Szn-¢/
12

Ry

Computational Structures for Robotic Computations

C.S.G. Lee and P.R. Chang k} /4 o
Purdue University () 1
West Lafayette, IN 47907
Tie et
T T

-~ Abstract

mputational problem of inverse kip€matics and inverse dynamics of robot manipulators by ‘
taking advantage of parallelism and pipelining architecturess For the computation of inverse kinematic position solu-
tion, a maximum pipelined CORDIC architecture has been designed based on a functional decomposition of the closed-
form joint equations. For the inverse dynamics computation, an efficient p-fold parallel algorithm to overcome the
recurrence problem of the Newton-Euler equations of motion to achieve the time lower bound of O(flog;n]) has also |
been developed. ;

e
1. Introduction

Robot manipulators are highly nonlinear systems, and their motion control is usually specified in terms of the path
traveled by the manipulator hand in Cartesian coordinates. To perform a simple kinematic path control, the controller
is required to compute accurately the joint angles of the manipulator along the desired Cartesian path at an adequate
and acceptable rate. To perform a dynamic path-tracking control, one must repeatedly compute the required general-
ized fcrces, from an appropriate manipulator dynamics model, using the measured data of displacements and velocities
of all the joints, and the accelerations computed from some justifiable formulae or approximations, to drive all the joint
motors. In order to achieve fast convergence of the control algorithm, a sampling rate of no less than 60 Hz is prefer-
able because the mechanical resonant frequency of most industrial manipulators is around 5-10 Az. The above

‘ kinematic and dynamic path control reveals a basic characteristic and common problem in robotic manipulator control
— intensive computations with a high level of data dependency. Despite their impressive speed, conventional general-
purpose uniprocessor computers can not efficiently handle the kinematic and dynamic path control computations at the
required computation rate because their architectures limit them to a mostly serial approach to computation, and there-
fore limit their uselulness for robotic computational problems. This paper addresses these intensive robotic computa-
tional problems by taking advantage of parallelism and pipelining architectures.

Considering that most industrial robots have simple geometry, the kinematic path control requires the computa-
tion of the solution of joint angles which can be obtained by various techniques. The inverse transform technique {1]
yields a set of explicit, closed-form, non-iterative joint angle equations which involve multiplications, additions, square
root, and transcendental function operations. Based on an actual implementation on a2 multiprocessor systemt (2,3] hav-
ing a circuit to synchronize the CPUs and software scheduling for computing the joint solution, the best reported com-
putation time was 3.8 ms for a six-link manipulator versus 20 ms running on a uniprocessor system. If we use a
CORDIC (COordinate Rotation DIgital Computer) architecture [4], the computation time reduces to 40 s, a speed-up
factor of 500%1!

For the dynamic path-tracking control, there are a number of ways to compute the generalized forces/torques
applied to the joint motors {5], among which the computation of joint torques from the Newton-Euler (\E) equations of
motion is the most efficient and has been shown to possess the time lower bound of O(n) running in uniprocessor com-
puters {8,7], where n is the number of degrees of freedom (DOF) of the manipulator. Based on the study of Luh, Walker,
and Paul [7], it requires (150n — 48) multiplications and (131n — 48) additions per trajectory set point for a2 manipula-
tor with rotary joints. It is unlikely that further substantial improvements in computational efficiency can be achieved,
since the recursive NE equations are efficiently computing the minimum information needed to compute the generalized
forces/torques: angular velocity, liner and angular acceleration, and joint forces and torques. For a Stanford robot arm
(a total of 308 multiplications and 254 additions is requixed to compute the joint torques [8}), this amounts to 25 ms
processing time on a uniprocessor system and 5.69 ms running on an experimentai multiprocessor system with 7 proces-
sors [9]. If we use the parallel algorithm with 6 processors as proposed in this paper, this reduces the computation from
852 multiplications and 738 additions running on a uniprocessor to 197 multiplications and 183 additions for a PUMA

This work was supported ix part by the National Science Fouadation Engiscering Research Center Grant CDR3500022. Apy opinions, Endings, asd
conclusions or recommendations expressed in this article are those of the author and do sot pecesoarily refect the views of the fuadiag agency.

? The multiprocessor system consists of 3 MC8809 CPU and seven 280 CPUs. Each 280 is accompanied by two 9511 APUs, local memory, and 1/O
interfaces.

1t A speed-up factor is defined as the ratio of the computational time of a task running on 2 uniprocessor system to the computatioaal time of the
same task running oa the proposed architecture (i.e., 20 ms /40u s = 500)

, 199

war_ |99 wiewomeny mang

robot (due to different kinematic structure of PUMA and Stanford robots, direct comparison on processing time is
invalid) [10].

This paper discusses the development of a maximum pipelined CORDIC architecture for the computatioa of
inverse kinematic position solution to achieve the pipelined time of 40 us and an efficient p-fold parallel algorithm to
achieve the time lower bound of computing the joint torques. The CORDIC architecture was designed based on a func-
tional decomposition of the closed-form joint equations. Delay buffers ace necessary to balance the pipelined CORDIC
architecture vo achieve maximum pipelining. The buffer assignment problem is solved by the integer linear program-
ming technique. The efficient p-fold parallel algorithm can be best described as coasisting of p-parallel blocks with
pipelined elemeats within each parallel block to achieve the time lower bound of O{flog.n]) of computing the joiat
torques based on the Newton-Euler equations of motion, where n is the number of degrees of freedom of the manipula-
tor. The algorithm can be implemented with a group of microprocessors without complex intercommunication amoag
processors and bussing of data. A modified inverse shuffie scheme is suggested for conmecting the processors together
with efficient intercommunications.

2. loverse Kinematic Position Computation

The general kinematic problem of a 8-DOF robot arm coacerns the problem of finding the generalized coordi
nates q = {¢,,42, * "~ ,94]7, together with the vector of their generalized velocities and the vector of their generalized
accelerations in the n-dimensional space such that the characteristics of the motion of the free end, the hand, coincide
with the pre-specified Cartesian trajectory. This inverse problem has earned considerable attention because of its
importance in relating the Cartesian trajectory of the hand to the corresponding joint-variable trajectory of the mani
pulator. This paper focuses only on the inverse kinematic position solution.

In solving the inverse kinematic position problem, we are always interested in obtaining a closed-form solution {ie.
an algebraic equation relating the given manipulator hand position and orientation to one of the unknown joint dis-
placements), which yields all the possible solutions in a fixed computation time. Fortunately, most industrial robots
have simple geometry and exhibit closed-form joint solution. Utilizing the inverse transform technique [1], the joimt
angle equations of a six-link manipulator with simple geometry reveal the computation of a large set of elementary
operations: real number multiplications, additions, divisions, square roots, trigonometric functions and their inverse.
However, these elementary operations, in general, cannot be efficiently computed in general-purpose uniprocessor com-
puters. In order to obtain a fixed computation time for the joint angle solution, time-consuming transcendental func-
tions (sine, cosine, and arc tangent) are implemented as table look-up at the expense of the solution accuracy. The
CORDIC algorithms [11-14] are the natural candidates for efficiently coraputing these elementary operations. They
represent an efficient way to compute a variety of functions related to coordinate transformations with iterative pro-
cedures involving only shift-and-add operations at each step. Thus, cordic processing elements are extremely simple and
quite compact to realite [14] and the interconnection of CORDIC processors to exploit the great potential of pipelining
and maltiprocessing provides a cost-effective solution for computing the inverse kinematic position solution.

2.1. CORDIC Algorithms and Processors

In conventional uniprocessor computers, computation of elementary functions such as square roots, sine, cosine,
hyperbolic sine and cosine and their inverse consumes a considerable amount of effort than multiplication operation.
These elementary functions can be efficiently computed by the cordic algorithms which can be described by a single set
of iterative equations parametrized by a quantity m (= —1,0,1) which determines the type of rotations. To establish
connections between CORDIC aad rotation-based algorithms, let the angle of rotation # be decomposed into a sum of a

sub-angles {d,;; : = 0, n—1} -
0 = E u,d; (1)
1.0

where the sign u, (+1) is chosen based on the direction of rotation. Similarly, the plane rotation matrix R(¢)

cosd sinﬁ]
R = | _sind cost| (2a)
or hyperbolic rotation matrix R(7)
[coshd sinh? i
RE) = |-sinhd coshd (2]
can also be decomposed into a product of sub-angle rotation matrices
a1
R(¢) = [TR(d;) G)
[TV

Thus, a single rotation of ¢ angle can be replaced by n smaller rotations with d; angle each. In the cordic algorithms,
d; is chosen such that
tan~ (270 = 1 (cireular)
d;, = 12— ,m = 0 (linear) (4)
tanh~!(2~°¢)) , m = —1 (hyperbolic)

200

 (4), R{d;) can be written as

.vlen m’ determines the type of rotations and {s(i); s =0, u.-l} -ia a mon-decreasing h&pt sequence. Using d; from

1 -2
R(d,) = »; w20 1 (s)

where p; is 2 scaling factor and equals to (1 + m 2->11)"%, Let R¥(0) and R¥(d,) be the normalised form of R(0) and
R(d,), respectively, then from (3), we have

R =TT »: T1 R*4) = & 1T 2¥14) = & B%0) (6.)
where
.-l st (i N i 1 —"u'z"’(')
k.=._l_1°r;='_[_lo(l+m2 s R(')’.ll x 270} 1 (8.b)

Usually, k_ is a machine constant and k, = 0.6072 (for m = 1) or 1.00 (for m = 0) or 1.205 (for m = — 1), when n > 10

12, 15). The normalised rotation matrix of (6.b) indicates that each small rotatioa can be realised with one simple

shift-and-add operation. Hence, the computation of a trigonometric function can be accomplished with n shift-and-add

operations, which is comparable to conventional multiplications. This makes a CORDIC ALU a very appealing alterna-

tive to the traditional ALU for implementing the elementary functions. In general, the aormalised CORDIC algorithm
=N

] (74)

can be written as follows:
34 1 -my 270
W4T fw 2 1 '

FORi=0,1, --- ,n~1,DO
= +ud (7-b)

where zi¥ = x;, y) = yo, m determines the type of rotation, d; is chosen as in (4), and the auxiliary variable 3V is intro-
duced to accumulate the rotation after each iteration. And the corresponding *“unnormalised” CORDIC algorithm is
described as:

FOR:=0,1, --- ,n-1,DO

Ly 1 —muy 270 g
=p.) 8
Yin] P 2700 1 ¥ (8]
R =% +wd; (8.3)

where 1y = 1, and y, = yo It can be shown that z; and 2¥ will accumulate the angle of the total rotation and have the
same value after n iterations. However, the end results of (z,,y.) from the iterations of (8.2) and the end results of
(£, yM) from the iterations of (7.a) are related according to

ra=kazl yo=kayl)
Consequently, one may evaluate z)¥ and y.¥ by using only the shift-and-add operatiofs in (8.2), then realise z, and y, by
other simple methods such as ROM look-up tables and regular combinatorial logic, etc. Fortunately, it is possible to
find a simple way to normalize the scale factor k., using the same shift-and-add hardware [14, 15]. The supplementary

operations that are used to force the scale factor k. to converge toward unity can be either performed after all the
operations of (7.a) are terminated, that is,

Fa=1+727)x 5 yia =1+ 27 (10)
where 2§ = z.), y§ = y», and 0 < i < n—1, or interleaved with the operations of (7.a), that i,
F=(+7n27)4 ; w=0+n27)p (1)

where 0 < ¢ < n—1. The parameter 7; in (10) or (11) may be -1 or 0 or 1 depending on the value of ¢ and the type of
rotations (i.e. m) [14, 15].

Haviland et ai. [14] realised the CORDIC algorithm on a CMOS chip and showed that the processing time of the
CORDIC chip is 40 us. They also suggested n = 13 as the minimum cycle time of a two-byte (24-bit) fixed point opera-
tion. However, in practice, they used n = 24. For a conventional CORDIC module, it reqyires 5 shift-and-add modules
to compute one CORDIC iteration and one normalization iteration in parallel (that is, 3 shift-and-add modales for (7a)
and (7.b), and 2 shift-and-add modules for (11)). The desired output can be obtained in 24 iterations (n = 24). Thus,
24 iterations of 5 shift-and-add modules computing in parallel will be enough to realite CORDIC algorithms. This indi-
cates that the CORDIC processing time is no slower than the time for a serial multiplier computing two 24-bit operands.

201

Figure 1 summarises the clementary fanctions that can be obtained from the CORDIC processor whea m is set
-1, 0, or 1. In this figure, 2 CORDIC processor is depicted as a box with three inputs x4 , 3¢ , 5 Which are tae initial
v;lmd:,—,'i,ndt.-h'(l),unﬂutlmatpb&atwrmpoﬂb&elndv&hso‘:..'..t.l‘l,ll(.). Thas,

s

the outputs x, , 9, , 2, are the desired clementary functions, whea m is appropriately set to -1, 0, ar 1. Thess CO
processors will be configured and coanected, based on a functional decomposition of the joint angie equations, to arrive
at an efficienat architecture for the computatioa of inverse kinematic position solution.

2.3. CORDIC Architecture for Inverse Kinematie Position Computation

The design philosophy is to examine the iaverse kinematic position solution for its competationsl flow and data
dependencies in order tc functionally decompose the computations iato a set of CORDIC computational modules (CCMhs)
with an objective that each CCM will be reaksable by a CORDIC processor.” This functional decomposition is net
unigue and can be best represented by a directed task graph with a finite set of nodes denoting CChls and a correspend-
ing Snite set of communication edges denoting operands movements. An examination of the inverse kinematic position
equations in Appeadix A shows a Emited amount of parallelism with a large amouat of sequentialiom in the flow of com-
pulations and data dependencies. This serial nature of the computational flow leads itself Lo a pipelined CORDIC pro-
cessors implementation {18]. The decomposition of the inverse kinematic position equations is dose by looking at the
equations which can be computed as elemeatary functions by CORDIC processors as listed in Figure 1.

The task of computing the inverse kinematic position of a PUMA robot arm, based oa the equations in Appeadix
A, can be decomposed into 25 sabtasks in which each subtask corresponds to a CCM aad can be realised by 3 CORDIC
processor. For example, #, can be computed by the following 3 subtasks:

Subtask 1: z] =r = ‘}.’ + ,.7)'/7

21, = taa= (L) = —taa~t(=2L) Sebtask 2: 22, =\/r?— d} = V212 — &}
’l ’. N
xq = z1,
o= CORDIC Processor: HYPE2 = {yo = 4
CORDIC Processor: CIRC2 = {y; = —p, =0
39g=0

d
Subtask 3: 23, =0, =31, - tan"(j)
L]

%o = x2,
CORDIC Processor: CIRC2 = {y, = d,
3o =1l,

The computational flow of these 25 tasks together with the input data can be represeated by the directed acyclic data
dependency graph (ADDG) with switching nodes and parallel edges as shown ia Figure 2 and the details about the
decomposition of the inverse kinematic position solution into CCMs can be found ia [4]. In Figure 2, eack computational
node, indicated by a circle, represents a CORDIC computational module, and each switching node, indicated by a dot,
performs no computations but just switches data to various CCMs. The operands or datas move aloag the edges. A
major bottleneck in achieving maximum throughput or maximum pipelining in Figure 2 is the different arrival time of
the input data at the multi-input CCMs (e.g. nodes T18 and T22 in Figure 2). The computations of multi-input CCMs
can not be initiated until all the input data have arrived. This different arrival time of input data leagthens the pipe-
liced time. Thus, the ADDG is said to be unbalanced and fails to achieve maximum pipelining. Several techaiques [17}
{19] bave been suggested to remedy tiis data arrival problem by iaserting appropriate mumber of buffers (or delays) in
some of the paths frora the input node z to the multi-input CCMs to “balance” the ADDG and achieve maximum pipe-
lining. This bufler assignment problem for balanciag the ADDG car be reduced to an integer linear optimisation prob-
lem. Detailed formulation of the optimal buffer assignment problem as an integer linear optimisation problem caa be
found in [4). After solving the buffer assignment problem, realisatioa of the balanced ADDG results in 2 maximum pipe-
lined CORDIC architecture. For s PUMA robot arm, the architecture consists of 25 CORDIC processors and 141 buffer
stages with 4 tapped-delay-line-buffers {4). The initial time delay of the pipeline is equal to 18 stage latency (or
720 ua), where the stage latency of a CORDIC processor is assumed to be 40 gs [14]. The pipelined time of the
CORDIC architecture equals to one stage latency or 40 us. The realisation of the maximem pipelined CORDIC archi-
tecture is shown in Figure 3.

202

. Ilnverse Dynamies Computation
The general inverse dynamic problem for an n-ak -umhhtcuhmt«lul’olhr given the jeint positions
and velocities {q,(¢) , ¢,(t))} /= which describe the state of the manipulstor at time ¢, together with the joint accelera-
tions {¢,(2)};=, which are desired at the poiat, solve the dynamic equatiors of motion for the joint torques {7,(2)) ., 2o
follows:

wt) = £ {alt), alt) olt)) (12)

where r{t) = [r,, 'a-o-o’.,r » i‘) le:» ,a"-ﬂclr qlt) = h” 'b--ﬁ-l' ’ *‘) =l 'b---ﬂ-lr + (-} is a2 axl mouliness
vector f[unction and superscript T denctes transpose operatioa on matrices and vectors.

At preseat, much atteation has been focused on the computstional issues of the inverse dynamics based oa the
Newton-Euler (NE) formulation, resulting in various muitiprocessor-based control systess [8,21-24]. The recursive struc-
ture of the NE equations of motion is obviowsly well suited to standard singie-instruction-stream and single-dats-stream
(SISD) computers. It is, however, not an efficient parallel processing for new single- instruction-stream and multiple-
data-stream (SIMD) computers that are capable of performing many simuitaneous operations. Owr appreach in design-
ing efficieat algorithms for computing the robot inverse dynamics is to look at the computational complexity of the
problem first. In particular, we need to know what is the limitation of speeding up the computation of the inverse
dynamics while renning on p processors, where 1 < p < n. That is, we would like to establish a time lower bound for
the inverse dynamics computation problem so that several efficient computational schemes can be compared and con-
trasted. Then efficieat algorithms achieving the time lower bound can be designed for the computation of the inverse
dynamics. The following notations and lemma will be used to derive the time lower bound of the inverse dynamic prob-
lem.

Notations: ,
{1) Lincar anthmetic expression is any well-formed string composed of four arithmetic operators (+,-,X,/) or, for
convenience, two operators +(or —), X (or /), left and right pareatheses, and atoms, which are constants or vari-

ables. We denote a linear arithmetic expression E of m distinct atoms by E<m>,eg. E<4> :0 +b —¢ / d.

(20 T,17.00,7),soccs £u0)} = Mi-imnn computing time needed to evaluate [f,(*), fo*), ..., f.(*)]
using p processors.
Lemma 1: The time lower bound of T, [E<m>] [25]. The shortest parallel time to evaluate 2 linear arithmetic
expression E<m > using p processors is bourded below by and equal to O([m/p] + [logy 1), that is,

T, [E<m>] 2> O(Im/p) + [log, p1)

Theorem 1: The shortest parallel time to evaluate the joint torques {r;(t)})., in equation (12) wsing p processors
is bounded below by O(k, [n/p] + k; [log, pl), where k, and k; are specified couunh, that is,

T, [nteate] 2 Ok [n/pl4+ k[log; p1) (13)

The proof of Theorem 1 can be fouad in {10]. Two ext-»me cases follow from Theorem 1:

(a) If p =1, then the shortest computing time T, [r,,7x...,7,] is not lower than O(n). Thus, the NE formulation is the
most efficient algorithm of evaluating the i mvene dynamca running in uniprocessor computers.

(b} If p = n, then the shortest parallel computing time T, [r), 7x...,7.] is not Jower than O([log;n]).

Theorem 1 indicates that an efficient algorithm running o p processc:s may not achieve the same time order as
O(k, [n/pl+ ky[logy pl). However, if a parallel algorithm possesses the time lower bound, ther it must be the most
efficient algorithm of evaluating the inverse dynamics. Theorem 1 also indicates that, although NE formulation is very
efficient for computing the inverse dynamics, a better solution is to find an efficient parallel algorithm, rusaing on p pro-
cessors, that possesses a time order of O(k,[n/p]l+k;{log; p1). A parallel algorithm reaning on an SIMD machine and
achieving the time Jower bound is discussed next.

The recursive NE equations of motion are very efficient in evaluating the inverse dynamics whether they are for
mulated in the base coordinate frame [8] or the link coordinate frames {7]. The clear advantage of referencing both the
dynamics and kinematics to the link coordinates is to obviate a great deal of coordinate transformations and to allow
the Jink inertia tensor to be fixed in each link coordinate frame, which results in a much faster comp-uhu in a wnipro-
cessor computer. However, the recursive structure of this formulation is in an mhomo;neou linear recursive form, eg.
w;, = a,w,_, + b, where o, = R._, (2 3x3 rotation matrix) and J; = 'R, | 259, t, which requires more calculations and
arrangements for parallel processing than the homogeneous linear recursive form. On the other hand, the NE formuia-
tion in the base coordinates can be re-arranged and transformed iato a homogeneous linear recurreasce form, eg.
w; = w,_, + ¢; 5,2, which is more suitable for parallel processing on an SIMD computer, yielding 2 much shorter com-
putiag time.

Once the NE equatioas of motion are formulated in the base coordinates in 2 homogenecus linear recurrence form,
then a parallel algorithm, called recursive doubhn; [16,17,26-27], can be utilised to compute the kinematics in the for
ward equations and the dynamics (or torques) in the backward equations [S]. The homogeneous linear recurrence prob-
lem of sise (n+1) can be described as follows: given z(0) = a(0) » ideatity and a(s), 1 < ¢ < n, find z(1), 2(2), ... ,z(n)
by an algorithm running on an SIMD computer of n processors, where

t &; and b, are used bere s vaziabies.

203

=) = s(i-1) * o(3) 04)
and “** deneles an amociative operator, which can be 2 matrix product or additien, a vector dol preduct or additien,
etc. If a(0) is equal to an identity, then the linear recusrence of sise (n+1) can be reduced to the case of sise n by tak-
ing & shift operation as follows: &(0)—ea(1), c(A)o-c(l), s 8(m=1)—a(n), where “+—" denotes a replacing opera-
tion. Thmdubh;akonthhncaﬂysdm bo-omlhurmbt-n(u)lym&
co-ptuth.d.mul associative operation. For as arbitrary zx{n), the generalisation ol'thlh.alow(.-}ly!
paralie] operations at the Arst splitting, (n+1)/4 at the second, ..., and (n+1)/2* at the kth until [login+1)]
thea x(n) is computed with ome Enal operation. Similarly, it can be that =(s leukco-md-lhu(-ﬂ
splittings, where 1 < ¢ < a. In other words, with the recursive doubling algorithm, 2(1), 2(2), ... , 3(n) can be computed
concurreatly 20 later than the time step {logy{n +1)]

‘The procedure in computing the inverse dyaamics from the NE equations of motioa formulated in the base coosdi-
nates is to re-arrange the kinematic equatlions and the dynamic equations in a homogeneous linear recursive form, and
the following input parameters relating the formulation mest be given or evaluated in advance:

(s) The 3X3 rotation matrices “'R,, ¢ = 1,2, _.n, which indicates the orientation of ink ¢ coordinates referenced to
link (s —1) coordinates, need 1o be evaluated in advance.

(b) “p;’ demotes the origin of lak i coordinate frame from the origia of Eak (i—1) coordinate frame expreseed with
mp«.thlilk & coordinates; °s; denotes the location of the center of mass of link { from tkmdﬁ-kuat-
dinate {rame expressed with respect to link s coordinates; and ‘J; demotes the inertia matrix of Enk & about its
center of mass expressed with respect to link i coordinates, must bc given in advasce. Note that ‘p;, °s;, and °J;
are constants when referred to their own link coordinates.

{¢) X, is 2 joint indicator which specifies link i is rotational or translational as follow:

0 , if link i is rotational
M =1 1, iflinkiis translational

(d) Let wy=ap =0, py=1|s,,9,9/|" and |g| = 990621m/s%. If external force f, and external moment n, are
exerting on link n, thea f,,, = f,, n ,, = n,; otherwise, f,,, =n_,;, = 0.

The procedure of evaluating the NE equations of motion as a linear recurrence problem is then givea below (note §; are

used here as variables):

STEP 1. Compute the rotatioa matrix °R; with respect to the base coordinates for ¢ = 1,...,n .
B, = R, * R (15)
STEP 2. Compute p,’,s,,and s, for i =12, .a
=R, %5 , 2=[001]T ; pi=R,; P/ ; 5 =R; ‘s, (18)

The evaluation of s; oaly involves taking the third columa of °R,.
STEP 3. Compute

b=, (1-)) 17)
and
o, =+ b (18)
STEP 4. Compute
b = (s @ + o X3) (1= N) (19)
and
wimo+ b {20)
STEP S. Compute
b= X P+ X (w; X D)+ (8 € + 2w X (8) N @)
and :
Pi=Piath =)
STEFP 8. Computs
Time X a5+ X (W X8)+ P ()
STEP 7. Compute
F; = m7; (24)
STEP 8. Compate
Ni=J, o +w x{J) (2s)

204

For the sake of saving the calculations of evaluating J; = °R; ‘3; ‘R,, which Luh etal.[l]lh;wedtiatth
computation was quite complicated, (25) is modified to

v, = Row; = (R,)T w; ; ‘= Ryl = (M) & (29)
NG = 03, Yo + e X (3, fw;) 5 Nj= R, N, (1)

STEP 8. Cempute .
E=fiutF, (23)

STEP 10. Compute
’ b= N+ (P’ +)X P+ p) X0y (29)
and

n =0, +) (30)

STEPF 11. Compute

(“-’)r'-'-l » ;=0
T e s W= 1)

(3

Previously undefined terms, expressea ia the base coordinates, are given as follows: m; is the mass of Enk &, w; is

aagular velocity of liak ¢, w; is the angular acceleration of link ¢, p; is the linear acceleration of link ¢, ¥; is the line.

acceleration of the ceater of mass of link s, F; is the total force exerted oa link ¢ at the center of mam, N; is the total
moment exsrted oa Bnk i at the ceater of mass, f; is the force exerted on ink § by iak i—1, n; is the moment exerted
on [ink ¢ by Gak i1, 7; is the torque exerted by the actuator at joiat ¢ if rotational, force if translational, ¢; is the
joint variable of joiat i (#; if rotational and 4; if translational).

Equation (15) shows that the evaluation of °R; is a simple recursive matrix product form. Equatioas (18), (20),

(22), (28), and (30) oaly involve simple recursive vector addition form. The other equations in the NE equations can be

computed parallelly. Thus, the evaluation of the total computational complexity of the parallel algorithm for a PUMA

robot arm caa be derived as follows:

() The parallel evaluation of (15) wsing recursive doubling indicates (27 [logan] — 19) scalar muitiplications aad
(18 [logsn] — 14) scalar additions.

(b) Equatioas (18), (20), (22), (28), and (30) all have the same recursive vector addition form, the total parallel evalua-
tion of these equations requires (8 [logm] + 9 [logy{n +1)]) scalar additions.

(c) The parallel evaluatioa of the other equations in the NE formulation, e.g. p. =R, 'p/ % = ’R,-"l,-. F;, N, 7,
and all the b; of (17), (19), (21), and (29) can be calculated by simple parallel computations, yieldiag a constant
computation of 135 scalar multiplications and 98 scalar additions.

Combiniag the results of (a), (b), and [c), the total computational complexity of the parallel algorithm applied to a

PUMA robot arm is {27 [logsm] + 116) scalar multiplications and (24 Ipbggn] + 9 [log{r+1)] + 84) scalar additions.

Note that it is of time order O([log,n]) because we are using p = n processors. If further reduction oa the coefficients

of ([logyn]) is desirable, this can be accomplished by wsing matrix multipiier chips. This would reduce the coefficients

27 and 18 in evaluating (15) as discussed in (a). If 8 = 8, then the complexity of the parallel NE algorithm is 197 multi-

plies (mults) and 183 additions (adds) as compared with the complexity of the NE algorithm running oa a uniprocessor

[7): 352 mults and 738 adds. Moreover, evea if ® becomes large, say n = 12 (for redundant robots), thea the number of

multiplications and additions increases only by 27 and 33, respectively. Thus, we have shown that considerable savings

in computation time can be achieved from embedding the inverse dynamic computation in a parallel algorithm, which
has a time complexity of logarithmic in the number of joints, O([log, nl)-

5

3.1. An Efficient Parallel Algorithm With p-Fold Parallelism

Last section showed that the bottleneck of parallel computation of the inverse dynamics depends on solving the
homogeneous linear recurrence of the N-E formulatioa. If the restriction that one microprocessor “handles” one joiat is
relaxed, it is desirable to obtain am efficient parallel algorithm which cam greatly improve the evaluation of the linear
recurreace usiag p p A parallel algorithm of evaluating the iaverse dynamics with a restricted number of p
processors has been de to achieve the time Jower bound of O(k,[n/p] + ky[logy p1). The proposed p-fold paral-
Jel algorithm can be best described as consisting of p-parallel blocks with pipelined elements within each parallel block.
The results from the computations in the p blocks form a new homogeneous linear recurrence of sise p, which again can
be computed using the recursive dowbling algorithm. The parallel algorithm with p-fold parallelism (PFP) is summar-
ised and preseated as follows: -

Algorithm PFP (p—fold Paralleliam). This algorithm divides the computations into p-parallel blocks of computations.
The 5th processor computes the elements in the yth block serially. The results from the the p-parallel blocks form a
mew homogeneous linear recurrence of sise p, which can be computed by the recursive doubling algorithm.

205

. P1. [Initialisation.] Given &(0) » ideatity, let s = [(n+1)/p], m = pe, and set

f{
a(i-1) , 1<i<n4l
M) =)
] u."'lS‘.S.
. \
where ¢ indicates the block sise (number of clements ia a block).
P32. Divide into p blocks.] Divide M{i), 1 < i < m, into p blocks as follows:

3th block = (M{(y—1)e + 1), M{(5-1)s + 32), ... ,M(5s)} and let N(1,5) = M{(j-1} +1) , 1< <p
where N(i.5) indicates the i th element in the jth block.
P3. [Compate NYi,j) in a DO loop.] The 5 th processor serially computes N(s,5) in the 5th block as:
For § = 2step 1 until » Do

N(i,5) = N(i-1,5) * M((j-1) s45) , 1< 5<p)

END
It is seen that x(1), £(2), ... , 2(s—1) has been evaluated in the DO loop as well as N(i,1),2<i<s. Thatis,
£(1) = Ni2.), 5(2) = NG, ., sls—1) = N(s.1)
P4. [Form a new homogencous linear recurreace of sise p.] Let 7(5) = N(s,5) and y(5) = z(%—1), for 1 < 7 < p and
referring to (14), (32), and (33), we have

y(1) = 2(ja-1) = =({j-1)e — 1) * &{(j-1)s) * &((j-1)s + 1) * ... * a(je—1) ' 64
=y(i-1) * M{(5~1)s +1) * M{(j-1)s +2) * ... * M(js) = y(j-1) * Nis.j)
=y(5-1) * 1(5)

Equatioa (34) is 2 new homogeneous linear recurrence of sise p which can be parallelly evaluated by the algorithm
FOHRA, running in time proportional to O([log; p1) and yielding the results g{s—1) = y{1), =(2s—-1) = y(2), .,
z(ps—1) = y(p). (Note that if (n +1) is divisible by », then z(n) = y(p); otherwise, z(ps—1) = y(p) = 0).

PS. [Compute intermediate z(i) in equation (35).] Without loss of generality, assuming that (»+1) is not divisible by »,
then there are s —p—s+3 intermediate ‘erms of z(5) that need to be determined. They are:
(B +) L CSi<e-2,1<7<p-2 and slp-1)eti) , 0<i < fp-1) o)
Referring to (7), (33), (34), and (35), thereby giving
2(ja+i) = z(je—1) * a(js) * a(:3+1) * ... * a(je+i) = y()) * M{js+1) * M{je+2) * ... * Mj+i+1) (%)
=y(5) * N(i+1,j) , 0<i<s-2i<ji<p-2

and =((p~1)s +) = ylp—1) * Ni+10-1) , 0<i < n—(p—1)s
where N(i+1,5), y(5) of (36) have been evaluated in steps P3 and P4, respectively. Equatioa (38) shows that if
(n—p—0+3) tasks are of the same evalvation, then the calculations of these equal tasks are suited to an SIMD com-
puter of p processors. It is shown that parallel evaluation of (38) requires [(m—p—s+3)/p] time steps (note that if
(n+1) is divisible by p, then z(n) can be evaluated in step P4, yieliag (n—p—s+2) equal tasks in (38), theredy
requiring [(n—p—s+2)/p] time steps).
END PFP
It is seea that the total parallel computing time T, of the homogeneous [inear recurrence of sise (m1) using p
processors is:

{[(§+l)/rl+l(n—r--+3)/ﬂ+ll°u #1-1, if (n+1) is mot divisible by p.

? 7 [(m+2)/p14+ [(n—p—0+2)/p1+[logs p] — 1, if (m+1) is diviaible by p.

Applying the above p-fold parallel algorithm to the N-E formulation for an n-link rotary manipulator, it is able to
achieve the time lower bound of O (&, [n/p] + k,[logs p1)-

The above n-fold parallel algorithm is suited to be run on an SIMD computer. A cascade structure can be wed
for connecting the PEs. An altermate structure is to position a network betweem the processors and memories. The
interconnectioa pattern, called the “perfect shuffle [26, 27, has the number of links between processors proportioaal ta
n. An attractive interconnection pattern, called “inverse perfect shuffie [26,27]," is suitable for the implementation of
solving the homogeneous linear recurreace aad can be obtained by reversing the arrows of the perfect shuffle. Detaids
about th;- rt'ock connection for solving the homogeneous linear recurreace for computing the joint torques cas be
found in [10]. ’

4. Conclusion

A maximum pipelined CORDIC architecture for computing the inverse kinematic position solution and an efficient
paralle]l algorithm for computing the joint torques have been discussed. To achieve maximum throeghpat, delay buliers

206

Using the concepts of the proposed paralle]l algorithm, it would be possible to devise a

|
{ ;J,‘V>VLachipuMelnphm¢n¢¢hhmﬁnﬁuwuhatwmmuhﬁcw

- B Appendix As Inverse Kinematle Position Solution

The inverse kinematic positioa

can be stated as: Givea the position/orieatation of the manipulator haad

and the ink/joint parameters, determine the joint angles so that the manipulator can be positioned as desired. That is,

Ry 0, & P,
T Ry 0, 8 P noap
- n, o 8 P "looo1
0 0 01
the joint angle equations are:
r=(p3+pJy
P 4
0,-“-"[—'— - tan™! | ———————
s V- &

Ill} - ’lcl + ’,sl H ,llc - .scl + .'sl H !13' bt -,lsl + ’]cl H !uo - ""asl + O,C.
June=6,C1+ 6,5, ; {13, = —¢,5,+4,C,

d=fl,+ by — 8] —af —] ; ¢ = 4aje] + 4afa}

-

%[

(.Cs ~ f1yS2) + (—ﬁ)f.., + (2,

0y = tan! 85/ 11,53 — P.Cy) + dif 11, — 839,] -— tan~!

AT Gat RS+ Safup 4 L 005+ FuyS0+ ()1 p + (S,

—=Sie, + Cyey - tan-! [™]
Cxl(C8, + S,6,) — Sne, Cxnfie — Spe,

0, = tan™

0 = tan—!
¢ SzlC,e, + Si6,) + Cxs,

’-Cslcc(czfu. — S10,) + SeJ 13.] + Si(Snf 110 + Cx0,)]
—S{Cnf11e — Sn0,) + Cof 130

Snf e 1 Cxse,

'. = ‘a-l

where (—%) » (:—:) , (-E:—) are constants, C; = cos 0_.-, S; msin8;,C; = cos (0; +90;),and 5; = sin (0; +#;).

8. References

)

2.

Paul, RP., Skimano, BE,, and Mayer, G., “Kinematic Coatrol Equations for Simple Manipalators,”

Trens. Syst. Man, Cybern., Vol. SMC-11, No. 8, pp. 456-460, 1981.

[CfCx(C\a, + S;8,) — Sne,] + 34[-515 + Cya,]] = tan-! [CyCnfire — Sns,) + Sif 13,

(A-1)
(A-2)

(a3)
(A4)
(A-5)

(A-8)

(A7)

(A-9)

(A-9)

(A-10)

(A-11)

IEEE

Kametani, M. and Watanabe, T., “Hardware and Software of a Multiprocessor System Applied for Robot Con-

trol,” 1984 Proc. of Industriel Electronic Conf., pp. 749-758.
207

3.

o -

10.
11.

12.
13.

14.
15.

16.
17.

o/ -

19.

23.
24.

25.

22.

Watanabe, T. et al, “Improvement of the Computing Time of Robot Manipulators Using a Multiprocessor,”
Prec. of ASME Winter Annual Mecting, Miami, Florida, 1985, pp. 13-22.

Lee, CS.G. and Chang, PR., A Maximum Pipelined CORDIC Architecture for Inverse Kinematics Computa-
tion,” Techaical Report TR-EE-88-5, School of Electrical Eagineering, Purdue University, January 1988.

Fu, K. S,, Gonsales, R. C,, and Lee, CS.G., Robolics: Conirel, Sensing, Vision, and Intelligence, McGraw-Hll,
September, 1886

Orin, DE, RB. McGhee, M. Vukobratovic, and G. Hartoch, “Kinematic and Kinetic Analysis of Open-chain
Linkages utilising Newton-Euler Methods,” Math. Biosc., Vol. 43, 1979, pp. 107-130.

Luh, J.YS., M.W. Walker, and RP.C. Paul, “Oa-line Computational Scheme for Mechanical Manipulator,”
Trans. of ASME, J. of Dynam. Syst., Meas. and Contrl., Vol. 102, pp. 89-76, June 1980.

Luh, J.YS. and CS. Lia, “Scheduling of Parallel Computation for a Computercoatrolled Mechanical Manipula-
tor,” IEEE Trans. Syst. Man, and Cyber., Vol. SMC-12, No. 2, pp. 214-234, March /April 1982,

Kasahara, H. and Narita, S., “Parallel Processing of Robot Arm Coatrol Computation on a Multiprocessor Sys-
tem,” IEEE J. of Robotics and Axtomation, Vol. RA-1, No. 2, June 1985, pp 104-113.

Lee, CS.G. and Chaag, PR., “Efficient Parallel Algorithm for Inverse Dynamics Computation,” EEE Trens. on
Systems, Man, and Cybernetics, YoL SMC-16, no. {, July, 1986, pp. 532-542.

Volder, JE., “The CORDIC Trigonometric Computing Technique,” IRE Trens. Electronic Compulers, Vol. EC-8,
No. 3, Sept. 1959, pp. 330-334.

Walther, J.S., “A Unified Algorithm for Elementary Functions,” AFIPS Conf. Proc., Vol. 38, 1971, pp. 379-385.

Ahmed, H. M., J. M. Delosme and M. Motf, “Highly Concurrent Computing Structures for Matrix Arithmetic
and Signal Processing,” JEEE Computer, Vol. 15, No. 1, pp. 85-82, Jan. 1982.

Haviland, G. L. and A. A. Tussynski, “A CORDIC Arithmetic Processor Chip,” IEEE Trans. Comput., Vol. C-
29, No. 2, pp. 68-78, Feb. 1980.

Dewide, P. et al, “Parallel and Pipelined VLSI Implementation of Signal Processing Algorithms,” in VLSI and
Modern Signal Processing, S. Y. Kung, H. J. Whitehouse, T. Kailath, (eds.), Prentice-Hall, Inc., Englewood Cliffs,
NI, pp. 257-278.

Kogge, PM., “Parallel Solution of Recurrence Problems,” IBM J. Res. Dewelop., Vol. 18, pp. 138-148, Mar. 1974.
Kogge, PM. and Stone, HS., “A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence
Equations,” IEEE Trens. on Comput., Vol. C-22, pp. 789-793, Aug. 1973.

Kung, H.T. and Lam, M., “Wafer-Scale Integration and Two-level Pipelined Implementation of Systolic Arrays,”
J. of Parellel and Distributed Computing, Vol. 1, No. 1, Sept. 1984, pp. 32-63.

Dennis, J. B. and R. G. Gao, “Maximum Pipelining of Array Operations on Static Data Flow Machine,” Proc.
of 1983 nt’l. Conf. on Parallel Processing, pp. 331-334, Aug. 1983.

Leiserson, CE. and Saxe, J. B,, “Optimising Synchronous Systems,” J. VLSI and Computer Systems, Vol. 1,
1983, pp. 41-88.

Lee, CS.G., Mudge, T.N., and Turney, JL., “Hierarchical Control Structure using Special Purpose Processors
for the Control of Robot Arms,” Proc. 1982 Pottem Recognition and Jmage Processing Conf., Las Vegas,
Nevada, June 14-17, 1982, pp 634-640.

Lathrop, LH., “Parallelism in Manipulator Dynamics,” M.LT. Artificial Intelligence Tech. Rep. No. 754, Dec.
1983,

Nigam, R. and C. S. G. Lee, “A Multiprocessor-Based Controller for the Control of Mechanical Manipulators,”
IEER J. of Robotics and Auomawn, Vol. 1, No. 4, Dec. 1985, pp. 173-182.

Orin, D.B., “Pipelined Approach to Inverse Plant Plus Jacobian Control of Robot muupnlaton, Proc. 1984
IEEE Int1 Con/. on Robotics and Automation, Atlanta, GA, pp. 169-175, March 1984.

Horowits, 8. and Sahai, S. Fundamentals of Computer Algorithms, Computer Science Press Inc., 1978, pp- 488-
494.

Stone, HS., Iubolutum to Computer Archilecture, Science Research Associate Inc., 1975, pp. 319-373.

Stone, HS., “Parallel Processing with Perfect Shuffle,” IEEE Trans. on Comput., Vol. C-20, pp. 153-161, Feb.
1971. ’

208

0,8,

-
n
-«
-» L)
b |
2 s
- o
e ®
>t o+
e 2
: 2
o
wh =
n "
=

3, =00

LIN1

sinhzy 2

cosh 29~y
¥s Sy cosh 3g+ 24 sinh 34

2, =2

e

2

A

Figure 1 Elementary Functions Computed

by CORDIC Processors

Figure 2 Task Graph for A PUMA Inverss Kinematic Position Solution

U]

LY b
8, CIRC1 pr——— 2
. ™ . _
N
ol
Y
) b ™
e
o 8 o T L o [- -
mal HYPER[ma{ cmer | | LNy LN wees| |,
3} E‘ ™ J" n ™ [LRI, ™
[co l L—_}_ 4 l # o - ro,o
~ o
12
by
ny

. W S

.'
& CIRCI
by] T L by ue
> m
-
"
M—cma Y2 Yema
M= [
by
—x
bae {1514
[lllq-t Hl l‘l-L "q_"t
a—jomaf Jemay] a7 oo | gemef | Jemaf Heme crafjjora
Ti0 = ™ |4 T2 T3 L1] Tie Tis L[] me [] T b d s
E: E(-ﬁn {121 00 1y neq-rcoe ‘N L *
» = R s
S» s,
1 {- -
vz use P e L] usa e &
Tie TIS b T
- 4
) I
— b s
| SRSES eSS o
na -
Buffers: Constants:
18, =12, 18] mtdy) =18, =18;) =8¢} =183} =3 b'=12,
191 ?1¥2% 1931 1 %4 1981 h T 1 1981 = — . - -1
{oyf =12, 6o} =10, 1b,,1 = 8, | by : TDLE-(105,3,2.2), (@F + o +ed) 3 eamun(3]

:.,;: = l' :‘“l -TDLB— 54,1,1), Iblﬂl = 15, I.“I TDLB-(]O,’,I)
'bl'll = 8, I‘lll TDLB- 10,45), |bli| =5, 10y =4, tba} =2,
10z =1, (0] =2, by =3, | b =1, by, =2, bp) =1

Figure 3. Realisation of Figure 2 with CORDIC Processcrs
210

