
.
Multiprocessor Speed-Up, Amdahl’s Law, and the
Activity Set Model of Parallel Program Behavior

Erol Gelvnbe

December 1988

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technicai Report 88.37

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-185422) MULTfPiiOCESSOB SPEEC-UP,
AMDAHL’S LAW, A N D THE ACTIVlTY SET MODEL OF
PARALLEL PROGBBM B E H A V I O R LResearch I n s t .
for Advanced Computer S c i e n c e) 16 pCSCL V 9 B

G 3 / b 2

I
N 89-26452

U n c l a s
0 2 1 7 9 2 5

Research Institute for Advanced Computer Science

\

Multiprocessor Speed-Up, Amdahl’s Law, and the
Activity Set Model of Parallel Program Behavior

Erol Gelenbe

December 1988

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.37

NASA Cooperative Agreement Number NCC 3-387

It4 u It i p rocesso r S peed - Up , A m d a h 1 ’ s La w , a n d the
Activity Set Model of ParalIel Program Behavior

Erol Gelenbe*

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.37
December 1988

An important issue in the effective use of panllel processing is the estimation of the speed-up one
may expect as a function of the number of processors used. A n d h i ’ s Law has tradtionally
provided a guideline to this issue, although it appexs excessively pessimistic in the light of recent
experimantal results. In this note we first amend Amdahl’s Law by gwing a greater importance to
the capacity of a program to make effective use of p d e l processing, but also recognizing the

fact that imbalance of the workload of each processor is bound to occur. We then introduce the
Activity Set Model of parallel program behavior and the corresponding parallelism index of a
program, leadmg to upper and lower bounds to the speed-up.

* The author’s address is Universite Rene Descartes, Ecole des Hautes Etudes en Inforrnatique,
45 rue des Saints Peres, 75006 Paris, France.,This research was supported in part by Cooperative
Agreement NCC 2-387 between the National Aeronautics and Space Administration (NASA) and
the Universities Space Research Association (USRA) whle the author was visiting the Center for
Advanced Architectures at RIACS.

1 . Introduction

Consider a program that is to be executed on a multiprocessor

containing N identical processors.

be equipped with one or more array processors attached for its private

use.

Each of these processors may itself

Amdahl's law [1,2] estimates an upper bound of N/log N for the 2

actual speed-up, or ratio of elapsed time with a single processor to the

elapsed execution time with N processors. Recent experiments [3] have

shown that this may be an unnecessarily pessimistic estimate of speed-up

and that values close to N may be obtained for specific applications.

We have recently derived another approach to computing the estimat-

ed maximum speed-up [4], assuming an unlimited number of processors,

based on a model which considers the density p of precedence relations

between tasks in programs. We obtain [4] an approximate formula

(1 + p)/2p for the maximum speed-up, on the average, for such a family

of programs assuming that the number of processors available is unlimit-

ed. When p is close to 1, nearly all tasks are interdependent and the

programs will in fact execute sequentially; the speed-up factor itself

will be close to just 1 . On the other hand, when p is very close to 0

we are dealing with programs composed of many quasi-independent tasks

and the maximum speed-up is very large. An "infinite" speed-up merely

means that the average execution time for the program family remains

nearly constant as the number of individual tasks in the program becomes

very large.

In this paper we shall begin by considering Amdahl's law and suggest

some modifications or amendments that can serve to explain speed-up

factors which are nearly linear in the number of processors. We shall

2

then return to the intrinsic processor independent behavior of parallel

programs and introduce a new model of parallel program behavior, the

Activity Set Model,' which may be used to describe the behavior of

parallel programs and to derive bounds to the speed-up which can be

expected when such programs are execdted or multiprocessors.

We first consider a simple amendment to Amdahl's law, and derive a

speed-up fotmula with N processors which is of the form

N
[(l - €) (1 + 6) + E log2N]

where E is the probability that the programs cannot effectively use N

processors. 6 i s a measure of the unbalance between the workloads of

each processor when N processors are used. Indeed, 6 / N is the amount of

time in excess of the optimistic equal run-time 1 / N which the most loaded

processor will take to run the task that has been assigned to it. Thus,

when the computation has been organized so that E is very small, the

speed-up can be as high as N / (1 + 6). These results are detailed in

Section 2.

In Section 3 , we consider an evaluation of speed-up based on

intrinsic program behavior which leads to general bounds.

Throughout the discussion we consider a program, or a family of

programs, whose average run-time on a single processor is equal to 1 .

'The name of this model is, of course, inspired by Peter Denning's
Working Set Model used in paging.

3

2 . Amendment t o Amdahl's Law

Assume t h a t t h e program, o r family of programs, considered makes

f u l l use of t h e N processo r s w i th p r o b a b i l i t y (1 - E) . I t w i l l use only

i p rocesso r s (1 5 i S N - 1) wi th p r o b a b i l i t y c i , where

N- 1

1
E = 2 E i

If it uses N p rocesso r s , one of t h e s e w i l l have t h e g r e a t e s t work-

load so t h a t t h e run-time o f t h e program on N processo r s i s given by

t h e t i m e e l apsed f o r t h e most heav i ly loaded one, o r

1 6
N N
- + -

Obviously, i f a l l t h e p rocesso r s ' workload were p e r f e c t l y balanced,

t h e e l apsed time would be simply 1 / N .

S i m i l a r l y , when only i p rocesso r s a r e used t h e elapsed t i m e w i l l be

i 1 - + -
i 1

6

These t i m e s should be viewed a s average va lues when a family of

programs i s considered.

Thus, t h e average elapsed time when N processo r s a r e a v a i l a b l e i s

given by t h e formula

So t h e speed-up T(l)/T(N) = 1/T(N) i s simply given by

4

N
6 S = N-1

1
[(l - ~) (1 + 6) f N 2 +

The Most Favorable Case

Naturally, the greatest speed-up will be obtained if we set

= E , E

We then have for large enough N:

= 0 for 1 S i 5 N - 2. N- 1 i E

,N
1 + 6(1 - E) + bN-l S z :

This formltla expiains the quasi-linear speed-ups that can be

encountered for some specific applications.

The Least Favorable Case: Amdahl's Law

We consider that the least favorable case for a family of programs

is obtained by setting

= 1 - E 1/N, for all 1 5 i 5 N - 1 'i

which implies that we are equally likely to make use of any number of

processors less than N; this is the assumption made in Amdahl's law.

then have

We

6N = 6 N
N 6i' S =

Z . + Z - N 1

N l Since 2 - 2 log2N, we have i 1

(3)

Amendment to Amdahl's Law

Let us consider a family of programs that can fully use all N

processors with probability 1 - E . If a program in this family cannot

make full use of them, then assume that it is equally likely to use

N - 1, N - 2, ... or just one processor. We then have E = &/N-1,

1 6 i 2 N - 1, so that we obtain
i

N
N-1 6i s 5

EN
N- 1 [(l - &)(1 + 6) + -(log2(N - 1) + 2 i)]

1

For large N, this bound becomes

N
(1 - E) (1 + 6) + E log2N

s s

which is a useful compromise between the unnecessarily pessimistic form

of Amdahl's Law, and the overly optimistic linear bound.

In (6) program characteristics appear via the parameters E and 6 ,

where E is the probability that a program is unable to make use of a l l N

processors, while 6 measures the imbalance between the average execution

time of parallel tasks. In the sequel we shall consider a simple

representation o f a parallel program's execution in virtual time.

3 . The Activity Set Model of Parallel Program Behavior

Consider a program that is being executed with an unlimited number

of processors.

representing the number of active processes o r tasks at some instant t,

lying between the instant t = 0 when the program execution is initiated

Its behavior may be characterized by a variable n(t)

6

and the instant t = T when it ends. Such a behavior is shown in

Figure 1. n(t) is the size of the Activity Set at time t.

40

20

10

n(t)
Size of the Activity Set

- N

t
2

(Virtual Time)

Figure 1 .
of virtual time t, between t = 0 when the program execution begins and
t = T when it ends.

Size of the Activity Set of a parallel program as a function

The total work

W = JTn(t)dt
0

(7)

represents the amount of computational effort that must be accomplished

by any set of processors in order to execute the program.

The Activity Set of the program at time t is the set of parallel

processes or tasks that are running simultaneously at time t.

7

The parallelism index No:

1 T N = - J- n(t)dt = W/T
O T o

is the average number of active processes in the program, or the average

number of processors that it can use simultaneously.

Time t in the expressions above should be considered to be virtual

time, or program execution time from which the time spent for all

interruptions (paging, I/O, other programs' execution time, etc.) has

been deleted.

If the program is to be run on a single processor whose speed is c

times faster than any one of the initial set of processors, the program

will now run sequentially in time

T(c,l) = W/c = NOT/c (9 1

If, on the other hand, we are limited to running the program on N

processors, each of which has the same power as one of the processors in

the initial unlimited set, we can derive some bounds on the execution

time.

Consider the quantity

C(N) = JT(N - n(t))+dt
0

+ + where (x) = x if x L 0 and (x) = 0 if x < 0 .

C(N) denotes the amount of additional work that N processors could

provide during the interval [O , T] , or their excess capacity, when the

program is executed with an unlimited number of processors. It is shown

as the shaded area of Figure 1. Similarly,

8

D(N) = JT(n(t) - N)+dt
0

is the work accomplished by the other processors being used when the

total number of processors available is unlimited.

When the total number of' processors is liuiited to N, the total

execution time T(N) cannot be smaller than

T(N) 2 T + [D(N) - C(N)]+/N
since in the best case the excess capacity C(N) will be used to

accommodate as much excess work D(N) as the processors can take.

Similarly, an upper bound t o T(N) can be derived by considering

that all of the work D(N) will be accomplished on the N processors after

time T:

T(N) 5 T + D(N)/N

The speed-up obtained by using N processors instead of a single

processor (of speed c = 1) can now be estimated from these bounds. It is

given by the formula S = T(l)/T(N) so that

NOT NOT ' ' T + b(N)/N (D(N)-C(NI)+
N T +

or

9

From these inequalities we see quite clearly that S can never
S exceed N which should be obvious, but also that - is bounded from

above by the multiplicative factor
NO 0'

1

and from below by the multiplicative factor

3 . 1 A Statistical Interpretation

Clearly, the precise behavior of a program as given by the function

n(t) is in general very difficult to predict since it will obviously be

data dependent.

function so that No, D(N)/T, C(N)/T will now have convenient statistical

interpretations in terms of the statistical average or expected value

E[*] taken over the finite time interval [O,T]:

Thus, it is quite natural to treat n(t) as a random

T + E[(n(t) - N)']

We shall now write in particular

S 1 - >

10

3 . 2 A Numerical Example

Within the framework of the statistical interpretation of n(t),

consider the case where it is time independent and its distribution

function is geometric over the interval [O , T] :

This example describes a situation in which the program is always more

likely to have a smaller number of active parallel tasks.

must be choser! so that E[n(t)] = No, hence No = 1/ (1 - q) or

q = (No - l)/No.

Clearly, q

We then have

a0
i- 1

E[(n(t) - N]'] = Z (i - N)q (1 - q)
i=N

'IN. No N No -
NO

= 4 /(I - q) = (-

Hence

S 1
No No-I

1 + -(- jN
No

On Figure 2 we show the lower bound (13) to the speed-up S as a

function of the number of processors N for various values of No (the

parallelism index).

11

.

20

15

10

5

Lower bound to S

N = 20 0 N = 20 0

N = 10 0

N = 5 0

> N

N = 10 0

N = 5 0

> N
5 10 15 20

Figure 2. The lower bound for the speed-up S as a function of N for
various values of N provided by equation (13). 0

4 . Conclusions

In this note we have considered some amendments to Amdahl's law

which take into account the fact the programs may be able to make effec-

tive use of all of the processors which are available to them, but which

also recognize the fact that imbalance in the partition of the workload

between processors reduces the speed-up one could expect.

We have then suggested examining the speed-up issue in terms of a

representation of the intrinsic behavior of parallel program execution

which we call the Activity Set Model. This model describes the set of

simultaneously active parallel processes as a function of program virtual

time. We show how the size of the Activity Set can be used to derive

12

bounds on the speed-up of the program a s a function of the number of

processors which are a v a i l a b l e to i t .

13

References

Amdahl's law has been introduced in [l] . A more recent discussion of the
problem and some pertinent modifications can be found in [2] . Other
relevant references and extensions can be found in [5 ,6 ,7 ,8 ,9] .

Amdahl, G. M. "Validity of the Single-Processor Approach to Achiev-
ing Large-Scale Computing Capabilities," AFIPS Conference Proceed-
ings 30, MIPS Press, 483-485 (1967).

Gustafson, J. L. "Reevaluating Amdahl's Law," Communications of
the ACM. 31, 5 , 532-533 (1988).

Cosnard, M., Robert, Y., Tourancheau, B. "Evaluating Speed-ups on
Distributed Memory Architectures," to appear in Parallel Computing.

Gelenbe, E., Nelson, R., Philips, T., Tantawi, A. "Asymptotic
Processing Time of a Model of Parallel Computation," Proceedings
National Computer Conference USA, November 1986.

Gustafson, J. L. "The Scaled-Sized Model: A Revision of Amdahl's
Law," ICs Supercomputing '88. L. P. Kartashev and S . I. Kartashev
eds., International Supercomputing Institute Inc., 11, 130-133
(1988).

Gustafson, J. L . , Hawkinson, S . , Scott, K. "The Architecture of a
Homogeneous Vector Supercomputer," Proceedings of ICCP 86, IEEE
Computer Society Press, 649-652 (1986).

Moler, C. "Matrix Computations on Distributed Memory Multi-
Processors," Hypercube Multiprocessors 1986, M. T. Heath ed., SIAM
Editions, 161-180 (1986).

Robert, Y., Tourancheau, B. "LU and QR Factorization on the FPS T
Series Hypercube," CONPAR 8 8 , Manchester, U.K., September 1988.

Saad, Y. "Gaussian Elimination on Hypercubes," Parallel Algorithms
and Architectures, M. Cosnard et al. eds., North-Holland, 5-17
(1986).

