Contingent Plan Structures for Spacecraft | .

[
. R
M. Drummond, K. Currie, and A. Tate e) o
University of Edinburgh ot E
Edinburgh EH1 1HN, United Kingdom kf, = rofe

1. Abstract.
Most current Al planners build partially ordered plan structures which delay decisions on action ordering. /S‘l%,—
e

/ ’ -
/,/' oo

structures cannot easily represent contingent actions. This-paper_presents a representation which can
representation has some other useful features: it provides a good account of the causal structure of a plan, can be
used to describe disjunctive actions, and it offers a planner the opportunity of even less commitment than the
classical partial order on actions. The use of this representation is demonstrated in an on-board spacecraft activity
sequencing problem. Contingent plan execution in a spacecraft context highlights the requirements for a fully
disjunctive representation, since communication delays often prohibit extensive ground-based accounting for
remotely sensed information and replanning on execution failure.

2. lntroduaion.

Plan generation isn’t problem solving. Planning problems are physical realities which require physical solutions.
Planning can only be construed as problem solving when it's part of a larger system which also addresses plan
execution; only execution can realize the solution a plan specifies. We use this theme of plan exccution to bring
together some important issues in Al planning. We consider least commitment plan construction, the representation
of teleological information, disjunctive plans, and contingent plan executior in realistically complex domains.

We begin in the next section by briefly discussing the way that most Al planners operate. Commonly used
techniques include least commitment action ordering and object selection; we discuss both. Following this, in
section 4, we describe an actual planner called O-Plan [1) which uses these techniques to good effect. We cover
the essentials of O-Plan’s search for an acceptable plan, leaving aside low level details. This discussion is used to
show how O-Plan relegates the responsibility for reasoning about disjunctive actions to its search space management
component. We argue that what a planner needs is a plan structure which is able to describe the disjunction of
action implied by the choices encountered during plan construction. In section 5§ we present a solution to the
problem. A representation is given which has the properties we seek: it can be used to do least commitment plan
construction; it explicitly represents teleological information; and it can describe disjunctive actions. Together these
abilities allow our plans to be used for plan execution in realistically complex domains. To motivate this, section 6
places the ideas in the context of a spacecraft activity sequencing problem: planetary observation. This example
causes us to reflect on the basic principle of least commitment problem solving in general, since it supports a form
of least commitment reasoning which commits even less than current techniques.

The primary result of this paper is a representation we call C-Plans. We claim that the representation is
suitable for use in sequencing the activities of automated spacecraft. Further applications-oriented research is
required to substantiate this claim.

3. Current Al planners: least commitment plan construction.

An Al planner is given the responsibility of constructing a plan of action. Such a planner is given an initial state
description, a set of goals, and a set of actior schemas. The schemas are parameterized plans, suitable for solving
limited problems. A plan produced by the system is an artifact buiit ~om individual operators, appropriately
instantiated and ordered. This plan must be sanctioned by the system as a fcasible means of achieving the given
goals. In this section we examine briefly two of the main operations required to produce this plan: action ordering
and variable instantiation.

bai 17

%.tuttfva SUETIG .+ ¥ 1]

3

3.1. Action ordering.

Early planners built mcally ordered structures: a plan was a sequence of actions. This oot only applied to the final
plans produced by the system, but also to the partial plans that were built during search. With Sacerdoti’s Noait [3)
system this all chanped. NOAH built plans as partial orders on actions. This meant that it was possible for any two
given actions 0 be wnordered with respect t0 each other. The intmition behind this idea is that a partial order on
actions characterizes very many total orders. Today such plans are often called nonlinear. It might seem that 3
system which builds nonlinear plans would be exponentially more efficient than one which beilds linear, or totally
ordered plans. Unfortunately this has never been proven. Only the intition exists that nonlinear is better than
{inear; but this intuition is better than nothing. See Chapman {4] and Drummonad [5] for more on this.

2. Object selection.

There is another sort of least commitment found in some planners which relates 10 the way that the objects referred
to in plans are selected. Variable instantiation is the process of selecting comstants 1o bind to variables. Eaxh
variable can be bound to a specific constant, or anbound, meaning that 00 constant has yet been selected as
appropriate. But it is possible o operate in 2 more sophisticated way: we can post constraints on the permissible
constants for any given variable. In this way., we consain the possible bindings for a variable, rather than sck..
one as correct outtight. Information can be gathered during the process of pian coastruction which leads 1o the
deletion of particular constants from the set of possibilities. The hope is that evenmally the set of possibilities will
be narrowed 10 one aliernative, or reduced to the empty set, indicating that the constraints posted on the variable are
5o strict that there is no satisfactory object. This method of associating constants with variables is known as least
commitment object selection. lts genesis was in Molgen [2].

4. A framework for doing this: O-Plan.

O-Pian is 2 modemn planning system which owes many of its ideas to NoaLin {6]. NonLin derives from NoaH. and
extends it in many ways. For our purposes the essential contribution of NonLin is its completion of the search
space of partial plans: NoaLin could find plans that NOAH could not. This is because NonLin had plan modification
operations available 10 it which defined its search space of partial plans so as to include plans that NOAH would
never consider. O-Plan inherits its definition of the search space from NonLin. In the next section we coasider the
mechanisms used by O-Plan to search the space of possibilities. We explain how it keeps wack of alternatives, and
how it searches through the space of partial plans. We then go on to consider how this mechanism can be extended
through a more flexible representation for plans.

4.1. Agenda-based partial plan search.

The planning components in the O-Plan framework employ various techniques to lessen the amount of potential
sexzch in any particular appiication. The techniques include least commitment variable binding, constraint cut-off.
temporal coherence and various heuristic functons. O-Plan searches through a space of partal plan states, guided
by thase techniques, where each partial plan state is derived from the application of a plan modification operator 10
some current partial plan. This is essentially a search space of plan modifications, or operatons whose application
results in 2 new (parual) plan state.

An O-Plan Plan Sawate is a structure of some dewil and it includes the partial order of activities that is
currertly being built (essentially the plan so far), a log of effects and conditons asserted or required in the plan, the
teleclogical information used during plan generation (and available thereafter), variables used during planning and.
finally, information on outstanding tasks generated during the planning process. These pending tasks are collected
together into agenda lists from which each task can subsequently be scheduled in some opportunistic fashioa. This
mechanism provides for a dynamic approach similar to that provided by **blackboard™ based systems.

{n practice there are two main agenda lUst nypes, cne for sk speciicatiens which are fylly instantiated. and
cne for task specifications where certain information has vet to be determined. A third “*alematives’” agenda list is
currentdy employed which should eventwally disappear, but which has been used in the absence of a comglste
method for dependency-based plan repair.

18

Task selection is done under the control of a scheduler, which provides the opportunism for the overall
process. This scheduler can be regarded as a “plug-in’’ module in the O-Plan system and therefore it can reflect
various scheduling strategies. The scheduling of a task from the agendas causes 2 handler (or knowledge source) to
process that particular task. The relevant handler is invoked by the type of the task scheduled hence the system is
data driven by the tasks themselves. As well as changes to the current Plan State, the processing of a task generally
results in the creation of new tasks or the amendment of existing tasks on the agendas.

When choices are made, the task handlers have the option to either post dependency information in the Plan
State, or to simply spawn alternative Plan States via the alternatives agenda mentioned earlier. The former method
has the advantage that it offers the potential for proper plan repair where only the affecied parts of the cumrent
{(partial) plan are stripped off after a failure, while useful parts are saved and the work dooe in producing them
protected. We are researching how this can be done by using partial plans augmented with teleology information,
although there are many outstanding problems.

Processing proceeds in cycles and finishes when all tasks have been processed or when there is reason for a
particular task w0 terminate planning. In theory the handlers are independent of one another but they do have the
ability to **poison’’ the current Plan State if they detect inconsistency or constraint violations. This is the time to
backtrack, plan repair or simply give up. Search through the space of partial plans is therefore controlled by the
scheduler which chooses the next best thing to do, using information provided by the tasks generated during
planning. Mere detail of the O-Plan control structure can be found in [1].

4.2. The requirement for truly disjunctive structures.

O-Plan searches through a space of partial plans. When there’s a choice that cannot be delayed, the current O-Plan
task scheduler pursues one of the available options by incorporating it into the current Plan State. On failure, O-
Plan may reconsider all previous Plan States on the altemmatives agenda and pursue a previously ignored plan
modification operation. In this way it follows a ‘‘one-then-best’® search strategy as in NoaLin.

An altemative approach is demonstrated by the foilowing scenario. Consider that at some point during its
search for an acceptable plan, the system identifies an outstanding goal, G. Assume that there are two action
schemas which after analysis appear suitable for achieving G. The traditional approach says that this choice
induces a bifurcation in the search space, each path considering one of the two possible actions. However if our
developing plan is able to represent disjunction, such a bifurcation is unnecessary. Both possible actions (resulting
from instantiating the schemas’ variables) can be installed in the plan. The only requirement is that the plan recard
the fact that these two actioas stand in 2 disjunctive relationship.

By the above discussion we aren’t suggesting that 2 pianner consider all possible options at each point in its
search; such behavior is doomed to failure, since the number of options open will inevitably be huge. Much of the
information noeded for later planning also becomes uncertain in a plan with too much disjunction. However if the
plan representation is able to describe disjunction, then the system will have the opion of including action
disjunction as appropriate.

Contingent plans are also necessary for doing realistic plan execution monitoring. When a plan is generated,
it’s unlikely that the generation component can guarantee what the world will be like when plan execution begins.
To properly handle this we need disjunctive plans. The planner can produce plans which contain actions to dzal
with whatever contingencies it deems worth coasidering. Such a contingen* plan must specify the conditions under
which exch of the planned actions is appropriate, 10 allow the execution component to correctly select which action
to execute.

So: we would like t0 formalize a plan structure able to represent disjunction of action. But in doing this
there’s a trap 0 avoid. We could easily over-simplify the data structures used by a system such as O-Plan. It
would appear possible to formalize a noalinear plan as a partially ordered set. Mathematically all one requires is a
set of actions and an ordering relation over that set. (See {4] for an example.) The ordering relation is required to
be irreflexive and transitive, therefore asymmetric. The problem with such 2 simple formalization is that is fails to
capture much of the information that O-Plan exploits during plan generation. In particular, it does not capture the
goal structere of a plan {7]; that is, the causal structure that exists among the planned actions.

There are other requirements on the formalization that we won't consider in this paper. In particular, we
won't address formalizing least commitment object selection. Data structures to support such operations are simple
to formalize, but for ease of exposition, we woa't do it here. It is straightforward to add this to the formalism we
present.

19

S. Formalizing contingent plans,

We can borrow some notions and notation from Net Theory [8]. Not all the constructions that we need are part of
net theory, so we'll have 10 add a few bits onto the basic framework. We won’t motivate our additions; for a brief
discussion, see [5], and for more extensive motivation [9). Essentially, we use Condition/Event systems augmented
with event occurrence preference orderings; we also identify the conditions and events of the system with predicates
of a simple language. In this section, we'll proceed by informally defining the constructs of our plan language,
building up the overall structure we 1equire. The evental goal is 10 define C-plans, or Coatingent Plans, following
on the arguments above. It is possible t0 be quite formal in defining these C-plans, but this paper simply explains
and motivates them.

5.1. Basic C-plan structure,

A proposition is a functor applied 10 arguments. A functor is written in lower case, followed by its arguments in
parentheses. Arguments are variables or constants; we allow infinitely many of each. Variables are written in upper
case, constants are wriaen in lower case. For example, both on(a.X), and skew-platform{15 lefi) are propositions.

Propositions are identified with what we call b-elements and e-elements. A b-element is intended to denote a
condition in the world, and can be tue or false. For instance, the b-clement clear(c) under a blocks world
interpretation is true if and only if the block denoted by ¢ has nothing on its upper surface. Propositions are also
identified with e-elements. An e-elememt is intended to denote an action, the occurrence of which changes the
holding of cerain conditions.! For instance the e-element move(a,b.c) in a blocks world context might denote the
action of moving the block denoted by a from the block denoted by b to the block denoted by ¢. Certain conditions
must hold if this action is t0 occur; furthermore, when the action does occur, certain conditions in the world will no
longer hold, and cestain others which did nct hold will begin to do so. For example, in the case of the block
movement we might expect that a can only be moved from b o ¢ if a is initially on &. Following thc movement,
will be on c. We need o capture these condition-action relationships in our plan representation.

To do this we inroduce the notion of a flow relation. A flow relation is a set of ordered pairs, each pair in
the set ordering either a b-element and e-element, or e-element and b-element. The ordering of a b-element and e-
clement is interpreted as an enable relation. Thus, the holding of certain conditions is understood to enable the
occurence of certain actions. The ordering of an e-element and b-element is interpreted as a cause relation: actions
can cause the holding of certain conditions. The flow relation describes the relationship between any given event
and that event’s enabling conditions and effects. It captures what O-Plan and NonLin call Goal Structure; the best
dictionary word for this concept is probably teleology. We use the word to refer to the reasons for some event or
condition being included in a plan. The flow relation of a net allows a formal analysis of which actions can be used
to enable which other actions; this is essentially the reasoning that O-Plan performs to generate a plan. Other
modern planners, such as SIPE {10] also include such infosmation in their plan data structures.

We will refer to the b-elements which are ordered immediately before an e-element as that e-element’s
preconditions; similarly, we will refer 1o the b-eclements ordered immediately after it as its postconditions.

Graphically we present b-elements as circles and eclements as squares. Each circle is labeled with the
proposition which is the b-element, and each square is labeled with the proposition which is the e-element. The
flow relation is drawn as arcs from circles t0 squares and from squares to circles. If an arrow is to go from a circle
10 a square, and another from the same square to the same circle, we draw only one line, and use an arrow-head on
each end of the line to indicate the two arcs.

One other ordering relation is needed o complete the basic C-plan structure. This is the before relation, used
to constrain the way that a net can execute. Intuitively, the before order is a specification of which events mus
occur before which other events if a plan is to run to its intended completion. We often refer to the before relatic
as execution advice. Consider: the cause and enable orderings in a C-plan's flow relation describe what is causaily
possible. But in planning we are often interested in only one of generally many causally permitted execution
sequences. Causal orderings will not always uniquely constrain a set of actions to describe just those behaviors

Y

! We use the terms "‘action’” and *‘event’’ i geably, as con

20

which achieve a planner’s overall goals.

A classic example of this occurs in blocks-world tower construction problems. For example: given the
problem of creating a tower with block C on the bottom, block B in the middle, and block A on top, the plan
construction reasoning must order the two required stack actions to reflect its averall goals. To see this, assume
that all blocks are initially clear and on the table. If a plan calls for stacking A on B, and B on C, then both stack
actions are enabled in the initial state. It is not an ordering enforced by causation that requires the stacking of B on
C before A on B. Rather, it is the agent's intention regarding overall plan execution outcome that directs the
sequencing of the two actions. :

So a C-plan is defined by specifying & set of b-elements (which denote the conditions of interest in the
domain being modelled), a set of e-elements (which denote the relevant actions), and an ordering relation on the
members of these two sets (technically, the relation is bipartite, since it orders members of two different sets). The
C-plan is augmented by giving some execution advice for causally underconstrained actions. This advice takes the
form of an ordering relation on C-plan e-elements. To keep the graphical presentation of C-plans simple, we do not
draw arcs between e-clements ordered in the execution advice. Instead, the ordered pairs are simply listed beside
the net.

A simple blocks world plan basically compatible with what we have defined here can be found in [11).
52. C-plan projection.

We now have to say something about the projection of a C-plan. A projection is a structure which supports
reasoning about the behaviors that a C-plan describes. First we must say something about the conditions under
which events can occur and what changes they realize by occurring. Second we must build up the projection
structure which describes the overall behavior of a C-plan, using the definition of individual event occurrence as a
building block. E-element occlrrence can be used as a *‘state generatos’ to create a state-space account of the
behaviors permitted by a plan.

We will call an arditrary set of b-element propositions a case. We interpret such a set of propositions as a
partial description of a state of the world. If a proposition is in a case, then it is true; if it is not in the case, then it
is false. Graphically, we present cases only in terms of C-plans -- when doing so, we place a dot (a roken) inside
each and only those circles labelled with propositions in the plan which are also in the given case.

We can use this idea of a case as a partial world state description to define when an individual e-element is
enabled; that is, when the action it denotes is allowed to occur. To model this, we can say that an e-element is
enabled in a case if and only if its preconditions are 2 subset of the case, i.e., if the enabling condidons of the event
are true. We also require that none of the e-element’s postconditions are already in the case, unless they are also
preconditions. Further, we can specify how the world is changed under the occurrence of the action, by defining
how an e-clement’s enabling case is modified to gain a successor. We can generate a new case through the
occurrence of an e-clement the new case is defined to be the old one, minus all the e-element’s preconditions, plus
all the e-element’s postcondiiions. The effects of an event are made true in the successor case, and the enabling
conditions are made false. If a precondition is not made false by the occurrence of an action, one need only make
the relevant b-element a postcondition of the e-element as well.

This definition of e-element occurrence can be used to build up a state-space graph structure which tells a
story about the possible behaviors of a C-plan. Given an initial case and a C-plan, we can build up a projection
graph as follows. The initial case is used as the starting node of the projection graph. E-elements of the given C-
plan are repeatedly applied in non-terminal projection graph cases until there are no more cases in which any of the
C-plan’s e-elements have concession. Arcs leading from node to node in this graph are labelled with e-elements.
An arc directed from one node a to another node f§ indicates that the e-eleinent labelling the arc has concession in
the case contained in @ and under occurrence, produces the case contained in §.

The idea is that the graph structure defined in this way contains a given initial case as its starting node, and
that each node in the graph contains a case reachable under e-element occurrence. With the interpretation of 2 case
as a partial description of the world, the projection gives us a prediction of what a C-plan can do in terms of the
possible world states it might give rise to. The initial case describes the *‘cucrent’’ state of the world, and cases in
the graph reachable from the initial case describe future possible world states. The arcs in the graph denote
transitions from one world state to another, and these transitions can be realized through the actual execution of the
actions that correspond 1o the e-elements labelling the arcs.

21

So the nodes of our projection graph contain cases, and the arcs are labelled with steps. We can map this
structure onto the classical Al picture of planning as follows. The first node of our projection is the initial state
given in the problem specification. In order to represent a solution to the problem, the plan’s projection must give
rise 10 a node which contains the required goals. We can say that a C-plan is a potential solution to 2 planning
problem if it is applicable in the initial case of the problem, and under projection gives rise to a case which
contains the given goals. Also, a particular case reachable under e-element occurrence in a partially developed C-
Plan can be used for ‘*Question Answering’’ operations in the planner during plan generation.

Using the idea of projection we can now say something more precise about 3 C-plan’s execution advice.
Recall the basic idea. Execution advice must contain the inforrnation required to remove harmful residual non-
determinism. The advice should not restrict legitimately causally independent actions from occurring concurrently,
but it should prevent planned actions from occurring in an order permitted by the causal structure of the plan but
unintended by the planner. We can explain the meaning of a plan’s execution advice by interpreting it as a guide
to navigation through the projection structure. Basically, we say that a C-plan’s execution advice is sound (with
respect t0 a given problem specification) if and only if for all choice points in the projection, if there is any hope
for success at the choice point, then either all choices lead to success, or for each choice point that could lead to
failure, there is advice about another possible alternative, such that the suggested altemative can lead to success. In
essence, when there is still hope for success the advice prevents the wrong sequencing choice from being made. To
achieve this the advice must prescribe an order on e-elements which prevents certain paths through the projection
from being considered at execution time.

It is possible to generalize the projection we have defined to deal with least commitment reasoning about
action ordering. To do this, one need only say when a set of e-elements are causally independent, and use this
definition to specify when sets of e-elements can be applied to a case, in bulk, to derive a successor. If this is done
the arcs of the projection graph are labelled with sets of e-elements which describe the parallel occurrence of the
denoted actions. This means that if some events are causally independent the e-elements which describe them can
be applied as a set, and reasoning can continue from the resulting case.

6. A spacecraft activity sequencing example.

This section presents an example problem and its representation using C-plans. This problem would be difficult if
not impossible 10 represent using the classic partially ordered structures found in systems like NOAH and NonLin.

The basic scenario for the example is as follows. While on a deep space mission, a spacecraft is o pass very
close to the planet Jinx. Earth-based observation has determined that two weather systems obtain on Jinx: crystal
clear skies and turbulent sand storms. While it isn't known exactly what conditions will hold when the spacecraft
arrives, it is certain to be one of these two. So useful observations can be made regardless of the atmospheric
conditions. If the atmosphere is unclouded, then visible light pictures should be taken. If a sand storm is in
progress, then infrared pictures will be most effective.

The camera used for visible light and infrared pictures is the same, ,0 it is impossible to take 2 visible light
and infrared picture in parallel. An inidalization step is required in order to prepare the camera for visible light or
infrared work. Regardless of the sort of picture taken, a digital image is stored in a frame buffer on board. The
frame buffer is only large enough to store one picture. Each time a picture is written to the frame buffer by the
camera, a wransfer operation must free the buffer by copying the information to an on-board tape storage medium.
For this simple example, we do not address the problem of transferring the stored images back to Earth.

ft would be nice 10 avoid specifying an observation programume rigidly in advance. Since linx ic wo far from
Earth to permit the up-loading of an appropriate command sequence (using information gathered closer to the
encounter) it is preferable to be opportunistic, and exploit the atmospheric conditions which obtain when the
spacecraft arrives. During the period of contact, conditions may change, and the pictures being taken should reflect
current opportunity.

From an Al planning perspective, the problem is to have a plan which represents the disjunctive observational
requirement simply and economically. Notice that it is not a problem to have an on-board computer which runs a
contingent program during the Jinx encounter phase. In principle, the program could be written in any language
whatever, compiled, ard up-loaded to the spacecraft well in advance. But for an Al planner the problem is one of
representing the disjunction in a way that permits reasoning about a plan, since the plan will form part of a lager
scenario with unexpected events and changing requirements. We give a C-plan which does this. It specifies what

N
N
]
|
)

i
|
|
i
|
1

each of the individual observation operations are and the conditions under which they are to be carried out.

The plan of figure 1 is projected in figure 2. The projection describes the behaviors that are possible for the
plan, Each arc in the projection is labelled with an integer as used for each event in figure 1. Notice that for this
example no execution advice is required. See [11] for an example of how this ordering relation is used.

The plan describes the following behaviors. While it doesn’t matter what conditions obtain when the
spacecraft arrives at Jinx, assume for the sake of argument that: the spacecraft camera is initialized for infrared
work; that the weather on Jinx is clear; and that the frame buffer is empty. A case which describes these conditions
is contained in the projection node S1. Two events are possible, as described by the C-plan’s e-elements clouding
(2) and setup(vis) (4). Clouding (2) denotes the event of the atmosphcre becoming clouded by a storm. The
setup(vis) (4) e-element denotes the action of configuring the camera (o take visible light pictures. Similarly, the e-
clement setupfir) (3) denotes the action of configuring the camera 10 take infrared pictures.

There are two tight cycles in the projection, one between S2 and S3, and one between S4 and S5. These
cycles model the normal behavior of the plan during a period when the atmosphere is in a stable state. A transition
from S2 to $3 models the action of taking a visible light picture, and a transition from S3 to $2 models the action
of transferring the picture information from the frame buffer to tape. Likewise, a transition from S5 0 S4 models
the action of taking an infrared picture, and a transition from 54 to S5 models clearing the frame buffer 0 tape. All
other transitions in the projection can be easily read as setup actions in response to changes in the planet's
atmosphere.

7. Conclusions.

There is a relationship between the choices of action schema to achieve goals at plan generation time, and
contingent plans which support flexible plan execution. Plan generation is reasoning about goals and the means to
achieve them. Plan execution is about actually realizing these promised goals. If fast, efficient, and flexible Al
planning systems are to ever exist, they must strike a balance between reasoning about disjunction in advance, and

status(ir)

weather(cloudy) setup(ir)

take-picture(ir)

buffer(full)
buffer(free)

transfor(buffer, tape)

take-ptcture(vie)

weather(clear)

Figure 1: A contingent plan for taking visible light or infrared pictures,

23

—GED R
() L) T

otatus(ir) ohhn(vlnwl(vh)
westher (cloudy) westher(cloudy) wee ther(cloudy)

buffer(free) buffer(free) ? buffer(full)

Figure 2: The projection of the picture-takis.g plan.

reasoning about it only when necessitated by plan execution failures. This paper goes some way towards the
construciion of such a planner by defining a flexible and expressive plan representation which has the ability to
represent disjunctive plans. It does this without losing information such as Goal Structure, used by systems like
NonLin (6}, O-Plan (1) and sipE {10).

It is important to realize that what we have defined is a representation able 10 describe contingent actions
which is useful from an Al perspective. It is not hard to write contingent computer programs. But the eventual
goal is to automate spacecraft command generation. It is likely that Al techaiques will be used to perform this task.
A start at this has been made with the Deviser planner for the Voyager spacecraft (12]. What this means is that Al
representations must be used, and where inadequate, must be improved. Since disjunctive situations will often arise,
any planner automatically generaling spacecraft commands must be able 10 reason about disjunction.

We are now working on adapting O-Plan to generae C-plans. Simple disjunctive plans can already be
generated; more interesting examples will require more complex generation algorithms. We are currently working
on an algorithm (o achieve a specified marking in 2 Petri Net o help produce a robust and efficient C-plan
generation algorithm.

8. Acknowledgements.
This work was supported by the UK. Alvey programme and the Science and Engincering Research Council on
Grants GR/D/58987 (An Architecture for Knowledge Based Planning and Control) and GR/E/05421 (T-SAT: Al

Applied 10 a Spacecraft). The support of System Designers plc for the work of the AIAI Knowledge-Based
Planning Group is gratefully acknowledged.

24

9. References.

(1] Currie, K., & Tate, A. 1985, O-Plan: Control in the open planning architecture. In TAe Proceedings of the BCS
Expert Systems '85 Conference. Warwick (December), Cambridge University Press.

(2) Stefik, M. 1981. Pianning with constraints (Molgen: Part I), Artificial Inielligence. Vol. 16, pp. 111-140.
(3] Sacerdod, ED. 1975. The non-linear nature of plans. In The Proceedings of IJCAI-7S. Thilisi USSR.

{4]) Chapman, D. 1985. Nonlinear planning: a rigorous reconstraction. In The Proceedings of IJCAI-SS. pp.
1022-1024.

(5] Drummond, M.E. 1986. A representation of action and belief for swtomatic planning systems. In the
of the CSLI/AAAI workshop on Planning & Action. Oregon, US.A. Morgan Kauffman. (Alo
Artificial Intelligence Applications Institute technical report AIAI-TR-16.)

(6] Te, A. 1977. Generating Project Networks. In The Proceedings of LICAL'S. Cambridge, Mass., US.A. pp.
888-893.

[7) Tate, A. 1984. Goal structure — capturing the intent of plans. In The Proceedmg: of ECAI-84. Pisa, lualy.
(September).

{8) Reisig, W. 1985. Petri nets: an imtroduction. Springer-Verlag, EATCS Monographs on theoretical computer
science, vol. 4.

(9) Drummond, M.E. 1986, Plan Nets: a formal representation of action and belief for automatic planning systems.
Ph.D. Dissertation, Department of Antificial Intelligence, University of Edinburgh.

(10) Wilkins, D.E. 1984. Domain independent planning: representation and plan generation. Ariificial Intelligence,
No. 22.

(11] ME. Drummond. (August) 1985. Refining and extending the procedural net. In The Proceedings of IJCAI-
85. Los Angeles, Calif. pp. 1010-1012.

(12} S.A. Vere. (May) 1983. Planning in Time: Windows and Durations for Activities and Goals, In /EEE
Transactions on Pattern Analysis and Machine Inielligence. Vol. PAMLI-S, No. 3, pp. 246-261.

25

