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This paper presents a short survey of recent research on Krylov subspace methods with emphasis 
on implementation on vector and parallel computers. Conjugate gradient methods have proven 
very useful on traditional scalar computers, and their popularity is likely to increase as three 
dimensional models gain importance. A conservative approach to derive effective iterative 
techniques for supercomputers has been to find efficient parallel/ vector implementations of the 
standard algorithms. The main source of difficulty in the incomplete factorization 
preconditionings is in the solution of the triangular systems at each step. We describe in detail a 
few approaches consisting of implementing efficient forward and backward triangular solutions. 
Then we discuss polynomial preconditioning as an alternative to standard incomplete factorization 
techniques. Another efficient approach is to reorder the equations so as improve the structure of 
the matrix to achieve better parallelism or vectorization. We give an overview of these ideas and 
others and attempt to comment on their effectiveness or potential for different types of 
architectures. 
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. .  1 Introduction 
Scientific problems that are tackled today are perhaps a few orders of magnitude more 
complex than those dealt with just one decade ago. This trend is likely to accelerate because 
of the rapid improvement in computational power that will result from parallel processing. 
However, a characteristic of the current trend in supercomputing is that the easy gains in 
speed are over: big improvements are only possible by radical changes in architecture as well 
as software and algorithms. 

In this paper we consider the impact of modern supercomputers on the design of iterative 
methods for solving large linear systems of equations. Because of the increased importance 
of three-dimensional models, iterative methods are again playing a major role. There is 
a general consensus that for problems arising from partial differential equations in three- 
dimensional domains, direct methods alone are too costly, both in terms of storage and 
computation. For example a 50 x 50 x 50 grid with five degrees of freedom per grid point, 
such as Euler’s equation in fluid dynamics, will lead to matrices of size N=625,000 and 
of bandwidth m M 25000. Even though reordering techniques can be used to exploit the 
sparsity of the matrix, the complexity of the problem is still very high. For a survey of the 
impact of supercomputing on aerodynamics research, where these types of problems arise, 
see Peterson [93]. The main attraction of iterative methods in an example like this one is 
their low storage requirement. In fact in many cases the matrix need not be stored entirely 
because it consists of a small number of blocks that are repeated many times. 

Krylov subspace techniques, of which the Conjugate Gradient (CG) method is an ex- 
ample, have increasingly been viewed as general purpose iterative methods, especially since 
the discovery and popularization of preconditioning techniques [76]. Although these tech- 
niques may fail for matrices that are not M-matrices, they are effective for the large class 
of problems arising from partial differential equations of the elliptic type. For extensions 
and modifications of point incomplete factorizations see [73,121,83]. An important gap in 
the literature concerns the development of truly general purpose iterative solvers that could 
replace direct methods with minimum risk of failure. 

It is interesting to observe that Krylov subspace methods became popular at almost the 
same time the first vector computers appeared in the marketplace in the mid-seventies. As a 
result, considerations for vector implementations were given early on [49,33,125,61,60]. The 
survey paper of Ortega and Voigt [91] gives an exhaustive bibliography for research done 
before 1985 in the general area of solution of partial differential equations on supercomputers. 
Much still remains to be done as many new techniques for vectorizing and parallelizing 
standard preconditioners were considered only recently. Along the way several alternative 
methods have emerged that turned out to be effective even on sequential computers. We 
will not describe these in this paper but we should mention two such techniques which show 
tremendous potential. The first is the class of domain decomposition methods. The reader 
is referred to the recent survey by T.F. Chan [26] and to the excellent paper on parallel 
implementations by W. Gropp and D. Keyes [64]-. The attraction of domain decomposition 
methods is that they have been impIemented naturally in many engineering applications in 
the past and as a result one may readily benefit from this experience. 
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The second class of methods that show promise is that of hierarchical multigrid tech- 
niques, in the context of finite element discretizations. Brieff y, these techniques amount to 
using hierarchical basis functions, i.e., a basis that consists not only of the nodal functions 
at the finest grid, but also of the coarser basis functions from which those fine grid functions 
have been obtained. Thus the function space is identical but its basis has changed. The 
remarkable property shown by Yserentant [134] is that for two-dimensional problems, the 
coefficient matrix arising from the discretization of elliptic partial differential equations with 
such bases has a condition number of O((-Log h ) 2 )  instead of the usual O(h-*). This has 
been exploited by A. Greenbaum et al. [51] and Adams and Ong [4] in the context of precon- 
ditioned conjugate gradient methods. The idea here is that there is no need to precondition 
such matrices, except possibly to use a simple diagonal scaling, since their condition numbers 
are so favorable. 

In the brief overview presented in this paper we will mostly consider the problem of 
implementing Preconditioned Conjugate Gradient type met hods for solving linear systems. 
The framework is that of large sparse linear systems that are not necessarily well structured. 
We will attempt to address the implementation issues for parallel machines with shared as 
well as distributed memory, and with small number of processors as well as large number of 
processors. 

Before concluding this introduction we would like to comment that the volume of publi- 
cations on iterative methods is so large that survey papers can no longer be exhaustive. For 
additional reading we recommend other survey papers by Ortega and Voigt [91], by Axelsson 
[13,14] and the recent book by Ortega [go]. 

The organization of the paper is as follows. In Section 2 we will give an overview of 
Krylov subspace methods without consideration to parallel implementations. Then we will 
address the questions of parallel / vector implementations of two specific examples of such 
methods: the conjugate gradient method for symmetric problems and GMRES for non- 
symmetric problems. The effective implementation of the forward and backward solves in 
preconditioned Krylov subspace methods is important enough that we will devote a separate 
section to it, namely Section 4. In Section 5 we will describe an alternative to incomplete 
factorization techniques, based on polynomial preconditionings, and give some comparisons 
with the standard approach. Then we will look at other preconditioners in Section 6, and 
reordering techniques in Section 7. We will make some concluding remarks in Section 8. 

2 An overview of Krylov subspace methods 
Given an initial guess xo to the linear system 

AX = b, (1) 

a general projection methodseeks an approximate solution x, from an affine subspace sO+Km 
of dimension m by imposing the Petrov-Galerkin condition 

b - A x ,  I L ,  
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where L,  is another subspace of dimension m. A Krylov subspace method is a method for 
which the subspace I(, is the Krylov subspace 

in which T O  = b - Azo. When there is no ambiguity we will denote I<,(A,rO) by IC,. The 
different versions of Krylov subspace methods arise from different choices of the subspaces 
I(, and L,  and from the ways in which the system is preconditioned. The most popular 
choices of I(, and L,  are the following. 

1. Lm = IC, = I<,(A,ro). This is the orthogonal projection or Galerkin case. The 
conjugate gradient method is a particular instance of this method when the matrix is sym- 
metric positive definite. Another method in this class is the Full Orthogonalization Method 
(FOM) [lo21 which is closely related to Arnoldi’s method for solving eigenvalue problems [7]. 
Also in this class is ORTHORES [57], a method that is mathematically equivalent to FOM. 
Axelsson [lo] also derived an algorithm of this class for general nonsymmetric matrices. 

2. Lm = AI(,; IC, = Km(A, T O ) .  With this choice of L,, it can be shown, see e.g., [lo81 
that the’approximate solution x, minimizes the residual norm Ilb - Axil2 over all candidate 
vectors in xo + I{,. In contrast, there is no similar optimality property known for methods 
of the first class when A in nonsymmetric. Because of this, many methods of this type have 
been derived for the nonsymmetric case [11,57,38,109]. The Conjugate Residual method [28] 
is the analogue of conjugate gradient method that is in this class. The GMRES algorithm 
[log], which we will describe in Section 3.5, is an extension of the Conjugate Residual method 
to nonsymmetric problems. 

3.  L,  = I<,(AT,r0); IC,  = K,(A,rO). Clearly, in the symmetric case this class of 
methods reduces to the first one. In the nonsymmetric case, the biconjugate gradient method 
(BCG) due to Lanczos [68] and Fletcher [44] is a good representative of this class. There 
are various mathematically equivalent formulations of the biconjugate gradient method [103], 
some of which are more numerically viable than others. A n  efficient variation on this method, 
called CGS (Conjugate gradient squared) was proposed by Sonneveld [118,95]. 

4. Lm = I(, = I ( , ( A T A , A T ~ o ) .  This is nothing but the conjugate gradient method 
applied to the normal equations ATAx = ATb, often referred to as CGNR[38]. The con- 
dition number of the normal equations is likely to be too large for most problems to make 
this approach competitive with the approaches 1 to 3, except possibly for indefinite prob- 
lems, i.e., problems for which the symmetric part is not positive definite. LSQR [92] is an 
impIementation that is somewhat less sensitive to large condition numbers. Moreover, for 
least squares problems with non-square matrices, one must either explicitly or implicitly 
use an approach based on the normal equations. We put in this category also the method 
of conjugate gradients applied to AATy = b, whose solution y is trivially related to x by 
x = ATy. This is often referred to as CGNE, or Craig’s method. If we express the Galerkin 
conditions in terms of the y variable, then, clearly, I<, = Km(AAT,  ro) and L,  = IC,. Us- 
ing the relationship x = ATy between the x and y variables, we can translate the Galerkin 
condition that y satisfies in terms of the x variable to find that for the variable x Craig’s 
method corresponds to taking IC, = I(,(ATA,ATro) and L,  = A-TI<m. Moreover, the 
main difference between CGNR and CGNE is that the first minimizes the residual norm 
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over K,,, while the second minimizes the error norm over Km. 
Note that the methods recently presented in [112], although related to Krylov subspace 

methods, do not belong to one of the above classes. 
An important factor in the success of conjugate gradient-like methods is the precondi- 

tioning technique. This typically consists of replacing the original linear system (1) by, for 
example, the equivalent system 

. -  

M-'Ax = M-'b (4) 
In the classical case of the incomplete LU preconditionings, the matrix A4 is of the form 
M = LU where L is a lower triangular matrix and U is an upper triangular matrix such that 
L and U have the same structure as the lower and upper triangular parts of A respectively. In 
the general sparse case, the incomplete factorization is obtained by performing the standard 
LU factorization of A and dropping all fill-in elements that are generated during the process. 
This is referred to as ILU(O), or IC(0) in the symmetric case. There are more elaborate 
factorizations that allow a limited amount of fill-in to take place. In particular in the 
structured case one can let some fill-in appear along specific diagonals to get incomplete 
factorizations, denoted by ICCG(k), which more closely approximate A [76]. In the general 
sparse case this technique has been generalized by introducing the notion of level of fill-in 
[128]: the level of a fill-in element is defined as one plus the sum of the levels of the L and U 
elements from which it is spawned in the elimination process. Initially, all elements have level 
of fill-in equal to 0. ILU(k) is then defined as the incomplete factorization that is obtained 
by dropping all fill-in elements whose level exceeds k. An interesting question that comes to 
mind immediately is to see whether the more accurate factorizations will perform better in 
the context of parallel processing. The rationale is that we will deal with denser matrices 
and therefore the iterative technique will benefit from better vectorization and data locality. 
Unfortunately, the process of updating the levels is extremely expensive and sequential in 
nature. Experiments with such techniques reveal that the preprocessing phase of computing 

: 

I the incomplete LU factorization with any level of fill exceeding one dominates the computing 
time on (mu1ti)-vector processors or and was rarely competitive with the simpler ILU(0) or I 

I ILU(1) preconditioners [5,116]. 
Another class of successful preconditioning techniques based on block factorizations was 

popularized by Concus, Golub and Meurant [31]. For reasons of space we will only briefly 
give an overview of these in Section 6, but we should mention that their performance has 
been well documented in the literature; see Meurant [82,78], Eisenstat et al. [36], and 
Axelsson[lS]. There exist many other ways of defining incomplete factorizations of a given 
matrix, most of which are based on some form of diagonal dominance. For instance many of 
the standard point or line relaxation techniques such as Gauss-Seidel, SOR, SSOR, or ADI, 

The Generalized Conjugate Gradient (GCG) method, introduced by Concus and Golub 
[30] and Widlund[l29] can be viewed as a particular case of a preconditioned conjugate 
gradient method where the preconditioning matrix is A4 = A + AT. With this special choice 
of the preconditioning matrix M ,  there is a three term recurrence similar to that of the 
conjugate gradient method. On the other hand, each step of GCG requires the solution of a 
linear system with the matrix M ,  which may be uneconomical. 

I see [126], can be used as preconditioners. 

~ 

. 
I 
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- .  For the standard ILU/IC preconditioners, solving a linear system with the matrix M ,  
requires performing a forward and a backward triangular system solution at every step of 
the Krylov subspace method. This may constitute the main bottleneck in iterative methods 
if not carefully implemented on supercomputers and will be discussed in detail later. 

3 Preconditioned Conjugate Gradient. 

3.1 The algorithm 
By far the most popular Krylov subspace method for solving symmetric positive definite lin- 
ear systems is the preconditioned conjugate gradient method, a version of which is described 
below. Here M represents the preconditioning matrix. 

Algorithm: preconditioned CG 

1. Preprocess: Compute preconditioner Ad. 

2. Start: ro := b - Axo, po := zo := M-'ro. 

3. Iterate: Until convergence do, 

The above algorithm is nothing but the conjugate gradient method-applied to the linear 
system M-'Ax = M- 'b  in which the standard Euclidean inner product is replaced by the 
inner product (x, y ) ~  = (Mx, y).  It has the property of computing an approximate solution 
whose preconditioned residual vector Ad-'(b - Ax;) is M-orthogonal to all the previous 
preconditioned residual vectors. Therefore it is a Krylov subspace method of the first type 
(Galerkin) with the matrix A replaced by the preconditioned matrix M-'A and the standard 
dot product replaced by the M dot product. 

Concerning supercomputer implementation, one observes that the main operations in the 
above algorithm are the following. 

1. Setting up of the preconditioner; 
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2. Matrix vector multiplications (3-a); 

3. Vector updates (3-c, 3-d and 3-g); 

4. Dot products (3-b and 3-f). 

5. Preconditioning operations (3-e) 

In the above list the potential bottleneck is in setting-up the preconditioner (1) and in 
the solution of linear systems with M ,  i.e., operation ( 5 ) .  Because of their importance, we 
will address the problem of efficient implementation of the operations in a separate section. 
Also potentially time consuming are matrix by vector products which deserve a particular 
attention. The rest of the algorithm consists essentially of dot products and vector updates. 
Since the dot products may be the source of bottlenecks on some machines, particularly 
those with a large number of processors, they should be carefully examined. This issue will 
also be discussed separately. 

3.2 Matrix by vector products. 
Matrix by vector multiplications are relatively easy to implement efficiently on most super- 
computers. The first observation that has been made in this context is that this operation can 
be performed by diagonals when the matrix is regularly structured, i.e., when it consists of a 
few diagonals [62]. The matrix can be stored in a rectangular array DIAG(1 : n , l  : ndiag)  
and the offsets of these diagonals from the main diagonal may be stored in a small integer 
array IOFF(  1 : ndiag).  

After initializing the vector y to zero, the main loop for computing y = As is as follows: 

DO 10 J = l ,  NDIAG 
JOFF = IOFF(J) 
DO 20 I=l, N 

Y(I) = Y ( I )  + DIAG(I,J)*X(JOFF+I) 
20 CONTINUE 
10 CONTINUE 

This can be implemented efficiently and thus excellent megaflops rates can be reached 

For general sparse matrices there has been several attempts to obtain similar perfor- 

matrix so as to obtain a diagonal structure [3,97]. We will only discuss the first approach 
here. This approach is of interest only for matrices whose maximum number of nonze- 
ros per row, jmax, is small. One then stores the entries of the matrix in a real array 
COEFF(1  : n , l  : jmax) together with an integer array JCOEFF(1  : n,l  : jmaz) 
that stores the column numbers of each entry of COEFF.  We refer to this as the IT- 
PACKIELLPACK format. The above FORTRAN loop then becomes, 

on vector machines when the matrix is large enough. 

I mances by either generalizing the diagonal storage scheme [89,133] or by reordering the 
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DO 10 J=1, JMAX 

DO 20 I=l, N 
Y(I) = Y(I) + COEFF(I,J)*X(JCOEFF(I,J)) 

20 CONTINUE 
10 CONTINUE 

The main difference between this loop and the previous one is the presence of indirect 
addressing in the innermost computation. Note that if the number of nonzeros per row varies 
substantially, then many zero elements must be stored unnecessarily, and this scheme may 
become inefficient. 

When considering matrices from real applications it is interesting to observe that there is 
always some structure to them. In particular most matrices are such that a large percentage 
of their elements belong to a few diagonals. One can therefore extract a small number of 
diagonals, store them as was described above for structured matrices and put the rest on 
the elements in a general sparse matrix storage. The complexity of a code that does this 
conversion is on the order of the nonzero elements and is therefore affordable. The payoff 
could be quite high especially on vector machines that do well on long vectors. Clearly, here 
again many zero elements may have to be added to fill the diagonals and so one must be 
careful when assessing performances. 

All the above storage schemes are specialized to some degree to certain types of matrices. 
These can perform well in many instances but their lack of generality is a serious limitation. 
Unfortunately, as is often the case, there is a conflict between generality and efficiency. One 
of the most general schemes for storing sparse matrices is the compressed sparse matrix 
storage scheme described next. The data structure consists of three arrays. First, a real 
array A ( l  : nnz)  stores the nonzero elements of the matrix row-wise, i.e., the elements of 
a given row are stored contiguously. Then an integer array JA(1  : nnz)  stores the column 
positions of the elements in the real array A .  Finally, a.n integer array I A ( 1  : n + 1) is a 
pointer array, in that its i-th entry points to the beginning of the i-th row in the arrays A and 
J A .  This data structure is often referred to as the general sparse format, or the A,  J A ,  I A  
format. With this storage scheme each component of the resulting vector y can be easily 
computed independently as the dot product of the i-th row of the matrix with the vector 2. 
In FORTRAN 8-X, we can write this as 

10 

DO 10 I=l, N 
K1 = IA(1) 

Y(1) = DOTPRODUCT( A(Kl:K2) , X(JA(Kl:K2)) 
K2 = IA(I+l)-1 

CONTINUE 

From the implementation point of view, an important observation is that the outer loop 
can be performed in parallel. On a machine like the Alliant FX-5, the synchronization of 
this outer loop is inexpensive and the performance of the above program can be excellent. 

On distributed memory machines the above loop can be split and a number of its steps 



will be executed in each processor. The splitting may be done in such a way that roughly the 
same amount of work is performed in each processor, taking other parts of the CG algorithm 
into consideration. The part of the matrix that is needed is loaded in each processor initially. 
However, interprocessor communication will be needed to get necessary parts of the vector 
x that do not reside in a given processor. For general sparse matrices, it may not be easy to 
find the mapping that achieves the best overall time. 

The indirect addressing involved in the second vector in the dot product loop is handled 
by a special hardware instruction called a Gather operation. The vector X(JA(k1 : k 2 ) )  is 
first gathered from memory into a vector of contiguous elements. The dot product is then 
carried out as a standard dot product operation between two dense vectors. 

In case the matrix is stored by columns instead of rows, we can use the following program 
to compute y = Ax, 

DO 10 J=1, N 
Kl = IA(J) 
K2 = IA(J+l)-1 
Y(JA(Kl:K2)) = Y(JA(KI:K2)) + X(J) * A(KI:K2) 

10 CONTINUE 

Clearly, the above code also computes the product of the transpose of a matrix by a 
vector, when the matrix is stored row-wise in the A,  JA,  I A  format. Normally, the vector 
Y(JA(k1  : k2)) is gathered and the SAXPY operation is performed in vector mode. Then 
the resulting vector is ‘scattered’ back into the positions J A ( * ) ,  by what is called a Scatter 
operation. However, a major difficulty with the above FORTRAN program is that it is 
intrinsically sequential. First, the outer loop is not parallelizable as it is, but this may be 
remedied as will be described shortly. Second, the inner loop involves writing back results 
of the right hand side, into memory positions that are determined by the indirect address 
function JA. To be correct Y(JA(1)) must be copied first and then Y(JA(2)), etc.. However, 
if it is known that the mapping JA(i)  is one-to-one then the order of the assignments no 
longer matters. Since compilers are not capable of deciding whether this is the case, a 
compiler directive from the user is necessary for the Scatter to be invoked. Going back to 
the outer loop, one can split it in p distinct parts and compute p sub-sums into p temporary 
(full) vectors, that are added after completion to get the result vector y. This last part 
constitutes additional work but it is highly vectorizable and parallelizable. 

The first vector machines that appeared did not perform too well on sparse computations 
because they were not equipped with special instructions for Gather and Scatter. The 
beneficial impact of hardware “Scatter” and “Gather” on vector machines has been discussed 
in [69]. 

For vector machines the previous two techniques are likely to perform poorly because 
they involve vectors that are usually very short. For example for a typical two dimensional 
problem with one unknown per grid point, the number of nonzeros per row is at most 5 ,  
when finite differences are used. One option is to use one of the schemes based on diagonal 
or generalized banded format described above. However the following scheme related to the 
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stripe structure of Melhem [77], is a more general alternative. We start from the A,  J A ,  I A  
data structure and reorder the rows of the matrix according to their number of nonzeros, 
decreasingly. Then, a new data structure is built by constructing what we call “jagged 
diagonals” (j-diagonals). We store as a dense vector the leftmost element from each row, 
together with an integer vector containing the column positions of each element. This is 
followed by the second jagged diagonal consisting of the elements in second position from 
the left. As we build more and more of these diagonals, their length decreases. The number 
of j-diagonals is equal to the number of nonzero elements of the first row, ;.e., to the largest 
number of nonzero elements per row. To multiply a matrix by a vector using this scheme 
one can proceed as follows, where we denote by IDIAG(j) the pointer to the beginning of the 
j-th jagged diagonal, and by JDIAG(k) the column position of the element stored in A(k): 

DO 10 J=1, NDIAG 
K1 = IDIAG(J) 
K2 = IDIAG(J+l)-1 
LEN = K2-K1+1 
Y(1:LEN) = Y(1:LEN) + A(Kl:K2)*X(JDIAG(Kl:K2)) 

10 CONTINUE 

On one processor of the Cray-2, the asymptotic speed of the above code is around 39 
Mflops (941. Note that since we assume that the rows of the matrix A have been permuted 
the above code will compute a permutation of the vector Ax, for the unpermuted matrix 
A. It is possible to permute the result back to the original ordering after the execution 
of the above program. One can also postpone this operation until the final solution has 
been computed, so that only two permutations on the solution vector are needed, one a t  the 
beginning and one a t  the end. For preconditjonings that require a different ordering of the 
unknowns to  achieve a good efficiency, it will be necessxy to perform a permutation before 
or within each call to the preconditioning subroutines. 

As an illustration we show in the next table the performance of the following five different 
ways of multiplying a matrix by a vector: 

1. Row-wise storage , (sparse dot product form); 

2. Column wise storage, (sparse saxpy form); 

3. Diagonal storage, (triad form); 

4. Itpack format 

5. Jagged diagonal format; 

The test was done on an Alliant FX-80, in double precision arithmetic, using 5-point and 
7-point matrices for 2-D and 3-D rectangular grids. 

Notice the wide differences in performance obtained between these five kernels that per- 
form the same operation. On the Alliant FX-80, method 2, using the column-wise storage 
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Table 1: Megaflop rates for five matrix by vector multiplication kernels on an Alliant FX-80. 

is the worst performer. It is important to stress that relative performance is machine de- 
pendent: the dot product scheme which performs well here would not too well on vector 
machines. Also of interest, and to some extent disturbing, is the variation in performance 
obtained for different matrices with the same kernel. These discrepancies are especially 
noticeable in Kernel 5 ,  using the jagged diagonal format. Here the large degradation in 
performance when passing from two-dimensional to three-dimensional grids is due to the 
fact that the amount of data that is used is so large that it does not fit in the 128 KB 
cache. For the 30 x 30 x 10 matrix, the number of double precision words needed to hold 
the matrix plus the input and output vectors is roughly 7 x N + 2 x N = 9 x N ,  i.e., 811' 
words, while the cache size is only 64K words. At this point, execution time is dominated 
by memory traffic. Every time a j-diagonal is used, i.e., for each outer loop, the above code 
sweeps through the j-diagonal array A(k1 : k 2 )  itself plus the integer arrays for the indirect 
addressing JDIAG(k.1 : k2) and finally through the vectors x and y, with a very high cache- 
miss  ratio. This situation might be remedied by unrolling the j loop to avoid unnecessary 
reloading of the vectors z and y. 

One problem that seems not to have been studied in the literature is that of performing 
simple operations with general sparse matrices on SIMD machines like the MPP or the 
Connection machine. On such machines much of what has been accomplished is to test the 
usual symmetric conjugate gradient method for easy model problems [27,25]. The difficulty 
with the more realistic general sparse problems is the apparent necessity of resorting to 
indirect addressing, a difficult operation on these architectures. Hammond and Law [55] 
propose a hardware solution based on systolic arrays. This challenging problem must be 
solved before SIMD machines can be considered real contenders to MIMD machines in the 
race for practical supercomputers. 

3.3 The problem of the dot products 
It has been observed that the dot products in the conjugate gradient algorithm constitute a 
bottleneck on many parallel or vector machines. This is because when all the vectors in the 
algorithm are split equally among the processors dot products require global communication. 
However, this need not be a problem unless the number of processors becomes large. 

Another minor difficulty caused by the dot products is the fact that they constitute . 
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two synchronization points in the algorithm. The dot products must be completed before 
anything else can be done and no other computation can be done while they are being 
computed. As was observed independently in [59] and [lo51 this can be partially overcome 
by exploiting the orthogonality of the vectors r;+l and r; from which we can derive the 
equality, 

As a result can be computed from a; and Ap;, leading to the following formulation, 
when M = I (No preconditioning). Note that the algorithm can easily be extended to the 

lIri+llI; + IlriIl; = a;211APi1(22* ( 5 )  

preconditioned case; see [81,80]. 

Algorithm: CG,  version 2 

Iterate: For i = 0,1, .  . . until convergence do: 

1. Compute w := Ap;, (Ap;, r;)  and ~ ~ A ~ i ~ ~ ~ ~  

2. Compute the scalars 

3. Compute 

0 x;+1 := x; + a;p; 
T;+1 := Ti  - aiw 
pi+l = ri+l + Pipi 

0 

Unfortunately, the above version of CG is unstable and there is a simple analysis to 
To simplify the notation we introduce the understand the difficulty and to remedy it. 

quantities, 

Then we have the following result on the relative error on 

Similarly for ti ,  
- SC; bt; sc; 1 

ti c; ti c?(l/c; - 1) cis; 
-- SC;  - - M --.- = - 
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and finally for c;, 

From (7), (8) and (9) we get 

The above formula suggests that there is a danger of catastrophic error when si gets close 
to zero. In fact even if s; is not small, the above expression tells us that the accumulated 
error may grow exponentially. To simplify our model a little further, let us assume that 
7; = ( A p ; , r ; ) z / ~ ~ A p ; ~ ~ ~ ,  a quantity that is computed locally and independently of p; has no 
error in it, i.e., that 57; = 0. Then the above formula yields, 

bPi+l 1 bpi - (1 + -)-- 
Pi+1 Si Pi 
-- 

The meaning of the above relamtion is that even under the strong condition that there are 
no local errors introduced, an initial error on po will affect the predicted value of pi+l  by an 
error which grows like the product of the factors 1 + l/s;. The resulting algorithm will be 
unstable in general. 

A simple remedy would be to keep track of the growth of the estimated error and recom- 
pute occasionally the residual norm by the usual formula. In fact Meurant [81,80] recomputes 
it at every step and shows that the additional dot product is worth the cost on a vector ma- 
chine like the Cray X-MP. Note that the scalar s;  on which the error estimate is based, is 
available a t  every step for free. The above analysis can be extended to the preconditioned 
conjugate gradient method, by using the M-inner product instead of the Euclidean inner 
product. 

One can take the above idea of post-poning inner products one step farther and ask 
whether it is possible to derive a version of the conjugate gradient method that has as few 
synchronization points as possible. One idea is to try to esecute rn steps of the conjugate 
gradient algorithm at once [29]. However, one can expect to encounter the same stability 
difficulties as before. Another simple and reliable way to reduce bbttlenecks due to inner 
products is to use polynomial preconditioning as will be described in Section 5. 

There are some difficult issues when implementing algorithms on parallel/vector machines 
pertaining to the best use of the available hardware and software. We have mentioned the 
delicate problem of optimizing the use of vector registers, the hardware gather and scatter 
operations, and the disastrous effect that cache memories may have on sparse computations. 
Work by Meurant on a Cray X-MP-48 [SO], Seager[115], and I<oniges[66] addressed the ques- 
tion of how to implement conjugate gradient methods and best exploit multitasking and 
microtasking. Efficient implementations of different preconditioning techniques is more diffi- 
cult on multi vector processor machines such as the Alliant FX-8 because of the complicated 
side effects of the memory hierarchy [56,75]. Thus, it seems that there are no all-purpose 
preconditioning techniques. . .  
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3.4 Preconditioned GMRES 
GMRES [lo91 is an effective conjugate gradient-like algorithm for solving general large sparse 
linear systems of equations of the form 

AX = b. (12) 

Assuming a preconditioner M is used on the left, see [38], we will be solving instead of (12), 
the preconditioned linear system 

A brief description of the preconditioned GMRES method follows. Details can be found in 
[log]. 

Algori thm : Precondi t ioned GMRES 

1. Start: Choose xo and a dimension m of the Krylov subspaces. 

2. Arnoldi process: 

0 Compute ro = M-'(b - Azo), /3 = llroll and V I  = ro/P. 

0 For j = 1,2,  .., m do: 

Define H,  as the (rn + 1) x m upper Hessenberg matrix whose nonzero entries are the 
coefficients hij. 

3. Form the approximate solution: 

0 Find the vector 9, which minimizes the function J ( y )  = ll,Bel - Hmyll where 

0 Compute x ,  = xo + V,y, 
el = [I, 0,. . . o]*, among all vectors of R". 

4. Restart: If satisfied stop, else set zo t 5, and goto 2. 
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Each outer loop of the above algorithm, i.e., the loop consisting of steps 2,  3,  and 4, is 
divided in two main stages. The first stage is an Arnoldi step and consists of building a basis 
of the Krylov subspace ICm. The second consists of finding in the affine space xo + IC, the 
approximate solution x, which minimizes the residual norm. This is found by solving the 
least squares problem of size m+1 of step 3, whose coefficient matrix is the upper Hessenberg 
matrix H,. 

Note that in practice, the least squares solution of the (m  + 1 )  x m problem in 3 is solved 
by a QR factorization of the matrix H;, which is updated at each step of the Arnoldi process 
in 2. With this implementation we can obtain at no additional cost the residual norm of the 
corresponding approximate solution zk without having to actually compute it; for details 
see [log]. This allows us to stop at  the appropriate step. 

When the preconditioned matrix is positive real, then GMRES is theoretically equivalent 
to GCR [38] and to ORTHODIR [53] and it is known to converge. Moreover, it is less costly 
both in terms of storage and arithmetic [log]. It ca.n be shown that, in exact arithmetic, the 
method cannot break down although it may be very slow or even stagnate in cases when the 
matrix is not positive real. For details on stagnation and breakdown behaviors of Arnoldi 
and GMRES methods, see the recent analysis by Brown [24]. 

Consider the implementation of the above algorithm on a vector or parallel machine. As 
before we start by enumerating the main kernels of the algorithm. 

1. Setting-up the preconditioner; 

2. Matrix by vector multiplication; 

3. Orthogonalizing a vector against a set of orthogonal vectors; 

4. Vector updates; 

5. Preconditioning operation. 

The work involved in solving the small least squares problem in step 3 of the algorithm 
is negligible for large linear systems. 

The new operation here with respect to the conjugate gradient method is the orthogo- 
nalization of the vector Av; against the previous v's. The usual way of accomplishing this 
is via the modified Gram Schmidt process, which is ba.sica.lly a sequence of subprocesses of 
the form 

e Compute a = (y,v) 

e Compute $ := y - QV 

consisting of orthogonalizing a vector y a.gainst another vector v of norm one. Thus the 
outer loop of the modified Gram-Schmidt is not parallelizable, but the inner loop, i.e. each 
subprocess, can be parallelized by dividing the inner product and saxpy operations among 
processors. Although this constitutes a perfectly acceptable approach for a small number of 
processors, the elementary subtasks may be too small for this approach to be efficient on a 
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large number of processors. In that case one solution is to use a standard Gram-Schmidt 
process with reorthogonalization. This would replace the previous sequential orthogonal- 
ization process by a matrix operation of the form = y - VVTy,  i.e., BLAS-1 kernels are 
replaced by BLAS-2 kernels. Further, we should point out that BLAS-3 type kernels that 
usually allow extremely high performances on machines with caches or local memories [47] 
cannot be used here because at every step we have only one vector to orthogonalize against 
all previous ones. To some extent this may be remedied by using block methods considered 
next. An alternative technique for the orthogonalization process in GMRES was recently 
proposed by H. Walker [127]. This technique, based on the Householder process, has superior 
numerical properties, and can easily be parallelized. 

Radicati and Robert [98] compare the performance of several Krylov subspace methods 
on an IBM 3090 VF. In particular they discuss good strategies for implementing the main 
kernels on this machine and provide an exhaustive set of experiments. The paper focuses 
on iterative solvers rather than preconditioners and concludes that although it is difficult 
to make any definite statements as to an overall best method, on the average GMRES and 
CGS did perform better than the other iterative methods tested. 

3.5 Block Krylov subspace methods 
The idea of using a block of vectors instead of a single vector in methods such as the conjugate 
gradient algorithm and the Lanczos algorithm has been suggested by several authors as a 

. simple means for increasing parallelism [107,106,85,87]. The main idea can be explained by 
assuming that we have to solve a linear system of the form AX = B where the right hand 
side is no longer a single vector but an N x p matrix. Then a natural modification of the 
CG algorithm consists of replacing all the operations with singIe vector by operations with 
blocks of p vectors. After convergence, the block conjugate gradient algorithm would have 
solved the p systems simultaneously. If only one linear system must be solved then additional 
artificial right hand sides must be created. In absolute terms this approach is not efficient, 
Le., the total number of arithmetic operations is likely to be much higher than with the 
standard single vector method. Note that there are many problems involving linear systems 
with several right hand sides in which case a block method becomes very attractive even on 
scalar machines. 

A well-known attraction of the block methods is that for out-of-core problems they tend 
to reduce the number of accesses to secondary storage. Thus a block Lanczos algorithm was 
found preferable to the single vector Lanczos algorithm in the context of eigenvalue calcu- 
lations [52,70]. Many of the modern supercomputers emphasize a hierarchical organization 
of the memory using principles similar to those used for secondary storage in traditional 
computers, except that the number of levels in the hierarchy is higher. One example of this 
architecture is the CEDAR multiprocessor of the University of Illinois [67]. Access to data 
from the global shared memory in CEDAR is more expensive than access to data within 
each local memory (cluster memory). For this reason, block methods may be important 
since they will help reduce inter-processor communication, in the same way they have been 
used in the past to reduce the number of accesses to secondary storage [52]. Block methods 
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can also be combined with the other alternatives described in this paper, such as reordering, 
and offer an excellent potential for shared memory machines with a hierarchical organization 
of memory. 

4 Solution of sparse triangular systems 
Each step of a preconditioned iterative method involves computing 

z = M"y. 

In typical preconditioners M is the product of a lower and an upper triangular matrix, 
often having the same sparsity pattern as the lower and the upper triangular parts of the 
original matrix. We consider in this section different ways of performing this operation 
which is critical to the performance of the preconditioned conjugate gradient method. We 
only consider lower triangular systems of the form ' Lx = b. (15) 

Without loss of generality we will assume that L is unit lower triangular. If not the matrix 
can be scaled before the CG iteration is started so as to save N multiplications per CG step. 

If we assume that the matrix L is stored row-wise in a general sparse format, using the 
standard sparse storage scheme, 

0 AL : nonzeros of L ,  stored by rows, 

I 
0 JAL: column numbers for each element of AL,  

0 IAL: IAL(i) points to the start of row i in AL,  JAL,  

the sequential elimination sweep is as follows: 
Algori thm: Forward elimination for a sparse  t r iangular  sys tem 

x(1) = b(1) 
do i = 2, N 

x ( i )  = b ( i )  
do j= i a l ( i ) ,  i a l ( i+ l ) - l  

enddo 
x ( i >  = x ( i )  - a l ( j )  * x ( j a l ( j > >  

enddo 

The outer loop corresponding to the variable i is sequential. The j loop is essentially a 
sparse dotproduct of the ith row of L and the dense vector x. This dot product can be split 
among the processors and the partial results will then be added at  the end. This is what the 
Alliant FX-8 compiler would do if the proper optimization options are invoked. However, 
if the length of the dot product-is very short, the synchronization overhead and additional 
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Figure 1: Block partitioning for L 

operations involved will make this approach inefficient. Consequently, on a machine such 
as the Alliant FX-8, it is often better not to use the optimized version of the compiler for 
the above code. As an alternative we may store the matrix by columns and use a column 
oriented algorithm. However, the difficulties are identical and we omit the details. 

We briefly describe two distinct approaches for breaking the sequential nature of the 
above implementation; for details see [6,5]. 

4.1 Blocking 
In the blocking approach, the right hand side b and the solution 2 of (15) are partitioned 
into subvectors b l ,  bz,  ..., b, and 21, z2, ..., x, respectively. According to this partitioning the 
matrix L will have the structure shown in Figure 1. 

If we denote by 2; the vector consisting of the subvectors x1 ,x2 ,  ..., x,, then the algorithm 
for computing the solution of the linear system (15) can be written as follows: 
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Algorithm: Block forward elimination 

Do i = 2, ..., m: 
z1 = L,%l 

5; = L;1 (b;  - Ei2j-l)  

Each step, except the first, consists of two basic operations: first a multiplication of 
the vector ?;-I by Ei and then a solution of a triangular system with the matrix L;. The 
multiplication ,?$$;-I, a sparse matrix times vector operation, causes no difficulty because 
all the inner products of rows of E; with can proceed in parallel. The other significant 
operation, computing z; = L;’y by solving a lower triangular system involving Li, is the 
same problem with which we started, although on a smaller scale. 

The first option is simply to solve this smaller system by the usual sequential algorithm 
using forward elimination. Clearly, this suffers from the same sequential nature as the initial 
algorithm, but it does have the advantage of preserving the sparsity of the original problem 
and there is the potential benefit that the sequential bottleneck is now shorter at every step 
since a t  least the matrix by vector products are clone in parallel. The experiments in [6] 
reveal that the performance of this alternative is not too different from that of the sequential 
algorithm; see also the experiments reported at the end of this section. The second option 
consists of computing the inverse of each matrix L; at the beginning and storing it as a dense 
matrix. Then the triangular system solution in (16) ca.n be replaced by the multiplication 
of a triangular matrix by a vector. The attraction is that multiplying a vector by a matrix 
is highly parallelizable and vectorizable and despite the additional arithmetic, could be 
cost-effective when solving a large number of systems with the same matrix. Note that an 
intermediate option for preconditioners is to compute a sparse approximate inverse for the 
triangular matrix Li instead of a full inverse. We can afford to make such a substitution 
because we are only interested in using the inverse of L to precondition the original system. 
This approach is essentially to the one used in [125] for the diagonally structured problems. 

4.2 Level scheduling 
In the block forward elimination, the main bottleneck is in solving each of the subsystems 
(16). If the matrices L; were diagonal matrices the main difficulty would be removed and 
(16) would be a fully parallelizable operation of the order of the block size. For many sparse 
matrices it is possible to obtain such a block triangular system simply by reordering the 
rows and columns of the coefficient matrix. We will describe a simple ordering called level 
scheduling [6,111,130], whose objective is to obtain a block lower triangular system like the 
one in Figure 1, where the E;’S are sparse rectangular matrices and the L;’s are diagonal 
blocks. 

The idea of forward scheduling is as follows. Consider the following formula to compute 
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the i th unknown, 

This can be executed after all the components xj needed in the sum have been computed. 
The idea is to look at the adjacency graph of the matrix at the outset, and determine groups 
of equations that can be solved at  the same time [6,111,130]. Recall that a node of the graph 
corresponds to a row of L or, equivalently, a component of x, and there is a directed edge 
from node j to node i if and only if l ; j  # 0, which indicates that xj must be known to solve 
for xi. Since L is lower triangular, the adjacency gra.ph is a directed acyclic graph. Figure 
2 shows the digraph for a small sample matrix. 

Thus, the first step of the solution algorithm consists of determining z-1 and any other 
unknowns for which there are no predecessors in the graph, i.e., all those unknowns x; for 
which the off-diagonal elements of row i of L are zero. These unknowns will constitute the 
elements of the first level. The next step will determine in parallel all those unknowns that 
will have the nodes of the first level as their (only) predecessors in the graph. 

More generally, we can define a root node as a.n imaginary node with links to the nodes 
having no predecessors, and the depth of a node as the maximum distance of that node 
from the root 11301. The introduction of the root node ensures that the depth of each node - -  
is defined from the same point. The depth of each node can be 
through the structure of the coefficient matrix L by 

if l ; j  = 0 I' 1 + m a x j < ; { d e p t h ( j )  , 1;j # 0} otherwisG 
d e p t h ( i )  = 

computed with one pass 

for all j < i 
d 

A levelof the graph is, by definition, the set of nodes with the same depth. Thus the depth 
of a node is the same as the block number of its row in the block algorithm, and the nodes of 
a level define the set of rows in a block. Let us assume that we now define a data structure 
for the levels: a permutation q ( l  : n)  defines the new ordering and l e v e l ( i ) , i  = 1,. . . , n lev+ l  
points to the beginning of the i-th level in that array. T h e n  the algorithm for solving the 
triangular systems can be written as, 
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Figure 2: A sparse lower triangular matrix and its level structure. 
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. * .  

Algorithm: Forward eliiiiinatioii w i th  level scheduling 

do l e v = l ,  n lev  
j l  = l eve l (1ev)  
j 2  = l e v e l ( l e v + i ) - l  

do k = j l ,  j 2  
i = q(k) 
do j=  i a l ( i ) ,  i a l ( i + l ) - 1  

enddo 
x ( i )  = x ( i )  - a l ( j )  * x ( j a l ( j > )  

enddo 
enddo 

The k loop can be executed in parallel. The idea of forward level scheduling is a natural 
one for finite difference matrices on rectangles and several authors suggested it independently, 
[124,123,50,110,9]. It is also interesting to note that for the computer scientist the idea in 
the general context of irregularly structured matrices is a textbook example of scheduling 
for parallel processing. In fact the level scheduling approach described here is a “greedy” 
algorithm and is unlikely to be optimal. There is no reason why one should solve an equation 
as soon as it is possible and it may be preferable to use a backward scheduling [5]  which 
consists of defining the levels from bottom up in the graph. Thus the last level consists of 
the leaves of the graph, the previous level consists of their predecessors, etc.. 

Another possibility is to use dynamic scheduling as opposed to static scheduling. The 
main difference is that the level structure is not preset; rather the order of the computation is 
determined at run-time. The clear advantage over pre-scheduled triangular solutions is that 
it allows processors to always execute a task as soon as its predecessors have been completed 
thus reaching a better load balancing. On loosely coupled distributed memory machines this 
approach may be the most viable since it will dynamically adjust to irregularities in the exe- 
cution and communication times that can cause a lock-step technique to become inefficient. 
On the other hand, for those shared memory machines in which hardware synchronization 
is available and inexpensive, such as the Alliant FX-8, dynamic scheduling would have some 
disadvantages since it requires managing queues and generating explicitly busy waits. Both 
approaches have been tested and compared in [21] where it was concluded that on the Encore 
Multimax dynamic scheduling is usually preferable except for problems with few synchro- 
nization points and large amount of parallelism. In [54] a combination of prescheduling and 
dynamic scheduling was found to be the best approach on a Sequent balance 21000. There 
seems to have been no comparison of these two approaches on dktributed memory machines 
or on shared memory machines with microtasking, or hardware synchronization features. 

To illustrate the performance of the solvers described in this section we show in Table 2 
speed-ups of the various methods considered here over the sequential version Lsol on a 



number of matrices. The experiments have been performed on an Alliant FX-8, with 8 
processors, using double precision arithmetic. The meanings of the labels are as follows: 

0 blksla : Blocking method with sequential solve; 

0 blksla : Blocking met hod with dense inverse solve; 

0 levsl : level scheduling solve; 

0 jagsl : level scheduling using the jagged diagonal format for the matris-vector products 
Eiki-1 in (16). 

The first two sets of matrices are from the sets RUA and RSA of the Harwell-Boeing 
collection of sparse matrices[35]. The last set consists of 5-point or 7-point matrices on 
rectangular domains, with the numbers referring to the grid sizes. 

In the table n represents the size of the matrix while nnz is its total number of nonzero 
elements. The numbers shown in the last four columns are the speed-ups of the four tech- 
niques they refer to, as compared to the times obtained for Lsol, the sequential method 
whose program is shown at  the beginning of this section. Recall that the number of arith- 
metic operations performed by blksla, levsl and jagsl is identical with that of the sequential 
solve, while blkslb requires more operations. The block size used in blksla and blkslb is 
always 16. Note that the speed-up of blksla may be less than one and is otherwise negligible. 
Blkslb on the other hand can reach a speed-up that exceeds three in some cases despite 
the additional work involved. The speed-ups achieved by levsl are more consistent than 
the other techniques and they are generally lower for the denser matrices. Jags1 performed 
extremely well on the three-dimensional grid problems, sometimes reaching speed-ups that 
exceed the number of processors due to a better vectorization. The performance on some of 
the matrices could also be very poor. These matrices are those that have a large number of 
very short jagged diagonals [6]. 

In [22,21] and [5,6] a number of additional experiments are presented to study the perfor- 
mance of level scheduling within the context of preconditioned conjugate gradient methods. 

5 Polynomial preconditioning 
Polynomial preconditioning consists of choosing a polynomial s and replacing the original 
linear system by 

which is then solved by a conjugate gradient type technique. There have been several recent 
publications on the use of such preconditioners motivated mostly by their potential on vector 
computers [8,58,105,60,115,131]. However, the idea of using polynomial preconditioning is an 
old one and has been suggested by Stiefel[119] for eigenvalue calculations. Later, Rutishauser 
[loo] adapted Stiefel’s method for linear systems. The idea of polynomial preconditionings 
reappeared with the paper by Dubois et al. [33] which was spurred by the potential of these 
techniques for vector machines. Their motivation was that many matrices have a diagonal - 

s ( A ) A z  = s(A)6 (19) 
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Matrix 
Name 
s t earn2 
orsirr-2 
jpwh-991 
s herman 1 
sherman4 
orsreg- 1 
sherman5 
sherman3 
bcsstk06 
b css t k 19 
bcss tk09 
bcsstk27 
bcsstml2 
b css t ml3  
bcsst k23 
bcsst k21 
20X20X1 
20X20X10 
20X20X20 
20x20~30 
30x30~1  
30x30~10 
30x30~20 
30x30~30 

n 
600 
886 
991 
1000 
1104 
2205 
3312 
5005 
420 
817 
1 083 
1224 
1473 
2003 
3134 
3600 
400 

4000 
8000 
12000 
900 
9000 
18000 
27000 

nnz 
7180 
3428 
3529 
23 75 
2445 
8169 
11571 
12519 
4140 
3835 
9760 

28675 
10566 
11973 
24156 
15100 
1160 

15200 
30800 
46400 
2640 
31500 
69900 
105300 

s. 
blksla 
1.15 
0.97 
1.33 
0.87 
0.85 
1.10 
0.88 
0.97 
0.91 
0.89 
1.13 
1.33 
1.13 
0.99 
1 .08 
1.20 
0.96 
1.12 
1.12 
1.13 
0.97 
1.13 
1.14 
1.14 

2edun over Lsol 
blkslb 
2.68 
2.55 
2.43 
1.94 
1.75 
2.50 
1.93 
1.96 
2.84 
2.88 
2.79 
3.51 
2.74 
1.92 
2.82 
2.70 
2.15 
2.46 
2.54 
2..54 
2.10 
2.50 
2.51 
2.54 

levsl 
5.15 
4.96 
5.06 
4.46 
4.87 
5.51 
4.70 
5.03 
2.58 
1.41 
3.96 
1.73 
3.92 
2.71 
4.74 
5.53 
3.24 
5.67 
5.57 
5.51 
3.84 
5.55 
5.33 
5.29 

jag51 
2.43 
2.79 
3.05 
4.07 
4.37 
5.36 
2.72 
6.68 
0.43 
0.45 
0.98 
0.22 
0.95 
0.44 
1.38 
5.87 
2.27 
7.25 
8.29 
8.87 
2.88 
8.27 
9.29 
9.77 

Table 2: Speedup over the sequential method of four triangular system solvers, on an  Alliant 
FX- 8. 
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. '  
structure, in which case matrix by vector multiplications can be performed at near peak 
speed of the machine. Several papers discussing better polynomials or performance issues 
followed [58,105,60,80,37,131]. However, there are often doubts surrounding the usefulness- 
of the method on supercomputers. Before discussing the advantages and disadvantages of 
the method we begin with an overview. 

To be efficient, polynomial preconditionings require the determination of an optimum 
polynomial s. The preconditioned matrix s (A)A  should be as close as possible to the identity 
matrix in some sense. One possible criterion is to make the spectrum of the preconditioned 
matrix as close as possible from that of the identity. For example denoting by a(A)  the 
spectrum of A,  and by I I k  the space of polynomials of degree not exceeding k, we may wish 
to solve, 

Find s E I l k  that minimizes: 
max 11 - Xs(A)[ 

XEo(A) 

Unfortunately, this problem involves all the eigenvalues of A and is harder to solve than the 
original problem. What is usually done is to repla.ce Problem (20) by the problem obtained 
from replacing the set a ( A )  by some continuous set E that encloses it: 

Find s E l l k  that minimizes: 
max 11 - As(X)I. 
M E  

Thus, polynomial preconditioning techniques start with the assumption that we have a rough 
idea of the spectrum of the matrix A. We will come back to this problem later. 

Consider first the particular case where A is symmetric positive definite in which case 
E can be taken to be the interval [Xmin ,Xma, ]  containing the eigenvalues of A. The best 
residual polynomial 1 - Xs(X) in this case is a shifted and scaled Chebyshev polynomial of 
the first kind, and its three-term recurrence results in a simple three-term recurrence for the 
approximate solution [53]. An alternative considered by Johnson et al. in [58] is to use a 
least squares polynomial on the interval instead of the infinity norm polynomial. In other 
words we need to solve 

Find s E I l k  that minimizes: 

I l l  - X S ( V I I W  

where w is some weight function on the interval ( A m i n ,  A,,,), and I l . I I w  is the L2-norm as- 
sociated with the corresponding inner product. Because of the fact that the distribution of 
eigenvalues matters more than condition numbers for the preconditioned conjugate gradient 
method, it has been observed in [58] that least squares polynomials tend to perform better 
than those based on the uniform norm, in that they lead to a better overall clustering of 
the spectrum. Moreover, as was already observed by Rutishauser [loo], in the symmetric 
case there is no need for accurate eigenvalue estimates: it suffices to use the simple bounds 
that are provided by Gershgorin's theorem. In [lo51 it 1va.s also observed that in some cases 
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the least squares polynomial over the Gershgorin interval, may perform as well as the in- 
finity norm polynomial over [Amin, A,,,]. Note that this is only a minor advantage of least 
squares polynomials since effective adaptive procedures exist to compute Amin,  A,,,; see [53] 
for symmetric problems and [72,41] for nonsymmetric problems. We should add that the ob- 
servations made in [58] and in [105], and the simplicity of a method that bypasses eigenvalue 
estimates, have made least squares polynomials more popular for polynomial precondition- 
ings. For the simple case of the model 5-point Laplace matrix, the best polynomials up to 
the degree 10 are listed in [lo51 and are readily usable. 

Given a set of approximate 
eigenvalues of A,  we can construct a region E in the complex plane which ideally would 
contain the eigenvalues of the matrix A. There are several choices for E. The first idea is to 
use an ellipse E [74,72] that encloses an approximate convex hull of the spectrum. Then the 
shifted and scaled Chebyshev polynomials are optimal when the focii of the ellipse are on 
the real axis and nearly optimal in other situations and the use of these polynomials leads 
again to an attractive three-term recurrence. A second alternative is to use a polygon H 
that contains a(A) [117,104]. A notable advantage of using polygons is that they may better 
represent the shape of an arbitrary spectrum. The polynomial is not explicitly known but 
it may be computed by a Remez algorithm. As in the symmetric case an alternative is to 
use an &-norm instead of the infinity norm, i.e., to solve (22) where this time w is some 
weight function defined on the boundary of H .  Smolarski and Saylor used a discrete norm 
on the polygon. Their original algorithm is unstable [117] but an improved alternative is 
proposed in [113]. In [lo41 we used an &-norm associated with Chebyshev weights on the 
edges of the polygon and expressed the best polynomial as a linear combination of Chebyshev 
polynomials associated with the ellipse of smallest area containing I-I. If the contour of H 
consists of p edges each with center c; and half-length d;, then the weight on each edge is 
defined by 

We now consider the more general nonsymmetric case. 

(23) 
2 

Wi(A> = - Idi - ( A  - c ; ) ’ p .  
i7 

With these weights, or any other Jacobi weights on the edges, there is a finite procedure 
to  compute the best polynomial that does not require numerical integration; for details see 
[104]. The particular case where A is symmetric but indefinite was examined in detail in 

Still in the context of using polygons instead of ellipses, yet another attractive possibility 
proposed by Fischer and Reichel[43] is to avoid the problem of best approximation altogether 
and interpolate the function 1/z with a polynomial at  the Fejer points of E ,  i.e., the points 

to  be an asymptotically optimal process. There are numerous publications reIated to this 
approach and the use of Faber polynomials; see the references in [43]. However, we should 
point out that these papers are more concerned with the approximation theory problem 
than with the actual linear algebra problem. Often the tests performed are contrived into 
problems for which the spectrum is known to lie in nice and known regions. Real problems 
do not have nice spectra enclosed in rectangles that happen to be well separated from the 

[ lol l .  

e2 j in fk  ,I . = O , l ,  ..., k that are conformally mapped from the unit circle to H. This is known 

origin. 
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We also mention that although we have only discussed approaches based on the formula- 

tions (21), (22), there are other less known possibilities based on minimizing I l l / X  - s(X)Il,; 
see Freund [46] and the references therein. 

The next question that arises is: how to get the polygon H? In the symmetric positive 
definite case, where H reduces to an interval, this is not too difficult to do because of 
the relationship between the Lanczos algorithm and the conjugate gradient method; see 
e.g., [32,53]. This seems to have been proposed first by Rutishauser [loo] who suggested 
using the QD algorithm for computing the eigenvalues of the tridiagonal matrix obtained 
from the CG/Lanczos procedure. In the nonsymmetric case an adaptive procedure was 
proposed by Manteuffel [74,72]. An improved technique that exploits Arnoldi’s method 
was later developed in [41]. For illustration, we describe nest an implementation based 
on a combination with GMRES [log]. Eigenvalue estimates can be computed from the 
Hessenberg matrices generated from GMRES. Thus, the idea is to use a certain number, 
say r n l ,  of steps of GMRES to get eigenvalue estimates a.nd to improve the current solution. 
The eigenvalue estimates are used to improve the current polygon H and to compute the 
next least squares polynomial. A number of steps (say rnz) of GMRES are then performed 
for the preconditioned system s ( A ) A x  = s(A)b. This procedure is outlined below. 

Algorithm: Polynomial Preconditioned GMRES 

1. Restart: 

Compute current residual vector r := b - Ax.  

2. Adaptive GMRES run: 

Run r n l  steps of GMRES for solving Ad = r .  Update 2 by x := x + d .  Get eigenvalue 
estimates from the eigenvalues of the Hessenberg matrix. 

3. Compute new polynomial. Refine H from previous hull H and new eigenvalue estimates. 
Get new best polynomial s k .  

4. Polynomial Iteration: 

0 Compute the current residual vector r = b - As .  

0 Run r n 2  steps of GMRES applied to sk(A)Ad = s ~ ( A ) T .  Update x by J: := x + d. 

0 Test for convergence. If solution converged then stop else goto 1. 

We now discuss some of the advantages and disadvantages of polynomial precondition- 
ings, starting with the advantages. The main attraction of polynomial preconditioning is 
that the only operations involving the matrix are products with vectors. As a result par- 
allelism of order N can be achieved for each step of the preconditioned conjugate gradient 
method. As a consequence of this, portability is facilitated because we only need to concen- 
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- .  trate on optimizing matrix by vector multiplications and a few other basic kernels. A second 
advantage is that we need fewer dot products than with the nonpreconditioned conjugate 
gradient method to  solve a linear system. The dot products can be bottlenecks for large num- 
ber of processors but may not cause any difficulty otherwise. Thus, the main attraction of 
polynomial preconditioning is when the number or processors is very large. In this situation 
the usual incomplete LU factorization described in Section 3 will not be very helpful except 
for matrices with special structures. In many cases one may reorder the matrix to obtain 
a highly parallel LU solve, e.g., by using a red-black ordering as is described in Section 7. 
Polynomial preconditioning can be used when this is not possible or in combination with 
reordering techniques. Another important point is that polynomial preconditioning can be 
combined with a subsidiary relaxation-type preconditioning such as SSOR [3,37]. Finally, 
polynomial preconditionings can be very useful in solving some special linear systems such 
as complex linear systems arising from the Ilelmhotz equation [45] and those arising from 
the biharmonic equations[l32]. 

The main disadvantage of polynomial precondi tionings is their poor performance on se- 
quential machines or parallel machines with small number of processors. In the numerical 
experiments reported in [5] on matrices with sizes ranging from N = 434 to N = 2205, 
polynomial preconditioning compares favorably only in a few cases with the parallel imple- 
mentation of ILU preconditioning, on an Alliant FX-8. On the optimistic side, these numbers 
may look better if one thinks of the potential speed-ups that might be achieved on a machine 
with a much larger number of processors, since typically there is a parallelism of order N (the 
size of the matrix) for polynomial preconditioning but a parallelism of order fl for ILU 
preconditioning. Unfortunately, theoretical comparisons of the two approaches are difficult. 
One such comparison was proposed by Axelsson [13] for the simple case of the diagonally 
scaled Neumann series approach [33], a.pplied to a symmetric positive definite matrix. It 
was concluded that in this case polynomial preconditioning was rarely competitive with the 
nonpreconditioned conjugate gradient method. More precisely, polynomial preconditioning 
can outperform the standard conjugate gradient method only when the cost of the matrix 
by vector multiplication is less than half the cost of the other operations in a CG step. This 
is clearly a very stringent condition, that is likely to be satisfied only for machines with a 
very large number of processors, i.e., when the dot products start dominating the cost of a 
CG step. The model used in [13] is restricted to the simplest polynomial preconditioning, 
and it is not known whether a similar conclusion might be proved for the more sophisticated 
precondi t ioners. 

A second disadvantage of polynomial preconditioning is that there are often alternatives 
that may do better. For example, for the case of a small number of processors, the parallel 
implementations of the standard ILU preconditioning discussed earlier will be difficult to 
outperform. For machines with large numbers of processors, reordering techniques have the 
potential of being superior to polynomial preconditioning, although extensive comparisons 
on such machines are still lacking. 

It is often argued that one weakness of these methods is their requirem-ents for eigenvalue 
estimates. In fact we found this to be a rather minor drawback because of the possibility 
of combining the process with an algorithm like GhIRES or Arnoldi. We would also like 
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., Matrix N ILU(O) Polyn. ' 
JPWH-991 991 0.30 0.31 

. .  

_. 

ORSIRR-1 
ORSREG-1 

1030 0.74 2.88 
2205 1.74 5.77 

Sherman5 I3312 I 3.50 1 4.20 

Table 3: Times for solving four linear systems on an Alliant FX/8. 

to mention that there has been very little work on polynomial preconditioning or Krylov 
subspace methods for highly non-normal matrices; see however the recent analysis in [120]. 

To give an idea of the performance of polynomial preconditionings as compared with 
ILU preconditioners, we show in Table 3 the time that i t  takes to solve a few linear systems 
with matrices from the Harwell-Boeing collection. The stopping criterion used was to stop 
as soon as the residual norm drops by a factor of This was done on an  Alliant FX-8. 
The polynomial preconditioning used here was combined with a diagonal or block diagonal 
scaling. The degree of the polynomials used was 10. It is worth pointing out that the time 
for the first linear system ( J P W H - 9 9 1  ) using the sequential version of ILU, was about 1.3 
sec or roughly 4.3 times slower than with level scheduling. Similarly, for Sherman5 level 
scheduling was roughly 3.14 faster than with sequentid forward and backward solves. 

6 Block and other preconditioners 
When vector machines first appeared, the preconditioned conjugate gradient method was 
just becoming popular as an iterative technique. As a result one of the first issues that this 
technique was facing concerned the vectorization of the preconditioner, the most popular of 
which was Meijerink and van der Vorst's incomplete Choleslii factorization. The first idea in 
this context was to use cyclic reduction to solve the bidiagonal systems that arise during the 
lower triangular solves [63,60]. Van der Vorst [125] suggested replacing the inverse of each of 
the bidiagonal matrices by a simple Neumann series. This introduced a parallelism of order 
n = fl for a problem originating from an n x n grid. The performance of these alternatives 
were, as expected, better than the sequential algorithm. However, it appeared that the 
vectorizable variant was not as reliable as the original ICCG. Moreover, often the speed- 
ups obtained were not satisfactory because of the short vector lengths that these methods 
involve. 

Block incomplete factorizations were popularized independently by Axelsson [15] and by 
Concus, Golub, and Meurant [31]. See, however, a complete bibliography regarding these 
methods in [13], which indicates early work by Underwood dating back to 1976. Given 
a block tridiagonal matrix A = tridiag(Br, A;,  Bi+l), the basic idea is derived from the 
standard Block Gaussian elimination process, in which A is factored as, 

.. 

A = (D - L)D-'( 0 - L ) T  (24) 
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where L is the negative of the strict lower triangular part of A ,  and D is a block diagonal 
matrix D = diag(D;) ,  defined through the recurrence, 

D; = A; - B;D;-",BT, i = 2,3, .., n. ( 2 5 )  

The first observation made here [15,31] is that even though the blocks D; are dense, a sparse 
approximation to them can easily be found. For example, one technique is to use a banded 
approximation r; to the inverse 0;'. If we denote the resulting approximations to D; by 
A;, then the recurrence (25) becomes, 

(26) T A; = A; - B;I';-lBj , i = 2,3, .., n. 

Then the preconditioning matrix would be 

M = (A - L)A-'(4 - L)T (27) 

Solving a linear system with M is not fully satisfactory on vector machines since the forward 
and backward solutions involve sequential banded solutions. 

As block preconditioners emerged as contenders to the scalar incomplete factorizations 
[31], several variants were quickly derived and tested as vectorizable options [82,78,12,13]. 
The simplest such option proposed in [78] is to exploit the fact that both A; and I'i are 
available, and therefore any multiplication by A;' can be replaced by a multiplication by 
I';. The "inverse-free" factorization proposed by Axelsson is to write M as 

Then, if I' is block diagonal matrix approximating the inverse of 4, the idea is to approximate 
the inverse of the factor ( I  - LA-') by the so-called Euler expansion 

where the integer p is carefully chosen. A detailed analysis of block preconditioners including 
the one just outlined was proposed by Axelsson and Polman [18]. 

There has been a number of extensions and related techniques proposed. For example, 
Meurant [80] suggested an alternative consisting of performing the LU factorization not only 
from top to bottom, but also from bottom to top, a.t the sa.me time. The resulting decom- 
position is called the twisted incomplete factorization and is related to the WZ factorization 
[42]. The motivation here was to take advantage of multi ta.sking on Cray machines. The gain 
in performance that was reported on a Cray X-MP was limited. Using a slightly different 
viewpoint, Rodrigue and Wolitzer [99] have argued for a form of incomplete cyclic reduction 
to derive incomplete factorizations of block tridiagonal matrices. 

The more recent effort in preconditioning methods has been mainly in three directions. 
The first is in deriving preconditioners from domain decomposition techniques [65,79,26, 
171. The second direction is in hierarchical basis methods [4,19,51,134], whereby the finite 
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element basis is chosen in a such a manner as to yield well conditioned matrices. Finally, 
there is now increasing interest in methods that will take advantage of the special nature 
of three-dimensional problems [16,122]. Some early comparisons of domain decomposition 
preconditioners and standard block preconditioners reported in [79] seem to indicate that 
for large number of processors the former might be better. 

We should also mention work related to domain decomposition methods which consists 
of multisplitting iterative techniques [88], and element-by-element (EBE) preconditioning 
techniques [84]. A recent collection of papers on domain decomposition methods may be 
found in the proceedings [48] and [23]. 

7 Reordering for parallelism 
A convenient and simple way to achieve a high level of para.lIelization is to reorder the 
equations and the unknowns. For example, equations that originate from 5-point matrices 
can be reordered according to the red-black ordering to yield systems of the form, 

where D1 and 0 2  are diagonal matrices. The triangular system to be solved at  each step of 
incomplete ICCG are highly parallelizable due to the structure of the above matrix. However, 
one might be suspicious that the rate of convergence of the algorithm is not as good as that 
for the original ordering. Experience with model problems suggest that the deterioration of 
the convergence rate rarely exceeds a factor of two [114,71]. However, for more realistic and 
difficult problems convergence behavior for reordered matrices may be unpredictable [116]. 
As was mentioned in Section 4, in order to avoid bottlenecks in the forward and backward 
sweeps, it is desirable to have a matrix with a block structure in which each diagonal block 
is diagonal. We refer to this structure as Diagonal Diagonal Block (DDB) structure. The 
L matrix will then have the form of Figure 1, where each L; is a diagonal matrix. There 
are many ways of achieving such structures; see, e.g., [71]. For matrices whose adjacency 
graphs are planar, a simple strategy is to start by setting up the level structure of the graph. 
This consists of using a Cuthill-Mc I<ee ordering starting from some initial point; see e.g., 
[34]. The levels are then colored alternately in red and black. The next step is to group 
a certain number of levels of the same color in the same set. The number of levels chosen 
may be varied and will depend on the desired size of the diagonal blocks. For example, 
maximum parallelism may be achieved by putting all the red levels together in one set and 
all the black levels in another set. For matrices with property A,  this will lead to the usual 
red-black ordering. Since each level set may consist of connected vertices, coloring may again 
be needed within each set. This technique was suggested in [71]. Interestingly, experiments 
for model problems reveal that the number of iterations needed for convergence does not 
vary too much as the block size increases, deteriorating by a factor of two in the worst case. 

More generally, multicoloring is a general term that refers to reordering the unknowns 
to obtain a matrix that has the DDB structure mentioned above. Several authors have - 
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I -  , .. considered multicoloring techniques and the various effects on convergence of either the 
preconditioned conjugate gradient or the underlying relaxation technique [1,86,2,39,97,96]. 

For matrices having property A, once the matrix is reordered in the form (30), an alter- 
native to using PCG on the corresponding system directly is to solve the reduced system 
which involves only the black unknowns, namely, 

The above system is again a sparse linear system involving only half of the unknowns. 
Moreover, setting up the preconditioner is an inexpensive and fully parallel process even for 
unstructured problems [20]. The resulting system can again be preconditioned by incomplete 
Choleski factorization with level scheduling as described before. However, as revealed by 
experiments on various model problems, an excellent alternative is to use the diagonal of 
the reduced matrix as a preconditioner. This was observed for both well sctuctured [75] 
and unstructured problems[20]. In [20] it was found that for the reduced system, ICCG 
with level scheduling outperformed diagonal preconditioning, only for very large problems 
because the overhead in setting up the level structure and the preconditioner is difficult 
to offset given that diagonal scaling performs so well. A detailed analysis by Elman and 
Golub [40] on model problems indicate that it is often more effective to solve the reduced 
system by iterative methods than the original system, a fact which was observed empirically 
[38,36]. The reduced system approach appeared to be the best option on vector or multi- 
vector processors in experiments reported in many pa.pers. It also has excellent potential for 
machines with a large number of processors of SIMD type. Its only limitation is that it does 
not generalize to  matrices that do not have property A. 

8 Conclusion 
We have presented an overview of numerical techniques to solve realistic large linear sys- 
t em by Krylov subspace methods on supercomputers. For machines with a small number 
of processors, the standard preconditionings can be efficiently implemented and they often 
constitute the most efficient approach. The advantage of this over using less conventional 
techniques is that these preconditioners are reliable and their behavior is well understood 
from experience on standard scalar machines. For machines with a very large number of 
processors, these techniques will not be sufficient to achieve satisfactory speed-ups. We 
have discussed two possible alternatives for this case. The first consists of using polyno- 
mial preconditioning and the second consists of reordering the equations by multi-coloring 
techniques. Although these alternatives offer a good potential, they are not sufficiently well 
understood for general problems. For example, reordering affects the convergence rate of the 
conjugate gradient method in a way that is difficult to predict for general sparse problems, 
while polynomial preconditioning may not be competitive against rival techniques such as the 
unpreconditioning conjugate gradient method or the multi-colored incomplete Choleski/LU. 

These observations suggest that it is crucial that researchers experiment with existing 
massively parallel machines in order to better understand the effects that are difficult to 
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predict from theory, such as impact of communication costs, rates of convergence of new 
algorithms, ways of mapping the data, etc.. 

Research in the direction of domain decomposition and hierarchical basis precondition- 
ers, two natural ideas for parallel processing, is very active. It is interesting to observe that 
the successful ideas in parallel numerical methods have often been derived from existing 
techniques that are either adapted or slightly modified. This is the case of doma,in decom- 
position methods which have been extensively used in structural analysis. The search for 
parallelism has forced researchers to take a second look at many old techniques sometimes 
resulting in remarkable success. Ortega and Voigt concluded in [91] that there has been very 
few “truly parallel algorithms” invented, as opposed to modifications of existing algorithms. 
This has been even more pronounced for iterative methods, perhaps because there are many 
known algorithms that do offer a large degree of parallelism or that can be simply modified 
to improve their parallelism. However, a common difficulty is that those iterative methods 
that are intrinsically highly parallel, such as the Jacobi iteration, often converge much more 
slowly than those with a more sequential nature, such as the Gauss-Seidel iteration. 

We have not discussed issues related to software development and hardware. Although 
the trend towards parallelism is clear, the question as to which type (s) of architecture will 
prevail in the long term remains difficult to answer. A consequence is that in the near term 
at least, developers of numerical software will face challenging problems. They must not 
only select and develop different algorithms for different machines but also acquire a good 
understanding of the machines and the software that runs them in order to be able to produce 
reasonable performance. Moreover, porting .a program from one machine to another usually 
requires substantial reprogramming effort which may involve changing languages, completely 
remapping the data, and extensive testing to tune the code. Given the variety of machines 
that are available these efforts are increasingly viewed as intolerably time consuming and 
non cost-effective. Thus, the need for better programming environments and languages for 
parallel machines is becoming critical and as iterative methods are gaining importance, they 
should be considered from the perspective of these other important issues. 
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