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Abstract: The fuel-optimal control problem arising in noncoplanar orbital 

transfer employing aeroassist technology is addressed. The mission involves 

the transfer from high Earth orbit to low Earth orbit with plane change. The 

complete maneuver consists of a deorbit impulse to inject a vehicle from a 

circular orbit to elliptic orbit for the atmospheric entry, a boost impulse 

at the exit from the atmosphere for the vehicle to attain a desired orbital 

altitude and finally a reorbit impulse to circularize the path of the 

vehicle. In order to minimize the total fuel consumption, a performance index 

is chosen as the sum of the deorbit, boost, and reorbit impulses. Application 

of Pontryagin minimum principle leads us to a nonlinear, two-point, boundary 

value problem, which is solved by using a multiple shooting method. 

Nomenc 1 at ure 

AI = 

A2 = C Sp H /2m 
LR 8 a 

b = RaFa 
CD : drag coefficient 

Cw: zero-lift drag coefficient . 

CL : lift coefficient 

lift coefficient for maximum lift-to-drag ratio CLR: 
D : drag force 

E : maximum value of WD 

g : gravitational acceleration 
m 

H : altitude 

R : Hamiltonian 

i : inclination 

J : performance index 
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K :  

L :  

m :  

R :  

R :  

R :  
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s :  
t :  

v :  
v :  

B :  

7 :  

* :  

u :  

e :  

t P :  

6 :  

A :  

C I :  

T ) =  

P :  

7 :  

AV : 

Av : 

induced drag factor 

lift force 

vehicle mass 

distance from Earth center to vehicle center of gravity 

radius of atmospheric boundary 

radius of low Earth orbit 

radius of high Earth orbit 

radius of Earth 

aerodynamic reference area 

time 

velocity 

normalized velocity 

inverse atmospheric scale height 

f 1 ight path angle 

heading angle 

bank angle 

down range angle 

cross range angle 

normalized density 

costate (Langrange) variable 

gravitational constant of Earth 

cL’cLR 

density 

normalized time 

characteristic velocity 

normalized characteristic velocity 
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I 
Subscripts 

c : circularization or reorbit at LEO 

d : deorbit at HE0 

e : entry to atmosphere 

f : exit from atmosphere 

8 
1 
I s : surface level 

I. INTRODUCTION 

The main function of the space transportation system is to deliver 

payloads from Earth to various locations in space. Until now, this function 

has been performed by various rockets, the space shuttle, and expendable 

upper stages using solid or liquid propellants. In particular, considering 

the economic benefits and reusability, an orbital transfer vehicle (OTV) is 

proposed for transporting payloads between low Earth orbit (LEO) and high 

Earth orbit (EO). The two basic operating modes contemplated for OTV are a 

ground-based OTV which returns to Earth after each mission and a space-based 

OTV which operates out of an orbiting hanger located at the proposed Space 

Stat ion. 

In a typical mission, a space-based OTV, which is initially at the space 

station orbit (SSO), is required to transfer a payload to geosynchronous 

Earth orbit (CEO), pick up another payload, say a faulty satellite, and 

return to rendezvous with the orbiting hanger at SSO for refurbishment and 

redeployment of the payload. The OTV on its return journey from CEO to SSO 

needs to dissipate some of its orbital energy, This can be accomplished by 

using an entirely propulsive (Hohmann) transfer in space only or a 

combination of propulsive transfer in space and aeroassisted maneuver in the 
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atmosphere. It has been established that a significant fuel savings and hence 

increased payload capabilities can be achieved with propulsive and 

aeroassisted maneuvers instead of all-propulsive maneuvers'. This leads to an 

aeroassisted orbital transfer vehicle (AOTV), which on its return leg of the 

mission, dips into the Earth's atmosphere, utilizes atmospheric drag to 

reduce the orbital velocity and employs lift and bank angle modulations to 

achieve a desired orbital inclination. Basically, the AOTV performs a 

synergetic maneuver, employing a hybrid combination of propulsive maneuver in 

space and aerodynamic maneuver in the atmosphere. ' 

It is believed that the concept of aeroassisted orbital transfer opens 

new mission opportunities for the space transportation system, especially 

with regard to the establishment of the permanent space station. Fig. 1 shows 

the space transportation architecture relevant to aeroassist technology. The 

optimization of fuel is an important aspect of orbital transfer missions. 2-7 

In this paper, we address the fuel-optimal control problem arising in 

noncoplanar orbital transfer employing aeroassist technology. The maneuver 

involves the transfer from HE0 to LEO with a plane change and at the s a m e  

time minimization of the fuel consumption. It is known that the change in 

velocity, also called the characteristic velocity, is a convenient measure of 

fuel consumption. For the minimum-fuel maneuver, the objective is then to 

minimize the total characteristic velocity for deorbit, boost, and reorbit 

(or circularization) for a specified change in inclination angle. Application 

of Pontryagin minimum principle leads us to a nonlinear, two-point, boundary 

Jalue problem (TPBVP), which is solved by using a multiple shooting 

met hod. 8-10 
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I I .  BASIC EQUATIONS 

For the orbital transfer problem, the following assumptions are made. 

(i) The initial HE0 and final LEO orbits are circular. (ii) The mission is 

comprised of three impulses. (iii) The vehicle is represented as a constant 

point mass during atmospheric pass. (iv) A Newtonian inverse square 

gravitational field is used. (VI Earth’s rotation is neglected. (vi) The 

atmosphere is exponential. (vi11 The vehicle has a parabolic drag polar. 

The complete mission from HE0 to LEO with atmospheric pass is depicted 

in Fig. 12. It is composed of three impulses: first, a deorbit impulse AVd at 

HE0 to inject the vehicle into a HEO-entry elliptic orbit, second, a boost 

impulse AVb at the exit from the atmosphere for the vehicle to attain 

sufficient velocity to travel along an exit-LEO elliptic orbit, and finally, 

a circularizing impulse AVc to circularize the path of the vehicle. 

Consider the basic equations of motion for different phases of deorbit, 

aeroassist (or atmospheric flight), boost and reorbit (or circularization). 

Deorbi t 

Initially, we assume that the spacecraft is in a circular orbit of 

radius Rd, well outside the Earth’s atmosphere, moving with a circular 

velocity Vd = q. Deorbit is performed by means of an impulse AVd, to 
transfer the vehicle from the circular orbit to elliptic orbit with perigee 

low enough to intersect the dense part of the atmosphere [Fig. 21. Since the 

elliptic velocity at D is less than the circular velocity at D, the impulse 

AVd is executed so as to oppose the circular velocity Vd. The deorbit impulse 

AVd causes the vehicle to enter the atmosphere of radius R a with a velocity 

V and flight path angle 7 . It is known that the optimal-energy loss 
e e 
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maneuver from the circular orbit is simply the Hohmann transfer and the 

impulse is parallel and opposite to the instantaneous velocity vector. 

Using the principle of conservation of energy and angular momentum at 

11 the deorbit point D, and the atmospheric entry point E, we get, 

Ve2/2 - p/Ra = (Vd-AVdl2/2 - p/Rd 

from which solving for AVd, we get 

AVd = - J2p(l/R -l/Rd)/[(Rd/R I2/cos 2 7 -13 
a a e 

(1) 

(2) 

(3) 

It is easily seen that the minimum value of the deorbit impulse AVdm 

obtained at r = 0, corresponds to an ideal transfer wherein the space 

vehicle grazes along the atmospheric boundary. To ensure proper atmospheric 

entry, the deorbit impulse AVd must be higher than the minimum deorbit 

impulse AVdm which is given by 

e 

AV dm = JcL/Ad - ]2p(l/R a -1/Rd)/[(Rd/R.)2-1] a ( 4 )  

Aeroassist (Atmospheric) Flight 

During the aeroassist (or atmospheric) flight, the vehicle performs a 

three-dimensional skip maneuver and using aerodynamic lift and bank angle 

achieves the necessary the plane change. In this process, the vehicle 

decelerates due to the atmospheric drag. 

The equations of motion for the vehicle during the atmospheric pass are 
2 

given below (Fig. 3). The kinematic equations are, 
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= Vsinr dt 

= Vcosycos@/Rcost# dt 

The force equations are 

- D - mgsinr dV 
dt 

m- = 

mV- d* = Lsincr/cosy - (mVh)cosycos@tant# 

L = CLpS3/2; D = CDpSV2/2; 

dt 

where , 
2 CD - - Cm + KCL 

p = p exp(-HP) 
8 g = p d ;  R = H + RE; 

Using the normalized variables, 

T = t/JF?/p ; v = V / q  

and the dimensionless constants, 

h = ma; b = R a p a ;  d = p/ps = exp(-WHa) 

T )  = cL/c,; cLR = fp 
in (51, we get the normalized form as 

dh - bvsinr dt- 

(6)  

(8a) 

8 



de - bvcosrcos# 
dr - (b-l+h)cos# 

i!L bvcosrsin@ 
d-c (b-l+h) 

dv Alb( 1+v2)bv2 - b2siny 

( b- 1 +h) ?E=- 

2 bvcosi b cos7 

(b-l+hJ- ( b- 1 +h) v2 
9 = A bvbvcosr + 
d t  2 

dllr A 2 wvVSina bvcosxosllrtand 

(8b) 

(8c) 

(8d) 

(8e) 

(8f 1 d t  cosr  (b-l+h) 

From the above equations of motion, we see c l e a r l y  t h a t  during the  

atmospheric maneuver, if the l i f t  vector L is ro ta ted  about the  ve loc i ty  

vector V through the bank angle Q, it creates a lateral force component Lsina 

orthogonal t o  the  v e r t i c a l  plane t h a t  has the effect of changing the heading 

angle #. A t  the  end of the maneuver, t h e  vehicle is already i n  vacuum and 

hence there is no l i f t .  The equations (5c) and (5f) f o r  the cross range angle 

$, and the heading angle 9, become , 2 

d#/dt - = -  - tan* 
dl(r/dt tan# 

integrat ion of which yields ,  

c o s ~ o s *  = cos1 

where, i is the  o r b i t a l  incl inat ion.  For small values of c ross  range angle $, 
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the orbital inclination I is given by the heading angle @ itself. Thus, the 

total change in the heading corresponds to the change in orbital inclination 

(plane change). 

Boost and Reorbit 

During the atmospheric flight, the vehicle performs the desired plane 

change and dissipates some energy due to atmospheric drag. Therefore, a second 

impulse is required to boost the vehicle back to orbital altitude. The vehicle 

exits the atmosphere at point F, with a velocity Vf and flight path angle r,. 

The additional impulse AVb, required at the exit point F for boosting into an 

elliptic orbit with apogee radius R and the reorbit impulse AV required to 

insert the vehicle into a circular orbit at point C, are obtained by using the 

principle of conservation of energy and angular momentum at the exit point F, 

and the circularization point C. Thus, we have, 

C 

11 

( V f + A V b ) R a ~ ~ ~ r f  = R (V -AV ) 
c c  c 

Solving for AVb and AVc from the above equations (10) and (111, 

AVb = lZp(l/R -1/R )/[1-(R /R ) 2 ~ ~ ~ 2 r f ]  - Vf 
a C a c  

10 
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Finally, the vehicle is in a circular orbit (of radius R 1 moving with 

the velocity Vc = m. 
C 

111. OPTIMAL CONTROL 

For the minimum-fuel maneuver, the objective is then to minimize the 

total characteristic velocity for a specified change in heading angle. A 

convenient performance index is the sum of the characteristic velocities for 

deorbit, boost, and reorbit. Thus, 

(14)  
C 

J = AVd + AVb + AV 

Where, AVd, AVb, and AV are the deorbit, boost, and reorbit characteristic 

velocities respectively, and are obtained from equations (2) and (11) as 

- (R /Rd)Vec0s(-;r 
*'d a e 

AV = - (R /R )(V +AVb)c0s;rf 
C a c  f 

(15) 

(16) 

Alternatively, AVd, AVb and AV are also given by equations (31, (121, 
C 

and (13) respectively. In the normalized form, the performance index becomes, 

J = Av = Av + Av + Avc (17) 
d b 

= yrT - (v /ad)cos(-r 1 (18) 
Avd "d e e 

Av C = qc - [(~~+Av~)/a~]cos~~ 

where, 

a d = Rd/ka; a = RcPa; Avd= A V d / m  a ; AV = AV /m a 

11 
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Let us note that for a given circular orbit of radius R , the impulses 
C 

AVb and AV are completely determined by the velocity Vf and the flight path 

angle 7, at the the atmospheric exit. The velocity V and the flight path 

angle ;re at the entry point are dependent only on the magnitude of the 

deorbit impulse AV For a specified atmospheric entry (i.e., for a given 

perigee altitude occurring within the atmosphere), we have a fixed value of 

AVd and hence fixed values of entry velocity V , and entry flight path angle 

;r as seen from (1) and (2). Therefore, the optimal control problem for the 

minimum fuel consumption is confined only to the segment of the trajectory 

e 

d' 

within the atmosphere. Hence, the performance index (141 is more 

appropriately written as 

J = AVd + A V b ( V f , r f )  + A V c ( V f , r f l  (20) 

Ideally, as seen from equation (121, the minimum value of boost impulse 

is zero, when the exit velocity Vf is made equal to the perigee velocity AV 

of the exit-LEO elliptic orbit. Also, the minimum value of reorbit impulse 

AV 

b 

is obtained when the vehicle exits with zero flight path inclination 7,. 
C 

The first step in the optimization procedure using Pontryagin principle 
2 is to formulate the Hamiltonian as 

b2sinr 
( b- 1 +h) 

H = A bvsinr + h {- Alb(l+qz)6v2 - 
h V 

2 bvcosr b cosr 
( b- l+h) 2v + A 3 - 2  (A bq6vcosc + 0- 

12 
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(21) 

where A’s are the costates corresponding to the states. The down range angle 

8 does not enter the right hand side of the equation (5) and hence need not 

be considered for the optimization process. 

The optimal control equations for lift and bank angle are given by 

leading to 

r)  = cLRw/cm2vh V ; tanr = h&osy 

where 

w =  

(22) 

(23) 

(24) 

The control CL is bounded by the aerodynamic characteristics of the vehicle. 

Thus, for the constrained control, 

The costate (adjoint) equations are given by 

13 

(25) 

(26a) 

(26b) 
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Boundary Conditions 

The initial and final boundary conditions are given for the normalized 

altitude h as 

h(r=O) = 1.0, h(r=rf) = 1.0 

and for the normalized velocity v, and the flight path angle 7 as 

2 2  2 2  
e d e (2-v )ad - 2a + v cos re = 0 

2 2  [2-(vf+AvbI2]a: - 2ac + (vf+Avb) cos 7, = 0 

(27a) 

(27b) 

( 27c 1 

The equations (27b) and (27~1 are obtained by eliminating AVd from equations 

(1) and (2) and eliminating AVc from equations (10) and (11) respectively. 

The remaining multiplier boundary conditions are obtained from the 

transversality conditions on the costates. Thus, the optimization procedure, 

requiring the solution of the state equations ( 8 )  and the costate equations 

(26) along with the boundary conditions given by equation (27) leads to a 

nonlinear TPBVP, which can only be solved by numerical methods. 

Multiple Shooting Method 

The multiple shooting method is a powerful method for solving nonlinear 

In solving any boundary value problem with the given initial and 8-10 TPBVP. 

final conditions, we assume additional initial data and integrate forward so 

that the solution satisfies the given final condition as well. This is also 

called a simple shooting method. However, the convergence of the solution is 

highly sensitive to the assumed initial data. The error due to inaccurate 

initial data can be made arbitrarily small by performing the integration over 

sufficiently smaller subdivided panels within the given interval and thereby 

14 



I 
8 
8 
t 
8 
I 
8 
8 
1 

leading to the multiple shooting method. Thus, the multiple shooting method 

is a simultaneous application of the simple shooting method at several points 

within the interval of integration. Here, the trajectory may be restarted at 

intermediate points using new guesses. Jacobian matrices are formed for each 

segment. The resulting iteration scheme, based on reducing all 

discontinuities at internal grid points to zero, leads to a system of linear 

algebraic equations. The corresponding OPTSOL code, developed by Deutsche 

Forschungs-und Versuchsanstalt fur Luft-und Raumfahrt ( D M R )  at 

Oberpfaffenhofen, West Germany, was used for solving the present problem. 

IV. NUMERICAL DATA AND RESULTS 

A typical AOTV configurationi2 with L./D of about 1.5 is shown in Fig. 4. 

The liquid oxygen is stored in two separate tanks to provide a tapered nose, 

and inflated chins are used to continue this tapering along the body. A large 

deployable flap is provided to trim the vehicle at low angles of attack for 

maximum W D  performance. A representative set of numerical values used for a 

complete mission from CEO to SSO at an altitude of 556 km is given below. 3,6 

Cm = 0.1; K = 1.11; m/S = 300 kg/m2 

PI8 = 1.225 kg/m3; 

f3 = 1/6900 m-'; RE = 6356.766 km 

H = 120 km; Rd = 42240.766 km; R = 6912.766 km 

p = 3.96772~10" m3/sec2 

a C 

Using the above mentioned data, the optimal solution has the following 

entry and exit status. 

Entry status: H = 120 km; V = 10305.58 m/sec e e 

= -6.0 degrees; f = 0; $e = 0 
'e 
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Exit Status: Hf = 120 km; Vf = 7462.35 dsec 

7, = 0.1595 deg; 

!bf = 24.1 deg; 

$f = 11.95 deg 

total flight time = 520 sec 

Characteristic velocities: 

Deorbit characteristic velocity, AVd = 1493.32 dsec 

Boost characteristic velocity, AVb = 490.77 dsec 

Reorbit characteristic velocity, AV = 124.61 dsec 

Total characteristic velocity AV = 2108.7 dsec 

C 

The complete mission in terms of the velocity profile is shown in Fig. 

5. Initially, the vehicle is in a circular orbit at CEO moving at a speed Vd 

= 3064.82 dsec. A deorbit impulse AVd = 1493.32 dsec is executed to fly the 

vehicle along the CEO-entry elliptic orbit. The elliptic velocity at the 

deorbit point D is vd = Vd - AVd = 1571.5 dsec. At the atmospheric interface 

E of altitude H = 120 km, the vehicle attains an orbital velocity V = 

10305.58 dsec. During the atmospheric maneuver, the velocity of the vehicle 

a G 

is depleted and the exit velocity is Vf = 7462.35 dsec. In order to attain 

the desired SSO altitude H = 556 km, a boost impulse AVb = 490.77 dsec is 

required at the exit F from the atmosphere. Then the elliptic velocity at the 

exit is vf = Vf + AVb = 7953.12 dsec. The vehicle travels then along the 

exit-SSO elliptic path and has a velocity v = 7451.47 m/sec at the reorbit 

point C. In order to insert the vehicle into a circular orbit at this 

altitude H = 556 km, a reorbit impulse AV = 124.61 Csec is imparted. The 

vehicle is now in a circular orbit at SSO moving with a speed of Vc = Vc + 

C C - 

AV = 7576.08 dsec. 
C 
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Fig. 6(a) shows the time history of altitude. The spacecraft enters and 

exits the atmosphere at the altitude of 120 km. The minimum altitude reached 

is 44.72 km. Fig. 6(b) shows a velocity reduction of 2843.23 m/sec. The 

profile of flight path angle with time is shown in Fig. 6(c). The spacecraft 

enters the atmosphere with an inclination of -6.00 degrees and exits with 

0.1595 degrees. The time history of cross range 4 is shown in Fig. 6(dl which 

has a value of 11.95 degrees at the end of the atmospheric maneuver. Fig. 

6(e) shows the variation of heading angle #, which shows that the atmospheric 

maneuver provides an orbital inclination of 24.1 degrees. 

The control history is shown in Fig. 7(a). The vehicle enters the 

atmosphere with maximum lift capability and decreases slowly during the 

remaining flight. Fig. 7(b) shows the variation of bank angle during the 

atmospheric flight. Initially the vehicle enters the atmosphere with a bank 

angle of 144.5 degrees to pull the vehicle into the atmosphere but slowly 

drops to about 75 degrees and maintain at a value of 96 degrees for most of 

the remainder of the flight. The lift-to-drag ratio is shown in Fig. 7(c). 

Fig. 8(a) shows the peak heating rate of 402.64 W/sq. cm. As shown in Fig. 

8(b), the peak dynamic pressure is 80.73 KN/sq. m. 

Fig. 9 shows the successive approximations of the altitude H, during the 

course of 0, 15, and 30 iterations in using the multiple shooting method. For 

the sake of clarity only 4 out of 20 intervals are shown. The initial 

guessed value for the altitude is 120 km at every interval. It can be seen 

how the initially large jumps at the subdivision points are "flattened out" 

with the increase of iterations. 
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v. CONCLUDINCREMARKS 

kit&iE-pap!Zch- we have addressed. the problem of minimization of fuel 

consumption during the atmospheric portion of an aeroassisted, orbital 

transfer with plane changeif The complete mission has required three 
b ,  r /  

~ I 
' /"> . /  . 
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characteristic velocities, a deorbit impulse at .do,' a boost impulse at the 
atmospheric exit, and a reorbit impulse at.Lk0. A performance index has been 

I- 
[ - t  7 , 

j 

formulated as the sum of these three impulses. Application of optimal control 

principles has led to a nonlinear, two-point, boundary value problem which was 

solved by using a multiple shooting algorithm. The strategy for the 

atmospheric portion of the minimum-fuel transfer is to start initially with 

the maximum positive lift in order to recover from the downward plunge, and 

then to fly with a gradually decreasing lift such that the vehicle skips out 

of the atmosphere with a flight path angle near zero degrees. 
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ABSTRACT: The fuel-optimal problem in noncoplanar orbital transfer employing 

aeroassist technology is addressed. The mission involves the transfer from 

high Earth orbit to low Earth orbit with plane change. The complete maneuver 

consists of a deorbit impulse to inject a vehicle from a circular orbit to 

elliptic orbit to enter the atmosphere, a boost impulse at the exit from the 

atmosphere for the vehicle to attain a desired orbital altitude and finally a 

reorbit impulse to circularize the path of the vehicle. In order to minimize 

the total fuel consumption, a performance index is chosen as the sum of the 

deorbit, boost, and reorbit impulses. For a typical aeroassisted orbital 

transfer vehicle with high lift-to-drag ratio, the simulations are carried out 

using the industry standard POST program. 

NOMENCLATURE 

AOTV: aeroassisted orbital transfer vehicle 

CEO: geosynchronous Earth orbit 

H :  

HE0 : 

J :  

LEO : 

OTV: 

R :  

RE : 

sso : 

v :  

7 :  

AV : 

altitude 

high Earth orbit 

performance index 

low Earth orbit 

orbital transfer vehicle 

distance from Earth center to vehicle center of gravity 

radius of Earth 

space station orbit 

velocity 

flight path angle 

characteristic velocity 

2 



Subscripts 

a : atmospheric boundary 

c : circularization or reorbit at LEO 

d : deorbit at HE0 

e : entry to atmosphere 

f : exit from atmosphere 

1. INTRODUCTION 

The main function of the space transportation system is to deliver 

payloadslfrom Earth to various locations in space. Until now, this function 

has been performed by various rockets, the space shuttle, and expendable upper 

stages using solid or liquid propellants. In particular, considering the 

economic benefits and reusability, an orbital transfer vehicle (OTV) is 

proposed for transporting payloads between low Earth orbit (LEO) and high 

Earth orbit (EO). The two basic operating modes contemplated for OTV are a 

ground-based OTV which returns to Earth after each mission and a space-based 

OTV which operates out of an orbiting hanger located at the proposed Space 

Stat ion. 

In a typical mission, a space-based OTV, which is initially at the space 

station orbit (SSO), is required to transfer a payload to geosynchronous Earth 

orbit (CEO), pick up another payload, say a faulty satellite, and return to 

rendezvous with the orbiting hanger at SSO for refurbishment and redeployment 

of the payload. The OTV on its return journey from CEO to SSO needs to 

dissipate some of its orbital energy. This can be accomplished by using an 

entirely propulsive (Hohmann) transfer in space only or a combination of 

propulsive transfer in space and aeroassisted maneuver in the atmosphere. It 

3 



has been established that a significant fuel savings and hence increased 

payload capabilities can be achieved with propulsive and aeroassisted 

maneuvers instead of all-propulsive maneuvers . This leads to an aeroassisted 
orbital transfer vehicle (AOTVI, which on its retbn leg of the mission, dips 

into the Earth's atmosphere, utilizes atmospheric drag to reduce the orbital 

velocity and employs lift and bank angle modulations to achieve a desired 

orbital inclination. Basically, the AOTV performs a synergetic maneuver, 

employing a hybrid combination of propulsive maneuver in space and aerodynamic 

maneuver in the atmosphere. 

1 

It is believed that the concept of aeroassisted orbital transfer opens 

new mission opportunities for the space transportation system, especially with 

regard to the establishment of the permanent space station. Fig. 1 shows the 

space transportation architecture relevant to aeroassist technology. The 

optimization of fuel is an important aspect of orbital transfer mis~ions~-~. 

In this paper, we address the fuel-optimal problem arising in noncoplanar 

orbital transfer employing aeroassist technology. The maneuver involves the 

transfer from HE0 to LEO with a plane change and at the same time minimization 

of the fuel consumption. It is known that the change in velocity, also called 

the characteristic velocity, is a convenient measure of the fuel consumption. 

For minimum-fuel maneuver, the objective is then to minimize the total 

characteristic velocity for deorbit, boost, and reorbit (or circularization). 

For a typical AOTV with high W D  capability, the simulations are carried out 

using the industry standard Program to Optimize Simulated Trajectories 

(FQST)'. Fuel-optimal trajectories are obtained for the given atmospheric 

entry, orbital inclination, and LEO altitude. 

4 
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2. MISSION DESCRIPTION 

The complete mission from “EO to LEO with atmospheric pass is depicted in 

Fig. 2. It is composed of three impulses: first, a deorbit impulse AVd at HE0 

to inject the vehicle into a “EO-entry elliptic orbit, second, a boost impulse 

AVb at the exit from the atmosphere for the vehicle to attain sufficient 

velocity to travel along an exit-LEO elliptic orbit, and finally, a 

circularizing impulse AV to circularize the path of the vehicle. 

Consider the different phases of deorbit, aeroassist (or atmospheric 

flight),) boost and reorbit (or circularization). 

Deorbi t 

Initially, we assume that the spacecraft is in a circular orbit of radius 

Rd, well outside the Earth’s atmosphere, moving with a circular velocity V = 

q. Deorbit is performed by means of an impulse AVd, to transfer the 
vehicle from the circular orbit to elliptic orbit with perigee low enough t o  

intersect the dense part of the atmosphere [Fig. 21. Since the elliptic 

velocity at D is less than the circular velocity at D, the impulse AVd is 

executed so as to oppose the circular velocity Vd. In other words, at point D ,  

the velocity required to put the vehicle into elliptic orbit is less than the 

velocity required to maintain it in circular orbit. The deorblt impulse AVd 

causes the vehicle to enter the atmosphere of radius R with a velocity Ve and 

flight path angle 7 . It is known that the optimal-energy loss maneuver from 
the circular orbit is simply the Hohmann transfer and the impulse is parallel 

d 

a 

e 

and opposite to the instantaneous velocity vector. 
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Using the principle of conservation of energy and angular momentum at the 

deorbit point D, and the atmospheric entry point E, we get', 

Ve2/2 - @Ra = (Vd-AVdI2/2 - p/Rd 

R a e  V  COS(-^^) = Rd(Vd-AVd) 

from which solving for AVd, we get 

A V ~  = JCVR, - 42p(i/~ a - I / R ~ ) / [ ( R ~ / R  a ) 2 / ~ ~ ~ 2 ~ e - i ]  

(1) 

(2) 

(3) 

It is easily seen that the minimum value of the deorbit impulse AVdm 

obtained at = 0, corresponds to an ideal transfer with the space vehicle 

grazing the atmospheric boundary. To ensure proper atmospheric entry, deorbit 

impulse AV must be higher than the minimum deorbit impulse AVd, which is 

given by 

e 

d 

Aeroassist, Boost, and Reorbit 

During the aeroassist (or atmospheric) flight, the vehicle is controlled 

by bank angle with a constant angle of attack to achieve the necessary 

velocity reduction (due to atmospheric drag) and the plane change. Due to the 

loss of energy during the atmospheric flight, a second impulse is required to 

boost the vehicle back to orbital altitude. 

The vehicle exits the atmosphere at point F, with a velocity Vf and 

flight path angle 7,. The additional impulse AVb, required at the exit point F 

for boosting into an elliptic orbit with apogee radius R and the reorbit 
C 
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impulse AV required to insert the vehicle into a circular orbit at point C, 

are obtained by using the principle of conservation of energy and angular 

momentum at the exit point F, and the circularization point C. Thus, we have, 

C 

( V f + A V b ) R a ~ o s r f  = R ( V  -AV ) 
c c  c 

Solving for AV and AV from the a-ove equa-ions (5) and (61, 
b C 

AV = - 12p(l/R -1/R )/[(R /R )2/cos2rf-1] 
C C a C c a  

(6 )  

Finally, the vehicle is in a circular orbit of radius R , moving with a 

velocity v = m. 
C 

C C 

3. OPTIMAL TRAJECTORIES 

For minimum-fuel maneuver, the objective is then to minimize the total 

characteristic velocity. A convenient performance index is the sum of the 

characteristic velocities for deorbit, boost, and reorbit. Thus, 

(9)  
C 

J = AVd + AV,, + AV 

Where, AVd, AVb, and AV are the deorbit, boost, and reorbit characteristic 

velocities respectively, and are obtained from (2) and ( 6 )  as 

C 

AVd = - (R /R )V  COS(-^ 
a d e  0 
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AV =: - (R /R )(Vf+AVb)cosvf 
C a c  

(11) 

Alternatively, AV AV,, and AVc are also given by (31, (71, and ( 8 )  
d' 

respectively. Let us note that for a given circular orbit of radius R , the 

impulses AVb and AV are completely determined by the velocity Vf and the 

flight path angle v, at the exit. The velocity V and the flight path angle 7 

at the entry point are dependent only on the magnitude of the deorbit impulse 

AVd. For a given atmospheric entry (i.e., for a given perigee altitude 

occurring within the atmosphere), we have a fixed value of AVd and hence fixed 

values of entry velocity V,, and entry flight path angle as seen from (1) 

and (2). The optimization problem is to minimize the total fuel consumption 

(i.e., maximizing the vehicle mass), for a given orbital inlination, and 

apogee altitude at LEO. 

e 

8 

4. NUMERICAL DATA AND RESULTS 

A typical AOTV configuration with high WD is shown in Fig. 3. The liquid 

oxygen is stored in two separate tanks to provide a tapered nose, and inflated 

chins are used to continue this tapering along the body. A large deployable 

flap is provided to trim the vehicle at low angles of attack for maximum L/D 

performance. A representative set of numerical values used for a complete 

mission from CEO to sso is given be1ow'O. 

weight of the vehicle = 112,625 N 

aerodynamic reference area = 30.8 sq.m 

aerodynamic reference length = 15.67m 

gravitational constant of Earth = 3.96772~10 m /sec 

radius of Earth = 6356.766 km 

14 3 2 
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altitude of atmospheric boundary = 120 km 

altitude of CEO = 35884 km 

altitude of SSO = 556 km 

Prescribed conditions have the altitude of perigee in the atmosphere as 58 km, 

orbital inclination to be achieved during the amospheric maneuver as 25 

degrees, and the altitude of space station orbit as 556 km. The control is 

achieved by bank angle modulation using a piecewise linear steering option of 

the POST. A constant angle of attack of 10 degrees corresponding to maximum 

lift-to-drag ratio of 1.724 and the 1976 US standard atmosphere, are utilized 

in the simulation. 

Using the above mentioned data, the optimal solution has the 

following characteristic velocities: 

Deorbit characteristic velocity, AVd = 1491.04 dsec 

Boost characteristic velocity, AVb = 24.58 dsec 

Reorbit characteristic velocity, AV = 156.36 dsec 

Total characteristic velocity AV = 1671.98 dsec 

C 

The complete mission in terms of the velocity profile is shown in Fig. 4. 

Initially, the vehicle is in a circular orbit at CEO moving at a speed Vd = 

3064.82 dsec. A deorbit impulse AVd = 1491.04 dsec is executed to put the 

vehicle along the CEO-entry elliptic orbit. A specific impulse of 456 sec is 

used for all the characteristic velocities. The elliptic velocity at the 

deorbit point D is vd = Vd - AVd = 1573.78 dsec. At the atmospheric interface 

E of altitude Ha = 120 km, the vehicle attains an orbital velocity Ve = 

10305.93 dsec. During the atmospheric maneuver, the velocity of the vehicle 

9 
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is depleted and the exit velocity is Vf = 7898.85 m/sec. In order to attain 

the desired SSO altitude H = 556 km, a boost impulse AVb = 24.58 dsec is 

required at the exit F from the atmosphere. Then the elliptic velocity at the 

exit is vf = Vf + AVb = 7923.43 dsec. The vehicle travels along the exit-SSO 

elliptic path and has a velocity v = 7419.74 m/sec at the reorbit point C. In 

order to insert the vehicle into a circular orbit at this altitude H = 556 

km, a reorbit impulse AVc = 156.36 dsec is required. The vehicle is now in a 

circular path at SSO moving with a speed of V = v + AV = 7576.1 m/sec. The 

vehicle takes 18,792 seconds for the CEO-entry portion, spends 470 seconds 

C 

C 

C C C 

during the atmospheric maneuver, and finally requires 1,931 seconds for the 

exit-SSO portion. The total time taken for the complete mission is 5.8869 

hours. 

Fig. 5(a) gives the time history of altitude. The spacecraft enters and 

exits the atmosphere at an altitude of 120 km. The minimum altitude reached is 

52.07 km. The velocity versus time is shown in Fig. 5(b). The vehicle enters 

the atmosphere with a velocity of 10305.93 dsec and leaves the atmosphere 

with a speed of 7898.85 dsec, thus giving a velocity reduction of 2407.08 

dsec. The profile of flight path angle with time is shown in Fig. 5(c). The 

spacecraft enters the atmosphere with an inclination of -5.169 degrees and 

exits with 1.8596 degrees. Fig. 5(d) depicts the orbital inclination of 25 

degrees achieved during the atmospheric maneuver. Fig. 6(a) shows the 

variation of bank angle during the atmospheric flight. Fig. 6(b) gives the 

peak heating rate as 730 W/sq.cm. As shown in Fig. 6(c), the peak dynamic 

pressure is 30.33 KN/sq.m. According to Fig. 6(d), the maximum g-load is 4.69 
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6. CONCLUDING RE13ARKs 

In this paper, we have addressed the problem of minimization of fuel 

consumption during the atmospheric portion of an aeroassisted, orbital 

transfer vehicle with high W D  capability. The complete mission has required 

three characteristic velocities; a deorbit impulse at HEO, a boost impulse at 

the atmospheric exit, and a reorbit impulse at LEO. A performance index has 

been formulated as the sum of these three impulses. Fuel optimal trajectories 

have been obtained for the vehicle using POST. Future work is concerned with 

obtaining fuel-optimal traJectories with constraints on heating rate and 

acce lerat ion. 
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