, Kaufmann et a1 1983). In the second set of observations, 

the peak flux time for simple impulsive spikes is observed to  occur about 1 to 

3 seconds earlier in X-rays than in microwaves (see Starr et al 1988). While 

these two observations may be related, they occur on different timescales, thus 

requiring different approaches. Since the timescale of the first problem is of order 

the collisional time for the electrons, a time dependent formulation is needed. The 

timescales in the second problem are much larger so that a steady state approach 

can be used. In attacking the f i s t  problem, we make use of the numerical code 

described in chapter 4 which solves the time dependent Fokker-Planck equation. 

We calculate the evolution of distributions of electrons in various solar flare models, 

and from this determine the expected microwave a.nd X-ray emission. These results 

are presented in section 6.2. The second problem is dealt with in section 6.3 using 

the results of chapter 5 for steady state emission. Finally we provide a summary 

in section 6.4. 
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6.2 - Shor t  Tiiiiescale Correlations 

Observations with time resolution compasable to the collisional time or the 

time taken for accelerated electrons to reach the higher density chromosphere have 

become available only recently. An example of this is the HXRBS observation of 

spectral softening of the hard X-ray spectrum during the course of short timescale 

impulsive spikes (Kiplinger et a1 1983). We have analyzed -this phenomenon in 

chapter 3. Here we treat the relative timing of microwaves and X-rays, which is 

related to  the emission by electrons with now widely seperated energies. 

KauEman et a1 1983 have found for one flare that the microwaves at 22 GHz 

lag the X-ray photon flux at energies above 28 keV by about 200 to 300 ms. 

The microwaves from this flare have a rise and fall time of order 1 second and 

have smaller amplitude variations superimposed on the main pulse with timescale 

sO.2 s. The X-rays have the same general time profile but also show much faster 

variation on timescales down to the 50 ms time resolution of the detector. A 

similar lag of microwaves behind X-rays is found when both emission profiles are 

filtered to eliminate the slowly varying component of the flare. Cornell et a1 1984 

report similar findings for a flare observed at 17 GHz in microwaves. 

The structure of the magnetic field plays a more significant role in the emission 

of microwaves than the X-rays. In particular the field convergence and possible 

trapping of the higher energy electrons responsible for the microwave emission are 

important in determining the evolution of the microwave emission. Such a config- 

uration requires a numerical solution of the transport equation for the electrons. 

In this section we describe results from such numerical solutions. We make use of 

the numerical Fokker-Planck code described in chapter 4 to calculate the evolution 

of distributions of electrons injected into va.rious solar loop models. The resulting 

microwave and hard X-ray tiiiie profiles are then determined. In particular, we 

investigate what effect magnetic trapping has on these time profiles, and whether 
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or not it is a viable mechanism for delaying the microwave flux behind the X-ray 

flux. As was mentioned earlier, the microwave emission can be delayed simply by 

injecting the higher energy electrons later than the lower energy electrons. The 

question we would like to address is whether trapping alone can account for the 

observed microwave delay for a simple injection with all electrons accelerated at 

the same location, at the same time, and with the same pitch angle distribution. 

For each model, we specify the magnetic field, plasma density, and injection 

spectrum and time profile, then numerically calculate the evolution of the electron 

distribution using the Fokker-Planck code. The electrons change pitch angle and 

lose energy due to Coulomb collisions and magnetic mirroring so that the electron 

distribution evolves according to equation 2.2. This means we ignore effects due to 

reverse currents and plasma waves such as Langmuir turbulence. Given the elec- 

tron distribution, the X-ray flux is determined by integrating over the isotropic 

bremsstrahlung cross section. The assumption of isotropic emission is reasonable 

because the effect of forward beaming of the bremsstrahlung photons is not se- 

vere at low energies, and because photospheric backscatter tends to isotropize the 

emission (see chapter 3). The synchrotron flux is calculated following the method 

of Petrosian 1981. The integral over electron pitch angles of the product of the 

electron distribution and the synchrotron emissivity is evaluated analytically using 

the method of steepest descent. This is a good approxiniation since the emissivity 

is a very sharply peaked function of electron pitch angle for harmonic number 

ulva > 10 which is the regime we are concerned with. For electron distributions 

which do not vary rapidly in pitch angle, the synchrotron flux in a direction at 

angle 0 with respect to the magnetic field, due to electrons of a given energy is 

dominated by electrons with pitch angle cosine 

M Acos6 (6.1) 

c/? is the electron velocity. Since most of the emission comes from electrons with 



p x 1, the emission will be dependant on the number of electrons with pitch angle 

close to the viewing angle 0. The integration over electron energies (Petrosian 1981, 

equation 11) is done numerically, which gives higher accuracy than the analytic 

expressions. 

We assume a model where electrons a,re accelerated high in a coronal loop. 

The loop is semicircular and symmetric about the loop top (s = 0), with the 

field being perpendicular to the chromosphere at the bases (s < -lo9 cm or s > 

lo9 cm). The viewing direction is specified by polar angles IC, and 4 (see figure 

6.2.1). Since the angle the viewing direction makes with the magnetic field varies 

with position on the loop, the spatial distribution of the emitted microwaves and 

the time profile of the spatially integrated microwave flux will be dependant on 

viewing direction. For 4 = go", the viewing angle with respect to the magnetic 

field is 8 = 90" at all points on the loop for loops on the limb (IC, = go"), while for 

loops at the center of the disk (II, = 0") the viewing direction is perpendicular to 

the magnetic field at  the loop top but parallel to the field at the bases. 

The coronal density is 1010cm-3 for 0 < s < 7.5 x 10' cm. Collisions in 

the corona are therefore relatively unimportant when there is no trapping. The 

density then rises exponentially with scale height h. The total column depth from 

the top of the loop to the end of the grid is 1.5 x cm-', which is sufficient 

to stop the electrons of energy below 350 lieV which are responsible for nearly all 

of the hard X-rays. Since we end the spatiad grid at a particular value of column 

depth, the maximum density on the grid increases with decreasing density scale 

height h. Higher energy electrons responsible for the microwaves can penetrate to 

larger depth. But since they emit most of the microwave radiation in the corona, 

we allow those electrons which reach the end of the spatial grid to simply run 

off the end, effectively being stopped instantaneously. We end the spatial grid 

at this point because the time step size is set by the maximum value of density 



on the grid, so that to continue the grid further would make the computing time 

prohibitively long without significant gain in accuracy. The spatial grid has 76 

grid points spaced approximately equally in position s. The energy grid has 11 

grid points spaced logarithmically from 25 keV up to 2 MeV, and the pitch angle 

grid has 29 grid points equally spaced in pitch angle cosine p. 

A. Cons tan t  Magne t i c  Field 

We first investigate models with constant magnetic field strength. Since there 

is no magnetic convergence and the effect of collisions within the corona is small, 

an electron accelerated with some initial pitch angle will maintain that pitch angle 

as it traverses the loop. We inject electrons at rate S at the top of the loop with 

a power law energy distribution and a Gaussian distribution in pitch angle a of 

width cy0 (see equation 2 of Paper I). 

The results we present are not sensitive to the spectral index S or to the shape of 

h(s )  as long as its width is much less than the loop length. Consequently, in what 

follows we use 6 = 4.5 and h( s) = 6( s). 

There are two factors which determine when the microwave emission will be 

peaked. First, synchrotron emission is generally greater in directions closer to per- 

pendicular to the field. Also, as mentioned before, the emission in a given viewing 

direction is dominated by electrons of pitch angle cosine p = pmax. Qualitatively 

then the microwave emission will be at a maximum when the combination of these 

two factors is greatest, i.e. when the electrons reach the position on the loop 

such that the viewing angle 19 M 90' and the number of electrons at p = pmax(s) 

is maximized. For highly anisotropic electron distributions the second factor is 

dominant while for fairly isotropic distrilmtions the first factor is more important. 



In Figure 6.2.2 we show the X-ray asd microwave emission at viewing direction 

1c, = 60" and q5 = go", from a model with a constant magnetic field of 500 G, 

Q ( t )  = b( t ) ,  and cy0 = 90". In Figure 6.2.3 we show the emission at II, = 60" 

and q5 = 0". In this model we assume a density scale height h = 1.5 x lo8 cm, so 

that the maximum spatial grid point is at s = 2.1 x lo9 cm, where the density is 

l O I 4  ~ m - ~ .  We choose this fairly long value of density scale height to shorten the 

computing time necessary. The X-ray emission in any case is fairly insensitive to 

the scale height h because the X-ray emitting electrons are stopped quickly in the 

rising density plasma. 

As can be seen, the X-ray emission peaks at t M .1 s which is approximately 

the propagation time for the electrons to reach the high density footpoints. The 

microwave emission however is geatest at t = 0 for q5 = go", while at q5 = 0" the 

emission peaks just after t = 0. The microwave emission then decreases due to 

the increase in angle between the viewing direction and the magnetic field as the 

electrons move towards the footpoint. 

For a more realistic shorter value of the density scale height, the X-ray peak 

will shift to  slightly earlier time but by an insignificant amount. The microwave 

emission will also be unaffected because most of the microwaves are emitted in 

thke corona. Thus as expected, the simple thick target model with no magnetic 

field convergence and delta function in time injection has a microwave time profile 

which leads the X-ray time profile. The microwave to X-ray ratio R for continuous 

injection of an electron spectrum of equa.tion ( 6 . 2 )  can be ca.lculated by integrating 

over time the microwaves and X-ra.ys from the delta function in time injection. 

Note that this will give a lower limit, to R because the microwave flux had not 

completely decayed away at t = 0.G s n h n  the simulation was ended. The spectral 

index of the integrated X-rays is 3.9 and the steady state ratio R > 0.13 at 4 = 90" 

and R > 0.052 at 4 = 0". 
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For an arbitrary injection time profile Q ( t ) ,  the microwave and X-ray time 

profiles will simply be the curves in figures 6.2.2 or 6.2.3 convolved with Q(t) .  

This has the effect of delaying the microwaves because the microwave decay time 

is longer than the X-ray decay time. However, in order to have X-ray or microwave 

emission which varies on times of order 0.2 s, Q ( t )  must also vary on timescales 

of this order. For Q ( t )  which does vary on this timescale, the-X-rays will still lead 

the microwaves. 

B. Converging Magnetic Field 

Next we investigate models with converging magnetic field. Another factor 

must now be considered in determining the time of maximum synchrotron emis- 

sion, namely that synchrotron emission is a strongly increasing function of mag- 

netic field strength. The X-ray emission however is not sensitive to the degree of 

convergence of the magnetic field. This is due to the fact that most of the X-rays 

at the peak are produced by electrons with small pitch angle which are relatively 

unaffected by the magnetic field convergence. 

In Figure 6.2.4 we show the emission from a model where the magnetic field 

increases exponentially with scale height 2 x log cm up to a mirror ratio of 1.5. 

The field strength is 360 G at the top of the loop and increases to 540 G at the 

footpoints, then remains constant below that. The injected electron distribution 

is identical to that for the model with no convergence, i.e. Q ( t )  = 6 ( t )  and 

cy0 = 90". The magnetic field convergence traps electrons with initial pitch angle 

greater than 55", or 59% of the injected electrons. Here the peak in microwaves 

occurs 0.1 s after the X-rays. This delay is due to the fact that almost all the 

X-rays at the peak are produced by the electrons with small pitch angle which 

escape directly to the footpoint, while the microwaves are primarily due to the 

higher pitch angle electrons which propagate along the field slower. The peak 



in the microwaves occurs when the high pitch angle electrons mirror and begin 

moving back upwards. The synchrotron emission is greater at this point both 

because the magnetic field is strongest at the bases and because the emission in 

the upwards direction is dominated by electrons moving in the upwards direction. 

Although the lower energy electrons have smaller velocity, the higher pitch angle 

of the microwave producing electrons allows them to propagate down the loop 

slower. Making the magnetic field increase further does not push the microwave 

peak further back because this only serves to mirror back the lower pitch angle 

electrons which propagate down the loop faster, and which do not contribute much 

to the microwave emission anyway. 

We end the simulation at t = 1.2 s because the computing time becomes pro- 

hibitive. However, at this point, the microwave emission due to trapped electrons 

in the loop has not yet decayed away because the microwave producing electrons 

have lifetimes of many seconds in the low density coronal plasma. The steady 

state value of R is increased greatly by trapping of electrons. For the model run 

shown in figure 6.2.4, we have R > .15 at = 90". For an injection which varies 

on the timescale of seconds, the value of R will be given by this steady state value. 

Thus, for a given observed value of R, the inferred magnetic field will be lower for 

a model with trapping. 

In figure (6.2.5) we show the emission for the same model but with an extended 

injection Q ( t )  = exp(-((t - .3)/.2)2). In this case we see that the microwaves lag 

the X-rays by 0.15 s, which is still smaller than the observed delay. Thus, for 

magnetic convergence which occurs in the corona, the delay of microwaves is not 

large enough to match observations. 

We have found however that it. is possible to produce a larger microwave delay 

although we must assume an unrealistic model to do so. In this model the magnetic 

convergence occurs both in the corona and below the transition region. The density 
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scale height h must be large enough so that the microwave producing electrons 

( E  - 500 keV) can penetrate to substantially greater depths before mirroring 

back than the X-ray producing electrons with E N 100 keV. In figure 6.2.6 we 

show the microwave and X-ray emission from a model with h = 1.5 x 10' cm, and 

magnetic field which increases exponentially with scale height 5 x 10' cm from 400 

G at the top of the loop. However at other viewing directions the microwave time 

profile looks considerably different. In fact at II, = 60°, 4 = 60°, the microwave 

flux is as large at t = 0 as it is at t = 0.3 s (see figure 6.2.7). For more realistic 

shorter density scale height h, the microwave delay is reduced because less of the 

microwave producing electrons are able to penetrate deep enough to mirror back 

without being collisionally stopped. 

In figure 6.2.8 we show the microwave emission from a model where the con- 

vergence occurs below the transition region, as opposed to  in the corona. We 

assume a magnetic field which is proportional to the 0.2 power of the density, and 

a more realistic value for the density scale height h = 5 x lo7 cm. The magnetic 

field is constant at 400 G from 0 < s < 7.5 x 10' cm. The field then rises as the 

0.2 power of the density ( in other words with scale height 2.5 x 10' cm) until it 

reaches 600 G. The field is constant below that. To reduce the computing time 

the minimum energy grid point was set at 100 keV, which does not allow us to 

calculate the X-ray emission. The X-ray peak will occur at t x 0.1 s as before 

since the stopping time once the electroiis reach the footpoint is short compared 

to the time of flight through the corona. In this case the microwaves again do not 

lag the X-rays by long enough to match observations. In fact the microwave delay 

is even less than for the case where the convergence all occurred in the corona (see 

figure 6.2.4). This is because the the tiiiie it takes for electrons of initial pitch 

angle cosine po to mirror back is essentially L/c,Bpo where L is the half length of 

the loop. If the convergence takes place throughout the loop the then the electrons 
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spend more time at higher pitch angle so the time it takes to mirror back is longer 

than the L/cppo (see e.g. equation 4.14). 

Thus, the peak time of the microwaves does indeed lag behind that of the X- 

rays in a converging magnetic field. This delay is caused by the fact that the time 

it takes for the high pitch angle, high energy electrons to mirror back upwards can 

exceed the time it takes for the low energy, low pitch angle electrons to propagate 

to the footpoint. In order to match the observed .25 s delay, we must assume a 

fairly slowly rising density in the tra.nsition region, a slowly rising magnetic field 

so that electrons with high pitch angles can mirror at depths - 5 x lo8 cm below 

where the X-rays are produced, and a long loop length. However, this 0.25 s delay 

will not be observed in all directions, and will also be strongly dependent on the 

geometry of the loop (we have assumed a semicircular loop). 

We can however simply inject the higher energy electrons slightly later than 

lower energy electrons to delay the microwave peak. In figure 6.2.9 we show the 

emission with Q ( t )  = e~p(-((t+.l-.3P)/.07)~) and a0 = 45", in other words with 

higher energy electrons accelerated later. The peak injection time for electrons of 

energy 50 keV is at t = .033 s while the peak injection time for electrons of energy 

500 keV is at t = .16 s. The ma.gnetic field converges by a factor of 1.3 in the 

corona. The X-rays now lead the microwaves by - 0.3 s. Note that the difference 

in injection times of the microwave and X-ray producing electrons is comparable 

to the width of the injected pulse itself. 

Since we only have observations of two individual flares we cannot be sure 

that this observed delay of microwaves behind X-rays by - 0.25 s occurs in all, or 

even most flares with short timescale varia.tions. If it does, it is hard to see how 

magnetic trapping can account for all of the observed delay because it is difficult 

to produce delays of this magiiitude and because of the fact that the delay is very 

dependent on viewing direction. More likely then is the explanation that at least 



some of the delay is due to later acceleration of higher energy electrons since this 

would not be as dependent on viewing direction or loop geometry. 

6.3 - Longer Timescale Correlations 

Our discussions in the previous section were limited to the relative timing 

between the microwave and hard X-ray emission for timescales comparable to the 

transport timescale of the accelerated electrons. We did not consider the relative 

strengths of the two emissions. While the first aspect of the problem is sensitive 

to the geometry of the magnetic field and the pitch angle distribution of the 

electrons, the second aspect depends on the strength of the magnetic field and 

on the injected spectrum of electrons. We now consider the second aspect of the 

problem and investigate the microwave and X-ray emission over times - 1 s which 

is much larger than the transport timescale. Consequently, we need not solve the 

time dependent kinetic equation and can instead rely on steady state solutions. In 

particular, we will use the procedure developed in chapter 5 which dealt with the 

ratio of microwave to X-ray fluxes of impulsive flares. We apply this procedure 

now to the evolution of individual flares. 

Electrons injected into a loop of length - log cm with no trapping have a 

lifetime of a few tenths of a second, which is shorter than the 1 second integration 

time of the observations which we will make use of. We can therefore use the 

analytic relations derived in Lu and Petrosian 1988 for the steady state ratio of 

microwaves to X-rays from the thick target beam and thin target models when 

dealing with microwave delays of order seconds. In chapter 5,  we defined the 

dimensionless ratio of microwaves to X-rays R and it was shown that the observed 

values of R evaluated at the flare peaks were most consistent with the nonthermal 

thick target beam model. The ratio I? for the iiiultithermal model and the thin 

target models is substantially higher, aiicl is a much stronger function of the X- 

ray spectral index than it is for the thick target model. The reason the thick 
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target model has much lower microwave emission is that the microwaves come 

primarily from the loop, before the electron distribution has been substantially 

affected by collisions. Most of the X-rays are emitted at the base of the loop 

where the electron spectrum has been hardened by collisions. The thin target 

and multithermal models, on the other hand, have both microwaves and X-rays 

coming from the same physical region so that the same distribution of electrons is 

used in calculating both emissions. 

In this section we investigate the relative timing of microwaves and X-rays 

from solar flares with well known X-ray spectral indices throughout the course of 

the the flare. These flares were observed in X-rays by the HXRBS instrument 

aboard the SMM spacecraft and simultaneously in microwaves by the 17 GHz 

polarimeter at Nobeyama. Most of these flares have a simple time structure with 

rise and fall times - 10 s. The data are integrated over 1 second bins, which 

is longer than the propagation time down the loop for an electron which is not 

trapped. In figure 6.3.1 we plot the 17 GHz flux and total X-ray flux for a typical 

flare. Note that the microwave peak is dela.yed by - 2 seconds. In only one of the 

6 flares for which we have data for does the X-ray peak occur after the microwave 

peak. 

In figure 6.3.2 we plot for the same flare the observed microwave flux, and the 

expected microwave flux for the thick target model given the observed X-ray flux 

and spectral index (calculated using equation 5.18). Also plotted is the difference 

between the observed microwave flux and the calculated flux. As can be seen, the 

fit on the rising part of the flare is very good, while during the decay phase the 

observed microwave flux is considerably greater than the calculated value. Figure 

6.3.3 is the same as Figure 6.3.2 except that the calculated flux assumes thin target 

emission in a plasma of density 10" ~ r n - ~  with magnetic field strength 100 G. The 

predicted microwaves do not match the observed microwaves nearly as well as the 



thick target model owing to the much stronger dependance on spectral index y. 

Thus, although the microwaves and X-rays match the predictions of the single 

power law nonthermal thick target model very well during the burst rise, there is 

an excess of microwaves during the decay phase which must be explained. The fact 

that the microwave peak occurs after the X-ray peak can be interpreted as being 

due to  the appearance of this additional microwave component. During the decay, 

the ratio Robserved/Rt~,ick target rises from - 1 to - 10. We explore a number of 

possibilites to explain the microwave excess below. 

Flattening in Spectrum: In figure 6.3.2, we have assumed an injected electron 

spectrum which is a single power law in energy. The microwave production will 

however be greater if the injected electron spectrum is not a single power law, 

but flattens at energies above the energy of the hard X-ray emitting electrons 

and below that of the electrons responsible for the bulk of the microwaves. This 

flattening in the electron spectrum would also be visible as a flattening in the X-ray 

spectrum at higher energies. The power law fit to the observed hard X-ray spectra 

for the flare in Figure 6.3.1 was fit to the count rates for energy channels from 37 

keV up to  - 300 keV (HXRBS energy channels 2 through 10 f l), depending upon 

the count rate. The count rates for energy channels above 300 keV, especially on 

the decay phase, was for the most part too low to get reliable statistics. Thus, if 

the X-ray spectrum does harden at higher energies, it does so above - 300 keV. 

To determine if a flattening in the injected electron spectrum can be respon- 

sible for the microwave excess, we a.ssuine the X-ray spectrum is the sum of two 

power laws. Besides the low energy S-ra.y spectrum observed by HXRBS, we add a 

high energy power law with energy flux F,,(EB) above break energy Eg, and with 

spectral index ~h < y. We assume the two power laws have equal contribution 

at energy Eg so that the low energy power law with spectral index y dominates 

for E << EB,  while the high energy power law dominates for E >> EB. This 
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condition gives us for the energy flux F ~ ( E B )  in the high energy power law 

. 
Furthermore we assume that E s  > 300 keV so that the HXRBS does not observe 

the high energy power law. The observed microwave to X-ray flux ratio for the 

two power law model R2 is then 

For magnetic fields of order 500 G, and for 7 5 3 ,  the energy of the electrons 

responsible for most of the microwave radiation becomes relativistic so we must 

modify equation 5.18 since in that equation we assumed nonrelativistic electrons 

in calculating the length of time a particle spends in the loop. 

During the burst decay when the excess microwave flux is at a maximum, the 

low energy spectral index y NN 3. The calculated value of R(E0 = 25 keV, y = 3) 

for the simple one power law thick target model with loop length 2 x lo9 cm, 

magnetic field strength 500 G,  at viewing angle 60" is R = .06, while the observed 

value of R increases to N .5 during the burst decay. Thus the high energy power 

law must account for most of the microwave flux. For -yh = 2 and EB = 300 keV, 

we find Rz = .6. Thus it is possible for a change in the spectral index of order 1 at 

energy above 300 keV to account for the microwave excess. This flattening in the 

spectrum must occur only in the later stages of the flare since the emission during 

the rising phase matches a single power law very well. Stochastic acceleration by 

turbulence could account for this. As the flare proceeds, turbulence builds up in 

the corona so that the higher energy component oiily appears in the later part 

of the flare. Other evidence in support of spectral flattening at high energies has 

been given by Vestrand et a1 1987 who reported that gamma-ray spectral indices of 

flares are on the average smaller by about 1 than the hard X-ray spectral indices. 



Thermal Synchrotron: Next we consider the possibility that the microwave excess 

is due to synchrotron emission from a thermal plasma with T - 5 x lo7 O K .  

Lin et a1 1981 have reported the observation of a superhot 3.4 x lo7 O K thermal 

component of the hard X-rays which appeared during the decay phase of a flare. 

The emission measure of this plasma was a few times ~ m - ~ .  This thermal 

plasma is distinct from and has much sinaller emission measure than the much 

cooler 2 x lo7  O I< thermal plasma observed from flares in soft X-rays by the GOES 

satellite. Nitta et a1 1989 also report an observation of a super hot thermal plasma 

with T N 7 x lo7 O I< and emission measure - ~ m - ~ .  

Making use of expressions for optically thin thermal synchrotron emission 

from Petrosian 1981, we find that it is possible to produce the observed microwave 

excess of - 300 SFU with a thermal plasma of temperature T = 5 x 107"K, 

magnetic field B = 550 G, and total number of particles nV = lo3'. The total 

thermal energy in this plasma is (3/2)NET = 9 x lo3' ergs. If we assume a density 

of lo' cm-3 we obtain an emission measure of cm-3 which is consistent with 

the observed emission measures of Lin et a1 and Nitta et al. This possibility is easily 

can be easily checked given microwave observations several different frequencies 

both higher and lower than 17 GHz. Thermal microwave emission falls off very 

rapidly with frequency, as approximately the 8th power of frequency. However, 

emission by a nonthermal power law distribution of electrons falls off much more 

slowly, as approximately the (6 - 1)/2 power of frequency. 

Nit t a  et a1 1989 considered the possibility that thermal synchrotron could 

account for the observed microwave radiation. They however discount any kind of 

thermal emission as being responsible for all the microwave flux because the emis- 

sion would have exceeded the Rayleigh-.Jeans emissivity. This was based upon the 

observed area of the thermal plasma imaged in hard X-rays and on a temperature 

of 7 x lo7 O I< estimated from the hard X-ray spectrum. 
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Thermal Free-Free Emission: Thermal free-free emission is dominated by thermal 

synchrotron emission for densities 

where 8 is the viewing angle with respect to the magnetic field. Here we have 

used the empirical thermal synchrotron emissivity relations of Dulk and Marsh 

(1982). Thus, for magnetic field strength 500 G, and temperatures high enough 

to make thermal synchrotron significant (7'23 x lo7 O I<), free-free emission will 

be insignificant compared to thermal synchrotron for density equal to lo9  cme3. 

Trapping: Another possibility is that during the decay phase, some of the emission 

is nonthermal thin target. This could occur if some of the electrons are magneti- 

cally trapped in the corona. These trapped electrons must must be responsible for 

most of the microwave flux, but not contribute significantly to the X-ray emission. 

As Figure 6.3.3 shows, the microwave emission does not match the predictions of 

the thin target model very well. In addition, in order to reduce the thin target R 

down to the observed value, we had to assume a fairly high density of 10l1 cm-3 

and a very low magnetic field of 100 G. This field strength is obviously inconsistent 

with the 500 G value inferred from the burst rise. Thus, it is unlikely that all of 

the microwave and X-ray emission is thin target, meaning that the microwave and 

X-rays are not cospatial. However, if the X-ray emission is still thick target so that 

the electrons are eventually stopped at the footpoints, but the electron lifetime 

in the loop is increased due to trapping, then R will also be increased because 

the effective loop length will be larger. Thus in order to match the observations 

during the decay of the burst, the effective loop length must increase to of order 

2 x 1O1O cm, or in other words the electrons must on the average traverse the loop 

N 10 times before escaping to the footpoints. It is possible then that the amount 

of trapping increases in the later part of the flare, therefore increasing the value 

of R. 
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6.4 - Summary and Discussion 

We have investigated the observed delay of microwaves behind X-rays from 

solar flares. The observations show a lag of - .25 s for short timescale variations, 

while the peak times of flares of duration N 30 s show a microwave lag of rv 2 

s. To investigate the small timescale delay, we use the numerical code described 

in chapter 4 to numerically solve the time dependent Fokker-Planck equation for 

electrons injected into various solar flare models. We have found that as expected, 

the microwaves lead the X-rays in a constant magnetic field loop with all electrons 

injected at the same time with the same pitch angle distribution. However, in 

a converging magnetic field, the microwave time profile can be delayed behind 

the X-rays. In order to produce a delay large enough to match observations, 

the loop must be fairly long and the density must increase fairly slowly in the 

transition region. The magnetic field must also increase fairly slowly so that 

high pitch electrons can mirror back below the depth where the X-rays originate. 

This delay is however strongly dependent on viewing direction and on the spatial 

geometry of the loop. Only in some viewing directions is the delay as large as 

0.25 s. We therefore consider it unlikely that all of the observed delay is due to 

magnetic convergence, but rather some of the delay is due to later acceleration 

of higher energy or higher pitch angle particles. One possible mechanism for this 

to occur is stochastic acceleration by plasma turbulence such as Langmuir waves. 

The electrons would then be initally accelerated by some other process such as 

magnetic reconnection. Higher energy electroils could then be further accelerated 

by Langmuir waves. 

For longer timescale bursts, we find that the microwaves and X-rays during 

the rising phase of the flare match the predictions of the thick target model very 

well. However, during the decay thc microwave emission is far larger than the 

calculated emission. We interpret the delay of the microwave peak as due to an 
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excess of microwaves above the thick target emission. Possible explanations in- 

clude a flattening in the electron spectrum at energies above the hard X-rays, a 

contribution from thermal synchrotron to the microwave flux, trapping of electrons 

in the loop, or some combination of these factors. Again, some form of stochas- 

tic acceleration could provide a mechanism whereby higher energy electrons are 

further accelerated. 
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Chapter  6 Figure Captions 

Figure 6.2.1 - Geometry of the loop. Electrons are accelerated at the top of a 

semicircular loop. The magnetic field at the footpoints is perpendicular to 

the photosphere. The viewing direction is given by angles $ and 4. 

Figure 6.2.2 - Constant magnetic field. Injection of Q ( t )  = 6 ( t )  and (YO = 90" into 

a magnetic field of 500 G. Viewing direction is 1c, = 60", 4 = 90". Density 

scale height h = 1.5 x lo8 cm. The microwave flux density at 17 GHZ is 

given by the dashed line and is in units of ergs s-l cm-2. The X-ray photon 

number flux above 25 keV is given by the dashed line. The time is given in 

seconds. 

Figure 6.2.3 - Constant magnetic field. The same as Figure 6.2.2 except T+!J = 60", 

4 = 0". 

Figure 6.2.4 - Convergence in the corona. The magnetic field increases exponen- 

tially with scale height 2 x log cm from 360 G at the top of the loop to 

540 G at s = 8.1 x lo8 cm. The field is constant below that. Injection of 

Q ( t )  = b( t )  and cy0 = 90". Density scale height h = 1.5 x lo8 cm. Viewing 

direction is $ = 60", 4 = 90". Microwaves are given by the dashed line, 

X-rays by the solid line. 

Figure 6.2.5 - Convergence in the corona. Same as Figure 6.2.4 except Q ( t )  = 

exp(-((t - . ~ ) / . 2 ) ~ ) .  

Figure 6.2.6 - Convergence both in the corona and below the transition region. The 

magnetic field increases from 400 G to GOO G with scale height 5 x lo9 cm. 

Injection of Q ( t )  = b ( t )  and a0 = GO". Density scale height h = 1.5 x lo8 cm. 

Viewing direction is VI, = GO", 4 = 90". Microwaves are given by the dashed 

line, X-rays by the solid line. 

. 
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Figure 6.2.7 - Convergence both in the corona and below the transition region. 

Same as Figure 6.2.6 except 1c, = 60", 4 = 0". 

Figure 6.2.8 - Microwave emission for convergence in the transition region. Rapidly 

rising density. The magnetic field is constant at 400 G up to s = 7.5 x lo8 cm. 

It increases with scale height 2.5 x lo8 cm to 600 G, then is constant below 

that. Density scale height l z  = 5 x lo7 cm. 

Figure 6.2.9 - Later acceleration of higher energy electrons. Injection of Q ( t )  = 

exp(-((t + .1 - .3p)/.07)2) with a0 = 45". Magnetic field increases expo- 

nentially from 400 G to 520 G with scale height 4 x lo9  cm. Density scale 

height h = 1.5 x lo8 cm. Viewing direction is II, = 60", 4 = 90". Microwaves 

are given by the dashed line, X-rays by the solid line. 

Figure 6.3.1 - Microwave and X-ray emission from a flare occurring on November 

25, 1982 (SMM flare number 6738). The microwave flux density at 17 GHz 

in SFU is given by the dashed line. (1 SFU = lo-'' erg s-' cm-2 Hz-I). 

The X-ray energy flux above 25 keV is given by the solid line. The times are 

given in seconds from an arbitrary t = 0. 

Figure 6.3.2 - Comparison of the expected thick target microwave emission and 

observed microwave emission. The calculated emission assumes a loop length 

of 2 x lo9 cm, magnetic field of 500 G, and viewing angle 8 = 60". The 

calculated emission is given by the solid line, the observed emission is given 

by the dashed line, and the difference is given by the dash-dot line. 

Figure 6.3.3 - Comparison of the expected thin target microwave emission and 

observed microwave emission. The calculated emission assumes magnetic 

field of 100 G, density 10" ~ r n - ~ ,  and viewing angle 8 = 60". 
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Figure 5.2.2 
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Figure  6.2 .3  

32 ~ 1 0 ~ ’  

3 0 ~ 1 0 ’ ~  

28 x i  0” 

26 xl0” 

24 x l  011 - 
g 22Xl0l’ 
t - 
0 

0 
I 

20Xl0l1 

2 18x10” 
x 

L L  
2 1 6 ~ 1 0 ~ ‘  

$ 1 4 ~ 1 0 ~ ‘  
I- 
O 2 12Xl0l1 

4 XI 0” 

2Xl0l1 

0 

105 



Figure 6.2.4 
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F i g u r e  6.2.5 
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F i g u r e  6.2.6 
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Figure 6.2.7 
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Figure 6.2.8 
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Figure G.2.9 
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F i g u r e  6.3 .1  
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Figure 6.3.2 
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Figure  C.3.3 
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CHAPTER 7. THE FINAL CHAPTER - A SUMMARY 

Since many astrophysical objects emit mdiation with rapid time variation, 

we set out to analyze the time dependence of the emission from astrophysical 

plasmas. To do this, we analyzed the evolution of energetic particle distributions 

in magnetized plasmas and the time dependence of the resulting radiation. We 

then applied these results to the study of the time dependence of the microwave 

and hard X-ray emission from solar flares. For studying the emission on short 

timescales of the order of the particle propagation and collision times, we made use 

of the time dependent Fokker-Plancli equation including magnetic mirroring and 

Coulomb collisions to calculate the evolution of accelerated electron distributions. 

However, on longer timescales, we developed relations for the steady state ratio of 

microwaves to X-rays for nonthermal thin a.nd thick target, and multithermal solar 

flare models. We have found that it is possible to explain many of the observations 

of solar flares in the context of the simple nonthermal thick target model. 

For a homogeneous plasma we have found an exact analytic solution to the 

time dependent Fokker-Planck equation describing the evolution of the distribution 

of particles in energy and pitch angles (with respect to the magnetic field). For an 

inhomogenous plasma, analytic solutions are possible only for particles with small 

pitch angles (namely, beams collimated along the field lines). We then compared 

the bremsstrahlung x-ray spectrum from a short burst of accelerated electrons with 

the high temporal resolution hard s-ray solar flare spectra observed by HXRBS 

on SMM. 

The observed softening with time of the s-ray spectra rules out the homoge- 

neous solution, which means that electrons do not lose most of their energy in the 

uniform density coronal portion of the flaring loop. Most of the x-ray emission 

then occurs at the base of the loop bclon~ the transition region. Consequently, the 



decay time and the degree of spectral softening are primarily determined by the 

spread in arrival time of the electron beam at the base of the loop. The more 

the particles are spaced out when they reach the transition region, the longer the 

burst decay time; and the grea,ter the spread in arrival times between high and 

low energy particles, the higher the degree of spectral softening. The particles are 

spread out by a combination of the time of flight difference from the acceleration 

region to the chromosphere, and the initial injection time width. The pitch angle, 

the energy, and the distance from the acceleration region to the transition region 

determine the time of flight to the transition region. Since the effect of collisions in 

the corona is small, the time of flight over the distance st  is st /cPp.  The difference 

in time of flight between electrons of different energies is therefore proportional 

to s t .  Thus, smaller st leads to less spectral softening . Therefore, injection of 

the accelerated particles near or below the transition region is ruled out for such 

bursts. 

Furthermore, the larger the range of pitch angles, the smaller the injection 

time to has to be in order to reproduce the observations. The small pitch angle 

assumption basically amounts to ignoring the difference in path length between 

particles of different pitch angles. Thus the time of flight difference from the 

acceleration region to the thick target is determined solely by the difference in 

particle energies. This is why our assumption of small pitch angle requires that 

the injection time t o  be greater t1~a.n .1 s. Otherwise, the decay of the burst would 

be too short. We have found that under the amxnption that the pitch angles are 

small and that the injection distribution is seperable in time and energy, the flare 

parameters must satisfy the constraints given in Table 3.1. 

In order to analyze the effects of converging magnetic field, spatial inhomo- 

geneities, and large pitch angles, together with Russell Hamilton, we developed a 

numerical code to solve the Foklier-Plancli equation. We have given the form of 



the equation including magnetic mirroring, Coulomb collisions, synchrotron losses, 

AlfvCn waves, Langmuir turbulence, and direct electric fields. The code which we 

have written only includes the terms in the equation due to magnetic mirroring, 

and Coulomb collisions. However, the numerical method of solution easily allows 

these other terms to be added, and we have outlined the method for doing so. 

This code has other possible astrophysical applications besides just solar flares, 

especially since it can be expanded to include other processes such as scattering 

by plasma waves and synchrotron losses. Some of these areas include stochastic 

particle acceleration by waves and generation of kinetic instabilities. 

We next turned our attention to the relationship between X-ray and mi- 

crowave emission from flares. Over timescales longer than the particle propagation 

and collisional times, steady state relations are applicable. We derived analytic 

relations for the ratio of microwave to X-ray flux from thin target, thick target, 

and multithermal solar flare models, and used these to  show that the peak X-ray 

and microwave fluxes were most consistent with the thick target model. In these 

models, most of the microwaves are produced in the loop while most of the X- 

rays are produced at the footpoints. In the thin target model, the X-rays and 

microwaves are produced in the same physica.1 region, while in the multithermal 

model the emission is produced by a multiteniperature thermal plasma. 

We analyzed a sample of 51 flares with observations in both hard X-rays 

and microwaves for which the X-ra.y spectra.1 index is known. These data are 

summarized in Table 5.1. We define the dimensionless ratio of microwave to X-ray 

flux R, and plot R evaluated at peak emission for these flares versus the spectral 

index y, and compared these to the espected n for the thick target, thin target, 

and multithermal models (see figures 5.2, 5.3, and 5.4). 

We find that the observed microwave to X-ray ratios are consistent with a 

single population of electrons producing both emissions. The thick target model 



. 

with a reasonable set of flare parameters (350 G s B 5 650 G and L x 2 x lo9 cm) 

explains the data quite well. The thin target and thermal models, however, have 

more difficulty in explaining the observations. They both predicted a far too large 

value of R for reasonable values of ma.gnetic field strength and density. The fact 

that previous authors had assumed a thin target geometry was the origin of the 

controversy surrounding whether a single power law population of nonthermal 

electrons could be responsible for both microwaves and X-rays. 

Finally, we investigated the relative timing of the microwave and X-ray emis- 

sion from flares. Using the Fokker-Planck code, we show that it is unlikely that 

the observed delay of microwaves behind X-rays in flares with subsecond time 

structure is completely caused by magnetic trapping. Rather, the higher energy 

electrons responsible for most of the microwaves must be accelerated slightly later 

than the lower energy electrons responsible for most of the X-rays. We also showed 

that the microwaves and X-rays during the rising phase of longer flares matched 

very well the predictions of the thick target model. However, the observed delay 

of the microwave peak can be interpreted as being due to another component of 

the microwave emission which peaks during the decay phase of the flare. Again, 

this could be explained by later acceleration of higher energy electrons together 

with magnetic trapping in the corona. Further study along these lines await better 

time resolution spectral and imaging observa.tions in both microwaves and X-rays. 
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