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1. Absmt  

A useful space telerobot for on-orbit assembly, maintenance, and repair tasks must have a sensing and 
perception subsystem which can provide the locations. orientations, and velocities of all relevant objects in 
the work environment. This function must be accomplished with suffcient speed and accuracy to permit 
effective grappling and manipulation. Appropriate symbolic names must be attached to each object for use 
by higher-level planning algorithms. Sensor data and inferences must be presented to the remote human 
operator in a way that is both comprehensible in ensuring safe autonomous operation and useful for direct 
teleopention. Research at IPL toward these objectives IS described. 

2. Innoduction 

The JPL Robotics Laboratoq has been conducting sensing and perception research since the mid 1970's. when a task was undertaka 
to develop a breadboard Mars rover which could navigate autonomously over unknown ternin. At that time, and continuing to the presea 
the principal sensor modality addressed was machine vision. This anses from the fact that it is essential, both in planetary rover and orbid 
tasks, to sense the environment prior to actual physical contact so that contact forces can be controlled. The available non-contact sensing 
techniques are limited to those based on electromagnetic radiation and those based on sound. Obviously sound is not useful in vacuum and 
of limitrd use in extremely rarified atmospheres. Electromagnetic sensing can be of an active type, emitting radiation and sensing tk 
reflection. or passive, relying on ambient radiation. Active sensing systems can give direct information such as object range, but oftea 
consume excessive power and involve mechanical scanning devices which are potentially unreliable. Thus passive electromagnetic sensiE 
is an attrdctive means of accomplishing the non-contact sensing function. The only wavelengths for which large amounts of ambia  
radiation exist in space are those emitted by the Sun, i.e. visible iight x d  near IR. Sensors for these wavelengths are readily avaiiable wiib 
very good spatial and temporal resolution and xcuracy in the form of solid-state video cameras. This has the further advantage that tk 
human operdtor can easily comprehend the raw data from these sensors using a video display. 

A useful space telerobot for on-orbit assembly, maintenance, and repair tasks must have a sensing and perception subsystem which cas 
provide the locations, orientations, and velocities of 111 relevant objects in the work environment. Current goals of our research afe b 
develop technology which will allow visual acquisition and tracking of known but unlabelled objects in space with sufficient speed d 
accuracy to permit effective grappling and manipulation. Examples of th s of such technology are robotic systems fa 
capturing satellites which have arbitraty and unknown motion. and robotic s on in space. The vision system current? 
under development includes custwn-designed image-processing hardware, tracking software running on a geneni 
purpose computer (Figure 1). 

The machine vision system at JPL is designed to acquire and track polyhedral objects m9ving and rotating in space, using two or more 
cameras, programmable image-processing hardware, and a general p u p s e  computer for high-level functions. The image-processing 
hardware is called PIFEX, for "Progrdmmable Image Feature Extractor," and is capable of performing a large variety of operations ce 
images andon image-like amys of data. Acquisition utilizes image locations and v features extracted by PIEX to determine tk 
3-dimensional position. orientation. velocity and angular velocity of an object. n takes several seconds. but is adequate 10 
initialize the object tracker. Tracking correlates edges detected in the cunent image with edge locations predicted from an internal model d 
the object and its motion. continually updating vclocity information to predict where edges should appear in future frames. Once trackirz 
has begun, it processes some 10 frames per second, thus allowing real-time tracking of objects. 

*/ 

3. PIFEX 

PIFEX is a pipelined-image processor being built in the JPL Robotics Lab. It is a programmable system that wiil perform elabom 
computations whose exact nature is not fixed in the hardware. and that can handle multiple images. It thus is more versatile than previcm 
pipelined-image processors. It also IS a very powerful system. A mderate-sized PIFEX costing less than 5100,ooO wi!i be able LO perfom 
about 10'" 12-bit elementary operations per second. PlFEX is a powerfui, flexible :ool for image processing and low-level compurer visi- 
It also has applications in other two-dimensional problems such as mute planning for obstacle avoidance and rhe numerical solution d 
twc-dimensional partial differential equations. 

FIFEX contains three types of programmable operators Figure 2): convo!vers, neighborhood comparison operators, and bin* 
funcuons. The convolvers use a 3-by-3 kernel. Larger kemels can be simuiated through, the use of multiple convolvers. although this 
efficient only in special cases. The neighborhood comparison operators praduce a nonlinear function of the pixels in a 3-by-3 
neighborhood They are useful for such things as finding peaks, ridges, valleys, and zero crossings, as well as for region growing, shrinkin5 
and orher cellular operations. The binary functions receivz two inputs and compute any desired function of their cornspending pixel value% 
by means of table lookup with linear interpolation. PIFEX consists of an a i i y  of identical modules, each of which conmns two convolven 
one brnary function, and one neighborhood comparison operator. 

The modules are connected in a regular pattern in which each of two outputs fwm each module branches to the inputs of sever2 
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different modules. The outputs from the modules in each c & n n  
that the main data flow is consiclend to be from left to right. 
column (except for the wraparound of rows discussed below) 
modules cornspond to parallel data paths, but these different 
connections from one column to the next. 

to wrap around to fo 

The two wraparound features combined cause the the interconnections of the modules in PIFEX to have the topology of a torus, Them 
is a cut around the torus at one place to allow inputs (from image buffers or TV cameras) and outputs (to image buffers) to k switched in 
(as stated above), under control of the host computer. 

It is planned that the initial version of PIFEX will have 5 columns and about 24 rows. ('ll~us it would be v s i b l e  to code algorithms 
that vary from requiring a data path 24 modules wide and 5 modules long to requiring a data path one module wide and 120 modules long. 
without having to use separate passes through PIFEX on separate frame times.) 

Even though the chosen approach results in a physically larger device ,(and perhaps greater cost if produced in quantity) than other 
possible approaches, it has the advantages of quicker and less expensive development (because of the need for fewer types of complicated 
custom VLSI chips), ease of computing arbitrary functions (because of the generality of the table-lookup functions), and easy growth to a 
more powerful system (because of the modular concept with the regular interconnection pattern). 

PlFEX has been described in more detail elsewhere." 

4. Acquisition and Tracking 

The organization of the acquisition and tracking system is shown in Figure 3. Its operation will be described briefly in thissection. 

The Feature Tracker detects features in the images from each camera. tracks them as they move over time, smooths their 
two-dimensional positions. and differentiates the positions to obtain their two-dimensional velocities in the image plane. (The features 
currently used comspond to the vertices of a polyhedral object.) Features that are not moving, are moving too fast, or do not remain 
sufficiently long arc rejected. Future versions of the Feature Tracker may also measure other properties of the features in addition to 
position, such as orientation. to aid in stereo matching and in matching to the object d e l .  The Featlure Tracker will mi primarily in 
PEEX when it becomes available. 

When enough features are being tracked. the Motion Stereo module uses the information from all of the cameras for some particular 
time to compute the partial thrce-dimensional information. For a single camera, the object range is completely indeie&nate.but the relative 
ranges of the features are determined using the assumption that they are connected to a rigid, moving object. For multiple cameras, the 
absolute ranges of the features in general can be determined. This includes the three-dimensional position of each feature (from any 
camera), an estimate of its position accuracy as given by a 3-by-3 covariance matrix, and estimates of the velocity and angular velocity of 
the object. All of this information is based on nominal values of unity for scale factor and zero for bias. In addition, a 2-by-2 covariance 
matrix of the uncertainty in these nominal values of scale factor and bias is estimated. The motion stereo algorithm has been described in 
more detail elsewhere.) 

The Stereo Matcher refines this information and computes estimates of the scale factor and bias. It uses a general matching process 
based on a probabilistic search? In this process, features from one camera are matched one at a time to features from another camera in 
order to build a search tree. For each combination of uial matches, a least-squares adjustment is done for the scale factor and bias that 
produces the best agreement of the matched features. The discrepancies in the adjusted positions of the matched features compared to their 

used to compute a probability for each match combination. and these probabilities are used to prune the search. If there an 
cameras, the current plan is for the Stereo Matcher to use only a specified pair for matching, but more elaborate arrangements 

ule, Stereo Matcher, and Model 
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The position. orientation, velocity, angular velocity. and their covariance matrix from the Tak ing  Initialim uc used as initial 
conditions in the Object Tracker. It rapidly and accurately updates this information. cumntly. the features that it looh for in the images 
arc the object edges. Using edges produces more complete information than using vatim. Edges can be used easily hac, because the 
one-dimensional information from edge elements suffices once the approximate object position and mentation an known. The edges 
currently an detected by IMFEX? which is a nonprogrammable precursor to PIFEX and computes an appmximation to the Sobel operator. 
When PiFEX is available, it will detect the cdgesand prrtbnn a podon of the computation involving them 

The object tracker works in a loop with the following major steps: pfedictim of the ubject position and orientation for the time at which 
a picture is taken by exeraplating from the previously adjusted data (or from acquisition data when starting); detrcti~~~ of features by 
projecting into the picture to find the actual features and to measure their image positions relative to the predictions; and the usc of the 
resulting &ta to adjust the position, orientation. and their time derivatives SO that the best estimates for the time of the pictun an obtained. 
The object tracker has been described elsewhen.6 

It is possible for any of thesc modules to fail because of poor data. A failure in any of them causes the acquisition p& to start over. 
As new features become visible, they may contain good enough information for successful acquisition and tracking. (The Object Tracker 
can track through regions of data too poor to allow acquisition to occur. If it fails, the re-acquisition probably will not suectad immediately. 
but eventually the object may move into a region of sufficient visibility for acquisition.) 

Notice that in the Model Matcher, the Tracking fnitializci, and the Object Tracker stem information is used implicitly. That is, stem 
matching between cameras need not be done for all featurn used by the Model Matcher and the Tracking Initializer, and it is not done for 
any features in the Object Tracker. Instead, featum arc matched directly to the object model. (In all three modules, these features can come 
separ&ely from each camera, but in the Model Matcher and Tracking Initializer, those features that have been matched between cameras by 
the Stereo Matcher arc used as units.) This process produces accurate stereo depth information even if the same features arc not seen by 
different cameras, because of the rigid-body constraint in the object model. 

This approach can be extended directly to multiple object recognition. Since one of the outputs of the model matcher is a probability of 
correct match, several of these matchers working in parallel with different object models could perform the recognition function. However, 
if a large number of different objects need to be recognized. additional modules would n a d  to be created to classify the feature patterns into 
one of several groups befon an attempt to make a detailed match. These broad classificatlons of objects might be made on the basis of the 
presence of cylindrical or spherical surfaces or the number of features of a given type (edge. vertex, etc.). 

5 .  Camen calibration 

The grappling of a spinning or tumbling satellite requires that the manipulator control system and the machine vision system agree on 
the 3-D positions of objects in the work volume. To achieve this correspondence, a calibratlon fixture has been fabricated that is used for 
both manipulator calibration’ and camera calibration. This fixture has an array of dots machined on a black-anodized aluminium plate. 
mounted on a framework which can be affixed to the floor of the research facility in any one of nine pre-measured pitions. These 
positions include three different planes for the face of the plate, 30 that the dots on the amy are xe:i by the cameras at three diffmnt 
dictances. allowing accurate determination of the camera parameters. 

The tint step in camera calibntion i s  to capture images from the yarious cameras of the calibration fixture in each of the measured 
positions. blanual input consists of the following; the camera number. the position number of the measured fixture position, the 3-D 
coordinates of these positions, the spacing of the dots, the diameter ofthe dots. the number of rows &id columns of dots. the nominal focal 
length of the camera. the nominal pixel spacing. and the approximate 3-D position of the camera. At present, the operator designates the 
comer dots. The result is a set of points. with for each point its 3-D position and its measured 2-D position. 

First, the approximate dot spacing a (in pixels) in the image plane is computed from the designated comer dot positions. Then the 
approximate Gaussian function for tiltenng is defined so that its standard deviauon IS half of the avenge dot spacing. The image is low-pass 
filtered by convolving with a one-dimensionalGaussian function first along the columns and then along the rows, and the mult is subtracted 
from the original image to obtain the high-pass-tiltered image. 

is computed for the pomon of the image which is expected to include all but the outer 
rows and columns of dots, with buckets for every integer from -255 to 255. This is summed and normalized to pdt ice  the cumulative 
dismbution c,. The predicted portion of area covered by the dots is computed from the known size and spacing of the dots. Then values 
halfway between this and 0 3nd 1 are computed, and the brightness valucs for which the cumulative histogram is equal to these values are 
found. The average of these two bnghtness values is used as the threshold. 

Every pixel of the high-pass-filtered image within the expected area of the dots whose value exceeds that of the threshold is tentatively 
assumed to he part of a dot. Every connected (by four-neighbor connection) area of such pixels is examined to see if it forms a good dot  I ts  
area should be within four pixels plus IO% of the expected value. and t!!e Euclidean distance of its border pixels from the centroid of its 
pixel posmons \hould not vary by more than one ptxel plus 5%. The dots hat pass these less are used. and h e  others ax rejected. For each 
dot that passes, the centroid of its pixel positions is used as the 2-D dot position (to sLb-pixel accuracy). The 3-D dot posiuon is obtained 
from the known dot spacings, with the individual dots being identified by progressing one dot at a tine from a known corner dot according 
to the expected dot image spacing. 

6. Camera Model Adjustment 

The actual camera model adjustment is performed by a least-squares adjustment. which finds the set of camera model parameten that 
minimizes the sum of the squares of the differences btwcen the predicted postions and measured postitions (in two dimensions) of the dots 
on the calibration fixture. The form of the camera model is that described in Yakimovsky and Cummingham 197g8, dthough we will 
probably add two terms for lens distortion to the model later. The least-squares adjustment is performed iteratively, since the problem IS 
nonlinear. Also, iq case the dot finder makes mistakes, automatic editing is done to remove bad dots, using the mehod described in 
Gennery 1980 and Gennery 1986.9’ 

A histogram of the high-pass-filtered image 
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7. status 

A wire-mapped ptotypc PIFEX module hu beea produced mddcbuggd. using a msMn ofthe cornrdvercomporsd dthrcc 
custom V U 1  chips (plus the line buffen). A printad circuit layout is king designed f a  use with a single-chip condva ,  I 
production of a P m  with about 120 mxtuta. A higtt-hl hguage f a  pgmnming n m  ttas been desigwd. md a a m p i 1 2  L 
wrim for i t  

Thc acquisition urd tracking system has ken designed, and most of it hrr been coded m Ricll for the micmVAX-X.The Faanc 
Tracker, Motion S t m o  module and Stcrro Makk have uecutad SucoCufuUy. The Model M a t c h  is slill unda devdapmenl. and coding 
has begun on the Tracking Initializer. 'Ibe Object Trick was running on a different computn from thc VAX presently in we; it bas kcn 
translated for use on thc VAX but has yet to Nfl on e images hue. h c ~  dl modukr arc working. OptimintiOn and intcqpba 
begin. Finally, when a sufficiently large P m X  is avulnble. appmpriatc ppm of acquisition and tracking. including much of the Faanc 
Tracker, will be programmed into PIFEX. thus incrwing dK speed and robustness of Ihe system 
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