7 ‘
Knowledge Representation System for Assembly Using Robots
A. Jain and M. Donath Lo
University of Minnesota ~ Y ip L
Minneapolis, MN 55455 M A Y

1.0 1Imtrodection . e U

the vork enviconment. However, an impediment to the use of robots is the complexity of the man-machine
interface. ' This interface can be improved by providing a means of using apriori knowledge and reasoning
capabilities for controlling and monitoring the tasks performed by robots.

(/ Assembly cobots combine the benefits of speed and accuracy with the capability of adaptastion to changes in

Robtots ought to be able to perform wiplex assembly tasks with the help of only supervisory guidance from
human operators. Por such supervisory guidance, it is important to express the commands in terms of the effects
desired, rather than in terms of the motion the robot must undertake in order to achieve these effects.

A suitable knowledge representation can facilitate the conversion of task level descriptions into explicit
instructions to the robtot. SQich a system would use symbolic relationships describing the apriori information

about the robot, its enviromment, and the t-ks npociuod by the operator to gcnouto the col-mdl for the tobot, N

B A e o

_\H;_c—vcr, the Imoviodqt tcprnantation system should provide a sq(e-e for buuding asseably nodels tn an
envirorment that maintains the knowledge of the spatial and functional/relationships among the engineering parts
comprising an assembly. The system then prevents the user from viol ng these relationships unless specifically
asked to do so. Thus, the knowledge representation system has a mewory for specified constraints and preveauts
actions whose side effects cause the violation of these constrainty.

The modeling method provides an organizational structure thidt maps the relationships between the components
of an assembly into a set of constraints. These constraints aré simplified using a number of rules to determine
the available degrees of freedom for a component. When a n relationship is to be established, the required
motion is calculated and the feasibility of this motion is Jetermined by checking against the available degrees
of freedom.

2.0 ‘Task level Programming

Task level programming {s an attempt to make use structured programming together with an infocmation base
that enables the use of apriori knowledge to interpret/the commands issuved by the programmer. Exmmples of task-
oriented programing lanquages include AUTCOPASS, RAP and LAMA.

The processes are expressed in terms of the d¢siced effects on the objects. Thus, a task is campleted not
when a manipulator has completed a series of/ motions, but when the objects have reached the desired
configuration. The knowledge representation syst convecrts the task level specifications into manipulator level
commands .

AUTCPASS (1) accepts the steps of assembly/as input from the user and with the help of a model of the world,
converts these into a program that a HManipulator can process. However, the system does not recognize changes in
relationships occurring due to manipulator acfions. The user is responsible for specifying physically realizable
operations and also for informing the system/of changes in the attachment relationships.

RAPT (3, developed at Edinburgh, hag concentrated on specifying the spatial relationships and reasoning
about them. The relationships between objects such as "Bl against E2° and "Cl against C2", etc., are converted
into algebraic equations. These equati can be expressed in terms of operational parameters, such as Jjoim
angles of the manipulator or in terms /of the degrees of freedom for the objects. The solution of these
simul tanecus non-linear equations is quite complicated and time consuming. However, some efforts at recognizing
sterectypes and applying standard solutions have been successful. The emphasis here has been on representation
of relationships; however, the geomefrical representation is at present incomplete. Hence, path planning,
collision detection, etc., cannot be igiplemented using this system alone.

LAMA (3) uses general program plans that are expanded by details of individual assemblies. Polyhedral
representation for objects permits trfajectory planning and collision detection. The constraints are expressed in
terms Oof parameters that are unspecified elements of partially filled transformation matrices. The constraints
are represented as constraint planes, which indicate the boundaries of permissible motion. Ranges of par ameters
are calculated using volume intleractions and constraint plane interactions. The assumption is made that

(.-.(101 o ndt, eSS
Agl ZQO MNTENFIONALLY BLAlN

\

j/

different constraints on an obdbject are non-interfering. This assumption {s not required in the system we
propose, as the bodies alwvays move within the specified constraints and inconsistent constraints cannot be
established in a constraint enforcing enviromment.

LM (4) and Peature Descriptcx (5) represent other examples of task level programming.

Fahlman (§ proposed a task planner for robot construction tasks in a blocks' world domain, The information
contained in the object's motion was not used. The feasibility of the final state is determined fram a stability
viewpoint, but the motion from the initial to the final state {s not considered. A task planner built ina
knowledge base that considers the feasibility of object motion can be integrated with a trajectory planning
system.

In the proposed knowledge representation system, a constraint enforcing environment is provided at the level
of the database. This approach peramits supporting a task planner as well as interactive sessions with the
mogrammer. This approach varies from the traditional approach by transferring scme super visory capability to
the computer. The feasibility of motion in a constraint enforcing enviromment is determined by mapping
relationships into a constraint sat, simplifying the constraint, and intergxeting the resulting constraints.

3.8 Geometrical Model

Bcomogeneous transformations are used to express the position and orientation information for objects. The
position and orientation with respect to the world reference frame is stored with each object. Hence, this
information is updated only when the object moves. The primitives, eg., blocks and cylinders, are defined in
terns of the centroid position and faces. Loci definitions are used as they are sufficient for the reasoning
involved in constraint simplification as discussed later.

An assembly is Jdefined recursively as an object consisting of other objects. By imposing the restriction
that these primitives cannot move relative to one another, we can create rigid assenablies. We can represent
mechanisas by permitting specified relative degrees of freedom for the primiti ves that combine to form the
assembly .

4.0 Relationships

The objects can be related to one another in a variety of ways with regard to relative motion. These
relationships are shown in Piqure L The contact relationships involve both concave and convex surfaces. A
contact relationship between two convex surfaces is called "against”. The against relationship can involwve a
surface, edge, or a point contact between two bodies. A contact relationship between a concave and a convex
suwface is called a “fit".

MOTION RELATIONSHIFS
FUNCTIONAL GEOMETRIC
based on ¢ g.
screw, Jear or pulley motion
CONTACT NON-CONTACT
based on e.g. magnetic.inertial
osntrifugul farces
CONCAVE-CONVEX CONVEX-CONVEX
og. B o aguinst
SURFACE . EDGE POINT CONTAC]

Pigure 1: Motion Relationslips
4.1 The "Against® Relationship
We will first define “against® in a restrictive sense and then genecal ize the definition. "Aqainst® is a
relationship established between two plane surfaces, such that translation is permitted in the common plane and
rotation is permitted about an axis normal to this common plane. An example of against relationship is shown in
Pigure 2 This "against® relationship exists between face Fl of block Bl and face P2 of Block B2.

This definition of "against® can then be extended to cur ved convex surfaces, where the contact area reduces
from the plane to a l1ine. The object with the curved surface retains any rotation capabilities that it had about

102

n

o
7

Pigure 2: Bl Mpinst B2 (1, N2)

the body axis normal to the curved cross-section, prior to oot.blhhfng the "against® relationship. Similar
definition applies for stherical suwfaces where the contact reduces to a point,

4.2 The "rit” Relatiomship

Pit" is a relationship established between a concave sucface such as a hole and a convex surface swch as a
shaft. "Insert" is the driver function to command the establisiment of a "fit* relationship. The hole and shaft
can be of various cross~sections. The pre-condition for establishaent of a "fit" relationship is that the
profiles of the convex and the concave surfaces must match.

In a "fit" relationship, the body containing the hole and the body containing thi shaft are restrained to
rotate about the hole-shaft axis if the profiles are circular. A translation along this axis is also permitted.

Many special cases of "f£it® can then be defined. A restricted "fit" relation might permit only rotational
freedom. A rectangular key, on the other hand, is permitted translation but no rotation.

Representation of other relationships such as threaded joints, etc., can be accomplished by using these
basic relationships. Permissable translation and rotation would no longer be independent of each other, but
would be related by parameters such as the thread pitch.

The oontact relationships of "against® and "fit" and other functional relationships in the motion domain map
into a set of motion constraints that represent the degrees of freedom for the objects. These constraints ace
refresented in our system in terms of new primitives which are necessary for reasoning about motion. Tese new
constraint relationships represent a general set into which all the relationships that pertain to motion can be
mapped. An example of this mapping is shown in Pigure 3

»n 2

~
——— ¢ TR CV1)

B ~ AGAINST - B2

rn n

USER SPECIFIZD AELATIONSHIP CONSTRAINT REPRESINTAYION

Pigure 3: Mapping of Relationshipe to Constraints
5.0 Drivers

The driver functions that command the motion execution are of two types. The first type is the "move"
function. The "move” function {s used when same explicit motion is to be implemented by specifying the amount of
motion or by specifying the final destination. The second type of drive functions are those which command the
establishment of relationships. These functions determine the motion required to establisli the relationship,
find out if the motion is possible, and, if so, then send out the necessary instructions to the robot to
implement the motion. PFor the two contact relationships, "against® and "fit*, the driver functions are
respectively called "establ ish-against® and "insert”.

Determination of motion feasibility involves a number of steps. This is shown in Figure 4 The
relationships of the body with other bodies, represented as constraints, are simplified to determine the
translational and rotational degrees of freedom. If the entire desired motion is not possible with the available
degrees of freedam, then an attempt is made to find one or more neighboring bodies such that this set of bodies
can together accompl ish the remaining motion. This strategy is explained in Section &

6.0 Representation of Motion Constraints

We need a representation that is sufficient for the reasoning involved in object manipulation, and is also
simple and efficient to manipulate. We have departed from the conventional manner (Popplestone, Taylor, Mazer,
etc) of converting all the constraints into parametric equations and solving them over all the objects under
consideration.

Let us define a few symtols first:
T: represents a Translation degree of freedom
R: represents a Rotation degree of freedom

L: stands for a Line. This is used as a mnemonic for the axis of rotation or a line of translaticn.
P: stands for a Plane.

103

Piqure 4: Peasibility of Motion

These mnemonics are cambined in the following ways to give the constraints that are established by “"establish-
2gainst® and “"insert" oparations:

TPR: This code indicates that Translation is permitted in the Plane and Rotation is permitted about a
normal to the Plane. The nomal to the Plane must be specified to camplete the description of the
constraint.

TLR: This code indicates that Translation is permitted along a Line and Rotation is permitted about
that Line.

TL: This code indicates that Translation is permitted along a Line and no rotation is permitted.

RL: This codes indicates that Rotation is permitted about the specified axis.

The direction vector that is required with all of these codes is called the constraint vector (CV). Since
the magnitude represented by this vector is insignificant, it is stored as a normalized vector. This direction
is interpreted differently depending on the presence of P or L in the code.

Besides the above constraint primitives, wve must define a few additional constraint classes in order to
implement a working set. These include three other constraints--"Stationary,” "Attached,” and °*Pimd”--and the
unconstrained condition, "Free®, -These are clarified as follows:

The "Stationary®” constraint indicates that the object has a particular position and orientation, an¢ these
cannot change.

Object A is said to be "Attached” to Object B when A and B always move together. In other words, A is
rigidly connected to B Every object must store a list of all other objects that are "Attached” to it. When the
move command is to be executed for an object, all the "Attached” objects should move together.

As opposed to the "Stationary” and "Attached® constraints which are specified by the user, "Fixed® is a
constraint derived from a set of user specified constraints. “"rixed” represents the condition when a combination
of constraints applied to an object results in no freedom of movement for the object when considered as a single
entity. However, the implication is that the object could move if it were to move together with one of the
constrained objects. This is clarified by the example shown in Figure 5,

Consider the case when the following constraints are establ ished:
Bl AGAINST B2 (F2 Fl)
B2 AGAINST B3 (F3 M)
The features involved are indicated within parentheses.’

Under these two constraints, B2 can translate along a line in and out of the paper. Now, suppose we
establish a third relation B2 AGAINST B4 (FS 75) in which B4 is behind B2 The result is that B2 is now “fixed"

104

o acanest @2 1IRLFY
2= ang? U LR 18
2 MGANST g4 (FLFES

Figure 5: B2 °Pixed" By Constraints

and cannot move by itself, However, any of the combinations (B2,B4), (B2,B3), and (BZ2,Bl) can move along
different directions.

The constra2ints only describe the restrictions that the environment has on the object's moticn. The driver
functions, the "move® command, and the commands to establish relations use these constraints to deternine vhether
the body can be moved or sane other body needs to move along with the body prior to trarsmitting the comand to
the robot. By using these constraints, we can build assemblies in a constraint enforcing enviromment where the
user or the task planner is prevented from violating any previously specified constraints, unless the system is
specifically asked to do so.

In order to determine the available degrees of freedom, we will first show how to simplify the motion
constraints in the next section. Following that, we will develop a method of determining the available &grees
of freedom from the specified constraints.

7.0 Simplification of Constraints

Scme rules for simplifying constraints are presented here. These apply to the case of rectangular blocks
and cylinders. The extension to other bodies involving curved surfaces and to more general profiles is poseible.

The rules may not represent a ccmplete set, but are sufficient to demonstrate the feasibilityof the
approach. Thie rules which follow are for a prototypical object Bl which is being commanded to move by some
driver function (-ae signifies is mapped into):

1. IF (TPR CV1) AND (TPR CV2) AND CV1 X CV2 ¥ 0

THEN (TL CV) AND CV = (V1 X CV1
Consider the motion for Bl in the following examples (Figure 6).
B2 AGAINST Bl (F2,F1) - (TPR Q1)

B3 AGAINST B4 (F4,P3) @ (TPR CV2)

Since CV1 and CV2 are orthogonal to each other and lie in the plane. Bl can translate along a line in and out of
the plane.

2. IF (TPR CV1) AND (TPR CV1) AND CV1 X CV2 = 0
THEN (TPR CV1}) (R (TPR CV2) v
Consider the motion for Bl in the following example (Piqure 7a).
B2 AGAINMST Bl (F2,Fl) —s= (TPR CV1)

B3 AGAINST Bl (M, F3) -8= (TPR CV2)

105

*eva 2

riqure 6: B2 AMumimst Bl (P2, R)
B3 Against Bl (P4, PF3)

L 1
A I

Pigure 7a: B2 AMmimst Bl (72, M)
B Against Bl (M4, F3)

Bl can still translate in the plane perpendicular to CV1 and rotate about CV1. Using CV1 or CV2 does not matter
As shown in Pigure D, CV1 and CV2 can also be pointing in the same direction.

FPigqure D: B2 Against Bl (F2, M)
B Against Bl (P4, P3)

3. IF (TLR CV1) AND (TLR CV2) AND CV1 X CV2 ¥ O
THEN FIX

Consider the motion for Bl in the following example for a "fit" relationship between a shaft and a hole (Piqur:
8).

K FITS Bl (S2,Hl) —== (TLR QV1)
Bl FITS B3 (S1,H3) —pm (TLR CV2)
Bl cannot move all by itself. However, 'Bl and K2 can move together as can Bl and H.
4. IP (TLR CV1) AND (TLR CV2) AND CV1 X CV2 = 0
THEN (TLR CV1) OR (TLR CV2)
Consider the motion for Bl in the following exasple (Figure 9.
Bl PITS B2 (S1,H2) —e» (TLR CV1)
H PITS B3 (S1,H3) —e (TLR CV2)
Until now, we have been considering infinite lines and planes and, hence, no mention has been made regarding th

depth of the hole and the length of the shaft. These parameters will be introduced later as factors necessar
for determining the possibility of establishing relations required for object manipul ation.

106

nTe

Pigure 8: B2 Fits Bl (82, H)
Bl rits B3 (81, HI)

(42}

A

Y 3

L &)

» v

Figure 9: Bl Pits B2 (K, W)
Bl Fits B3 (S1, HI)

S. IP (TPR CV1) AND (TLR CV2) AND CV1 X CV2 = 0

THEN (RL CV1) OR (RL CV2)
Consider the motion for Bl in the following example (Figure 10).

B2 AGAINST Bl (F2,Fl) —= (TPR QV1)

Bl FITS B3 (S1,HR —e= (TLR CV2)

81

n

r

Figqure 10: B2 Against Bl (F2, F1)
8l rits B3 (Sl, HY)

Bl can rotate about CV1. BH2 AGAINST Bl permits translation in e plane while Bl PITS B3 permits translation along
the normal to the same plane, The net result is that Bl cannot translate at all.

6. IF {TPR CV1) AND (TLR CV2} AND CV1 X CV2 ¢ O
THEN, IF CV1l ~ CV2 = 0, THEN (TL CV2), ELSE PIX

Consider the motion for Bl in the following example (Figures lla and 1lb),

107

] | m
»n n > v
:z’ | | »
»2
o

Figqure lla: Bl Maimt B2 (F1, 2)
N Fitn B3 (51, M)

F2.11 cv2

[2}

Fiqure 1lh: B AMainnt 82 (1, #2)
noFits 13 (51, M1y

Bl AGAINGT B2 (#),F2) g (TPR CVD)
Bl FITS 083 (S1,M) e {TLR (V2)

Bl can translate alonqg CV2 asn shown in Fiqure 1la for €V] CV2 < 0, lewmever, an nhown in ¥Fiqure 11, when
CVl CV2 # 0, Bl cannot move at ail.

7. IF STATICNARY AND ANY ONE (DNGTRAINT
TIHEN STATIONARY
If a body is stationary, it cannot mow at all.
8. IF FIX AND ANY ONE CONSTHAINT EXCEPT STATIONARY
TIEN FIX

I1f a hody is onnstrained so that {t cannot move hy itself, then mnnstraining it further will mt change the FIX
constraint.

9. IF FREE AND ANY ONE. QUNSTRAINT C
THEN C
Free refers to an unonnstrained state and, henee, C is the only one mnstraint,

The relationships of a body with other bodies are stared nymbolical ly uning the conpntraint pramitives
discussed abtnve. When motion feasibility is to he determined, the different relationnhipo are first samplifies
uning these rules, If a group of bodies moves toqether, then all their relationships with ather objectn are
simplified in order to determine the feagsibility of motion of the qroup as a whnle,

The camplification 1n compl eted when we have all the ponsible translationgl and rotatianal degrecs o2
freednm for the hndy or set of Indies., All the oonstraint vectors are onnverted 1nto the world reference {rane
before simplification. This approach is preferred to updating the conntraint vector every time vthe [oration of
the ohjerct chanqges, since the number of updates required is reduced.

The: next section discunses the implementation strateqy for motion and for the establintment of relations,
8.0 Strateqy for Implementing Motion and for Xstabl ishment of Relatjonships

Every prinﬁ tive ohject has an arbitrarily nelected reference point, The ponition of this point and 0
orientation of the bndy atout this pnint as measured in the world refetence frame is ounsieaered an the positie

of the object. The position and orientation of features are descrited relativye to this referenee feant,

Let us tirst consider the motion of 4 primitive abject, When the mortion ot rhis bordy vo o parvicul s

108

position and orientation is desired, the motion matrix is given by
MOTION = (G.D-PGITION)-I {NEW-PCB ITION)

o using the homogeneous transformation notation. This is represented by the diagram in Piqure 12.

NEW.POSITION

WORLD MOTION

ORIGIN

OLD-POSITION

Fiqure 12: Calculation of Motion Matrix

8.1 Establisbing Relations ’
Driver functions such as "establish~against® and "insert® are used to establish relations bhetween ohjects.
These commands are used to calculate the necessary motion matrix which is used to move the body in order to

establish a relationship.

Consider the diagram shown in Fiqure 1) Let us define the terms used in this diagram:

POSBL : position of object Bl in the world

aLD~-PQSB2 : posftion of object B2 before moving

NEW-PCSB2 : position of object B2 after the relation has been est .blished. This is undetermined at this
stage.

MOTION: The motion required of (bject B2 to establish the relation. This is yet to be determined.

FEAT], FEAT2: posxnon of features on bodies Bi and B2 that are involved in this relation.
REL-ESTABLISH: a matrix that orients the constraint vectors to establ ish the relevant relation.

FEATY REL-ESTABLISH

OBJECT2 RELATION OBJECT1 (FEAT2FEATI)

Figure 13: Establishing Relations
In the case of the "against®” relationship, the REL-ESTABLISH matrix would define the rotation needed to
bring the normal vectors associated with the two faces in line with each other. 1In the case of the "fit"
relationship, it is the matrix that brings the two axial vectors in line with each other.

To determine REL-ESTABLISH, consider the example in Figure 14. Consider two unit normal vectors Nl and N2,
associated with the faces Fl and F2 of two objects Bl and R,

N1
n t

n <+ B2

F2

TO MAKE B1 AGAINST B2 (F1,F2)
ROTATE B2 BY ACOS(N1.N2) ABOUT N1 X N2

Fiqure 14: Definition of REL-ESTABLISH

Nl and N2 are two vectors to be aligned. A rotation of N1 by an angle = cos™! (Nl N2) about the direction
Nl x N2 will bring them into line with each other. This rotation is the one defined by KEL-ESTABLISH (Bquation
1). An additional translation is required to bring the two faces together. NEW-P(5B2 incorporates the combined
rotation and translation of this new position for B2 (Pguation 2. MOTION is calculated using this new position
NEW-POSB2 (Bjuation 3J).

109
.

ror cos~! (a N2), N1 oxa 0
REL-ESTABLISH = (n
)
0 0 0 1
[w»-?cs-az] « (POEBl) (FEAT]) (REL-ESTABLISH (FEAT2)"!)
[nonou] = (WD-PE-B2)~1 (MEW-PCE-B2))

The following "loop equation” can be used at any time to determine if the relation has been establ ished. 1If
the equality is satisfied, then the relation has been established.

[mmrrrv] = (PSB1) (FEAT1) (FEAT2)™! (PaEB2)-! to

The next task is then to find out if this motion is fessible in the presence of the already established
constraints.

However, there is one factor that atil]l needs to be considered. The above-mentioned strateqgy for
establishing relations will work only if object Bl does not move while object B2 is being moved. 1f object Bl
moves in the process of achievirg the required motion for object B2, then the relation is not yet established.
This is explained by the following example (see Fiqure 15.

rn.n

.74

Fiqure 15: Example of Unachievable Relationship
The given constraint is Bl ATTACHED B2 (F3 F4). We try to establish the relation B AGAINST Bl (F1 Fl).

The motion needed by B2 to establish this relation is calculated, and in this case, it is simply a
translation in the x direction. When this motion is attempted, it is found to be feasible and, hence, 1is
impl emented. HBit since Bl and K are “attached”, Bl will also move and, hence, the desired relationship will mot
be established. 1In fact, for this example, the relation can never be established since the two bodies are
attached and, hence, move by the same amounts.

This xoblem is resolved by using an iterative proomdure. Consider the diagram shown for the general case
in Figure 16, .

In the first attempt, motion M is the required movement of object B2 to establish the relation. However, in
the process of planning motion M, motion M1 of object Bl also occurs. At the end of motion M, the "loop
equation® (Rjuation 4) is used to check if the relation has heen established. If the relation is establ.shed,
the new motion matrix will indicate zero translation and rotation. If the relation is not estatlished, then an
iteration is performed in which NP2 is redefined as OP2, Pl' is redefined as Pl, the new rel-estabtlish matrix :s
given by RE', and the motion matrix is recamputed. This is shown as M2 in Figure 16, By canparing the motiocn M
with motion M2 (as shown later), one can find if any progress has been made towards establishing the relation,
If no progress is made as in the example in Figure 15, then we conclude that the new relation cannot e
established in the presence of the already establ ished relation. ’

In the above iterative approach, it is necessary to determine if progress has been achieved in Lringing tne
two objects closer to each other. We assume that the iteration is successful if the new motion prediction s
"smaller” than the "initial" motion prediction. A mechanism to campare an initial motion prediction with a new
motion prediction is descxibed in more detail in reference (J).

110

Pigure 163

Pl - old position of body 1
Pl' - npev position of Indy 1
Ml - motion of body 1

rl ~ feature of body 1

n ~ feature of body 2

P2 - old position of body 2
NP2 =~ new position of body 2
NP2* - maw position desired for body 2
M ~ motion of body 2

M2 - motion needed for body 2
RE - old REL-ESTABLISH

RE' <~ new REL-ESTABLISH

8.2 Peasibility of Motioa

In order to decide whether a particular body motion is feasible or not, we need tc consider the constraims
to vhich the body is subjected. We have shown how to simplify these different constraints in order to determine
the posaibl e degrees of freedom. In order to facilitate the process of determining motion feasibility, the
transl ation and rotation are each handled sepacately.

1f, after simplification has been performed, the constraint code includes TL, then a part of the translation
needed can be accomplished by moving the body along the direction given by the constraint vector. 1If the
annstraint code includes TP, then a part of the moticn is achieved by translating in the specified plane. If the
entire desired translation is not possible, then one cannot achieve the entire motion by moving this object
alone. One must then consider moving a neighboring object along with the body of interest. This strategy is
described later.

The rotation part of & given motion matrix i{s converted into an equivalent angle about an axis located in
the world reference frame. The constraint vector associsted with the rotation degree of freedom is then compared
with this equivalent axis. If the two coincide, then the rotation is possible; otherwise, the rotatior. is mot
pssible by this body alone.

1f the body is found to be constrainkd from moving when considered alone, then the follawing strategy for

considering cooperative motion with neighboring objects is pursued. A search similar to e breadth first search
is used. This is best explained by an example (see [igure 17).

Figure 17: Cooperative Motion

Consider an attempt to move the object Bl., Suppose the following relations alcready exist:

111

Bl {8 in contact vith 52 anéd D,
82 is in contact vith B4 and BS.

The first attempt is to £ind if Bl can be moved by the required amount all alone. If this is not poesibdle,
then an attenpt is made to consider the motion of Bl and B2 together. 1In the constraint simplification that is
performed, the constraints between M and R are not considered in this case as 3]l and R do not have relative
motion.

1f Bl and R cannot accompl ish the entire remaining motion together, then M and K are considered together.
If the entire notion is still not isplemented, then Bl, B2, and B) are considered together. The search order
used ts (B1), (B1,32), (B1,B3), (B1,32,B3), (B1,B2,B4), (B1,82,03), (31,82,B3,M), (n,n2,83, 85, AND
{Bl,82,83,54,8%) .

The set (B1,B2,83) is considered before (Bl,02,B4) since B2 and B3 are in direct contact with Rl which is
the object of interest. The governing rule in this search is to always attempt to move a minimum number of
bodies prior to attempting a larger set.

At each stage in the search, motion is carried out as far as possible. If there is still some motion
tequired, then the search ocontinues. As a result, the total desired motion for Bl might be achieved partly by Bl
alone and partly by El and K3 together.

If a constraint "Stationary” is encountered in the search, the search along the path is immediately
terminated. Note that all the attached bodies are always considered together in this motion feasibility

paradigm.

The structure is described as a tree diagram. Mowever, the genecalimed version can be a gragh (see Piqure
18a). This graph can be converted into a tree by repeating appropriaste nodes (see Figure 1®).

298

(a))

rigure 18: Conversion of Graph to a Tree

8.3 Motion of Assemblies

To determine the motion possibilities for an assembly, we have to treat them as an "attached® group of
primitives. We store the position and orientation information for each primitive. When the assembly has to
aove, all the primiti ves must move by the smme mmount.

8.4 Range of Motion

In our discussion so far, we have considered the constraints as basically degrees of freedom. For imstance,
TPR indicates that translation is allowed in a plane and rotation is permitted about the normal to the plane.
However, these motions are not infinite. These motions are limited by the finite dimensions of the bodies
involved {n the relationship.

9.0 Implementation

The knowledge refresentatisn system described here has been implemented using the PLAVAR system on the LMI
L1SP Machine. A typical data network is shown in Pigure 19. In the constraints discussed above, we did not
include the range of motion. Geometric algorithms to detect collision of objects and overlapping of faces,
overlapping of two holes, etc., are implemented as tests to be conducted before sending any motion command to the
tobot. This scheme provides for expandability of the system to incorporate checks such as tolerance matching,
surface finish matching, checking types of fit, calculating inertia properties, etc. Same examples can be found
inteference (7). B .

The system described thus far is a constraint enforcing system. The breaking or making of relationships as
s side effect of motion is not considered. This consideration of dynamic constraint propagation requires a
constraint network on a global scale which was indeed designed and implemented (7), but is outside the scope of
this paper.

112

..

ABATEST B¢ (NI.PD)
e 0
15 AB AGOIVBLY &0 B3 A O)

/.
n/

Piqure 1%: Assembly Model

".......... i “ ,/:®

S L or \\G)

sioed | ro | ™ <y
aD) The rectangles indicate data
u objects. The ovals indicate

W information slots. Ovals
connecting two data objects
indicate information slots in

both data objects,

Pigure 19b: Data Network for Model Shown in Figure 1%

Note: This is not a complete network as some repetitive structures are not shown.

i
} ,
P /

10.0 Conclusion T
'M/"— f L

The applications of whiss knowledge representation system/are manifold. The programming of robots using
higher level constructs hides the robot specific progr amming details from the user by sutmerging them into the
domain specific knowledge base. The constraiit enforcing envirorment provides for an on-line debugging facility
which operates at the conceptual task level rather than at the progras’s syntax level. Before sending a cosmand
to a robot, the command is simulated in the world model, and this provides for a real time error preventi ve
capability. With the addition of dynamic constraint propagation, the knowledge representation aystem bmcomes
capable of simulating simple assembly operations. This provides a basis for the development of a task planner.

11.0 Acknowledgnent
This work was supported in part by National Science Poundation PYI Grant § DMC83IS1827.

12.0 References

1. Lieberman, L. L and M. A Wesley, "AUTCPASS: An Automatic Programming System for Computer Controlled
Mechanical Assembly,” IBM Jaurnal of Research and Develcpment, July 1977, pp. 321-331.

2. Popplestone, R X and A. P. Ambler, "A Language for Specifying Robot Manipulation,” Rcbotic Technology (A
Pagh, ed.), Peter Perigrines Ltd., London, 1983, pp. 125-141.

3. lozano-Perez, T., "Task Planning,* in Robot Motion Planning and Control, edited by M. Brady, et al., MIT

Press, 1982,
4. Mazer, E, "LM-GZ0O, Geometric Programming of Assembly Robots,” Laboratoire IMAG BP N68 38042, saim Martin

D'here, LEDEX.
5. Taskase, H. and N, Nakajima, "A Langquage for Describing Assembled Machines,” International

Design and Synthesis, 1979.
6. Pahlman, S. &, "A Planning System Por Robot Construction Tasks,”" Artificial Intelligence, Vol. 5, No. 6,

1976.
7. Jain, A K., "Knowledge Representation For Automatic Assembly Using Robots,” M.S. Thesis, Depsrtment of

Mechanica)l Engineering, University of Minnesota, 1986.

osium on

113

