
The Physics of Parallel Machines

Tony F. Chan

November 19888

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.43

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR- 185425) THE PHYSICS Of PARALLEL
MBCHINES { R e s e a r c h I n s t . for Advauced
Computer S c i e n c e) 7 p C S U 09E

N89 - 26 4 51

Unclas
G 3 / 6 L 02.17922

RlACS
Research Institute for Advanced Computer Science

The Physics of the Parallel Machines

Tony F. Chan*

November 22, 1988

Abstract

I argue that architectures for massively pa rde l computers must be
designed to go beyond supporting a particular class of algorithms to
supporting the underlying physical processes being modelled. I shall
discuss specifically physical processes modelled by partial differential
equations (PDEs) and argue that an efficient architecture must go
beyond nearest neighbor mesh interconnections and support global
and hierarchical communications.

1 Architecture Must Support Physical Pro-
cesses

Massively parallel computers are viewed by many people as a cost effec-
tive way of providing the increasing performance required by many areas of
scientific computing. Many of these computers have a distributed memory
architecture, in which each individual processor is an independent computer
with its own memory. To allow the processors to work on the same problem,
they must be connected in some fashion which makes it possible to share
information efficiently. To be able to use these machines efficiently, new

' *Dept. of Mathematics, Univ. of Calif. at LOB Angeles, CA 90024. The author has
been supported in part by the Dept of Energy under contract DE-FG03-87ER25037. Part
of this work was done while the author was visiting RIACS, NASA Ames. This paper
is prepared for the Workshop on Opportunities and Constraints of Parallel Computing,
December 5-6, 1988, IBM Almaden Research Center.

1

algorithms have to be designed to take advantage of the underlying inter-
connection architecture. Very often, the architecture is chosen first and the
algorithm designs follow. Many people realize that this is not the optimal
design process. Some suggest that the machines should be designed with, the
algorithms in mind. I believe that we must go beyond even this: the ma-
chines should be designed with the physical problems in mind. The reason
is simple. Algorithms change but physical laws are constant. The best al-
gorithms are those that capture efficiently the underlying physical processes
being modelled and therefore so must the machines if they were to support
the best aigorithms. Only in this way are we guaranteed that the machines
will support a wide variety of algorithms and that they will not become
obsolete when better and different algorithms are developed in the future.

2 Parallel PDE # Nearest Neighbor Mesh
I shall illustrate my point by concentrating on the case of physical processes
modelled by the PDEs of mathematical physics. Surely, this is one of the
largest classes of problems whose insatiable demand for performance has pro-
vided the main impetus for the new parallel machines. The PDE typically
describes the time evolution of certain physical quantities which interact in

lem is then solved on the computer. On the computational grid, the PDE is
often replaced by a spatially local computational stencil. This spatial locality
is a direct consequence of the differential nature of the PDE (differentiation

Because of this property of locality of the discrete model, many PDE
algorithms are also local in nature: the value of the variable a t a grid point
is updated by using information only from nearby neighbors. It is therefore
not surprising that many parallel computers, designed specifically with PDE
algorithms in mind, also have a local interconnection architecture. The most

DAP, the Goodyear MPP. Even some of the more recent "general purpose"
parallel machines have the NN-mesh as a basic architecture (e.g. the hyper-
cubes and the Connection Machine). The new Ametek Series 2010 machine
has even abandoned the more global hypercube connections used in earlier
versions and rely only on a NN-mesh architecture. The wisdom seems to be

I space. It is usually discretized on a computational grid and the discrete prob-

~

I is the limit of a spatial differencing process).

I common is a nearest neighbor mesh ("-mesh), e.g. the ILLIAC IV, the ICL

I 2

that "Parallel PDEs = "-mesh." I claim that this is not the case.
The reason for my statement is that while the differential nature of PDEs

may seem to be purely local, the PDEs together with boundary conditions
often describe global processes as well. This is especially true for steady
state problems, i.e. the equilibrium configuration of the physical system
after an initial transient phase. Mathematically, the physical systems are
often described by elliptic PDEs. Elliptic problems can be characterized as
having an infinite domain of dependence: the solution at any point depends
on the solution (and the boundary conditions) at every other point. Thus,
for example, changing the load at a single location on the span of a bridge
will change the deflection at every other location.

Global dependence occur for even time dependent problems. For exam-
ple, changing the velocity field locally in an incompressible fluid will instan-
taneously affect the pressure field globally. The presence of different length
scales in many physical systems also account for global dependence. In the
modelling of the atmospheric circulation, the key issue is to model the large
scale and global features such as fronts without having to resolve the finest
scale of the molecules in the air. In fact the interaction of the different
scales is often the fundamental physical process that physical scientists try
to understand. A most notable example is turbulence modelling.

The main point is that while the PDE itself may be local in nature, the
solution of a PDE often has global dependence. Moreover, it is often the
global features of the solution that we are interested in, not the small scale,
local interactions. This is typical of many physical processes.

3 Good PDE Algorithms Must Capture Global
Coupling Efficiently

Let us now look at PDE algorithms. Obviously, the simplest ones are local
in nature, exploiting the local nature of the discrete model. However, as we
have shown above, they do not necessarily capture the underlying physical
processes efficiently. For problems with global dependencies, the best algo-
rithms are often also global in nature. An example is the iterative solution
of elliptic problems. The simplest, and often the slowest, algorithms are the
local relaxation methods such as the Jacobi, the Gauss Seidel methods and

3

the SOR methods. Faster algorithms employ more global couplings. An ex-
ample is the class of AD1 methods which couples implicitly the unknowns in
each coordinate directions alternately. For the same reasons, block versions
of these methods (in which a block of points or lines are solved together
implicitly) are also faster. The same situation holds for preconditioned con-
jugate gradient methods, with more global preconditioners usually having
faster convergence rates. Of course, the faster convergence comes at a price:
more global algorithms often require the solution of coupled systems of equa-
tions at every step as opposed to the much simpler local averaging used in
the local relaxation methods.

A similar tradeoff also occurs for many time dependent problems, for ex-
ample, in the choice between explicit and implicit time marching algorithms.
Explicit methods are local and inexpensive per step but one must necessarily
take many steps to transmit global information. By having only local inter-
actions, one limits the time scale to the smallest spatial scale represented on
the grid. This is reflected in the stability limit for the time step. Implicit
algorithms are exactly opposite. By allowing a global transfer of information,
much larger time steps can usually be taken, as the cost of solving the implicit
equations a t each time step. Explicit methods were very popular in the early
days of scientific computing, due to its simplicity and the limited computing
resources available then. However, implicit methods are starting to play an
increasingly dominant role, especially in fields such as computational fluid
dynamics.

The key in the design and choice of algorithms is to find the most ef-
ficient method for transmitting global information. In fact, the essence of
most research in the design of PDE algorithms can be described as trying
to balance this fundamental tradeoff of global dependency and inexpensive
iteration steps. The most efficient algorithms are precisely those that strike
the optimal balance between these two conflicting goals. The multigrid al-
gorithm is an example. It captures global information but utilizing coarser
grids on which global coupling can be accounted for inexpensively by simple
iteration steps. New types of domain decomposition algorithms are being
developed for solving elliptic problems which can be viewed as reducing the
global coupling of the unknowns to only those on the interfaces between the
subdomains. The nested dissection algorithm in sparse factorization is based
on a very similar principle. The very recent Rokhlin/Greengard fast multi-
pole algorithm (L. Greengard, ' The Rapid Evaluation of Potential Fields

4

in Particle Systems,” ACM Distinguished Dissertation Series, MIT Press,
1988) for particle simulations is another example. In this algorithm, global
interaction is accounted for by “lumping” collections of far away particles
and using a simplied and less expensive center-of-mass approximation.

These new algorithms have several properties in common: they are almost
all hierarchical in nature, are based on the divide-and-conquer principle, are
nearly optimal in computational complexity, and most importantly, capture
the global coupling inherent in the physical problem in an efficient way. The
trend in PDE algorithm research is towards hierarchical and implicit algo-
rithms. One can expect that these global algorithms will see increasing use
in the near future.

4 Parallel PDE Architecture Must Support
Global Communication

Assuming that a “general purpose” parallel PDE computer must be prepared
to handle efficiently problems with global dependency in addition to problems
with only local dependency, it follows from my previous argument that they
must support algorithms that share global information and therefore the
architecture must support global communication. They must provide a way
for the global information required in these algorithms to be transmitted
efficiently.

A simple analogy is the national telephone network the need for global
information is as important as the local ones. The current system is a hierar-
chical one, with local exchanges, long distance trunk lines and international
satellite transmissions. The system works well because it supports the de-
mands of the physical system. I cannot imagine the performance of a purely
local architecture for the system, such as having my phone hardwired only
to my neighbors’ !

Implementing the global algorithms on parallel architectures are often
tricky and may not make use of the available processors as efficiently as
the local algorithms, but they more often than not make up for this loss of
“parallel efficiency” in achieving better “problem efficiency.” Incidentally, the
optimal hierarchical algorithms are also highly parallel in nature. I suppose
this is a reflection of the intrinsic spatial locality of even the global features

5

of the underlying physical processes.
The hierarchical nature of the optimal algorithms suggests that the op-

timal architecture should also be hierarchical. The hypercube seems to be a
good candidate but other hierarchical architectures may also work well. Fur-
ther research is needed to design architectures which reflect the physics of
the problems to be modelled on them. But certainly a NN-mesh architecture
does not seem to be the best in any intrinsic way. For a given technology
(number of processor, computational speed and communication speed) and
size of problem, the NN-mesh architecture may perform respectably well.
But ultimately, ignoring the physics of the problem will not lead to the most
efficient use of the parallel machines, especially when the number of proces-
sors becomes large.

6

