Parallel Processing Architecture for Computing Inverse
Differential Kinematic Equations of the PUMA Arm
T.C. Hsia , 4;3&. .
University of California, Davi A I
mvcrsl;;yv; , CAl :;2;86 avis 6’;\ s

G.Z. Lu and W.H. Han

Nankai University N A4 /()13
Tiangjin, China

xM

In advanced robot control problems, on-1i{ne computation of inverse Jacobian solution
{s frequently required. Parallel processing architecture is an effective way to reduce
computation time. Jn-thts—paper, 2. parallel processing architecture {s developed for the
1nverse Jacobian (inverse differential kinematic equation) of PUMA arm £8&. The proposed
pipeline/parallel algorithm can be implemented on IC chip using systolic 1inear arrays.
This implementation requires 27 processing cells and 25 time units., Computation time is
thus significantly reduced.

2. Introduction

In many advanced robot control problems, such as with sensor guided manipulations, it {is essentfal that the
end effector be appropriately controlled in Cartesian coordinates so that the robot can adapt to a changing
environment. This means that we need to compute the inverse Jacobian in real time to provide the required
differential change in joint variables for a desired differential change in position and orientation. The speed
of this computation directly affects the speed of robot operation. Thus efficient algorithms for computing the
inverse Jacobian are needed.

There have been efforts made recently in developfng computationally efficient algorthims to solve the
Jacobfan problem suitable for serial computer implementation (1,2]. In addition some work has been reported in
algorithm development for implementation on pipelined or paraliel computer [3]. These results show that such
parallel algorithms can reduce computation time significantly.

A more important reguirement in robot manipulation is the computing of the inverse Jacobtan solutfon, This
is generally a troublesome prohlem when we try to invert the Jacobian numerically. A more direct approach {s to
derive an explicit solution of the inverse Jacobian for a given robot. Paul, Shimano, and Mayer [2] have shown
that such solutions can be obtained by differentiating the kinematic equations. This approach has shown to
result simpler inverse Jacobian sclutions with regard to manipulator degeneracies and joint constraints. The
tnverse Jacobian of the PUMA arm has been solved specifically in [2].

In this paper, we present a pipeline/parallel algorithm and architecture for computing the PUMA arm {nverse
Jacobfan derived in [2]. With rapid advances in VLSI technology, this type of algorithm can be readily
implemented on IC chips. These special purpose chips can be connected to a host computer system to achieve
real-time Cartesian space control at sufficiently high sample rate. !t is noted that a study has been made
recently to implement direct kinematic solution on VLSI chips to speed up computation time [4]. The goal here
is to further exploft the advantages of VLSI technology for the cesign of customized chips dedicated to the
computing of the inverse Jocobian of PUMA arm.

3. Differential Kinematic Solution of PUMA Arm

Differential changes in joint variables dqj can be related to the different changes in translation and
rotation dx, dy, dz, &y, 8y, and & of the end effector by the relationship

T T

[dXD dy' dZ' Sxs sy' 62-] = [dﬂl, dqz,....dQn] (1)
in which n is the number of joints, and J is the Jacobian matrix. But in advanced robot control problems, we
need the solution of dqj given the desired differential change dy, dy, dz, &x, &y, 6z - That is we need to
compute the inverse problem

T -1

[dq), dgz,...,dqp)" = 7 [dx, dy, dz, &, &, &sz]T (2)

This represents the inverse differential kinematic solution (inverse Jacobian) of the robot am.
Instead of relying on the direct computing of the inverse Jacobian matrix d’l. an analytical solution of

the inverse Jacobian problem can be frequently obtained, and such a solution for the PUMA arm is given in [2].
For the PUMA arm, the joint variables are the six rotational joint angles 8 62.....96. Furthermore, the

317

—_—_—

differential changes in translation and rotatfon can be related to the differential change of the end efector
homogeons matrix T (2]:

ar =T .« y (3)

where
noap

0001

-dnx doy day dpy

dn, doy day dpy

dqT =
dny; doz daz dp;z
b0 0 0 0 J
0 =&z Sy dx
61 0 ’6x dy
AT =

0 0 0 0

Therefore differential changes in translatien and rotation can also be specified” in terms of the x, v, z
elements of dp, do, and da {dn vector is redundant). The desired solutions of doy in terms of dp, do, and da
for the PUMA arm obtained in [2] are given in the appendix. A pipeline/parallel processing architecture fcr
computing these equations is now developed below,

4, Systolic Array Processing

VLSI technology has created a new architecture horizon in implementing parallel algorithms directly on
hardware. Central to this architecture fs the use of systolic linear arrays which consist of inter-
connected simple and mostly identical processing cells. Algorithms that can be executed using iacentical
operations simultaneously can take advantage of the systolic array architecture to reduce computation time.

‘The processing cell structure we wiil employ is the “inner product step processor* which performs
matrix-vector multiplication using one-way pipeline algorithms. For example, computing

At = p (4)
where A is mxm and b is mxl1, can be carried out in the following recurrence manner:

p$°)- 0

pgkﬂ)- ng)“ikbk k=1,m, i=1,n

p; = pim

This operation can be implemented by a linear array of m inner product step processors shown in Figure 1.

In the following section, we will reformulate the inverse differential kinematic equation given in the
appendix in terms of a set of matrix-vector multiplications which can be computed in parallel and pipelining

fashton,
5. Algorithm Jevelopment

In this section, we present the matrix-vector multiplication processing schemes for computing the
differentials doj, { = 1,2,...,6. Here we assume that the trigonometric functions required are available.
Typically these functions can be generated by employing ROM look-up Bechniques [5.6]. The algorithm fs broken
down into 15 steps as described below. The notatfon Si Sinoi Ci Coso1 are used,

(1) Ay = by
T dpy dpx Px Py ay ax day -3¢ day oy Oy doy doy

-dpx dpy Py -Px -3x dy day -ay -day -0x Oy doy -doy

318

T - T -
by = [C; ;] Py = [PyyeesePig Prygee+Pyp3)
output: dol = pu/pm

(2) 'l ml + gl L hl
11« [Py Pys Pig Pr1o -P1n1! m = do
1 14 P15 P18 P110 "1 1 1

T.
91 ® [Py P17 Pra P12 Pr13l

hy = [Py eenetys]
(3) Agby =y
A -a3dy pz -P13 3
d4 a3 P13 P2 3
P2 = [Pgy=+e+P2sl

(4) fymy + g5 = hy
2 = (€353 Py Po3 Pyl
9, * [03d40 0 0]

My = a5 M= [hyyeneyg]
(5) A3b3 = p3
N R R O RN
output: doy * le/hZ3
(6) Agby = Py
Pz P13 "1 : P4y

4- b4- p4-
P13 P 22 Pa2

A

(7) Asbs = ps

o o M2 M2 M2

5
ha2 M2y Mos

T .

Ps = {P5y Psyl

(8) Agbs = Pg

O | Pe2 i e Psl Mz P M 0%
6
-Pg) P1g "2, “Psp 98, Pyp -0, -Pyyy "90, ~hyy
T T
bg = [cp3 Sp3] Ps = [Pgy--++Ps10!

outputs: d0gq 2 Pga/P do, = d -d
23 64/Ps} 2 023 0

319

(9) f3ﬂ3 + g3 = h3

T -
t3* [Py Pg3 Peg -Pg7] my = doy,
T .
93 = [Pgs Pgs Peg Poio]
T .
hY = [hygeeeehyy]
P p P
A 15 P63 b, = 15 b, = n
P12 M3 P63 P72
output: d04 - P]z/Pll
P15 P31 Pe7 P10 "33 Pe7 Mis
A, =
8
P63 M3 P116 P67 M5 P10 M3
T T
bg = [Cq 54 Pg = [Pgye-++Pg7]
(12) f4ﬂ|4 + g‘ - h4
T -
f3 = [Pg) Pgs Pgs] my = 4o,
T T,
94 = [Pgz Pas Payl hy = [hgy hgp N3l
{13) Agbg= pg
gy -h32 ¢ P91
Ay *| -Peg Pa3 %= |, Pg * | Pg2
M4z "3 5 Py3
output: d05 * Pg
(14) fgmg + g5 = hg
f5 = [pga] 95 = [Po3] mg = dog hg = [hgy]
(15) Ajgbyg = P1o
T
Alg * (Mg =Mzl big = [551 P10 * [P101]
output: d06 2 plOl

The data flow timing table for these computations are given in Tables 1 and 2.

solution requires 25 time units and 27 processing cells.

It is shown that the

The results of 25 time units is a significant reduction of computation time in comparison with that when a

serial computer is used to compute the original seolution.
Js about 150.
time units we have achieved by exploiting parallelism.

320

The total number of multiplications of that solution

This is equivalent to 150 time units in the systoic array processing system as opposed to the 25

Table 1. Data flow timing table for steps 1 through 8 which compute doy de3 and doj. Numbers

on top row indicate time units,

1 2 3 4 5] 7 8 9 10 11 12 13 14 15

dPy ~dPy
dpyx dPy .
Px Py
Py ~Px
ay -~
a 3y
day day
-ay -2y
day -day
o O
Ox Oy
doy doy
doy -doy
P14
P1s
P18
“P1i0
P111
-a3 dg
dg a3
Pz P13
-P13 P,
C3
S3
P21
P23
P24
-9,
P13
Pz P13
P13 P
h21 -h22 -h24
haz hz21 hgs
Paz Py
-3, -Pi1s
P16 -2z
-Ps1 ~Ps52
hyz -daz
da, h12
Pl1r -0z
-0z “P111
14

321

(9]
S1

d0y. P2
P17

P19
Pi1z
P113

C3

S3

a2, 13
ds

dpz
h1l
h21
h22
dp,
hy1, de3
€23
523

6.

inverse differential kinematic equation of the FUMA arm,

Table 2.

10 11 12 13
Pe4

P1s P63

Conclusfon

14

Ps3

h3y
Pis

15 16 17 18 19 20 21 22 23 24

3]
~Pg7

-h13
-P&3
h31 h13
Ps7 P110
P110 ~Pe7
h33 hys
*Ps7 “P110
Ms -h33

Ps1
P3g
Pge
-h32
-pGG Pg3
-hg2 -h34

ha1

P92

-ha3 hs)

Data flow timing table for steps 9 through 15 which campute de4, des, deg.

Pgs
Pss
Ps9
Ps10
P1s
Ps3
Cq
S

de‘v
Pgg

Pg7
Cs

S5

Pg2

605- 993

C6. S¢

[t has been demonstrated in this paper that parallel computing architecture can be developed for the

design, the computation can be completed with 27 processing cells in 25 time units.

7.

(1

(2]

3]

(4]

{53

{61

By using systolic linear arrays employed in VLSI chtp

The differential kinematic equation in its original form requires about 150 multiplicatfons to compute. If
one multiplication is counted as one time unit, the parallel architecture definitely provides a substantial
reduction in computaticn time, A customized IC chip dedicated to this algorithm can be fabricated.

References

D. E. Orin and W, W, Schrader, "Efficient Jacobian Determination for Robot Manipulators," Robotics Research,
Brady and Paul, Editors, pp. 727-734, MIT Press, 1984.

R. P. Paul, B, Shimano, and G, E. Mayer, "Differential Kinematic Control Equations for Simple Manipulators,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol., SMC-11, No. 6, pp. 456-460, June 1981.

D. E. Orin, H. H. Chao, ¥. W. Olson, and W. W. Schrader, "Pipeline/Parallel Algorithms for the Jaccbtan and
Inverse Dynamics Computations,” proceedings, 1985 [EEE International Conference on Robotics and Autumation,
pp. 785-789, 1986.

S. S. Leung and M, A, Shanblatt, “A VLSI Chip Architecture for the Real-Time Computation of Direct
Kinematics," proceedings, 1986 IEEE Iaternational Conference on Robotics and Automation, pp. 1717-1722,
1986.

S. Muroga, VLSI System Design, When and How to Design Very-Large-Scale Integrated Circuits, Wiley, 1982, 2.
313-316.

C. F. Ruoff, "Fast Trig Functions for Robot Control,” Robotics Age in the Beginning, C. T. Helmers, ed.,
Hasbronck Heights, Hayden Book, 1983, pp. 73-79.

322

Appendix: Inverse Differential Kinematic Equations for PUMA arm

CydP, - SydP,

do) = TP

1"x * °1y

9

403 * TITT; - 35557
3 4l - a5,

de

dy = fll(P)dfll(D) - flz(P)dflg(P)

11(P) = C1p = 51y

df11(p) = -Syp,dey + Cydp, + Cypydey + Sydpy
f12(p) = -dp,

. Sa38vz - Ca3dvy

T T S
a 232 © 1

v 7 mepfyy(P) *+ wpy
vz * w11 (P) + woPy
wp " 903 ¢ 9

wy = dg * 3553

dvl = -uzdfll(p) -aAZ'll(p)c3de3 + uldpz - 3253pzd93

dvz - uldfll(p) - azs3f11(p)dea + mzdpz + 62C3p3003

dBZ = d023 - d93

dec
]

NC4d(NS,) - NS4d(NCy)
(Nsy)% + (nc,)

NCq = Co30ay - S232%;

Dy = Cyay *+ Sy9y

d(NS4) = 'Claxdal - Slaydel + Cldaz - Sldax

NSg = =512, + Clay

d(NCy) = -Sp30gdogy *+ Cp3dDyy -~ Ca33;d8z3 - Sp3d3,
dDy; = -Sja,dey + Cyda, + claydel + 5yda,

= CydSg - SgdCs

dSg = -S4NCqde, + C4d(NCg) + CqdaghSy + S49(NSy)
dCg = Cpydeyylyy *+ Sp3dbyy - Sz32;98p3 * Cp3d3,

Sg = CqNCq + SqNSy

Cs = Sp3941 * C23%;

323

deg = CgdSg - SsdCs
S6 = “CsNe1 - SsMe12
Cs = -SeNe11 * CaMs112
dSg = SgNgydeg - CqdNgy - Cglg pdeg - SgdNg,,

dCg = -dSgNgyy - Sad¥1) * CaMsrnz * CadNern2

“CaNg11904 - SqdNgy 1+ - SeNgpy2d0g ¢ CedNgy 1,
61 = CaNg1p * SaMg1y2

11 ® C23Ms111 - S23%;

112 * =510« * €10y

dNgy = -SgNgy1dey + CedNg) + CyNgy 12994 * SedNg,
dNgyy = -Su3Mg1119923 * C239Mg 11 ~C230;,9%23 - 52390,
dMg 12 = - C10,d0; - S1d0, - 5,0,de; + Cyd0,

Ns111 * C10x * 510y

dN5111 - -Sloxdel + clao‘ + Cl°y“°1 + Sldoy

12 * -Sa3%s111 - C230%:

Mgz = ~CaaNg1119823 - Sa3dMyyy * S230,d23 - €230,

(k)
Py —— Pi "t ady

Ak

Figure 1. Inner product step processor

324

