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Compmer vision, especially col_ image analys,_and understanding._ much to e4"l'erin the lea of the aulemation of Space Statim
suchu conduction._,ite ,_" mg.rendez_o_and_,._/_ m_1,eed_,e,.m_',,t monitng.da,, m_..agree,n2

training. Knowledge.based techniques tml_oVe the .l_rfet_mn_ _ VlSmn .algorit_..for _ en_ts _ ot .the.tr,bil,_ Io
deal with imprecisea prioriinformation or maccaratety.e..st]ma,ted _ anti anti.._l.u..l_¢_uce..usetul .n_lulta. Uonvenlmnal .tecnmques
statistical and purely model-bas_ approaches lack tle_bility m dealing with the varmbilmes Imuapated m the unsmgtm_ viewing envu'onm_
of space. "

Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architectm_
for a Video Image Processor (VlP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-
based techniques and the potential for deployment of highly-parallel malti-pmcesu_r systems for these algorithms are discussed.

1.0 Introduction
qP

A major consideration in the design and deployment of the NASA Space Station is the definition of automation techniques which will
guarantee the timely and reliable performance of the Space Station's missions. During specification of the initial desi_ of the Space Station,
NASA has identified three criteria for the justification of the development Of an automation technique: 1

1. The automation capability should be of substantial value toward the objective of accomplishing Space Station functions, such as user
experiment monitoring, user production activities and satellite servicing in a timely and reliable manner.

2. The safety of the crew must not be compromised.

3. The Space Station should operate autonomously with as little suppor_ from ground-based facilities as possible.

A Video Image Processor will be a very valuable automation tool on'b_, the Space. station for several reasons: l.mage processin.g,
specifically the identification of the objects seen in the image and the formuiauon of a 3-dtmenstonal model of a scene, ts a pre-req.umte
cal_ability for the development of autonomous robots. These autonomous robots could i)erform many of the mundane tasks such as experumnt
monitonng and proximity operations that at the present time require crew member supervision. Image processing is also a pc'e-requisite
capability for the task of bandwidth reduction which will be necessary for the Space Station because of limited on-board storage and the
restrmnts of secure channel downlinks from the Space Station to ground-based facilities. For semi-autonomous implementations, image
processing is employed to execute repetitive tasks such as color image enhancement/restoration or operator cueing, and aa operator is reqm ed
only for verification confirmation of the actions of the algorithms. A Video IrratgeProcessor can perform each of the preceding tasks, thus
increasing the efficiency of crew members of the Space Station.

A Video Image Processor is a dedicated processing unit for image data that is modularly extendable and is to be built from commercially
available components. The VIP architecture was defined conceptually under contract to NASA by Honeywell Systems and Research Center en
the basis of several criteria, which are: maintainability, extensibility, programmability, physical aspects of deployment and the performance

specifications defined by current Space Station applications 2. The candidate architectures for the VIP were quantitatively evaluated with
architecture analysis tools to obtain a high degree of confidence in achieving the desired functionality. To do this a set of example.image
processing algorithms had to be specified and their performance evaluated for imagery acquired during prewous Space Shuttle rmsstons to
simulate the algorithms' behavior under realistic conditions. In this way, the processing requuements of the algorithms could be estimated for
the unique set of environmental, lighting and imaging constraints found in space.

The goal of the selection process was to develop an algorithm suite that would hencfit a sufficiently large number of space station tasks.

The various space station tasks that benefit from an image processing capability can be classified into eight generic categories: 3

• Construction
• Satellite servicing
• Rendezvous and proximity, operations
• Inspection
• Payload delivery and retrieval
• Experiment monitoring
• Data management and communication
• Training

In order for the Vlp to assist in the automation of these tasks, it should have a substantial array of image processing algorithms that it

can apply in accordance with the changing demands of the application. These image processing algorithms can he grouped into six major
families for the space station scenario:

• Color image e_ancement
• Tracking
• Surveillance
• Identification



• proximityopemfons
• Bandwidth reducfon
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Generic Tracking algorithms are also a i_re-requisi_ capability for all of the Space Station tasks considered. This can be explained as
follows: Scene interpretation algorithms can be decomposeo into four stages:

I. Segrnentadon
2. FeatureDetecdon
3. iconic (PLxel-Based)-to-Symbolicl_.atu_ Map.p.ing
4. Classification

The algorithmsthat together fo_. the T rack_g fu_,on a_re_._uivalent_e:_st d_eea_s_o_eSd_de_o_tance_f_zerez_fh°_tec_%_ofua_
of the charactensocs of an architecua'e tor me lracrang tuncmms ur_u=v=a ,a_t,_,,=,, r----

phase of all image processingalgorimms mat areoestgneo to o_tam symoou_tmu_,_ ....... e-

ei_,htSnaceStation taskscons_creo ano z) zn¢mgtnm.,_. --,, v'-'" . ..... _ ,,__.,.__,.:__
for_erl'_king function, with the exception the temlxxal silhouette watching
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Know,edge-based techniques area meansof employ.rag theeffic!en, s.ym.bolzcpat,ern matchi,ng_ _high-_/rat_e,_rien_sab_l_eU:_u_
............_r_ificlalintell _ez=_n_ecfor imageo intemretation__applications.... t_nowncoge-oase(l, tecnn)ques, tor re..gmn=_,c_.ng _a... ua _ u=g mscoveren--
data and still produce meaningful results They can be desngned m stages because of their meoutar rme fatalise, as new contexts axe
for classification of features, the system is reconfigured by the definition or modification of a few rules. Knowledge-based systems are very
efficient for the task of performing retrieval operations on large symbolic databases on t,_ basis of relational and contextual constraints on the

data.

Due to the unpredictable nature of imagery obtained in space, especially dunr,g construction of the Space Station itself with remotely
guided robots, and other factors unique to a space environment such as rapid diurnal changes while a vehicle is in orbit, knowledge-based
techniques will play a very important role in improving image interpre,tation algorithm performance. Knowledge-based techniques have been
applied extensively for all of the four stages of image interpretanon algorithms. These systems have been used for photointerpretation

..... a,=;_,,-., s,,stems 7 and the labelin= of features in arbitrary urban scenes. 8-9 These expert systems have
applications,4-6 autonomous w_,,vo,, ,,,...... 7 : ......
several features in common: A database of calculated image features is matched with predicates Of producuon rules, which are representeo as
logical statements of the form "If ..., then..." and a control system that supervises rule _tivation.

The system developed hy Nagao and Matsuyama 5 uses a knowledge base representing relational, contextual and geometric constraints
for the task of region labeling for multi-spectral imagery obtained from low-flying aircraft. The region boundaries are detected by a variety of
low-level image segmentation algorithms and the ,esultant information is archiveeLon a blackboard shared by each of the experts of the system.
Each expert is optimized for locating a specific kind of object or region. They devised an approach for the reliable classification of vegetational
re ions that is independent of the time of year, usingthe ratio of two dis_ct sp_-c,tral,.b_..cL_to _scrimi'nare _e ve_get_'on mgi'ons fr_._.._e, n_,:

g _ ..... L_:b.^...t.A,,..hq¢,,4 t,-_- 'n hermit'J_ retlaotc loenoIlcatlon ol flou::,cbuatulu,_a.__11_.t.._l_i_t_t_ttautu_
vegetaUon regions, t ney ucmonswat¢ u.,_ _u,,uw,._,. _ ._nm._ues r....

scenes where other classical approaches normally fail.

_hta 9 develooed a hierarchical re_;ion labeling scheme for color images of urban scenes. The app.roach is biers, hical, ,hecanse an initial

 ,an,mag;;s - ved ,abe,  ,orea de=led. .tedse.,merit,on7;ui ; n •
color image segmentauon algorithm. The macro.level regmns ot me _onthmZn_'g-e-zsre-are-"reltableUCY'uee._mdcan correctlyg label region"_'m ,,-ba_ outdoor
detected using top-down contextual and spectra_ constraints. The alg ry - --

scenes using only 57 rules.

However, very litde work has been done in the area of the application of knowledge-based techniques for tracking or motion
understanding. This is primarily due to the unconstrained nature of the problem. It is exceedingly difficult to specify an expert system that can
characterize the dynamic behavior of arbitrary objects as they translate and rotate in three dimensions. Work has bee. done on dynamic
environmen: understanding for a mobile robot employing an intelligent system for reasoning about the three,dimensional smJcture of a
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stationa_rv environment 10 This _h uses vath planning techniques for the identification and avoidance of obstacles detecte_t b.y son..ar
_-n--,,_t- _!_ _.chnlnu_ _ sn_'_11v demon_r_ed for the task of obstacle avoidance while navigating an M113 autonomous venicte, omit

by FM----'C_rp_,_-for _eDARPA-------'.ALVprogryn,..0rash a nine of obm,:tes. Hoover, nop_xdu_ is specifiedfor the detection and
interpretation of sensor data that results from movmg o_jects.

Honeywell is can, ying out research on the utilization of knowledge-based techniques for the discrimination of moving objects from

statiomnT objects in imagery obtained from a moving autonomous vehicle's camerL II This approach, which we have labeled Dynamic
Reasoning from Integrated Visual Evidence (DRIVE), identifies visual cues from • sequence of images that defines a global dynamic reference
model. Object recognition, world knowledge and the accomulafion of evidence are used to disambiguate the situation aad refine the global
reference modeL

The design principles for the idantifi .c_.'on of the _ .srchi..tec_. for d_. V.ideo Image _ were revinwed. _ __ _._.'on. efT_e
figen_ of merit for the design were stated _ _...approach utm ..z_ _ vanaa_ _ tte_agn tot"space. Ima..gta7 were._____mu_y_ _

• the three ima • galgnntlunswhichwercstu_eflwasexplamea, lae.ne.xtsectt.onflL_cuss_., tttetecnmcmucmuaulum.uu¢--_.
_sem_al_gt_¢tin_ sl_'_sPt_d soecifies avDro_hes got executing the same elgoritluns wita gnowteage-based techniques. Sectton 3

__es---th-_ty be p"ursued for"the .development.of ".t_.ge in...ter/_,tafion syst.en_...il_t employ knowledge_.ba.sed' tech_m'qu_-
The fourth secuon describes experimental results obtained for the atgonuun vauaauon tasg tor me vtueo linage Processor. aecoon _ m._u_
a few ".m.q_'_. t problems that are yet to be solved and that can produce significant increases in algnfithm efficiency and reliability for image
_tges._ng m a space scenario.

2.0 y.W._/flmgitlma

The details of the implementations of the three image processing functions chosen for the establishment of space processing
requirements for the VIP are discussed in this section. Special attention is paid to citing how the performance of each algtwithm is enhanced
with knowledge-based techniques.

2.1 ¢_olor Image Enhancengnt--The following, isa descripti.on of.thee of the algon_thms that were evaluated for Color Image Enhancement.
Each algorithm is designed to restore a particular teature ot me COlortmages, e.g., aynarmc range, sharpness, etc. It is therefore conceivable
tha| an actual implementation may use combinations of these algorithms to produce imagery with specific cokg characteristic_

2.1.1 Color Ima_ Balanced Histogram Etmalization--Color image halaneed histogram equalization enhances image conwast and increases
image dynamic range. The algorithm operates with the same fundamental principle that monochrome image histogram equalization employs,
namely, that the gray levels of the original image ate n_lis_boted so that the histogram of the transformed image will take the form of a uniform
distribution across a specified range .of gra.y levels. This.range is usually _ .di.splay range of t_. di._.lay device: The .mapping_s one-to-one;
thus, for each gray level of the original Image, every p txet taat a.ppearea wi_ _at gra.y .level wm a.p.pe.arwtm a untq_, g y level in the
transforrned image. However, multiple gray levels from me onglmu linage can map to a single gray level m _ tr4nstonnea Image.

For color images, histogram equalization is not a computationally simple process because of the requirement that the hue of each region
remains the same before and after histogram equalization. To meet this constraint, the color image balanced histogram equalization algori_m
calculates the equalization mapping for the intensity image, wbere the..intensity !ma.ge is ob.tain.e_l,as the average of _ree _ ima.ges. The

transformed primary images.are calculated fr_,, the ht_ogr__ .-_-quaa.zeamtenstty tma.ge..m tn_ manner, _ hue or each _o_tottne.tmate_
remains constant The algorithm operates as fOllOWS. Ine onsets ot me Color linage mtensmes from me average mtensny L-vet a_ _;,u,.u _,.

and the a'ansformed color levels are calculated as the transformed intensity level plus the original offsets. For example, confider a single pixei.
If the three original images' intensity values were red ffi 140, green ffi i.50, and blue = 110, then the average intensity at that point is I = 133. If

the mapping derived by histogram equalization was 133-.175, then the output color levels for that location are red = 182, green = 192, and
blue = 152.

Images transformed with this algorithm will exhibit full dynamic range, and the hues of the regions of the image will not change. This
may be shown as follows. A three-channel color image can be equivalently represented by an HIS image, where HIS stands for hue-intensity-
saturation. The hue image represents the color of the regions of the .origin.al color i.n._g.e, w be_., the..magni.tnde of the hueis .proporfi.on.al to the
percentages of the three immary colors, red, green, and blue. The mten.stW, m_.ge is s.tmpty me ar_tnmeuc ave.rage ot my .h_e co!or lmage.s.
The saturation image represents the strength of the color. ! he.range, ot.tae hue linage is o to _a_, .me range ot memtenslty m_ge ls o to za.a,
and the range of the saturation image is 0 to 1. (The hue and mtenstty tmages can be archtved as integer arrays, out aecause me range ot me
saturation image is 0 to 1, it is archived as _treal-valued array.)

For the HIS color space, the hue is calculated as a function of the ratio of linear functions of the three color image intensities.
Specifically. this function is

t[ I{(R.G)+(R.B)] l --
Hue = COS" I ,,_/

where R. G, and B an: the re.d, green, and blue intensities• If B:>G, then the hue = 2_-hue.
When R = G = B, the hue is undefined.

Let the three original chromatic levels at each pixel be represented as R = l + A R, G = I + A 6, and

B = I + A a, where I is the intensity value of the pixel in the original image. Let the output color levels be R' = I' + A R, G' = I' + A G, and
B' = 11+ A B, where I' is the intensity value of the pixel after transformation. Because R-G = R'-G', R-B = R'-B', and G-B = G'-B', the

magnitude of the hue is unchanged by the transformation. Therefore, the color infon'nation that was present in the original scene, but was not
discernable because of the low dynamic range of the image, is preserved. This characteristic of the algorithm will guarantee that the transformed
image is a good representation of the original scene because its colors are faithfully reproduced.
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turation of the image. Color saturation may be increasedu form, s. lne onse.ts ot .e_cnor me ongtmu urns© _,_,_,_ -,_- -._ ,_,,I
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We can represent the quandties MAX and MIN (where MAX and MIN are the maximum and minimum of the three primary inagc
intcnsides):

MAX=I+AMAX
MIN =I+AMIN

The magnitudes of MAX and MIN. after tnnffommion, are defiued as

MAX' = I+ K AMA X

MIN' = I- K AMIN

o

$ =

The tr_nsfot'med image's satm'ation is

MAX - MIN

MAX'

l+ KAMA x - I + KAMII¢
=g

I+ KAMA x

_x +_N
_t

I
--÷Amx xK

As K--¢ -., the term I/K in the denominator will decrease, thereby causing the saturation to increase. With the contraints that AMAX is positive,

AMIN is positive, KAMIN < I, and KAMAx < 255 - L the maximum value that S' can attain is I, as K--¢ -_. It can be seen frmn the following

arguments that the hue of each region is unchanged. The color levels of the image after accentuation can be represented as R' = I + KA R, G"= I
+ KA G, and B' = I + KA 8. The magnitudes of each of the subtracted pairs-R' - B', R' - (3', and G' - W-are equal to K tings the magnitude
of the respective subtracted pair before accentuation. When these values are used to calculate the hue for a svecific pixel of the image, the facax
K can be brought out of the numerator and the denominator, which means that the magnitude of the hue component will not change.
Therefore, this algorithm also faithfully represents the hue of the original image.

This technique may be employed to increase the saturation of colors of each of the regions of the image. The efffect is to make small
surface detail more distinguishable.

2.1.3 Constrained Inverse Fiherina--Constraincd inverse filtering is a technique whereby degradations of the.ima.gm,g p.rocess, such .as a
dispersing medium betweentheimagingsystemand.the objectof in.terest or..,out-of-f:ocuss_°Pt2t_hat_.uC_tce_matt_n_gisvsttalemsigno__
Constrained invexse f-fltering is effective when u_e point spreaa tunctton _r_r) oz u_ _,t u,s ....... o-._ -_-- r
or can be estimated falrt7 accurately.

Constrained inverse filtering is a specific form of inverse filtering. It is a restoration technique that attempts ,'0 invert the effects of an

optical transfer function on an image. Invex_e filters are implemented, to minimize, the. sum of squared errors between,.. the original image and.the
 sto ,ma c,or of !ma e,  on
with a constrmnt that the norm squared ot me restore,.,, unage ts as ..snaauas l_S.__m___ _,_._,,,_,' _,_v_ ,_ss -mnlovcd is "-torto ima t nc np_uz_us u_ -,-_ tlon _.... r
the observed image from appearing at too great a lever in me res ge. •....

g (t, w) = h(t, w) * fit, w) + n(t, w)

where g(.L w) is the observed image, h(t,w) is the PSF of the degradation function, fit,w) is the original, undistorted image, n(Lw) is 0-
mean, white Guassian noise process, and x*y repre_nts the two-dimensional convolution of x and y.

The discrcg representation oftheimage is obtained by sam p.ling g(Lw.)at a se_ofp_ints on a _<e_iml ) _ nijt=-kT;(0_-_I",;k=-I/2 .....0<j_- I)I/2"
1;w=lT;l=-J/2 ..... J/'2-1. I.,¢t gi,j (0<'--L-_I-l;0_j-qJ-1), fi,j (0_isl'l; tmJ::_'t), nk,lt_'--_n':'; _'..--_.'" "'. respectively. Themod¢l
represent the discrete measurements of the observed image, the original tmage, the PSF, aml me a_omve norse,
equation for discretizcd images is

K-1 L-I

gi.j = X X hL/fi-Lj-/+ni.j

k=O l=O
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If the dimensions of the spatial images, {gij}, {fi,j}, and {hkj }, am the same, we can transform the previous equation into a frequency
domain representation. Let N and M be the row dimension and column dimension, respectively, of the three images. These dimensions can
be seh:cted arbiuarily, but the values selected should be greater than I÷L-I and I÷K-! in the horizontal and vertical directions, respectively, to
prevent the convolution window from extending off the image in the previous equation. They can also be selected as a power of 2, so that
efficient implementations with the Fast Fourier Transform (FIEF)are possible.

If Fourier Transforms of the observed image {gi,i}, the restored image {fij}. and the PSF {hi, i} are defined as G(u.v). F(u,v). and
H(u.v). respectively, then the frequency domain representation of the constrained inverse f'dter is:

^ H(u.v)*
F(u.v) = G(u.v)

H(u.v)* H(u,v) + ¥

where H(u,v)* is the complex conjugate of H(u,v), and _ is an arbitrary constant that controls the magnitude of the norm squared of the

estimate of {fi,j}.

2.2 Trackin_ and Bandwidth Reduction--The tracking aigoriflun operates on a monochrome image to detect man-made objects in the field of
view and track them over multiple images. The major elements of the tracking algorithm are multithreshold se .g.m.entation,boundary tracing,
linearity filter, connected component analysis, and silhouette matching. Multitlueshold segmentation is used to tdentify regions of the image
with relatively constant intensity. A boundary n-acing algorithm produces boundaries of regions that are passed through a linearity filter to
determine which regions contain swaight edges identifying them as part of a man-made object. Once the man-made pieces are assembled into
objectsby connectedcomponentanalysis,trackingisperformedby thesilhouettematchingalgorithm,whichcomparessilhouettesofobjectsin
successiveimagestodeterminerelativemotion.FigureI isadataflowdiagramoftheu-ackingandbandwidthreductionalgorithm.

The followingsubsectionsdescribethealgorithmforeachcomponent functionofthetrackingalgorithm.Due tothelargedegreeof
commonalitybetweentrackingand bandwidthreduction,thelatterisdiscussedhereinsubsection2.2.8.

2.2.1Window Average-Thewindow averageisa simpledata-independentoperationn'ansfonningtheoriginalintensityimageintoasmoothed
intensityimage. Itsfunctionistohelpremove sensornoiseintheimage,ensuringthatdistinctregionsintheimage haverelativelyconstant
intensity.The operationcomputesanew valueateachpixelpositionby averagingtheinputintensitiesofpixelsina window aboutthepoint.A
5 x 5 window was foundtowork wellon test.imagery.

2.2.2 Monochrome Se_qnentafion--Monochromesegmentationdividesthesmoothedinputimageintodifferentregions,whereeachregionis
characterizedby a "nearly"uniformgraylevelLabelsareselectedtorepresentdifferentintensityranges,and eachregionisappropriately
labeled.Thisisaccomplishedinthreemajorsteps.First,an intensityhistogramof theimageiscomputed.Second,thishistogramissearched
forlocalminima and maxima, which definetheintensityrangescorrespondingtointerestingregionsintheimage. Eachdistinctrangeis
assigneda labeland anupperand lowerthresholddefiningtherange.The thirdstepistoapplythethresholdstotheimage,replacingthevalue
ate.-chpLxelwiththeappropriatelabel.A listcontainingthelabelsand theaverageintensityvaluesoftheu"correspondingregionsisalsooutput
foruseby thebandwidthcompressionalgorithm.

2.2.3BoundaryTracing--Boundarytracingisa datatransformationalgorithmwherebyencodedregionboundariesareobtainedfroma labeled
image.The encodedregionboundaries(silhouettes)aremuch more compactthana completeimage,requiringaboutfourbitstostoreeach
imagepixelthatison theboundaryofa region.Conceptually,",healgorithminterrogateseachpixeloftheimageinan orderlyfashion.At each

point,thecurrentpixelisexamined todetermineifitison theboundaryofa regionthathasnotbeentracedyet.Ifso,thealgorithmu'acesthe
boundary,endingatthesame pixelwhereitbegan.The algorithmproceedstoexaminethenextpointinsearchofmore regions.When every
imagepointhasbeenexamined,alloftheregionshavebeen_aced.

2.2.4LinearitvFilter--A.linearityfilterisappliedtothesetof silhouettes.Thisfiltercomputesa measureoflinearityforeachsilhouetreto
determineiftheycorrespondtoman-made objects.The outputisa binaryimage withnonzerovaluesatboundarypointsof regioaswhose
silhouetteswererelativelylinear.

The computationofthelinearityfilterisillustratedinFigure2. Usinga slidingwindow ofwidthw. theanglessland s2formedby the
currentpointand theendpointsof thewindow aredetermined.The differencebetweenthesetwo anglesisthecurvature.Foreachsilhouette,
thelinearitymeasureistheaveragecurvatureofallboundary,points.Ifthismeasuresexceedsa predeterminedthreshold,theboundarypoints
oftheregionaresetintheoutputbinaryimage,indicatingthatthesilhouettecorrespondstoa man-made object.

2.2.5ConnectedComponent Anoly_i_--Connectedcomponentanalysisisa general-purposefunctionthatidentifiesconnectedsetsofpixelsin
an image. Each connectedsetisidentifiedwitha labelinan outputlabeledimageand a locationinan outputfeaturefile.Inthisinstance,
connectedcomponentanalysisoperateson thebinaryimageoutputfrom thelinearityfiltertodeterminewhichsegmentationsilhouettes(and
thereforeregionsenclosedby thesesilhouettes)belongtothesame object.Sincedifferentcomponentsof an objectmay havedifferent
intensities, an object may be segme_red into severa] 'adjacent regions. Since the regions are adjacent, they can be grouped into one component
by connected component analysis.

2.2.6 Trace Coml?onent_--This algorithm uses the starting locations and the labeled image output from connected component analysis to trace
the boundary of each component (which in this case is a single target). Because the starang locations are known, this algorithm is considerably
more efficient than the boundary tracing algorithm described in subsection 2.2.2. Thus, in this algorithm, it is not necessary that each image
point he visited; however, the same method for tracing a region boundary is used.

2.2.7 Fa._t Silhouette Matching--Fast silhouette matching compares the silhouettes of targets found in the current frame to stored silhouettes of
targets u'acked in previous frames. Depending on which new targets match which previous targets, the tracked target information is updated,
and any new targets are added to the track list. To match new and previous targets, each new silhouette must be compared to each old
silhouette. The match scores are used to determine which new and previous targets correspond.
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To compare one new silhouette with one previous silhoueue, the (x,y) translation is determined, which maximizes the number of
• . . . • . . • •

ntunt_erotcougloentDoun_ posts, m pracuc©,eas_nFumL utu_ p_-,_,_o,,_
point of the target silhouette. Then the two silhouettes arc traversed simultaneously, incrementing counters in a two-dimensional histogram.
Each counter corresponds to the (x,y) translation necessary to make the new and previous boundary points in question correspond. On
completion, the histogram is marched for the maximum. The maximum value is compared to the length of the silhouettes to determine the

• • • • . . •

accuracyof thematch. Essentiallythisis.avariauonof theHough Transform. Choosingcorresl_dingst_cng I_2n_,_,_mV_moenut.ot°
making a hypothesisabout the relative mouon vctween images, mcrcmenung a counteris cqmvalent to voun_ _,_ ,_e_ .... v',7_
vector. The peaks correspondto the most likely modon vectors. The actual motion vector generally garnersthe most votes. The advantageot
sucha technique is its robastoessand reladve insensitivity to noise.

2.2.8 Bandwidth Reduction-This is a very simple operation.... that combines several inte_nediate tracking results, to be transmitted,to.a remote
location for storage or viewing. The essential inform.a_on from the, .mage.,s the target s,gnatu_,.complete w l_ _.m_uc_hd_.ecta_Ofin_ca_gne_
;tseff as possible. The region silhouettes produced by tnetmun._. _ng rag.on .ram an: proc.ess_ by me ml__e_W_.n_wr'_u_,_,f_. ,o,,.,-, _'_,5
whether that silhouette passed the lineanty filter or not. then the oanawmtn re(lucuon operauon can look at ca_n _xu. _,,,,._,_,_. _,........
ones that were considered part of a man-made object.

3.0 Knowledge-Based lmaee Interoretation Concents

•Knowledge,based teclm,iques for ima.ge inter, re.ration _ ran.re _bus.tthan.con.venuon_techniques
image features on the bas_s of incomplete or m_premse mmrmauon ootameo tram me _mage. _ass_ca_ _ecrm_qu¢_, u, _ _,,,, -
specific features of objects from images on the basis of the degree of match between the actual features and a trLxed,a priori model of the

.....feat,  . W,enthedegr of., smatc, sumc, .n,Lyg t. as
threshold, the algorithms reject me concmston mat me mature was onservom nuwcvc_, _a,,,w,_e_-v,,_,_, ,,.,- -t o ,
the hypothesis; they associate a "confidence factor" with the hypothesis transfer the positive and negative evidence obtained to date for that
feature to a database, ff evidence is found that either confirms or refutes the existence of the specific feature, the database can be revised. It is

this characteristic of knowledge-based systems that makes them invaluable forima.ge, interpre,tau.on in uns .u'uctu_i. _¢nvi_onmecn2;SsUoCL_?o_
S ace Station construction environment. These systems nave me capanmty ot oenvmg conclusions from lmprcu_:,c ,,_ _.out_ _ .
i_f_rmation and maintaining the history of deductive steps applied to reach those conclusions to permit optimal uuhzanon of all available
information at any single instant of time.

There arc four generic categories of knowledge-based scene int_'rprctation algorithms, which are:

1. Scene Labeling
2. Temporal Resolution
3. Context-based Resolution
4. Knowledge-based Feedback Control for Resegmentadon

Each of them techniques will be explained in succeeding paragraphs.

3.1 _cene Labeling,--The reliability and accuracy of each of the image processing functions tabulated in. T.able !. will I_. enhanced with an
understanding of the scene context for the image being evaluated. The context is (moaceo rrom a set ot mne_s app_reo to me scene oy a scene

labeling algorithm.

Honeywell has developed a Reasoning Region Classifier (RRC) 12 to identify and test the knowledge pertinent to each of a specific class
of regions. RRC is a production role system, with explanation facilities, whom goal is to characterize image sub-regions of interest, based on
vision system observable featues, such as region uniformity, texture smoothness, topological features, etc. This system is currently
implemented for the classification of man-made and natural objects in air-to-ground imagery, but it could be ..easi!y modified to discrimina!e
objects for the space scenario. The model of the scene swacture is a hierarchical database, which has the label enure scene at me root, ann xs
subdivided at each level of the hierarchy as the classification of scene objects becomes more specific. The march for the true classification of a
specific region or object is performed on the subtrec which has the highest confidence level based on the production rules.

3.2 T_m_x_ral R_soludon--Tempor_l Resolution is a technique for the resolution of conflicts that result from region classification for region
labels. It consists of the following steps:

I. Identify a sequence of frames which have been mgmented into regions each of which desplay a region in the neighborhood of the
candidate regxon R.

2. Determine whether the classifier result on the candidate region, say R. in .the present frame, is consistent with the classifier results on
the portion of the image corresponding to this region in past frames of the sequence.

-3. Otherwise, moiify the classifier result R by multifrarne decision smoothing.

3.3 (_ont_x_-Based Resolution-Context-based resolution conflict removal combines region information and relational context information from
the current scene, for modifying classifier decisions that are inconsistent with the world model as repremnted in the hierarchical database.

Conflict removal is performed by detecting inconsistent configurations in the scene. The production roles that are used by the context-
based resolution technique are based on a priori world knowledge.

3.4 Kngwle_i_e-Based Feedback C0ntr_l for Rese_°,mentation-'A scene is composed of multiple regions that have different sizes and shapes. A

single segementation algorithm may not suffice to properly mgrnent all them regions. Appropriate choices of mgmentors based on the ancillary
information are crucial. Further, each algorithm has an associated set of parameters. Proper setting of the values of them parameters has a
major impact on the algorithm regardless of how robust it is. For example, a large window size in noise smoothing techniques can blur the
edges between two regions, thus, resulting in an erroneous region classifications. In this case, adaptive tkresholding can remedy the problem.



There are two typesof knowledge-based controlmethodologies thatcan perform equallywell under variationsof scenecharacteristics

e.ncountered in Space Station scenario.

3.4.10uen-Loon Control--The first type of control is called open-loop knowledge-based control. This is a process that directs the low-level

processing through proper image operator selection and the associated parameter value selection. Open-loop control processing governs simple
data reductiontaskssuch as noise removal and region of interest selection.

The Open-Loop Control scheme derives the process goal from the information stored in Short=Term Memory (data obtained from the
current image) and the knowledge base. The process goal is usually based on temporal and ancillary information such as previous frame

processing remits, the lighting conditions and a priori information for the radiometric and topological characteristics of the current scene. Rules
in the knowledge base are used to derive the process goal. An example of process goal derivation is:

IF (mission goal IS (satellite detection) IN (high clutter area))

THEN ((locate region with two parallel Linear borders) AND (remove high frequency noise))

Based on the derived processing goal. the selection control identifies the proper image operators with their associated values. The
selection is also generated by the roles stored in the knowledge-base. An example of the selection rules is:

IF (remove high frequency noise)
THEN RUN (window average routine)

The process module then executes the selected image operators with the given parametric values. The output of the process is passed

directly to the next low level process. The process module can also generate some knowledge, such as the image contrast, which can be used
by other processing modules. This generated knowledge is fed into the k_iowledge-bas¢ for subsequent use.

3.4.2 F_:_dback Control--The second type of control is called the feedback knowledge-based control process. It is designed for governing

complex low-level processes such as segmentation and color image enhancement processes.

Similar to the open-loop control process, feedback control derives the process goal from the knowledge in the knowledge-base and

short-term memory, and selects the appropriate image operators and their parametric values. Then, the image operators ate applied to the image
and the results are passed to a process evaluation module. The process evaluation module determines the next processing step. The evaluation
module either:. 1) accepts the output and passes it to the next processing module, 2) feeds the image back to the same process module,

recommending different image operators or parameter values for more refined processing, or 3) rejects the results and bypasses the process
module.

The evaluation decision is also based on roles _d information acquired from the scene stored in the knowledge-base. An example of a
region evaluation rule is the following:

IF (Goal Size = small) AND (Goal Shape = rectangular)

AND (Region Size = large) AND (Region Shape = rectangular)

THEN (Resegment region with a lower threshold)

These knowledge-driven control processes make the best use of all available information about the scene. Each processing module can

achieve the best possible performance in satisfying the processing goal. Therefore, a high performance scene analysis system can be developed
by synergistically integrating the low level processing results.

4.0 Architecture Analysis for Parallelized, Multi-Processor lmnlementation of Knowledge-Based Algorithms

Previous sections of this paper have briefly touched on the key Space Station tasks which can benefit from knowledge-based vision

processing. Details of specific Space Station vision functions and their implementation have also been discussed. In this section, we overview
key architectural ;.ssues in developing a hardware architecture and software methodology for implementing these vision functions.

Developing real-time architectures for imaging systems is acknowledged _ a difficult problem in many respects and _mai.'ns a highly

active research area. The key issues include: how to attain necessary and sufficient performance i how to p .rogram and m_n_n re al-ume
systems: whether to use homogeneous or heterogeneous hardware; how to integrate processors With the environment; aria now to oevelop
planned/evolutionary approaches based on standards. A general solution to these central issues does not exist. Instead they must be revisited

for each new application considered.

Statements of hardware performance requirements and capabilities usually are given simply in terms of the millions of operations per
second (MOPS) needed for a set of functions or available from a system. A more critical measure of system performance would look at:

operations per second (OPS) as a function of algorithmic requirements; power requirements; physical size and weight; and cost. In short:

Performance Measure = OPS(algorithm) / Watt cm 3 $

Because transportation costs and limited space and weight budgets are key drivers in Space Station construction, the key elements of this
metric should be throughput as a function of algorithm pea'formed and total volume required to achieve this throughput. Weight and power are
typically correlated to volume for a given technology, and the desire is always to minimize cost consistent with achieving functionality.

Typically, compu:er architects design systems in an attempt to keep functional units (e.g., atithmeu.'c logic units or multipl!ers) maximally, busy
because algorithmic performance requirements are specified in terms of the number of adds, muluplies, etc. Applying thls approach to Image

processing architectures leads to designs in which 90%+ efficiency is achieved but on only 2-5% of the total processor hardware. Maximizing
the throughput-to-volume ratio leads to more compact systems in which functional units are not necessarily fully utilized and is a logical
approach for signal and image analysis architectures destined for the Space Station.
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The tradeoff between using a heterogeneous or homogeneous processor architecture is a c.-ucial tradeoff for any image pt,ocessing
system. The wadeoff is driven by algorithmic requiremen_ as well as issu.es °f sys .ternexp.andability' .W°.gra_na_•b.ili_'-a_d flex_'-t_- -'__
robust algonthtmc paradigms for tmagmg systems subdtwde me processmg steps mto various categones. ,,_n tmagc unu¢ _tanumg pard_
which has been useful in developing computer architectures is shown in Figure 3. This paradigm categorizes algorithmic functions according to
data structures and processing functions. It is straight-fotward, practical, and robust to directly translate such paradigms to hardware systems
as indicated in Figure 4. Such an approach leads by n_turc to a heterogeneous architecture attd from experience tends to minimize system
volume. In general, tr,om specialized hardware modules lead to a more compact system, but maximizing the throughput-to-vohime ratio in this
fashion must be balanced with expandability, programmability, and flexibility requirements in the Space Station application.

Two aspects of programmability become issues for real-time image processors. First. image processing hardware must be designed t.o
utilize a high degree of parallelism at all levels to achieve high performance. The software methodology and tool set must provide adequate

means to deal with parallelism and must bridge the gap between co .ar_ .grained hig.h-level lan_ages (e.g., Aria, FORTRAN ? _etc.!_.a_i
fine-grained machine languages (e.g., microcode). Any inefficiency m me transtatto, or compt.at_on process atrecuy impacts me aaa_ systmn
hardware requirement. Second, a software methodology intended for use with heterogeneous architectures must support all procesax types in
an integrated fashion. These arc especially important issues in the Space Station setting where software development and maintaner,_ costs will
likely be the dominant portion of total imaging system cost.

The application environment affects imaging system architecture in many important ways. In the Space Station environment, factors
zuch as fault tolerance and recovery, reliability, and testability an: clearly imptm._t to safe and effective use of any mission critical computing
equipment. In addition to these more or less generic considerations, very spacmc design details can be influenced by the enviram_nt. For
example, electrical and radiation induced noise effects of the space environment lead naturally to considerat;.on of optical interconn_ for high
data rate sensor channels. It is also logical to consider performing sensor specific preprocessing functions local to the sensor m reduce or
eliminate channel induced noise. A broader environmental issue is the type and number of video sensors which can be active simultaneously.
An ,architecture is needed which can re2_i!y switch between sensors and sensor types.

A final h;gh-level issue with significance to the Space Station application is the ability of the selected architecture to adapt in at.
evolutionary fashion to evolving mission requirements. To achieve such an adaptation capability requires a so-called "open" arc,hitectur¢ in
which modules may be added or replaced. Designing an open but heterogeneous architecture is difficult in that each element of the architecture
brings specialized interconnection, software, and other requirements. Maximum use of standards is a necessity to successfully deve!olfing such
an open architecture.

A specific image processor implementation for Space Station applications has been developed and is reported in a companion paper [13].
This Video Image Processor (VIP) design is based on careful consideration of the broad issues discussed above and on ±e specific
requirements of the image processing tasks and algorithms discussed in earlier sections of this paper. Over 150 architectural variations were
analyzed using advanced computer modelling techniques. The result, illustrated in Figure 5, is a two-level architecture using spec:,al purpose
high-performance image pixel processing hardware operating in a pipelined fashion combined with a distributed sha.,_l-memory
multiprocessor. These two levels perform the image frame processing and combined region and symbolic processing functions from the
taxonomy of Figure 3. The relatively low update rates specified for VIP allow the array processing and general purpose computing functions of
Figure 4 to be combined in the multiprocessor.

Although the VIP architecture satisfies the essential processing requirements for the knowledge-based vision algorithms previously
described and provides ess:'ntial growth room, numerous architectural research areas with direct application to the Space Station remain to be

explored. These include:

Sensor _eorocessine. Gallium arsenide technology provides the capability to integrate analog, digital, and optical int_connection
circuitry monolithicallv. This capability may be used to advantage in Space Station sensor preprocessing by combining analcg to digital
conversion hardware, p_processing logic (for noise suppre_ion, detector compensation, and bandwidth compression), and high speed optical
data channels on a single chip located at the sensor.

Pmgr_mmine Methodoloev. Two research areas relevant to programming heterogeneous signal and image processing systems are
being explored by us. The first is a hardware array processor architecture designed to perform certain run-time resource manageme:a functions
through special hardware constructs [14]. This approach can out-perform static (e.g., compile-time) resource allocation and leads to a more

productive throughput-to-volume ratio then software-based dynamic allocation schemes. The second approach is a normal form language,
IMP, which provides the programmer with manageable access to hardware parallelism rather then attempting to "hide" parallelism. This
approach gives the programmer a homogeneous software environment for programming a heterogeneous system -- hardware modules may be
readily added or modified within the context of IMP.

C¢ll¢lar Architectures. Image processing architectures based on collections of simple cellular processors [15] hold significara potenfi_
for maximizing the throughput-to-volume ratio in space-borne applications. A new pixel-processing arcmtecture nasea on a paranet
recirculating pipeline tPREP) is under development by us. This architecture avoids the classical computztion-l/O-memory balance 7:'oblem to
achieve high pixel-processing performance in an extensible and high-order language programmable fashio.",.

EvolutiQnarv Architectures. One research effort recendy completed by us involved definition of an integrated ._ignal and image ,-'rocessing
subsystem using hardware, software, and mechanical standards in an open architecture configuration. Our architecture research Laboratory
(ARL) combines a muhiprocessor environment with sl_al purpose hardw .a_. in just such a configuration and allows us to plan and rapidly
execute new processor module and system development m an evoluaonary fashion.

5.0 Exnerimental Results

For the Color Image Enhancement Algorithms, the performance of the three algol:bins was evaluated by synthesizing 6e_m'-adations
which might be encountered for real space imagery for the high-quality photograph; and then quantitatively comparing the degraded imag=s,
after enhancement with each of the three algorithms, to the original image. A block diagram of the quantitative evaluation procedure Lsshown in

Figure 6. For the Tracking and Bandwidth Reduction algorithms, a sequence of 8 frames at 1 second intervals were digitized from :he Miss'_on
4l-C "Video Hizhlizhts" video ta_e, where the imagery dtwicts the SYNCOM satellite rotati _z in space near the Space Shuttle, _ortly after
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deployment, against a cloud-covered earth background. The Tracking function's accuracy was empirically evaluated by comparing the
algorithm's estimate for the two-dimensional change in location of the satellite (displacement vectors) to the best-guess at the actual displacement
vectors, which were estimated by visual inspection of the gray levels of each successive pair of images. The maximum error in the estimated
displacement vectors for the eight frame sequence was I pixel vertically and horizontaly.

Each of the Color Image Enhancement algorithms were evaluated for the task of restoring degraded imagery for a range of image
degradations in order to accurately characterize the algorithm's performance in terms of an empirically derived model for its behavior. The
Color Image Balanced Histogram Equalization algorithm and the Color Image Accentuation algorithms are efficient computational techniques for
the restoration of dynandc range for color imagery. Here the dynamic range is the difference between the maximum intensity value and the
minimum intensity value of the luminance image. A set of three degraded color images were generated, one which had a dynamic range equal to
50% of the original image's dynamic range, one with 62% dynamic range and one with 85% dynamic range. These images were then restored
with the Color Image Balanced Histogram Equalization algorithm and the Color Image Accentuation algorithm, in that order. Mean-square-
error masures were then employed to quantitatively evaluate the accuracy of the restorations. These mean-square-error measures were the
output luminance image sigual-to-noise ratio and the output chromatic signal-to-noise ratios. For all cases but one, the quantitative measures
demonstrated that the Color Image Enhancement algorithms did restore full dynandc range to the test imagery and also did not distort the
intensi W or chromatic information of the images. Further details can be found in 2.

A few of the results of the experiments with the Color Image Histogram Equalization and the Color Image Accentuation algorithm are
presented in Figures 7 through 10. Figure 7 is the original image. Figure 8 is the degraded image with a 50% reduction of dynamic range with
respect to the original image. Figure 9 is the result obtained by processing the image with the Color Image Balanced Histogram Equalization
algorithm and Figure 10 is the result of increasing the image's saturation after histogram equalization. Inspection of these images demonstrates
that full dynamic range has been restored.

6.0 Conclusions

Therearea multitudeof applicationswhere knowledge-basedtechniquesmay beemployed toimprove theperformanceof image
interpretationalgoridum,forspaceapplications.Becausethebenefitsofknowledge-basedimageinterpretationalgorithms:increasedalgorithm
reliabilityand increasedrobusmess,areofgreatimportanceintheuniquespaceenvironment,itisapparentthatany futurearchitecturalconcept
developmenteffortsshouldtakeknowledge-basedtechniquesintoconsideration.
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Table 1. Cross reference between applications and algorithms.
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Figure 2. Computation of the Linearity Filter.
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Figure 7. Original image.
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Figure 3. A Taxonomy of Image Understanding Operations.
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• SP = signal processor
• AP = array processor
• GPC=general purpose computer

Figure 4. A Hardware Architecture Based on the Taxonomy of Figure 1.
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Figure 8. Degraded image:50% dynamic range.

Figare 9. Restored image.
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Figure 10. Restored and enhanced image.


