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CHAPTER I 

Introduction 

The ability of adaptive antenna arrays to form controllable, time-variable an- 

tenna patterns allows them to track moving desired-signal sources and to suppress 

signals from moving sources of accidental or intentional interference. This flex- 

ibility in the antenna pattern is achieved by summing the weighted outputs of 

a number of antenna elements [l]. The instantaneous values of the time-varying 

weights determine the instantaneous array antenna pattern. The weights are var- 

ied according to an assignment rule or feedback control law. Different types of 

adaptive arrays are defined by the type of assignment rule or control law used to 

set the weights. The type of adaptive array which should be used depends on the 

application [I]. 
In this work, the adaptive array is applied to the reception of a desired sig- 

nal in the presence of weak interference signals that need to be suppressed. In 

particular, the reception at a ground station of a desired satellite signal in the 

presence of noise and undesired interference signals from neighboring satellites is 
considered. Figure 1 illustrates the situation. An equivalent problem is that of 

a satellite receiving a desired signal from one of a number of neighboring ground 

stations. Adaptive arrays are applicable since, without adaptation at the receive 

site, interference signals may enter through the receive antenna sidelobes. Fur- 
thermore, the satellite orbits are not perfectly geostationary and more satellites 

and ground stations will enter the signal environment in the future; thus the signal 

environment is time-varying. As seen in Figure 1, the interfering signals enter the 

receive system through the sidelobes of the main antenna. Typically, the input 

signal-to-interference ratio (SIR) is in the range 10 to 30 dB and the signal-to- 

1 



noise ratio (SNR) is about 15 dB. Thus, the interfering signal is weak compared 

to the desired signal and may be several dB below the noise level. 

Though the interference is weak, its presence is arguably more irritating than 

that of noise because of the similarity in the frequency content of the desired and 

interfering signals. For example, in the case of television signals, an interfering 

station may cause wavy lines or ghost images in the television picture in comparison 
with the less irritating “snow” associated with random noise. Thus, there is a 

special need to suppress weak interfering signals in this application. 

It is appropriate to choose the steered-beam type array for this application 

because the desired signal direction is known and assumed to be fixed. An array 

which uses the conventional sample matrix inversion (SMI) algorithm as its weight 

assignment rule is one such steered-beam type array [l]. The SMI algorithm was 

derived so as to maximize the ratio of desired to undesired signal powers at the 
array output under steady state conditions, and given the desired signal direction. 

The undesired signal consists of noise and interference components. In other words, 

conventional SMI adaptive arrays try to maximize the signal-to-interference-plus- 
noise ratio (SINR) as the signal environment changes. Indeed, the environment 

changes slowly in this application. 

The problem with using conventional SMI is that maximum SINR is not de- 

sired since the presence of interference has been deemed more costly than that of 

noise. It is desired to unequally weight the contributions of the interference and 

noise components in the power ratio to be optimized in order to emphasize the 

importance given to suppressing the interference. The modified SMI algorithm 

discussed in this thesis maximizes a modified SINR (MSINR). The denominator 

of the MSINR is equal to the interference power plus only a fraction of the noise 

power. 

This thesis extends the work of Gupta [2] who proposed the modified SMI 

algorithm and showed that the required interference suppression is theoretically 

attainable. In Chapter 2, the conventional SMI algorithm is modified in order to 

maximize the MSINR and the theoretical performance of a modified SMI array is 
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Figure 1: Ground station receivin desired satellite signal in presence of weak 
inter f erence signals. 
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presented. In addition, a geometric interpretation is obtained by formulating the 

algorithm in terms of the eigenstructure of the covariance matrix of received sig- 

nals. A simple example to illustrate the effect of modifying the algorithm concludes 
Chapter 2. An actual SMI array system makes estimates of a covariance matrix 

based on a finite number of signal samples. This estimation degrades the perfor- 

mance of the real antenna system relative to the theoretical performance of Chapter 

2. Chapter 3 describes a computer simulation of real array performance, presents 

results of a statistical analysis of this performance, and investigates, through sim- 

ulations, the nature of the weak interference suppression problem. 

One goal of this research has been to demonstrate a working modified SMI 

array. Toward this end, the modified SMI algorithm has been implemented on 

an existing experimental array described in Ward, et. al. [3],[4]. The details 

concerning the implementation of the modified SMI algorithm on the experimental 
system and a study of the steady state performance of the experimental modified 

SMI array appear in [SI. Chapter 4 of this thesis continues the analysis of the 

experimental SMI system by studying performance of the system as a function of 

the number of snapshots in the covariance matrix estimate. These experimental 

results are compared with the statistical theory developed in Chapter 3 in order to 

verify the proper performance of the experimental array and to check the validity 

of the simplifying assumptions made in the statistical theory. 

The last chapter draws conclusions about the modified SMI algorithm and 

offers some ideas for future work in this area. 
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CHAPTER I1 

Modification of SMI Algorithm and Pertinent Theory 

In this chapter, the standard SMI algorithm for adaptive array weight control 

is presented and modified in order to maximize the MSINR given the steering vector 

(i.e. desired signal direction, element gains in that direction, and array geometry). 

The modified SMI algorithm is shown to yield increased interference suppression 

when the true received-signal covariance matrix is assumed known. The chapter 

begins by introducing the theoretical array and signal model. The standard SMI 

algorithm is stated and modified in order to theoretically increase interference 

suppression. The eigen-decomposition of the covariance matrix, which yields a 

geometric interpretation of the algorithm, is studied in detail. A simple example 

concludes the chapter. Throughout the derivations, complex signal not ation shall 

be used. Real signals are obtainable as the real part of the corresponding complex 
signal. 

2.1 Theoretical Model and Modification of SMI 

Figure 2 depicts an antenna array with N elements receiving a desired signal 

and M interfering signals. Also present at each element is zero-mean complex 

Gaussian white noise with power 02. The modified SMI algorithm introduced 

later in this section relies on the fact that the smallest eigenvalue of the received- 

signal covariance matrix is an estimate of the noise power o2 at each element of the 

array if the dimension of the matrix is greater than the total number of received 

signals. Thus, it is assumed that M 5 N - 2. The signal received at the nth 

5 



antenna element is 
M 

m= 1 
z n ( t >  = a ~ n  e x ~ [ . i ( d ~ t + $ ~ n ) I +  almn e~~lj(wlmt+$imn+$lr)I+qn(t) (2.1) 

for n = 1 ,2 , .  . . , N .  The amplitude, frequency, and phase of the desired signal at 

the nth element of the array are a ~ ~ ,  W D ,  and $on, respectively. aimn, WIm, and 

$lmn, are analogous parameters for the mth interference signal. The amplitudes 
depend on n since the antenna elements may not have identical patterns. Zero 

phase reference has been chosen as the phase of the desired signal in the first 

element, thus $ 0 1  = 0'. Specifically, $lmn is the phase of the mth interference 

signal in the nth element with respect to its phase in the first element. Also $lm 

is the phase of the mth interference signal in the first element with respect to the 

phase reference and is assumed to be a uniform random variable on the interval 

[0,27r]. The qn(t)  represents the noise at the nth element and is a member of the 

ensemble of complex Gaussian white noise processes with power equal to 02. All 
random variables are assumed to be statistically independent. The narrowband 

approximation has been made in that each signal has been represented by a single 

frequency. The phase shifts $ J ~  result from the spatial separation of the antenna 

elements and are given by 

J = D or In (2.2) 
d 

$ J ~  = 27r(n - 1)x sin(0J) 

for a linear array with equally spaced elements; d is the element separation, X is 

the signal wavelength, and BJ is the signal arrival angle measured from broadside. 

.The signals received at each element can be combined in a single ( N  x 1) 

signal vector 

X ( t )  = 

where 
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Figure 2: An N-element array receiving a desired signal and M interference 
signals. 
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where J = D or Im and 

elements are also combined in an ( N  x 1) weight vector 

denotes transpose. The complex weights on the antenna 

W ( t )  = 

The received signals X ( t )  are weighted and summed to form the array output 
signal shown in Figure 2 

s ( t )  = W H ( t ) X ( t )  

where denotes Hermitian transpose. By writing 

signal is expressed in terms of its components 

M 

m= 1 
s ( t )  = s d t )  + c s1mW + 

(2.10) 

X ( t )  using (2.3), the output 

where s ~ ( t )  = W H ( t ) X ~ ( t )  and J = D, Im, or 77. Because of the random nature 

of the output signal the ensemble average or expectation operator is used to define 

the average power of the complex signal s ( t )  

p = W ( t ) l 2 1  
= E [ W H X X * W ]  

= W H  E [ X X H ]  w 
= WH@W (2.12) 

where Q E E [ X X H ]  is the ( N  x N )  covariance matrix of the received signals. 

Notice that the time dependency of the weights W and the received signals X 
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m 

has been and will continue to be omitted for simplicity. Using (2.3) and the 

assumptions that the received signal components X J  are uncorrelated and zero 

mean, the expectation used to define 9 evaluates to 

where 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

for m = 1,2, .  . . M .  The I in (2.15) is an ( N  x N )  identity matrix. We call SD the 

desired signal vector or steering vector and SIm the mth interference signal vector. 

Using (2.13) in (2.12), the output power P may be easily expressed as 

where 

= W H @ ~ W , a n d  
Pq = WHOqW=o 2 H  w w. 

9 

(2.17) 

(2.18) 



Equations (2.18) may be used to write the output SINR as 

PD 
PI + pq 

S I N R  = 

- WH@DW - 
W*@IW + u 2WHW' 

In this application it is desired to maximize a modified SINR 

PD 
PI + ( 1  - F)P, 

M S I N R  = 

(2.19) 

(2.20) 

where 0 5 F 5 1. Note that the MSINR reduces to the SINR when F = 0. 
Reed et.al. [6] showed that, given the steering vector S D  defined in (2.16),  

maximum SINR is achieved by choosing the optimal weights as 

where subscript s denotes "standard choice", and where /I is an arbitrary constant. 
Notice that the only difference between the SINR and MSINR of Equations (2.19) 

and (2.20) is that the constant (with respect to W )  o2 has been replaced by the 

constant (1 - F)u2.  The weights that optimize the MSINR are easily obtained by 

adjusting the o2 of (2.21) accordingly; 

where I? = @ - Fu2I.  
A critical result arrived at in Section 2.3 is that the noise power u2 is available 

as the minimum eigenvalue of @ when the signal scenario consists of pure sinusoids 

in white noise incident upon an array with one or more unused degrees of free- 

dom [7]. This fact makes possible the implementation of the modified weights of 

(2.22) on a real antenna system since the covariance matrix, and thus its minimum 

eigenvalue, can be estimated. 
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A number of observations can be made. Notice that the standard SMI algo- 

rithm is just a special case of the modified algorithm where F = 0. As F is allowed 

to approach 1, the I? matrix approaches singularity, since  rank(@^ + C@l,) I 
M + 1 I N - 1 where the first inequality follows from (2.15) and the second fol- 

lows from assumption. Choosing F > 0 will decrease the INR at the expense of 
necessarily decreasing the SINR since the rhoice of F = 0 maximized SINR. It is 

expected that the gain in interference supp- ession will cause a loss in desired signal 

power and a gain in output noise power. The next section studies these gains and 

losses. 

2.2 Theoretical Performance of the Modified SMI Algorithm 

Assuming that the signals received at the array elements are given exactly by 

(2.1), the ensemble average that defines Qr in (2.16) can be taken and the steering 

vector may be found exactly. The minimum eigenvalue of 9 is o2 as shown in 
the next section. Using these parameters in (2.22) along with a chosen value of F 
yields the modified weights. Once the weights are determined, any performance 

measure including the INR and the SINR can be found. 

As an example, consider the modified SMI algorithm applied to the practical 

antenna array shown in Figure 3 consisting of a high-gain main element and four 

auxiliary elements with half-wavelength spacing. A desired signal is incident from 

broadside while an interference signal arrives 30 degrees from broadside. The 
SNR of the desired signal is 14.6 dB in the main antenna while it is -10dB in the 

auxiliaries. The INR is -5 dB in the main antenna and is -3 dB in the auxiliaries. 

This is a good example of weak interference since the interference power is about 

20 dB beneath the desired signal and is even a few dB below the noise. This 

scenario is equivalent to that considered by Gupta [2], and will also be used in the 

simulations of the next chapter. 

A plot of INR and SINR versus the fraction F for the above scenario is given in 

Figure 4. This plot agrees with the results in Gupta [2] and shows that a significant 

decrease in INR can be achieved at the slight expense of a small decrease in SINR 

11 



w5 

Figure 3: Adaptive antenna array with 4 auxiliary elements receiving a desired 
signal from broadside and a weak interference signal from 30' off broadside. 

12 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

for a properly chosen value of fraction F assuming perfect covariance information is 

available. For example, choosing F = 0.8 yields 11.5 dB suppression of interference 

beneath the standard SMI level (the value when F = 0) at the small cost of a 0.3 

dB reduction in the SINR. 

2.3 Covariance Matrix Eigenstructure 

The eigen-decomposition of @ is useful in obtaining a relationship between 

lT1 and of (2.21) and (2.23). Let the positive real eigenvalues A i  of the 

positive-definite Hermitian covariance matrix @ be arranged in order of decreasing 

magnitude 

2 A2 2 * "  2 AN > 0 (2.24) 

and let ei be the associated orthonormal eigenvectors. The desired eigen-expansions 

of cp and I? are 
N 

n=l 
N 

n=l 

@ = eneFXn,  and (2.25) 

r = ene,H[Xn - ~ 0 ~ 1  (2.26) 

ene,H = I N ~ N  has been used in (2.26). The inverses needed where the result 

in (2.21) and (2.23) can thus be written 

(2.27) 

(2.28) 

where it is easily demonstrated that a@-' = rI'-l = I using (2.25)-(2.28) and 

the orthonormality of the e i .  

Additional observations can be made about the modified SMI weights by defin- 

ing two subspaces of complex N-dimensional space C N  as 

13 
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Fi ure 4: Output INR and SINR of the 4-auxiliary element ada tive array versus 
kaction F. SNR(main) = 14.6 dB, SNR(aux,) = -10 dB, INRPmain) = -5 dB, 

INR(aux) = -3 dB, OD = Oo, Orl = 30'. 
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where s p  denotes span and I denotes the orthogonal complement. Subspace S, 
the span of the signal vectors, is commonly called the signal subspace, whereas 

n/ is called the noise subspace. The noise subspace has dimension 2 1 since it is 

assumed that N 2 M + 2. F'rom (2.14) and the definition of eigenvectors 

(2.30) 

for 1 5 n 5 N .  Notice that any member of h/ is an eigenvector of @ since for any 

such vector V E n/ we have S3V = S i V  = 0. F'rom here we may conclude that 

en E n/ for exactly N -M-1 values of n since if there were less, {en},N,1 could not 

span n/ and if there were more, {en}r=1 could not span S. It is assumed that the 

signal vectors form a linearly independent set (i.e. the signals arrive from different 
directions and the element spacing is at most one-half wavelength). Furthermore, 

the eigenvalue associated with every such en is the noise power u2 as seen in (2.30). 
For this reason, these N - M - 1 eigenvectors are called noise eigenvectors. Hence, 

n/ is called the noise subspace. 

The remaining M + 1 eigenvectors of @ must be in the M + 1 dimensional 

subspace S, and are referred to as the signal or principal eigenvectors. The eigen- 

values associated with these principal eigenvectors are real and greater than 02. 

This result follows from the fact that a principal eigenvector of @ with o2 > 0 is 

also a principal eigenvector of the same @ with o2 set to zero. The noiseless @ is 

still positive semi-definite. 
Since the eigenvalues were ordered from largest to smallest in (2.24), we have 

from the above argument that {en}E$' are the principal eigenvectors with as- 

sociated eigenvalues An > o2 and {en}n,M+2 N 
associated eigenvalues An = Q 2 . 

are the noise eigenvectors with 

Now substitute (2.28) in (2.23), to see that the modified SMI weights are 

(2.31) 

a linear combination of the eigenvectors of @. In fact, since efSD = 0 for n = 

M + 2, M + 3,. . . , N ,  the weights are ideally a linear combination of only the 

15 



principal eigenvectors. In Section 3.3 we shall see the effects of using just the first 

M + 1 terms of (2.31) in the SMI array computer simulation. 

2.4 Instructive Example 

To better appreciate the modification made to in (2.22) let us compare the 

expressions for Ws and W for a particular scenario. Using (2.21), (2.23), (2.27)) 

and (2.28) and some algebra, Gupta [2] with reference to Compton [8] showed that 

for the case of no desired signal and a single CW interference signal of amplitude 

A incident on an N-element array, the optimal weight vectors can be written 
r 1 

(2.32) 

and 

(2.33) 1 
[SD - I+* 

P 
(1 - F)a2 W =  

where a1 = e fS0 .  For a weak signal and not too many elements, N A  2 2  /a << 1 

so that (2.32) and (2.33) become 

and 
(2.35) 

where F has been chosen such that (1 - F ) 0 2 / ( N A 2 )  << 1. It is seen from (2.34) 
that using the standard SMI weights W simply scales the quiescent pattern of the 

array and thus fails to achieve the goal of adapting to the interference signal. On 

the other hand, for an appropriate choice of the fraction F ,  the modified weights 

result in an antenna pattern which does adapt to the signal scenario since el 

contains interference signal direction information. 

2.5 Summary 

In this chapter, we have seen that the modified SMI algorithm is designed to 

maximize a modified SINR which leads to increased interference suppression as 
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F is increased from zero to one. The eigenstructure of a, which was analyzed in 

detail, has led to a useful geometric interpretation of the SMI algorithm and has 
prompted us to investigate in the next chapter the effects of omitting the noise 

eigenvectors from the weight expression of (2.31). 

Up to this point, knowledge of the true covariance matrix has been assumed. 

In practice, however, 9 must be estimated by an average involving a finite number 

of signal samples. The next chapter addresses through theory and simulation a 

number of topics concerning the performance of the modified SMI algorithm when 

only estimates of <p are available. 
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CHAPTER I11 

Modified SMI Array Simulations using Estimated Covariance 

This chapter studies the effects of covariance matrix estimation on the perfor- 
mance of the modified SMI antenna array. The first section introduces the particu- 

lar K-snapshot-based covariance estimate &K used in this study. The next section 

presents a theoretical statistical analysis of modified SMI array performance using 

the estimate 4~ in the place of in (2.22). Much of this analysis will be indepen- 

dent of the assumed signal model. Only at the end of the analysis is a particular 
signal model (corresponding to our satellite communication application) assumed. 

Computer code has been developed which simulates a real modified SMI array 

operating in the satellite signal environment and, in addition, implements the 

results of the statistical analysis for comparison purposes. The signal model used 

in the computer simulation code is described. Simulations are then used to discuss 

the estimation of 02, to verify the statistical theory and comment on the choice 

of the fraction F, to study the effects of omitting the noise eigenvectors from the 

weight estimate (as proposed at the end of Section 2.3), and finally to characterize 

the types of error in the estimated covariance matrix. 

3.1 Sample Covariance Matrix 

In a real system, the true covariance matrix is unknown and must be estimated 

by averaging a number of signal snapshot outer products. A snapshot X h  is an N- 
vector of samples resulting from a simultaneous sampling of the N antenna element 

signals. The estimate of the true covariance matrix is called the sample covariance 
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matrix. In particular, the maximum likelihood estimate ([9], Theorem 4.1) 

of 9 given K snapshots and assuming independent, identically distributed, complex 

Gaussian noise is present in each array element. 
no knowledge of the signal environment is used here. 

3.2 Statistical Analysis Results 

Ganz, Moses, and Wilson [lo] have provided a statistical analysis of the mod- 

ified SMI weight and power estimators assuming that the true noise power 02, 
true steering vector SD, and sample covariance matrix $K are used in (2.22). The 
results of the analysis are presented and then extended to include the statistics of 

power ratios such as SINR and INR. It is explained how one can apply much of 

this work to any signal scenario including wideband signals. Specific results have 

been obtained for a narrowband (sinusoidal) scenario consisting of one desired sig- 

nal and M interference signals arriving from arbitrary directions at an equi-spaced 

linear array of elements of arbitrary gain. The notation introduced in Sections 2.1 
and 3.1 is used. 

The statistical results consist of expected value and variance expressions which 

describe the convergence properties of the array weights, output signal powers, and 

output power ratios as a function of the number of snapshots K, the choice of frac- 
tion F, and the signal scenario. The expressions have been implemented in the 

computer simulation so that curves representing expected value and confidence in- 

tervals might overlay “trial runs” of the simulated array. Agreement between the 

statistical curves and the trial runs would build confidence in the derivation and 

implementation of the statistical curves as well as in the implementation of the ar- 

ray simulator. In fact, the statistical curves characterize the transient performance 

of the array and thus may be used in place of expensive, time-consuming Monte 

Carlo simulations. Furthermore, it is hoped that the statistical curves might act 

as a standard with which other weight adaptation schemes may be compared. 
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It is desired to analyze the performance of the modified SMI array whose 

weights are based on K snapshots, thus this presentation begins with (2.22) re- 

stated below. The optimal modified SMI weight vector W and its K-snapshot- 

based estimate l@~{ are 

and 

(3.3) 

where r E <p - Fa 2 I and f~ = &I{ - Fa21 are the optimal and estimated values 

of the modified covariance matrix and is given by (3.1). Define the error I@J{ 
in the K-snapshot-based weight estimate and modified covariance estimate error 

FK by 

and 

(3.4) 

(3.5) 

The error in the modified and unmodified covariance is the same. The expected 

value and variance of the K-snapshot-based weights can easily be expressed as 

(3.7) 
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where the subscripts K have been omitted for simpicity. The output signal powers 

of an array given a set of K-snapshot-based weights are 

where J = D, Im, or q,  for desired, mth interference, or noise power, respectively. 

The expected value and variance of the output signal powers are 

where Re denotes real part and J is as before. The approximation (3.11) is justified 

later in this section. It suffices for now to say that expectations involving one or 

two occurrences of @ are 0(1/K) whereas expectations involving three or more 

are o ( l / K ) .  Thus, of all six terms in (3.10) only the fifth is proportional to (l/K) 
(each of the others is 0(1/K2) to be specific). The computer code that implements 

the statistical theory uses the approximation (3.11). 

The next step is to develop expressions for the expected value and variance 

of the output power ratios SINR, INR, and SNR. Rather than do each separately, 

it is convenient to define and find the statistics of a generalized power ratio R of 
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which the SINR, INR, and SNR are special cases. 

ratio 

R(X,Y ,a ,Z)  P X  
Py + aPz 

Define the generalized power 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

using (3.8) and the new definitions PB E & + ai'z and @B E @ y  + a@z. Note 

that 

S I X R  = R(D,I , l ,q) ,  

I F R  = R(I ,  v,O, Z ) ,  and 

S F R  = R(D,q,O,Z) (3.16) 

where, for example, SI-R is the random variable representing the output SINR 
of the array whose weights are estimates based on K snapshots. It is understood 

implicitly that S I X R  is a function of K ,  the signal scenario, and the fraction F 
used in the modified SMI weight estimate. 

Exact expressions for the probability density function, expected value, and 
variance of ratios similar to (3.13) have been found by Reed et. [6] with 
reference to Capon and Goodman [ll], Goodman [9], and unpublished notes of 

Goodman. These exact expressions assume standard SMI ( F  = 0). Rather than 

attempt to extend these exact expressions for modified SMI (F # 0)) we choose 

to approximate R (viewed as a real, scalar-valued function of the complex N- 

dimensional estimated weight vector I@, see (3.15)) by using its Taylor expansion 

about the optimal weight vector W of (2.23). The expected value and variance of 

the truncated expansion will be simple to evaluate. 

al. 
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The second order Taylor series approximation of R(@) about the optimal 

weight vector W may be expressed using variational notation as [12] 

(3.17) 
1 

R(+) R(W) + 6R + $R. 
By substituting Px/PB for R in (3.17), we have 

and 

* Equation (3.15) may now be used to write the variations ~ P X , ~ ~ P X , S P B ,  and 

@PB in terms of W ;  

and similarly for PB. Upon substituting (3.21) and (3.22) into (3.18) and (3.20) 

and subsequently into (3.17) we have 

where 6W = I@ - W = -I?I has been used and @z E PB@X - Px@B. 
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The approximate expected value and variance of the generalized power ratio 

R ( f i )  quickly follow from the Taylor approximation (3.23) and are given by 

and 

var[R(W)]  = E [ { R ( f i )  - E [ R ( f i ) ] } 2 ]  
1 2  2 1 

M E[(SR + -6 R) ] - (E[SR + ,62R1)2 
2! 

(3.24) 

(3.25) 

The approximation in (3.25) is due to the Taylor series truncation. The approxi- 

mation of (3.26), however, is due to the neglect of expectations involving three or 

more I@s. These expectations will be found to make only O(l/K2) contributions 
to the variance of R@) and thus are justifiably neglected for large K. 

Note that (3.6), (3.7), (3.9), (3.10), (3.24), and (3.27) express the desired 

quantities in terms of the statistics of w and that e is a function of &K, an 

average of K ( N  x N )  random variables. From here it has been shown [lo] that 

I@ approaches a Gaussian random variable as K gets large. Under the Gaussian 

assumption, the higher order statistics of fi needed for the first and third terms 

of (3.10) may be found easily [13] in terms of its first and second order statistics. 

The problem has now been reduced to finding E [ w ] ,  E [ w W H ] ,  and E[r/7rt?rr]. 
Evaluation of these expectations is accomplished by first manipulating f'-' using 

(3.5) 
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Now rewrite (3.4) by factoring to the front, substituting for f'-' using (3.28)) 
and expanding [I - f'I'-']-' as a power series [14]. The resulting weight error may 

be written 

r?l = pr-l[i - {I + f'r-l+ (Fr-lI2 + - .  .)]so. (3.29) 

The desired expect ations are 
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where E[f] = 0 and W = pI'-'SD have been used. The approximations result 

from neglecting terms involving higher powers of f'. The approximations are jus- 

tified at the end of this section. Using (3.5)) it is easy to write (3.30)-(3.32) in 

terms of E[6ilbft], the expected value of the product of the iZth and stth elements 

of the K-snapshot-based covariance error matrix. 

The statistical results presented to this point have been very general in that 

they have been derived independent of any assumed signal scenario. Only now, for 

the calculation of E[b&t], must a signal scenario be assumed. In order to apply 

this work to different signal scenarios one evaluates E[&&] for the scenario of 

interest. The power series expansion of (3.29) and the approximations of (3.30)- 
(3.32) are valid for any signal scenario when I< is large enough. 

For the case of one sinusoidal desired signal, and M sinusoidal interference 
signals arriving from arbitrary directions at an N-element equi-spaced linear array 
with complex Gaussian noise, N ( 0 ,  a2), at each element, the expectation is [lo] 

a=l p=1 
a#P 

a=l 
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where Stl is the Kronecker delta. Note that = E[&i16Et] since Qi and 

are Hermitian symmetric. 

The justification for the approximations used in (3.30)-(3.32) is now apparent. 

Expectations involving higher powers (3 or greater) off' require higher order statis- 

tics of 6. By the Central Limit Theorem, the elements of 6 are approximately 

Gaussian for K large enough. By (3.33), the are 0(1/K). Using familiar 

expressions [13] for higher order statistics of Gaussian random variables it follows 

that such terms are o( l /K)  and thus are justifiably neglected for K large. More- 
over, since E [ f i ] ,  E [ f i l 8 " ] ,  and E[l@t?rT] of (3.30)-(3.32) are 0(1/K) we have 

(by the same reasoning) that expectations involving three or more occurrences of 

are o(l/K). Hence, the approximations of (3.11) and (3.26) are justified. 

In summary, the estimated weights and resultant output powers and power 

ratios are asymptotically unbiased and consistent. The biases of the weight, power, 

and power ratio estimators decrease at a rate proportional to (1/K) while their 

asymptotic standard deviations decrease at a rate proportional to (l/a). 

3.3 Computer Simulation and Observations 

3.3.1 Signal Snapshot Model 

The simplified model of the signal snapshot X h  of (3.1) used in the computer 

simulation reflects the satellite/earth station communication link application. A 
series of snapshots is not simulated by evaluating the signal vector of (2.1) at 

equally-spaced times since the time between snapshots can vary in a real array. 

To account for this, the phases of signals have been decorrelated from snapshot to 
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snapshot resulting in a model of the form 
M 

m= 1 
x k  = X D k  -k x q k  -t X I m k  

for the case of M interference signals, where 

(3.34) 

X J k  = A j U j e x p ( j P j ~ )  J = D, I l , I 2 ,  . . ., or I M  (3.35) 

and 
T 

xqk = [ q l k  V2k " *  VNk ] * 
(3.36) 

The AJ and UJ were defined in (2.7) and (2.8), the P J k  are uniformly distributed 
random variables on the interval [0,27r], and the r],k are complex zero-mean Gaus- 

sian random variables of variance a2. All random variables are mutually inde- 

pendent. The steering vector SD = ADUD is assumed to be known exactly. The 

estimated modified weights based on K snapshots are 

f iK = /.4[&K-Fa21]-1sD 

= /.4[fK]-'sD (3.37) 

from (2.22) with the covariance estimate 4~ of (3.1) rel;,.xing the true covariance 

a. The constant p of (2.22) is chosen aa unity. Note that the constant p simply 

scales the weights and powers by p and p 2 ,  respectively, and has no effect on power 

ratios such as the MSINR of (2.20). Since the Gaussian noise random variables qnk 

are computer generated, their true variance o2 is known to the programmer and 

will be used, at first, in implementing (3.37). Subsequently, a2 will be estimated 
by the minimum eigenvalue 8* = f i ~  of &I< in order to more realistically model 

an actual SMI antenna array. 

3.3.2 Interpreting the Plots 

The modified SMI algorithm has been implemented on a VAX 11-785 com- 

puter using the above snapshot model and statistical analysis results. The code 

yields plots of the weights, output powers and power ratios, and sample covariance 

matrix eigenvalues versus the number of snapshots used in the covariance estimate 

for a particular fraction F. Specifically, a typical plot consists of 
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1. a number of “trial runs” of the simulated array which appear as jagged lines, 

2. a straight horizontal line giving the value (as found in Section 2.2) of the 
performance measure assuming the true covariance is known, 

3. the expected value of the estimator which is a smooth curve that lies among 

the trial runs and asymptotically approaches the true covariance value, and 

4. two smooth curves (one above and one below the expected value curve) 

determined from the estimator variance that represent a 95% confidence 

interval (f2 standard deviations) for the estimator. 

See Figure 17 for a graph whose curves have been fully labeled. 

Some further comments to aid in the understanding of the following plots are 

in order. First, items 3 and 4 above appear only on Figures 6-19 since the simu- 

lations shown on these figures are ones to which the theory of Section 3.2 applies. 
Second, the “lower” variance curve sometimes does not appear on graphs of sup- 

pressed interference power (Figure 14, for example) simply because the “warping” 

due to plotting in dB causes the curve to lie outside the range of the graph. Fi- 
nally, in several graphs (for example Figure 15) the scale of the graph is such that 

the curves are indistinguishably close. These ((poorly”-scaled graphs are a result 

of the author’s desire to keep the scale of comparable graphs the same in order to 

simplify comparisons. 

Keep in mind that any consistency or inconsistency between the trial runs and 

the statistical curves simply comments on the validity of the statistical derivations 

and perhaps the quality of the random variables generated in the trials. The plots 

may not accurately reflect how well the above statistical snapshot model represents 

the situation in a real antenna array. The investigation that follows is based on 

the same signal scenario and array geometry introduced in Section 2.2. 

3.3.3 Estimating the Noise Power 

The statistical results of the previous section were derived assuming the true 

noise power o2 were known. Therefore, to be precise, the statistical curves should 
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overlay simulations only when the true o2 (known to the programmer) is used in 

(3.37). Using the true u2 could be numerically hazardous if it is the case that 

Fa2 is very close to AN, the minimum eigenvalue of 8, since then f( of (3.37) 
would approach singularity as is seen in (2.28) with the eigen-decomposition of f 
replacing that of I’. 

Figure 5 is included in order to verify that the following simulations which 
in (3.37) are numerically sound. use the true noise variance u2 rather than 

Six trials runs were made with unity noise variance. The minimum eigenvalue 

of &K is plotted as the number of snapshots K is increased. The figure shows 

that using the true u2 in (3.37) is numerically sound for F 5 0.9 and K 2 1500. 
In fact, it has been found that it makes very little difference in the simulation 

results whether true or estimated noise variance is used in (3.37) since XK is a 

“good” estimate of u2 for K and F values in the regions of interest. Thus, we can 

proceed with the understanding that, in these regions of interest, the statistical 

theory developed in the previous section applies independent of whether true or 

estimated noise variance is used in the weight estimate equation (3.37). 

I 

’ 

3.3.4 Varying the Fraction F 

The scenario of Section 2.2 is used in all that follows. Let us begin by observing 

the performance of the modified algorithm for different values F. Figures 6, 7, and 

8 are plots of the output INR and SINR where F = 0, F = 0.8, and F = 0.9, 
respectively. Four typical trial runs were made for each value of F. The same set 
of noise seeds were used for each plot for purposes of comparison. Remember that 

F = 0 corresponds to standard SMI. These figures demonstrate the degradation 

in the SINR as F is increased. They also suggest that the increased interference 

suppression comes at the price of having to increase the number of snapshots in 

the covariance estimate to achieve that suppression. For example, comparing 6 
and 7 we see that setting F = 0.8 increases interference suppression by about 

12dB compared to standard SMI although it takes approximately 30,000 more 

snapshots to get that additional suppression. For an application in which the 
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Figure 5: Six trials showing the minimum eigenvalue of &K approaching the true 
noise variance a2 = 1 as the number of snapshots K in the covariance estimate 

increases. 
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signal environment changes sufficiently fast, increasing K may not be practical. In 

the application considered here, however, it may very well be practical. 

Rather than look at power ratios let us back up and look at the powers them- 

selves in order to see where the problem lies. Figures 9-11 show the desired signal 
power Po of (3.8) for F = 0, F = 0.8, and F = 0.9, respectively. Similarly, 

Figures 12-14 and Figures 15-17 show the interference powers and noise powers, 

respectively. The statistical bias and 95% confidence intervals resulting from the 

statistical analysis of the previous section overlay the four trial runs and the infinite 

snaphot curve. 

In all cases the statistical curves and the trial runs seem to agree rather well. 

The plots show that the bias and variance of the output powers tend to increase 

with the fraction F. 
The outstanding feature of this group of plots is the comparatively large bias 

and variance of the interference signal power. Specifically, for F = 0.9, after 50,000 

snapshots the difference between the upper bound of the confidence interval and 

the infinite snapshot interference level is about 7.5 db whereas it is only 1.25dB 

and 0.03dB for noise and desired signal powers, respectively. The explanation is 

intuitive from an array pattern viewpoint. Since the modified SMI algorithm is 

designed to maximize MSINR it will “try” to form a pattern null in the interference 

signal direction. As a result, the gain of the pattern in the interference direction 

and therefore the interference power will be extremely sensitive to inaccuracy in 
the covariance estimate. In fact, as F is increased the null should steepen and 

the interference power bias and variance should increase. On the other hand, the 

slope of the pattern in the desired signal direction should be small since the pattern 

maximum occurs near this direction, hence, the small variance in the desired signal 
power. If the environment changes slowly, as it does in the satellite communication 

application, then perhaps the present performance is satisfactory. However, we 

shall proceed under 

to achieve a certain 

the assumption that it is desirable to require fewer snapshots 

level of performance. 
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Figure 6: Plot of output INR and SINR versus number of snapshots K for F = 0 
shows 4 trials, true covariance curve, bias curve, and 95% confidence interval for 

each. 
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Figure 7: Plot of output INR and SINR versus number of snapshots K for 
F = 0.8 shows 4 trials, true covariance curve, bias curve, and 95% confidence 

interval for each. 
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Figure 8: Plot of output INR and SINR versus number of snapshots K for 
F = 0.9 shows 4 trials, true covariance curve, bias curve, and 95% confidence 

interval for each. 
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Figure 9: Plot of output desired signal power Po versus number of snapshots K 
for F = 0.0 shows 4 trials, true covariance curve, bias curve, and 95% confidence 

interval. 

I 
I 35 



0.1 

0.05 

0.0 

-0.05 

-0.1 

-0.15 

-0.2 

-0.25 

-0.3 

-0.35 

-0.4 

OUTPUT SIGNAL POWER VS SAMPLE SIZE K 

\,,--- 

I I I I I I I I I 

0 5 10 15 20 25 30 35 40 45 50‘ 

SAMPLE SIZE K * loA 03 

Figure 10: Plot of output desired signal power Po versus number of snapshots K 
for F = 0.8 shows 4 trials, true covariance curve, bias curve, and 95% confidence 

interval. 
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Figure 11: Plot of output desired signal power Po versus number of snapshots K 
for F = 0.9 shows 4 trials, true covariance curve, bias curve, and 95% confidence 

interval. 
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Figure 12: Plot of output interference signal power PI versus number of 
snapshots K for F = 0.0 shows 4 trials, true covariance curve, bias curve, and 

95% confidence interval. 
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Fi ure 13: Plot of output interference signal power PI versus number of 

95% confidence interval. 
snaps a ots K for F = 0.8 shows 4 trials, true covariance curve, bias curve, and 
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Fi ure 14: Plot of output interference signal power PI versus number of 

95% confidence interval. 
snaps fl ots K for F = 0.9 shows 4 trials, true covariance curve, bias curve, and 
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Figure 15: Plot of output noise power Pt7 versus number of snapshots K for 
F = 0.0 shows 4 trials, true covariance curve, bias curve, and 95% confidence 

interval. 
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Figure 16: Plot of output noise power Pv versus number of snapshots K for 
F = 0.8 shows 4 trials, true covariance curve, bias curve, and 95% confidence 

interval . 
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Figure 17: Plot of output noise power Pv versus number of snapshots K for 
F = 0.9 shows 4 trials, true covariance curve, bias curve, and 95% confidence 

interval. 
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3.3.5 Omitting Noise Eigenvectors from the Weight Expression 

Recall from Section 2.3 that the true SMI weights can be written as a linear 
combination of the eigenvectors of the true covariance @ (2.31) and that ideally 

the weights depend only on the true principal eigenvectors. We can take advantage 

of this a priori knowledge by truncating the sum in (2.31) so as to include just the 

principal eigenvectors (i.e. change the upper limit from N to M+1). The hope is 

that by excluding the noise eigenvector estimates, the pattern null in the interfer- 

ence direction may be more stable and hence better interference power performance 

may result. Of course, one may also argue that the estimated noise subspace $1~ 

corresponding to the covariance estimate will actually have non-zero projection 

onto the true signal subspace S and so excluding the noise eigenvector estimates 

may degrade interference power performance. 

The results of the truncation are interesting. Figures 18 and 19 show the 
weights on the main and first auxiliary elements, respectively, with all eigenvec- 

tors included and F = 0.8. These are the weights that led to Figures 7, 10, 13, 
and 16. Figures 20 and 21 are the same weights except that only the principal 

eigenvectors have been used. Comparing the figures we see that without the noise 

eigenvectors the array weights have indeed converged much more quickly. How- 

ever, what really matters is the performance of the array with respect to the output 

powers. Figures 22-24 show the output powers of the array corresponding to the 
“calm” weights based on only the principal eigenvectors. Compare these with 

Figures 10, 13, and 16, respectively. Somewhat surprisingly, what seems to be a 

significant improvement in the weight performance has led to very little change in 

the desired and interference signal powers, although it has made the noise power 

performance ideal. 

To understand these observations, consider the desired and interference por- 

tions of the array output signal where the estimated weights of (3.37) have been 

used. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

44 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

220.0 

210.0 

f 200.0 

fi lm0 

c 

g 180.0 

170.0 

140.0 

40.0 

8 90.0 
& - 20.0 h 10.0 

b 0.0 

z -10.0 

-20.0 f 8 30.0 

40.0 

MAIN ANTENNA WEIGHT VS SAMPLE SIZE K 

0 6 1 0 1 5 2 0 2 5 3 0 % 4 0 * ~  

SAMPLE SIZE K 'lo" 03 

MAIN ANTENNA WEIGHT VS SAMPLE SIZE K 

0 5 10 15 20 25 30 35 40 45 50 

SAMPLE SUE K 'loL 03 

Figure 18: Real and imaginary parts of main element weight W1 versus number 
of sna shots K for F = 0.8 shows 4 trials, true covariance curve, bias curve, and 

9 5 8  confidence interval. All eigenvectors are used in the weight expression. 
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Figure 19: Real and imaginary parts of first auxiliary element weight W2 versus 
number of snapshots K for F = 0.8 shows 4 trials, true covariance curve, bias 

curve, and 95% confidence interval. All eigenvectors are used in the weight 
expression. 
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Figure 20: Real and imaginary arts of main element weight W1 versus number 
of snapshots K for F = 0.8 s E ows 4 trials and true covariance curve. Only 

principal eigenvectors are used in the weight expression. 
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Figure 21: Real and imaginary parts of first auxiliary element weight W2 versus 
number of snapshots K for F = 0.8 shows 4 trials and true covariance curve. 

Only principal eigenvectors are used in the weight expression. 
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From (2.11), (2.4), (2.5), (2.16), and (2.31) we may write 

where the c’s are some unity-magnitude scalars and the true covariance eigen- 

decomposition has been replaced with its K-snapshot-based estimate. In the final 

expression, the third bracketed term contains the weight components (conjugate 

transposed) that are left out in the noise eigenvector truncation and thus the 

second line of the last expression gives the components of the output desired and 

interference signals that are excluded by the truncation. If the true covariance were 

used, the third bracketed term would be zero since = 0 for M + 2  5 n 5 N .  
However, since estimated eigenvectors are used, the third bracketed term is not zero 

and in fact is significant because of the small denominator Xn - Fa2.  Hence, upon 

omitting the noise eigenvectors the weights calmed down notably. Though the third 

bracketed term of (3.38) causes noticeable “jumpiness” in the weights, it multiplies 

an approximately orthogonal vector (the fourth bracketed term of (3.38)) so that 

the second line of (3.38) is small. This observation explains why excluding the noise 

eigenvectors did not significantly affect the output desired and interference signal 
powers. From the array pattern perspective, excluding the noise eigenvectors from 

the array weight expression does not greatly affect the array pattern in the signal 

and interference directions. In almost all other directions, however, the pattern 

does “calm down” resulting in the greatly improved noise power performance which 

we observed. In conclusion, although we cannot hope to significantly improve 

interference power performance by excluding noise eigenvectors from the weight 

estimate, we can significantly improve array performance with respect to output 

noise power. 

, 
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Fi ure 22: Plot of output desired signal power Po versus number of snapshots K 
for F = 0.8 shows 4 trials and the true covariance curve. Weights were found 

using only the signal eigenvectors. 

50 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
'I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

OUTPUT INTERFERENCE POWER VS SAMPLE SIZE K 
-25 

-30 

-35 

-40 

-45 

-50 

-55 

-60 

0 5 10 15 20 25 30 35 40 45 50 

SAMPLE SIZE K '10' 03 

Fi ure 23: Plot of output interference signal power PI versus number of 

were found using only the signal eigenvectors. 
snaps fi ots K for F = 0.8 shows 4 trials and the true covariance curve. Weights 

51 



OUTPUT NOISE POWER VS SAMPLE SIZE K 
-6 

-7 

-a 

-9 

-1 3 

-1 4 

-1 5 

-1 6 

0 5 10 15 20 25 30 35 40 45 50 

SAMPLE SIZE K Y O A  03 

Figure 24: Plot of output noise power Pv versus number of snapshots K for 
F = 0.8 shows 4 trials and the true covariance curve. Weights were found using 

only the signal eigenvectors. 
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3.3.6 Characterization of Sample Covariance Errors 
e 

Can the type of error occurring in the sample covariance matrix @ K  be char- 

acterized? To address this question we express the sample covariance using (3.34), 

(3.35), and (3.36) in (3.1) with one interference signal ( M  = 1) as 

I, 

(3.39) 

‘ The first line of the last expression approaches @ with probability 1 as K + 00 

whereas the rest of the terms approach 0. We shall say that the second line 

consists of the desired-interference crossterms (DICT), the third line consists of 

desired-noise crossterms (DNCT), and the last line consists of interference-noise 

crossterms (INCT). Since the formation of &I( is under the programmer’s control 

it is possible to observe the effect of a particular type of crossterm (for example 
DICT, DNCT, or INCT) by omitting the other crossterms of (3.39). Figures 25-28 
show the power ratios and powers if the sample covariance matrix is formed as 

6~ = G D  + G11 + (1/K) Cf==, X,kX$.. Similarly, Figures 29-32, 33-36, and 37, 
show the results for forming 6~ = @ + DICT, 6~ = @ + DNCT, and &I< = @ 

+ INCT, respectively. 

From Figures 25-28 we see that the error in the estimate of @v causes only 

a moderate degradation in performance when compared to the “all-crossterms” 

performance shown in Figures 7, 10, 13, and 16. The performance of each power 

is degraded since any crossterms involving noise will alter both noise and signal 
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Figure 25: Plot of output INR and SINR versus number of snapshots K for 

the true covariance curve. 
F = 0.8 and = @ p ~  + 911 + (1/K) X,hX$. Shows 4 simulations and 
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Figure 26: Plot of output desired signal power Po versus number of snapshots K 
for F = 0.8 and &K = <Po + 911 + (1/1<) Cf-, X,kX$. Shows 4 simulations 

and the true covariance curve. 
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Figure 27: Plot of output interference signal power PI versus number of 

simulations and the true covariance curve. 
snapshots K for F = 0.8 and 4~ = Q ~ D  + + (1/K) X rlk X H  gk. Shows4 
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Figure 28: Plot of output noise power Pv versus number of snapshots K for 
F = 0.8 and 4~ = @D + $11 + (1/K) ELL, X,kX$. Shows 4 simulations and 

the true covariance curve. 
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eigenvectors of &IC. The power ratios for the <p + INCT simulations appear in 

Figure 37 where only the sensitive interference powers are non-ideal. 

The above errors are relatively small because llXvkll, IJXI1kII << IIXD~II in our 
scenario. By the same reasoning, one would argue that the performance degra- 

dation due to the DICT and DNCT should be relatively large since they both 

involve the desired signal and, in addition, should be of the same order since the 

interference and noise powers are about the same. This is somewhat the case as 

seen in Figures 29-36. Again, all powers are affected by the DNCT because noise 

is involved. Notice that the DICT which were used in Figures 29-32 seem to ex- 
clusively affect the interference power. One (as yet unjustified) explanation for 

this observation is that the DICT tend to alter the signal eigenvectors more than 

the noise eigenvectors. Small deviations in the signal eigenvectors can lead to big 

jumps in interference power since the interference enters the array in the vicinity 
of a null whereas the desired signal power may remain calm because the pattern 

maximum occurs near the desired signal arrival angle. 

Earlier it was suggested that crossterms involving the desired signal tend to 

be relatively large because IIXD~II is relatively large. We can be more specific by 

noting that it is only the first element of X D k  that is large due to the high gain of 

the main array element required for a strong desired signal. This observation in 

turn implies that the most harmful crossterms in &K should occur in its first row 

and first column. To test this, a simulation was run in which the covariance matrix 

was formed in the normal manner (i.e. with all of its crossterms) and then modified 

by replacing its first row and column with those of the true covariance 9. The 

results of these simulations shown in Figure 38 represent near-ideal performance 

(only small interference power fluctuation) and thus serve to illustrate how a high- 

gain element is harmful. 

3.4 Summary 

The purpose of this chapter has been to study the performance of the mod- 

ified SMI algorithm when the true covariance matrix is replaced by an estimate, 
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Figure 31: Plot of output interference power versus number of snapshots K for 
F = 0.8 and 6~ = @ + DICT. Shows 4 simulations and the true covariance 

curve. 
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Figure 32: Plot of output noise power versus number of snapshots I{ for F = 0.8 
and 6~ = @ + DICT. Shows 4 simulations and the true covariance curve. 
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Figure 33: Plot of output INR and SINR versus number of snapshots K for 
F = 0.8 and &I{ = + DNCT. Shows 4 simulations and the true covariance 

curve. 
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Figure 34: Plot of output desired signal power versus number of snapshots K for 
F = 0.8 and 6~ = <I, + DNCT, Shows 4 simulations and the true covariance 

curve. 
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Figure 35: Plot of output interference power versus number of snapshots K for 
F = 0.8 and 81~ = @ + DNCT. Shows 4 simulations and the true covariance 

curve. 
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Figure 36: Plot of output noise power versus number of snapshots IC for F = 0.8 
and &I( = @ + DNCT. Shows 4 simulations and the true covariance curve. 
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II 
as is done in practice. First, the sample covariance matrix was defined. Then, 

statistical theory based on the sample covariance matrix was developed in order 

to characterize the weight and output power performance of the modified SMI 

array with fraction F and K available snapshots. It was noted that much of this 

theory is applicable to any signal scenario including wideband signals. The sim- 

ulations were introduced by describing the form of a signal snapshot. Next, the 

minimum eigenvalue of the sample covariance matrix was shown through simula- 

tion to be a good estimate of the noise power and hence can be used in practice to 

implement the diagonal subtraction required in the modified SMI algorithm. The 

statistical theory was tested by overlaying Monte Carlo simulations with expected 

value curves and confidence intervals for a particular weak interference scenario 

and various choices of fraction F; good agreement was found. The observation 

made in the previous chapter, that the true modified SMI weights are not depen- 

dent on the noise eigenvectors of the covariance matrix, was followed up in this 

chapter. Simulations showed that omitting the noise eigenvectors leads to greatly 

improved output noise power performance but the more crucial interference and 

desired signal powers are left unimproved. The chapter concluded by studying the 

severity of different cross-terms that comprise the error in the covariance matrix 

estimate. This study gave insight into the nature of the weight estimation problem 

and generated several handy rules-of-t humb. 
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Figure 37: Plot of output INR and SINR versus number of snapshots I{ for 
F = 0.8 and 6~ = @ + INCT. Shows 4 simulations and the true covariance 

curve. 

68 

I 
I 
I 
I 
I 
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

OUTPUT INR & SINR VS SAMPLE SIZE K 
20 

15 

10 

5 

0 

-5 

-1 0 

-1 5 

-20 

-25 

-30 

-35 

-40 

0 5 10 15 20 25 30 35 40 45 50 

SAMPLE SIZE K *loA 03 

Figure 38: Plot of output INR and SINR versus number of snapshots K for 
F = 0.8 and &K simulated normally (all crossterms but with its first column 

the true covariance curve. 
and row replaced with those of the true covariance 2 . Shows 4 simulations and 
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CHAPTER IV 

Performance of an Experimental Modified SMI Array 

The modified SMI algorithm has been implemented on an existing experimen- 

tal array built by Ward, et. al. [3], [4]. The details concerning the implementation 

of the algorithm on the experimental system and a study of its large K performance 

have been previously documented [5 ] .  In this thesis, we continue the experimen- 

tal study by testing the performance of the experimental array as a function of 

the number of snapshots K used in the covariance matrix estimate (i.e. small K 
performance). The experimental small I< performance is judged in terms of the 
statistical theory developed in the previous chapter. We begin with a brief intro- 
duction to the experimental system. We then discuss the experiments conducted 

using this system and summarize the main results. 

' 

4.1 Description of the Experimental System 

The experimental modified SMI array is fully adaptive and has three elements. 

The system operates in a narrowband signal environment consisting of a desired 

signal arriving from broadside and up to two interference signals arriving from 

arbitrarily chosen directions. One of the three elements, termed the main element, 

is highly directive and is pointed in the desired signal direction. The other two 

elements are called the auxiliary elements and have only moderate gain. 

A block diagram of the experimental system appears in Figure 39. The system 

has three main blocks, designated signal simulator, array simulator, and array 

processor. The signal simulator has three outputs; the desired signal and the first 

and second interference signals. The array simulator combines these signals and 

adds noise to yield three outputs which represent the three signals received by the 
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I 
experimental array. In the array processor, the received signals are sampled, and 

the analog weights are applied. The weighted signals are then summed to form 

the array (processor) output. The system computer interacts with each of these 

main components for the purposes of signal timing control, signal level control, 

weight computation, and performance evaluation (calculation of signal powers). A 
special pulse modulation technique implemented in the signal simulator separates 

the desired and interference signals in time and thus makes it possible to calculate 

the desired, interference, and noise powers from the samples of a particular signal. 

In order to save hardware, the weights are always normalized so that the main 

element weight is unity. The system operates at 69 MHz with a bandwidth of 6 

MHz. 

4.2 Comparison of Experimental Results with Statistical Theory 

Experimental results have been obtained for a typical weak interference sce- 

nario. In this scenario, the SNR in the main element SNR(main) is 17.17dB and is 

negligible in the auxiliary elements. A single interference is present with INR(main) 

=-2.08dB, INR( auxl)=O.OgdB, and INR(aux2)=-15dB. The interference signal ar- 

rives 21' from broadside for half-wavelength element spacing. The noise power is 

the same in each element. Note that the third element is required when the desired 

signal and one interference signal are present so that the minimum eigenvalue of 

the covariance matrix will represent an estimate of the noise power. 

Three trial runs of the experimental modified SMI array were made. For each 

trial, and for equally-spaced K values ranging from 2000 to 28000 snapshots, the 
modified SMI weights were calculated for F = 0, F = 0.7, F = 0.9 and applied 

to the system. The weights and output signal powers (desired, interference, and 

noise) were estimated at each step. In addition, the statistical theory of Chapter 

3 was applied to the above signal scenario so that curves representing expected 

value and confidence intervals might overlay the experimental system trials. 

Figure 40 shows the output SINR and INR of the experimental system and 

the corresponding statistical curves for the cases F = 0, F = 0.7, and F = 0.9. 
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Increasing F from 0.0 to 0.9 gives a 12 dB improvement in the experimental output 

INR after 28000 snapshots. Excellent agreement is observed between theoretical 

and experimental INR curves for all values of F. The same can be said of the SINR 

curves for small values of F. However, as the fraction F is increased to 0.9 the 

experimental output SINR shows degradation up to 3.5dB beyond that predicted 

by theory even after 28000 snapshots are used in the covariance matrix estimate. 

In order to examine this behavior more closely it is helpful to observe the signal 

powers themselves. 

Figure 41 shows the output desired signal power curves for F = 0, F = 0.7, 
and F = 0.9. From Figure 41 we see that the desired signal power is certainly 
not the cause of the experimental SINR degradation noted above since excellent 

agreement is observed between theoretical and experiment a1 desired signal power 

curves. Note that the desired signal power has relatively small variance and changes 

very little as a function of F. The explanation for these observations is that the 

input desired signal power in the auxiliary elements is very small and thus the 

choice of weights does not affect the output desired signal power. 

Figure 42 shows the output interference power for F = 0, F = 0.7, and 

F = 0.9. Again we see very reasonable agreement between experiment and theory 

for all three values of F. The ideal (infinite-K) interference suppression (horizontal 
line) increases as expected from -25db to -32dB to -40dB as F is increased from 0 
to 0.7 to 0.9. It is more practical to note that the upper bound of the confidence 
interval decreases by approximately 10 dB over these values of F. In other words, 
we see that the interference power variance increases as F increases. Note again 

that the experimental behavior of the interference power is not responsible for 

the degraded SINR observed in Figure 40, especially since the output interference 

power is small compared to the noise power. 

Figure 43 shows the output noise power curves for the three values of F. The 

experimental noise power performance is seen to degrade with respect to that 

predicted by theory as F increases. For F = 0.9 the experimental noise power 

curves are as much as 3db higher than the confidence interval upper bound. The 
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Figure 40: Output INR and SINR versus number of snapshots I(. Each plot 
shows 3 experimental trials, the infinite sample value, expected value, and 95% 
confidence interval for the SINR and INR. (a) F = 0, (b) F = 0.7, ( c )  F = 0.9. 
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Figure 41: Output desired signal power versus number of snapshots IC. Each plot 
shows 3 experimental trials, the infinite sample value, expected value, and 95% 

confidence interval. (a) F = 0, (b) F = 0.7, (c) F = 0.9. 
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Figure 42: Output interference signal power versus number of snapshots K .  Each 
plot shows 3 experimental trials, the infinite sample value, expected value, and 

95% confidence interval. (a) F = 0, (b) F = 0.7, (c) F = 0.9. 
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high noise power accounts for the degradation in the experimental output SINR 

observed in Figure 40 (c). 

Recall that the main element weight has been normalized to unity and that 
the interference power in the second auxiliary is relatively small. It follows that 

the first auxiliary element should be most active in suppressing the interference 

signal in the main element. However, the above reasoning holds less and less as F 
approaches 1 since the noise power which may be added by the second auxiliary 

element is “of less and less concern” to an array which maximizes the MSINR of 

(2.20). 
Figures 44-46 show the first auxiliary weight for F = 0, F = 0.7, F = 0.9, 

respectively. It is seen that the weights do lie in the regions predicted by theory 

and that as F increases, the variance of the weight increases as usual. Putting the 

experimental results aside for a moment, consider the ideal (infinite-IC) values of 

the first auxiliary element weight for the three values of fraction. F’rom Figures 

44-46 we see that the phase of all three ideal weights is approximately -116O and 

that the magnitude of the ideal weights increases (with F) from 0.39 to 0.60 to 

0.69. These values are intuitive in that the phase of the weight should be fixed 

by the arrival angle of the interference signal. Furthermore, as F increases, the 

magnitude of the weight increases to yield greater interference suppression (while 

at the same time allowing increased output noise power) in order to maximize the 

MSINR. 
Since the INR(aux2) is 15dB less than INR(auxl), reasonable changes in the 

second auxiliary weight have little affect on the output interference power, whereas 

the same changes can have a large impact on the output noise power of the array. 

In fact, it may be apparent that this second auxiliary element is the cause of the 
unexplained experimental output noise power performance of Figure 43( c). 

To check the above hypothesis, the second auxiliary element weight is plotted 

for F = 0.9 in Figure 47. In this figure we see, again, that the experimental results 

fit the theoretical predictions. The interesting feature of this plot is the relatively 

large variance when compared to that of the first auxiliary weight. In particular, 
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Figure 43: Output noise power versus number of snapshots IC. Each plot shows 3 
experimental trials, the infinite sample value, expected value, and 95% confidence 

interval. (a) F = 0, (b) F = 0.7, (c) F = 0.9. 
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Figure 44: Real and ima inary parts of the first auxiliary weight versus the 
number of snapshots K for t a e case F = 0. Each plot shows 3 experimental trials, 

the infinite sample value, expected value, and 95% confidence interval. 
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Figure 45: Real and imaginary parts of the first auxiliary weight versus the 
number of snapshots K for the case F = 0.7. Each plot shows 3 experimental 
trials, the infinite sample value, expected value, and 95% confidence interval. 
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(from Figures 46 and 47) the standard deviation for F = 0.9 and 30000 snapshots 

is just 0.2 for the first auxiliary weight whereas it is 1 for the second auxiliary 

weight. It is perhaps true in general that auxiliary elements with small input INR 
relative to that in other auxiliary elements of the array tend to have relatively 

high-variance weights. 

One may be tempted to think that if the weights lie within their confidence 

intervals then the output noise power should lie within its confidence interval. 

This is easily disproved by considering a simple numerical example. It is simple to 

calculate the theoretical output noise power given a set of weights and the noise 

power in each element. The array weights for F = 0.9 and K = 24000 (taken from 

the solid line experimental curve of Figures 46 and 47) are approximately 

*aurl = -0.23 -jO.73 

@au22 = 1.00 - j O . S O .  

However, due to a hardware constraint of the experimental system, the second 

auxiliary weight that was actually applied to the system had a magnitude of ap- 

proximately one. Note that this “clipping” of the second auxiliary element weight 

does not affect the output desired and interference signal powers since the desired 

and interference signals are nearly absent from the second auxiliary channel. The 

measured noise power in each element for this scenario is 

, 

I 

u2 = 0.0223. 

Using (2.18) and recalling that the main element is unity, the output noise power 

can be calculated as 

which is 1.7dB outside the confidence interval in Figure 43(c) and is close to the 

measured output noise power (solid line). The explanation of this behavior is 
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that the confidence intervals of the power plots, in particular Figure 43(c), were 

derived using the approximations of (3.30)-(3.32). Evidently, in this instance, those 
approximations combine with the nonlinear relationship between weight magnitude 

and output noise power in (4.1) to yield inadequate estimates of expected value 
and variance. 

4.3 Summary 

The expressions for expected value and variance of the array weights, output 
powers, and output power ratios have been compared with experimental results 

from a real modified SMI array which “receives” bench generated, narrowband sig- 

nals. T h e  experimental output desired signal power, output interference power, and 
array weights all agree with the statistical predictions. The experimental output 

noise power was a few dB higher than predicted for F = 0.9. The cause of this 

problem was found to be the high variance of the second auxiliary weight which in 
turn (it was argued) was due to the relatively small input INR to that channel. In 

pac t  ice, the auxiliary elements will have approximately uniform gain across the 

field of view and thus this situation should not occur. If this problem does occur, 

it may be solved by excluding the noise eigenvector from the sample covariance 

matrix inverse as done in Section 3.3.5. 
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Figure 46: Real and imaginary parts of the first auxiliary weight versus the 
number of snapshots K for the case F = 0.9. Each plot shows 3 experimental 
trials, the infinite sample value, expected value, and 95% confidence interval. 
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Figure 47: Real and imaginary parts of the second auxiliary weight versus the 
number of snapshots K for the case F = 0.9. Each plot shows 3 experimental 
trials, the infinite sample value, expected value, and 95% confidence interval. 
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CHAPTER V 

Conclusions 

This thesis has addressed the problem of suppressing weak interference sig- 

nals while maintaining a strong desired signal by using an adaptive antenna array 

and a modified version of the SMI weight assignment algorithm. First, the array 

weights which maximize a modified SINR were derived. The modified SINR is 

parameterized by a fraction F. As F ranges from zero to one, the array weights 
range from the standard SMI weights, which maximize the standard SINR, to 

weights which maximize the SIR. By choosing F between zero and one, the sup- 

pression of weak interference can be significantly enhanced at the modest expense 
of a slight decrease in SINR. This behavior was analyzed in detail; in particular, 

the eigen-decomposition of the covariance matrix was used to better understand 

the properties of the modified SMI algorithm. 
In practical applications, the true covariance matrix must be replaced by an 

estimate formed from a finite number of snapshot vectors. For a finite number of 

snapshots, the array weights are noisy and the performance of the modified SMI 
method will show a statistical fluctuation from its nominal level. The bias and 
variance of the array weights and output powers as functions of the fraction F 
and the number of snapshots I< were derived. These statistical measures allow a 

designer to determine what, for example, the expected output SINR of the system 

is as a function of the number of snapshots. It was found that, especially for 

fractional values F near one, it may take as many as 50,000 snapshots before the 

expected INR is close to the ideal (true covariance) INR with reasonable statistical 

confidence. The bias and variance estimates were compared with Monte Carlo 

simulations and good agreement was observed. 
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The statistical theory was used to predict the small K performance of an 

experimental modified SMI array. The comparison of the experimental results with 
the statistical predictions helps to verify the proper operation of the experimental 

modified SMI array. The statistical measures agreed with the experimental array 

trials in all but one case. For F = 0.9, the experimental output noise power 

did not agree with theory (3dB higher than predicted after 28000 samples). The 

discrepancy was caused by an element with relatively low (-15dB) input INR. This 

situation should be avoidable in practice. 

In order to further understand the limiting causes of the degraded performance 

due to covariance matrix estimation, we studied the effects of each crossterm in 

the covariance matrix estimate. These crossterms are present whenever a finite 

number of snapshots are used in the estimate and they approach zero as the num- 

ber of snapshots increases. It was found that crossterms involving a strong signal 
lead to a large degradation in the array performance. Crossterms involving noise 

tend to degrade desired, interference, and noise power performance. Crossterms 

involving only signals (not noise) tend to substantially degrade interference power 

performance but not noise power performance. Finally, it was observed that el- 

ements in the covariance matrix which involve a high-gain array element (strong 

signal) tend to have the most harmful effect on performance. 

The results of this research provide the array designer with theoretical tools 

to characterize the finite-snapshot performance of the modified SMI system. These 

theoretical measures were shown to have good agreement with the results obtained 

by Monte Carlo simulation. Since Monte Carlo simulation is computationally ex- 

pensive, significant savings in computer time can be gained by taking advantage of 

the theoretical tools provided here. In addition, the theoretical formulas provide 

a means for analytical manipulations and can be used to investigate array perfor- 

mance as a function of one or more system parameters; this is not possible with 

Monte Carlo simulation. 

This research will continue by investigating two further topics of concern. 

First, recall that throughout the thesis, it has been assumed that the desired 
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signal is not present in the auxiliary elements. This assumption has led to a very 

simple estimate of the steering vector. In practical systems the desired signal will 
be present to some extent in the auxiliary elements. In this case, a better steering 

vector estimate will be required in order that the weights not adapt to cancel the 

desired signal at the array output. Second, until now, the received signals have been 
bench generated and narrowband. The final step will be to test the experimental 

modified SMI array on real wideband satellite signals and to determine methods 

of quantitative performance evaluation. 
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