Old Dominion University Research Foundation

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS

COLLEGE OF ENGINEERING AND TECHNOLOGY
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529-0247

A CONSERVATIVE APPROACH FOR FLOW FIELD
CALCULATIONS ON MULTIPLE GRIDS

By
Monchai Kathong, Graduate Research Assistant
and

Surendra N. Tiwari, Principal Investigator

Progress Report
For the period ended March 31, 1988

Prepared for the

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665-5225

Under

Cooperative Agreement NCC1-68

Dr. Robert E. Smith, Jr., Technical Monitor
ACD-Computer Applications Branch

o 4P

(NASA-CR°185313) A CONSERVATIVE APPROACH N89=-26173
FOR FLOW FIELD CALCULATIONS ON MULTIPLE
GRIDS Progress Report, period ended 31 Mar.

1988 (01d Dominmion Univ.) 119 p CSCL 20D Unclas
G3/34 0217248

April 1988




o 4@

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS

COLLEGE OF ENGINEERING AND TECHNOLOGY
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529-0247

A CONSERVATIVE APPROACH FOR FLOW FIELD
CALCULATIONS ON MULTIPLE GRIDS

By

Monchai Kathong, Graduate Research Assistant
and

Surendra N. Tiwari, Principal Investigator

Progress Report
For the period ended March 31, 1988

Prepared for the
National Aeronautics and Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

Under

Cooperative Agreement NCC1-68

Dr. Robert E. Smith, Jr., Technical Monitor
ACD-Computer Applications Branch

Submitted by the

01d Dominion University Research Foundation
P. 0. Box 6369

Norfolk, Virginia 23508-0369

April 1988



FOREWORD

This is a progress report on the research project "Numerical Solutions
of Three-Dimensional Navier-Stokes Equations for Closed-Bluff Bodies."
Specific efforts were directed in the area of "A Conservative Approach for
Flow Field Calculations on Multiple Grids."

The period of performance on this research was July 15, 1987 through
March 31, 1988. This work was supported by the NASA Langley Research Center
through Cooperative Agreement NCC1-68. The Cooperative Agreement was
monitored by Dr. Robert E. Smith, Jr., of the Analysis and Computation

Division (Computer Applications Branch), NASA Langley Research Center,

MS/125.
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A CONSERVATIVE APPROACH FOR FLOW FIELD
CALCULATIONS ON MULTIPLE GRIDS
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SUMMARY

In the computation of flow fields about
complex configurations, it is very difficult to
construct body-fitted coordinate systems. An
alternative approach is to use several grids at
once, each of which is generated independently.
This procedure is called the "multiple grids"
or "zonal grids” approach and its applications
are investigated in this study. The method
follows the conservative approach and provides
conservation of fluxes at grid interfaces. The
Euler equations are solved numerically on such
grids for various configurations. The
numerical scheme wused is the finite-volume
technique with a three-stage Runge-Kutta time
integration. The code 1is vectorized and
programmed to run on the CDC VPS-32 computer.
Some steady state solutions of the Euler
equations are presented and discussed.
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1. INTRODUCTION

Basically, there are three approaches or methods which can be used to
solve a problem in fluid mechanics and heat transfer. These methods are
(1) Experimental, (2) Theoretical, and (3) Numerical. The theoretical method
is often referred to as an analytical approach while the terms numerical and
computational are used interchangeably.

In the experimental approach, a model is constructed and tested in a
testing facility such as a wind tunnel. The flow variables, such as wall
pressure and temperature can then be measured. The problem of producing
required freestream conditions in the test section of this facility can be
quite troublesome and time consuming. Since the facility, for example a wind
tunnel, requires large amounts of energy for its operation, its operating
costs are quite high. The experimental approach produces the most realistic
answers for many flow problems; however, the costs are becoming greater
everyday.

In the theoretical approach, assumptions are made in order to simplify
the problem. A closed form solution is generally sought. The main advantage
of this approach is that general information which is usually in formula form
can be obtained. Its disadvantage is that the problem is restricted to simple
geometry and physics.

In the numerical approach, a limited number of assumptions are made and a
high-speed digital computer is used to solve the resulting governing fluid
dynamics equations. The major advantage of this approach is that the problem
is free of some of the constraints imposed on the experimental or theoretical
approach. Thus, the numerical approach has the potential of providing
information not available by other means. However, the approach does have

some disadvantages. The storage and speed of present available computers pose
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the 1limitations on the method. The other Tlimitations arise due to the
inability to understand and mathematically model certain complex phenomena.
In spite of these Tlimitations, the numerical approach is becoming more
popular. The developments of supercomputers and the reduction 1in
computational costs have made the approach appealing.

A new methodology for attacking the complex problem in fluid mechanics
and heat transfer has been developed and has become known as Computational
Fluid Dynamics (CFD). Some of the ideas of this numerical approach are very
old. Good surveys on the approach can be found in [1-13]. Also, the
foundations upon which the whole field is built are now reasonably well
covered in text books [14-24]. CFD is a science of producing numerical
solutions to a system of partial differential equations which describe fluid
flow. CFD is done by discrete methods and the purpose is to better understand
qualitative and quantitative physical phenomena in the flow which then is
often used to improve upon engineering design. CFD brings together a number
of different traditional disciplines: fluid mechanics, the mathematical theory
of partial differential equations, computational geometry, numerical analysis,
and the computer science of programming algorithms and processing data

structures.

In the CFD calculation, the continuum problem of the differential
equations is projected to some finite-dimensional space for the dependent and
independent variables and then by solving the resulting discrete equations for
the final set of numbers. Thus, the first step in CFD is to discretize the
domain of the flow by laying out a network of points situated at a finite
number of different locations of the independent variables, i.e., to create a
grid. This brings about a so-called "grid generation" procedure. A "grid" is

conventionally defined as a set of grid points in a coordinate system. The




3
word grid and mesh are also used interchangeably. Grid generation is an
essential procedure in CFD. Accuracies and stabilities of the CFD
calculations depend a great deal on the properties of these "grids". Grid
points are generally generated by letting some coordinate lines coincident
with the boundaries of the domain. The purpose of generating these so-called
“poundary fitted” coordinates is to be able to apply boundary conditions
directly when partial differential equations are solved on such grid. It is
important that the boundary condition be represented accurately since the
region in the intermediate vicinity of solid surfaces is generally dominant in
determining the character of the flow. The procedure for generating a
boundary-fitted coordinate can be divided into two catagories. They are
partial differential equation methods and algebriac methods. In the partial
differential equation methods, a set of partial differential equations,
subjected to some boundary conditions, are solved to obtain a set of grid
points. The partial differential equations may be elliptic, hyperbolic or
parabolic. The partial differential equation methods offer the smoothness to
the resulting grid points but generally require large amounts of computational
time. The algebraic methods are based on mathematical interpolation functions
and do not require the solution of differential equations or the use of
complex variables. The primary advantages of algebraic methods are speed and
directness. Regardless of how grid points are generated, all CFD calculations
are usually done on a rectangular domain with a square grid. This is done by
transforming the set of partial differential equations of interest, and the
associated boundary conditions, to the curvilinear system. The grid points in
the physical domain are, thus, mapped into a set of equally spaced grid points
in a rectangular region called computational domain. With the transformation,

the CFD calculations can be performed entirely on the fixed rectangular space,
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regardless of the geometry or motion of the boundaries. Thus, numerical grid
generation is the process of establishing an ordered and strategic distribu-
tion of grid points in a physical coordinate system corresponding to a uniform
distributions of grid points in a rectangular computational coordinate
system. Detail on grid generation procedures are described in Chap. 2.
Surveys of the methods including textbooks on grid generation procedure can
also be found in references [25-30].

It is obvious that a grid which maps the entire physical domain onto a
"slab" in the computational domain is very desirable. This type of grid,
called single grid or single-block grid, offers the simplicity of the
computational domain to the CFD calculation. However, for flow about complex
configurations, the generation of a smooth and efficient single grid is very
difficult. In some cases, especially those of configurations with several
components, it may not be possible to obtain this type of grid at all. An
alternative approach to this problem is to use several grids at once, each in
a different coordinate system. The entire physical domain is, thus,
subdivided into several subdomains. The generation of grids in different
subdomain is generally independent from each other. This approach called
"multiple grids" or "zonal grid" approach can be categorized into two groups:
grid patching and grid embedding. For the patched grid approach, the
subdomain grids are joined or patched together along common boundaries. The
subdomain grids are overlapped rather than joined in the grid embedding
approach. Multiple grids approach is becoming more common as the complexity
of the configuration being considered in CFD 1is increased. However, the
approach results in new boundaries which are not the physical boundaries.
Even though, the solution procedure is done separately in each subdomain,

certain boundary conditions are needed at these fictious boundaries. The
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difficulty of the approach, thus, lies in the treatment of these boundary
conditions. Since these boundaries are either joined or overlapped with other
subdomain (or subdomains), some information needs to be transferred between
subdomains so that the computation of the entire physical domain is
consistent. The interpolation of flow variables between subdomains seems to
be the simplest choice. However, this procedure does not result in a
computational scheme which 1is conservative. The conservation of a
computational scheme 1is important when the flow being considered contains
discontinuities such as shock waves. A computational scheme is said to be
conservative when it maintains the discretized version of the conservation law
(conservation of mass, momentum and energy) exactly (except for round-off
errors) for any grid size over an arbitrary finite region containing any
number of grid points. For the multiple grids calculation the information
needs to be transferred conservatively between subdomain grids. It has been
suggested that fluxes rather than flow variables be transferred between
subdomain grids, so that the resulting computational scheme is conservative.
It can be shown that the conservation is easier to enforce in the grid
patching approach than in the grid embedding approach. This study follows the
grid patching approach along with the conservative treatment at the
interfaces, 1i.e., places where two or more subdomain grids are joined
together. The procedure is discussed in detail in Section 2.5.

The viscous Navier-Stokes equations are the ultimate equation to be
solved in CFD. However, Navier-Stokes flow simulation are presently still in
the stage of research. A success in Navier-Stokes flow calculations relies
not only on the numerical methods but also on the turbulent modeling. Since
this study focuses on the concept of multiple grids approach, the inviscid

Euler equations are sufficient to be used as the model equations. The Euler



equations result from dropping the viscous terms on the Navier-Stokes
equations. Thus, the problems of computer storage and computational time
including the uncertainties of turbulent modeling that arise in Navier-Stokes
calculation can be eliminated. Solutions of the Euler equations, though
inviscid, give the correct phenomena to many of flow problems. The integral
form of the Euler equations is applied to this study. The integral form may
be important for the correct capturing of discontinuities in the flow. The
discussion on the Euler equations is given in Sect. 3.1. The Euler equations
are discretized by means of the centered finite-volume method. The finite-
volume formulation is obtained by applying the integral form of the Euler
equations to each grid cell of a given grid. The finite-volume method is a
cell-oriented rather than grid points oriented. The main advantage of the
method is that it can be applied to the general geometry without fhe need for
a global coordinate transformation and it can tolerate the grid singularities
since the flow equations are balanced only within the cells of the grid. The
steady state solution is obtained by means of the time-dependent technique.
The time derivative terms are reintroduced to the Euler equations and the
steady state solutions are reached by explicitly marching the solution
procedure in time from the initially guessed solutions. The three-stage
Runge-Kutta integration scheme is used to serve this purpose. Since the
transient solutions are of no concern, the local time step scaling is applied
to accelerate the solutions to the steady-state. The linear and non-linear
artificial dissipation terms are also added to the discreted Euler
equations. The purpose of adding these terms is to impose an entropy
condition which is required to eliminate the non-physical shocks. Also, the
addition 6f the artificial dissipation terms helps to eliminate the

oscillation of solutions which prevents the solutions from reaching the steady



state. Boundary conditions are of four types: solid wall conditions,
inflow/outflow conditions, interface conditions and coordinate cuts. The
finite-vé]ume discretization along with numerical time integration and
boundary conditions are described in detail in Chap. 3. The concept of local
time step scaling and artificial dissipation are also addressed.

The application of the approach to the flow over sphere at low Mach
nurber and to the flow over a slender body at the supersonic Mach number are
discussed in Sec. 4.1. Results obtained from these applications are very
encouraging, Section 4.2 describes the application of the multiple grid
approach to the flow over a Butler-Wing configuration. Again, good results
have been obtained. The next step is to apply the approach to the

internal/external flow on a fighter-aircraft.



2. GRID GENERATION
2.1 Introduction

Grid generation is an important procedure in CFD calculation. The word
"grid" is generally used as a label for a complete set of grid points. Even
though it is felt that grid generation and solution procedure are separate and
distinct operations, in practice, these two operations can never be totally
independent. This is because the accuracy of solutions depends upon grids on
which the partial differential equations are solved. In turn, the logistic
structure of the data (such as grid spacing), the location of outer boundaries
and the nature of coordinate cuts are influenced by the nature of solutions.
Perhaps the greatest problem of grid generations is not how to construct
grids, rather, the problem is defining in sufficient detail what qualities and
properties in a grid are desirable for a particular numerical method.

The representation of boundaries is best accomplished when the boundary
is such that it is coincident with some coordinate line, for then the boundary
can be made to pass through the points of a grid constructed on the coordinate

lines. Different expressions at, and adjacent to, the boundary may then be

applied using only grid points and the intersection of coordinate 1lines,
without the need for any interpolation between points of the grid. The
avoidance of interpolation is particularly important for boundaries with
strong curvature or slope discontinuities, both of which are common in
physical applications. Likewise, interpolation between grid points not
coincident with the boundaries is particularly inaccurate with differential
systems that produce large gradients in the vicinity of the boundaries, and
the character of the solution may be significantly altered in such cases. 1In

most partial differential systems the boundary conditions are the dominant
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influence on the character of the solution, and the use of grid points not
coincident with the boundaries, thus, places the most inaccurate difference
representation in precisely the region of greatest sensitivity. The
generation of a curvilinear coordinate system with coordinate lines coincident
with all boundaries, so-called "boundary-fitted" coordinate system (Fig. 2.1),
is thus an essential part of a general numerical solution of a partial
differential system.

Any partial system can be solved on the boundary-fitted coordinate system
by transforming the set of partial differential equations of interest, and
associated boundary conditions, to the curvilinear system. Since the
boundary-fitted coordinate system has coordinate lines coincident with the
surface contours of all bodies presented., all boundary conditions can be
expressed at grid points, and normal derivaties on the bodies can be
represented using only finite difference between grid points on coordinate
lines, without need of any interpolation, even though the coordinate system is
not orthogonal at the boundary. The transformed equations can then be
approximated using finite difference expressions and solved numerically in the
transformed plane. Thus, regardless of the shape of the physical boundaries,
and regardless of the spacing of the finite grid in physical field, all
computations can be done on a rectangular field with a square mesh with no
interpolation required on the boundaries. Moreover, the physical boundaries
may even be time dependent without affecting the grid in the transformed
region. Another major advantage of using boundary-fitted coordinates is that
the computer software generated to approximate the solution of a given set of
partial differential equation 1is completely independent of the physical
geometry of the problem. Numerical grid generation is thus the process of

establishing an ordered and strategic distribution of grid points in a
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physical coordinate system cooresponding to a uniform distribution of grid
points in a rectangular computational coordinate option. Some of the basic
ideas of the use of boundary-fitted curvilinear coordinate systems in the
numerical solution of partial differential equations are discussed in [31].
Figure 2.2 illustrates physical domain vs. computational domain.

Two primary categories for arbitrary coordinate generation have been
developed. They are algebraic methods and partial differential equation
methods. The algebraic procedures include simple normalization of boundary
curves, transfinite interpolation from boundary surfaces, the wuse of
intermediate interpolating surfaces, and various other techniques. The
partial differential system may be elliptic or hyperbolic. Included 1in
elliptic systems are both the conformal. and quasiconformal mappings, the
former being orthogonal. Orthogonal systems do not have to be conformal, and
may be generated from hyperbolic systems as well as from elliptic systems.

Algebraic transformations are attractive in that no numerical solution of
a partial differential system is involved. Thus, the primary advantages of
algebraic methods are speed and directness. Major disadvantages of these
methods 1is the lack of smoothness that results when an elliptic partial
differential system is used to generate the grid and truncation errors may be
significant in regions where the grid is not smooth [32]. For instance, the
results of Shang [33] show kinks in the solution corresponding to regions of
rapid grid spacing change radiating outward from the boundary. It should be
noted that local controls in the multisurface transformation [34] can be used
to prevent nonsmooth boundary behavior (e.g., slope discontinuities) from
propagating inward. Transfinite interpolation described by Gordon and Hall
[35] in the early 1970's is a highly generalized algebraic grid generation

method. Transfinite interpolation is applied through a series of univariate
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interpolations where blending functions and the associated parameters (point
position and/or derivatives) determine a grid. For aerodynamic applications,
Eriksson [36] and Rizzi and Eriksson [37] have adopted the original
transfinite interpolation formulation to wuse only exterior boundary
descriptions and derivatives at certain boundaries. They have also
incorporated exponentials into the blending functions to concentrate the grid
near an exterior boundary. The multisurface method [30,34] developed by Peter
Eiseman provides formulas for grid definition based on grid descriptions of
two boundary surfaces and an arbitrary number of intermediate control
surfaces. Choosing interpolants (defined similar to blending functions) and
the placement of the control surfaces determines grid shape and spacing. The
multisurface method has been used by Eiseman in numerous applications [38,39]
but most notably for computing grids about turbine cascades. The fwo-boundary
technique [40-42)] is based on the description of two exterior boundaries and
the application of either l1inear or hermite cubic polynomial interpolation to
compute the interior grid. For cubic interpolation, surface derivations
combined with magnitude coefficients control the orthogonality of the grid at
and near the boundaries.

For the partial differential equation methods, a set of partial
differential equations must be solved to obtain a coordinate system. The
partial differential equations may be elliptic, hyperbolic or parabolic. The
methods based on elliptic partial differential equations are more general
(since all boundaries can be specified), and more fully developed. Typically,
a pair of Laplace equations is solved subject to Cauchy-Riemann boundary
conditions. The earliest successful development was formally reported by
Winslow [43], who started with a Laplace system subjected to Dirichlet

boundary conditions. Thompson, et al. [44] added periodic boundary conditions
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to produce branch cuts for various topological configurations and who also
suggested that control over the grid could be accomplished by altering the
original Laplace system. The alteration is to consider a pair of Poisson
equations by including specifications for the right-hand sides. These are
called forcing terms and are general functions of the curvilinear variables.
The particular form to be used was established later by Thompson et al. [45].
Without forcing terms, Mastin and Thompson [46] were able to show that the
two-dimensional system analytically defined nonsingular transformation.
Conformal mapping methods can also be included in the elliptic methods. Mehta
and Lavan [47] have given a solution about a modified Joukowski airfoil
accomplished by generating a coordinate system with a conformal Joukowski
Transformation and solving the Navier-Stokes equations on the system. More
examples of conformal mapping methods are given in Sampath [48], Wu et al.
[49], and Napolitano et al. [50]. When only one physical boundary is
specified, hyperbolic partial differential equations may be used to obtain a
grid by spatial marching from the given boundary. The remaining boundaries
are determined by the solution and are geometrically unimportant in cases such
as the external flow about a single object. A fundamental development has
been given by Starius [51], and one which was well suited to body concavity
has been presented by Stager and Sorenson [52]. The parabolic system can be
applied to generate the grid between the two boundaries of a doubly-connected
region with each of these boundaries specified [53-55]. The drawbacks of the
hyperbolic scheme are: 1) the outer boundary can not be specified. 2) the
scheme tends to propagate singularities of the boundary condition into the
flow domain and 3) the solution may become unstable unless an artificial
viscosity term is adequately added to the equations. On the other hand, the

major drawback of the parabolic scheme is that maintaining orthogonality of
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grid needs much effort. Nakamura and Suzuki [56] have combined these two
schemes into a single scheme that takes advantages of the two but eliminates
the drawbacks of each. Both hyperbolic and parabolic methods have the
advantage of being generally faster than elliptic methods, but are applicable
only to certain configurations.

It has been shown that the partial differential equation approach
produces the smoothest grids for general boundary point distributions while
the algebraic approach is the fastest procedure. Regardless of which approach
is taken, creation of a computational grid requires (i) defining an accurate
mathematical description of all solid surfaces in the computational domain and
ii) generating an "appropriate" grid around these surfaces according to some
criterion, usually with a specified point distribution. Graphic facility is
very useful when three dimensions are involved. An important feature is the
ability to rotate and translate grid surfaces in real time for inspection.

In this study, algebraic approach has been taken due to its speed and
directness. Two boundary technique [40-42] has been used to obtain boundary
surfaces. The interior grid points have been obtained by applying the
transfinite interpolation technique. Some detail of transfinite interpolation
is given in the next section. Details of two boundary technique can be found

in Ref. [40].
2.2 Transfinite Interpolation

The idea of using interpolation as a means of constructing general
curvilinear coordinate systems stems from the fact that in most cases, the
coordinates or grid points are known on several or on all of the boundaries of
the computational domain and the problem consists of extending this grid into

the interior of the domain. Interpolation from the boundaries into the
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jnterior of this region can be accomplished by the so-called transfinite
interpolation concept (sometimes referred to as the blending function
method). Transfinite interpolation is a highly generalized algebraic grid
generation method. Transfinite interpolation is applied through a series of
univariate 1interpolations where blending functions and the associated
parameters (point position and/or derivatives) determine a grid. The concept
was originally developed by Coons [57] and subsequently extended by Gordon
[58]. One of the earliest 2D grid generation applications using transfinite
interpolation is described in Gordon and Hall [35]. A few examples of 3D
applications are the works of Gerhard [59], Anderson and Spradley [60], and
Spradley et al. [61]. In these applications, the transfinite interpolation in
its simplest form is used, i.e. with no control of the normal derivatives of
the grid coordinates at the boundaries. Eriksson [36,62] and Eriksson and
Rizzi [63] have constructed a scheme which allows for the specification of any
number of normal derivatives of the grid coordinates on the boundaries. The
precise control of the resulting coordinate system or grid that this feature
provides has made it possible to generate grids of advanced type that are both
smooth and efficient in terms of resolution for a given number of grid
points.

Apart from giving good grid control, the transfinite interpolation
concept offers speed and simplicity when implemented on computers. The speed
factor is very important for 3D applications because the generation of a
desirable grid for a given geohetry is usually a process involving a series of
grid generation runs with visual checks and adjustments in between. This fact
is not always appreciated when evaluating the cost of grid generation.
Naturally, a good graphics software package is an integral part of any 3D mesh

generation system.
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The theory of transfinite interpolation is a very general concept of
mulitvariate interpolation and is outlined briefly. Let ?(u,v,w) = [x(u,v,w),
y(u,v,w), z(u,v,w)] denote a vector-valued function of three parameters u,v,w
defined on the region uq<u <up, Vicv <vq, WiKW <W . This function is known

only on certain planes in the region, Fig. 2.3,

> >

flu .v,w = a (v,w : k = 1,2,000,
( K ) k( W) P
> +
f(U,V H W) = b (U,W) s k = 132:"°,q
k k
f( ) ¢ (u,v) k=1,
u,v.w = ¢ (u,v ; = 1,2,00e,r .
B k
A set of univariate blending functions
O.k(U) ’ k = 132:"‘sp
Bk(v) s k = 1523'°'sq

Yk(w) 3 k= 1,2,000,r
which satisfy the conditions
o (Ug) = 8y 5 B(vy) = 80 5 v(Wp) =

where

8y = 0 ;/k = 2 Sy = 1;k=21¢

is needed to interpolate between these given planes.
The transfinite interpolation procedure then gives the interpolated

>
function f(u,v,w) by the recursive algorithm

Fl(u,v,w) Z a (u) a (v.w)
k=1
> > d > >
fz(u,v,w) = fl(u,v,W) + :=1 Bk(u) [bk(v,W) - fl(u,vk,W)]
> > r > >
flu,v,w) = fz(u,v,W) + :=1 Yk(W) £ck(u,V) - fz(u,v,wk)] (2.1)
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. >
The function f now defines a transformation from the region

Wy SWaW in u,v,w space to some arbitrarily shaped region in

U1<U<U ,V1<V<V

P q
the x.,y,z space. It can be verified that if the specification of ? on the

planes u = Upsoee s v o= V1"'Vq and w = Wygeoes, W is continuous at the

p’ r
intersections of these planes, the explicit order of the interpolation
directions chosen in the three-step algorithm does not affect the interpolant.

The interpolation procedure just described can give any degree of control
if a sufficient number of internal surfaces are specified, but the control is
generally poor if no internal surface is defined at all. In order to improve
the control while maintaining minimum input geometry data, a generalized
transfinite interpolation procedure which wuses derivatives of the
function f in the out-of-surface direction, in addition to the function
itself, can be defined. The effect of specifying out-of-surface'derivatives
of f (Fig. 2.4) is to introduce a direct control of the essential properties

of the mapping function in the vicinity of the surface. The specified data

are written as

n+ k = 1.2
2 f (u ,v,w) = ;(n)(v W) n=20,1,2
n k'° k ’ ’ SRR
au
3 (n) oL
> +{N
— f(u,y W) =D u,w s n=20,1,2,s00,
= F(uv, ) =8 (uw) a9,
v
n k=1,2
_ +(n) _
= n =

2 ¥ ) = (u,v) 0,1,2
—_— u,v, c u, H slelyoeee,T
n v wk k Y k

W
which is simply the specification of F and on finite number of out-of-surface
derivatives of f on the outer surfaces of the region Up SUSU, 5 Vo<V QV, s Wy SWW,
>
in wu,v,w space (Fig. 2.5). To interpolate f into the interior of this

parametric box, a new set of univariate blending functions is defined as
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r
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k=1 n=o0 W

»>
The function f now defines a transformation from the region Uy U<l ,

ViV, w1<w<w2 in u,v,w space to some arbitrarily shaped region of x,y,z

1
space.
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Generally speaking, the method of transfinite interpolation, is a very
simple and straightforward concept that offers virtually unlimited
possibilities; but for any particular application, it is necessary to supply a
certain amount of geometry data to obtain a certain degree of control of the
transformation. It is up to the user to balance the requirements of minimum

input geometry data and maximum control.
2.3 Mapping Type and Singularities

It is clear from previous sections that the first stage of grid generation
procedure is the specification of grid coordinate data on the boundaries.
Thus. the correspondence between the boundaries in the physical domain and the
computational domain has to be made clear. It is then, necessary to determine
the overall structure of the mapping between these domains. For a given
geometry, there are generally several possible mapping types with different
characteristics in terms of efficiency, coordinate cuts, singularities, etc.
For example, there are at least six natural mapping types for the exterior
region of a typical airfoil Fig. 2.6. All of these alternative mapping types
give boundary-fitted coordinates but varies markedly in terms of grid
efficiency, i.e. the resolution per grid point. It has been shown that the
mapping type designated 0-0 is the most efficient for such a configuration
[64]. The notation 0-0 is to be interpreted as "type 0 in the chordwise
direction, type 0 in the spanwise direction”, using the 2D notation shown in
Fig. 2.6. Figure 2.7 illustrates the 0-0 mapping type of a wing-fuselage
configuration. As shown in the figure, the entire wing is mapped to the bottom
of the computational box, the entire outer boundary is mapped to the top and
the combined plane of symmetry and fuselage is mapped to one of the side

surfaces. The remaining three surfaces of the computational box constitute
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cuts, i.e. they correspond to interior surfaces in the physical domain across

which the various flow properties are continuous.

Figure 2.8 shows that the 0-0 mapping type gives rise to two singular
lines extending from the two tip corners of the wing to the outer boundary.
Grid singularity is defined as a place in the physical domain where the
Jacobian of transformation is zero or unbounded (depend upon how the Jacobian
is defined). Grid singularities are undesirable but very often unavoidable and
any practical finite difference scheme must be able to cope with them. If the
physics near a singularity is not of primary interest, the finite difference
solutions can be obtained in this region providing that the singular points
themselves are excluded. Another practical approach to dealing with
singularities is to leave the boundary surfaces open (Fig. 2.9). However, this
requires that assumptions be made about the physics that must be included in
the solution procedure. This study follows the so-called finite-volume method,
which is a conservative cell-oriented method, and can be shown to be stable
regardiess of the type of singularity involved. The discussion on the finite
volume approach is given in section 3.1.

Since singularities always associate with the mapping types, and some
types of singularities are more severe than the others, it is important to seek
the best type of mapping for a given geometry, both from the viewpoint of efficiency
and fram the viewpoint of accuracy. For example, the C-H mapping has been the most
popular type for flow computations around wings, even though this mapping has the more
severe kind of singular line along the wing tip. Also, reference [64] has shown that
this type of mapping is not as efficient as other types of mapping (for example 0-0
type). This fact can be explained that the C-H mapping can be obtained by a simple
"stacking" of 2D chordwise grids (c-types) in the spanwise direction, i.e. by a "quasi-
30" method. From the discussion in this section, it may seem that the price to be paid

for using such a simple grid generation technique is high.
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2.4 Multiple Grids

The discussion so far have been limited to the topic of single-block
grids, 1i.e., grids that map the physical domain onto a "slab" in the
computational domain. This type of mapping is very desirable due to its
simplicity. However, for very complicated geometries it can be difficult to
generate single-block grid that are both reasonably smooth and efficient. An
example of such a complex region is the exterior of a complete airplane with
several lifting surfaces. Each component of an aircraft, in general, requires
a grid system that is usually incompatible with the grid systems of the other
components. Thus, the generation of a single boundary-fitted grid for the
entire configuration is a difficult task, if it is possible at all. In such a
global grid, control of grid point distribution, skewness and clustering will
be difficult to achieve. For example, a grid which provides sufficient
resolution of grid points in a region may result in an excessive number of grid
points in other regions. Convergence to machine zero may not be achieved if
the number of grid points is excessive. To simplify this problem, it is
becoming more common to use several grids at once, each in a different
coordinate system [65], for example see Fig. 2.10. This approach, called
"multiple grids" or "zonal grids" approach (the terms "zone" or "block" is also
used interchangeably), falls into two catagories: grid patching and grid
embedding. The approach subdivides a complicated domain into subdomains which
can accomodate easily generated grids. For the patched grid approach, the
global grid is formed by patching together all the individual grids. The
computed grid lines in adjacent grids may be made to align at the grid
interface with complete continuity [66,67], or with continuous lines slope
[64,68], or discontinuity in slope [69], or perhaps not align each other at

all. Robert and Lee [69] combine the subdomain grid in such a manner that the
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resultant global grid is continuous across patch boundaries. Moreover, grid
irregularities frequently occur at the corners of the subdomain and at surface
perimeter lines. Such irregularities impose constraints upon the choice of the
numerical algorithm used for solutions of the flow equations. Lasinski et al.
[70] have demonstrated a patched grid technique for solution of the thin layer
Navier-Stokes equation. They solve the flow equations on each grid
separately. The solutions are coupled by the transfer of boundary data at the
coincident boundary points between grids. References [71-74] also illustrate
the use of patched grid approach. The grid embedding approach does not need
common boundary between grids, but rather, the various subdomain grids are only
required to overlap to provide communication among grids for flow solvers. The
development and analysis of solution procedures on grid embedding approach have
been studied by Starius [75,76], Kreiss [77], and Mastin and ‘McConnaughey
[78]). The practical application of ovér]apping grids to the solution of
problems in computational fluid dynamics has been demonstrated by Atta [65],
Thompson [79], Steger and Buning [80], and Benek et al. [81]. Steger et al.
[82,83] have applied the grid embedding technique to an airfoil/flap in
incompressible flow [82] and in subsonic, compressible flow [83]. Atta and
Vadyak [84] have obtained a potential solution for a wing/nacelle geometry.
These studies have demonstrated that the technique can be applied to subsonic
flow. However, for the transonic flight regime Benek et al. [83] have found
that their single trial solution resulted in an ill-defined shock wave at the
grid boundaries and exhibited poor convergence. The studies by Dougherty [85]
indicate that for a different grid geometry and algorithm, these problems may
not be too severe. Figure 2.11 illustrates an example of grid patching v.s.
grid embedding. Early efforts to predict multiple-component configurations are

based on the transonic small disturbance formulation [86-88]. Efforts to
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predict the flow field about a complete aircraft configuration using a single
gfid approach have been made by Yu [89]. However, the requirement of exact
boundary-fitted grids along certain boundary lines is relaxed. Thus, the exact
implementation of boundary conditions is not obtained.

The multiple grid approach has a number of advantages. First, the
difficulty in generating three-dimensional grids for different types of complex
configurations can be eliminated. Second, the approach allows different types
of grid topologies to be implemented in each subdomain in order for grids to be
mesh-efficient, i.e., more grid points near a solid body or shock and less grid
points elsewhere. Since it is well known that skewness, rapid volume
variation, and large cell aspect ratios degrade the convergence rate of an
algorithm, it seems plausible that the enhanced grid point control afforded the
multiple grids apporach will also result in improved algorithm performance.
Third, it may also be computationally efficient to solve different equation
sets in the various subdomain grids, such as viscous Navier-Stokes near the
body and inviscid potential in the outer field. Chaderjian and Steger [90]
have demonstrated this idea by solving the euler equations in one zone and the
dual potential equations in the other for the transonic flow over a lifting
airfoil.

A common difficulty to the multiple grid approach is constructing a proper
scheme for information exchange among the different subdomain grids. The
information exchange has to be not only consistent with the governing
equations, but should also lead to a stable efficient scheme. This so-called
"interface conditions" is required to guarantee the convergence to a weak
solution of the governing equations if the algorithm converges. The multiple
grid approach results in new boundary within each subdomain grid, i.e., at the

interfaces of various grids. Since these boundaries are not the physical
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boundaries, it is important to treat grid points on the interfaces with care in
order to transfer information from one grid to another accurately. The most
obvious procedure 1is to interpolate the solutions in one grid to provide
necessary boundary data for another. Since the classical interpolation
formulas were not derived with conservation properties in mind, their use in
finite-difference approximation on multiple grids would result in the loss of
an exact conservation property. Eberhardt and Banganoff [91] have shown that
shock waves crossing embedded grid boundaries can become i1l defined and
convergence is generally degraded when the interpolation procedure is used.
They have also shown that the characteristic approach is superior but suggested
that the use of conservative properties would be most desirable. For the
existence of solutions to certain systems of partial differential equations,
some conservation laws must be satisfied accurately. The nonlinear nature of
the equations of motion permits solutions with discontinuities such as shock
and slip surfaces. In order that such discontinuities assume the right
strength and physical location, it is imperative that the scheme used for the
calculation be conservative [92]. In a multiple grid calculation, it is
important that the interforces are also treated in a conservative manner so
that the discontinuities can move freely across the interfaces [93]. The need
for conservative grid interfaces is also illustrated in ref. [83].

The question of conservation when switching between two different grids or
numerical schemes has been considered by several authors. Warming and Beam
[94] have derived transition operators for switching conservatively between
MacCormack's method and a second order upwind scheme. Hessenius and Pulliam
[95] have applied this transition operator approach to derive the so-called
zonal interface conditions; this however, resulted in a significant loss of

accuracy at the zonal interfaces. Rai [96] has developed conservative zonal
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interface conditions for zonal grids which share a common grid line, and has
provided accurate calculations demonstrating the shock capturing ability of the
zonal grids with a discontinuity crossing zones. Combier et al. [97] have
analyzed the zonal-boundary problem for a system of hyperbolic equations and
used the compatibility equations to develop a zonal-boundary scheme.
Reasonably good results were obtained for transonic channel flow. However, the
use of the compatibility equations results in a scheme that is not conservative
and, hence, unsuitable for problems in which flow discontinuity move from one
grid to another. Rai et al. [98] have presented results obtained metric
discontinuous grids; the integration scheme used is the Osher upwind scheme.
Reference [82] provides the results obtained on overlapping grids in conjunc-
tion with the stream function approach.

In patched grid approach, conservation can be easily maintained at the
patch interfaces. The extra computing time that is required to implement the
zonal boundary condition is less than what is required for overlapping grids.
This is because the necessary interpolations, that effect transfer between
zones, are performed in a reduced number of spatial dimensions for patched
grids. A problem in three dimensions only requires a two-dimensional
interpolation procedure. This reduction in the number of dimensions in which
the interpolation is performed does not occur for overlapping grids. On the
other hand, overlapping grids provide more flexibility in generating grids
because there are fewer constraints on the choice of outer boundaries for the
different zones. Other disadvantages of grid embedding approach, beside that
of interpolation, are: i) it is difficult to maintain global conservation ii)
the accuracy and convergence speed of the calculation seems to depend on the
degree of overlapping of the zones and the relative size of each zone, thus

introducing a certain amount of undesirable empiricism in the formulation.
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This study follows the grid patching approach in which the interfaces between
subdomain grids in three dimensions are patched as plane interfaces. It can be
shown that global conservation can be easily maintained for this type of
interface. The study follows the method for transferring a conserved quantity
from one generalized mesh to another which was first described by Dukowicz
[99]. Ramshaw [100] has suggested a procedure in doing so which is similar to
the method of Dukowicz, but is simpler and more direct. A computer program
following the Ramshaw's procedure has been written and tested with various
types of grids and variables. The program has been working well for simple
test cases. The objective of this study is to establish whether or not this
technique is feasible for applications to realistic aerodynamic configurations.

The grid generation of multiple grid does not in principle differ from the
generation of single grid. The complete grid is computed by first dividing the
entire domain into several subdomain grids and then "filling in" one subdomain
grid after the other by transfinite interpolation. Eriksson [101] and Erkisson
et al. [102] have obtained good solutions for the inviscid flow around an
airplane by applying this concept. There, slope continuity (C1 continuity)
between subdomain grids is obtained by using osculatory interpolation, i.e., by
using derivative information as well as grid point Tlocations 1in the
interpolation. The approach used in this study is different from that in Refs.
101 and 102. Although the surface must be common between two subdomain grids,
there is no restriction on grid slope or density across interfaces. This
offers a great flexibility to the generation of each subdomain grid. Detail on

the treatment of the conditions at the interface is given in sec. 3.3.
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2.5 Brief Discussion on Conservative Rezoning Algorithm

A method for transferring a conserved quantity from one generalized mesh
to another, when the volumetric density of the quantity is assumed to be
uniform within each grid cell of the original mesh, is described briefly
below. This method was first described in Ref. [99]. Reference [100]
suggested the procedure in doing so, which is similar in spirit but simpler and
more direct. A computer program following this procedure has been written and
is working well for example grids and a wide variety of choice of variables.

By far the most common type of generalized mesh 1is the arbitrary
quadrilateral mesh, which is convenient to work with because it has the same
simple topological and logical structure as a square or rectangular mesh. The
basic concept of the algorithm is simple. Consider Fig. 2.12, two grid
surfaces are overlapping each other in some fashion. The conserved quantities
Qoij of the original grid surface (Aoij is the area of each surface mesh) is to
be transferred to another grid surface in which Anij is the area of each
surface mesh, Qnij is denoted as the transferred quantity in each of these

later surface mesh. Thus, Qnij can be computed by

an;; = z (Qo, ) Poks) . (dgp ) (A, o) (2.3)
ij kg Fok2 Yok g okg '
Where Anokz is the portion of the area A"ij which contains in the area
Aokz and the summation is up to the number of the original surface meshes
okg - onn/Aokz z Volumetric density of onz’ is
assumed to be constant. The task now, is to find Anokz and the number of

contained in A"ij « And ¢

original surface meshes contained in A"ij' The area of the polygon in 2D plane

is given by [103].

p s s s s
Feg (X ¥, - %) (2.4)

ol -

A =
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where the summation is over all the sides of p, and eg is either +1 or -1

according as p lies to the left or right, respectively, of side s. The
endpoint coordinates (xi’ yi) and (x;, yZ) are considered to be associated with
the side s and not with the particular polygon. The overlapped areas are
polygons p whose sides are segments of the old-mesh lines and the new-mesh
lines. The number of sides of each type, and total number of sides, will be
different for different overlapped areas. Each side is common to two
overlapped areas, the one on the left (L) and the one on the right (R}, and
these overlapped areas may be considered to be associated with the side. The
objective is to apportion a conserved quantity Q, whose volumetric density q is
considered uniform within each cell of the old mesh, into the cells of the new
mesh. It would be inefficient and difficult, to automate in a computer, to
naively sweep over the overlap areas directly. Instead, Ramshaw [100] suggests
to evaluate the same contributions by sweeping over the sides or segments s.
The side or segment s 1is any side or segment of the polygon (overlapped
area). The coordinate of the two end points of side s are denoted by
(x], ¥7) and (x5 y).

If the side s is a segment of the old mesh then the quantity Q in the new

mesh cell containing side s is therefore to be incremented by an amount

0 S S S S
A = (qL - qR) (x1 Yo = % yl) (2.5)

N =

If the side s is a segment of the new mesh then the contribution to cell
. N _ 1 s s s s i o
on the left is As 5 qo (x1 y2 - x2 y 1) while the contribution to the cell on

its right is just - Ag, where 9 is the volumetric density of the old mesh

cell in which side s lies.

Adding Ag and Az for each of new mesh cell yields the quantity Q contained

in each of the new-mesh cell.
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2.6 Applicetion to Two and Three Dimensional Hyperbolic Equations

The first step toward the application of the technique to the CFD
calculation is to apply the technique to solve some partial differential
equations. The hyperbolic equations have been chosen not only because of their
simplicity but also because of their hyperbolic nature which is similar to the

equations of motion in supersonic flow. The hyperbolic equations can be

written as,
in two dimensional space G, *+aq, + bqy =0 (2.6)
and in three dimensional space q +aq, + bqy teq, = (2.7)

where a, b and ¢ have been treated as constances.
If the initial conditions are given as q = f(x,y) and q = f(x,y,z), the
exact solutions can be found as
q = f(x-at, y-bt)
and
q = f(x-at, y-bt, z-ct)
for the two and three dimensional space, respectively.

In two dimensional case, the equation has been solved on a two dimensional
grid system which is changed into another grid system at some time. The
procedure described in the previous section has been used to transfer the flux
(in this case q itself 1is "flux") from one grid to another. The three
dimensional equation is more suitable as the model equation of the equations of
motion. The domain is divided into two subdomains which are independent from
each other. Again the technique described previously is used to transfer flux
(which is ag, bg or cq depending upon how the interface is oriented) across the
interface. Results have been compared with the solutions from single grid

calculations. Satisfactory results have been obtained. Details of this study

can be found in Ref. [104].
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3. APPLICATION TO THE AERODYNAMIC CONFIGURATIONS

The ultimate equations to be solved in CFD are the viscous Navier-Stokes
equations. However, since solving these equations on modern day computers is
still quite time consuming, they are often reduced to a simpler form.
Solutions to these simpler equations, namely, stream function formulation [105]
full potential equations [106-109] and Euler equations [110-115], have been
obtained. The stream function formulation retains the generality contained in
the full Euler equations. However, it is limited to two-dimensional or
axisymmetric flows, and made difficult by the fact that the density in the
transonic regime is a double-valued function of the unknown stream function.
The full potential equation has been used as a standard model and has proved to
be a helpful tool in the design of aircraft. As with the stream function, the
potential equation can be solved by efficient relaxation techniques, and
requires storage of only a single variable. Furthermore, it permits the
solution of three-dimensional as well as two-dimensional flows. The primary
disadvantages are the limitation to isentropic and irrotational flows. The
isentropic assumption implies that shock waves captured in the transonic regime
must be limited in Mach number to a value less than 1.3. The irrotationality
conditions requires a uniform incoming flow in two-dimensional situations, and
a free vortex condition three-dimensional flows. The potential equation will
admit the existence of discontinuities in the flow field. However, these
discontinuities are isentropic shocks, which do not represent true physical
shock waves because they do not satisfy the Rankine-Hugoniot conditions. These
shocks will be approximately of the proper strength and will exist in the
proper portion in the flow field if the Mach number of the flow approaching the
shock is less than or equal to 1.3.

In this study, Euler equations are used as the model equations. Methods
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based on the Euler model are useful tools in CFD since they offer more realism
than potential methods and yet are simpler and more economic than methods based
on the Navier-Stokes equations. A number of efficient and reliable numerical
schemes have been developed for the Euler equations [110-115]. Even though
viscous terms are neglected, solutions to Euler equations agree well with the
experimental results. Shock waves captured in this model agree with the
Rankine-Hugoniot relations regardless of their strength. And, more
importantly, vortex sheets and vorticity can also be captured as weak and
genuine solutions. The applications of numerical methods to solve the Euler
equations range from the study of flow field around military aircraft and
missiles where shock waves are strong, to more complex non-uniform shear flows
past wings. Details of the Euler equations are given in section 3.1.

The Euler solution procedure is based on a center finite-volume scheme
with explicit Runge-Kutta time stepping [116]. This type of scheme was first
used by Jameson et al. [117], but the present scheme differs significantly from
this original scheme, mainly in the definition of the damping terms and the
farfield boundary conditions. It has been extensively tested in both two and
three space dimensions, for three different Euler models (the full equations,
the constant-stagnation enthalpy model, and the artificial compressibility
model for incompressible flow) and for both aerodynamics and turbomachinery
application [118-121]. The finite-volume scheme is described in section 3.2.

In most instances the solution to the first order steady state equations
is desired. The steady state Euler equations change character depending upon
the local Mach number. In a totally supersonic flow some very efficient
methods exist for their solution. The method of characteristics and a simple
marching procedure are two common approaches. In subsonic domain, however, no

generally accepted method has yet been devised for solving this system. One
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approach used for subsonic or transonic flows is to reintroduce the time
derivative terms to the -equations. The resultant set of equations is
everywhere hyperbolic., A steady state solution can be obtained by marching
from some initial guessed flow field through time until an axymptotic steady
state is achieved. The initial conditions give rise to perturbation waves
which move through the field as the solution progresses in time. The Euler
equations have no inherent dissipation and, therefore, these waves must either
be radiated from open boundaries or absorbed by the addition of artificial
damping terms. The second difference and fourth difference damping terms are
added to the Euler equation. The fourth difference terms are global and linear
whereas the pressure-controlled second-difference terms are non-linear and are
only activated around shocks. Boundary conditions are mainly of four types:
solid wall conditions, interface conditions, inflow/outflow (farfield)
conditions and coordinate cuts. Sections 3.3 and 3.4 describe the damping
terms and numerical implementation of boundary conditions, respectively, in
detail.

Generally, to reach a steady state solution requires a large number of

iteratives and a long computational time [122]. Since only steady state

solutions are desired, and true time accuracy is of no concern, the concept of
local time stepping is used to accelerate the convergence to steady state
solution. This concept is introduced in Sec. 3.6. The explicit three-stage

Runge-Kutta integration scheme is also addressed in Sec. 3.5.
3.1 Governing Equations

The Euler equations describing three-dimension, unsteady and compressible

flows in conservation form can either be written in the differential form
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2, 2F, 20, B
where st "ax Ty T a2 0 (3.1)
p
ou
Q= pv
fel ]
E
pu pV pw
put p
(E+ plu (E+ p)v (E+ p)w
and

p = density
u= x - component of velocity

y - component of velocity

<
1]

w = 2z - component of velocity

internal energy + kinetic energy (in the absence of

pe + 0.5 (u2+ v2+ w2)

E = total energy

Potential Energy)

or in the integral form

y .
—_ dxdydz = oF + G + . = .
e fﬂ Q dxdydz gn (nx ny n H) ds = 0 (3.2)

where Q arbitrary finite region

x component of normal vector at the boundary of the region

=
1]

y component of normal vector at the boundary of the region

=}
1]

=]
]

z component of normal vector at the boundary of the region

the perfect gas equation of state is used to define the mean pressure P via the

internal energy e:

p= (y-1) pe (3.3)
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o
where vy = specific heat ratio = EE
v

An assumption has been made, in writing Eqs. (3.1) and (3.2), that the fluid
has undergone no external forces. It can be shown that the system of
conservation laws given by Eqs. (3.1) or (3.2) is hyperbolic [17]. Thus, Egs.
(3.1) or (3.2) can be integrated in time in order to achieve a steady state
solution (if such a solution exists). Equation (3.1) can be obtained by
dividing Eq. (3.2) by @ and then shrinking @ to a point. This leads fo the
system of the differential conservation laws valid at that point if the partial
derivatives are continuous there. The integral approach may be important for
the correct capturing of discontinuities in the flow since it formally does not
exclude discontinuities from the interior of Q. This study follows the
integral approach in which the difference equation are written directly from
the integral system. Therefore, the method is a cell concept rather than a
grid-point concept. The discussion on the method is given in Sec. 3.2.

The nonlinear character of the Euler solutions generally permits solutions
with discontinuities (shocks) where the differential Eq. (3.1) is no longer
valid. The equivalence between Egs. (3.1) and (3.2) is restored by allowing
weak solutions to Eq. (3.1). However, both equations can give rise to
nonphysical shocks unless an entropy condition is added. A "small" amount of
artificial viscosity is added to the inviscid model for this purpose [96].
This artificial viscosity should also mimic the physical viscosity and create a
primary vortex for flow past a highly swept wing at angle of attack. Although
secondary vortices brought about by viscous effect, on the leeward side of the
wing are not modeled, their effects on the primary vortices are small [123].
The Euler equations admit solutions with distributed vorticity but do not in
principle contain any mechanism for generating vorticity. Any vorticity in the

solution must be introduced either by boundary conditions or by shocks. Due to
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the extra entropy condition shocks will lead to an increase of entropy and
therefore also generate vorticity (Crocco's theorm) [124]. If the boundary
conditions at the inflow boundary are such that vorticity is implied, this
vorticity will naturally be convected into the domain and eventually be
convected out at the outflow boundary. Furthermore, a solid boundary with
sharp edge can also generate vorticity since attached flow around such an edge
gives rise to shocks and thus also vorticity. In principle, this mechanism
would act as an “automatic" Kutta condition [125] for the flow around an
airfoil with a sharp trailing edge. However, some numerical evidence prevails
that the combination of numerical errors and artificial viscosity will then
produce vorticity and thus force the flow to separate at the edge. Section 3.3
discusses the artificial viscosity model in more detail.

For a finite domain it 1is necessary to construct suitable boundary
conditions such that the desired steady state solution is obtained. The theory
of absorbing conditions [126] is used in its simplest formulation. By
linearizing the equations 1locally along the boundary and computing the
characteristic variables along surface normals, it is possible to give the

physically correct boundary information while maintaining good absorption of

the transient error waves. The latter property is especially important for
channel flows where stationary conditions are usually more difficult to obtain
than for external flows. A more detailed description of these absorbing

boundary conditions as well as other boundary conditions is given in Sec. 3.4.
3.2 Spatial Finite-Volume Discretization

Development of a method to solve the 3D Euler equations has been
made (37,116,127-129]. It is a time-dependent finite-volume approach that uses

multistage explicit time integration schemes together with centered space
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differences. Significant féatures of this approach are integral conservation
form, important for the correct capturing of shock waves and vortex sheets, its
amenability to very general geometry without the need for or global coordinate
transformation, and 1its toleration of grid singularities because the flow
equations are balanced only within the cells of the grid [130], and not at the
nodal point. It has been found that the time-dependent Euler equations permit
solutions in which the flows separate from the leading edge of a sharp delta
wing at angle of attack, without the implementation of a Kutta condition
[125]. In contrast, separated flows are obtained by space marching methods
only if a Kutta condition is enforced.

The simplest way to derive the centered finite volume spatial
discretization is to apply the integral formulation, Eq. 3.2, of the Euler

equations to each mesh all of a given grid (see Fig. 3.1), i.e.

Q dxdydz + ¢ (n oF +n «G+n «H) ds = 0 (3.4)
Q. . X Y z
1.J:k mn,
1,3,k

dt

where o ik T volume element (i,j,k)

By the mean-value theorem, Eq. (3.4) becomes

>
dd . . .
VoL —i,j,k + 8§ F + 8 G + H =0 3.5
ik dt ik % Tk T % Mk (3.5)
where  8pFs sk T Fiely ik T Fiiln ik
G G G (3.6)
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is Tocated in the center of the cell but the flux function,

i.e. [f(ﬁ)] L@ ik must be expressed at its surface, some form of local

interpolation of the neighboring discrete values 5 must be devised.

simplest, and perhaps most natural, function is

The
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(F(d)1 )

i+ 1/2 .3,k = E(ula

= i‘t(ud 0]

i+ 15 5,k

[F(d)2 ) (3.8a)

i,i+1p ,k i,5+ 15 ,k

PO 5 ey, = Foudi g e ly) -

Expressions similar to eq. (3.8a) are obtained for ¢ and . The average

operator, u, is defined as

=1
M1¥i+ L 5,k 72 by 5,k * b5,k

-1
LR R AR R IR N (3.9)

=1
uebi 5 ke T 2 (05 g ke k)

An alternative is to compute the flux fuction separately for each of the two

neighboring dependent variables and then average the two results. i.e.

P31, 5 * @ )

i+1p 5,k

(F(d) F(d ) (3.8b)

9t Yo kT M YL ek

1

[?(6)]',j,k+ L~ “K?(ﬁi,j,“ 1y

Similar expressions are obtained for & and F.

If the flux function were linear, alternatives (3.8a) and (3.8b) would be
equivalent. For non-linear flux, only scheme (3.8b) provides the correct jump
in 5 across the shock. Thus, in this study, each term in Eq. (3.7) is defined

as
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Similar expressions are obtained for G and H. Finally, the other terms are

expressed as
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From these formulas it is clear that the only quantities needed from the
coordinate transformation are the x,y.z - coordinates of the grid points.
Equation (3.5) together with (3.8b) leads to a spatial-difference operator
completely centered in all three coordinate directions, which is second-order-
accurate in space if the variation in grid size is reasonably smooth.

The finite-volume discretization bears some similarity to both the
conventional finite-difference and finite element discretizations, Its
formulation, like the finite-element procedure, begins with the integral
equation. Its difference stencil is that of a finite-difference scheme, but it
differs in that cell-averaged instead of point quantities are differenced, and
this gives a significant distinction near a grid singularity. In the finite-
volume formulation, the flux quantities can be defined and remain finite even
in the presence of the grid singularity, since Eq. (3.5) is balanced in the
interior of the cell where no coordinates are used. The usual grid-point

methods may not yield this feature without special programming consideration.
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Eriksson [130] has concluded that without any modification the finite-volume
technique remains stable in the presence of a grid singularity, but its
accuracy decreases to somewhere between first and second order in space.
Without alteration the finite-difference scheme 1is unstable even 1if the
singularities is straddled. However, if a 1limiting form of the difference
scheme is derived at the singularity point and implemented in the computer
code, stability of the finite difference scheme can be restored. The important
aspect of the finite-volume approach 1is that it suits well with the
conservative rezoning approach used in this study. This is true because fluxes
are obtained as the average values at the center of the cell faces, i.e., no
interpolation from grid points is needed. So, the order of the interpolation

scheme does not play a role in the interface treatment.
3.3 Artificial-Viscosity Model

The central difference schemes to solve the Euler equations are inherently
dispersive and not dissipative. Even for linear problems, central-difference
schemes admit as a solution so-called sawtooth waves. The non-linear nature of
the Euler equations gives rise to an aliasing phenomenon whereby these short
waves interact with each other, vanish, and reappear as distorted long waves.
In nonlinear transport there is a mechanism by which energy migrates from long
wavelength motion to progressively shorter and shorter scales until it is
removed from the flow by molecular viscosity. The Euler equations possess no
such viscosity so, in the discrete representation, this energy would migrate to
the smallest scale resolvable on the grid and then returns to large-scale
motion via aliasing, which is non-physical and would make a steady state
unattainable [131]. In general, these defects could be dealt by digital
filtering techniques. However, further deficiencies arise. The nonlinear

conservation equations admit non-unique weak solutions when shocks are to be
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captured. An entropy condition has to be supplied in order to obtain the phys
cally correct weak solution [132]. A standard way to invoke an entropy
condition is to model the true physical process inside a shock by the addition
of a small dissipation term to the convective differences. This so-called
artificial viscosity mimics the real physical viscosity not only by involving
an entropy condition but also by removing the short-wave motion out of the
flow.

A number of Tliteratures has been developed on construction of such
artificial viscosity models, but they vary in detail from method to method.
The construction of the models is érbitrary except for classification according
to its order of magnitude in terms of grid spacing. In this study, the
dissipation is introduced at the same time as the transport process. Its
magnitude lies in or below the range of the trunction error of the discrete
approximation. The total difference operator ?(QT therefore consists of: (1)
the convective part fc(ﬁ) that results from discretizing the Euler equations
in space by the centered finite-volume scheme, and (ii) the dissipative part
FDgﬁ) . Thus, equation (3.5), can be written as

d6 SE@G R @) -
dt ijk  C ijk D ijk’ Uik

~—
My

—

O

(3.10)

The total discrete dissipative operator FD(Qijk) includes its own
artificial boundary conditions, and comprises both linear and nonlinear terms

according to ED(aijk) = f(C.. ) + Daijk

nonlinear expression f(C ) is designed to provide dissipation at

, where D is a constant matrix. The
ijk
discontinuities, whereas the linear one is formulated to suppress spurious
solutions (sawtooth waves) and to control the migration of energy from large to

subgrid scales.
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3.3.1 Nonlinear Artificial Viscosity

The nonlinear artificial viscosity 1in the interior of the domain is

expressed by

) Gk]}Qi'k (3.11)

f = x{s][sl(o.. ) 1+ aJ[sJ(Q., )6 ] + ak[sk(Q. ;

ijk ijk 1 ijk’ J ijk
where x is a constant and sj.sy and s; are coefficients that depend on the

solution field through the pressure according to
2 2 2
s; = s LPiij, sy = 1le; LPijkd and s, = {6 LPiij,
2 2 2

where 67, 6; and 6, are central difference operators,
[+ % k

2 N
Sp¥isk = Yi+1,3,k T 2%i,5,k t Yi-1,5.k

2 _

83 %igk = Vii+1,k T %5kt %i,5-1,k
62 - -2 +

k Yigk T Yi,i,k+1 T YLk T %L k-1

and Lpijk = Log (pi,j,k)'

These coefficients are normalized by their maximum value so that their
magnitudes lie between 0 and 1. Their purpose is to sense non-smooth flow and
increase the filtering of large gradients so that in effect an entropy
condition is enforced. At the boundaries, the coefficients Sp: Sy and S are

set to zero.

3.3.2 Linear Artificial Viscosity Team

At all interior cells, the fourth-difference operator is used and the

linear artificial viscosity is expressed as
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. 4 4 4
DQJk el Y(GI + GJ + sk) Q

i (3.12)

ijk?

4 = -
where  S1isi = Vi ik T Micn,gk T %5k T Ye,gak Y ik gk

4 - -
Sa%isk = ¥i,5-2,k ~ MiL5-1,k T 0% g,k T i ge kY Ve k

4 - -
ScVisk T ¥iLik-2 T MLkl T8 gk T Mgkl T ¥ ke

and y is a constant. Linear extrapolation is used at the boundary cells.
3.4 Boundary Conditions

For the computation of many fluid dynamic problems more difficulty is
encountered 1in satisfying the boundary conditions than in balancing the
differential equations at the interior points of the flow field. This is so
because on the boundary not all of the flow variables are specified by the
boundary conditions, and there remain more unknowns than equations. While
transformation to a boundary-fitted coordinate system does reduce to one the
number of unspecified boundary variables necessary for differencing the
interior field, namely the pressure [133], still some way is needed to couple
these unknown values of pressure to those in the interior 1in a manner
consistent with the boundary conditions. Improper treatment of the boundary
conditions can lead to serious errors and perhaps instability. In order to
treat the flow exterior to a domain an artificial outer boundary must be
introduced to produce a bounded domain. This is an artificial boundary in the
sense that the actual flow in the physical domain 1is open, whereas, the
computational space must, for practical reasons, be closed. The numerical

conditions, therefore, should allow phenomenon generated in the computational
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domain to pass through the boundary without undergoing significant distortion
and without influencing the interior solution. Thus, the maximum amount of
transient energy can escape from the field so that the time-dependent solution
converges to the steady state. Engquist and Majda [124] have presented a
mathematical theory for the practical application of local absorbing boundary
conditions at artificial boundaries. Their 'First Approximation' is adapted to
this study.

Four distinct types of boundary conditions: conditions at solid walls,
periodic conditions across coordinate cuts, flow into or out of the artificial

boundary. and conditions at the interfaces, are discussed below.

3.4.1 Solid Walls

At a solid wall the mass flux is zero but the surface pressure contributes

to the momentum flux, Eq. (3.4), thus is simplified to

f (nE+n.L+n.b)d 34 (3.13)
n e n e n . s = S .
solid  x y b4 Iso]id
wall wall

Q

n P
where ¢ ; o

y

nzop

0

Equation (3.13) is used to derive the contribution from those mesh walls which
conincide with a solid wall. For example, if j =¥Qis denoted for these mesh

cell walls (Fig. 3.2) then Eq. (3.13) is approximated by



46
0
JX .
TSRS P
- - - SJY "
G Fn G4n o) ds= i, ki, & (3.14)
soli X y z
Wa]] SJZ*i ’ 1/2 ’kopi ’ 1/2 ’k
0

-1 Ly
where (z;, Uy Yo okt U™ Zic 1y 1 ke 1/2)

"(Zi+ 1/2 , 1/2 k- 1/2 -5, 1/2 , 1/2 k+ 1/2 )

Wisly, Iy ke 1y~ Vi lp, Yy k- 1))

AR R A (CIN TIR TR S PRI I R S 7%
-(x1.+ 1/2 , 1/2 Jk+ 1/2 - X, 1/2 , 1/2 k- 1/2 )
il Yy k1T Mi Ty, Yy ke Y )

(sl 1 ke ™ Zin Y, T k- 1))

N2 by kT (441 1y e Ypm Xl T ke 1)

Wisly, 1p kel Yi-lp, 1o k- 1)
_(-V1'+1/2 , 1/2 k- 1/2 =Y. 1/2 , 1/2 , k+ 1/2 )

.(X'H 1/2 s 1/2 okt 1/2 - X4 1/2 s 1/2 Jk= 1/2 )

and pi,l/g K is approximated by a linear extrapolation from the center of the

interior cells, i.e.,
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_ 3 1
Pi, Yok 2 Pi,1,k - 2Pi,2,k

3.4.,2 Coordinate Cuts

At a coordinate cut the physical space folds on to itself and the
condition on the flow at the computational boundary is periodicity. This
boundary, in fact, does not exist as a physical boundary. It is a boundary
only in a practical programming sense. Thus, it does not influence the
solutions in the interior. An example of this type of boundary can be seen in

Fig. 3.3.

3.4.3 Inflow/Outflow Boundaries

As mentioned previously, these boundaries are artificial boundaries for
practical reasons. The theory of absorbing boundary conditions [123] is
applied to convert the transient energy out of the flow field so that the
steady state solutions can be reached. This 1is done by 1linearizing the
governing equation locally and computing the characteristic variables in the
normal direction. Those characteristic variables which are advected into the
domain are then fixed to the desired values whereas those which are advected
out of the domain are Tlinearly extrapolated from the interior to the
boundary. The resulting complete set of characteristic variables is then
transformed back to the primitive variables and used to compute the desired
fluxes. The concept of Engquist and Majda's 'First approximation' is described
below.

A corresponding one-dimensional system of linear hyperbolic equation can

be written in the characteristic form as

»> +>

9 9

—E+A—-9=O (3.15)
ot X
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where 6 represents the characteristic variables and the Jacobian matrix A can

be written as

0 a B £
2 2
ac - ul + kaV a(l-kK)u + U Bu - kav eu - kaw
2 2
A= gc - vU + kgV av - kgu g(l-k)v + U ev - kgw .
2 2
ec - wU + keV aw - Keu BW - kev e(l-k)w + U
h _ ~ _ ~ _ ~
where a—s-ex,s-s-ey,e—s-ez
2 > > v-1
U=aqu+ gy +ew ; V =V, K=—
Y

¢ is the local speed of sound and s is the surface area of the cell face
coincide with the artificial boundaries.

The eigenvalues A of A can be found by solving det (A-al) = 0, as

A1=U,A2=ng3=u'a A4=U'a_,

+ H

2 2 1
where a, =1pkU ¢ [% K2u? + Cz(az’fB te 2)] 72

The left and right eigenvalues associated with these four eigenvalues make up

the row and columns of the transformation matrices T'1 and T respectively which

diagonalize Eq. (3.15):

>
3 9¢
-— + — =
ot ot A aX 0 Alkz 0
where ; - T—lﬁ A= T'lAT - A3 (3.16)
0 A
4
After the intermediate variables
U=pu+av ,V=ceveopw, W=ceu-an,
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have been defined for the sake of simplicication, it can be found that

kU 0 R R
2 2 o ¥ '
kvU - g(kV- + ¢ ) ] uR+ *+ ap, R+ ap_
TSk a(kV2+ c2) W VR, + 8P, VR_+ 8p_
0 U WR, - k(au + gv)a,  WR_ - k(au + gv)a_
(2 + ) (24 )
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2 2 ~ ~ ~ ~ ~ ~
v - U -ew + gU eV - al aW - gV
d, q, 4, 4
2 2 N . . "
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2 2 2 2.2
¢ (e - e))/d,  -aec )/d, -sec”1/d, +a® + 8 )c 1/d
kevZ-(U+a,)Q
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T d. d d d '
3 3 3 3
R- kgv™-(Ura_)Q- -KEU + a- -kgy + g0-
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= kU - 3, R, = eQi- zkw . p,= kwat + sC2
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The factor dy. dp. d3 and dg in the dominators are normalizing coefficients so

1

that T - T equals the unit matrix.

For the one-dimensional case it is well known that the number of
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conditions to be imposed in a cell at the outer boundary should equal the
number of characteristic directions that enter the computational domain. Four
typical cases are shown in Fig. 3.4. With subsonic inflow the implementation
is to set the three ingoing characteristic variables ¢(1), ¢(2) and ¢(3) to
their free-stream values, linearly extrapolate the fourth ¢(4) from the compu-
tational field, and then solve for the original unknowns Q = T¢ . At outflow

(@

it is ¢(3) that 1is given the values of wundisturbed flow, and ¢ ¢

and ¢(4) are extrapolated from the computational field.

3.3.4 Interface Conditions

An interface, here, is referred to as a common boundary where two or more
subdomain grids are patched together. As mentioned previously, these
boundaries are not physical boundaries and may compose of grids of different
topologies. Care must be taken in order to treat these boundary conditions
which exist because the computation is done on each subdomain grid
individually. This study follows a conservative approach which offers the
conservation of fluxes at the interfaces. The conservative treatment at the
interfaces may be important for the correct capturing of discontinuities
crossing them. The discussion on the conservative rezoning algorithm is given
previously. An example of its application is described below.

Consider the common boundary (interface) between two grids as shown in
figure 3.5. The application of the finite volume approach to the cell
(i,i, NK-1) requires the integrated fluxes, H$§) = h§§)- Agé) at the cell face
k = N - Yo, where Ag}) is the cell surface area at k = NK -5 . For the
interior cell, fluxes at the cell walls are computed by taking the average of
the flux functions evaluated at cell centers, i.e., h$}3,k+ y5=y§(hi,j,k
+ hi,j,k+1)' At the cell face k = NK -1pof grid l’hi,j,NK which contain in
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grid 2 are needed. They are computed by interpolating the flux functions
evaluates at cell centers of grid 2.
2)

For grid 2, the integrated fluxes Hg ._y%are required for the

computations of cell k=1. They are obtained by applying the conservative
rezoning algorithm described previously. To illustrate how the algorithm is
applied, consider an interface between two grids as shown in figure 3.6. Here
the subscript k 1is dropped since the interface lies on the cell wall of
constant k. The conservative treatment at the interface requires that the
integrated fluxes going through an area A&i) be the same for both grids, i. e.,

1)

H(l)- H(z). From Fig. 3.6, H£ can be evaluated as

ke kg L
(2)
p Al P
SRR B R

where Aéi%j in the portion of the area Aﬁi) which contain in the area Ag}) and
p is the number of the surface mesh of grid 1 which contain in the area
Aﬁi). In this manner the conservative rezoning algorithm can be applied to

compute

2 1)_P 1 2
H££)= Héz)- 3 hgj). Akgig (3.18)

since hg}) are known from the previous interface treatment for grid 1.
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3.5 Numerical Time Integration
The complete semi-discrete scheme, Eq. (3.10), including all boundary
conditions defines a unique system of nonlinear ordinary differential

equations

u, = F(u) ; u(0) = u (3.19)

which must be integrated in time by numerical means. The explicit three-stage
Runge-Kutta scheme presented by Gary [134] is used in this study. This scheme
is defined by the following algorithm:

u*(t

n+1) = u(tn) + atF(u(tn))

* %

0"t L) = u(t) +TpatF(u (t)) +1p MR (t L)) (3.20)

u(t u(t,) + Yo atF(ult ) + Yo atF(u" ()

n+1)

It can be shown that this scheme, when applied to the semi-discretized Euler
Egs. (3.10) is second-order accurate and is stable with a CFL-number of at
most 2.

The multistage two level schemes of the Runge-Kutta type have the
advantage that they do not require any special starting procedure, in contrast
to leap frog and Adam Bashforth methods, for example. The extra stages can be
used either (1) to improve accuracy, or (2) to extend the stability, region.
Another advantage of this approach is that the properties of these schemes
have been widely investigated, and are readily available in textbooks on

ordinary differential equations.

3.6 Local Time Step Scaling

As mentioned previously, to reach a steady state solution by explicit

methods, generally, requires a large number of iteration and a Tlong



computational time. This is so because time step used in explicit methods is
restricted to a maximum value according to the CFL (Courant-Friedrichs-Lewy)
condition [135]. The maximum time step is usually determined by the smallest
grid spacing. On a highly stretched grid, this maximum time step can be
extremely small. In the applications where only steady state solutions are
desired, and true time accuracy is of no concern, it has been found [136] that
the use of the "local time step" scaling is highly beneficial to accelerate
the convergence to steady state solutions. The simplest way to derive this
scaling is by a local Fourier analysis. This concept is outlined below.

To obtain a better understanding of the concept, let's consider the Euler
equations in two space dimensions:

Q +F(Q) +6Q) =0 (3.21)
t X y

Assuming that the mapping x(£.n), y(£.n) between the physical x-y space and
the computational g,n - space is smooth. Equation (3.21) can be transformed

into the computational space as

> + > > >
(JQ) + (y F-xG) +(-yF+xG) =0 (3.22)
t n n £ 3 E n
where J = Jacobian of transformation = XEyn - x“yE .
Equation (3.22) is integrated over the region Dij and can be written as
o yp Bidedn-§ [y E-x6)de+ (yE - x &)dnl = 0 (3.23)
— - - X + - X = .
at Dij Edn aDij yE £ 13 yn n n

The computational space has been discretized according to

& T & + 1Ag s nj = ng + JAn
and same notation have been defined as

re >
X .= X(E.a T\.) s Y. . =y(£.s n_) ’ Q LT Q(X o Y. t)
1,] 1 J 1.7 1 J T,J 1,] 1,]

> > > + > >
F.o.o=FQ ), 6 _=6(Q )
1,J 13J 1’\] 1!\]

53



54

q, . =Q 0 0. . =0 q
) . . . . - . . 3 . . - . . - . .
£i,i i+l Ti-lp.g ni,d  d.dtYe iLi-1p
> -1 > > > -1 > >
wQ, . =%(Q, .t Q. D). uQ  =Y1(Q, . +Q, | )
E 1, itly 5 Ti-lp, g TR RGN IR TS VAR Y N A
Equation (3.23) can be approximated by
d =» > >
—Q . Jdgdn + 8 [- (sy, JwF, )+ (sx ) uG, )
dat i, ffDi ; n[ g i, ni.d g1, ni.J ]
> +
+§ [y, JwF, )= (sx )G )]=0
£ n 1, £ 1. n 1] 1,J
(3.24)

Equation (3.24) is a semi-discrete centered scheme for the two dimensional
Euler equation. To derive the local time step scaling for equation 3.24,

first the transformation matrics are freezed at mesh point (i,j), i.e.

x (E,n) » x (E.on.) = X 5 x (g,n) = x (£.,m.) = X
11 n n

E g 1] 173 n
ye (gim) =y (ggamg) =¥ 5 ¥ (eon) = Y (&) =¥,
NEm)=X(Em)Y(Em)-X(EmH(Em)~;J -xy =13 (3.25)
g n n n g

Taean =8 -loa (F E ) +lpaex (8 2 )
AEAn — - - AEX -
Bt iy TR Vi an T Taga TR e T g

-1 v - o anx (G - =
foan ¥ (Fryg g Py 7eem Gy Gy 70

(3.26)

Next, the flux functions F(g), G(q) are linearized around Qi,j) according to

2y ~ B )+ R4 ) ;8@ 8 )+ Bud-q, )
1.J 1,J 1, 1.
~ F » ~ G »
Ao X@d )y se=23@ ) (3.27)
3Q  i,J 0 i,



where A and B are the Jacobian matrices evaluated at 61 ; with the aid from
Eq. (3.27), Eq. (3.26) can be written as
d » 1 ~ o~ ~ o~ P +> 1 ~ o~ ~ o~ >
3;-01 j+ (-ygA + st)(Oi a1 Q ; 1)+ (y A-x B)(Qi+1 J,-Qi_1 i 0

s ZANJ s . ZAEJ n n s .

(3.28)
which can be treated by Fourier analysis. Let
- ~ st die 1,6 ie_ . J
0 (1) =0 (8) =0 (2 1) (2 °2)  (3.29) - nco <my - m<o_<n (3.29)
ij ij 1 2

be the solution of Eq. (3.28)
Substitution of Eq. (3.29) into Eq. (3.28) yields the eigenvalue problem

i sin(el) ;-sin(ez) .
[s] + ————:7———-(y A-xB)+——— (-yA+xB)JQ=0 (3.30)

Agd n n And 14 g

A nontrivial solution to Eq. (3.30) can be found only if

§ sin (9,) y sin(s,) - X sin(e,) X sin(e,) .
det (b - Typs (AL E g (cisn]=o0

AEJ And AEd And
(3.31)

Since the original conservation law, Eq. (3.21) is hyperbolic, the matrices

R and B by definition satisfy the condition

det (of + g8 - AI) =0 => {Ap(a,B)}gzl all real (3.32)
a,B real
Thus, the eigenvalues sp(el,ez) of Eq. (3.31) are all purely imaginary and
given by
Sp(°1’ 8,) = - gxp(a,s) 5 p=1,eee,n (3.33)
where
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) yns1n (el) ygs1n (92)
a— ~S - ~
Agd And
- X sin (8,) X sin(e,)
g = n 1 + £ 2
agd And

For the Euler equations the Jacobian matrices R and B are known analytically
as well as the eigenvalues Ap(a,B). Thus, the local spectral radius at mesh
point (1,J)
py j = max dsp(elez)d
p’el!ez

can be estimated by analytic means. The "local time step" scaling of Eq.

(3.24) is, then defined by
d » > »>
(ff ddgdn) o, . —1Q,  +8[-(sy, JwF )+ (sx G )]
) 1, dt 1. n E 1.3 n 1, £ 1] n 1.
N
> »
+slsy, JwF, )-(sx JuG )I=0 (3.34)
E ni.) E 1.] n1.J £ 1,J
which evidently scales the problem so that the local spectral radius is equal

to 1 everywhere. It can be seen that this type of scaling does not affect a

steady solution of the original scheme.



4. RESULTS AND DISCUSSIONS
4.1 Sphere and Slender Body

The inviscid flow over a sphere is chosen as the first application of the
approach to the aerodynamic configurations. The simplicity of the sphere,
both from grid generation point of view and flow field calculation, gives an
advantage to the understanding of the approach. Since the approach has not
been applied to a physical aerodynamics problem, the first application should
be somewhat straight forward so that only difficulty lies in the treatment of
the interface conditions. However, Euler equations model is not suitable for
the high speed flow over sphere. This is because such a flow separates
somewhere downstream and the Navier Stokes equations have to be used. In
order for the Euler equations to be applicable to high speed fTow, and yet
simplicity of the configuration is maintained, a slender body is also
considered. Solutions for flows over both configurations have been obtained
at zero-degree angle of attack. Free stream Mach number for flow over sphere
is 0.2 (nearly incompressible) while flow over the slender body has been
investigated at a free stream Mach number of 1.5. The entire flowfield is
divided into two subdomain at about the center of the configurations. Grids
in both subdomains are of 0-0 type with different number of grid points, i.e.,
21x21x17 v.s. 33x33x17. Figure 4.1 and 4.2 illustrate grids used for sphere
and slender body respectively. As mentioned earlier, the purpose for the
investigations of flow over these configurations is to see whether the
approach is feasible when applied to the simple CFD calculation. Solutions to
these problems can be obtained by using single grids. The use of single grids
is probably more efficient. Thus, solutions from single grid calculations are

used as references to compare with solutions obtained by multiple grid
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calculations. Wall pressure coefficient at the center line are compared in.
Fig. 4.3 and 4.4. Good agreement can be seen clearly from the comparisons.
Even though, these comparisons are made for only simple cases but confidence
in using the concept of multiple grids should be built up. Indeed, solutions
to flow over these configurations can be obtained for various flow conditions
and number of grid points. The same agreement is expected to be obtained.
However, it is felt that problems with higher level of difficulty should be
pursued. Thus, the use of different grid topologies for different subdomain
grids is considered next. A Butler-wing described in the next section suits

this purpose well.
4,2 Butler Wing Configuration

A Butler wing is a delta wing which was proposed by D.S. Butler [137].
The planform of the body is an isosceles triangle, and the leading edges of
the wing Tay along the Mach lines of the unperturbed stream. The first 20% of
the wing is conical and the last 80% of the wing has elliptical cross section
with increasing eccentricity along the x-axis. At the trailing edge, the
elliptic cross section has infinite eccentricity and the last cross section is
a straight line. Figure 4.5 shows a physical model of a Butler Wing. The

semi major and minor axes are given by

major axis (i.e., sime-span) = x/8 0 <x<lL (4.1a)
minor axis (i.e., thickness on
center line) = x/8 0<x<0.2L (4.1b)
=X (x= 0.2 0°2L)4] 0.2L < x <L (4.1c)
8 0.8x ' :
where 32 = Mi -1

Butler [137] has compared the experimental results for surface pressure

with the theoretical results using the slender-body theory approximation to
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simplify the inviscid equation of motion. Squire [138,139] has obtained
experimental results for a Butler Wing with varying Mach number and angle of
attack. Abolhassani et al. [140] have obtained numerical solutions on a
Butler Wing by solving Navier-Stokes equations with the MacCormack time-split
method. It should be mentioned that the experimental model is 120 mm. long
and is constructed for M = 3.5. That is the semi-apex angle of the planform
and of the initial conical nose is sin'1(1/3.5) = 16.6020. The model is
mounted in the tunnel by attaching a string support of 12.5 mm. diameter to
the lower surface.

Even though solutions can be obtained using a single grid system,
multiple grid solutions on a Butler Wing suit well for the purpose of this
study. This is because grid of 0 type is suitable for the front part of the
configuration while H-type grid seems to be a better choice near the trailing
edge. The multiple grid system is composed of three subdomain grids as shown
in Fig. 4.6. The H-type grid at the rear of the configuration is divided into
two subdomain grids mainly to avoid programming difficulty. The Butler Wing
configuration illustrates the usefulness of the multiple grids approach where
grid topology is changed from one subdomain grid to another.

Wall pressure coefficient at various flow conditions are plotted in Fig.
4,3-4.10. In all plots, a solid line indicates wall pressure coefficient
obtained from multiple grid calculations. Plots of wall pressure coefficient
along the center line at 3.5 Mach number and zero degree angle of attack are
shown in Fig. 4.3. In Fig. 4.7a, comparisons are made with ref. [136-139].
Discrepencies near the nose region exist because grid is not fine enough to
obtain the correct conical solutions there. Discrepencies at the rear of the
wing are believed to occur because of the negligence of viscous effect in the

Euler equations. Squire [138] has made similar conclusion about these
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discrepencies. Good agreement for the comparison between multiple grid
solutions and solutions obtained from a single grid calculation is shown in
Fig. 4.7b. This indicates that the use of multiple grids does not cause the
discrepencies in Fig. 4.7a.

The computed pressure coefficients for ten degrees angle of attack are
plotted and compared with the Refs. 138 and 140 in Fig. 4.8. At 17%, 30%, 50%
and 70%, chordwise positions, the pressure coefficients are plotted against
the conical spanwise coordinate % tan ¢. Good agreement can be seen. On the
thick sections near the nose, the pressure is highest on the centerline and
falls toward the leading edge, whereas near the trailing edge the spanwise
distribution is more 'wing like' with the maximum pressure at the leading
edge. The changeover is shown by the pressure peaks in the pressure
distributions at x/c = 0.5 and 0.7. Some discrepencies with the experimental
results may be due to the fact that the lower surface of the experimental
model is distored to include a sting support. Results for flow at 2.5 Mach
number are shown and compared with results from Ref. 138. Figure 4.9 shows
results at zero degree angle of attack, whereas, results at ten degrees angle
of attack is shown in Fig. 4.10. The same conclusion as in the case of 3.5
Mach number can be made.

The results obtained, thus far, demonstrate that the use of multiple grid
approach is plausible and does not add significant error to the flow model
equations even when grid topologies in subdomain grids are completely
different. However, more complex problems should be investigated in order to
be certain about the capabilities of the approach. This study may not yet
indicate the usefulness or necessities of the multiple grid approach, since
the construction of a single grid system can be made in all cases. In some
applications, however, the construction of such a single grid system to cover

the entire domain may not be possible at all.
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5. CONCLUSIONS

Solutions of Euler flow over aerodynamics configurations on multiple grid
systems are presented. Some details on grid generation techniques and
solution procedures are discussed. The concept of conservative treatment at
the interfaces of various subdomain grid is also addressed. The solutions
obtained from this study illustrate a promising future of multiple grids
approach., It should be stressed, once more, that the main purpose of this
study is to determine whether the use of multiple grids approach is feasible
on these configurations, not to determine the characteristics of the flows.
The use of multiple grid approach, however, should give the correct
characteristics of such flows, as this study indicates. Thus, a single grid
system can be constructed to solve for soultions on any of the configurations
considered 1in this study. The solutions obtained from a single grid
calculation can be used as references to compare with those obtained from a
multiple grids calculations. This fact should not underestimate the
usefulness of multiple grids approach. In some instances, the construction of
a single grid system may not be possible at all. Even for simple
configurations where a single grid system can be constructed, the use of
multiple grids approach eliminates the difficulties that arise in the grid
generation procedures. Also, experiences have shown that the use of multiple
grid approach enhances the solution procedures. For example, the convergence
to steady state of the solution to the equations of motion depends on many
factors. One factor which is very important is the characteristics of a grid
system, i.e. grid spacing, grid orthogonalities e.t.c. Good characteristics
of a grid system is much easier to obtain in multiple grid approach as
compared to a single grid approach. Experience from this study has indicated

that efforts to be made to obtain a converged solution as a multiple grid
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system is not as much as those to be made on a single grid system. Arguments
can be made, however, that configurations used in this study are yet too
simple to make any conclusion about this advantage of the multiple grid
approach. More studies will have to be made to confirm it.

The next step, which is under investigation, is to apply this approach to
simulate the internal/external flow around a fighter-aircraft configuration
(Fig. 5.1). This simulation should illustrate the usefulness of the multiple
grid approach, since it becomes necessary to use different grid topologies
between the internal and external flow. The findings from this study is
expected to yield a significant contribution to the field of CFD. After the
solutions of the Euler equations is sucessfully obtained, the applications to
the Navier-Stokes equations, including chemical reacting and turbulent flows
(providing that proper turbulent modelling is implemented), should be

possible.
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Fig. 2.3 A computational domain where f is known on certain planes.



Fig. 2.4 An out-of-surface derivative of f.
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Fig. 2.5 A computational domain where §£ are specified on the outer surface.
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Fig. 2.9 The boundary surface is opened to avoid dealing with singularities.
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Fig. 3.1 A typical volume element.
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Fig. 3.2 A solid wall boundary.
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Fig. 3.3 Coordinate cut boundaries.
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Fig. 4.6 Grid system used for a Butler-Wing.
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