Abssvwad: The properties of a temporal language are determined by its
constituent elements: the temporal objects which it can represent, the
attributes of those objects, the relationships between them, the
axioms which define the default relationships, and the rules which
define the statements that can be formulated. The methods of inference
which can be applied to a temporal language are derived in part from a
small number of axioms which define the meaning of equality and order
and how those relationships can be propagated. More complex inferences
involve detailed analysis of the stated relationships. Perhaps the
most challenging area of temporal inference is reasoning over
disjunctive temporal constraints. Simple forms of disjunction do not
sufficiently increase the expressive power of a language while
unrestricted use of disjunction makes the analysis NP-hard. In many
cases a set of disjunctive constraints can be converted to disjunctive
normal form and familiar methods of inference can be applied to the
conjunctive sub-expressions. This process itself is NP-hard but it is

made more tractable by careful expansion of a tree-structured search
space.

1. Introductioa

An intelligent autonomous system operating in a remote, unstructured
environment must have three capabilities. First, it must be able to create a
plan or course of action according to an initial state of the world, a goal
state of the world, and some knowledge of its own abilities., Second, it must be
able to determine a sequence of actions, according to the constraints on the
steps of the plan and the evolving state of the world. Finally, it must be able
to produce the desired effect of those actions according to its abilities and
the present state of the world.

The performance of the planner, the sequencer, and the executor components
of such a system can be very much affectad by the language used to represent
plans. The concepts of action must be suitable for the planner, which must
reason about goals and effects, but at the same time be tractable for the
executor, which must produce the desired effects. The concepts of order must be
sufficient for the planner, which must control undesired interactions between
operations, but at the same time they must not impose unnecessary constraint on
the sequencer, which must adapt the sequence of actions to the dynamically
changing state of the world. The methods of formulation must enable the planner
to produce the most general plans possible, yet at the same time it must be
feasible for the sequencer to derive a sequence of actions from those plans. The

language must be terse. The size of the plan must be proportional only to its
~omplexity.

*Research conducted under the McDonnell Douglas Independent Research and
Development Program.

It has been repeatedly suggested that reasoning over time is an essential
elemant of planning and specific temporal representations have beem proposed to
facilitats the planning process. including a linear programming model of Malik
and Binford{1], the space-time maps of Miller[2], the interval algebra of
Allen(3]. the point algebra of Vilain and Kautz{4]), and the end-point represesn-
tation of Cheeseman{5]). Although not concerned with plaaning but instead with
the problems of sequencing the activities of robots, Yox and Keapf[8] propose a
language of temporal constraints as the target represeatation for plaaners.

With this abundance of temporal languages for planning and sequencing, it
i{s important to establish the properties of the proposed languages and to
understand the inference methods which can be applied to them. Although a
complete survey of temporal reasoning is beyond the scope of this paper, an
examination of the basic elements of temporal representation and the methods of
temporal inference will establish the primary criteria for coaparing these

languages.
2. Klemsats of Temporal Represeatatioa

The properties of a language are embodied in its syntactic form and its
semantic interpretation. The concern here is with the semantic elements of a
language rather than with its syntactic details. Nevartheless, in order to
discuss the variety of possible temporal languages, i. is necessary to introduce
some simple syntactic structures which represent abstract semantic entities.

Temporal languages are concerned primarily with temporal objects: instants
and intervals of time. Some authors maintain that instants of time present soms
semantic difficulties and therefore propose that time intervals should be the
primitive element of temporal reasoning{3]. Others maintain that intervals of
time can be defined by their endpoints and propose that instants should be
treated as the basic element of temporal reasoning. Sowme sequencing probleas
involve activities, which in reality occur over some interval of time, but for
purposes of analysis can be treated as atomic and indivisible. In the following
discussion, instants of time will be treated as primitive objects, denoted by
alphanumeric symbols such as X, Y, and nine-o’clock. Likewise, intervals will
be denoted by alphanumeric symbols, such as Z, W, install-clip, and drill-bhole,
but when useful or necessary, the initial and final endpoints of an interval
will be denoted by a suffix letter i or £ attached to the interval name, such
as Zi and ZIf.

Temporal languages are concerned with the attributes of teamporal objects.
Some languages may allow the specification of the absolute time of some instant
or it may be possible to specify the duration of an interval. Specialized
systems may associate the properties of physical processes with intervals, such
as rates, loads, or volumes. Planning systems may associate propositional
variables and their values with temporal objects. Ultimately, each temporal
object is associated with some event, activity, or proposition. For instance, it
is possible to refer to the instant which begins an occultation, or the interval
of time when the action install-clip is performed, or the interval »f time over
which the proposition channel-is-available is true.

Temporal languages are concerne”d with the relationships between temporal
objects. The most primitive involve the relationships between instants of time.
Two instants may be equal, denoted by the operator =, they may te inequal,
denoted by the operator <>, or they aay be ordered, as denoted by the operator
<. In order to avoid any syntactic ambiguity, such relationships are written in
fully parenthesized infix notation, as in the expression (X < Y). The relation-
ships between two intervals of time, as defined by Allen, are shown schemati-
cally in Figure 1. The relationships between instants and intervals of time can
be defined in a similar fashion. All of these relationships can be specified by
their respective endpoint relationships as indicated in the right hand column of
Figure 1.

In addition to the facilities for explicitly stating the relationships
between temporal objects, a temporal language must include some axioms which
define the relationships between objects that are not otherwise constrained.
Commonly, it is assumed that, in the absence.of other explicit constraints, two
instants of time, X and Y, are ordered as either (X < Y) or (Y < X), or they are
equal, (X = Y). Likewise, unless otherwise constrained, two intervals can be
related in any of the 13 possible ways shown in Figure 1. In some applications
involving the serial execution of a set of operations, there is no opportunity
for any of the operations to be done concurrently. In such cases an axiom which
defines the default relationship between intervals states that, unless otherwise
constrained, two intervals, X and Y are disjoint and ordered as either
(X before Y) or (Y bafore X). Such axioms play a significant role in the
treatment of negation and the processes of inference.

10

Temporal languages are subject to certain rules of formulation. The
simplest rule is to assume that a given set of primitive constraints is to be
treated as a conjunction and that they must all be satisfied simultanecusly. In
contrast, the language defined by Allen allows a restricted form of dizsjunction.
The relationship between a given pair of intervals can be specified as a
disjunction of any of the 13 possible primitive relationships. This makes it
possible to circumscribe indefinite relationships or to prescribe some relation-
ships which cannot be expressed as one of the 13. For instance, suppose that two
intervals, X and Y, must begin at the same time but that there is no constraint
on their termination. It would artificially constrain the intervals to state
that (X bagins Y) because this primitive relationship requires that X terminate
before Y. Likewise it would be an artificial constraint to require that
(Y begins X). Using this vocabulary of 13 primitive relationships, the
relationship between X and Y can only be stated as a disjunction, ((X begins Y)
or (Y begins X)). In Allens’s language, disjunction is restricted to phrases
that define the relationship between a single pair of intervals and cannot be
used to pose constraints such as, ((X before Y) or (Z before W)).

The properties of a temporal language are determined by the combination of
these elements: the objects, attributes, relationships, default axioms, and
rules of formulation. Together these elements determine the set of problems that
can be represented. For instance, the language of strict partial orders is
composed of symbols which denote instants of time, the primitive ordering
relationship ¢, the default axiom that states for all X and Y either (X < Y) or
(Y < X), and a rule of formulation that allows only conjunctions of primitive
ordering constraints. A given constraint expression in this language defines a
set of admissible total orderings over a set of instants of time. For example,
The conjunction ((X < Z) and (Y < Z)) defines 2 admissible orderings of X, Y,
and 2: [X,Y,Z] and [Y,X,Z]. The limited rule of formulation in the language of
strict partial orders makes it impossible to state the constraints for a problea
which admits the 4 linear orderings (X,Y,Z). [Y,X,Z). [Y,Z,X]. and ({Z,Y,X].
There is no conjunction of primitive ordering constraints which defines exactly
this set of linear orderings! The limited forms of disjunction included in
Allen's interval algebra or the point algebra defined by Vilain and Kautz
encompass some sense of indefiniteness in the relationship between teamporal
objects but these forms of disjunction are not sufficient to represent the full
range of possible ordering problems.

A number of common temporal representations can be quickly distinguished by
their constituent elements. For instance, the language of equivalence classes is
composed of symbols which denote atomic temporal objects, the equality and
inequality relationships, = and <>, an axiom which states that for all X and Y,
(X =Y) or (X <> Y), and a rule of formulation which allows only conjunctions of
equality constraints. In contrast, the language of graph coloring problems has a
similar structure but the rule of formulation allows only conjunctions of
inequality constraints. The language of temporal constraints proposed by Fox and
Kempf(6] is composed of symbols which denote atomic temporal objects, the
ordering relation- ship <, an axiom of serial processes which states that for
all X and Y, (X < Y) or (Y < X), and a rule of formulation which allows
arbitrary use of conjunction, disjunction, and negation. This axiom limits the
scope of this language to problems that involve activities that must be done one
at a time, such as a robot performing an assembly task. However, the
unrestricted use of disjunction guarantees that this language can represent any
problem within that domain. Portrait, a temporal language under development by
Fox and Green allows arbitrary use of equality, ordering, conjunction,
disjunction, and negation.

3. Methods of Temporal Inference

Temporal reasoning is a process of deriving the properties of temporal
objects and the relationships between temporal objects that are implied but may
not be explicitly stated in a given set of temporal constraints. The most
familiar form of temporal reasoning is constraint propogation. In the language
of equivalence classes constraint propogation is based upon two axioms. The
first defines the symmetry of equivalence: for all X and Y, (X = Y) implies that
(Y = X). The second defines the method for propogating equivalence: for all X,
Y, and Z, (X = Y) and (Y = 2Z) implies that (X = Z). There is no symmetry in the
language of strict partial orders, only an axiom which defines the method for
propagating order: for all X, Y, and Z, (X < Y) and (Y < Z) implies that
(X < Z). The language of partially ordered sets includes an axiom which defines
how a disjunction of order and equality can be propogated: for all X, Y, and Z,
(X <= Y) and (Y <= Z) implies that (X <= Z). Coupled with this is an axiom which
defines how constraints over a given pair of temporal objects can be resolved:
for all X and ¥, (X <= Y) and (Y <= X) implies that (X = Y). If, after the
complete propogation of constraints, only one of the constraints (X <= Y) or
(Y <= X) has been imposed then it can be assumed that the two objects are not

11

equal. Vilain and Kautz define a language over instants of time which, for a
given pair of instants, allows an arbitrary disjunction of the 3 possible
relationships between.that pair. In this context, the propogation of constraints
can be best defined by a matrix as shown in Figure 2. Conjunctions of
constraints over a single pair of instants can be resolved by a rule of
intersection as shown in the matrix of Figure 4. Vilain has demonstrated that
constraint propogation within this language is both complete and correct.
Allen’s interval algebra relies upon similar, tabular rules of inference, but
because of the added complexity of this language, constraint propagation is not
guaranteed to be complete.

In most circumstances these constraint propagation axioms can be applied in
reverse in order to identify the essential constraints in a problem and to
eliminate any implied constraints. Given the complete set of implied and
easential constraints it is a simple matter to identify the equivalence class of
some temporal object along with all of its predecessors, direct predecessors,
siblings, successors, and direct successors. For instance, the axiom which
defines the predecessors of a temporal object Z states that X is a predecessor
of Z if (X < Z2). The direct predecessors of Z include all those temporal objects
X such that (X < Z) but there does not exist Y such that (X < Y) and (Y < Z).
These can be easily identified by scanning the set of essential constraints.

Reasoning about the admissible ordering of temporal objects is directly
related to an analysis of precedessors and successors. For instance, in the
language of strict partial orders, the controlling axiom specifies that a
- temporal object X can occur only after all of the predecessors of X. Of course,
those objects which have no predecessors can occur at any time. This axiom can
be used to incrementally build sequences of activities. At each step of the
process simply choose one of those activities which can occur next.

In most sequencing problems the combined ordering constraints limit the
admissible sequences of activities but do not remove every sequencing option. In
most problems there are many admissible sequences. The number of admissible
sequences can serve as a useful indicator of the available sequencing options.
In some problems this may provide an estimate of the effort required to find the
best sequence of activities. In other problems it may provide an estimate of the
inherent flexibility that can be exploited in sequencing those activities. The
naive apprcach to computing this number would be to explicitly enumerate all of
the feasitle sequences by exhaustive application of the sequencing axiom or
other more sophisticated algorithms(7]. Unfortunately, the simplest of probleams
will prove the most intractable. Consider a serial task of 15 steps with no
sequencing constraints. There exists 15! = 1,307,674,368,000 sequences. Even if
one sequence could be generated each microsecond it would still requie 15 days
to enumerate the entire set. Fortunately, general methods are available which
can determine the number of feasible sequences over a strict partial order
without explicit enumeration. These methods are first reported in a textbook by
Wells{8] but several refinements of these methods were developed at MDRL by the
authors. Generally, this computation can be accomplished by recursive
application of 3 simple rules: .

(1) if a set of activities can be divided into two subsets such that
all of the activities in the first set must precede all of the
activities in the second set, then the total number of feasible
sequences equals the number of feasible sequences for performing the
activities in the first set times the number of feasible sequences for
performing the activities in the second set.

(2) if a set of activities can be divided into two subsets such that
all of the activities in the first set can be performed independently
of the acitvities in the second set, then the total number of feasible
sequences equals the total number of feasible sequences for performing
the activites in the first set times the number of feasible sequences
for performing the activities in the second set times the number of
ways that one sequence from the first set can be interleaved with ocne
sequence from the second set.

3) if a set of activites cannot ba divided into two subsets according
to rules (1) or (2) then that set of activites can be partitioned into
two strategies for performing those activies which have no feasible
sequences in common, and the the total number of feaszible sequences
will be the number of feasible sequences under the first strategy plus
the number of feasible sequences under the second strategy. The
partition is generated by identify a pair of unconstrained activities,
X and Y. The first strategy is defined by the orginal set of
constraints plus the constraint that X must precede Y, (X < V), and
the second strategy adds the constraint that Y must precede X,

12

(Y < X). (Repeated application of these 3 rules is guaranteed to work
regardless of the X and Y chosen when using rule 3, but the number of
partitions generated is zignificantly affected by the choice. By
carefully selecting the steps X and Y, it is possible .to control the
number of partitions ultimately generated.)

By recursive application of these rules it is possible to determine the
anumber of feasible sequences for performing a set of activiites from start to
finish, or it can be used to determine the number of ways of completing the task
from any given state. In most circumstances the number of feasible sequences
corresponds closely to the degree of flexibility inherent in the sequencing of
the activites and it can be used as a valuable metric for comparing different
plans or strategies. As a side-effect, application of the 3 rules stated above
results in the decomposition of a given task into sets of dependent activities,
sets of independent activities, and into disjoint sub-strategies. This
decomposition can be used by human analysts to better understand the structure
of the tasks that they must plan and coordinate.

Unfortunately, inference over a disjunctive language, such as that
developed by Fox and Kempf, is much more difficult. One way of resolving the
constraints in a disjunctive constraint expression is to convert a given set
constraints into disjunctive normal form, i.e. a disjunction of conjunctions of
the primitive ordering constraints, keeping only the satisfiable and non-
redundant subexpressions. In that form, the methods of inference sketched above
can be applied separately to each conjunction of constraints and the results
combined under an appropriate interpretation of disjunction. The production of
this reduced disjunctive normal form is very difficult, in fact it is NP-hard,
but it is an essential part of more general temporal reasoning

For instance, the constraint expression shown in Figure 4 is typical of the
constraints imposed on small assembly problems. Production of the disjunction
normal form of that constraint expression, using the distributive law of boolean
algebra, (X and (Y or 2)) --> ((X and Y) or (X and Z)), results in a set of 1024
conjunctions. In general, the size of the disjunctive normal form grows
exponentially with the number of applications of the distributive law. Some of
the resulting conjunctions are inconsistent and should never be considered,
others are specific cases of more general sub-expressions in the result and can
safely be removed. Other simple methods for producing the disjunctive normal
form have the same result. However, all of the admissible sequences for
performing the task defined by these constraints are embodied in only 22
conjunctions.

An afficient method for deriving that set of 22 conjunctions is closely
related to methods for determining the satisfiabliity of boolean expression and
is based on the expansion of a tree structured search space. Each node in the
search space consists of 2 parts. The first is a partially formed conjunction,
and the second is a constraint expression which remains to be satisfied. The
root node consists of an empty conjunction coupled with the initial constraint
expression. Successor nodes are formed by propagating primitive constraints from
the constraint expression into the conjunction being constructed. The target
leaf nodes consist of a completed conjunction which satisfies the original
constraint expression and an empty set of constraints remaining to be satisfied.
Specific heuristics have been developed which make it possible to prune
redundant or inconsistent solutions early in the tree expansion. Using these
methods the constraint expression shown in Figure 4 produced 28 consistent
conjunctions, 6 of which were subsequently identifed as redundant. Subtree
expansion was terminated 58 times because inconsistencies were detected and 12
times because redundancies were detected. This is considerably more efficient
than producing 1024 conjunctions and then attempting to prune the
inconconsistent and redundant sub-expressions.

13

4. Conclusion

The properties of a temporal language are determined by its constitueat
elements: the temporal objects which it can represent, the attributes of those
objects, the relationships between those objects, the axioms which define the
default relationships, and the rules which define the statements that can be
formulated. The methods of inference which can be applied to a temporal language
are derived in part from a small number of axioms which define the meaning of
equality and order and how those relationships can be propagated. More complex
inferences involve detailed analysis of the stated relationships. Perhaps the
most challenging area of temporal inference is reasoning over disjunctive
temporal constraints. Simple forms of disjunction do not sufficiently increase
the expressive power of a language while unreatricted use of disjunction makes
the analysis NP-hard. In many cases a set of disjunctive constraints can be
converted to disjunctive normal form and familiar methods of inference can be
applied to the conjunctive sub-expressions. This process itself is NP-hard but
it is made more tractable by careful expansion of a tree-structured search
space. :

References

[1]Malik, J. and Binford, T.0., Reasoning in time and space, Proceedings Eighth
International Joint Conference on Artificial Intelligence, Karlsruhe, West
Germany, 1983.

[2)Miller, D., Scheduling heuristics for problem solvers, Research Report 264,
Yale University Computer Science Department, New Haven, Conn., 19863.

(3]JAllen, J.F., and Koomen, J.A., Planning using a temporal world model,
Proceedings Eighth International Joint Conference on Artificial Intelligence,
Karlsruhe, West Germany, 1983.

(4)Vilain, M. and Kautz, H., Constraint propogation algorithms for temporal
reasoning, Proceedings Fifth National Conference on Artificial Intelligence,
Philadelphia, Penn., 1988,

{5]Cheeseman, P., A representation of time for automatic planning, Proceedings
Second IEEE interrational Conference on Robotics and Automation, Atlanta,
Georgia, 1983.

[(6]Fox, B.R. and Kempf, K.G., A representation for opportunistic scheduling,
nggeedings Third International Symposium on Robotics Research, Paris, France,
1 .

{73Kalvin, A.D. and Varol, Y.L., On the generation of all topological sortings,
Journal of Algorithms, v4, pp. 150-162, 1983.

(8]Wells, M.G., Elements of Combinatorial Computing, Pergamon Press, Elmsford,
New York, 1971.

X before Y, Y after X $o---- X-=~=-- + Xi < Xf < Yi < Y¢
$o———— Yo +
X meets Y, Y met-by X R tatdeld X===-- + Xi < Xf =YL < Y¢
b y-—=~- +
X overlaps Y, Y overlapped-by X +----- X-==-- + Xi < Yi ¢ Xf < Y¢
bom——— ymm——- +
X starts Y, Y started-by X +omx--+ Xi = Yi < Xf < Y£
tom——— y----- +
X ends Y, Y ended-by X : +~-x--+ Yi < Xi ¢ X¢£ = Y¢f
dm—— y---—- +
X contains Y, Y contained-by X 4----- X==——— + ’ Xi < YL < Yf < X¢£
+--y--+
X equals Y $omm—— X=—== + Xi = Yi < Xt = Y¢f
$m———— yo-=-- +
Figure-1.

Thirteen possible interval relationships.

14

yRs <« = > <= = <> <=>
xRy xRs :
< < < <=> < 2> <&=> <=
= < = > <= >= <> <=>
> <=> > > <> > <=> <K=3>
<= < <= <=> (= <=> <(=> <=>
>= £=> >= > > O>= £=> <£=>
<> 2> <> €=> 2> <£=2> (K=> <=
<=> €=2> <£=> <£=> <L=> <£=> <(K=> <=

Figure 2.

Matrix of constraint ?ropa‘ntion in the point algebra.

xRy <« = > <= >= <> <z>
xRy xRy
< < x b 4 < x < <
H X = x = - b4 H
> X x > x > > >
£= < = x <= s < <=
>= x = > = > = >= >=
<> < x > < > <> <O
<=> < = > <= >= 2> <z=>

Figure 3.

Matrix of constraint resolution in the point algebra.

(co before cl) and
(ba before cl) and
((co before st) or (co before dr)) and
((dr before co) or (dr before ba)) and
({ba before dr) or (ba before ca)) and
((ra before co) or (ra before ba)) and
((mi before ra) or (mi before ms)) and
((mi before co) or (mi before ba)) and
((sm before mi) or (sm before ba)) and
((sm before co) or (sm before ba)) and
((ri before co) or (ri before ba))

Figure 4.
Typical disjunctive constraints on the steps of an assembly problem.

15

