
Krylov Subspace Methods on Supercomputers

Youcef Saad

December, 1988

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.40

NASA Cooperative Agreement Number NCC 2-387

(NASA-CB-185419) KRPLOY SUBSPACE H E T H C D S C N N89-26416
SUPERCOMPUTERS [Research I n s t , for Advanced
Computer Science) 44 p CSCL 09B

Ueclas
H I / ~ I 0217888

Research Institute for Advanced Computer Science

Krylov Subspace Methods on Supercomputers

Youcef Saad

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.40
December, 1988

This paper presents a short survey of recent research on Krylov subspace methods with emphasis
on implementation on vector and parallel computers. Conjugate gradient methods have proven
very useful on traditional scalar computers, and their popularity is likely to increase as three
dimensional models gain importance. A conservative approach to derive effective iterative
techniques for supercomputers has been to find efficient parallel/ vector implementations of the
standard algorithms. The main source of difficulty in the incomplete factorization
preconditionings is in the solution of the triangular systems at each step. We describe in detail a
few approaches consisting of implementing efficient forward and backward triangular solutions.
Then we discuss polynomial preconditioning as an alternative to standard incomplete factorization
techniques. Another efficient approach is to reorder the equations so as improve the structure of
the matrix to achieve better parallelism or vectorization. We give an overview of these ideas and
others and attempt to comment on their effectiveness or potential for different types of
architectures.

Key words: Large linear systems; Krylov subspace methods; Iterative methods; Preconditioned
Conjugate Gradient; Polynomial preconditioning; Incomplete LU preconditioning.

~ ~~~~~ ~~~

This paper is to appear in the SIAM Journal on Statistical and Scientific Computing.

Work reported herein was supported by the National Science Foundation under Grants NO. US
NSF-MIP-8410110 and US NSF DCR85-09970, the US Department of Energy under Grant NO.
DOE DE-FG02-85EFt25001, and by Cooperative Agreement NCC 2-387 between the National
Aeronautics and Space Administration (NASA) and the Universities Space Research Association
(USRA).

. . 1 Introduction
Scientific problems that are tackled today are perhaps a few orders of magnitude more
complex than those dealt with just one decade ago. This trend is likely to accelerate because
of the rapid improvement in computational power that will result from parallel processing.
However, a characteristic of the current trend in supercomputing is that the easy gains in
speed are over: big improvements are only possible by radical changes in architecture as well
as software and algorithms.

In this paper we consider the impact of modern supercomputers on the design of iterative
methods for solving large linear systems of equations. Because of the increased importance
of three-dimensional models, iterative methods are again playing a major role. There is
a general consensus that for problems arising from partial differential equations in three-
dimensional domains, direct methods alone are too costly, both in terms of storage and
computation. For example a 50 x 50 x 50 grid with five degrees of freedom per grid point,
such as Euler’s equation in fluid dynamics, will lead to matrices of size N=625,000 and
of bandwidth m M 25000. Even though reordering techniques can be used to exploit the
sparsity of the matrix, the complexity of the problem is still very high. For a survey of the
impact of supercomputing on aerodynamics research, where these types of problems arise,
see Peterson [93]. The main attraction of iterative methods in an example like this one is
their low storage requirement. In fact in many cases the matrix need not be stored entirely
because it consists of a small number of blocks that are repeated many times.

Krylov subspace techniques, of which the Conjugate Gradient (CG) method is an ex-
ample, have increasingly been viewed as general purpose iterative methods, especially since
the discovery and popularization of preconditioning techniques [76]. Although these tech-
niques may fail for matrices that are not M-matrices, they are effective for the large class
of problems arising from partial differential equations of the elliptic type. For extensions
and modifications of point incomplete factorizations see [73,121,83]. An important gap in
the literature concerns the development of truly general purpose iterative solvers that could
replace direct methods with minimum risk of failure.

It is interesting to observe that Krylov subspace methods became popular at almost the
same time the first vector computers appeared in the marketplace in the mid-seventies. As a
result, considerations for vector implementations were given early on [49,33,125,61,60]. The
survey paper of Ortega and Voigt [91] gives an exhaustive bibliography for research done
before 1985 in the general area of solution of partial differential equations on supercomputers.
Much still remains to be done as many new techniques for vectorizing and parallelizing
standard preconditioners were considered only recently. Along the way several alternative
methods have emerged that turned out to be effective even on sequential computers. We
will not describe these in this paper but we should mention two such techniques which show
tremendous potential. The first is the class of domain decomposition methods. The reader
is referred to the recent survey by T.F. Chan [26] and to the excellent paper on parallel
implementations by W. Gropp and D. Keyes [64]-. The attraction of domain decomposition
methods is that they have been impIemented naturally in many engineering applications in
the past and as a result one may readily benefit from this experience.

2

. .

The second class of methods that show promise is that of hierarchical multigrid tech-
niques, in the context of finite element discretizations. Brieff y, these techniques amount to
using hierarchical basis functions, i.e., a basis that consists not only of the nodal functions
at the finest grid, but also of the coarser basis functions from which those fine grid functions
have been obtained. Thus the function space is identical but its basis has changed. The
remarkable property shown by Yserentant [134] is that for two-dimensional problems, the
coefficient matrix arising from the discretization of elliptic partial differential equations with
such bases has a condition number of O((-Log h) 2) instead of the usual O(h-*). This has
been exploited by A. Greenbaum et al. [51] and Adams and Ong [4] in the context of precon-
ditioned conjugate gradient methods. The idea here is that there is no need to precondition
such matrices, except possibly to use a simple diagonal scaling, since their condition numbers
are so favorable.

In the brief overview presented in this paper we will mostly consider the problem of
implementing Preconditioned Conjugate Gradient type met hods for solving linear systems.
The framework is that of large sparse linear systems that are not necessarily well structured.
We will attempt to address the implementation issues for parallel machines with shared as
well as distributed memory, and with small number of processors as well as large number of
processors.

Before concluding this introduction we would like to comment that the volume of publi-
cations on iterative methods is so large that survey papers can no longer be exhaustive. For
additional reading we recommend other survey papers by Ortega and Voigt [91], by Axelsson
[13,14] and the recent book by Ortega [go].

The organization of the paper is as follows. In Section 2 we will give an overview of
Krylov subspace methods without consideration to parallel implementations. Then we will
address the questions of parallel / vector implementations of two specific examples of such
methods: the conjugate gradient method for symmetric problems and GMRES for non-
symmetric problems. The effective implementation of the forward and backward solves in
preconditioned Krylov subspace methods is important enough that we will devote a separate
section to it, namely Section 4. In Section 5 we will describe an alternative to incomplete
factorization techniques, based on polynomial preconditionings, and give some comparisons
with the standard approach. Then we will look at other preconditioners in Section 6, and
reordering techniques in Section 7. We will make some concluding remarks in Section 8.

2 An overview of Krylov subspace methods
Given an initial guess xo to the linear system

AX = b, (1)

a general projection methodseeks an approximate solution x, from an affine subspace sO+Km
of dimension m by imposing the Petrov-Galerkin condition

b - A x , I L ,

3

where L, is another subspace of dimension m. A Krylov subspace method is a method for
which the subspace I(, is the Krylov subspace

in which T O = b - Azo. When there is no ambiguity we will denote I<,(A,rO) by IC,. The
different versions of Krylov subspace methods arise from different choices of the subspaces
I(, and L, and from the ways in which the system is preconditioned. The most popular
choices of I(, and L, are the following.

1. Lm = IC, = I<,(A,ro). This is the orthogonal projection or Galerkin case. The
conjugate gradient method is a particular instance of this method when the matrix is sym-
metric positive definite. Another method in this class is the Full Orthogonalization Method
(FOM) [lo21 which is closely related to Arnoldi’s method for solving eigenvalue problems [7].
Also in this class is ORTHORES [57], a method that is mathematically equivalent to FOM.
Axelsson [lo] also derived an algorithm of this class for general nonsymmetric matrices.

2. Lm = AI(,; IC, = Km(A, T O) . With this choice of L,, it can be shown, see e.g., [lo81
that the’approximate solution x, minimizes the residual norm Ilb - Axil2 over all candidate
vectors in xo + I{,. In contrast, there is no similar optimality property known for methods
of the first class when A in nonsymmetric. Because of this, many methods of this type have
been derived for the nonsymmetric case [11,57,38,109]. The Conjugate Residual method [28]
is the analogue of conjugate gradient method that is in this class. The GMRES algorithm
[log], which we will describe in Section 3.5, is an extension of the Conjugate Residual method
to nonsymmetric problems.

3. L, = I<,(AT,r0); IC, = K,(A,rO). Clearly, in the symmetric case this class of
methods reduces to the first one. In the nonsymmetric case, the biconjugate gradient method
(BCG) due to Lanczos [68] and Fletcher [44] is a good representative of this class. There
are various mathematically equivalent formulations of the biconjugate gradient method [103],
some of which are more numerically viable than others. A n efficient variation on this method,
called CGS (Conjugate gradient squared) was proposed by Sonneveld [118,95].

4. Lm = I(, = I (, (A T A , A T ~ o) . This is nothing but the conjugate gradient method
applied to the normal equations ATAx = ATb, often referred to as CGNR[38]. The con-
dition number of the normal equations is likely to be too large for most problems to make
this approach competitive with the approaches 1 to 3, except possibly for indefinite prob-
lems, i.e., problems for which the symmetric part is not positive definite. LSQR [92] is an
impIementation that is somewhat less sensitive to large condition numbers. Moreover, for
least squares problems with non-square matrices, one must either explicitly or implicitly
use an approach based on the normal equations. We put in this category also the method
of conjugate gradients applied to AATy = b, whose solution y is trivially related to x by
x = ATy. This is often referred to as CGNE, or Craig’s method. If we express the Galerkin
conditions in terms of the y variable, then, clearly, I<, = Km(AAT, ro) and L, = IC,. Us-
ing the relationship x = ATy between the x and y variables, we can translate the Galerkin
condition that y satisfies in terms of the x variable to find that for the variable x Craig’s
method corresponds to taking IC, = I(,(ATA,ATro) and L, = A-TI<m. Moreover, the
main difference between CGNR and CGNE is that the first minimizes the residual norm

4

1 , -

over K,,, while the second minimizes the error norm over Km.
Note that the methods recently presented in [112], although related to Krylov subspace

methods, do not belong to one of the above classes.
An important factor in the success of conjugate gradient-like methods is the precondi-

tioning technique. This typically consists of replacing the original linear system (1) by, for
example, the equivalent system

. -

M-'Ax = M-'b (4)
In the classical case of the incomplete LU preconditionings, the matrix A4 is of the form
M = LU where L is a lower triangular matrix and U is an upper triangular matrix such that
L and U have the same structure as the lower and upper triangular parts of A respectively. In
the general sparse case, the incomplete factorization is obtained by performing the standard
LU factorization of A and dropping all fill-in elements that are generated during the process.
This is referred to as ILU(O), or IC(0) in the symmetric case. There are more elaborate
factorizations that allow a limited amount of fill-in to take place. In particular in the
structured case one can let some fill-in appear along specific diagonals to get incomplete
factorizations, denoted by ICCG(k), which more closely approximate A [76]. In the general
sparse case this technique has been generalized by introducing the notion of level of fill-in
[128]: the level of a fill-in element is defined as one plus the sum of the levels of the L and U
elements from which it is spawned in the elimination process. Initially, all elements have level
of fill-in equal to 0. ILU(k) is then defined as the incomplete factorization that is obtained
by dropping all fill-in elements whose level exceeds k. An interesting question that comes to
mind immediately is to see whether the more accurate factorizations will perform better in
the context of parallel processing. The rationale is that we will deal with denser matrices
and therefore the iterative technique will benefit from better vectorization and data locality.
Unfortunately, the process of updating the levels is extremely expensive and sequential in
nature. Experiments with such techniques reveal that the preprocessing phase of computing

:

I the incomplete LU factorization with any level of fill exceeding one dominates the computing
time on (mu1ti)-vector processors or and was rarely competitive with the simpler ILU(0) or I

I ILU(1) preconditioners [5,116].
Another class of successful preconditioning techniques based on block factorizations was

popularized by Concus, Golub and Meurant [31]. For reasons of space we will only briefly
give an overview of these in Section 6, but we should mention that their performance has
been well documented in the literature; see Meurant [82,78], Eisenstat et al. [36], and
Axelsson[lS]. There exist many other ways of defining incomplete factorizations of a given
matrix, most of which are based on some form of diagonal dominance. For instance many of
the standard point or line relaxation techniques such as Gauss-Seidel, SOR, SSOR, or ADI,

The Generalized Conjugate Gradient (GCG) method, introduced by Concus and Golub
[30] and Widlund[l29] can be viewed as a particular case of a preconditioned conjugate
gradient method where the preconditioning matrix is A4 = A + AT. With this special choice
of the preconditioning matrix M , there is a three term recurrence similar to that of the
conjugate gradient method. On the other hand, each step of GCG requires the solution of a
linear system with the matrix M , which may be uneconomical.

I see [126], can be used as preconditioners.

~

.
I

5

- .

- . For the standard ILU/IC preconditioners, solving a linear system with the matrix M ,
requires performing a forward and a backward triangular system solution at every step of
the Krylov subspace method. This may constitute the main bottleneck in iterative methods
if not carefully implemented on supercomputers and will be discussed in detail later.

3 Preconditioned Conjugate Gradient.

3.1 The algorithm
By far the most popular Krylov subspace method for solving symmetric positive definite lin-
ear systems is the preconditioned conjugate gradient method, a version of which is described
below. Here M represents the preconditioning matrix.

Algorithm: preconditioned CG

1. Preprocess: Compute preconditioner Ad.

2. Start: ro := b - Axo, po := zo := M-'ro.

3. Iterate: Until convergence do,

The above algorithm is nothing but the conjugate gradient method-applied to the linear
system M-'Ax = M- 'b in which the standard Euclidean inner product is replaced by the
inner product (x, y) ~ = (Mx, y). It has the property of computing an approximate solution
whose preconditioned residual vector Ad-'(b - Ax;) is M-orthogonal to all the previous
preconditioned residual vectors. Therefore it is a Krylov subspace method of the first type
(Galerkin) with the matrix A replaced by the preconditioned matrix M-'A and the standard
dot product replaced by the M dot product.

Concerning supercomputer implementation, one observes that the main operations in the
above algorithm are the following.

1. Setting up of the preconditioner;

6

2. Matrix vector multiplications (3-a);

3. Vector updates (3-c, 3-d and 3-g);

4. Dot products (3-b and 3-f).

5. Preconditioning operations (3-e)

In the above list the potential bottleneck is in setting-up the preconditioner (1) and in
the solution of linear systems with M , i.e., operation (5) . Because of their importance, we
will address the problem of efficient implementation of the operations in a separate section.
Also potentially time consuming are matrix by vector products which deserve a particular
attention. The rest of the algorithm consists essentially of dot products and vector updates.
Since the dot products may be the source of bottlenecks on some machines, particularly
those with a large number of processors, they should be carefully examined. This issue will
also be discussed separately.

3.2 Matrix by vector products.
Matrix by vector multiplications are relatively easy to implement efficiently on most super-
computers. The first observation that has been made in this context is that this operation can
be performed by diagonals when the matrix is regularly structured, i.e., when it consists of a
few diagonals [62]. The matrix can be stored in a rectangular array DIAG(1 : n , l : ndiag)
and the offsets of these diagonals from the main diagonal may be stored in a small integer
array IOFF(1 : ndiag).

After initializing the vector y to zero, the main loop for computing y = As is as follows:

DO 10 J = l , NDIAG
JOFF = IOFF(J)
DO 20 I=l, N

Y(I) = Y (I) + DIAG(I,J)*X(JOFF+I)
20 CONTINUE
10 CONTINUE

This can be implemented efficiently and thus excellent megaflops rates can be reached

For general sparse matrices there has been several attempts to obtain similar perfor-

matrix so as to obtain a diagonal structure [3,97]. We will only discuss the first approach
here. This approach is of interest only for matrices whose maximum number of nonze-
ros per row, jmax, is small. One then stores the entries of the matrix in a real array
COEFF(1 : n , l : jmax) together with an integer array JCOEFF(1 : n,l : jmaz)
that stores the column numbers of each entry of COEFF. We refer to this as the IT-
PACKIELLPACK format. The above FORTRAN loop then becomes,

on vector machines when the matrix is large enough.

I mances by either generalizing the diagonal storage scheme [89,133] or by reordering the

7

- .

- .
DO 10 J=1, JMAX

DO 20 I=l, N
Y(I) = Y(I) + COEFF(I,J)*X(JCOEFF(I,J))

20 CONTINUE
10 CONTINUE

The main difference between this loop and the previous one is the presence of indirect
addressing in the innermost computation. Note that if the number of nonzeros per row varies
substantially, then many zero elements must be stored unnecessarily, and this scheme may
become inefficient.

When considering matrices from real applications it is interesting to observe that there is
always some structure to them. In particular most matrices are such that a large percentage
of their elements belong to a few diagonals. One can therefore extract a small number of
diagonals, store them as was described above for structured matrices and put the rest on
the elements in a general sparse matrix storage. The complexity of a code that does this
conversion is on the order of the nonzero elements and is therefore affordable. The payoff
could be quite high especially on vector machines that do well on long vectors. Clearly, here
again many zero elements may have to be added to fill the diagonals and so one must be
careful when assessing performances.

All the above storage schemes are specialized to some degree to certain types of matrices.
These can perform well in many instances but their lack of generality is a serious limitation.
Unfortunately, as is often the case, there is a conflict between generality and efficiency. One
of the most general schemes for storing sparse matrices is the compressed sparse matrix
storage scheme described next. The data structure consists of three arrays. First, a real
array A (l : nnz) stores the nonzero elements of the matrix row-wise, i.e., the elements of
a given row are stored contiguously. Then an integer array JA(1 : nnz) stores the column
positions of the elements in the real array A . Finally, a.n integer array I A (1 : n + 1) is a
pointer array, in that its i-th entry points to the beginning of the i-th row in the arrays A and
J A . This data structure is often referred to as the general sparse format, or the A, J A , I A
format. With this storage scheme each component of the resulting vector y can be easily
computed independently as the dot product of the i-th row of the matrix with the vector 2.
In FORTRAN 8-X, we can write this as

10

DO 10 I=l, N
K1 = IA(1)

Y(1) = DOTPRODUCT(A(Kl:K2) , X(JA(Kl:K2))
K2 = IA(I+l)-1

CONTINUE

From the implementation point of view, an important observation is that the outer loop
can be performed in parallel. On a machine like the Alliant FX-5, the synchronization of
this outer loop is inexpensive and the performance of the above program can be excellent.

On distributed memory machines the above loop can be split and a number of its steps

will be executed in each processor. The splitting may be done in such a way that roughly the
same amount of work is performed in each processor, taking other parts of the CG algorithm
into consideration. The part of the matrix that is needed is loaded in each processor initially.
However, interprocessor communication will be needed to get necessary parts of the vector
x that do not reside in a given processor. For general sparse matrices, it may not be easy to
find the mapping that achieves the best overall time.

The indirect addressing involved in the second vector in the dot product loop is handled
by a special hardware instruction called a Gather operation. The vector X(JA(k1 : k 2)) is
first gathered from memory into a vector of contiguous elements. The dot product is then
carried out as a standard dot product operation between two dense vectors.

In case the matrix is stored by columns instead of rows, we can use the following program
to compute y = Ax,

DO 10 J=1, N
Kl = IA(J)
K2 = IA(J+l)-1
Y(JA(Kl:K2)) = Y(JA(KI:K2)) + X(J) * A(KI:K2)

10 CONTINUE

Clearly, the above code also computes the product of the transpose of a matrix by a
vector, when the matrix is stored row-wise in the A, JA, I A format. Normally, the vector
Y(JA(k1 : k2)) is gathered and the SAXPY operation is performed in vector mode. Then
the resulting vector is ‘scattered’ back into the positions J A (*) , by what is called a Scatter
operation. However, a major difficulty with the above FORTRAN program is that it is
intrinsically sequential. First, the outer loop is not parallelizable as it is, but this may be
remedied as will be described shortly. Second, the inner loop involves writing back results
of the right hand side, into memory positions that are determined by the indirect address
function JA. To be correct Y(JA(1)) must be copied first and then Y(JA(2)), etc.. However,
if it is known that the mapping JA(i) is one-to-one then the order of the assignments no
longer matters. Since compilers are not capable of deciding whether this is the case, a
compiler directive from the user is necessary for the Scatter to be invoked. Going back to
the outer loop, one can split it in p distinct parts and compute p sub-sums into p temporary
(full) vectors, that are added after completion to get the result vector y. This last part
constitutes additional work but it is highly vectorizable and parallelizable.

The first vector machines that appeared did not perform too well on sparse computations
because they were not equipped with special instructions for Gather and Scatter. The
beneficial impact of hardware “Scatter” and “Gather” on vector machines has been discussed
in [69].

For vector machines the previous two techniques are likely to perform poorly because
they involve vectors that are usually very short. For example for a typical two dimensional
problem with one unknown per grid point, the number of nonzeros per row is at most 5 ,
when finite differences are used. One option is to use one of the schemes based on diagonal
or generalized banded format described above. However the following scheme related to the

9

stripe structure of Melhem [77], is a more general alternative. We start from the A, J A , I A
data structure and reorder the rows of the matrix according to their number of nonzeros,
decreasingly. Then, a new data structure is built by constructing what we call “jagged
diagonals” (j-diagonals). We store as a dense vector the leftmost element from each row,
together with an integer vector containing the column positions of each element. This is
followed by the second jagged diagonal consisting of the elements in second position from
the left. As we build more and more of these diagonals, their length decreases. The number
of j-diagonals is equal to the number of nonzero elements of the first row, ;.e., to the largest
number of nonzero elements per row. To multiply a matrix by a vector using this scheme
one can proceed as follows, where we denote by IDIAG(j) the pointer to the beginning of the
j-th jagged diagonal, and by JDIAG(k) the column position of the element stored in A(k):

DO 10 J=1, NDIAG
K1 = IDIAG(J)
K2 = IDIAG(J+l)-1
LEN = K2-K1+1
Y(1:LEN) = Y(1:LEN) + A(Kl:K2)*X(JDIAG(Kl:K2))

10 CONTINUE

On one processor of the Cray-2, the asymptotic speed of the above code is around 39
Mflops (941. Note that since we assume that the rows of the matrix A have been permuted
the above code will compute a permutation of the vector Ax, for the unpermuted matrix
A. It is possible to permute the result back to the original ordering after the execution
of the above program. One can also postpone this operation until the final solution has
been computed, so that only two permutations on the solution vector are needed, one a t the
beginning and one a t the end. For preconditjonings that require a different ordering of the
unknowns to achieve a good efficiency, it will be necessxy to perform a permutation before
or within each call to the preconditioning subroutines.

As an illustration we show in the next table the performance of the following five different
ways of multiplying a matrix by a vector:

1. Row-wise storage , (sparse dot product form);

2. Column wise storage, (sparse saxpy form);

3. Diagonal storage, (triad form);

4. Itpack format

5. Jagged diagonal format;

The test was done on an Alliant FX-80, in double precision arithmetic, using 5-point and
7-point matrices for 2-D and 3-D rectangular grids.

Notice the wide differences in performance obtained between these five kernels that per-
form the same operation. On the Alliant FX-80, method 2, using the column-wise storage

10

. -

Table 1: Megaflop rates for five matrix by vector multiplication kernels on an Alliant FX-80.

is the worst performer. It is important to stress that relative performance is machine de-
pendent: the dot product scheme which performs well here would not too well on vector
machines. Also of interest, and to some extent disturbing, is the variation in performance
obtained for different matrices with the same kernel. These discrepancies are especially
noticeable in Kernel 5 , using the jagged diagonal format. Here the large degradation in
performance when passing from two-dimensional to three-dimensional grids is due to the
fact that the amount of data that is used is so large that it does not fit in the 128 KB
cache. For the 30 x 30 x 10 matrix, the number of double precision words needed to hold
the matrix plus the input and output vectors is roughly 7 x N + 2 x N = 9 x N , i.e., 811'
words, while the cache size is only 64K words. At this point, execution time is dominated
by memory traffic. Every time a j-diagonal is used, i.e., for each outer loop, the above code
sweeps through the j-diagonal array A(k1 : k 2) itself plus the integer arrays for the indirect
addressing JDIAG(k.1 : k2) and finally through the vectors x and y, with a very high cache-
miss ratio. This situation might be remedied by unrolling the j loop to avoid unnecessary
reloading of the vectors z and y.

One problem that seems not to have been studied in the literature is that of performing
simple operations with general sparse matrices on SIMD machines like the MPP or the
Connection machine. On such machines much of what has been accomplished is to test the
usual symmetric conjugate gradient method for easy model problems [27,25]. The difficulty
with the more realistic general sparse problems is the apparent necessity of resorting to
indirect addressing, a difficult operation on these architectures. Hammond and Law [55]
propose a hardware solution based on systolic arrays. This challenging problem must be
solved before SIMD machines can be considered real contenders to MIMD machines in the
race for practical supercomputers.

3.3 The problem of the dot products
It has been observed that the dot products in the conjugate gradient algorithm constitute a
bottleneck on many parallel or vector machines. This is because when all the vectors in the
algorithm are split equally among the processors dot products require global communication.
However, this need not be a problem unless the number of processors becomes large.

Another minor difficulty caused by the dot products is the fact that they constitute .

11

two synchronization points in the algorithm. The dot products must be completed before
anything else can be done and no other computation can be done while they are being
computed. As was observed independently in [59] and [lo51 this can be partially overcome
by exploiting the orthogonality of the vectors r;+l and r; from which we can derive the
equality,

As a result can be computed from a; and Ap;, leading to the following formulation,
when M = I (No preconditioning). Note that the algorithm can easily be extended to the

lIri+llI; + IlriIl; = a;211APi1(22* (5)

preconditioned case; see [81,80].

Algorithm: CG, version 2

Iterate: For i = 0,1, . . . until convergence do:

1. Compute w := Ap;, (Ap;, r;) and ~ ~ A ~ i ~ ~ ~ ~

2. Compute the scalars

3. Compute

0 x;+1 := x; + a;p;
T;+1 := Ti - aiw
pi+l = ri+l + Pipi

0

Unfortunately, the above version of CG is unstable and there is a simple analysis to
To simplify the notation we introduce the understand the difficulty and to remedy it.

quantities,

Then we have the following result on the relative error on

Similarly for ti ,
- SC; bt; sc; 1

ti c; ti c?(l/c; - 1) cis;
-- SC; - - M --.- = -

12

and finally for c;,

From (7), (8) and (9) we get

The above formula suggests that there is a danger of catastrophic error when si gets close
to zero. In fact even if s; is not small, the above expression tells us that the accumulated
error may grow exponentially. To simplify our model a little further, let us assume that
7; = (A p ; , r ;) z / ~ ~ A p ; ~ ~ ~ , a quantity that is computed locally and independently of p; has no
error in it, i.e., that 57; = 0. Then the above formula yields,

bPi+l 1 bpi - (1 + -)--
Pi+1 Si Pi
--

The meaning of the above relamtion is that even under the strong condition that there are
no local errors introduced, an initial error on po will affect the predicted value of pi+l by an
error which grows like the product of the factors 1 + l/s;. The resulting algorithm will be
unstable in general.

A simple remedy would be to keep track of the growth of the estimated error and recom-
pute occasionally the residual norm by the usual formula. In fact Meurant [81,80] recomputes
it at every step and shows that the additional dot product is worth the cost on a vector ma-
chine like the Cray X-MP. Note that the scalar s; on which the error estimate is based, is
available a t every step for free. The above analysis can be extended to the preconditioned
conjugate gradient method, by using the M-inner product instead of the Euclidean inner
product.

One can take the above idea of post-poning inner products one step farther and ask
whether it is possible to derive a version of the conjugate gradient method that has as few
synchronization points as possible. One idea is to try to esecute rn steps of the conjugate
gradient algorithm at once [29]. However, one can expect to encounter the same stability
difficulties as before. Another simple and reliable way to reduce bbttlenecks due to inner
products is to use polynomial preconditioning as will be described in Section 5.

There are some difficult issues when implementing algorithms on parallel/vector machines
pertaining to the best use of the available hardware and software. We have mentioned the
delicate problem of optimizing the use of vector registers, the hardware gather and scatter
operations, and the disastrous effect that cache memories may have on sparse computations.
Work by Meurant on a Cray X-MP-48 [SO], Seager[115], and I<oniges[66] addressed the ques-
tion of how to implement conjugate gradient methods and best exploit multitasking and
microtasking. Efficient implementations of different preconditioning techniques is more diffi-
cult on multi vector processor machines such as the Alliant FX-8 because of the complicated
side effects of the memory hierarchy [56,75]. Thus, it seems that there are no all-purpose
preconditioning techniques. . .

13

3.4 Preconditioned GMRES
GMRES [lo91 is an effective conjugate gradient-like algorithm for solving general large sparse
linear systems of equations of the form

AX = b. (12)

Assuming a preconditioner M is used on the left, see [38], we will be solving instead of (12),
the preconditioned linear system

A brief description of the preconditioned GMRES method follows. Details can be found in
[log].

Algori thm : Precondi t ioned GMRES

1. Start: Choose xo and a dimension m of the Krylov subspaces.

2. Arnoldi process:

0 Compute ro = M-'(b - Azo), /3 = llroll and V I = ro/P.

0 For j = 1,2, .., m do:

Define H, as the (rn + 1) x m upper Hessenberg matrix whose nonzero entries are the
coefficients hij.

3. Form the approximate solution:

0 Find the vector 9, which minimizes the function J (y) = ll,Bel - Hmyll where

0 Compute x , = xo + V,y,
el = [I, 0,. . . o]*, among all vectors of R".

4. Restart: If satisfied stop, else set zo t 5, and goto 2.

14

Each outer loop of the above algorithm, i.e., the loop consisting of steps 2, 3, and 4, is
divided in two main stages. The first stage is an Arnoldi step and consists of building a basis
of the Krylov subspace ICm. The second consists of finding in the affine space xo + IC, the
approximate solution x, which minimizes the residual norm. This is found by solving the
least squares problem of size m+1 of step 3, whose coefficient matrix is the upper Hessenberg
matrix H,.

Note that in practice, the least squares solution of the (m + 1) x m problem in 3 is solved
by a QR factorization of the matrix H;, which is updated at each step of the Arnoldi process
in 2. With this implementation we can obtain at no additional cost the residual norm of the
corresponding approximate solution zk without having to actually compute it; for details
see [log]. This allows us to stop at the appropriate step.

When the preconditioned matrix is positive real, then GMRES is theoretically equivalent
to GCR [38] and to ORTHODIR [53] and it is known to converge. Moreover, it is less costly
both in terms of storage and arithmetic [log]. It ca.n be shown that, in exact arithmetic, the
method cannot break down although it may be very slow or even stagnate in cases when the
matrix is not positive real. For details on stagnation and breakdown behaviors of Arnoldi
and GMRES methods, see the recent analysis by Brown [24].

Consider the implementation of the above algorithm on a vector or parallel machine. As
before we start by enumerating the main kernels of the algorithm.

1. Setting-up the preconditioner;

2. Matrix by vector multiplication;

3. Orthogonalizing a vector against a set of orthogonal vectors;

4. Vector updates;

5. Preconditioning operation.

The work involved in solving the small least squares problem in step 3 of the algorithm
is negligible for large linear systems.

The new operation here with respect to the conjugate gradient method is the orthogo-
nalization of the vector Av; against the previous v's. The usual way of accomplishing this
is via the modified Gram Schmidt process, which is ba.sica.lly a sequence of subprocesses of
the form

e Compute a = (y,v)

e Compute $:= y - QV

consisting of orthogonalizing a vector y a.gainst another vector v of norm one. Thus the
outer loop of the modified Gram-Schmidt is not parallelizable, but the inner loop, i.e. each
subprocess, can be parallelized by dividing the inner product and saxpy operations among
processors. Although this constitutes a perfectly acceptable approach for a small number of
processors, the elementary subtasks may be too small for this approach to be efficient on a

15

large number of processors. In that case one solution is to use a standard Gram-Schmidt
process with reorthogonalization. This would replace the previous sequential orthogonal-
ization process by a matrix operation of the form = y - VVTy, i.e., BLAS-1 kernels are
replaced by BLAS-2 kernels. Further, we should point out that BLAS-3 type kernels that
usually allow extremely high performances on machines with caches or local memories [47]
cannot be used here because at every step we have only one vector to orthogonalize against
all previous ones. To some extent this may be remedied by using block methods considered
next. An alternative technique for the orthogonalization process in GMRES was recently
proposed by H. Walker [127]. This technique, based on the Householder process, has superior
numerical properties, and can easily be parallelized.

Radicati and Robert [98] compare the performance of several Krylov subspace methods
on an IBM 3090 VF. In particular they discuss good strategies for implementing the main
kernels on this machine and provide an exhaustive set of experiments. The paper focuses
on iterative solvers rather than preconditioners and concludes that although it is difficult
to make any definite statements as to an overall best method, on the average GMRES and
CGS did perform better than the other iterative methods tested.

3.5 Block Krylov subspace methods
The idea of using a block of vectors instead of a single vector in methods such as the conjugate
gradient algorithm and the Lanczos algorithm has been suggested by several authors as a

. simple means for increasing parallelism [107,106,85,87]. The main idea can be explained by
assuming that we have to solve a linear system of the form AX = B where the right hand
side is no longer a single vector but an N x p matrix. Then a natural modification of the
CG algorithm consists of replacing all the operations with singIe vector by operations with
blocks of p vectors. After convergence, the block conjugate gradient algorithm would have
solved the p systems simultaneously. If only one linear system must be solved then additional
artificial right hand sides must be created. In absolute terms this approach is not efficient,
Le., the total number of arithmetic operations is likely to be much higher than with the
standard single vector method. Note that there are many problems involving linear systems
with several right hand sides in which case a block method becomes very attractive even on
scalar machines.

A well-known attraction of the block methods is that for out-of-core problems they tend
to reduce the number of accesses to secondary storage. Thus a block Lanczos algorithm was
found preferable to the single vector Lanczos algorithm in the context of eigenvalue calcu-
lations [52,70]. Many of the modern supercomputers emphasize a hierarchical organization
of the memory using principles similar to those used for secondary storage in traditional
computers, except that the number of levels in the hierarchy is higher. One example of this
architecture is the CEDAR multiprocessor of the University of Illinois [67]. Access to data
from the global shared memory in CEDAR is more expensive than access to data within
each local memory (cluster memory). For this reason, block methods may be important
since they will help reduce inter-processor communication, in the same way they have been
used in the past to reduce the number of accesses to secondary storage [52]. Block methods

16

can also be combined with the other alternatives described in this paper, such as reordering,
and offer an excellent potential for shared memory machines with a hierarchical organization
of memory.

4 Solution of sparse triangular systems
Each step of a preconditioned iterative method involves computing

z = M"y.

In typical preconditioners M is the product of a lower and an upper triangular matrix,
often having the same sparsity pattern as the lower and the upper triangular parts of the
original matrix. We consider in this section different ways of performing this operation
which is critical to the performance of the preconditioned conjugate gradient method. We
only consider lower triangular systems of the form ' Lx = b. (15)

Without loss of generality we will assume that L is unit lower triangular. If not the matrix
can be scaled before the CG iteration is started so as to save N multiplications per CG step.

If we assume that the matrix L is stored row-wise in a general sparse format, using the
standard sparse storage scheme,

0 AL : nonzeros of L , stored by rows,

I
0 JAL: column numbers for each element of AL,

0 IAL: IAL(i) points to the start of row i in AL, JAL,

the sequential elimination sweep is as follows:
Algori thm: Forward elimination for a sparse t r iangular sys tem

x(1) = b(1)
do i = 2, N

x (i) = b (i)
do j= i a l (i) , i a l (i+ l) - l

enddo
x (i > = x (i) - a l (j) * x (j a l (j > >

enddo

The outer loop corresponding to the variable i is sequential. The j loop is essentially a
sparse dotproduct of the ith row of L and the dense vector x. This dot product can be split
among the processors and the partial results will then be added at the end. This is what the
Alliant FX-8 compiler would do if the proper optimization options are invoked. However,
if the length of the dot product-is very short, the synchronization overhead and additional

17

Figure 1: Block partitioning for L

operations involved will make this approach inefficient. Consequently, on a machine such
as the Alliant FX-8, it is often better not to use the optimized version of the compiler for
the above code. As an alternative we may store the matrix by columns and use a column
oriented algorithm. However, the difficulties are identical and we omit the details.

We briefly describe two distinct approaches for breaking the sequential nature of the
above implementation; for details see [6,5].

4.1 Blocking
In the blocking approach, the right hand side b and the solution 2 of (15) are partitioned
into subvectors b l , bz, ..., b, and 21, z2, ..., x, respectively. According to this partitioning the
matrix L will have the structure shown in Figure 1.

If we denote by 2; the vector consisting of the subvectors x1 ,x2 , ..., x,, then the algorithm
for computing the solution of the linear system (15) can be written as follows:

18

Algorithm: Block forward elimination

Do i = 2, ..., m:
z1 = L,%l

5; = L;1 (b; - Ei2j-l)

Each step, except the first, consists of two basic operations: first a multiplication of
the vector ?;-I by Ei and then a solution of a triangular system with the matrix L;. The
multiplication ,?$$;-I, a sparse matrix times vector operation, causes no difficulty because
all the inner products of rows of E; with can proceed in parallel. The other significant
operation, computing z; = L;’y by solving a lower triangular system involving Li, is the
same problem with which we started, although on a smaller scale.

The first option is simply to solve this smaller system by the usual sequential algorithm
using forward elimination. Clearly, this suffers from the same sequential nature as the initial
algorithm, but it does have the advantage of preserving the sparsity of the original problem
and there is the potential benefit that the sequential bottleneck is now shorter at every step
since a t least the matrix by vector products are clone in parallel. The experiments in [6]
reveal that the performance of this alternative is not too different from that of the sequential
algorithm; see also the experiments reported at the end of this section. The second option
consists of computing the inverse of each matrix L; at the beginning and storing it as a dense
matrix. Then the triangular system solution in (16) ca.n be replaced by the multiplication
of a triangular matrix by a vector. The attraction is that multiplying a vector by a matrix
is highly parallelizable and vectorizable and despite the additional arithmetic, could be
cost-effective when solving a large number of systems with the same matrix. Note that an
intermediate option for preconditioners is to compute a sparse approximate inverse for the
triangular matrix Li instead of a full inverse. We can afford to make such a substitution
because we are only interested in using the inverse of L to precondition the original system.
This approach is essentially to the one used in [125] for the diagonally structured problems.

4.2 Level scheduling
In the block forward elimination, the main bottleneck is in solving each of the subsystems
(16). If the matrices L; were diagonal matrices the main difficulty would be removed and
(16) would be a fully parallelizable operation of the order of the block size. For many sparse
matrices it is possible to obtain such a block triangular system simply by reordering the
rows and columns of the coefficient matrix. We will describe a simple ordering called level
scheduling [6,111,130], whose objective is to obtain a block lower triangular system like the
one in Figure 1, where the E;’S are sparse rectangular matrices and the L;’s are diagonal
blocks.

The idea of forward scheduling is as follows. Consider the following formula to compute

19

the i th unknown,

This can be executed after all the components xj needed in the sum have been computed.
The idea is to look at the adjacency graph of the matrix at the outset, and determine groups
of equations that can be solved at the same time [6,111,130]. Recall that a node of the graph
corresponds to a row of L or, equivalently, a component of x, and there is a directed edge
from node j to node i if and only if l ; j # 0, which indicates that xj must be known to solve
for xi. Since L is lower triangular, the adjacency gra.ph is a directed acyclic graph. Figure
2 shows the digraph for a small sample matrix.

Thus, the first step of the solution algorithm consists of determining z-1 and any other
unknowns for which there are no predecessors in the graph, i.e., all those unknowns x; for
which the off-diagonal elements of row i of L are zero. These unknowns will constitute the
elements of the first level. The next step will determine in parallel all those unknowns that
will have the nodes of the first level as their (only) predecessors in the graph.

More generally, we can define a root node as a.n imaginary node with links to the nodes
having no predecessors, and the depth of a node as the maximum distance of that node
from the root 11301. The introduction of the root node ensures that the depth of each node - -
is defined from the same point. The depth of each node can be
through the structure of the coefficient matrix L by

if l ; j = 0 I' 1 + m a x j < ; { d e p t h (j) , 1;j # 0} otherwisG
d e p t h (i) =

computed with one pass

for all j < i
d

A levelof the graph is, by definition, the set of nodes with the same depth. Thus the depth
of a node is the same as the block number of its row in the block algorithm, and the nodes of
a level define the set of rows in a block. Let us assume that we now define a data structure
for the levels: a permutation q (l : n) defines the new ordering and l e v e l (i) , i = 1,. . . , n lev+ l
points to the beginning of the i-th level in that array. T h e n the algorithm for solving the
triangular systems can be written as,

20

Before reordering

+
+

+
+ +

+
+

+

+
+

+
+

+
+

I + + + + I

After reordering by levels

I + I
I I I

I I I

Figure 2: A sparse lower triangular matrix and its level structure.

21

. * .

Algorithm: Forward eliiiiinatioii w i th level scheduling

do l e v = l , n lev
j l = l eve l (1ev)
j 2 = l e v e l (l e v + i) - l

do k = j l , j 2
i = q(k)
do j= i a l (i) , i a l (i + l) - 1

enddo
x (i) = x (i) - a l (j) * x (j a l (j >)

enddo
enddo

The k loop can be executed in parallel. The idea of forward level scheduling is a natural
one for finite difference matrices on rectangles and several authors suggested it independently,
[124,123,50,110,9]. It is also interesting to note that for the computer scientist the idea in
the general context of irregularly structured matrices is a textbook example of scheduling
for parallel processing. In fact the level scheduling approach described here is a “greedy”
algorithm and is unlikely to be optimal. There is no reason why one should solve an equation
as soon as it is possible and it may be preferable to use a backward scheduling [5] which
consists of defining the levels from bottom up in the graph. Thus the last level consists of
the leaves of the graph, the previous level consists of their predecessors, etc..

Another possibility is to use dynamic scheduling as opposed to static scheduling. The
main difference is that the level structure is not preset; rather the order of the computation is
determined at run-time. The clear advantage over pre-scheduled triangular solutions is that
it allows processors to always execute a task as soon as its predecessors have been completed
thus reaching a better load balancing. On loosely coupled distributed memory machines this
approach may be the most viable since it will dynamically adjust to irregularities in the exe-
cution and communication times that can cause a lock-step technique to become inefficient.
On the other hand, for those shared memory machines in which hardware synchronization
is available and inexpensive, such as the Alliant FX-8, dynamic scheduling would have some
disadvantages since it requires managing queues and generating explicitly busy waits. Both
approaches have been tested and compared in [21] where it was concluded that on the Encore
Multimax dynamic scheduling is usually preferable except for problems with few synchro-
nization points and large amount of parallelism. In [54] a combination of prescheduling and
dynamic scheduling was found to be the best approach on a Sequent balance 21000. There
seems to have been no comparison of these two approaches on dktributed memory machines
or on shared memory machines with microtasking, or hardware synchronization features.

To illustrate the performance of the solvers described in this section we show in Table 2
speed-ups of the various methods considered here over the sequential version Lsol on a

number of matrices. The experiments have been performed on an Alliant FX-8, with 8
processors, using double precision arithmetic. The meanings of the labels are as follows:

0 blksla : Blocking method with sequential solve;

0 blksla : Blocking met hod with dense inverse solve;

0 levsl : level scheduling solve;

0 jagsl : level scheduling using the jagged diagonal format for the matris-vector products
Eiki-1 in (16).

The first two sets of matrices are from the sets RUA and RSA of the Harwell-Boeing
collection of sparse matrices[35]. The last set consists of 5-point or 7-point matrices on
rectangular domains, with the numbers referring to the grid sizes.

In the table n represents the size of the matrix while nnz is its total number of nonzero
elements. The numbers shown in the last four columns are the speed-ups of the four tech-
niques they refer to, as compared to the times obtained for Lsol, the sequential method
whose program is shown at the beginning of this section. Recall that the number of arith-
metic operations performed by blksla, levsl and jagsl is identical with that of the sequential
solve, while blkslb requires more operations. The block size used in blksla and blkslb is
always 16. Note that the speed-up of blksla may be less than one and is otherwise negligible.
Blkslb on the other hand can reach a speed-up that exceeds three in some cases despite
the additional work involved. The speed-ups achieved by levsl are more consistent than
the other techniques and they are generally lower for the denser matrices. Jags1 performed
extremely well on the three-dimensional grid problems, sometimes reaching speed-ups that
exceed the number of processors due to a better vectorization. The performance on some of
the matrices could also be very poor. These matrices are those that have a large number of
very short jagged diagonals [6].

In [22,21] and [5,6] a number of additional experiments are presented to study the perfor-
mance of level scheduling within the context of preconditioned conjugate gradient methods.

5 Polynomial preconditioning
Polynomial preconditioning consists of choosing a polynomial s and replacing the original
linear system by

which is then solved by a conjugate gradient type technique. There have been several recent
publications on the use of such preconditioners motivated mostly by their potential on vector
computers [8,58,105,60,115,131]. However, the idea of using polynomial preconditioning is an
old one and has been suggested by Stiefel[119] for eigenvalue calculations. Later, Rutishauser
[loo] adapted Stiefel’s method for linear systems. The idea of polynomial preconditionings
reappeared with the paper by Dubois et al. [33] which was spurred by the potential of these
techniques for vector machines. Their motivation was that many matrices have a diagonal -

s (A) A z = s(A)6 (19)

23

Matrix
Name
s t earn2
orsirr-2
jpwh-991
s herman 1
sherman4
orsreg- 1
sherman5
sherman3
bcsstk06
b css t k 19
bcss tk09
bcsstk27
bcsstml2
b css t ml3
bcsst k23
bcsst k21
20X20X1
20X20X10
20X20X20
20x20~30
30x30~1
30x30~10
30x30~20
30x30~30

n
600
886
991
1000
1104
2205
3312
5005
420
817
1 083
1224
1473
2003
3134
3600
400

4000
8000
12000
900
9000
18000
27000

nnz
7180
3428
3529
23 75
2445
8169
11571
12519
4140
3835
9760

28675
10566
11973
24156
15100
1160

15200
30800
46400
2640
31500
69900
105300

s.
blksla
1.15
0.97
1.33
0.87
0.85
1.10
0.88
0.97
0.91
0.89
1.13
1.33
1.13
0.99
1 .08
1.20
0.96
1.12
1.12
1.13
0.97
1.13
1.14
1.14

2edun over Lsol
blkslb
2.68
2.55
2.43
1.94
1.75
2.50
1.93
1.96
2.84
2.88
2.79
3.51
2.74
1.92
2.82
2.70
2.15
2.46
2.54
2..54
2.10
2.50
2.51
2.54

levsl
5.15
4.96
5.06
4.46
4.87
5.51
4.70
5.03
2.58
1.41
3.96
1.73
3.92
2.71
4.74
5.53
3.24
5.67
5.57
5.51
3.84
5.55
5.33
5.29

jag51
2.43
2.79
3.05
4.07
4.37
5.36
2.72
6.68
0.43
0.45
0.98
0.22
0.95
0.44
1.38
5.87
2.27
7.25
8.29
8.87
2.88
8.27
9.29
9.77

Table 2: Speedup over the sequential method of four triangular system solvers, on an Alliant
FX- 8.

24

. '
structure, in which case matrix by vector multiplications can be performed at near peak
speed of the machine. Several papers discussing better polynomials or performance issues
followed [58,105,60,80,37,131]. However, there are often doubts surrounding the usefulness-
of the method on supercomputers. Before discussing the advantages and disadvantages of
the method we begin with an overview.

To be efficient, polynomial preconditionings require the determination of an optimum
polynomial s. The preconditioned matrix s (A)A should be as close as possible to the identity
matrix in some sense. One possible criterion is to make the spectrum of the preconditioned
matrix as close as possible from that of the identity. For example denoting by a(A) the
spectrum of A, and by I I k the space of polynomials of degree not exceeding k, we may wish
to solve,

Find s E I l k that minimizes:
max 11 - Xs(A)[

XEo(A)

Unfortunately, this problem involves all the eigenvalues of A and is harder to solve than the
original problem. What is usually done is to repla.ce Problem (20) by the problem obtained
from replacing the set a (A) by some continuous set E that encloses it:

Find s E l l k that minimizes:
max 11 - As(X)I.
M E

Thus, polynomial preconditioning techniques start with the assumption that we have a rough
idea of the spectrum of the matrix A. We will come back to this problem later.

Consider first the particular case where A is symmetric positive definite in which case
E can be taken to be the interval [Xmin ,Xma,] containing the eigenvalues of A. The best
residual polynomial 1 - Xs(X) in this case is a shifted and scaled Chebyshev polynomial of
the first kind, and its three-term recurrence results in a simple three-term recurrence for the
approximate solution [53]. An alternative considered by Johnson et al. in [58] is to use a
least squares polynomial on the interval instead of the infinity norm polynomial. In other
words we need to solve

Find s E I l k that minimizes:

I l l - X S (V I I W

where w is some weight function on the interval (A m i n , A,,,), and I l . I I w is the L2-norm as-
sociated with the corresponding inner product. Because of the fact that the distribution of
eigenvalues matters more than condition numbers for the preconditioned conjugate gradient
method, it has been observed in [58] that least squares polynomials tend to perform better
than those based on the uniform norm, in that they lead to a better overall clustering of
the spectrum. Moreover, as was already observed by Rutishauser [loo], in the symmetric
case there is no need for accurate eigenvalue estimates: it suffices to use the simple bounds
that are provided by Gershgorin's theorem. In [lo51 it 1va.s also observed that in some cases

25

the least squares polynomial over the Gershgorin interval, may perform as well as the in-
finity norm polynomial over [Amin, A,,,]. Note that this is only a minor advantage of least
squares polynomials since effective adaptive procedures exist to compute Amin, A,,,; see [53]
for symmetric problems and [72,41] for nonsymmetric problems. We should add that the ob-
servations made in [58] and in [105], and the simplicity of a method that bypasses eigenvalue
estimates, have made least squares polynomials more popular for polynomial precondition-
ings. For the simple case of the model 5-point Laplace matrix, the best polynomials up to
the degree 10 are listed in [lo51 and are readily usable.

Given a set of approximate
eigenvalues of A, we can construct a region E in the complex plane which ideally would
contain the eigenvalues of the matrix A. There are several choices for E. The first idea is to
use an ellipse E [74,72] that encloses an approximate convex hull of the spectrum. Then the
shifted and scaled Chebyshev polynomials are optimal when the focii of the ellipse are on
the real axis and nearly optimal in other situations and the use of these polynomials leads
again to an attractive three-term recurrence. A second alternative is to use a polygon H
that contains a(A) [117,104]. A notable advantage of using polygons is that they may better
represent the shape of an arbitrary spectrum. The polynomial is not explicitly known but
it may be computed by a Remez algorithm. As in the symmetric case an alternative is to
use an &-norm instead of the infinity norm, i.e., to solve (22) where this time w is some
weight function defined on the boundary of H . Smolarski and Saylor used a discrete norm
on the polygon. Their original algorithm is unstable [117] but an improved alternative is
proposed in [113]. In [lo41 we used an &-norm associated with Chebyshev weights on the
edges of the polygon and expressed the best polynomial as a linear combination of Chebyshev
polynomials associated with the ellipse of smallest area containing I-I. If the contour of H
consists of p edges each with center c; and half-length d;, then the weight on each edge is
defined by

We now consider the more general nonsymmetric case.

(23)
2

Wi(A> = - Idi - (A - c ;) ’ p .
i7

With these weights, or any other Jacobi weights on the edges, there is a finite procedure
to compute the best polynomial that does not require numerical integration; for details see
[104]. The particular case where A is symmetric but indefinite was examined in detail in

Still in the context of using polygons instead of ellipses, yet another attractive possibility
proposed by Fischer and Reichel[43] is to avoid the problem of best approximation altogether
and interpolate the function 1/z with a polynomial at the Fejer points of E , i.e., the points

to be an asymptotically optimal process. There are numerous publications reIated to this
approach and the use of Faber polynomials; see the references in [43]. However, we should
point out that these papers are more concerned with the approximation theory problem
than with the actual linear algebra problem. Often the tests performed are contrived into
problems for which the spectrum is known to lie in nice and known regions. Real problems
do not have nice spectra enclosed in rectangles that happen to be well separated from the

[lol l .

e2 j in fk ,I . = O , l , ..., k that are conformally mapped from the unit circle to H. This is known

origin.

26

_ .
We also mention that although we have only discussed approaches based on the formula-

tions (21), (22), there are other less known possibilities based on minimizing I l l / X - s(X)Il,;
see Freund [46] and the references therein.

The next question that arises is: how to get the polygon H? In the symmetric positive
definite case, where H reduces to an interval, this is not too difficult to do because of
the relationship between the Lanczos algorithm and the conjugate gradient method; see
e.g., [32,53]. This seems to have been proposed first by Rutishauser [loo] who suggested
using the QD algorithm for computing the eigenvalues of the tridiagonal matrix obtained
from the CG/Lanczos procedure. In the nonsymmetric case an adaptive procedure was
proposed by Manteuffel [74,72]. An improved technique that exploits Arnoldi’s method
was later developed in [41]. For illustration, we describe nest an implementation based
on a combination with GMRES [log]. Eigenvalue estimates can be computed from the
Hessenberg matrices generated from GMRES. Thus, the idea is to use a certain number,
say r n l , of steps of GMRES to get eigenvalue estimates a.nd to improve the current solution.
The eigenvalue estimates are used to improve the current polygon H and to compute the
next least squares polynomial. A number of steps (say rnz) of GMRES are then performed
for the preconditioned system s (A) A x = s(A)b. This procedure is outlined below.

Algorithm: Polynomial Preconditioned GMRES

1. Restart:

Compute current residual vector r := b - Ax.

2. Adaptive GMRES run:

Run r n l steps of GMRES for solving Ad = r . Update 2 by x := x + d . Get eigenvalue
estimates from the eigenvalues of the Hessenberg matrix.

3. Compute new polynomial. Refine H from previous hull H and new eigenvalue estimates.
Get new best polynomial s k .

4. Polynomial Iteration:

0 Compute the current residual vector r = b - As .

0 Run r n 2 steps of GMRES applied to sk(A)Ad = s ~ (A) T . Update x by J: := x + d.

0 Test for convergence. If solution converged then stop else goto 1.

We now discuss some of the advantages and disadvantages of polynomial precondition-
ings, starting with the advantages. The main attraction of polynomial preconditioning is
that the only operations involving the matrix are products with vectors. As a result par-
allelism of order N can be achieved for each step of the preconditioned conjugate gradient
method. As a consequence of this, portability is facilitated because we only need to concen-

27

..

- . trate on optimizing matrix by vector multiplications and a few other basic kernels. A second
advantage is that we need fewer dot products than with the nonpreconditioned conjugate
gradient method to solve a linear system. The dot products can be bottlenecks for large num-
ber of processors but may not cause any difficulty otherwise. Thus, the main attraction of
polynomial preconditioning is when the number or processors is very large. In this situation
the usual incomplete LU factorization described in Section 3 will not be very helpful except
for matrices with special structures. In many cases one may reorder the matrix to obtain
a highly parallel LU solve, e.g., by using a red-black ordering as is described in Section 7.
Polynomial preconditioning can be used when this is not possible or in combination with
reordering techniques. Another important point is that polynomial preconditioning can be
combined with a subsidiary relaxation-type preconditioning such as SSOR [3,37]. Finally,
polynomial preconditionings can be very useful in solving some special linear systems such
as complex linear systems arising from the Ilelmhotz equation [45] and those arising from
the biharmonic equations[l32].

The main disadvantage of polynomial precondi tionings is their poor performance on se-
quential machines or parallel machines with small number of processors. In the numerical
experiments reported in [5] on matrices with sizes ranging from N = 434 to N = 2205,
polynomial preconditioning compares favorably only in a few cases with the parallel imple-
mentation of ILU preconditioning, on an Alliant FX-8. On the optimistic side, these numbers
may look better if one thinks of the potential speed-ups that might be achieved on a machine
with a much larger number of processors, since typically there is a parallelism of order N (the
size of the matrix) for polynomial preconditioning but a parallelism of order fl for ILU
preconditioning. Unfortunately, theoretical comparisons of the two approaches are difficult.
One such comparison was proposed by Axelsson [13] for the simple case of the diagonally
scaled Neumann series approach [33], a.pplied to a symmetric positive definite matrix. It
was concluded that in this case polynomial preconditioning was rarely competitive with the
nonpreconditioned conjugate gradient method. More precisely, polynomial preconditioning
can outperform the standard conjugate gradient method only when the cost of the matrix
by vector multiplication is less than half the cost of the other operations in a CG step. This
is clearly a very stringent condition, that is likely to be satisfied only for machines with a
very large number of processors, i.e., when the dot products start dominating the cost of a
CG step. The model used in [13] is restricted to the simplest polynomial preconditioning,
and it is not known whether a similar conclusion might be proved for the more sophisticated
precondi t ioners.

A second disadvantage of polynomial preconditioning is that there are often alternatives
that may do better. For example, for the case of a small number of processors, the parallel
implementations of the standard ILU preconditioning discussed earlier will be difficult to
outperform. For machines with large numbers of processors, reordering techniques have the
potential of being superior to polynomial preconditioning, although extensive comparisons
on such machines are still lacking.

It is often argued that one weakness of these methods is their requirem-ents for eigenvalue
estimates. In fact we found this to be a rather minor drawback because of the possibility
of combining the process with an algorithm like GhIRES or Arnoldi. We would also like

28

., Matrix N ILU(O) Polyn. '
JPWH-991 991 0.30 0.31

. .

_.

ORSIRR-1
ORSREG-1

1030 0.74 2.88
2205 1.74 5.77

Sherman5 I3312 I 3.50 1 4.20

Table 3: Times for solving four linear systems on an Alliant FX/8.

to mention that there has been very little work on polynomial preconditioning or Krylov
subspace methods for highly non-normal matrices; see however the recent analysis in [120].

To give an idea of the performance of polynomial preconditionings as compared with
ILU preconditioners, we show in Table 3 the time that i t takes to solve a few linear systems
with matrices from the Harwell-Boeing collection. The stopping criterion used was to stop
as soon as the residual norm drops by a factor of This was done on an Alliant FX-8.
The polynomial preconditioning used here was combined with a diagonal or block diagonal
scaling. The degree of the polynomials used was 10. It is worth pointing out that the time
for the first linear system (J P W H - 9 9 1) using the sequential version of ILU, was about 1.3
sec or roughly 4.3 times slower than with level scheduling. Similarly, for Sherman5 level
scheduling was roughly 3.14 faster than with sequentid forward and backward solves.

6 Block and other preconditioners
When vector machines first appeared, the preconditioned conjugate gradient method was
just becoming popular as an iterative technique. As a result one of the first issues that this
technique was facing concerned the vectorization of the preconditioner, the most popular of
which was Meijerink and van der Vorst's incomplete Choleslii factorization. The first idea in
this context was to use cyclic reduction to solve the bidiagonal systems that arise during the
lower triangular solves [63,60]. Van der Vorst [125] suggested replacing the inverse of each of
the bidiagonal matrices by a simple Neumann series. This introduced a parallelism of order
n = fl for a problem originating from an n x n grid. The performance of these alternatives
were, as expected, better than the sequential algorithm. However, it appeared that the
vectorizable variant was not as reliable as the original ICCG. Moreover, often the speed-
ups obtained were not satisfactory because of the short vector lengths that these methods
involve.

Block incomplete factorizations were popularized independently by Axelsson [15] and by
Concus, Golub, and Meurant [31]. See, however, a complete bibliography regarding these
methods in [13], which indicates early work by Underwood dating back to 1976. Given
a block tridiagonal matrix A = tridiag(Br, A;, Bi+l), the basic idea is derived from the
standard Block Gaussian elimination process, in which A is factored as,

..

A = (D - L)D-'(0 - L) T (24)

29

where L is the negative of the strict lower triangular part of A , and D is a block diagonal
matrix D = diag(D;) , defined through the recurrence,

D; = A; - B;D;-",BT, i = 2,3, .., n. (2 5)

The first observation made here [15,31] is that even though the blocks D; are dense, a sparse
approximation to them can easily be found. For example, one technique is to use a banded
approximation r; to the inverse 0;'. If we denote the resulting approximations to D; by
A;, then the recurrence (25) becomes,

(26) T A; = A; - B;I';-lBj , i = 2,3, .., n.

Then the preconditioning matrix would be

M = (A - L)A-'(4 - L)T (27)

Solving a linear system with M is not fully satisfactory on vector machines since the forward
and backward solutions involve sequential banded solutions.

As block preconditioners emerged as contenders to the scalar incomplete factorizations
[31], several variants were quickly derived and tested as vectorizable options [82,78,12,13].
The simplest such option proposed in [78] is to exploit the fact that both A; and I'i are
available, and therefore any multiplication by A;' can be replaced by a multiplication by
I';. The "inverse-free" factorization proposed by Axelsson is to write M as

Then, if I' is block diagonal matrix approximating the inverse of 4, the idea is to approximate
the inverse of the factor (I - LA-') by the so-called Euler expansion

where the integer p is carefully chosen. A detailed analysis of block preconditioners including
the one just outlined was proposed by Axelsson and Polman [18].

There has been a number of extensions and related techniques proposed. For example,
Meurant [80] suggested an alternative consisting of performing the LU factorization not only
from top to bottom, but also from bottom to top, a.t the sa.me time. The resulting decom-
position is called the twisted incomplete factorization and is related to the WZ factorization
[42]. The motivation here was to take advantage of multi ta.sking on Cray machines. The gain
in performance that was reported on a Cray X-MP was limited. Using a slightly different
viewpoint, Rodrigue and Wolitzer [99] have argued for a form of incomplete cyclic reduction
to derive incomplete factorizations of block tridiagonal matrices.

The more recent effort in preconditioning methods has been mainly in three directions.
The first is in deriving preconditioners from domain decomposition techniques [65,79,26,
171. The second direction is in hierarchical basis methods [4,19,51,134], whereby the finite

30

element basis is chosen in a such a manner as to yield well conditioned matrices. Finally,
there is now increasing interest in methods that will take advantage of the special nature
of three-dimensional problems [16,122]. Some early comparisons of domain decomposition
preconditioners and standard block preconditioners reported in [79] seem to indicate that
for large number of processors the former might be better.

We should also mention work related to domain decomposition methods which consists
of multisplitting iterative techniques [88], and element-by-element (EBE) preconditioning
techniques [84]. A recent collection of papers on domain decomposition methods may be
found in the proceedings [48] and [23].

7 Reordering for parallelism
A convenient and simple way to achieve a high level of para.lIelization is to reorder the
equations and the unknowns. For example, equations that originate from 5-point matrices
can be reordered according to the red-black ordering to yield systems of the form,

where D1 and 0 2 are diagonal matrices. The triangular system to be solved at each step of
incomplete ICCG are highly parallelizable due to the structure of the above matrix. However,
one might be suspicious that the rate of convergence of the algorithm is not as good as that
for the original ordering. Experience with model problems suggest that the deterioration of
the convergence rate rarely exceeds a factor of two [114,71]. However, for more realistic and
difficult problems convergence behavior for reordered matrices may be unpredictable [116].
As was mentioned in Section 4, in order to avoid bottlenecks in the forward and backward
sweeps, it is desirable to have a matrix with a block structure in which each diagonal block
is diagonal. We refer to this structure as Diagonal Diagonal Block (DDB) structure. The
L matrix will then have the form of Figure 1, where each L; is a diagonal matrix. There
are many ways of achieving such structures; see, e.g., [71]. For matrices whose adjacency
graphs are planar, a simple strategy is to start by setting up the level structure of the graph.
This consists of using a Cuthill-Mc I<ee ordering starting from some initial point; see e.g.,
[34]. The levels are then colored alternately in red and black. The next step is to group
a certain number of levels of the same color in the same set. The number of levels chosen
may be varied and will depend on the desired size of the diagonal blocks. For example,
maximum parallelism may be achieved by putting all the red levels together in one set and
all the black levels in another set. For matrices with property A, this will lead to the usual
red-black ordering. Since each level set may consist of connected vertices, coloring may again
be needed within each set. This technique was suggested in [71]. Interestingly, experiments
for model problems reveal that the number of iterations needed for convergence does not
vary too much as the block size increases, deteriorating by a factor of two in the worst case.

More generally, multicoloring is a general term that refers to reordering the unknowns
to obtain a matrix that has the DDB structure mentioned above. Several authors have -

31

I - , .. considered multicoloring techniques and the various effects on convergence of either the
preconditioned conjugate gradient or the underlying relaxation technique [1,86,2,39,97,96].

For matrices having property A, once the matrix is reordered in the form (30), an alter-
native to using PCG on the corresponding system directly is to solve the reduced system
which involves only the black unknowns, namely,

The above system is again a sparse linear system involving only half of the unknowns.
Moreover, setting up the preconditioner is an inexpensive and fully parallel process even for
unstructured problems [20]. The resulting system can again be preconditioned by incomplete
Choleski factorization with level scheduling as described before. However, as revealed by
experiments on various model problems, an excellent alternative is to use the diagonal of
the reduced matrix as a preconditioner. This was observed for both well sctuctured [75]
and unstructured problems[20]. In [20] it was found that for the reduced system, ICCG
with level scheduling outperformed diagonal preconditioning, only for very large problems
because the overhead in setting up the level structure and the preconditioner is difficult
to offset given that diagonal scaling performs so well. A detailed analysis by Elman and
Golub [40] on model problems indicate that it is often more effective to solve the reduced
system by iterative methods than the original system, a fact which was observed empirically
[38,36]. The reduced system approach appeared to be the best option on vector or multi-
vector processors in experiments reported in many pa.pers. It also has excellent potential for
machines with a large number of processors of SIMD type. Its only limitation is that it does
not generalize to matrices that do not have property A.

8 Conclusion
We have presented an overview of numerical techniques to solve realistic large linear sys-
t em by Krylov subspace methods on supercomputers. For machines with a small number
of processors, the standard preconditionings can be efficiently implemented and they often
constitute the most efficient approach. The advantage of this over using less conventional
techniques is that these preconditioners are reliable and their behavior is well understood
from experience on standard scalar machines. For machines with a very large number of
processors, these techniques will not be sufficient to achieve satisfactory speed-ups. We
have discussed two possible alternatives for this case. The first consists of using polyno-
mial preconditioning and the second consists of reordering the equations by multi-coloring
techniques. Although these alternatives offer a good potential, they are not sufficiently well
understood for general problems. For example, reordering affects the convergence rate of the
conjugate gradient method in a way that is difficult to predict for general sparse problems,
while polynomial preconditioning may not be competitive against rival techniques such as the
unpreconditioning conjugate gradient method or the multi-colored incomplete Choleski/LU.

These observations suggest that it is crucial that researchers experiment with existing
massively parallel machines in order to better understand the effects that are difficult to

32

predict from theory, such as impact of communication costs, rates of convergence of new
algorithms, ways of mapping the data, etc..

Research in the direction of domain decomposition and hierarchical basis precondition-
ers, two natural ideas for parallel processing, is very active. It is interesting to observe that
the successful ideas in parallel numerical methods have often been derived from existing
techniques that are either adapted or slightly modified. This is the case of doma,in decom-
position methods which have been extensively used in structural analysis. The search for
parallelism has forced researchers to take a second look at many old techniques sometimes
resulting in remarkable success. Ortega and Voigt concluded in [91] that there has been very
few “truly parallel algorithms” invented, as opposed to modifications of existing algorithms.
This has been even more pronounced for iterative methods, perhaps because there are many
known algorithms that do offer a large degree of parallelism or that can be simply modified
to improve their parallelism. However, a common difficulty is that those iterative methods
that are intrinsically highly parallel, such as the Jacobi iteration, often converge much more
slowly than those with a more sequential nature, such as the Gauss-Seidel iteration.

We have not discussed issues related to software development and hardware. Although
the trend towards parallelism is clear, the question as to which type (s) of architecture will
prevail in the long term remains difficult to answer. A consequence is that in the near term
at least, developers of numerical software will face challenging problems. They must not
only select and develop different algorithms for different machines but also acquire a good
understanding of the machines and the software that runs them in order to be able to produce
reasonable performance. Moreover, porting .a program from one machine to another usually
requires substantial reprogramming effort which may involve changing languages, completely
remapping the data, and extensive testing to tune the code. Given the variety of machines
that are available these efforts are increasingly viewed as intolerably time consuming and
non cost-effective. Thus, the need for better programming environments and languages for
parallel machines is becoming critical and as iterative methods are gaining importance, they
should be considered from the perspective of these other important issues.

33

References
[l] L. Adams. M-step preconditioned conjugate gradient methods. SIAM J. Sci. Stat.

Comp, 6:452-463, 1985.

[2] L. Adams and H. Jordan. Is SOR color-blind? SIAM J . Sei. Stat. Comp, 6:490-506,
1985.

[3] L. M. Adams. Iterative algorithms for large sparse linear systems on parallel computers.
PhD thesis, University of Virginia, Applied R,Iathema.tics, Charlottsville, VA 22904,
1982. Also available as NASA Contractor Report 166027.

[4] L. M. Adams and E. G. Ong. A comparison of preconditioners for GMRES on parallel
computers. In A. Noor, editor, Parallel Computations and their Impaci on Mechanics,
pages 171-186, Amer. SOC. Mech. Engr., Dec. 1987.

[5] E. C. Anderson. Parallel implementation of preconditioned conjugate gradient methods
for solving sparse systems of linear equations. Technical Report 805, CSRD, Univ. of
Illinois, Urbana, Illinois, 1988. MS Thesis.

[6] E. C. Anderson and Y . Saad. Solving sparse triangular systems on parallel computers.
Technical Report 794, University of Illinois, CSRD, Urbana, Illinois, 1988.

[7] W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix
eigenvalue problem. Quart. Appl. Math., 9:17-29, 19.51.

[8] S. F. Ashby. Polynomial Preconditioning for Conjugate Gradient Methods. PhD thesis,
Computer Science Dept ., University of Illinois, Urbana, Illinois, 1987. Available as
Technical Report 1355.

[9] C. C. Ashcraft and R. G. Grimes. On vectorizing incomplete factorization and SSOR
preconditioners. SIAM J. Sci. Stat. Cornput., 9:132-151, 1955.

[lo] 0. Axelsson. Conjugate gradient type-methods for unsymmetric and inconsistent sys-
tems of linear equations. Lin. A ~ J . Appl., 29:l-16, 19130.

[ll] 0. Axelsson. A generalized conjugate gra.dient, least squares method. Num. Math.,
51~209-227, 1987.

[12] 0. Axelsson. Incomplete block matrix factorization preconditionings. The ultimate
answer? J. Comp. Appl. Math., 17:3-18, 1985.

[13] 0. Axelsson. A survey of preconditionied iterative methods for linear systems of alge-
braic equations. BIT, 25:166-187, 1985.

[14] 0. Axelsson. A survey of vectorizable preconditioning iterative methods for large scale
finite element matrix problems. Technical Report CNA-190, Center for Numerical
Analysis, University of Texas, Austin, Tesas, 1984.

34

. .
[15] 0. Axelsson, S. Brinkkemper, and V. P. Ill'n. On some versions of incomplete block-

matrix factorization iterative methods. Lin. Alg. and its A p p l . , 58:3-15, 1984.

[16] 0. Axelsson and V. Eijkhout. Vectorizable Preconditioners for Elliptic Diflerence
Equations in Three Space Dimensions. Technical Report -, University of Nijmegen,
Dept. of Math., Nijmegen, The Netherlands, 1988.

[17] 0. Axelsson and B. Polman. Block preconditioning and domain decomposition meth-
ods. Technical Report 8807, Department of Mathematics, Catholic University, Toer-
nooiveld, Nijmegen, The Netherlands, 1988.

[18] 0. Axelsson and B. Polman. On approsimate factorization methods for block matrices
suitable for vector and parallel processors. Lin. Alg. and its Appl. , 77:3-26, 1986.

[19] 0. Axelsson and P. S. Vassilevski. Algebraic multilevel preconditioning methods,
I. Technical Report 881 1, Department of h'lathematics, Catholic University, Toer-
nooiveld, Nijmegen, The Netherlands, 1988.

[20] C. L. Baucom. Reduced systems and the preconditioned conjugate gradient method on a
multiprocessor. Technical Report, CSRD, University of Illinois, Urbana, Illinois, 1988.

[21] D. Baxter, J. Saltz, M. H. Schultz, and S. C. Eisenstat. Preconditioned Krylov solvers
and methods for runtime loop parallelization. Technical Report 655, Computer Science,
Yale University, New Haven, CT, 1988.

[22] D. Baxter, J. Saltz, M. H. Schultz, S. C. Eisenstat, a.nd I<. Crowley. An experimental
study of methods for parallel preconditioned Krylov methods. Technical Report 629,
Computer Science, Yale University, New Haven, CT, 1988.

[23] J. Bramble, T. F. Chan, R. Glowinski, and 0. Widlund. Second international sympo-
sium on domain decomposition methods. SIAh4, Philadelphia, 1989.

[24] P. N. Brown. A theoretical comparison ofthe Arnoldi and GMRES algorithms. Techni-
cal Report UCRL-98630, Lawrence Livermore Nat. Lab., Livermore, California, 1988.

[25] 0. A. Mc Bryan. The Connection Muchine: PDE solution on 65,536 processors. Tech-
nical Report LA-UR-86-4219, Los Alamos Na.tiona1 Lab, Los ,4lamos, New Mexico,
1986.

[26] T. F. Chan. Analysis of preconditioners for domain decomposition. SL4M J. Num.
Anal., 24:382-390, 1987.

[27] T. F. Chan, C. C. Kuo, and C. Tong. Parallel Elliptic Preconditioners: Fourier Analy-
sis and Performance Evaluation. Technical Report 88-22, Computational and Applied
Mathematics, UCLA, 1988.

[28] R. Chandra. Conjugate Gradient Methods for Partial Diflerential Equations. PhD
thesis, Yale University, Computer Science Dept., New Haven, CT. 06520, 1978.

35

. .

[29] A. Chronopoulos. A class of parallel iterative methods implemented on multiprocessors.
PhD thesis, University of Illinois, Computer Science Dept., Urbana, Illinois, 1987.

[30] P. Concus and G. H. Golub. A generalized conjugate gradient method for nonsymmet-
ric systems of linear equations. In R. Glowinslii and J. L. Lions, editors, Computing
Methods in Applied Sciences and Engineering, pages 56-65, Springer Verlag, New York,
1976.

[31] P. Concus, G. H. Golub, and G. hfeurant. Block preconditioning for the conjugate
gradient method. SIAM J. Sci. and Stat. Comp., 6:309-332, 1955.

[32] P. Concus, G. H. Goluh, and D. P. O’Leary. A generalized conjugate gradient method
for the numerical solution of elliptic pa.rtia1 difFerentia.1 equations. In James R. Bunch
and Donald J. Rose, editors, Sparse Matrix Computations, pa.ges 309-332, Academic
Press, New York, 1976.

[33] P. F. Dubois, A. Greenbaum, and G. H. Rodrigue. Approsimating the inverse of a
matrix for use on iterative algorithms on vectors processors. Computing, 22257-268,
1979.

[34] I. S. Duff, A. M. Erisman, and J. I(. Reid. Direct Methods for Sparse Matrices. Claren-
don Press, Oxford, 1986.

[35] I. S. Duff, R. G. Grimes, J. G. Lewis, and W. G. Jr. Poole. Sparse matrix test problems.
SIGNUM newsletter, ACM, 17:22-, 19S2.

[36] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Block preconditioned conjugate-
gradient-like methods for numerical reservoir simulation. In Proceedings of the SPE
1985 reservoir simulation symposivm, pa.ges 397-40.5, Society of Petroleum Engineers
of AIME, Richardson, TX, 1985. paper number 13534.

[37] S. C. Eisenstat, J. M. Ortega, and C. T. Vaughan. Eficient polynomial preconditioning
for the conjugate gradient method. Technica.1 Report RbI-8s-14, Dept. of Appl. hilath.,
University of Virginia, Charlottesville, Virginia, 198s.

[38] H. C. Elman. Iterative Methods for Large Sparse Norzsymmetric Systems of Linear
Equations. PhD thesis, Yale University, Computer Science Dpt., New Haven, CT.,
1982.

[39] H. C. Elman and E. Agron. Ordering techniques for the precondiotioning conjugate gra-
dient method on parallel computers. Technical Report UhIIACS-TR-SS-53, UMIACS,
University of Maryland, College Park, hlaryland, 19SS.

[40] H. C. Elman and G. H. Golub. Iterative Methods f o r cyclically reduced non-self-adjoint
linear systems. Technical Report CS-TR-214.5, Dept. of Computer Science, University
of Maryland, College Park, Maryland, 1988.

36

[41] H. C. Elman, Y. Saad, and P. Saylor. A hybrid Chebyshev Krylov subspace algorithm
SIAM J. Sci. Stat. Comp., for solving nonsymmetric systems of linear equations.

7~840-855, 1986.

[42] D. J. Evans. Parallel Processing Systems, an advanced course. Cambridge University
Press, New York, 1982.

[43] B. Fischer and L. Reichel. A stable Richardson iteration method for complex linear
systems. Numer. Math., 54:225-241, 1988.

[44] R. Fletcher. Conjugate gradient methods for indefinite systems. In G.A. Watson,
editor, Proceedings of the Dundee Biennal Conference on Numerical Analysis 1974,
pages 73-89, University of Dundee,Scotla.nd, Springer Verlag, New York, 1975.

[45] R. Freund. On conjugate gradient tgpe methods and polynomial preconditioners for
a class of complex non-Hermitian matrices. Technical Report 88-44, RIACS, NASA
Ames Research Center, Moffett field, California, 1989.

[46] R. Freund. On polynomial approximation to fa(z) = (z - a)-' with complex a and
some applications to certain non-Hermitian matrices. Approximation Theory and its
Applications, 1989.

[47] K. Gallivan, W. Jalby, and U. Meier. The use of BLAS3 in linear algebra on a parallel
processor with a hierarchical memory. SIAM J. Sci. Stat. Comp., 8:1079-1084, 1987.

[48] R. Glowinski, G. H. Golub, G. A. Meurant, and J. Periaux. First International Sym-
posium on Domain Decomposition Methods for Partial Differential Equations. SIAM,
Philadelphia, 1988.

[49] A. Greenbaum and G. H. Rodrigue. The incomplete Choleski conjugate gradient for
the STAR (5-point) operator. Technical Report UCID 17574, Lawrence Livermore
National Lab., Livermore, California, 1977.

[50] A. Greenbaum. Solving Triangular Linear Systems Using FORTRAN with Parallel
Extensions on the N Y U Ultracomputer Prototype. Technical Report 99, Courant In-
stitute, New York University, New York, NY, 1986.

[51] A. Greenbaum, C. Li, and H.Z. Chao. Comparison of linear system solvers applied
to digusion t y p e finite element equations. Technical Report , Courant Institute, New
York University, New York, NY, 1987.

[52] R. G. Grimes, J. G. Lewis, and H. D. Simon. The implementation of a block Lanczos
algorithm with reorthogonalization methods. Technical Report ETA-TR-91, Boeing
Computer Services, Seattle, WA, 1988.

[53] A. L. Hageman and D. M. Young. Applied Iterative Methods. Academic Press, New
York, 1981.

37

[54] S. Hammond. E'cient lCCG on a shared memory multiprocessor. Technical Report,
RIACS, NASA Ames research center, hloffett field CA., 1989. in preparation.

1551 S. W. Hammond and I<. H. Law. Architecture and operation of a systolic engine for
finite element computations. Computers and structures, 30:365-374, 1988.

[56] W. Jalby, U. Meier, and A. Sameh. The behavior of conjugate gradient algorithms on
a multivector processor with a hierarchical memory Technica.1 Report 607, University
of Illinois, CSRD, 1985.

[57] K. C. Jea and D. M. Young. Generalized conjugate gradient acceleration of nonsym-
metrizable iterative methods. Lin. Alg. Appl., 34:159-194, 19SO.

[58] 0. G. Johnson, C. A. Micchelli, and G. Paul. Polynomial preconditionings for conju-
gate gradient calculations. SIAA4 J Numer. Anal., 20:362-376, 1983.

[59] S. L. Johnsson. Highly concurrent algorithms for solving linear systems of equations.
In G. N. Birkhoff and A. Schoenstadt, editors, Elliptic problem solvers 11, Proceedings
of the elliptic problem solvers conference, Afonterey C,4., Jan 10-12 1983, pages 105-
126, Academic Press, 1983.

[60] T. L. Jordan. Conjugate gradient precondi tioners for vector and parallel processors. In
G. N. Birkhoff and A. Schoenstadt, editors, Elliptic problem solvers 11, Proceedings of
the elliptic problem solvers co?zference, Monterey CA., Jan 10-12 1953, pages 127-139,
Academic Press, 19S3.

[61] T. L. Jordan. A guide to parallel computation and some CRAY-1 experiences. In
Garry Rodrigue, editor, Parallel Computations, pages 1-50, Academic Press, 1982.

[62] T. I. Karush, N. K. Madsen, and G. H. Rodrigue. Matria: Afziltip'lication b y Diagonals
on Vector/Parallel Processors. Technical Report UCUD , Lawrence Livermore National
Lab., Livermore, CA, 1975.

[63] D. Kershaw. Solution of single tridiagonal systems and vectorization of the ICCG algo-
rithm on the CRAY-1. In Garry Rodrigue, editor, Parallel Computations, pages 85-89,
Academic Press, 1982.

[64] D. E. Keyes and W. D. Gropp. A comparison of domain decomposition techniques for
elliptic partial differential equations. SIAM J. Sci. Stat. Comp,, S:slGG-s202, 1987.

[65] D. E. Keyes and W.D. Gropp. Domain decomposition techniques for nonsymmetric
systems of elliptic boundary value problems: examples from cfd. In J. Bramble, T. F.
Chan, R. Glowinski, and 0. Widlund, editors, Proceedings of the second international
symposium on domain decomposition methods, SIAAI, Philadelphia, 1989.

[66] A. Koniges. Parallel Processing of a preconditioned hicoizjiigate gradient algorithm
in CRA Y supercomputers. Technical Report -, Lawrei!ce Livermore National Lab,
Livermore, CA, 1987.

[67] D. J. Kuck, E. S. Davidson, D. L. Lawrie, and A. H. Sameh. Parallel supercomputing
today and the CEDAR approach. Science, 231 :967-974, 1986.

[68] C. Lanczos. Solution of systems of linear equations by minimized iterations. J. ofRes.
NBS, 49~33-53, 1952.

[69] J. G. Lewis and H. D. Simon. The impact of hardware scatter-gather on sparse Gaus-
sian elimination. SIAM J. Stat. Sci. Comp., 9:304-311, 198s.

[70] J. G. Lewis and H. D. Simon. Numerical experience with the Spectral transformation
Lanczos. Technical Report MM-TR-16, Boeing Computer Services, Seattle, WA, 1984.

[71] A. Lichnewski. Some vector and parallel implementations for preconditioned gradient
algorithms. In J. Kowalik, editor, Proceedings of the NATO workshop on high speed
computations, pages 343-359, 1984.

[72] T. A. Manteuffel. Adaptive procedure for estimation of parameter for the nonsymmet-
ric Tchebychev iteration. Numer. Alath., 28:187-205, 1975.

[73] T. A. Manteuffel. An incomplete factorization technique for positive definite linear
systems. Math. Comp., 34:473-497, 1980.

[74] T. A. Manteuffel. The Tchebychev iteration for nonsymmetric linear systems. Numer.
Math., 28:307-327, 1977.

[75] U. Meier and A. Sameh. The behavior of conjugate gmdient algorithms on a multi-
vector processor with a hierarchical memory. Journal o j Computational and Applied
Mathematics, 24:, 1988.

1761 J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems
of which the coefficient matrix is a symmetric m-matrix. Math. Comp., 31(137):148-
162, 1977.

[77] R. Melhem. Solution of 1inea.r systems with striped sparse matrices. Parallel Comput-
ing, 6:165-184, 1988.

[78] G. Meurant. The block preconditioned conjugate gradient method on vector comput-
ers. BIT, 24:623-633, 1984.

[79] G. Meurant. Domain decomposition versus block preconditioning. In R. Glowinski,
G. H. Golub, G. Meurant, and J. Periaux, editors, Proceedings of the first Interna-
tional Symposium on Domain Decomposition Methods for Partial Digerential Equa-
tions, SIAM, 1987.

[SO] G. Meurant. Multitasking the conjugate gradient method on the CRAY X-MP/48.
Parallel Computing, 5 :2 6 7-28 0, 198 7.

39

[81] G. Meurant. Numerical experiments for the preconditioned conjugate gradient method
on the CRA Y X-MP/2. Technical Report LBL-18023, Lawrence Berkeley Lab, Berke-
ley, California, 1984.

[82] G. Meurant. Vector preconditioning for the conjugate gra.dient on the CRAY-I and
cdc CYBER 205. In J.L. Lions and R. Glowinski, editors, Proceedings of the 6-th
International Conference on Computing Methods in Engineering and Applied Sciences,
Versailles, France, Dec. 12-16 1984, page , INRIA, North-Holland, 1985.

[83] N. Munksgaard. Solving sparse symmetric sets of linear equations by preconditioned
conjugate gradient method. A CM. Trans. for Math SofLware, 6:206-219, 1980.

[84] B. Nour-Omid and B. N. Parlett. Element preconditioning using splitting techniques.
SIAM J. on Sci. Stat. Comput., 6:761-770, 1985.

[85] D. O’Leary. The block conjugate gradient algorithm a.nd related methods. Lin. Alg.
Appl., 29~243-322, 1980.

[86] D. O’Leary. Ordering schemes for parallel processing of certa.in mesh problems. SIAM
J. Sei. Stat. Comp., 5:620-632, 1984.

[87] D. O’Leary. Parallel implementations of the block conjugate gradient algorithm. Par-
allel Computing, 5:127-140, 1987.

[88] D. O’Leary and R. White. Multi-splitting of matrices and p a r d e l solution of linear
systems. SIAM J. on ,419. Disc. Afeth., 1:-, 1986.

[89] T. C. Oppe and D. R. Kincaid. The performance of ITPACK on vector computers for
solving large sparse linear systems arising in sample oil reservoir simulation problems.
Communications in applied numerical methods, 2:1-7, 19SG.

[go] J. M. Ortega. Introduction to parallel and vector solution of linear systems. Plenum
Press, New York, 1988.

[91] J. M. Ortega and R.G. Voigt. Solution of partial differential equations on vector and
parallel computers. SIAM Review, 27:149-240, 19SS.

[92] C. C. Paige and M.A. Saunders. An algorithm for spa.rse 1inea.r equations and sparse
least squares. ACM Trans. Math. Software, S:43-’71, 1982.

[93] V. L. Peterson. Impact of computers on a.erodyna.niics research and development.
Proceedings of the IEEE, 7268-79, 1984.

[94] B. Philippe and Y. Saad. Solving large spa.rse eigenvalue problems on supercomputers.
In Proceedings of International Workshop on Parallel Algorithms and Architectures,
Bonus, France Oct. 3-6 1988, North-Holland, 1989.

40

[95] S. J. Polak, C. Den Heijer, W.H. A. Schilders, and P. Markowich. Semiconductor
device modelling from the numerical point of view. Int. J . Numer. hleth. Eng., 24:763-
838, 1987.

[96] E. L. Poole. Multi-color Incomplete Choleski Conjugate Gradient Methods for Vector
Computers. Technical Report 1781 17, NASA Langley research, Hampton, VA., 1986.

[97] E. L Poole and J. M. Ortega. Mullticolor ICCC metl~ods for vector computers. SIAM
J. Numer. Anal., 24:1394-1418, 1987.

1981 G. Radicati and Y. Robert. Vector and parallel CG-like algoritlzmns for sparse nonsym-
metric linear systems. Technical Report RR 681, IhflAG, Univ. of Grenoble, France,
Grenoble, France, Oct. 1987.

1991 G. Rodrigue and D. Wolitzer. Preconditioning by incomplete block cyclic reduction.
Math. Comp., 42:549-565, 1984.

[loo] H. Rutishauser. Theory of gradient methods. In Refined Iterative Methods for Com-
putation of the Solution and the Eigenvalues of Self-Acljoint Boundary Value Prob-
lems, pages 24-49, Institute of Applied Mathematics, Zurich, Birkhauser Verlag, Basel-
Stuttgart, 1959.

[I011 Y. Saad. Iterative solution of indefinite symmetric systems by methods using or-
thogonal polynomials over two disjoint intervals. SlAM J. on Numerical Analysis,
20:784-811, 1983.

[lo21 Y. Saad. Krylov subspace methods for solving 1a;rge unsymmetric linear systems.
Muthematics of Computation, 37:105-126, 1981.

[lo31 Y. Saad. The Lanczos biorthogonalization a.lgorithm and other oblique projection
methods for solving large unsymmetric systems. SI.4AI J . Numer. Anal., 19:470-484,
1982.

[lo41 Y. Saad. Least squares polynomials in the complex plane and their use for solving
sparse nonsymmetric linear systems. SIAM J. Num. Anal., 24:155-169, 1987.

[lo51 Y. Saad. Practical use of polynomial preconditionings for the conjugate gradient
method. SIAM J. Stat. Sci. Comput., 6:865-881, 1985.

[lo61 Y. Saad, A. Sameh, and P. Saylor. Solving elliptic difference equations on a linear
array of processors. SIAM J . on Sci. Stat. Cornput., 6:1049-1063, 1985.

[lo71 Y. Saad and A. H. Sameh. A parallel block Stiefel method for solving positive definite
systems. In M. H. Schultz, editor, Proc. Elliptic Problem Solver Con$, pages 405-12,
Academic Press, 1980.

[lo81 Y. Saad and M. H. Schultz. Conjugate gradient-like algorithms for solving nonsym-
metric linear systems. Mathematics of Computation, 44(170):417-424, 1985.

41

[lo91 Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SI.4~14 J . Sci. Stat. Comput., 7556-869, 1986.

[110] Y. Saad and M. H. Schultz. Parallel Implementations of Preconditioned Conjugate
Gradient Methods. Research Report 425, Dept Computer Science, Yale University,
1985.

[lll] J. H. Saltz. Automated Problem Scheduling and Reduction of Synchronization Delay
Egects. Technical Report 87-22, ICASE, Hampton, \/A, 1957.

[112] M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gra.dient type methods
for unsymmetric linear equations. SIAM J . Num. Anal., 25(4):927-940, 1988.

[113] P. E. Saylor and D. C. Smolarski. Computing the roots of complex ortogonal kernel
polynomials. SIAM J . Sci. Stat. Comp., 9:l-13, 19SS.

[114] R. Schreiber and W. P. Tang. Vectorizing the conjugate gmdient method. In Proc.
Symposium CYBER 2U5 Applications, Denver, Colorado, 1982.

[115] M. K. Seager. Parallelizing conjugate gradient for the CRA Y S - M P . Technical Report,
Lawrence Livermore National Lab, Livermore, CA, 1984.

[116] H.D. Simon. Incomplete LU preconditioners for conjugate gradient type iterative meth-
ods. In Proceedings of the SPE 19S5 reservoir simulation symposium, pages 302-306,
Society of Petroleum Engineers of AIME, Dallas, TX, 19SS. Paper number 13533.

[117] D. C. Smolarski and P. E. Saylor. An optimum iterative method for solving any linear
system with a square matrix. BIT, 28:163-175, 1988.

[118] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM
J. Scient. Stat. Comp., 10(1):36-52, 1989.

[119] E. L. Stiefel. Kernel polynomials in linear algebra a n d their applications. U.S. NBS
Applied Math. Series, 49:l-24, 1958.

[120] L. N. Trefethen. Approximation Theory and Numericnl Linear Algebra. Technical
Report Numerical Analysis Report SS-7, Massachussetts Institute of Technology, MA,
USA, 1988.

[121] H. A. van der Vorst. High performance preconditioning. Technical Report 85-54, Delft
University of Technology, Faculty of Technical hlathematics and Informatics, 1988.

[122] H. A. van der Vorst. ICCG and related methods for 3-D problems on vector computers.
In D. Truhlar, editor, Workshop on Practical Iterative Methods f o r Large Scale Com-
putations, Minneapolis MN., Oct. 23-25 1958, Computer Physics Communication, vol.
53, 1989.

42

* .

[123] H. A. van der Vorst. Large tridiagonal and block tridia.gona1 linear systems on parallel
and parallel computers. Par. Comp., 5:303-311, 1987. 1

[124] H. A. van der Vorst. The performance of FORTRAN implementations for precondi-
tioned conjugate gradient methods on vector computers. Parallel Computing, 3:49-58,
1986.

[125] H. A. van der Vorst. A vectorizable version of some ICCG methods. SIAM J. Stat.
and Sci. Comp., 3:350-356, 1982.

[126] R. S. Varga. Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs, New Jersey,
1962.

[127] H. F. Walker, Implementation of the gmres method using householder transformations.
SIAM J. Sci. Stat. Comput., 9:152-163, 1988.

[128] J. W. Watts-111. A conjugate gradient truncated direct method for the iterative so-
lution of the reservoir simulation pressure equation. Society of Petroleum Engineer
J o u ~ u Z , 21:345-353, 1981.

[129] 0. Widlund. A Lanczos method for a class of non-symmetric systems of linear equa-
tions. SIAM Journal on Numerical Analgsis, 15:SOl-812, 1978.

[130] 0. Wing and J. W. Huang. A computation model of parallel solution of linear equa-
tions. IEEE Transactions on Computers, C-29:632-635, 1980.

[131] Y. S. Wong. Solving large elliptic difference equations on CYBER 205. Parallel Com-
puting, 6:195-207, 1988.

[132] Y. S. Wong and H. Jiang. Approximate polpominl preconditioning applied to bihar-
monic equations on vector computers. Technical Report ICOMP-87-5, NASA Lewis
Research Center, Inst. for Computational Mechanics in Propulsion, Cleveland, Ohio,
1987.

[133] D. M. Young, T.C. Oppe, D. R. Kincaid, a.nd L. J. €Ia.yes. On the use of vector
computers for solving large sparse linear systems. Technica.1 Report CNA-199, Center
for Numerical Analysis, Univ. of Texas at Austin, Austin, Texas, 1985.

[134] H. Yserentant. On the multi-level splitting of finite element spaces. Numer. Math.,
49:379-412, 1986.

43

